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ABSTRACT

This work considers a photovoltaic (PV) system installed on the rooftop of Agder Energi’s headquarters
located at Kjgita, Kristiansand. The system includes three different types of solar PV modules; Suntech
(multi-Si), Sharp (a-Si/u-Si) and REC (multi-Si), that have a total installed DC capacity of 45 kW,. The
system is grid-connected and instrumented for research and monitoring purposes. Artificial Neural
Network (ANN) models were trained to obtain the lowest mean square error (MSE), by testing different
configurations using a model-based trial and error approach. The model configurations that gave the
lowest (MSE) were used to predict the power production from each of the PV modules using forecasted
weather parameters obtained from MEPS (MetCoOp Ensemble Prediction System), with a one-day
ahead and two-days ahead forecast horizon.

The input selection of the models was based on both model-free and model-based approach, where
the final input selection resulted in global horizontal irradiance, wind speed, air temperature and air
mass, with the power (AC) production as output (target). The results indicated that the model
configurations of 20 hidden neurons in first hidden layer, and 2 hidden neurons in second hidden layer
gave the lowest MSE for all PV modules. Results from the test sets showed that the best model for
Suntech gave MSE = 0.0454, Sharp gave MSE = 0.0325 and REC gave MSE = 0.0492. R?-values between
0.95 and 0.96 were obtained for all three models, indicating good fitting of the predicted values and
the targets. Testing the Suntech and REC models with a hold-out set provided slightly less precise
predictions compared to the results from the test set, while a higher precision was found for Sharp
modules. Testing the model configurations with forecasted weather parameters indicated that the
forecast accuracy of the weather will influence the power prediction, and the performance parameters
will be accordingly. The one-day ahead forecasts provided MSE equal to 0.2647, 0.2378 and 0.2647,
and for the two-days ahead forecast horizon an MSE equal to 0.2996, 0.2252 and 0.2719 for Suntech,
Sharp and REC, respectively. An error much higher compared to the test set and hold-out set for the
models, which inevitably was expected due to the weather forecast uncertainties.

Based on the findings in this work, it can be concluded that a further optimization of the models will
be necessary before obtaining even more precise predictions. However, the models did show good
fitting for several days and a potential for using ANN models for power prediction of PV modules.

University of Agder, Grimstad, May 24, 2019

(omdis Lie

Camilla Lie
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PREFACE

This thesis is a result of the project in the master course ENE500, which concludes my two year long
Renewable Energy Engineering Masters education at the University of Agder (UiA) in Grimstad,
Norway. | have previously finished a bachelor’s degree in Renewable Energy at the Norwegian
University of Science and Technology (NTNU) in Gjgvik, Norway.

The master’s thesis corresponds to 30 study credits, which corresponds to a time period between
07.01.2019 and 24.05.2019. This thesis considers power prediction of a photovoltaic (PV) system
located in Kjgita, Kristiansand, instrumented with PV modules from three different manufacturers.
ANN models based on feedforward neural networks have been used to train three models
corresponding to each of the PV modules, in order to predict AC power production. An increase of grid-
connected PV systems has been seen each year, introducing a necessity to accurately predict power
production from PV systems, as this can influence the stability of the electricity grid.

My interest in solar power started early in my bachelor’s course and has continued to grow as | have
had several projects related to this subject throughout both the bachelor’'s and master’s degree.
Although | did not have any knowledge regarding Artificial Neural Network (ANN) when | started this
thesis, | have come a long way in a short amount of time. Learning how to develop an ANN model was
time consuming and a lot of trial and error was needed to understand the concept behind it. Having a
large dataset with millions of samples was also challenging to handle, especially when combining the
data with the ANN models.

| wish to thank my supervisors Sathyajith Mathew, Joao Leal and Anne Gerd Imenes at UiA, for
guidance, encouragement and useful inputs regarding my thesis. They provided data from the relevant
PV system that allowed me to do this work. | also want to thank Ghali Yakoub for providing historical
forecasted data from MEPS (MetCoOp Ensemble Prediction System), which allowed me to test the
models with actual forecasted data. Last, | want to thank family and friends for support and
encouragement throughout the entire period.
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|NDIVIDUAL/GROUP MANDATORY DECLARATION

The individual student or group of students is responsible for the use of legal tools, guidelines for using
these and rules on source usage. The statement will make the students aware of their responsibilities
and the consequences of cheating. Missing statement does not release students from their
responsibility.

L I/We hereby declare that my/our thesis is my/our own work and that I/We have

not used any other sources or have received any other help than mentioned in
the thesis.

I/we further declare that this thesis:

- has not been used for another exam at another
department/university/university college in Norway or abroad;

- does not refer to the work of others without it being stated;
- does not refer to own previous work without it being stated;
- have all the references given in the literature list;

- is not a copy, duplicate or copy of another's work or manuscript.

I/we am/are aware that violation of the above is regarded as cheating and may
result in cancellation of exams and exclusion from universities and colleges in
Norway, see Universitets- og hggskoleloven §§4-7 og 4-8 og Forskrift om
eksamen §§ 31.

X

I/we am/are aware that all submitted theses may be checked for plagiarism.

X

I/we am/are aware that the University of Agder will deal with all cases where
there is suspicion of cheating according to the university's guidelines for dealing
with cases of cheating.

I/we have incorporated the rules and guidelines in the use of sources and
references on the library's web pages.

VI


https://lovdata.no/dokument/NL/lov/2005-04-01-15
https://lovdata.no/dokument/SF/forskrift/2005-06-22-833
https://lovdata.no/dokument/SF/forskrift/2005-06-22-833
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Authorization for electronic publishing of the thesis.

Author(s) have copyrights of the thesis. This means, among other things, the exclusive right to make

the work available to the general public (Andsverkloven. §2).

All theses that fulfill the criteria will be registered and published in Brage Aura and on UiA's web

pages with author's approval.

Theses that are not public or are confidential will not be published.

| hereby give the University of Agder a free right to

make the task available for electronic publishing:

Is the thesis confidential?
(confidential agreement must be completed)
- If yes:

Can the thesis be published when the confidentiality period is over?

Is the task except for public disclosure?

(contains confidential information. see Offl. §13/Fall. §13)
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UNIVERSITETET | AGDER

FAKULTET FOR TEKNOLOG! OC REALFAG
By order of Dean of Faculty of Engineering and Science: 30.01.2018

STANDARD AGREEMENT

concerning work on a bachelor’s thesis/master’s thesis/project assignment (academic
work) done in cooperation with a company/external organization (organization).

This is the authoritative agreement that governs academic work by students at the UiA Faculty
of Engineering and Science that is carried out in cooperation with an organization.

The involved parties have the responsibility to clarify whether or not a third party (that is not a
party to this agreement) may have intellectual property rights to the project background before
the latter is used in connection with the academic work.

Agreement between
[ Student: Caeni\lon  Lie | Date of birth: 0¢2.02.94 |

[ Supervisor(s) at UiA: S ot hyogidn Moddnw, \voo Leal fnne Gerd \menas |

| Company/external organization: <o nosozro D igviol |
and N
University of Agder (UiA), represented by the Head of Department

concerning the use and exploitation of the results from a bachelor’s thesis/master’s
thesis/project assignment.

1. Description of the academic work

The student is to carry out
Bachelor’s thesis O
Master’s thesis Kl
Project assignment O

(insert cross)

In cooperation with

Kongslarg Bagital
company/external organization:

ol. 0\, 20\% - 21.06.20\4
starting date — completion date (dd-mm-yyyy)

Title of the academic work: v
Prediewon of Oukpwk Pouwyr oF  kidgxe PN syamn

Using Actficiod Neucalk Nekwork

-
UiA 2018-01-30 P Page 1 of4
4.
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al

Power Prediction of Photovoltaic System using Neural Network Models I_ UiA gfnk’;égirty

A

The responsible supervisor at UiA has overall academic responsibility for structuring and
approving the description of the academic work and the student’s learning.

2. Responsibilities of the organization

The organization is to appoint a contact person who has the necessary experience in supervision
and will give the student adequate supervision in cooperation with the supervisor at UiA. The
contact person at the organization is:

The organization is to appoint a contact person who shall provide the student with the necessary
work resources at the organization and, if possible, contribute in supervision in cooperation
with supervisor at UiA. The organization’s contact person is:

Rasmus  Molgoord  Heoed

The purpose of completing the academic work is academic training for the student. The
academic work is part of a student’s course of study and the student is not to receive wages or
similar compensation from the organization. The organization agrees to cover the following
expenses that are associated with carrying out the academic work:

3. Rights of the parties

a) The student

The student holds the copyright to his/her academic work. All intellectual property rights to the
results of the academic work done by the student alone during the academic work are held by
the student with the reservations stated in points b) and c¢) below.

The student has the right to enter into an agreement with UiA concerning the publication of
his/her academic work in UiA’s institutional archive on the Internet. The student has also the
right to publish his/her academic work or parts of it in other media providing the present
agreement has not imposed restriction concerning publication, cf. Clause 4.

b) The organization

If the academic work is based on or develops materials and/or methods (project background)
that are owned by the organization, the project background is owned by the organization. If the
development work that includes the project background can be commercially exploited, it is
assumed that a separate agreement will be drawn up concerning this between the student and
the organization.

The organization is to have the right to use the results of the academic work in its own activities
providing the commercial exploitation falls within the activities of the organization. This is to

be interpreted in accordance with the terminology used in Section 4 of the Act Respecting the
Right to Employees' Inventions (Arbeidstakeroppfinnelsesloven). This right is non-exclusive.

UiA 2018-01-30 / 5 ) Page 2 of 4
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The use of the results of the academic work outside of the activities of the organization, cf. the
last paragraph above, assumes that a separate agreement will be drawn up between the student
and the organization. The agreement between the student and the organization concerning the
rights to the results of the academic work produced by the student is to be in writing and the
agreement is invalid until UiA has received a copy of the agreement in writing.

If the value of the results of the academic work is considerable, i.e. it is more than NOK

100 000, the student is entitled to receive reasonable compensation. Section 7 of the Act
Respecting the Right to Employees' Inventions states how the amount of compensation is to be
calculated. This right to compensation also applies to non-patentable results. Section 7 of the
Act also states the applicable deadlines.

¢) UiA

All copies of the submitted academic work/files containing the academic work and any
appendices that are necessary for determining a grade and for the records at UiA, are the
property of UiA.

The academic work and any appendices to it can be used by UiA for educational and scientific
purposes free of charge, except when the restrictions specified in Clause 4 are applicable.

4. Delayed publication

The general rule is that academic work by students is to be available in the public domain, If
there are specific circumstances, the parties can agree to delay the publication of all or part of
the academic work for a maximum of 5 years, i.e. the work is not available for other students or
organizations during this period.

The academic work is subject to delayed publication for:

one year O
two years O
three years | (]
five years O

(insert cross next to the number of years if this clause applies)

The reasons for delayed publication are as follows:

O, e
The parts, of the academxc yvork that are not subject to delayed publication can be published i in
UiA’s mshtutmnal archive, Qf Clause 3 a) second paragraph.

Even if the academic work is subject to delayed publication, the organization is to make it
possible for the student to use all or part of his/her academic work in connection with a job
application or follow-up work in connection with doctoral study.

UiA 2018-01-30 // ‘ / Page 3 of 4
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5. General

This agreement takes precedence over any other agreements that are or will be entered into by
two of the parties mentioned above. In case the student and the organization are to enter into a
confidentiality agreement concerning information the student obtains while he/she is at the
organization, UiA's template for a confidentiality agreement is to be used for this purpose. If
there is such an agreement, it is to be appended to the present agreement.

Should there be any dispute relating to this agreement, it should be resolved by negotiation. If
this does not lead to a solution, the parties agree to the matter being resolved by arbitration in
accordance with Norwegian law. Any such dispute is to be decided by Agder District Court or a
body appointed by this court.

This agreement is signed in 4 - four - copies, where each party to this agreement is to keep one
copy. The agreement comes into effect when it has been approved and signed by UiA
represented by the Head of Department.

Note that the Norwegian version of this standard agreement is the authoritative version.

9, 02.39\q

Grimsiad, 866230 Coadan e
place, date (dd-mm-yyyy) student

1392 - Q019" ——— Mallest

place, date (dd-mm-yyyy) supervisor at UiA. e

" l{sw 4 MARION / FR
>R J \'ﬁ) (4 MARZ0M 24 /7/ ot Department of engineering

place, date (dd-mm-yyyy) Head of Department, UiA

W\/{,Vlohﬂl\\"/‘« 1302. 2019 105'/"‘ ]9 MP G avd H l/”D
place, date (dd-mm-yyyy) for company/organization

signed and stamped
UiA 2018-01-30 Page 4 of 4
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1. INTRODUCTION

As an increase of grid-connected photovoltaic (PV) systems can be seen over the last few last years,
having accurate forecasts for the power production fed into the grid has become more of an important
issue. In 2018, approximately 23.5 MW, of PV system capacity was installed in Norway, which was an
increase of 29% compared to 2017. Globally, a total capacity of PV installed at the end of 2017 was
approximately 400 GW,, accounting for about 2% of the total power production worldwide. For the
last years, the amount of installed PV capacity in Norway has increased from 9 MW, to 45 MW,, (at the
end of 2017) and are expected to continue to rise for upcoming years. The reason for an increase of
PV systems is primarily because of the reduction of the investment cost, which decreased with 10-20%
from 2015 to 2017, but also factors such as incentives, TEK-regulations (regulations on technical
requirements for building works) and EU directives have played a role. As this increase have been
expected to continue for years ahead, the grid-connected PV systems will lead to higher changes in the
electricity grid and can create instabilities due to sudden changes in weather [1].

For grid operators to be able to handle sudden changes of power in the grid, accurate predictions of
output power from PV systems can contribute to reveal important information to regulate the
electricity grid more efficiently. Variation in solar irradiance due to weather fluctuations causes
variations in the power production from PV systems and as the use of large-scale grid connected PV
system also is increasing, it will be important to strengthen the prediction of PV system output power.
Artificial neural network (ANN) has the advantage to overcome limitations of traditional methods to
solve complex problems that are difficult to model and analyze, and is therefore viewed as a
convenient method to forecast solar radiation intensity and power output of PV systems. ANNs have
become a widely used method in the forecasting field, with the aim to find the most accurate approach

[2].

ANNs are non-linear computational models that can be used for a variety of problems, including
classification, speech recognition, clustering, prediction and forecasting. Recent research has shown
that ANNs have powerful pattern classification and recognition capabilities as they are able to learn
and generalize from experience. They learn from examples and even with unknown or hard to describe
underlying relationships, ANNs can capture these subtle functional relationships. Having enough data
or observations allow for solving problems whose solutions require knowledge that is difficult to
specify. The ANNs ability to generalize allows for data containing noisy information to be correctly
inferred and are capable of performing non-linear modeling without a priori knowledge about an input-
output variable relationship. Because of this, ANNs are seen as a more general and flexible modeling
tool for forecasting [3].

1.1. PROBLEM DEFINITION
This work considers Artificial Neural Network (ANN) models using input variables from historical
measured data from a PV system, to predict power production at any time of the year. Three different
types of PV modules are being studied, whereas also three different ANN models will be trained and
tested, each model corresponding to each of the PV modules. Having an insight to which configurations
that give the best performance parameters, i.e. lowest mean square error (MSE), these models will be
used with historical forecasted weather data from a forecasting service.

1
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Based on this, the following goal was established:

e Potential of using ANN models for PV power prediction and their application to power forecast
based on MetCoOp Ensemble Prediction System (MEPS).

Further on, it was also established three sub goals:

- Determine the relevant input parameters that should be used in the ANN models.

- Find the configuration (number of hidden neurons and layers) that provides the best model
performance.

- Evaluate how the ANN models perform with a hold-out dataset and forecasted weather
parameters coming from MEPS.

The three sub goals listed above will thus contribute to reach the main goal of this study. In the
methodology section (section 3) the methodology for achieving these goals is presented.

1.2. LIMITATIONS AND ASSUMPTIONS
To be able to achieve the goal of this work, several limitations and assumptions were made along the
way. The main limitations and assumptions made in this work will be presented in this subsection,
while a more explanatory description will be stated in the methodology section in this work.

As there was little previous knowledge regarding certain aspects of this work, the process or reaching
the goal was mainly based on a trial and error approach. Data obtained from the PV system was
recorded on minute-basis, but for an Artificial Neural Network (ANN) model to work with forecasted
weather data obtained from MEPS (MetCoOp Ensemble Prediction System), which was obtained on
hourly basis, it was decided to also use the on-site data with hourly values. As the data contained
samples with missing data and/or data that could have been compromised, it was desirable to filter
out this data. This will be considered data-manipulation, which again can affect the models’
performance. As there was a maintenance log for the system, this was used to filter out data that had
been compromised because of maintenance, software updates or similar. Additional data-
manipulation was not performed in this work. Due to this, if any compromised data not stated in the
maintenance log, could at some extent influence the ANN model performance and careful
considerations regarding results from the data samples must be taken.

An ANN model was chosen to be used as a prediction model for power production. This was chosen
based on the models’ ability of generalization and literature review that supports the use of this type
of model for non-linear prediction systems. How ANNs work will be explained throughout the report
and a literature review will also be presented.

For the ANN model to be used with forecasted weather parameters, it was necessary to find the
optimal model configurations. For this, a model-based trial and error approach was used. To limit the
extent of the model testing, seven tests with a variation of hidden layers and hidden neurons in the
network were considered. It was created three different ANN models, one for each of the PV modules.
The seven tests included a variation with a low number and a relatively high number of neurons in one
hidden layer, where also some tests included a second hidden layer. As mentioned above, there was
no previous experience from training such models and a random composition of hidden neurons and
layers were chosen. Before the seven tests could be performed, certain configurations were tested to
see which would provide a model with better performance. The mean square error (MSE) was used as

2
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the performance parameter to decide which model configuration that indicated the most precise
model. Other performance parameters were also considered and discussed, but the choice of the most
optimal model out of the seven tests were chosen from the lowest MSE value. This parameter is the
default performance parameter in MATLAB's toolbox, which was used for developing and testing the
ANN models.

A preliminary report related to this thesis done by Lie [4], characterized parameters from the PV system
at Kjgita, Kristiansand. Due to lack of information regarding the measured parameters on-site, the
results would be considered uncertain because of vague pre-processing of the raw data. It was,
however, uncovered some weaknesses in the data, i.e. the DC power production was lower than the
AC power production. This was considered a large deviation, and the DC power will for this work be
considered non-valid due to sensors uncertainties. Thus, the AC power will be used.

If other limitations or assumptions were made throughout this work in order to reach the goal, this will
be specified in the methodology section.

1.3. THESIS STRUCTURE
The structure of this thesis involves a theoretical background that will include a brief literature review
related to topics in this thesis. The literature review will give an indication of previously done research
related to this work and give an understanding of main contributors that is important to consider when
developing ANN models for PV systems. The theoretical background will cover aspects that is
considered important to have insight about before reading the methodology, results and discussion
sections.

The methodology section will have information based on the theoretical background and a further
description regarding assumptions and the progress in this work will be presented. Important decisions
such as input selection, data division (dividing data into subsets for ANN model training purposes),
model structure and performance will be presented, completed with a discussion of the method choice
for this work.

The result and discussion section will present and illustrate the objective of this work together with a
discussion regarding the results. The results will present the steps from obtaining the raw data, to the
results from the final testing of the different ANN models where a discussion regarding performance
parameters will be of importance. Finally, a conclusion will be presented followed by suggestions for
further work.
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2. THEORETICAL BACKGROUND

2.1. LITERATURE REVIEW
A review of photovoltaic power forecasting by Antonanzas et al. [5] from 2016, assesses different
techniques and approaches to improve the accuracy and reduce uncertainty in prediction models. The
review is considering the latest advancements and with it follows a summary of the main techniques
used to issue the predictions along with a discussion regarding the benefits of the different techniques.
The review concludes that ANNs are the most commonly used machine learning techniques among
solar power forecasting as they have proven useful in a wide variety of situations and with many inputs
variables. The next most used techniques are the support vector machines that use supervised
modeling method. They are strong when it comes to generalization capacity and have a great ability
to deal with non-linear problems. As the most common model of PV forecasting is based on ANNs, the
parameters and the ANN method approach can vary. Reviewing several publications, frequent
variables used in models were the global horizontal irradiance (GHI), temperature (ambient) and
power (historical data) (e.g. in [6, 7]).

Omar et al. [8] used artificial neural networks (ANNs) ensembles to predict power output with input
variables global horizontal irradiance, wind speed, air temperature, pressure, humidity cloud cover and
time of year and day. Different numbers of hidden layers and hidden neurons were altered to see the
difference in errors from the trained models. The results from this study showed that averaging the
output forecasts from an ensemble of similar configuration networks were likely to perform better
regarding a day-ahead forecasting than a single network of the same configurations.

Kudo et al. [6] suggested the use of normalized solar radiation when training an ANN network for solar
power based on weather parameters. The weather varies for different seasons, and the use of only
one season for a model would require large amount of data, it was suggested that the normalized
radiation could give the model better performance. The normalized radiation was obtained by dividing
the solar radiation with the extraterrestrial radiation.

A study by Liu et al. [9] was done to see the correlation between output power from a PV system with
solar irradiance and air temperature. The output power indicated a linear correlation with the solar
irradiance intensity, while the air temperature gave neither positive nor negative linear correlation,
meaning the power output has a non-linear correlation with air temperature. The air temperature was
therefore considered an important parameter that will influence the power output. As this study used
several different input variables for solar radiation intensity and temperatures, the optimal
architecture of the network was found to be 28-20-11, with results indicating good performance of
forecasts of daily power output of the relevant PV system. Another study, done by Oudjana et al. [10],
defines three models to train a feedforward neural network, involving different input variables. A
model with only air temperature as input showed a large forecast error due to low correlation between
air temperature and power output. A second model included only solar irradiance and provided an
acceptable error. A third model included both air temperature and irradiance, which consequently also
provided the best model of the three, with the lowest error.

Kaldellis et al. [11] discuss the temperature and wind speed impact on the efficiency of a PV
installation. The findings show that the photovoltaic conversion process depend on the solar irradiance
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and the module temperature, where the module temperature is affected by the solar irradiance, air
temperature and ventilation (wind speed), as well as the technical characteristics of the PV panels. The
study highlights the importance of the wind speed impact and that it plays a fundamental role in
determining the modules’ temperature and accordingly their efficiency. The study concludes that
determination of the wind’s effect on the thermal loss mechanisms of PV panels are close, but not
identical to those in PV simulations and literature.

Defining a network depends on several configurations. In a study done by Sulaiman et al. [12],
investigate the performance of a multi-layer feedforward neural network (MLFNN) technique
compared with a linear regression (LR) model. For the neural network technique, a configuration with
Levenberg-Marquardt activation function, 18 hidden neurons in one layer using logsig as activation
function and purelin as activation function in output layer, was chosen as the best training parameters
that provided the lowest error. The results show that the classes MFLNN had superior prediction
performance compared to the LR during training and testing.

2.2, SOLAR RADIATION

The solar radiation from the sun’s surface (extraterrestrial radiation) is relatively constant throughout
the year, often indicated as the solar constant (1367 W/m?2). But as is reaches the earth’s surface, it
has been affected by the earth’s atmosphere due to absorption and scattering. On clear, cloud-free
days, the maximum radiation reaching the earth’s surface occurs as the sun is directly overhead,
because of shorter pathlength through the atmosphere. Figure 1 illustrates the spectrum of solar
radiation, where the black line represents the idealized radiation from the sun which can be seen as a
blackbody with temperature at approximately 5778 K, the yellow area represents the radiation outside
the atmosphere and the red area represents the radiation at sea level.
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Figure 1: Solar radiation spectrum outside the atmosphere and at the earth’s surface [13]

The red curve is varying due to absorption bands occurring in the atmosphere from various gases. Due
to scattering of radiation in the atmosphere, the solar radiation reaching the earth’s surface is not
constant. This scattering is occurring due to molecules, aerosols and dust particles and scattered light
is known as diffuse radiation. Diffuse radiation is typically 10% of the global radiation when the sun is
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directly overhead on a clear day. Figure 2 illustrates the direct and diffuse radiation reaching the
earth’s surface.

Figure 2: Direct and diffuse solar irradiance

e Global Horizontal Irradiance: the sum of the direct and diffuse irradiance emitted onto a
horizontal surface [14, pp. 18].

o Diffuse Horizontal Irradiance: radiation that is scattered or diffused by particles in the
atmosphere or reflected by the earth’s surface. It is measured on a horizontal surface where
the direct sunlight is being blocked by a ball or disc by using e.g. a pyranometer [14, pp. 18].

e Global Tilted Irradiance: Measuring the irradiance in plane with a tilted PV module gives the
global tilted irradiance, which corresponds to the same amount of irradiance that the PV
modules receive [14, pp. 21].

2.3. AIR Mass (AM)

The pathlength the sunlight travels through the atmosphere to reach the earth’s surface is referred to
as the air mass. The air mass varies throughout the day, depending on the location of the sun relative
to the earth. Equation (1) can be used to calculate the air mass based on the assumption of a
homogenous, non-refractive atmosphere. This equation introduces an error of approximately 10%
close to the horizon (when the sun’s elevation angle is 10° above the horizon). To account for this error,
equation (2) can be used, which takes the variation of atmospheric density into account.
1
- cos(0z) (1)

e—0.0001184*h

M = - )
cos(6;) + 0.5057 * (96.080 + 0,)~ 1634

where h is the site altitude [m] and 6; is the zenith angle [°]. This angle is a good approximation down
to = 10°. As the sun is directly overhead, the air mass is at its lowest, meaning more sunlight reaches
through the atmosphere. As the location of the sun moves towards the horizon, the zenith angle, 6,,
becomes higher, hence the air mass increases. Figure 3 shows the amount of atmosphere (air mass)
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the radiation from the sun must pass through to reach the earth’s surface and how it depends on the
sun’s position on the sky.

Figure 3: Air mass
The zenith angle can be calculated using equation (3).
cos(6,) = cos(¢) cos(8) cos(w) + sin(¢) sin(6) (3)
where ¢ is the latitude angle, § is the solar declination angle and w is the hour angle.

The declination angle (8) can be calculated by using equation (4).

8§ = 23.45° = sin | 360° (284 A D) (4)
= . * * | —m8 ——
Sin 365

where D is the day of the year. To calculate the hour angle (w), equation (5) can be used.

] _ sin(a) — sin(8) sin(¢)
sin(w) = cos(8) cos(¢) ©)

where a is the altitude angle.
To get the altitude angle, @, equation (6) can be used.

sin(a) = sin(6) sin(¢) + cos(d) cos(w) cos(¢p) (6)

24. PHOTOVOLTAIC SYSTEM
Individual solar cells electrically connected together is called a PV module, and are done so to increase
their power output. The cells are packed so that they are protected from the environment and to
protect the used from electric shock. The effects that are considered the most important in PV modules
or arrays are [15]:

e |osses due to mismatched solar cells interconnections
e module temperature
e PV modules failure modes
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The top surface material of the cells should be impervious to water, good impact resistance, stable
under prolonged UV exposure and low thermal resistivity. In addition, reflection from the front surface
should be low. To reduce this reflection, applying anti-reflection coating to the top surface can be
done, but an issue with the robustness of these coatings are to be found. A technique that can be used
instead, is to “roughen” or texture the surface. However, this technique is more likely to attach dust
and dirt to the top layer of the modules, thus less “self-cleaning”, where the advantage of less
reflection is outweighed by losses from top surface soiling [15].

A representation of how the different terms from PV cells to arrays can be seen in Figure 4.

Solar (PV) cell Solar (PV) module Solar (PV) string Solar (PV) array

Figure 4: From solar cell to solar array

Several PV cells make up a PV module, several modules connected in series is referred to as a PV string
and several PV modules (strings) make up a PV array. By having several PV arrays connected togheter
and into a house or the electricity grid, make up a PV system. A simplified grid-connected PV-system is
illustrated in Figure 5.

Solar modules/arrays AC load

Inverter e

DC DC AC
Charge DC/AC | AC .
controller

4

DC

Battery

Figure 5: Simplified schematic of grid-connected PV system

Figure 5 illustrates how solar (PV) modules or arrays are connected to a charge controller that again is
connected to a DC/AC inverter and/or batteries. Solar cells produce direct current (DC), which needs
to be converted into alternating current (AC) if it is to be fed to the electricity grid. DC energy can be
stored in a battery or used in e.g. home appliances. The charge controller with MPPT (maximum power
point tracker) or PWM (pulse width modulator) is typically used, and is needed if a battery is connected

9
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to the system. The charge controller determines if the power generated from the solar modules is
needed to charge the batteries, used in home appliances or fed to the grid. The controller is preventing
the battery from overcharging and makes sure the electricity stored in the battery does not to get back
to the solar modules during no-production periods [14, pp. 99-105].

2.5. SOLAR CELL MATERIALS
According to Basore’s [16] definition, there are three different material structures divided by crystal
grain size; crystalline, multi-/polycrystalline and amorphous. The three different material structures
are illustrated in Figure 6 and represents the arrangements of the atoms for each material. The
following descriptions of the materials are based on Wenham et al. [14, pp. 31-33].

Crystalline Polycrystalline Amorphous

Figure 6: Material structures

2.5.1. Crystalline Silicon
Crystalline silicon includes atoms arranged in a regular pattern with an ordered crystal structure. The
manufacturing process for this technology is a careful and time-consuming process, making it the most
expensive type of silicon. The crystalline silicone usually has the highest quality but because of the
cost, multi/polycrystalline and amorphous silicon are increasingly being used.

2.5.2. Multi/polycrystalline Silicon (multi-Si)
Multicrystalline or polycrystalline materials require a grain size on the order of a few millimeters to
avoid significant recombination losses. The production technique for this material is less critical than
for single crystal material, resulting in a cheaper type of material. This material has a lower quality than
the crystalline material due to the grain boundaries blocking carrier flow, which results in a greater
recombination loss.

2.5.3. Amorphous Silicon (a-Si/p-Si)

In this type of material, there is no long-range order in the atom arrangement structure, which will
result in a more challenging way to obtain reasonable current flows in a PV cell configuration. The band
gap for amorphous silicon is 1.7 eV, while in crystalline silicone has a 1.1 eV band gap, and the
absorption coefficient of a-Si is much higher than that of crystalline silicon. a-Si is commonly called
“thin film”, due to having very thin films of semiconductor that are deposited onto glass or other low-
cost substrates and are often used in calculators and watches. The material is cheaper to produce than
the crystalline material but in return the efficiency and lifetime is lower.

10
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2.6. SOLAR CELL OuTPUT

Photovoltaic (PV) cells convert sunlight directly into electricity with the use of semiconductors.
According to Wenham et al. [14, pp. 53] single-junction solar cells have a theoretical efficiency limit
around 30%. Conventional solar cells are made of crystalline silicone because of high efficiency. These
cell types can have an efficiency up to 24-25% under laboratory conditions and state-of-the-art
technology, while commercially, mass-produced cells have an efficiency typically around 13-19% [14,
pp. 53].

The output of a PV module depends on several different weather conditions and operational state of
the cells. Weather conditions such as irradiance and cell temperature have proven to influence the
output power, where also variables like wind velocity, humidity and pressure influence the irradiance
and cell temperature. The module temperature has the effect on the cell output in such a way that an
increase of temperature, results in a decrease in cell output. The effect of temperature on the
maximum power output (Pmp) for silicon is represented with equation (7), given by Wenham et al. [14,
pp. 47].

1 dPy,
— TP = —(0.004~0.005)°C"*
P dr (0.004~0.005)°C (7)

Where Pp, is the maximum power and T is the cell temperature.

Figure 7 represents the typical effect of increasing temperature of a solar cell.
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Figure 7: The effect of temperature on the |-V characteristics of a solar cell [17]

As seen from Figure 7, an increase of temperature has the effect of increasing the Isc and decreasing
the Vo, ultimately reduce the fill factor (FF), hence the reduce the cell output. The fill factor is the ratio
of the maximum power (Pm,) from the solar cell to the product of the open circuit voltage (Voc) and
short circuit current (/sc) [14, pp. 44], see equation (8).
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Other aspects that can affect the cell output are the resistances (parasitic series and shunt).
Contributors to the series resistance can be the bulk resistance on the semiconductor material, metallic
contacts and interconnections. The shunt resistance is due to impurities near the junction and p-n
junction non-idealities. Aspects such as faults/failures, dirt, shading and degradation will also have a
negative effect on the output of a solar cell. For even more information of the behavior of solar cells,
Wenham et al. [14] can be reviewed.

2.7. ARTIFICIAL INTELLIGENCE (Al)
Understanding intelligence and building intelligent systems are definite goals of artificial intelligence
(Al). The definition, however, is widely discussed and agreeing on an accurate description is
challenging. Many have tried to come up with a reasonable definition that covers all aspects, but
weaknesses can still be found in the definitions. Elain Rich came up with the definition;

“Artificial Intelligence is the study of how to make computers do things at which, at the moment, people
are better.” [18]

This definition characterizes what Al researches have been doing for the last 50 years and will even be
up to date in year 2050, as stated by Ertel [19, pp. 2].

Al is a broad branch of computer science, with the goal of a system that can function intelligently and
independently. It can widely be divided into two main areas; symbolic learning and statistical learning
[20, pp. 31]. The symbolic learning includes computer visions and robotics, where image processing is
used. Machine learning uses pattern recognition for either statistical learning or deep learning.
Statistical learning deals with techniques for speech recognition and natural language processing.
There are different types of deep learning in machines, which are essentially different techniques to
replicate what the human brain does. For the machine learning area, it is essential with data for the
machine to be able to learn [19]. To see an overview of how the three areas are connected, see Figure
8, that shows that deep learning is part of machine learning, that again is a branch of artificial
intelligence.

Artificial Intelligence

Machine Learning

Figure 8: Subsets of Artificial Intelligence (Al)
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2.8. IMACHINE LEARNING

As seen in Figure 8, machine learning (ML) is part of artificial intelligence. By using example data or
past experience, ML can be used to optimize a performance criterion using computational algorithms.
Such algorithms turn empirical data into usable models [21]. A significant interest in machine learning
is to develop efficient algorithms for designing models, to do analyses and predictions, where big data
has become of particular importance. Big data refers to large amounts of data with high dimensions,
which will need algorithms to be computationally efficient and robust in their performance as the
datasets can include noise and missing values [22].

Machine learning can either be shallow learning or deep learning, depending on their credit
assignment paths or learning ability. These paths are possibly learnable chains of causal links between
actions and effects. Usually, machine learning is divided into two main methods; supervised and
unsupervised learning. Whether a model uses supervised or unsupervised learning, depends on the
available data. For the supervised model the data used for training is labeled, while for unsupervised
learning, the data is unlabeled. Labeled data refers to a dataset that includes attributes (sorted data
within categories), observations of each attribute and features (targets). As unsupervised models do
not have labelled data, they will have to understand the data by for example using clustering
techniques. Figure 9 provides an overview of machine learning methods [23].

Machine Learning

Supervised Learning Unsupervised Learning

Regression Classification Clustering

Figure 9: Machine learning scheme

Supervised learning establishes a learning process as it continuously adjusts the predictive model by
comparing the predicted results with the actual results, until the predicted results of the model reach
an expected performance. For a supervised model, both the input and output data is known, but the
relationship between the variables may be unknown [24, pp. 5-9]. A common goal with supervised
neural network training is to find weights that yield lower values of error that is being calculated from
the model. Within supervised learning there are two methods, classification and regression [22].

Unsupervised learning has only knowledge about the input data, so the data will be grouped or
interpreted based only on input data. It encodes raw data in a form that is more convenient for
subsequent goal-directed learning and can be connected to topics of regularization and compression
[24]. Clustering is a multivariate statistical technique aiming to find pattern in any shape in a large
dataset by collecting similar individuals of homogeneous classes [25].
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2.8.1. Classification
Techniques that uses classification predicts categorical responses by classifying the input data into
categories [23]. A classification task involves assigning an unknown pattern to a number of known
classes. By having a rule that fits the past data and which can also fit new data, predictions can be
made for novel instances [21].

2.8.2. Regression

A regression task can be considered a curve fitting problem, where the output variable is a non-discrete
variable that takes values in an interval in the real axis or in a region in the complex numbers plane.
Having a data set including training points of y; and x;, where i can represent any real number higher
than 1, it is possible to estimate a function f, whose graph fits the data [22]. If a new data point with
an unknown output value occurs, the function from the trained model can be used to predict its output
value. Figure 10 illustrates a simple linear regression example where a new point is being predicted
with the function that has been designed to fit the available training data set.

A

Figure 10: Linear regression example

The blue points in Figure 10 represents the training data and the red points on the x-axis represents a
new point to the data set. The green point is the new output value y, predicted from the trained model
with an equation equal to (9).

y=fk) (9)

where y is the output values, and f(x) is a function derived from a trained model [22, pp. 3-4].

2.9. ARTIFICIAL NEURAL NETWORKS (ANNS)
ANNs consist of different layers connected to each other and work on the structure and functions of a
human brain. They can perform complex algorithms to train a neural network by learning from huge
volumes of data.

A standard neural network (NN) consists of many neurons, which is a connected processor that
produce a sequence of real-valued activations. Input neurons activate through sensors perceiving
information from the environment, other neurons get activated by weighting connections from
previous neurons. Depending on the connection of the neurons, the wanted output, or the desired
behavior of the network, long causal chains of computational stages may be required [24].
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2.9.1. Neural Network Terms
Neuron (node/perceptron): A neuron is the basic unit of a neural network. It receives a certain amount
of inputs and a bias value, where the input value is multiplied with a weight value. Each neuron is
connected to another neuron, which each connection has an associated weight value.

Transfer function (activation function): The transfer function (also called activation function) defines
the output of a neuron in terms of the induced local field. Commonly used transfer functions are
represented in Figure 11. The functions are determined whether the local field is above or below zero,
calculating a layer’s output from its net input.

0 n 0 n 0 n
""""" 1 N I BT
a =logsig(n) a = tansig(n) a = purelin(n)

Figure 11: Transfer functions. a = output, n = input

The logsig-function is a Log-Sigmoid transfer function that generates output between 0 and 1 as the
neuron’s input goes from zero to positive infinity. The tansig-function is Tan-Sigmoid transfer function,
which takes both negative and positive input values and the purelin-function is a linear transfer
function. The sigmoid functions are most commonly used in pattern recognition, while the linear
function is used for function fitting problems [26].

Backpropagation: The backpropagation algorithm is used to calculate a networks performance with
respect to weights and bias variables. The algorithm is often used on a validation set of a neural
network model (this will be explained in more detail in following subsections) and can be used to stop
the network training if the errors calculated by the backpropagation algorithm fails to improve. The
predicted value is compared to the target value, and a loss function is used to calculate the error
between the two points. The average of the loss functions of the entire training set is called the cost
function and is measured by for example the mean square error (MSE). A commonly used
backpropagation is the Levenberg-Marquardt jj, which uses the Jacobian jX, and can be calculated

based on:
Jj =JX*jX
je=jX=x¢
—(j+1+*mu)
X = ———— (10)
je

where jX is the Jacobian matrix, € is all the errors, / is the identity matrix and mu is the adaptive value
[27].

Weights: Weights will be assigned to each neuron where the goal of training a model is to update the
weight values to decrease the loss (error). The weights represent the strengths of connection between
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neurons and decide how much the input will influence the output. If the weight has a value of zero,
this input will not influence the output at all. An increasing positive weight value will increase the
output, while a negative weight will decrease the output. How fast the network learns is based on the
learning rate, which is the rate at which the weights are being updated. For each new weight update
using the backpropagation, which is the same as one iteration (epoch), the learning rate will decide
the new weight update.

Epoch: Also called iteration, is the term used for each weight-update. For each epoch, the weight
assigned to the connections are updated with the use of backpropagation. The backpropagation
algorithm will decide the weight update and based on wanted outcome of the model (i.e. performance
of the model) and continue to iterate until the goal of the model performance is reached.

2.9.2. Feedforward Neural Network (FFNN)
A FFNN is structured with layers where information flows from the input layer, through hidden layer(s)
to the output layer, without any loops or cycles in the network. However, depending on the number
of layers of perceptrons, the network can be without a hidden layer, describing a single layer
perceptron.

1. Single Layer Perceptron

A single layer perceptron contains only an input layer and an output layer and is the simplest form of
neural network. A representation of the perceptron can be seen in Figure 12.

Inputs Weights

Transfer function Output

d

Figure 12: Nonlinear model of a perceptron (neuron)

The inputs in the perceptron (neuron) may come from the environment or be the outputs from other
perceptrons. Each input is associated with a connecting weight, which are being summed and defined
by an transfer function, before obtaining the output a [21, pp. 271].

2. Multilayer Perceptron

This class of ANN has one or more hidden layers with computation neurons. It is called a hidden layer
because it is not seen directly either on the input side or the output side. The purpose of the hidden
layers is to intervene in a useful manner between the external input and output of the model, by
computing its own activation value. How many layers the network has determines the width of the
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model [28, pp. 165]. Each neuron in the hidden layers receives input from other units and computes a
value that is being forwarded to the next layer. Figure 13 represents a network with two hidden layers.

Input layer Hidden layers Output layer

Output

Bias Bias Bias

Figure 13: Multilayer feedforward neural network with two hidden layers

All inputs are each connected to the first hidden layer, but not to each other. The input then passes
through the transfer function of the perceptrons (neuron) and are passed on to the next layer, until it
reaches the output layer. The model learns by updating the weights (backpropagation). This algorithm
helps the model to learn and update the weights in order to increase the efficiencies [21, pp. 279]. The
network illustrated in Figure 13 can be referred to as a 3-4-4-1 network, as there are 3 inputs, 4 hidden
neurons in first hidden layer and 4 in second, and 1 output.

In practice, it is more common to only use one hidden layer of neurons as a network with more than
one layer makes the network quite complicated to analyze. But if a hidden layer contains many hidden
neurons, it may be sensible to go to multiple hidden layers [21, pp. 281].

2.9.3. Recurrent Neural Network (RNN)
If a network includes feedback connections, it is called recurrent neural network (RNN). This type of
network has self-connections or connections to neurons in the previous layers, in contrast to a
feedforward network which only sends information in one direction. RNN acts as a short-term
memory, allowing the network to remember what happened in the past [21, pp. 305-306]. The
difference between a recurrent network and a feedforward network is illustrated with Figure 14.

Figure 14: Recurrent (left) and feedforward (right) neural network [29]
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2.10. ANN MoDEL DEVELOPMENT PROCESS
There are several steps that can be followed in the process of developing an artificial neural network
(ANN). Depending on the available data and what is desired to achieve from the model, the method
can vary. In the following subsections, a brief description of the steps in developing an ANN model will
be presented, based on Figure 15. The four first steps in Figure 15 can be considered the data-
preprocessing part, and the three last can be considered dealing with the ANN models. The
descriptions have been based on Maier et al. [30].

1. Choice of potential inputs
and targets

v

2. Data processing

pre-processing *

3. Input selection

4

4, Data division

|
|
|
|
I
I
! Data
|
I
|
|
|
|
|

5. Model architecture

v

6. Model optimization

¥

7. Model evaluation

ANN model

Figure 15: Steps in ANN model development process
According to Maier et al. [30], all ANN prediction models take the term in equation (11):
t=f(aW)+ ¢ (12)

where t is the model output (target), f(a, W) is the functional relationship between model outputs,
inputs and parameters, a is the model inputs, W is the connection weights and ¢ is the model error.
f(a,W) will be governed by the model architecture and geometry (e.g. number of hidden layers and
neurons, type of transfer function) and the parameters need to be defined.

2.10.1. Choice of Potential Inputs and Targets
Depending on available parameters/data, the input selection possibilities will be restricted. If a model
is to be based on weather parameters, it is important to identify what parameters and how much data
is available. The target (output) of the model is to be based on the input variables.

2.10.2. Data Processing
Having the input selection determined, processing of the data should be performed. This step is
important to be certain that the training of the model is based on correct, unbiased data. This step
includes gathering data and processing it before using it in an ANN model. It can also be necessary to
scale the data that will be used as input variables, to avoid problems with assigning weights for data
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on different scales. This can be done by standardizing the data, allowing an input selection without
extreme differences in maximum and minimum values.

2.10.3. Input Selection
This can be a model-free approach, which uses statistical measures of significant, or model-based
approach, that choose the input variables based on the performance of the model. The first approach
can use methods for dimensionality reduction, which can exclude variables providing redundant
information because the variable is closely related to another input variable. This can increase the
likelihood of overfitting (overtraining) [21, pp. 120]. The latter approach will involve training and
evaluating the model several times to observe what provides the best performance of a trained model.

2.10.4. Data Division

Data division involves dividing the data samples into sub-sets for the training process. A data division
usually involves three sets; a training, validation and test set. The training set will be used to train the
model, or in other words, assign the connection weights. The validation set can be used as a stopping
criterion (also called early stopping), so the model will stop altering the weights as a performance
indicator have failed to improve. A test set will be used as an unseen data set for the model to test
new data to observe the performance of the model. How this division is decided can be evaluated with
the use of statistical properties, or by using random division. The latter case can make it difficult to
compare the performance of different model configurations, as it is uncertain if the model is able to
capture the relationship and generalize it, depending on different pattern in the validation set.

2.10.5. Model Architecture
The most popular architecture is the feedforward multilayer perceptron model, due to its complexity
and ability to generalize data. To estimate the relationship between input and output variables, the
model architecture has a significant impact.

2.10.6. Model Optimization and Evaluation
The optimization of the model can be divided into three main aspects:

l. Model structure selection
1. Model calibration
M. Performance evaluation

The model structure, along with the model architecture, defines the functional form (f(a,W) from
equation (11)) of the relationship between the inputs and output(s) of the model. The optimal network
structure can be obtained, generally by finding a balance between generalization ability and network
complexity. Having too low complexity of the model, e.g. network size and number of free parameters,
the network might have problems capturing the desired input-output relationship. However, if a too
complex network structure is used, the generalization ability and processing speed might decrease,
resulting in a model that is more difficult to calibrate and less transparent.

The calibration of the model has the aim to find a set of connection weights that represent the desired
input-output relationship in a best way possible. Overfitting can be of an issue, but where optimal
generalization ability is achieved when a suitable error measure between actual and predicted outputs
in a test set is minimized. This applies if the data in the training and testing set are representative of
the modelling domain.
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Overfitting is a phenomenon when a model learns too many input-output examples, resulting in a
network finding a feature (i.e. noisy data) in the training data, memorizing this feature that is not true
of the underlying function that is to be modeled. Thus, a model will lose its ability to generalize

between similar input-output relationship. Figure 16 illustrates the generalization ability of a model
based on overfitting and underfitting [31, pp. 164-165].

Underfitting Optimum Overfitting

Output
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Figure 16: Overfitting and underfitting versus good generalization (optimum)

The performance evaluation of the model calibration can be assessed by evaluating one or more

criteria. Maier et al. [30] suggests that if overfitting is a concern, the test data should be used for
evaluating the model.
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3. METHODOLOGY

This section explains the progress followed in this work. The case study for this work will first be
presented, along with a brief description of the instrumentation at the system. For the Artificial Neural
Network (ANN) models to be based on valid datapoints, various pre-processing techniques was used
on the relevant variables. A feedforward neural network with backpropagation in MATLAB have been
chosen to create a model for each of the PV-module types located at Kjgita, Kristiansand. As there are
several weather parameters measured at the location, it will be relevant to investigate which of the
variables are of importance to the model and if there are any lagging values related to these variables,
worth considering. The method for creating a model will be a model-based approach for establishing
an optimal number of hidden neurons and hidden layers, depending on performance parameters. The
models are to be tested with forecasted weather parameters to observe the performance of the
models by also including possible errors from weather forecast deviations. This will be elaborated in
more details in the upcoming subsections.

3.1. CASEe STUDY — KIgITA PV SYSTEM
The data was obtained from a research project at the headquarters of Agder Energi in Kristiansand (PV
system owner) performed in collaboration with several partners including the University of Agder [32].
The PV modules are installed on top of Agder Energi’s headquarter located in Kjgita, Kristiansand,
south in Norway (lat. 58.154, long. 8.001 and altitude 20 m). The PV system consists of two different
PV technologies with three different PV cells suppliers. The total system is illustrated in Figure 17 and
key information regarding the PV modules relevant for this work can be found in Table 1.
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Figure 17: Instrumentation and data collection overview at Kjgita, Kristiansand (appendix A.1)
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Table 1: Key information regarding PV system at Kjgita
PV module type PV Efficiency  Installed power Area No.
technology (nstc) (kw,) (m?) modules
Suntech STP225-20/Wd Poly-Si 13.6% 5.40 1.65 24
Sharp NA-F135 (G5) a-Si 9.5% 2.43 1.42 18
REC 225PE Poly-Si 13.6% 5.40 1.65 24

The three PV module types are connected to three different inverters, logging data separately. For the
Suntech (of type Elkem Solar Silicone) and REC modules (of the traditional Siemens-process type), the
inverters have two strings with 12 modules connected in each, while Sharp has 9 modules connected
in each. At the same time as the inverter is logging data, sensors are also measuring the DC and AC
current and voltage (see Figure 17). An overview of the parameters measured at Kjgita PV system can
be found in Table 2 and an illustration of the PV modules on the roof of Agder Energy’s headquarter
can be found in Figure 18. Technical data for the PV modules can be found in appendix A.2.

Table 2: Parameters logged at Kjgita PV system

Parameter Unit
Global horizontal irradiance W/m?
Diffuse horizontal irradiance W/m?
Global tilted irradiance W/m?
Wind speed m/s
Wind direction -
Air temperature °C
Module temperature (mid- and end-of-array) °C
Current (AC and DC) A
Voltage (AC and DC) Vv
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The inverters installed are of type Eltek Theia HE-t series where a capacity of 4.6 kW, was installed for
the m-Si modules Suntech and REC (with a maximum efficiency of 97.3%) and a capacity of 2.9 kW, for
the Sharp thin film modules (maximum efficiency of 97%). See appendix A.3 for datasheet. A Campbell
Scientific Datalogger CR1000 with AM416 Multiplexer is used to record the measurements in the
datalogging system. The irradiation sensors used are 3 x Kipp&Zonen CMP 11 secondary standard
pyranometers with CVF3 ventilation units, measuring global tilted irradiance (GTI). A Kipp&Zonen
SOLYS2 two-axis tracker with shading ball assembly measure the global horizontal irradiance (GHI) and
diffuse horizontal irradiance (DHI). Temperature sensors are mounted on the back of the modules. The
sensors are six Campbell Scientific 110 PV surface temperature probes. There are installed 2
temperature sensors for each type of PV modules, one on the module at the end of the array and one
on the module in the middle of the array. To measure the ambient temperature, wind speed and
direction, an R.M. Young 5103 instrument from Campbell Scientific is installed. The DC and AC voltage
and current for the three PV arrays are measured with transducers from LEM and Phoenix.

3.1.1. Solar Irradiance and Power Production Relationship On-Site
Power production from PV systems have proven to be linearly correlated with solar irradiance. Module
temperature have also been proven to affect the efficiency of a solar cell, where parameters such as
solar irradiance, air temperature and wind speed thus have an effect of the module temperature [9,
11]. Figure 19 illustrates the relationship between solar irradiance and power production for each of
the PV modules for two random days.
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Figure 19: Relationship between solar irradiance and power production

The same trends (the behavior of irradiance related to the power) can be observed for all the PV
modules and the solar irradiance. An increase of solar irradiance appears to result in an increase in
power, and opposite, a decrease of irradiance corresponds to a decrease of power production. The
power production from Sharp PV modules are naturally lower compared to Suntech and REC, due to
lower installed power and number of modules installed.
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3.2. FORECASTED WEATHER PARAMETERS

The forecasted weather information is gathered from MEPS (MetCoOp Ensemble Prediction System),
which is an atmospheric ensemble model that covers Scandinavia and the Nordic seas. MEPS is the
cooperation around numerical weather prediction between Sweden, Norway and Finland, established
in 2011. The forecasts are updated every 6 hours daily, with three-hourly cycling for data assimilation
and a horizontal resolution between 1 and 2.5 km and a forecast horizon of 67 hours. Boundary
perturbations are generated from European Centre for Medium-Range Weather Forecasts (ECMWF)
using the SLAF (Scaled Lagged Average Forecasting) method, which is a scaling method of the forecasts.
The data is offered by the Norwegian meteorological institute and freely available to the public for use.
For more detailed information regarding the forecasted weather information, it is recommended to
review [33].

Data was only available from November 2016 as earlier forecasts were no longer saved in the database.
The forecasted weather parameters available from MEPS that could be used for this purpose are
presented in Table 3.

Table 3: Forecasted weather parameters from MEPS

Parameters Unit
Accumulated downward surface shortwave radiation J/m?
Wind speed (10 m, x-direction) m/s
Air temperature (10 m) K

The accumulated downward surface shortwave radiation was processed in such a way that it was on
hourly basis and provided the global horizontal irradiance [W/m?]. The wind speed and air temperature
were predicted at 10 m above the ground, whereas Kjgita PV system is mounted 20 m over the ground
(roof of the building). Obstacles such as trees and buildings can cause turbulence and therefore vary
by height above ground level. The wind speed is averaged over one hour, which was considered to
provide a decent estimation of the wind speed at 20 m. The forecast update at 06:00 UTC for relevant
days was obtained, thus a two-day ahead forecast horizon could be used. Difference in the time zone
(Norwegian time is thus UTC+2/+1 hour(s), depending on time of year) was considered when using the
forecasted data. The forecasted weather data along with the actual measured weather data can be
found in appendix A.4.

3.3. DATA AND MODEL STRUCTURE
To meet the goal of this work, the software MATLAB was the main tool used for this purpose. MATLAB
has implemented different machine learning toolboxes that provide additional algorithms for training
a network, such as a feedforward neural network. An overview of the toolboxes used for machine
learning and deep learning in MATLAB, can be reviewed in [23].

Figure 20 presents a flowchart of the workflow pursued in this work. Before ANN models could be
implemented, the dataset had to be pre-processed, including filtering of non-valid data recordings
from the data logging center. Another part of the data pre-processing is the division of the data into
training, validation and testing set, as well as standardizing the data to better fit in an ANN model.
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After the pre-processing, implementation and optimization of the models were performed, before the
trained models were tested with historic on-site data and historic forecasted weather data. These
steps will be described in more details in the following subsections.

Data pre-processing Model architecture Model testing

Figure 20: Flowchart of work approach

3.4. DATA PRE-PROCESSING
Before any pre-processing of the raw data, there were 2 878 626 timesteps (samples) for 25 different
variables. To prepare the data for a neural network model, different approaches were performed to
filter out data with low validity or known biases in the dataset. The methods used for data pre-
processing will now be explained and is illustrated in Figure 21.

Inverter data Sensor data MEPS data

Data filtering

Data validation

Input selection

Model-free Model-based

Performance
parameters

Data division

and
Data pre-processing standardization

Figure 21: Pre-processing of dataset

Figure 21 illustrates there are three different datasets used in this work; inverter data, sensor data and
MEPS data. The inverter data was obtained on a monthly basis measured by the inverters on-site, the
sensor data are measured on minute-basis by AC and DC sensors on-site and the MEPS data is the
forecasted weather parameters, on hourly basis. The sensor data went through a filtering process,
which will be explained below, and the data were validated with one another. The inverter data was
considered valid, allowing the sensor data to be validated on a monthly basis. The forecasted data from
MEPS were compared with the filtered, validated data. Parameters from these datasets were used for
input selection which is divided into two parts; model-free and model-based approach. The model-
free approach involves principal component analysis (PCA) and average mutual information (AMI),
which will be explained in following subsections. The model-based approach will be based on the ANN
model performances and from this include additional input variables if necessary. As the input
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selection has been decided, the relevant data samples will be divided into different sets for ANN
training purposes and standardized.

3.4.1. Data Filtering
The data filtering was performed in two parts;

Filtering of times without sunlight

For the ANN models to only consider datapoints where the PV modules produce power from sunlight,
samples before sunrise and after sunset were removed from the dataset. This process was performed
by using one of MATLAB’s functions, created by Mahoot and can be found in [34], to calculate times
of sunrise and sunset each day of the year at the exact location. The longitude, latitude and time zone
were considered in this process. The MATLAB code for removal of times without sunlight in PV system
dataset can be found in appendix A.5.

Filtering using maintenance log

For a PV system to operate at its best, service and maintenance is crucial to avoid additional losses.
For certain periods of time, the system has various reasons for not operating or the sensors did not
give valid measurements. The maintenance log was therefore thoroughly reviewed and datapoints
that were not considered valid filtered out from the dataset. Not valid datapoints could be times where
sensors were calibrated, a software update of the inverter was necessary or e.g. cleaning the module
surface which could influence the performance during this period. All comments in the maintenance
log were double-checked with a visualization of the logged data, and at times where vague comments
in the log presented, it was taken a decision on whether to keeping the sample in the data set or not.
As it was desired to keep as much data as possible, but not keep data that could influence the precision
of an ANN model, all decisions were carefully considered. In case of doubt, data was removed from
the set. See appendix A.6 for the MATLAB script created for filtering of data.

3.4.2. Data Validation

The sensor calibration of the voltage, Voc, and current, Isc, (AC and DC) was reported to have had some
complications, which resulted in data samples that were uncertain. In a preliminary study with
characterization of the relevant PV system done by Lie [4], the DC power was measured as lower than
the AC power, which should not be the case due to losses. The DC measurements were not considered
further in this work, as the sensors were not measuring valid values. The AC power calculated from Iac
and Vac were compared to the logged data from the inverter. Because the sensor-data had some issues
with the calibration of the sensors, it was desired to check the validity of the values. To do this,
recorded data from the inverters measured on monthly basis was available for cross-checking.

3.4.3. Input Selection
The input variables that were used in the ANN model were chosen based on three main aspects:

1. Available on-site and forecasted weather parameters
Results from model-free approaches; principal component analysis (PCA) and average mutual
information (AMI)

3. Model-based analysis comparing performance from training ANN models

Also, information obtained from literature review have been used to select input variables. Liu [9]
evaluated the irradiance and air temperature’s effect on power output and Kaldellis [11] evaluated the
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air temperature and wind speed’s effect on the output. Both indicating correlation between solar
irradiance and power, and an effect from temperature. The module temperature would be affected by
other parameters, such as the solar irradiance, wind speed and technical characteristics of relevant PV
panels.

Input selection based on number 1 and 2 listed above was chosen before the actual training and testing
of the ANN models. After observing some of the prediction results based on these two aspects, it was
decided to use a model-based approach to include another input parameter, the air mass. If the
performance parameters would improve by including air mass, this would also be part of the input
selection of the models.

Because there are three different types of PV modules installed on the roof, three different models
will be trained. Suntech and REC are of the same material and have the same installed capacity but is
from two different manufacturers. The Sharp modules, however, is of thin film material and have a
lower installed capacity. The input selection for the three modules will be the same and based on the
three criteria listed above.

As the forecasted parameters included the air temperature, it was decided to use the air temperature
measured on-site to train models. Based on Kaldellis. [11], the wind speed had an effect on the module
temperature of the cells, and could have an impact on the modules behavior. It was thus decided to
use air temperature along with wind speed, opposed to module temperature as this would need
additional calculations, which could introduce errors the models would be trained on.

The initial assumption of which parameters that should be included in an ANN model is presented in
Table 4.

Table 4: Initial assumption of input and output parameters of ANN models
Inputs Output

GHI,WS,T Pyc

In Table 4, GHI is the global horizontal irradiance, T is the air temperature and Pac is the AC power
production from the relevant PV modules.

3.4.4. Air Mass (Model-Based Approach)
The air mass was calculated as it could be used as an input variable in the ANN models. The air mass
will give an indication of the sun’s location on the sky, which will vary with time. As the irradiance for
a horizontal surface (GHI) was available from the weather station parameters, the air mass can
contribute with information regarding the spectral variations. Meaning different conditions can give
the same GHI-value and by including air mass this will provide information regarding the sun’s position.

To calculate the most accurate values for air mass, equation (2) from subsection 2.3 in the theoretical
background was used. For the early morning hours and late evening hours, the sun’s zenith angle is
high, meaning the sun is close to the horizon. For these calculations, a zenith angle between 0 and 90°
was used, where 90° is at the horizon and 0° is right overhead.

As there are uncertainties related to air mass calculations at times when the sun is close to the horizon,
the equation did at some early and late hours indicate a zenith angle higher than 90°. This error was
corrected by scaling the zenith angle, allowing the value to become just below 90°. This will only occur
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at times when few measurements were included within the relevant hour, because of the time of
sunrise or sunset and the power production is significantly low.

This calculated air mass is supposed to give the model an indication to where the sun is on the sky
relative to the earth surface, but as the models were trained it was noticed some outlier predictions
where the air mass was suspected to interfere in a negative way. Because of this, the models were also
tested by including a safety margin related to the air mass. This would make the highest possible zenith
angle equal to 89° and used to avoid having high air mass values. See appendix A.7 for MATLAB script
including calculations.

3.4.5. Principal Component Analysis (Model-Free Approach)
Having a dataset with several variables, it could be difficult to evaluate the importance of each variable.
Principal component analysis (PCA) is a method that seeks to maximize the variance and ensure that
the variables are independent of one another. This can eventually yield a better test or give more
stable estimates of regression coefficients [35]. As mentioned in subsection 2.10 (ANN Model
Development Process) regarding input selection, having more input variables than necessary can
increase the likelihood of overfitting.

PCA seeks to maximize the variance with an unsupervised method and can be used when several
measurements are made on each individual or object in one or more samples. The principal
components are the eigenvector of the covariance matrix of the input sample with the largest
eigenvalue [21, pp. 120-123].

Calculation of principal components can follow these steps:

1. Standardization of data

2. Compute covariance matrix

3. Compute eigenvectors and eigenvalues of the covariance matrix
4. Evaluate the principal components’ explained variance

As the PCA has as many principal components as there are variables in the dataset, the principal
components will present the dimension in which the variance of the entire dataset is explained. The
first component will explain most of the variance and the second will explain the second most and so
on. The last principal component, which explains the least of the variance in the dataset, will thus be
evaluated if it is necessary to include in final input selection.

Figure 22 illustrates the two principal components of a dataset including two variables.
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Figure 22: Principal components of a two-dimensional dataset

In MATLAB, PCA can be calculated with the following procedure (equation (12)) , which follows the
four steps above [36].

[coeff,score, latent, tsquared, explained] = pca(X) (12)
where:
coeff = p-by-p matrix where each column contains coefficients for principal component
score = matrix with principal component scores, rows = observations, columns = components
latent = eigenvalues of the covariance matrix (variances) of X
tsquared = Hotelling’s T-Squared Static, sum of squares of the standardized scores of each observation
explained = Total variance explained by each principal component, in percentage
X = Matrix with dataset, rows = observations and columns = components

See appendix A.8 for script created in MATLAB to calculate PCA.

3.4.6. Average Mutual Information (Model-Free Approach)

Given knowledge of one variable (X), mutual information quantifies the dependence of another
random variable (Y) [37]. These variables must be sampled simultaneously, and the mutual information
can intuitively be information of how much one variable says about another. One theorem of the
mutual information states that the mutual information between two variables is zero if they are
statistically independent [38]. The AMI uses the variable’s joint density function p(x,y) relative to their
marginals, p(x) and p(y), to be defined as the negative of the entropy where entropy is a function which
attempts to characterize the “unpredictability” of a random variable [37, p. 15, 38].

The mutual information can be calculated by using equation (13).

p(x,y)

COP() (13)

0= ) pluyllog oS

where p(x) and p(y) are the marginal distributions of X and Y, and p(x,y) is the joint density function of
XandY.
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AMI does not provide a finite value as a correlation coefficient does (usually an absolute value between
0 and 1). The mutual information provides a value that can range from 0, meaning complete
independence, to infinity for completely correlated and continuous pair.

To calculate the AMI for the different input variables relative to AC power output from the dataset,
some processing of the data samples had to be done. Because the AMI calculations are based on a
continuous dataset, whereas data from Kjgita was discontinuous because of the pre-processing (e.g.
filtering out hours without sunlight present), some alteration of the data samples were needed before
implementing the AMI function. Variables that were used for AMI calculations were the solar
irradiance (GHI), ambient temperature and the wind speed, that were compared with the power (AC).
If these inputs were to have any lagging values, meaning that they are influenced by previous
measurements, the AMI can reveal this, and the lagging values should be included as input in the ANN
model.

The AMI calculations were based on Thomas et al. [37]. This calculation requires continuous samples,
where some adaptation of the data used in the calculations would have to be done. See appendix A.9
for MATLAB script used for calculations related to AMI.

3.4.7. Data Standardization
For the input and output variables presented in Table 4 to be suitable to an ANN model, they were
standardized. The standardization method used had the properties such that the mean would be
approximately equal to zero and the standard deviation approximately equal to one for each of the
features, see equation (14).

g X (14)
~ STD

where Zis the scaled score, X is the mean and STD is the standard deviation associated to x.

3.4.8. Data Division
The data was divided into training, validation and testing set with a 70% training, 15% validation and
15% testing. It was desirable to see whether a random data division would give a fair representation
of the entire dataset, meaning that no matter how the dataset was divided, approximately the same
coefficient of variation was achieved. To calculate this coefficient, equation (15) was used.

. . STD
Coef ficient of variation = = (15)

where STD is the standard deviation and X is the mean.

These coefficients can be compared by testing different randomizations of the data samples (i.e.
shuffling the lines). All lines in the data sets were randomized until a low deviation between the
coefficients was reached. To evaluate a suitable data division, the absolute relative error between the
coefficients of variation was found by using the absolute relative error equation, see equation (16).

(16)

. Ax Xo— X
Absolute relative error = |—| = | |
X X

where Ax is the error, x is the true value and x; is the inferred value.
It was decided that an absolute relative error lower than 3% would be appropriate and the lines were

shuffled until this criterion was reached. How the data division was performed in MATLAB can be seen
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in appendix A.10, presenting an example from using the Suntech PV modules. This procedure was done
for each of the PV modules.

3.5. MODEL ARCHITECTURE
An ANN (feedforward neural network) in MATLAB has these main aspects to consider when developing
a model:

e Transfer function

e Training algorithm (backpropagation algorithm)

e Number of hidden neurons

e Number of hidden layers

e Number of epochs

e  Weight initializer

e Validation check
For a model to be created and fit the purpose of this work, a method with trial and error was used. As
there are several configurations that are included in creating an ANN model, it was decided to keep

some constant and vary others to see which would provide the best model based on lowest mean
square error (MSE). See Table 5 for an overview of constant configurations.

Table 5: Constant parameter configurations for model training

Parameter Configuration
Network Feedforward
Data division (training-validation-testing) 70-15-15
Training algorithm Levenberg-Marquardt
Transfer function (hidden layer(s)) Tansig
Transfer function (output layer) Tansig
Weight Initializer Random
Maximum epochs 1000
Validation check (MSE) 1000
Runs 50

Each test was run 50 times, to account for variation of the initialization weights (the weights the models
starts with to train a model will differ as they have random initialization). Other configurations than in
Table 5 were tested, but as the result did not give valid output results or provided low performance
parameters, these configurations were discarded. These configurations included input selection,
different transfer functions and validation checks as well as number of hidden neurons and layers.
Results regarding this will be briefly presented in the results and discussion section.

Beside the constant configurations of the model, two configurations were changed to find the optimal
model based on lowest mean square error (model-based approach):
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l. Hidden layers
1. Hidden neurons

To be able to decide these two configurations, it was created 7 different tests. The tests can be seen
in Table 6 and were decided based on a trial and error method and to include a high number of neurons
and low number of neurons.

Table 6: List of tests for optimal training configuration

Test number Neurons in Neurons in
hidden layer 1 hidden layer 2
1 8 -
2 10 -
3 20 -
4 30 -
5 50 -
6 10 2
7 20 2

As there was no previous experience with testing a feedforward neural network, the configurations
were chosen based on results from learning how to use the MATLAB toolbox, and a variation between
a low and large number of hidden neurons to see how the model performance changes.

Two additional tests were also performed but discarded as they did not appear to give good
performance results based on a few training rounds. Tests that were discarded:

I. 4 neuronsin one hidden layer
Il. 120 neurons in one hidden layer

Results from this will be commented in the results and discussion section of this thesis.

To find the model that gives the lowest mean square error, all configurations except those listed in
Table 6, were kept constant.

3.5.1. Model Optimization (Early Stopping)

For the model to avoid overfitting (overtraining) the network, it was needed to stop the training before
this would occur. The training was therefore provided with a validation set, which would indicate when
the network started to overfit, by stopping at a mean square error (MSE) value which would not
improve after several new iterations. To find the best model, the validation check was set to 1000, as
shown in Table 5. MATLAB's default configuration for this validation check was at 6, but with some
experience by training the model several times, it was decided to use a high validation check to be able
to obtain the lowest MSE.

3.5.2. Training Algorithm (Backpropagation)
The backpropagation algorithm chosen was based on MATLAB’s recommendations with respect to
training time and memory requirements. As a model can be trained using different training algorithm,
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it was for this work decided to work with and optimize the model based on one training algorithm. The
algorithm chosen was the Levenberg-Marquardt algorithm, as this is often the fastest backpropagation
algorithm in the Deep Learning Toolbox and highly recommended as a first-choice supervised
algorithm, according to documentation provided by MathWorks [27].

The Levenberg-Marquardt algorithm is implemented in the feedforward toolbox and is well suited for
a network where the mean squared error (MSE) is the performance index. The algorithm uses small
steps to update the weights and with each epoch checks the error. If the error has increased or
decreased, the steps for updating the weights are changed accordingly to eventually obtain
convergence where minimum error is found [39].

3.5.3. Transfer Function
The transfer function used for hidden layers and output layer was tansig (hyperbolic tangent Sigmoid).
This function deals with both negative and positive values, as this was necessary due to standardized
input and output data. The default function in MATLAB was the purelin, which was first tested to
observe the model performance. It was discovered that by using this function, the model could make
predictions that would get non-valid results such as negative power production. The logsig function
was also tested, but also provided non-valid results. Results related to this will be briefly presented in
the results and discussion section.

The equation for the tansig-transfer function is shown in equation (17), which describes the
input/output relation.

e —e™ M
a= —— (17)
et +e™m

where a is the output and n is the input.

3.5.4. Model Evaluation
To select a model, the mean squared error (MSE) would be compared for the seven tests (see Table 6)
performed for each of the PV modules. In order to evaluate the performance of these tests, metrics
mean square error (MSE), R-squared (R?), mean absolute relative error (MARE), mean absolute error
(MAE) and mean bias error (MBE) will be included. All performance parameters will be calculated by
using the standardized data.

The network performance for a feedforward neural network is evaluated by calculating the mean
square error (MSE), which in MATLAB uses the function immse, see equation (18).

N
1
MSE = NZ(ti —q;)* = immse(t;, a;) (18)
i=1

where N is number of outputs, t;is the target outputs and a; is the network outputs [27].

R? represents the statistical measure of how the variance of one dependent variable is explained by
variables in a regression model and is calculated with equation (19).

(a; — t;)*

R?=1-— _
- (t; — t;)?

(19)

where t, is the mean target value, a; and t; as in equation (18).
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Mean absolute relative error (MARE) is calculated with equation (20), mean absolute error (MAE) with
equation (21) and the mean bias error (MBE) with equation (22).

N
1 t; — a;
MARE = —Z| L ‘| 20
N : (20)
i=1
1 N
MAE = Nz(lt" —a;]) (21)
i=1
1 N
MBE = Nz(ti —ai) (22)
i=1

where N, t;and a;is as in equation (18).

3.6. TeSTING OF THE ANN MODELS
After having the seven tests with the evaluation parameters described in subsection 3.5.4 Model
Evaluation, it will be possible to decide which of the model configurations (number of hidden layer and
hidden neurons) that provide models with lowest mean square error (MSE). This model configuration
will then be used with new data sets (a hold-out set and weather forecast data) and observed how the
models perform.

For the final part, it was desired to test the models with historical forecasted weather parameters.
Historical data from 24. April-30. April 2017 was obtained, which allowed for a two-days ahead forecast
horizon for the 26.-30. April and a one-day ahead forecast horizon for 25.-30. April (as there was not
obtained data from two days ahead of 25. April). As the ANN model should have been optimized as
much as possible with the previously stated criteria, the prediction output of the model should mostly
be influenced by the forecast error. A two day ahead forecast is expected to have a higher error
compared to the one day ahead forecasts, due to more uncertainties in weather conditions.

Different MATLAB scripts with ANN models were created for each of the PV modules, to see an
example of how this code was developed, see appendix A.22, which uses data from Suntech PV
modules.

3.7. CHoICE OF METHOD
There are several ways to find a well performing model and its model configurations. Several methods
can be time consuming, which is why a model-based method have been the main focus in this work,
with the goal to obtain the lowest mean square error (MSE) by comparing the models.
Recommendations from previously done research and MATLAB’s neural network toolbox guide have
also been an influencer to decisions that have been made throughout the process (e.g. training
algorithm).

Throughout the testing of the different model configurations, certain aspects were discovered that
would compromise the model performance by reducing its performance. As most of these aspects
have been discussed throughout this subsection, the main attributes to deciding ANN model
configurations used in this work are listed below, along with parameters tested.
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l. Input selection
1. Without air mass
2. With scaled air mass
3. With maximum air mass (< 89°)
Il. Transfer function
1. purelin
2. logsig
3. tansig
Il Validation checks
1. 6
2. 1000
V. Number of tests
1. Seven
2. Nine (including 4 and 120 hidden neurons in one hidden layer)

The highlighted configurations were those that provided a model performance of satisfaction, and
results related to this will be presented in results and discussion section.

Other limitations were also needed to be able to achieve results in this work, whereas some could be
part of reducing the model performance. One aspect that was not included in this work, that could
give large deviations on certain days, is the precipitation. During times with heavy snowfall where the
snow remains on the PV modules, a large deviation will occur if the sun starts shining as there will be
no production. This should be considered when evaluating the model performances, if large errors
occur.

Grid search is a method that goes through several hyperparameters, testing several different
parameters at the time. This method has not been applied in this work as the only changing parameters
were the hidden layers and neurons. It was thus decided to test with certain compositions of these
parameters and evaluate the models based on this.

Underfitting and overfitting can be of an issue if the model is being overtrained. High epochs can cause
this, but as a validation set has been applied in the training phase, this was considered a low risk.

Based on this, a method that uses model-free approaches, such as for the principal component analysis
and the average mutual information, was performed before the network training. And a model-based
approach for the testing of the hidden layers and neurons, as well as including one extra input
parameter (air mass).
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4. RESULTS AND DISCUSSION

Based on the progress described in section 3 Methodology, results from this will now be presented.
The input selection along with the ANN model specifications will firstly be presented. Results related
to the training of the models will then be presented, followed by results from the models being tested
with the forecasted weather data obtained from MEPS (MetCoOp Ensemble Prediction System). The
model performances will be discussed along the way. The performance parameters are all calculated
based on the standardized data. All model structures (number of hidden layers and neurons) will be
referred to without including number of input variables, as this is constant for all (e.g. 5-5-1, meaning
5 hidden neurons in first and second layer, and 1 in the output layer).

4.1. INPUT SELECTION
The input selection for the ANN models were, as mention in section 3 Methodology, based on available
data on-site and from MEPS’ weather forecasts, model-free approach and model-based approach. The

input selection from the model-free and models-based approaches with the available data will in the
following subsections be presented.

4.1.1. Principal Component Analysis (Model-Free Approach)
The principal component analysis (PCA) were to find the dimensions where most of the variance in the
dataset was explained. Depending on the last principal component and its percentage of variance
explained, it will be assessed if the dimension (variable) is necessary to include in the input selection.

Figure 23 shows the principal component analysis based on three variables, global horizontal
irradiance, wind speed and air temperature.
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Figure 23: Pareto-chart of principal components

Figure 23 indicates that in order to explain the variances of the dataset, all three dimensions (variables)
should be included. As the last component explains approximately 18% of the variance, this should
also be included even though it explains the least. Nevertheless, this does not directly mean that these
three variables explain the output power, it means that to explain the variance of the dataset provided
to the principal component analysis, all three dimensions must be included.
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4.1.2. Average Mutual Information (Model-Free Approach)
The average mutual information can reveal if there is a non-linear correlation between the input
parameters and the output, with regard to time lag. Figure 24 presents the AMI between the global
horizontal irradiance, air temperature and wind speed, relative to the AC power production. To
calculate this, 500 days was used in order to obtain the AMI.

2 ——Global horizontal irradiance
——Air temperature
Wind speed

1.5

0.5

Average Mutual Information

0 i) 2 3 4
Time lag (hours)

Figure 24: Average mutual information with a 4-hour time lag

From Figure 24, it can be observed a higher non-linear correlation between the solar irradiance (GHI),
and the power output compared to the air temperature and wind speed. It does not appear to be any
lagging values on hourly basis as all graphs drop after zero time lag (at the time of measurement). This
indicates that the past hours (up to 4 hours back in time), the variables do not influence the power and
should not be considered in an ANN model, as the AMI value drops for each time lag.

4.1.3. Air Mass (Model-Based Approach)
As the air mass could be of interest due to training a model based on several seasons, this was included
to the input selection to observe the effect. It was noticed a distinguishable pattern during morning
hours from the test results of the trained models, with a predicted power higher than the actual power
when air mass was not included. Figure 25 illustrates the effect of including air mass as input variable
for two days in April 2017, illustrated with predicted power using a feedforward model for Suntech PV
modules (from a test set).
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Figure 25: Including air mass to input selection, red and yellow line represent power predictions

Two days in April were used to demonstrate how the air mass affected the predicted output power. It
is clear that the air mass contributes to a prediction output closer to the target. The predicted output
without air mass as input appeared to have a higher prediction from sunrise to around 11:00 in the
morning, which was a pattern that seem to occur on several occasions. As the predictions seem to
improve, or in other words have better fitting to the target power, the air mass was decided to be
included as an input variable for training models.

Two different approaches were used to calculate the air mass, as explained in subsection 3.4.4, due to
high values with a scaling method.

4.1.4. Data Validation
After the pre-processing of the data (described in subsection 3.4 Data Pre-Processing), the data that
could be used in training ANN models were validated. As sensor data could at some occasions have
unreliable measured values, this data was compared to the monthly energy data measured by the
inverters which was considered having valid values.

Figure 26 presents the two dataset (sensor data and inverter data) and how they can compare on a
monthly basis for the Suntech, Sharp and REC PV modules, respectively.
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Figure 26: Comparing monthly energy production for (a) Suntech, (b) Sharp and (c) REC

As seen in Figure 26, certain months seem to have more deviations than others. Years 2014, 2015 and
2016 had monthly sensor values that were comparable to the inverter data and were considered valid.
The months March and April 2017 also had low deviations and could be used for additional testing
purposes of the models. Other years than those mentioned, appeared to have more deviations and
were discarded for the rest of this work. During winter months (December to February, typically),
irradiation- and hence power output- are low, and any uncertainties and/or offsets or noise in the
sensor data will be relatively larger compared to the inverter data. Keeping this data may affect the
model and should thus be carefully considered when evaluating a model performance.

For testing of the model with unseen data for continuous days, the months March and April 2017 were
suggested to be used as test data (hold-out data), to illustrate how the models behave with typical
values for different days. As these months have little variation from the monthly inverter data (see
Figure 26) this was considered valid for testing purposes. This data will be referred to as hold-out set,
as itis not part of the dataset related to the training of the models. Figure 27 presents the hourly power
production for all three types of PV modules for the relevant months.
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Figure 27: Suntech (a), Sharp (b) and REC (c) power production on hourly basis from hold-out set

The comparing of the three PV modules in Figure 27, similar patterns can be observed, which also
allows for data validation. For Sharp, Figure 27(b), it can be observed a lower power production
compared to Suntech and REC, due to the installed capacity and number of modules, referring to Table
1.

Table 7 presents data samples used for training, validation and test set in the ANN models and hold-
out data that will present results from the trained model based on continuous days, along with number
of samples for each of the PV modules.

Table 7: Data used for model training and testing
Data Time Samples
13 275 (Suntech)
Data for ANN model training 01. January 2014 - 31. December 2016 13 303 (Sharp)
13 290 (REC)
Hold-out data for testing 01. March - 30. April 2017 864 (all)
The number of samples in Table 7 for ANN model training differ for each of the PV modules. The reason

for this is that there are some missing values (related to power production for each PV module), in the
datasets which were not included.

4.1.5. Final Input Selection

By including the air mass as an input variable to the model, a distinguishable offset in the power

prediction in the morning appeared to disappear (Figure 25), and the air mass was thus included for

further model training. From the PCA analysis, all three variables (global horizontal irradiance, air

temperature and wind speed) were required to explain the variance of the full dataset. The AMI

indicated that there was no time lag for any of the weather parameters on hourly basis and no lagging
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values were thus included. Based on these matters, the input and output variables of the models would
be as presented in Table 8.

Table 8: Final inputs and output for ANN models
Inputs Output
GHI,WS,T,AM Pyc

In Table 8, GHI is the global horizontal irradiance, T is the air temperature, AM is the air mass and Pac
is the AC power output.

The inputs and output values are on hourly basis, and a graphic representation of all the variables used
in training, validation and testing can be seen in appendix A.11.

In Figure 58 (a) in appendix A.11, the air mass has high peaks at times when the sun is close to the
horizon, especially during summer (June-August). In Figure 58(b), the peaks have been cut-off and it is
easier to see the shape of the air mass during daytime at summer and winter months. These two
different ways of calculating the air mass will be tested as input variables in the ANN models to see if
it can improve the model further by evaluating the performance parameters.

4.2. DATA DivISION
After having decided on the input selection, a division of the data into three separate sets was
performed. These sets were divided in such a way that the training set was 70%, and validation 15%
and test set 15% of the total data samples, after the filtering and validation of the data. The data was
divided so that the coefficient of variation (CV) would not exceed an absolute relative difference of 3%
when comparing the parameter for each of the sets. Table 9 presents the descriptive statistics of the
best randomization that was used when training ANN models.

Table 9: Descriptive statistics of the data division

PV Variable Training set Validation set Test set
module Mean STD cv Mean STD cv Mean STD cv
GHI 229.36 232.05 0.99 222.47 226.54 0.98 226.06 229.34  0.99
WS 2.43 1.25 1.95 2.43 1.27 1.91 2.47 1.26 1.95
Suntech AT 11.49 6.35 1.81 11.27 6.16 1.83 11.48 6.21 1.85
AM 11.37 17.77 0.64 11.98 18.23 0.66 11.57 17.91 0.65
Pac 1177.83 1334.48 0.88 1140.78 1315.29 0.87 1153.98 1318.50 0.88
GHI 226.69 230.51 0.98 227.03 230.74 0.98 233.18 23198 1.01
WS 2.42 1.25 1.94 2.47 1.25 1.97 2.47 1.28 1.94
Sharp AT 11.44 6.29 1.82 11.51 6.30 1.83 11.43 6.29 1.82
AM 11.55 17.90 0.65 11.17 17.60 0.63 11.55 17.60 @ 0.64
Pac 470.73 515.25 0.91 474.34 516.26 0.92 483.49 517.35 0.93
GHI 229.10 231.80 0.99 223.42 225.63  0.99 224.81 230.85 0.97
WS 2.43 1.25 1.95 2.45 1.28 1.91 2.43 1.25 1.95
REC AT 11.45 6.27 1.83 11.56 6.35 1.82 11.37 6.34 1.79
AM 11.49 17.84 0.64 11.65 18.06 0.65 11.38 18.06 @ 0.64
Pac 1188.15 1303.35 0.91 1152.04 1262.94 0.91 1164.58 1297.09 0.90
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In Table 9, GHI is the global horizontal irradiance, WS is the wind speed, AT air temperature, AM the
air mass and Pac is the AC power production.

4.3. TRANSFER FUNCTION

Before deciding on a transfer function that would be appropriate for the input-output variable
relationship, different transfer functions were tested with the model configurations. Three different
transfer functions were tested (tansig, purelin and logsig), whereas two of the three functions proved
not to give the optimal input-output relationship. Figure 28 and Figure 29 show examples from unseen
test data (from hold-out set of Suntech PV modules) by training models with purelin and logsig transfer
functions, respectively, which provided the poorest relationships.
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Figure 28: Example of (a) 10-1 and (b) 20-2-1 configuration and purelin as transfer function
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Figure 29: Example of network with 20-2-1 configuration and logsig as transfer function

Figure 28 illustrates prediction results by using purelin as transfer function in the output layer. The red
circle in (a) marks an area where the models predicted negative power, which should never occur as
the produced AC power is never measured less than 0. In Figure 28(b), the predicted power has high
peaks on two occasions, which is during sunny days, but as the capacity of the inverter connected to
Suntech PV modules is at 4.6 kWp, peaks should not be predicted this high.

In Figure 29, the logsig transfer function was used in the output layer, and it does not provide values
down to 0. Because the logsig function only provides values between 0 and 1 and the standardization
of the data has values less than 0, this would not be the appropriate transfer function for the model.

Because these two functions did not provide the wanted outcome, the tansig transfer function was
chosen to further use in the model development. Results presented in the following subsections will
therefore have tansig as the transfer function in hidden layers and output layer. A representation of
the tansig function used in the hold-out set can be seen in Figure 30.
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Figure 30: Example of network with 20-2-1 configuration and tansig as transfer function
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4.4, VALIDATION CHECKS
The default in MATLAB is to use a validation check of 6, meaning if the mean square error (MSE) value
for the validation set would not improve after six epochs (backpropagations for weight alterations),
the model would stop training. This was found to give lower performance parameters when training
different models compared to using a higher validation check value. Because of this, it was tested with
1000 validations checks, meaning the model will run through all epochs (configuration set to maximum
epochs 1000, see Table 5). Nevertheless, if the models find their optimal weights at a lower epoch, this
will still be used as the optimal and performance parameters will be based on this. To illustrate with
an example the difference using 6 validation checks to 1000, see Figure 31, where the y-axis is the
percentage relative difference between the MSE values for 6 and 1000 validations checks. These
configurations were tested with three different neuron structures; 4 hidden neurons in one layer (4-
1), 10 hidden neurons in one layer (10-1) and 20 hidden neurons in first layer and 2 in second hidden
layer (20-2-1).

66— —
I Training set

B v alidation set
5 - Test set

%
w

N

0 s |
4 neurons 10 neurons 20-2 neurons

Figure 31: Percentage difference MSE (6 versus 1000 validation checks), Suntech PV modules

Figure 31 represents the mean square error deviation in percentage between a validation check of 6
and 1000. A positive percentage indicating MSE higher for 6 validation checks, which it is in all cases.
This illustrates that a higher MSE was obtained for all datasets in the three different configurations of
ANN models. Illustrated with an ANN model trained with Suntech PV modules. All performance
parameters from using either 6 or 1000 validation checks, can be found in appendix A.12.

4.5. IMODEL STRUCTURE AND PERFORMANCE EVALUATION

The models have been trained with the seven different tests listed in Table 6 and results related to this
will be presented in the following subsections. The models were first tested with air mass values that
were scaled, but after observing predicted values far away from the target values, the models were
also trained with an air mass with 6; < 89°. This was tested to see if it could improve the model
performances. The results from using the two different methods showed an overall improvement of
the models by having air mass with 6, < 89°, and performances based on this will be presented, as well
as a regression representation of the models using the two different air masses for comparison
purposes.

The configurations that provided the lowest mean square error (MSE) on the test set, were chosen as
the optimal configuration for the different PV modules and used for testing with forecasted weather
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data. To evaluate the performance parameters, all training procedures were run 50 times to account
for difference in initialization weights. All performance parameters will thus be presented with an
averaged value from these tests, if not stated otherwise.

It was previously mentioned in 3.5 in the Methodology section that tests with 4 hidden neurons and
120 hidden neurons in one hidden layer were not included in the tests. These configurations appeared
to have poorer performance compared to the seven tests presented in Table 6 and was therefore
excluded from further testing. Examples from this can be seen in appendix A.13, where models were
trained with Suntech PV modules.

4.5.1. Suntech PV Modules
Table 10 presents the results of the seven different tests performed using different numbers of hidden
layers and hidden neurons.

Table 10: Test results Suntech PV modules, averaged for 50 runs

Performance Test1l Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
Parameters 8 10 20 30 50 10_2 20_2
Test set neurons Neurons Neurons nheurons neurons neurons neurons
MSE 0.0503 0.0485 0.0464 0.0472 0.0481 0.0468 0.0454
MARE 0.1167 0.1088 0.1323 0.1388 0.1405 0.1225 0.1392
MAE 0.1434 0.1402 0.1362 0.1360 0.1366 0.1357 0.1327
MBE -0.0054  -0.0047 -0.0043 -0.0048 -0.0050 -0.0071 -0.0070
R? 0.9489 0.9507 0.9529 0.9521 0.9511 0.9524 0.9539
Best epoch 313 333 381 415 522 595 584
Time (s) 19 25 34 27 104 22 23

All tests appear to result with performance parameters relatively similar to each other, but test 7 gave
the lowest mean square error (MSE) of 0.0454. This test had 2 hidden layers with 20 hidden neurons
in the first and 2 hidden neurons in the second layer. Test 7 shows that mean average relative error
(MARE) is relatively low, corresponding to approximately 14% absolute difference between the
predicted and target values. Mean absolute error (MAE) and mean bias error (MBE) have a value of
0.1327 and -0.007 respectively. The MBE shows that the model overall tends to slightly overpredict. At
last, the R?>-value (coefficient of determination) is above 0.95, meaning the prediction ability is high.
The average epoch where the model found its lowest mean square error due to early stopping, can be
seen increasing as the number of neurons increase. The same effect can be seen on average time it
takes the model to finish training the network (until it reaches 1000 epochs). It appears that the
network needs more time to solve the input-output relationship as the complexity of the model
increases.

Table 11 presents the training, validation and test results using configurations in test 7 (20-2-1).
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Table 11: Performance parameters for test 7, Suntech modules

Performance Test 7 20-2-1 model
parameter Train set Validation set Test set
MSE 0.0461 0.0456 0.0454
MARE 0.3531 0.0695 0.1392
MAE 0.1323 0.1347 0.1327
MBE 0.0003 -0.0038 -0.0070
R? 0.9543 0.9534 0.9539

The training set appears to have higher MSE and MARE values compared to the validation and test set,
indicating that there are occasions with larger deviations from the target value in the training set.
MARE is sensitive to outliers, meaning a large prediction deviation will influence MARE more than
other performance parameters. MBE in the training set indicates slightly underprediction, while
slightly overprediction for the validation and test set, while MAE is approximately equal for the three
sets, slightly higher in the validation set. To see results from MATLAB for one network training example,
see appendix A.15. Figure 63 appendix A.15 shows that there are more errors in the training set
compared to the validation and test set, when the target power is supposed to be predicted low but is
predicted high, which would appear to be the reason for the high MARE value in the training set. In
appendix A.14, performance parameters for all 50 runs in test 7 are presented.

A network of 20-2-1, based on previously explained criteria was chosen as optimal configuration,
where a schematic structure of the model can be seen in Figure 32 and prediction results from the test
set is presented in Figure 33 and Figure 34. The prediction results (regression models) are based on
test set with approximately equal MSE as for the average of 50 runs.

Hidden layer 1 Hidden layer 2 Output layer

Predicted Power [kW]

R?=0946 |

0 0.5 1 15 2 25 3 35 4 45 5
Target Power [kW]

Figure 33: Prediction versus target values using scaled air mass (Suntech). MSE = 0.0533
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Figure 34: Prediction versus target values using air mass with 6z< 89° (Suntech). MSE = 0.0454

The same patterns can be noticed for the two different figures (Figure 33 and Figure 34), but the outlier
prediction (indicated with red arrow in Figure 33) has for the latter figure disappeared. Based on this
finding model seems to behave more stable after removing the high peaks of the air mass and gives a
higher R? value of 0.954 compared to 0.946 (averaged over 50 runs). Overall, the ANN model appears
to do predictions with slightly higher precision during low and high power production, and where the
largest deviations seem to be at approximately 1.5 kW. This deviation is relatively high, which can for
some occasions have a deviation more than twice as high as the target value. As mentioned in the
Limitation and Assumption section (1.2), snow cover was not included in the model and deviations
related to this could be one explanation for deviations as the model would still predict power
production if snow was covering the modules. Other than this, the deviations are difficult to assess
without further investigations. Whether it is the trained model that have not managed to find the
optimal input-output relationship, or if there are deviations in the raw data, is not clear by only looking
at these results.

Model performances were also obtained for the scaled air mass input variable, see appendix A.16 Table
25 for results from this. Model performances using 6, < 89° can be found in appendix A.17, Table 28.

4.5.2. Sharp PV Modules
Performance parameters from training a model with Sharp PV modules are presented in Table 12,
representing the results for the test sets.

Table 12: Test results Sharp PV modules, averaged for 50 runs

Test set Test1 Test 2 Test 3 Test4 Test5 Test 6 Test7
8 10 20 30 50 10_2 20_2
neurons nNeurons nNeurons Nheurons heurons heurons neurons
MSE 0.0351 0.0343 0.0328 0.0328 0.0330 0.0333 | 0.0325
MARE 0.0567 0.0529 0.0561 0.0585 0.0584 0.0567 @ 0.0576
MAE 0.1223 0.1195 0.1141 0.1138 0.1133 0.1154 @ 0.1124
MBE -0.0006 @ -0.0012 -0.0003 0.0001 0.0004 -0.0012 -0.0008
R? 0.9650 0.9659 0.9673 0.9673 0.9671 0.9668 @ 0.9676
Best epoch 528 456 482 378 365 550 494
Time per run (s) 20 20 20 29 58 26 41

From the test results of model for the Sharp PV modules, the configurations with the lowest mean

square error (MSE) is for test 7, with 20 neurons in first hidden layer and 2 neurons in second hidden
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layer, the same configuration as for Suntech. A representation of this can be found in Figure 32, in
subsection 4.5.1 Suntech PV Modules, as they are equal. The difference between the MSE values for
each test does not vary by much either, meaning the model is able to do predictions well with different
numbers of neurons in hidden layers. The mean absolute relative error (MARE) is low, as well for mean
bias error (MBE), with values of 0.0576 and -0.0008, respectively. The MBE indicates slightly
overpredictions on the overall test set. The mean absolute error (MAE) is fairly low, with a value of
0.1124. The R? have a high value of 0.9676, which indicates high precision. It can be worth noticing
that the errors for the Sharp modules are lower than for the Suntech modules. This suggests that the
model configurations can better find the input-output relationship with the thin film PV modules
(Sharp) than for the Suntech modules. The average best epochs appear to decrease as the complexity
of the models increase, indicating that the model tend to have an early-stopping epoch at a lower value
than with less complex models. The time it takes the models to run through all epochs (1000) increases
with the complexity of the model.

Table 13 presents the performance parameters for test 7 for the Sharp modules.

Table 13: Performance parameters for test 7, Sharp modules

Performance Test 7 20-2-1 model
parameter Train set Validation set Test set
MSE 0.0265 0.0268 0.0325
MARE 0.3394 0.0573 0.0576
MAE 0.1014 0.1029 0.1124
MBE 0.0002 0.0007 -0.0008
R? 0.9735 0.9733 0.9676

The MSE is low for all sets, as well as the MAE and MBE. MAE is slightly higher for the test set compared
to the training and validation, and MBE indicates modest overprediction for the training and validation
set. MARE for training set is high compared to the validation and test set, meaning the training set
appear to have larger prediction deviations than the two other sets. As MARE is sensitive to outliers, it
appears that results from the training set have prediction values further from the target values, due to
a higher MARE-value in this set. To see results from MATLAB for one training example, see appendix
A.18, where less precise predictions can be observed for the training set (Figure 65), also indicated by
MARE in Table 13. In appendix A.19, performance parameters for all 50 runs in test 7 are presented.

Reducing the peaks of the air mass appeared to remove predictions that were far from the target value
for Suntech, but by studying Figure 35 and Figure 36, this does not appear to correct the one outlier
prediction for the Sharp modules. The following figures are based on test set with approximately equal
MSE as for the average of 50 runs.
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Figure 35: Prediction versus target values using scaled air mass (Sharp). MSE = 0.0335

Bt
3

Predicted Power [kW]

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Target Power [kW]

Figure 36: Prediction versus target values using air mass with 6;< 89° (Sharp) MSE = 0.0325

By making this change in the air mass, it does however provide a R? value of 0.968 compared to 0.961,
meaning the model is able to predict the observed outcome (targets) with higher precisions, as well as
the MSE is lower for the latter case. The overall highest deviations appear to be between 0.5 and 1
kW, where the lowest errors seem to occur during low and high productions.

For performance parameter results for the scaled air mass, see appendix A.16, Table 26. Appendix
A.17, Table 29 presents all performance parameters for air mass using theta < 89°.
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4.5.3. REC PV Modules
Finally, the model configurations tested with the REC PV modules, where the results can be seen in
Table 14.

Table 14: Test results REC PV modules, averaged for 50 runs

Performance Test 1 Test 2 Test 3 Test4 Test5 Test 6 Test7
Parameters- 8 10 20 30 50 10_2 20_2
Test set neurons neurons neurons nheurons neurons heurons neurons
MSE 0.0514 0.0511 0.0497 @ 0.0496 0.0503 0.0500 0.0492
MARE 0.8000 0.8166 0.7454 = 0.7055 0.6384 0.8118 0.7549
MAE 0.1291 0.1283 0.1253 = 0.1244 0.1252 0.1245 0.1223
MBE -0.0007 -0.0008 @ -0.0017 -0.0018 -0.0014 -0.0026 -0.0033
R? 0.9486 0.9489 0.9503 = 0.9505 0.9497 0.9500 0.9508
Best epoch 283 325 380 335 199 651 420
Time (s) 14 16 25 40 81 21 32

The highest errors for the performance parameters were found for the REC PV modules when
compared to the other two PV modules. The test that provided the lowest mean square error (MSE)
was test 7 (20-2-1), which is also the same as for both Suntech and Sharp, and a representation of this
can be found in Figure 32. The MSE was in this case 0.0492, but when it comes to the mean absolute
relative error (MARE), the error has a high value of 0.75. MARE is, as previously mentioned, sensitive
to larger errors, meaning it could appear to be certain predicted values that are further away from the
target values. The mean bias error (MBE) appears to be relatively low, but as negative and positive
cancel each other out when calculating this error, this may not give a fair representation of the model
due to the high MARE value. The MAE is relatively low, meaning the overall average errors are not too
high. R? is quite high with a value of approximately 0.95.

The performance parameters related to the REC modules for the best performing model based on the
seven tests, are presented in Table 15.

Table 15: Performance parameters for test 7, REC modules

Performance Test 7

Parameters 20-2-1
Train set Validation set = Test set
MSE 0.0424 0.0480 0.0492
MARE 0.0724 0.0246 0.7549
MAE 0.1173 0.1191 0.1223
MBE 0.0007 0.0002 -0.0033
R? 0.9580 0.9494 0.9508

What can be observed for the different sets for the REC modaules, is that the test set has higher values
for the error parameters compared to the training and validation sets, see Table 15. Comparing this to
the performance parameters for Suntech and Sharp, which indicated lower errors for the test and
validation set, could give an indication of not optimal data division, errors in the datasets or a poor
input-output prediction relationship. As the data division for the three PV modules was done
separately, meaning the lines were shuffled in a way that would provide similar coefficient of variation

depending on each of the modules, the data samples in the test set for REC modules may not be the
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same as for Suntech. If there are deviations in the raw data where the PV modules for some reason do
not produce power that the model suspects, this could give large deviations in the outcome as MARE
in Table 15. Even though the errors in the performance parameters in the test set appear to be
relatively high, the R? value indicate that the overall predictions of the set are related to the target
values. To see results from MATLAB for one training example, see appendix A.20. In appendix A.21,
performance parameters for all 50 runs are presented.

Figure 37 and Figure 38 represents the predicted values compared to the target, with different air
masses and the chosen configurations. Each result is represented by a test set with MSE approximately
equal as for the average of 50 runs.
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Figure 37: Prediction versus target values using scaled air mass (REC). MSE = 0.0576
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Figure 38: Prediction versus target values using air mass 6z< 89°(REC). MSE = 0.0492

As the MARE suggested, there are several outliers of predicted values that have larger deviations
compared to the target values. This appears to occur mostly as the power production is low, between
no production and 1.5 kW. After adjusting the air mass, both the MSE and R?-value appear to improve,
but there are still several predictions far from the targets.

Performance parameters using scaled air mass can be found in appendix A.16, Table 27 and results
using ©;7< 89° can be found in Appendix A.17, Table 30.
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4.6. IMODEL CHOICE

The three PV modules have the same input data, but the weights can still be assigned differently due
to the output data not being the same. As seen from the test results for all the PV modules (Table 10,
Table 12 and Table 14), the variations between the different tests within each PV module were all
comparable. Because the training-procedures were run 50 times, the average for each run would differ
slightly, but not enough to change the average values significantly by doing more re-runs. All tests were
based on the same number of re-runs and should therefore be comparable. As the models all had the
same input variables and the output values would presumably have variation similar to each other, it
was before the testing assumed that the models for each of the PV modules would have the same
configurations. The performance parameters from the seven tests did show some variations for each
of the PV modules, but at the end indicated the best performing models to be with a configuration of
20-2-1 (20 neurons in first hidden layer, 2 in second hidden layer) for all three modules.

The mean squared error (MSE) for the Sharp modules is lower than for Suntech and REC, meaning the
model had better fitting to the target values. MARE is sensitive to larger deviations, which for the REC
test set indicated large deviations, which the regression plot (Figure 38) supported. The mean absolute
error (MAE) and mean bias error (MBE) indicated that the models did tend to either over- or
underpredict, where the overall MBE indicated slight overprediction for all three models (in the test
set). The R%- values indicated good fitting for all models, with values between 0.9508 and 0.9676.

Another aspect to consider when training a model is the amount of time it requires. As each model
needs to be trained individually to assert for different behaviors of the different PV modules, three
models were created. The results of training the models indicated that the more complex the model
is, the longer it takes to train the model. But by studying the best epoch, it is the configurations with
the highest amounts of neurons that tend to find its lowest mean square error (MSE) first. Meaning
that the models with many neurons takes longer to complete each iteration (epoch) but can usually
find its optimal weights at an earlier epoch (except for Suntech, where a higher complexity of the
model also involved a higher number of best epoch). The results for using a high number of hidden
neurons, such as the test with 120 neurons (see appendix A.13), required on average 423 second to
run through 1000 epoch for one training. This involved a total time of almost 6 hours to train 50
separate models, which is a time-consuming process and with that many neurons would also make the
network complex.

As a model with too many hidden layers and/or hidden neurons can make the model too complex and
decrease the ability of generalization, it is important to consider this while choosing a model. However,
depending on the input variables and the relationship to the output, the optimal number of neurons
can vary based on the desired performance. The models chosen for the three PV modules in this work
were based on a model-based approach and can only represent the model with best performance out
of the tests that have been performed. This can, however, be a good indication of how ANN models
can perform doing power prediction with the relevant PV system based on three years of historical
data.

Based on this, models with configurations shown in Table 16 gave the best model performances based
on the tests that have been performed. The configurations apply for all three PV modules.
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Table 16: Chosen model configurations for all three PV modules

Parameters Configuration
Network Feedforward
Data division (training-validation-testing) 70-15-15
Training algorithm Levenberg-Marquardt
Transfer function (hidden layer(s)) Tansig
Transfer function (output layer) Tansig
Weight Initializer Random
Validation check (MSE) 1000
Maximum epochs 1000
Runs 50
Number of hidden layers 2
Number of hidden neurons in layer #1 20
Number of hidden neurons in layer #2 2

4.7. MODEL TESTING USING HOLD-OUT SET

Based on the chosen model configurations for each type of PV modules found in subsection 4.5,
continuous days in March and April 2017 were chosen to test with these configurations. A confidence
interval of 95% was chosen to represent the variation of training the same model 50 times, to get the
variations from the weight initializations.

4.7.1. Suntech PV Modules
The ANN model trained with Suntech modules gave an average R? of 0.9539 and a mean square error
(MSE) of 0.0454 (test set), meaning the relationship between the predicted output power and the
target output power was relatively good. The chosen configuration was a 20-2-1 feedforward neural
network and by testing the continuous days in March and April 2017, the results for the hold-out set
became as in Table 17.

Table 17: Performance parameters Suntech modules March/April 2017

Performance Suntech PV Modules
parameters
MSE 0.0602
MARE 0.3356
MAE 0.1448
MBE 0.0021
R? 0.9403

The MSE appears to have a higher value compared to the test set from the training of the network,
0.0602 versus 0.0454. The R%value is relatively high, meaning the model still has a good fit to the
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targets. MARE does, however, indicate predictions with more deviations, while the MAE indicates an

average error of 0.1448. The MBE imply that the model tends to underpredict on average for the entire
set.

Figure 39 presents the prediction results from the two relevant months in 2017 with the chosen
configuration of the ANN model. The results from one training that gave approximately the same MSE
as for the 50 tests averaged have been chosen to demonstrate the performance.
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Figure 39: Test results from model with Suntech modules, hold-out set. MSE =0.0598

By visually inspect the prediction results compared to the target values in Figure 39, the model appears
to have certain occurrences with both under- and overpredictions. For higher production-periods
(during peaks around midday), the model tends to underpredict, but does at certain occasions appear
to have a relatively close fitting to the target as well. There can also be observed higher prediction
deviations in the first week of March. This will be investigated further in upcoming subsections. To
inspect the model performance further, two random weeks have been chosen to graphically present
the predictions. One week is in the beginning of March and one week in the end of April 2017 are
presented in see Figure 40 and Figure 41, respectively. A 95% confidence interval will demonstrate
most of the 50 runs, along with the averaged predictions from these runs.
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Figure 40: Prediction results Suntech for a week in March 2017
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Figure 41: Prediction results Suntech for a week in April 2017

Figure 40 and Figure 41 show that the predictions and target relationship is relatively good for most
hours during the relevant weeks. However, there are some hours the model seems to vary the
predictions with up to 1 kW, which is a significant deviation. The model appears to underestimate
slightly for high production (close to peak power, 4.6 kW for the Suntech modules). On 24. April 2017,
the model seems to have a more difficult time predicting the power. By studying the input variables
during these few hours (between 10:00 and 14:00), there seem to be a high wind speed compared to
the average. Other input parameters seem to be consistent without any extreme values, which raises
the idea that the wind speed might make the model more uncertain. Also, a high peak in the
predictions can be observed on 25. April compared to the target power (first peak during this day). A
closer look at the input variables during these days will be investigated at the end of this subsection.

The overall outcome of the two weeks tested seem to have a relationship fairly similar to the target,
with some uncertainties.

4.7.2. Sharp PV Modules
The same two months as for Suntech have been tested for the 20-2-1 network for the Sharp modules,
and the results are presented in Table 18.

Table 18: Performance parameters Sharp March/April 2017

Performance Sharp PV modules
parameter
MSE 0.0306
MARE 0.0290
MAE 0.1088
MBE 0.0010
R? 0.9657

The model performance for March and April 2017 for the Sharp PV modules indicates that the model
performs better with the hold-out set compared to the test set in the training process (see Table 13),
meaning the predictions made for these continuous days appear more precise than the test set. MARE
is low with a value of 0.029 and the model is slightly underpredicting as the MBE is 0.001. The R%- value
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is, however, slightly lower than the test set (0.966 compared to 0.968), meaning certain predictions
affects the regression line to be slightly lower. MAE shows an error of 0.1088, which is relatively low.

Figure 42 presents the predictions for one of the trained models that had similar MSE as the average
for 50 runs.
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Figure 42: Test results from model with Sharp modules, hold-out set. MSE = 0.030
It can be observed certain periods where the model underpredicts compared to the target values, but

the deviation often seem to be less if compared to the results in Figure 39, for the Suntech modules.
A few occurrences with higher predictions than the targets can also be observed.

Figure 43 and Figure 44 presents the predictions with 95% confidence interval and the average over
the 50 re-runs, for the same two weeks as for Suntech.
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Figure 43: Prediction results Sharp for a week in March 2017
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Figure 44: Prediction results Sharp for a week in April 2017

The same patterns can be observed for the Sharp PV modules as for the Suntech modules. The network
output deviates slightly more as the power production is high. But by studying the mean predicted
(green dotted line) and the target in Figure 43 and Figure 44, they seem to overlap each other better
compared to Suntech. It is worth noticing that for 24. April 2017 the predicted power deviates with
approximately 2 kW. As mentioned in the previous subsection (4.7.1), the wind speed is high during
this time period and various weights given for this parameter can influence the outcome during
extreme values. This drop in the power prediction did not occur for all training runs, meaning some
training rounds had weights that obviously had the deviations higher. Further investigations of this will
be done in later subsection.

4.7.3. REC PV Modules
The model configurations for REC PV modules was the same as for Suntech and Sharp, a network with
configuration of 20-2-1. The R? value was 0.9508 and the mean square error (MSE) was 0.0492. Results
for the model using data for the same two months as for Suntech and Sharp, are presented in Table
19.

Table 19: Performance parameters REC modules March/April 2017

Performance REC PV modules
parameters
MSE 0.0627
MARE 0.0567
MAE 0.1345
MBE 0.0030
R? 0.9359

The performance parameters for the REC modules in the hold-out set appeared to perform slightly
poorer compared to the test set in the training process (see Table 15). MARE, however, has a low value
of approximately 5.7% absolute percentage error. The MSE for the hold-out set was 0.0627 and the
MSE from the test set was 0.0492. As the MBE for the hold-out set is proposing that the model is
slightly underpredicting, while for the test set it is slightly overpredicting. MAE indicates that the
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overall average absolute error is fairly low, yet higher compared to the test set. A representation for
the entire hold-out set is presented in Figure 45.
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Figure 45: Test results from model with REC modules, hold-out set. MSE = 0.0627

The model appears to do prediction well compared to the target values, but with some over- and
underpredictions occurring for certain days. The MBE for the hold-out set shows a slight
underprediction, with a value of 0.0030. Certain days do tend to have a high prediction compared to
the target, such as for 7. March, and low prediction for 8. March, which appeared to have the same as

for Suntech, see Figure 39. Further investigation regarding these days will be presented in the nest
subsection.

Prediction results for the two weeks in March and April 2017 for the REC modules are presented in
Figure 46 and Figure 47.
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Figure 46: Prediction results REC for a week in March 2017
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Figure 47: Prediction results REC for a week in April 2017

As for the other two PV modules (see subsection 4.7.1 and 4.7.2), it can be observed the same patterns.
This was however expected due to the same input variables, but with a different output (power
production), the results could deviate slightly. Also, for 24. April 2017, the model has difficulties giving
an output similar to the target and the dip appears to be even more significant than for the other two
PV modules and has the same peak for 25. April.

4.7.4. Analysis March and April 2017
Because of distinctive deviations in the first week of March 2017 and on 24. April and 25. April 2017,
it was desired to further analyze the input variables during these days. It was observed a drop in the
predicted power at around 12:00 on 24. April and a higher predicted power at around 10:00 on 25.
April 2017. Figure 48 and Figure 49 illustrates the weather parameters for relevant days.
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Figure 48: Weather parameters 24. -30. April 2017 (left) and 24.-25. April 2017 (right)
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Figure 49: Air mass 24. -30. April 2017 (left) and 24.-25. April 2017 (right)

The only parameter that appears to have a variation larger than others for 24. April is the wind speed,
see blue arrow in Figure 48. Allowing the suggestion that wind speed can compromise the models in
such a way that can occasionally lower the performance of the models. For 25. April, all models
appeared to give a prediction with a high peak at 10:00 (previously observed in Figure 41, Figure 44
and Figure 47). By studying the weather parameters in Figure 48 during the relevant time, it does not
appear to be as high peak in the irradiance as the prediction results suggested. Neither the air
temperature, wind speed or the air mass indicate any extreme values that could imply the models
predicting such a high power production at this hour. This could indicate an input-output relationship
not optimal.

It was also noticed higher prediction errors for Suntech and REC on 07. And 09 March. Figure 50
presents the relationship between the global horizontal irradiance and the power production for
respective days.
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Figure 50: (a) Suntech, (b) Sharp and (c) REC power production versus solar irradiance
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It is obvious from observing Figure 50 that the model predicts mostly based on the solar irradiance.
However, the targets appear to be lower for the two days commented above, where Suntech and REC
have the highest prediction deviations. From investigating the historical weather from a nearby
weather station (Grimstad), it can be observed precipitation during these days and a negative air
temperature, indicating snow fall. This could suggest that there is snow on top of the modules, causing
low power production. As the ANN models do not consider snow cover, they will thus not discover this
deviation. The precipitation from a weather station located at Grimstad was used as it was the closest
weather station that had logged the precipitation for the relevant days.

4.8. IMODEL TESTING USING MEPS WEATHER FORECASTS

The final part of this work was to investigate how the different models behave with weather forecasts.
Data obtained from MEPS was used as input to the trained models that gave the best performances
for each of the PV modules. Due to uncertainties in weather forecasts, the performance parameters
will also be affected by this. However, as these models are to predict future power production, it is
crucial that the forecasted weather data can be used with the trained models. Data obtained from 24.
April to 30. April 2017, with a forecast horizon of 67 hours have been used to illustrate how the models
perform with the forecasted weather. The results have been averaged from 50 runs, as the predicted
power for each hour had slight deviations for each run. Each day has been compared to the actual
power production for the relevant day. To review the forecasted weather in comparison to the
measured on-site weather parameters, see appendix A.4.

All models for the following subsections have the configuration listed in Table 16 and are trained on
the sets for each individual PV module.

4.8.1. Suntech PV Modules
Because of the uncertainties related to weather forecasts, the ANN models will also give predictions
based on these uncertainties and larger errors compared to using on-site weather data are to be
expected.

Table 20 presents the performance parameters for the Suntech PV modules with one- and two-days
ahead forecast horizons.

Table 20: Performance parameters with forecasted weather from MEPS, Suntech modules

Performance Suntech
parameters One-day Two-days

ahead ahead
MSE 0.2647 0.2996
MARE 0.7755 0.7168
MAE 0.2991 0.3020
MBE -0.1194 0.0800
R? 0.7991 0.7995

As expected, the mean square error (MSE) is higher when using forecasted parameters compared to

using on-site weather data. The parameters presented in Table 20 will represent both the model

performance as well as the weather forecast performance, where deviations from both will affect the

outcome of the predictions. As weather forecasts tend to be more precise with a forecast horizon

closer to the actual day, the results from the model indicates the same. The mean absolute relative

error (MARE) is high, meaning certain predictions are deviating from the target. Both MAE and MBE
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are higher compared to the test and hold-out sets. MBE indicates an overall overprediction for the
one-day ahead and underprediction for the two-days ahead. R? is also lower than for the test and
hold-out set, indicating a lower prediction ability.

Prediction results related to the forecasted weather data with the best performing model
configurations can be seen in Figure 51.
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Figure 51: Power predictions (red and yellow line) of 25.-30. April 2017, Suntech PV modules

As 25. April, in Figure 51, only has one-day ahead forecast horizon is due to the obtained data was from
24. April 2017, which prevented to get data from two-days ahead of the 25. April. The predictions in
the figure illustrates the importance of accurate weather forecasts and how the deviations of the
predicted values from the model can differ from the target values. For clear days (such as 26. April and
30. April), the model tends to predict a lower power production compared to the actual production.
As these days probably did not have much clouds, the model should be able to give a prediction close
to the target. However, studying the forecasted weather parameters in comparison to the measured
on-site parameters in appendix A.4, the forecasted solar irradiance, which is considered the highest
influencer to the power production, is lower than the actual irradiance for the same time period. Due
to this, the predicted power is lower compared to the target. It can also be observed deviations related
to dips and peaks in the power production, as can clearly be seen for days 25. April, where a time shift
of when the predicted power appears compared to the target. Comparing the forecasts from two days
ahead to the one-day ahead, most predictions using the one-day ahead forecast seem to be more
precise compared to the two-days ahead, which should be expected due to the uncertainties related
to weather change.
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4.8.2. Sharp PV Modules

The model configuration with 20-2-1 ANN was used to predict power using weather forecast for the
Sharp modules, and results can be seen in Table 21.

Table 21: Performance parameters with forecasted weather from MEPS, Sharp modules

Performance Sharp
parameters One-day Two-days

ahead ahead
MSE 0.2378 0.2252
MARE 0.8884 1.0678
MAE 0.2723 0.2595
MBE -0.1295 0.0119
R? 0.8069 0.8389

Also the errors are higher for the Sharp model compared to the test and hold-out set, but the two-
days ahead forecast appears to have a slightly lower MSE compared to the one-day ahead. However,
MARE is higher for the two-days ahead compared to the one-day ahead forecast. MAE is higher for the
one-day ahead, where MBE indicates that the predictions tend to overestimate the power production
for the one-day ahead, but underestimate the power for the two-days ahead. To visually inspect the
prediction results, see Figure 52.
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Figure 52: Power predictions (red and yellow line) of 25.-30. April 2017, Sharp PV modules

The same pattern for the predicted values using the forecasted weather parameters can be seen for
the Sharp modules, as it was for Suntech. The predicted power during sunny days (26. and 30. April)
do appear to be slightly closer to the target power during midday, compared to the Suntech model.
27. April was forecasted to be a clear day, which is why the predicted values became as shown in Figure
52. The MBE shows that the one-day ahead forecast had the tendency to overpredict, which 28. April
could be a large contributor to, and the two-days ahead MBE indicated underprediction, which appears
to be the case for most days, except for 27. April after 11:00.
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4.8.3. REC PV Modules

Table 22 presents the results from a one- and two-days ahead forecast horizon, with the model trained
with REC PV modules.

Table 22: Performance parameters with forecasted weather from MEPS, REC modules

Performance REC
parameters One-day Two-days

ahead ahead
MSE 0.2647 0.2719
MARE 0.4703 0.8570
MAE 0.3040 0.3005
MBE -0.1100 0.0576
R? 0.7955 0.8145

Also the errors are higher for the forecasted weather data compared to the on-site data for the REC
modaules, which was expected. The errors are lower for the one-day ahead forecast horizon compared
to the two-day forecast horizon, but the R%-value appear to be slighly lower. As for the other two PV
modules, MARE is relavitely high and MBE for one-day ahead indicates overprediction and for two-
days ahead underprediction.

Figure 53 presents the predictions using a trained model for the REC modules, using the forecasted
weather parameters.
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Figure 53: Power predictions (red and yellow line) of 25.-30. April 2017, REC modules

As for the other two models, the model trained for the REC PV modules follow the patterns of the
forecasted weather parameters, where the solar irradiance appears to have the largest impact on the
power production.
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4.9. COMPARISON OF MODEL PERFORMANCES
The three different types of PV modules ended up having the same model configurations of 20-2-1,
but the performance parameters were different based on the training of the models. Figure 54

compare the mean square errors (MSE) for each of the PV modules from the results obtained in this
work.

0.3 - Suntech

I Sharp
[TIReC —
{00.25 -

o
o
T

Mean square error (MS
o
=} =
- 3}

“mi H=l A

Test-set Hold-out set One-day ahead Two-days ahead

Figure 54: Mean square error (MSE) comparison of all PV modules

Based on Figure 54, Sharp PV modules show an overall lower mean square error compared to the other
two PV modules, for all sets the models were tested on. The test set and hold out set have comparable
errors for all PV modules, as for the one-day ahead and two-days ahead forecast horizon. Sharp has a
lower rated power and is made of thin film material, which provides the module with different
technical aspect compared to Suntech and REC, which is of multicrystalline silicon. Whether this is an
impact to why the model has lower error when based on the Sharp modules cannot be decided based
only on these results but is an interesting observation for the PV modules located at the same location.

One other aspect to consider is how the data division was performed for each of the PV modules. As
the different subsets (training, validation and test set) may include different hours for the different PV
modules (meaning the test set for Suntech most likely does not include the same hour sample as REC
or Sharp), the results from the test set may not be directly comparable. To make a fully comparable
investigation of the model performances, additional analysis of the raw data should be performed, or
a comparison of i.e. the hold-out set could be more representable. It was seen in subsection 4.7.4,
when analyzing input data for days in March and April 2017 that snow cover most likely was an aspect
that could cause larger prediction errors. This could be the case for several days, and where these
deviations can be divided into different subsets for each of the PV modules.
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5. CONCLUSION

A dataset from a PV system located at Kjgita, Kristiansand was used to train and test ANN models. The
raw data from the measurements on-site involved several uncertainties, thus a thoroughly review of a
maintenance log was performed. The remaining data was divided into subsets used for training,
validation and testing purposes.

Principal component analysis (PCA) indicated that the variables wind speed, air temperature and global
horizontal were needed to explain the variance and the average mutual information (AMI) indicated
no time lag influence. A model-based approach was used when including air mass to the input
variables, as this appeared to improve the overall precision of the prediction models.

Seven different tests were compared, where each test included a model with a various number of
hidden layers and neurons. Based on these tests, all three types of PV modules indicated that a
configuration of 20-2-1 would provide the lowest mean square error (MSE) in the test set. Suntech
obtained an MSE=0.0454, Sharp MSE=0.0325 and REC MSE=0.0492 using the test set. All R?-values
from test set indicated values higher than 0.95, meaning the regression of the predicted values versus
the target values had a good fit.

The data division for the three PV modules was performed using coefficient of variation dividing into
subsets training, validation and test. It was however observed similar patterns of mispredictions in the
three sets. Due to these errors, mean absolute relative error (MARE) would show high values for all PV
modules (but depending on subset) as it is sensitive to larger deviations. Larger deviations did for some
occasions appear to be caused by high wind speed, while other deviations appear to occur because of
snow cover which was not included in the ANN models. From a hold-out set it could be observed higher
errors for Suntech and REC, while lower errors for Sharp compared to the test sets. Sharp had an overall
better performance for all tests performed compared to the other two types of PV modules.

Testing the models with data from MEPS (MetCoOp Ensemble Prediction System) weather forecast,
showed that the ANN models can use the input data provided, but have MSE values higher than for
the test and hold-out set, which was expected. This appeared to be mostly due to uncertainties in the
weather forecasts. The tests were based on weather predictions from one-day ahead and two-days
ahead forecast horizons, where the one-day ahead gave a lower MSE for Suntech and REC, but the
two-day ahead have lower MSE for Sharp.

Based on these findings, it can be concluded that ANN models for Kjgita PV system with three different
types of PV modules show a potential of predicting PV power. The configurations with 20-2-1 with the
relevant input selection used in this work, did show that for some occasion’s the predictions had
relatively high deviations from the target values, while for other occasions were able to do predictions
close to the target. The predictions performed with forecasted data did indicate that the models were
able to use this data, and a potential can be found in using ANN models for power predictions. More
precise prediction models can contribute with useful information to grid operators as an increase of
installed PV power can be seen every year and is assumed to continue to increase for coming years.
Large grid-connected PV systems or several smaller systems will contribute to feed the grid with
fluctuating power, especially during days with changing weather conditions.
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5.1. FURTHER WORK

Studying some of the prediction results with high deviations to the target values, high wind speed can
be observed and how the models treat this value should be investigated further. As a principal
component analysis may not always provide the optimal variables to include in an ANN model, due to
it only investigates the variance of the dataset not the direct affect to the output (target), additional
analysis will be necessary. Also, the air temperature was used in this work instead of the module
temperature. Another attempt with using the module temperature should be performed to see if this
can contribute to more precise predictions as the module temperature can have a direct effect on the
efficiency of the modules. This would, however, involve having to convert air temperature to module
temperature as the weather forecasts provide air temperature. One last input parameter that can be
of interest to include is the snow cover. It was observed larger deviations for some of the predictions
compared to the targets, which presumably was because of snow covering the PV modules. Including
this variable can contribute to lower these deviations. Further optimization of ANN models can also be
compared with a linear model, to investigate difference in performances.

The models created for the purpose of this thesis include data from a 3-year period. Over time,
degradation of the PV cells can occur, and as the feedforward network did not consider time-series,
this degradation can influence the prediction results. As the degradation will only have limited effect
on the output, this can be of importance if a model based on a longer time period is considered.

The method for testing the models with different configurations was based on a trial and error model-
based approach by having seven different tests adjusting the hidden neurons and hidden layers of the
models. A possibility to test models with several different parameters should be performed. This way
more hyperparameters can be tested against each other and a more throughout decision of model
configurations can be obtained. This can be done with the use of a grid search approach, which tests
several different hyperparameters at the time.

Another interesting aspect to look further into is how this model can be used with other PV systems.
As the models have been trained specifically to this system, a more dynamic model that can be used
with an ensemble of systems to be able to see the overall grid influence for an entire area could be
relevant.

With these points, the following suggestions to improve an ANN model of the purpose of prediction
power production from the PV modules located at Kjgita are:

- Excluding wind speed as input selection, using module temperature and/or snow cover

- Additional data filtering and/or data mining can introduce further improvement of the results,
thus obtaining a more precise prediction model.

- Including a degradation model, or time series that takes the degradation into account

- Grid search approach

- Expand the ANN model to deal with an ensemble of PV systems within same area
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APPENDICES

A.l PROJECT INFORMATION “SOLSTR@M PA NETT»
Presentasjon av prosjektet Solstrgm pa nett hos Agder Energi, Kristiansand. Presentasjon av Anne Gerd
Imenes, Teknova AS, 19/10-2011.

Agder Energi solstrem pa nett — teknova
regionalt samarbeid for forskning og utvikling

dier energi &" ELTEK VALERE a 52(':?1 #3fi UNIVERSITETET | AGDER teknova

FoU konsortium:

Agder Energi Innovasjon, Agder Energi Nett,
Eltek Valere, Elkem Solar,

Universitetet i Agder, Teknova.

Anne Gerd Imenes, Teknova
Kristiansand, 19.10.2011
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« Kvalifiseringsstatte fra Regionale Forskningsfond Agder
(2010-2011). Viderefgring/ny sgknad innsendt 12 okt 2011.

+ Prosjektet har veert avgjgrende for utviklingen av samarbeid
mellom Industripartnere, Universitetet i Agder og Teknova.

« Viktig prosjekt i regional og nasjonal sammenheng.

(AL
[ TR |
" o

Forprosjekt RFF Agder: 8

c.5"0
S
e ge

Agder Energi — Solstrem pa nett teknova

Malsetninger:

« Identifisere problemstillinger, parametre, utstyr, metoder
for videre samarbeidsprosjekter.

+ ke kunnskap og erfaring med nett-tilkknyttede
solcellesystemer i Norge.

+ Hoste egne erfaringer med nett-integrasjon, undersgke
spenningskvalitet og rammebetingelser (AE Nett).

+ Demonstrere nye teknologier/produkter fra lokal industri:
— Invertere fra Eltek Valere

— Solcellesilisium fra Elkem Solar
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Solcellepaneler

+ 2.4 kWp Sharp tynnfilm a-Si/p-Si (18 x 135 W)
+ 5.4 kWp Suntech multi-Si: Elkem Solar Silicon (24 x 225 W)
+ 37.4 kWp REC multi-Si: Standard silicon (166 x 225 W)

Systemdata:
7 45 kW
» ca. 30-40 000 kWh/ar
» PV helningsvinkel 20°,

asimutvinkel 20° sgrvest

Invertere fra Eltek Valere
THEIA 4 4HE-
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Hoy-kvalitets instrumenter:

« ’Solar tracker’ som
folger solens bevegelse

« 2 pyranometre maler
total horisontal (global)
og diffus innstraling

« 1 pyranometer maler
innstraling i samme plan
som PV modulene

o2
00" 00

Instrumentering for FoU prosjekter $ie'
teknova

Méleomformere DC

i Datalogger,
"% Maleomformere AC
: & AR 3
AN

\‘ R W | 1 tillegg males

" | N Spenningskvalitet
nede ved byggets
hovedinntak

buiking & m AN,
busiding high 19,85 m

Ambient temp.

PV temp. (2x3)
Global tilted o * | e

angle| fack pece yp ower
g 5 1 A et N L = e
) B T I s T4 W
| % 20" [ 2075w | 1661 | ReC 223PE [aasw | 1emenmnaan | 75 kg
2 20° | 2r SW 1841 | Sharp NA-F135(G5) [ 135W | 1400x1000x46§ 243 KWy
SOLYS2: Horis. | e

global og diffus
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Instrumentering og datainnsamling

teknova
* 2 ¥ vind
t ! o)
5 E 3xsol Py
P (diffus, 1
. glob filt) 1% Tamgient
10 (L), S 11 V)ae
- 10 (L, Do 1L V)ae
Rt B IRTA) 1% (L V)ae
.. LobDciac

\
% Malsomformere:

Tl g BT A lac (19 A)
Vpe D600V Vo230 V)

(
Malesignal:
T 4-20mA

0-5v

Agder Energi
Headquarters

Datalogger

Display ‘ ‘ Web access ‘ ‘ Server (storage)

Tema for videre FoU-samarbeid

teknova

Hovedmal: Finne ut hvordan et nett-tilknyttet solcelleanlegg pavirker
nettkvaliteten, for a tilrettelegge for fremtidige innmatingskunder.

Delmal — vil undersgke:

+ Spenningskvalitet

+ Ulike inverter innstillinger
+ Ytelse fra ulike solcelleteknologier (over lengre tid)

+ Forhold mellom dimensjonering av PV anlegg, inverter effekt,
gkonomi og levetid

+ Solenergi-ressursen i Kristiansand, variasjoner og trender

[ tillegg vil prosjektet stgtte samarbeidet med den internasjonale IEA
PVPS Task 13 ekspertgruppen (deltagelse gjennom UiA).
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Internasjonalt samarbeid:

|IEA PVPS Task 13 teknova

» |EA = International Energy Agency

 PVPS = Photovoltaic Power Systems Programme

» Task 13 = Performance and reliability of photovoltaic
systems (ytelse og palitelighet for PV systemer)

« 17 medlemsland, vil bygge internasjonal PV database.
Universitetet i Agder er Norges representant.

« Malsetning: Skaffe palitelige data for ulike anvendelser
og lokasjoner. Database skal gjares tilgjengelig for alle,
medfare bedre produkter/lavere risiko & gkt marked.

« Oppgaver: Definere testmetoder, sammenlikne ytelse
over lengre tid, lage bedre modeller for analyse.

S ap !
Welcome to the website of the
IEA Photovoltaic Power Systems Programme

The Photovoltaic Pow:
establishad within the
application of ol

of na

« Agder Energi PV-anlegget er Norges eneste bidrag i
denne internasjonale PV databasen!

« Viregistrerer manedlige verdier av solinnstraling og
produksjon fra PV anlegget (DC og AC).

+ Hayere opplasning (time, minutt) viktig for ngyaktighet.
Grunnlag for FoU og utvikling av modeller.

\
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A.2 TECHNICAL DATA — PV MODULES
Sharp NA-135 (G5) Datasheet

Mechanical data

cell Tandem cel of amorphous (a-Si) and , » _

microcrystalline (pc-Si) silicon Storage air humidity (relative) up to 90 %
Connection 180 cells (4 x 45 parallel) Operating temperature (cell) -40t0+90 °C
Dimensions 1,409 x 1,009 x 46 mm (1.42 m?) Storage temperature —40t0+90 ¢
Weight 19kg Maximum system voltage 1,000 vDC
Connection type Cable with plug connector (MC3) Maximum mechanical load 2,400 N/me
Bypass diodes 1 Over-current Protection 5 A

Initial values Nominal values
NA-F135(G5)  NA-F128 (G5) NA-F121 (G5) | NA-F135(G5) NA-F128(G5) NA-F121 (G5)

Maximum power 158.9 Wp WSOABWP 1424 Wp BSWp 128 Wp 11 Wp
Open-circuit voltage Voc 62.5 6038 60.2 613 59.8 59.2 v
Short-circuit current Is¢ 3.49 354 343 341 3.45 334 A
Voltage at point of maximum power me 49.7 48.6 48.2 4 454 45 v
Current at point of maximum power lpm 32 3.10 296 288 2.82 269 A
Module efficiency Nm 95 9.0 85 %
NOCT 44 44 44 %€
Temperature coefficient — open-circuit voltage oV -030 -0.30 -0.30 -030 -0.30 -0.30 % /1°C
Temperature coefficient — short-circuit current  aclge +0.07 +0.07 +0.07 +0.07 +0.07 +0.07 %1°C
Temperature coefficient — power Py -0.24 -0.24 -0.24 -0.24 -0.24 -0.24 % /°C

The electrical data applies under standard test conditions (STCs): irradiation 1,000 W/m' with light spectrum AM 1.5 and a cell temperature of 25 °C. The rated electrical characteristics are subject to a manufacturing
lower tolerance of — 5%. NOCT conditions: imadiation of 800 W/m’, ambient temperature of 20 °C and wind speed of 1 m/sec.

Characteristic curves na-fi3s 65) Applications

The photo on the front page shows a 340 MWp-capacity thin film system on the roof at commercial vehicle manufacturer Fliegl's production facilities near Gera, Germany. Photo: AEP Energie-Consult GmbH

Characteristic curves: open-circuit voitage / short- -qrit
Characteristic curves: current / porver vs. voltage circuit current and maximum power vs. inadiation Charatesistic curves: normalised values =00 gnd E¥ee
{cell temperature: 25°C) {cell temperature: 25°C) I/ Vo / Py s cell temperature
— 140 gm0 o = On-roof PV systems
= = Ve 5 £
B RaNiEs ﬁ R % = Ground-mounted PV systems
2 ** [ ! wE S EAE i
5 5 H = 3w Please read our detailed installation manual carefully
5 s L] 5‘ @ P 2 before installing the photovoltaic modules. The
10} « 2 wl— g o instructions in the installation manual must always
o2 2 g% 7 1 . be observed (e.g. max. of 13 modules in series, minus
o B £ pole must be grounded, protection with blocking
0 20 30 <0 & @ &% 2 diodesff
Volage (V) — Curert . vl 200 400 o0 B0 o : A generator box with approved blocking diodes is
— Pner s iy Inadiance (Wim) Gl temperature °C) available fromyour Sharp dealer.
g Rear view Cross-section A-A" Technical data is subject to change without prior
FME tar cell = Z notice. Before using Sharp products, please request
= = N\ the latest data sheets from Sharp. Sharp accepts
H = o no responsibility for damage to devices which have
rrer o H been equipped with Sharp products on the basis of
4 @ 8 B e unverified information.
The spedifications may deviate slightly and are not
H guaranteed. Installation and operating instructions
are to be found in the corresponding handbooks, or
: < ; can be downloaded from www.sharp.eu.
‘Support rail N Connection cable Cross-section C-C : X
‘e Junction box e This module should not be directly connected to
i |—mn [ s | ; aload.
Plug connector e
Sharp Energy Solution Europe Local responsibility: Scandinavia
a division of Sharp Electronics (Europe) GmbH it i 3 ;ola[lnré ;err‘t}'sra;p eu
: ustria enmarl pain & Portuga
Sonninstrasse 3, 20097 Hamburg: Germany Solarinfo.at@sharp.eu Solarinfo.dk@sharp.eu Solarinfo.es@sharp.eu
Tel: +49(0)40/2376-0 - Fax: +49(0)40/2376-2193 Be‘ne!ux Frlantef s Svlfitzerlar
Solarinfo.seb @sharp.eu Solarinfo.fr@sharp.eu Solarinfo.ch@sharp.eu
;
W WW‘Sharp‘eU Central & Eastern Europe Germany United Kingdom
Solarinfo.scee@sharp.eu Solarinfo.de @sharp.eu Solarinfo.uk @sharp.eu

SolamNA_142_E1109

SHARP
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REC 225PE — Datasheet

ELECTRICAL DATA @ STC REC2IS5PE REC220PE REC225PE REC230PE REC235PE REC240PE

Peak Power Watts-P, . (Wp)
Watt Class Tolerance-P,, (W)
Watt Class Tolerance-P,, (%)
Maximum Power Voltage-V, (V)
Maximum Power Current-1,,..(A)
Open Circuit Voltage-V, (V)
Short Circuit Current-1(A)

Module Efficiency (%)

991425

[

577 S0t

Mauntingholes|

~iy i, 950

215 220 225 230 235 240
0/+5  OH45 045 045 045 0H45
042 042 042 042 042 o2
283 287 291 294 298 304
76 7.7 7.7 78 7.9 7.9
363 366 368 371 374 377
8l 82 82 83 83 84
130 133 136 139 142 145

Values at Standard Test Conditions STC (Air Mass AM1.5, Irradiance 1000 W/m?, Cell temperature 25 °C)

TEMPERATURE RATINGS (235 W RATED MODULE)

Nominal Operating Cell Temperature (NOCT)

Temperature Coefficientof P,
Temperature Coefficient of V
Temperature Coefficient of I,

® CceO

Certified according to UL1703,
IEC61215 and, IEC61730

479°C (£2°C)
-0.46 %/°C
-0.32%/°C
0011%/°C

MECHANICALDATA

Dimensions 1665x991x38 mm
Area 1.65m?
Weight 18kg

RECis aleading vertically integrated player in the solar energy industry. REC is among the world's
largest producers of polysilicon and wafers for solar applications, and arapidly growing
manufacturer of solar cells and modules. RECis also engaged in project development activities in
selected PV segments. Founded in Norway, REC is aninternational solar company, employing
more than 4,000 people worldwide. REC had revenues in excess of NOK 9billion in 2009.

Please visit www.recgroup.com
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IV CHARACTERISTICS 235W MODULE

: e 1000 W/m

7 N 800W/m?
=6 \ — 00 W/m*
S8 e 400 W/m?
£ :‘ -
&2 \

1 [— A

0 A\ |

0 5 10 15 20 25 30 35 40
VOLTAGE (V)
EFFICENCY

MONTHS WORKMANSHIP WARRANTY

YEAR POWER OUTPUT WARRANTY

GENERAL DATA

Cell Type 60 REC PE multi-crystalline cells
3strings of 20 cells - 3 by-pass diodes

Glass High-transparency solar glass with
antireflection surface treatment

by Sunarc Technology

Back sheet Double layer
high performance polyester

Frame Anodized aluminium
Cable Radox 4mm? solar cables, 0.90m +1.20m

Connectors ~ Radox 4mm? twist locking connector

WARRANTY

10years limited warranty of 90% power output
25 years limited warranty of 80% power output
63 months workmanship warranty

MAXIMUM RATINGS

Operational Temperature -40...+80°C
Maximum System Voltage 1000V
Maximum Load 551 kg/m? (5400 Pa)
Maximum Wind Speed 197 km/h (safety factor 3)
Max Series Fuse Rating 15A
Max Reverse Current 15A

Note! Specifications subject to change without notice.

REC

REC Solar AS
Kjerboveien 29
1329 Sandvika
Norway

www.recgroup.com
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Suntech STP225 - 20/Wd Datasheet

STP225 - 20/Wd

STP220 - 20/Wd

941[37]

T Electrical Characteristics
D 7
il STC STP225-20/Wd §TP220-20/Wd
Optimum Operating Voltage (Vmp) 29.6V 29.5V
i R -— Optimum Operating Current (Imp) 761A 746A
i 5
Porang Open - Circuit Voltage (Voc) | 367V 36.6V
ot | L Short - Circuit Current (Isc) [ 815A 805A
Back Vi @ S |
5 ( e 2|zl Maximum Power at STC (Pmax) 225W 220W
208 11202, A | EEE
Fhtaces 0 =1+ Operating Temperature -40°Cto +85°C -40°C to +85°C
Maximum System Voltage 1000V DC 1000V DC
Maximum Series Fuse Rating 20A 20A
Section AA Power Tolerance 0/+5W O/ +5W
STC:Irradiance 1000 W/, module temperature 25°C. AM=15
Iy :
NOCT | S§TP225-20/Wd STP220-20/Wd
Note:mm [inch] |
Maximum Power (W) 165W 160W
Maximum Power Voltage (V) 269V 268V
Maximum Power Current (A) 6.12A 5.98A
Current-Voltage & Power-Voltage Curve (220-20) Open Gircuit Voltage (Voc) 338V 337V
9 3
8 N Short Circuit Current (Isc) 6.65A 6.54 A
7 200 -
Efficiency Reduction .
/ \ <4.5% <4.5%
= 6 “ (from 1000 W/m? to 200 W/m?)
o)
i T // AW = NOCT: Irradiance 800 W, b 20°C, wind 1
H =7 r— 3 OCT: Irradiance 800 W/m’, ambient temperature 20 °C, wind speed 1 m/s
£, = ==\ H 8 -
| —— e E N\ [
\ . P
) = L—T N\ L. Mechanical Characteristics
) = A\
\ Solar Cell Polycrystalline 156 x 156 mm (6inches)
JZ=— \ ' Iyery (
‘ : N N . “ * N " No. of Cells 60 (6 % 10)
Voitage (V)
| Dimensions 1665 % 991 x 50 mm (65.6 x 39.0 x 2.0 inches)
s {00V — OO WY s SO/ e KOWIM s 200
Weight 22.5kgs (49.6 Ibs.)
Front Glass 38 mm (0.} inches) tempered glass
Temperature Cha racteristics Frame Ancdized aluminium alloy
Nominal Operating Cell Temperature (NOCT) 45+2°C Suretion Bk \P67 rated
.47 % ¢
Tempetature cosfaontiof ryax Liet H+S RADOX® SMART cable 4.0 mm’ (0,006 inches?),
Tempetature Cosfiicient of Voc 034 %/°C symmetrical lengths (-) 1000 mm (39.4 inches) and (+)
ERatie Output Cables 1000 mm (39.4 inches), RADOX® SOLAR integrated twist
Temperature Coefficient of Isc 0.045 %/°C locking connectors

Packing Configuration

Dealer information box

Container 20'GP 40'HC
Pieces per pallet 21 21
Pallets per container 6 28

| Pieces per container 126 588

5 tior ubsjsct 1 change without further notificatiar

www.suntech-power.com | E-mail: sales@suntech-power.com EN-STD-Wd-NO1.01-Rev 2010
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A.3 TECHNICAL DATA — ELTEK INVERTER
THEIA HE-t — String Inverters: 2.0kW to 4.4kW

Technical Specifications

MODEL

2.0HE-t" 2.9HE-t "

3.8HE-t " 4.4HE-t

2100 W 3000 W 4000 W 4600 W

Nominal output power

Max. DC power

Max. DC voltage 600 Vg, 600 V. 600 Vg, 600 Vi,
Voltage range MPPT 23010480V, | 230t0480Vy | 230t0480Vy | 230to 480 Vg, |
Max. input current 95A 13.5A 18.0A 21.0A
Number of PV string inputs 3

Number of MPP trackers 1

Input features Reverse polarity protection,

Ground fault monitoring,
Integral DC switch disconnector (optional),
Integral DC fuses for string inputs (optional)

Field conﬁ%urable for %sitive or n%ative %roundinﬁ or un%rounded
® D

2000 W 2900 W 3800 W 4450 W

Max. AC current 90A 13.0A 17.0A 200A
Mains output voltage 85V, to 276V, single or split phase

Mains frequency: 50Hz / 60HZ (+/-5%) *’

Power factor 1

Protection degree

Maximum efficiency: ; A

CEC efficiency: 96.1 % 96.4 % 96.7 % 97.0 %
EU efficiency: 96.0 % 96.2 % 96.5 % 96.9 %
Power feed starts at <7TW

IP 65/ NEMA 4X

Dimensions 598H x 351W x 157D mm / 23.55H x 13.82W x 6.19D inches
Weight <18kg/40lbs | <18kg/40lbs | <19kg/42lbs | <20kg/44lbs
Cable access Bottom and Sides

Input cable connection

MC3, MC4, Tyco,
Screw terminals, Cable clamp,
Others on request

 Output cable connection

Screw terminals, Cable clamp

Operating temperature:

\ Design Standards |
EM compatibility: EN 61000-6-2, EN 61000-6-3, FCC Level B

CE / UL marking: Yes

Other standards: UL 1741, DIN VDE V 0126-1-1, G83/1,

EN 50438, AS 4777, ENEL Guidelines (DK 5940),
EN 61000-3-2, EN 61000-3-3,
EN 61000-3-11, EN 61000-3-12

-25t0 +65 °C/-13to +149 °F
(possible power derating above +45°C / +113°C)

Storage temperature:

-30t0 +80 °C/-22 10 +176 °F

Ventilation

Convection cooling (fan assist at high temperatures
Addition 1ture

ransformer, galvanic isolation

Topology High frequency t
Noise Emission <40dB (A)
Communication Graphical, color display with touch sense buttons,
Embedded web-server,
Ethernet, CAN and RS485 bus interface,
3x LEDs for visual status indication
Warranty 5 years, 10 years, 15 years, and 20 years options

¥ preliminary data for THEIA models

2 voltage and frequency range adjusted to specific country settings

357115.0S3 revd WW

Specifications subject to change without notice
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A4 MEPS — WEATHER FORECAST

Global Horizontal Irradiance

25. April 2017 - GHI
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27. April 2017 - GHI
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29. April 2017 - GHI
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Wind speed:

25. April 2017 - Wind speed
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27. April 2017 - Wind speed
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29. April 2017 - Wind speed
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AIR TEMPERATURE

25. April 2017 - Air temperature
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27. April 2017 - Air temperature
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29. April 2017 - Air temperature
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A.5 SUNRISE/SUNSET — MATLAB SCRIPT

% Author: Camilla Lie
% Date: 24.05.2019

Load data
data = readtable('AllData.txt'); % Load all data
sun = readtable('SunData fixed.txt'); % Load sunrise/sunset times

sun.SunRise =datetime (sun.SunRise) ;

sun.SunSet =datetime (sun.SunSet) ;

Removal of hours before sunrise and after sunset

for i = 1l:height (sun)
year = data.time.Year==sun.SunRise.Year (i);

month = data.time.Month==sun.SunRise.Month (i) ;
day = data.time.Day==sun.SunRise.Day (i) ;

trueldx = all([year,month,day],2);
outsideScope = data.time (trueldx)>=sun.SunRise (i) &...
data.time (trueldx)<=sun.SunSet (i) ;

trueldx (trueldx) = ~outsideScope;

data (trueldx,:) = [];
end
data.Properties.VariableNames = {'GHIavg' 'DHIavg' 'GTIavg' 'VSavg' 'VDavg' 'IDCinvl'
'IDCinv3' 'IDCinv4' 'UDCinvl' 'UDCinv3' 'UDCinv4' 'IACinvl' 'IACinv3' 'IACinv4'
'UACinvl' 'UACinv3' 'UACinv4' 'PTeoal' 'PTmoal' 'PTeoca3' 'PTeoca4' 'PTmoa4' 'PTmoa3'

'airtemp' 'time'};
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A.6 DATA FILTERING - MATLAB ScRrIPT

Invl = Suntech
Inv3 = Sharp
Inv4 = REC

% Data filtering using Kjgita PV system maintanance log

% Author: Camilla Lie
% Date: 24.05.2019

Import Data

data _time = readtable('alldata.csv');

Include Day of year

DV = datevec(data time.time); % [N x 6] array
DV = DV (:, 1:3); % [N x 3] array, no time
DV2 = DV;
DV2(:, 2:3) = 0; % [N x 3], day before 01.Jan
doy = cat(2, DV(:, [2 3]), datenum(DV) - datenum(DV2));
data time.doy = doy(:,3);
tz = 1;
for i=1l:height (data_ time)
tz(i)=1;
end
data _time.tz = tz';

Remove time to create array

dataa = data time;

dataa.time = [];

IACinv4 values from start to 29.10.2012 kl. 14:30 changed to nan

dataa.IACinv4 (1:144186)=nan;
dataa=table2array(dataa(:,l:end));

idxnan = isnan(dataa(:,14));

Replacing Power inv4 with NaN corresponding to previous section

for 1=1:144186
if idxnan (i, :)==1
dataa (i, 27)=nan;
end

end
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Timerange. Invalid GHI.

for i=l:length(dataa(:,1))

if dataa(i,1)==-999
dataa (i, 1)=nan;

end

end

Timerange. Poweroutage (Strgmstans)

first = '25-May-2012 12:55:00'; % This will be the first taken
second = '29-May-2012 08:14:00'; % Time before is the last
LogicalArr = ( data time.time >= first & data time.time< second );

Removing IAC/UAC all inverters between 25.may kl 12:55 to
29.May.2012 kI 08:13

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,12:17) = nan;
end
end

Timerange. DHI not valid before this

first = '22-May-2012'; % This will be the first taken
second = '23-Jun-2012'; % Time before is the last
LogicalArr = ( first <= data time.time & data time.time< second );

Removing DHI not valid between 22.May.2012 to 22.Jun.2012

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, 2) = nan;
end
end

Timerange. Downtime inv 1 and 3.

first = '04-Jul-2012 07:56:00";
second = '04-Jul-2012 09:27:00"';
LogicalArr = ( first <= data time.time & data time.time< second );

XXIII



al

Power Prediction of Photovoltaic System using Neural Network Models Ui gf”;'\:’;ég':y

A

Removing IAC/UAC invl and 3 from 04-Jul-2012 07:56 - 09:26

for i=1l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i, [12:13,15:16]) = nan;
end
end

Timerange. Update software all inv.

first = '29-Oct-2012 12:19:00';
second = '29-0ct-2012 12:31:00';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inv from 29-Oct-2012 12:19 - kl. 12:31

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [12:17]) = nan;
end
end

Timerange. Update software all inv.

first = '29-Oct-2012 12:53:00';
second = '29-0ct-2012 13:10:00"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inv from 29-Oct-2012 12:53 - kI 13:09

for i=1:length(LogicalArr)
if LogicalArr(i,:)==
dataa (i, [12:17]) = nan;
end

end

Timerange. Bad conntector invl

first = '29-0ct-2012 07:34:00';
second = '06-Dec-2012 15:40:00"';
LogicalArr = ( first <= data time.time & data time.time<= second );
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Removing IAC/UAC invl from 29-Oct-2012 07:34 - 06-Dec-2012 15:40

for i=l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [12,15]) = nan;
end
end

Timerange. Inverter calibration, pkt. 40

first = '11-Jan-2013'; % This will be the first taken
second = '19-Jan-2013'; % Time before is the last
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inverters between 11.jan.2013 to 18.jan.2013

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,12:17) = nan;
end

end

Timerange. Missing data (=0) for all inv, pkt. 40

first = '15-May-2013 19:04:00'; % This will be the first taken
second = 'l16-May-2013 09:30:00'; % Time before is the last
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inverters between 15.May.2013 kl 19:05 and
16.May.2013 kI 09:30

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,12:17) = nan;
end

end

Timerange. Cleaning pyranometers.

first = '31-May-2013 10:52:00"';
second = '31-May-2013 11:24:00"';
LogicalArr = ( first <= data time.time & data time.time< second );
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Removing GHI/DHI/GTI from 31-May-2013 10:52 - kl. 11:23

for i=1l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,1:3) = nan;
end
end

Timerange.downtime all inv

first = '31-May-2013 13:14:00"';
second = '31-May-2013 13:22:00"';
LogicalArr = ( first <= data time.time & data time.time<= second );

Removing IAC/UAC all inv from 31-May-2013 13:14 - 13:22

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [12:17]) = nan;
end
end

Timerange.downtime inv3

first = '06-Jul-2013 04:34:00';
second = '11-Jul-2013"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC inv3 from 06-Jul-2013 04:34 - 11-Jul-2013

for i=1:length(LogicalArr)
if LogicalArr(i,:)==
dataa (i, [13,16]) = nan;
end

end

Timerange.downtime inv4

first = '20-Jun-2013 13:27:00";
second = '20-Jun-2013 13:21:00"';
LogicalArr = ( first <= data time.time & data time.time<= second );
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Removing IAC/UAC inv4 from 20-Jun-2013 13:27 - 13:21

for i=1l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [14,17]) = nan;
end
end

Timerange. Cleaning pyranometers.

first = '12-Feb-2014 11:56:00"';
second = '12-Feb-2014 12:23:00"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing GHI/GTI/DHI from 12.Feb 2014 kl. 11:56 - 12:22

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,1:3) = nan;
end
end

Timerange.downtime invl

first = '17-Feb-2014 12:21:00"';
second = 'l7-Feb-2014 12:30:00"';
LogicalArr = ( first <= data time.time & data time.time<= second );

Removing IAC/UAC invl from 17-Feb-2014 12:21 - 12:30

for i=1:length(LogicalArr)
if LogicalArr(i,:)==
dataa (i, [12,15]) = nan;
end

end

Timerange.downtime inv3

first = '17-Feb-2014 11:55:00";
second = '17-Feb-2014 12:11:00"';
LogicalArr = ( first <= data time.time & data time.time<= second );
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Removing IAC/UAC inv3 from 17-Feb-2014 11:55-12:11

for i=l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [13,16]) = nan;
end

end

Timerange.downtime inv4

first = '17-Feb-2014 12:06:00"';
second = 'l7-Feb-2014 15:02:00"';
LogicalArr = ( first <= data time.time & data time.time<= second );

Removing IAC/UAC inv4 from '17-Feb-2014 12:06 - 15:02

for i=1l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [14,17]) = nan;
end

end

Timerange. Invl stopped, lost data

first = '07-Apr-2014 13:40:00"';
second = '08-Apr-2014 12:55:00"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IACinv1 from 07.April 2014 kl. 13:40 - 08.April 2014
kl.12:55

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [12 15]) = nan; S%IACinvl and UACinvl
end

end

Timerange. Changed invl

first = '09-Apr-2014 12:42:00';
second = '"10-Apr-2014 11:37:00";
LogicalArr = ( first <= data time.time & data time.time< second );
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Removing IAC/UACinv1 from 09.April 2014 kl. 12:42 - 10.April 2014
kl.11:37

for i=1l:length (LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [12 15]) = nan;
end
end

Timerange. Removed inv4 for a while. IS THIS WHEN INV4 IS
CHANGED?

first = '14-Apr-2014 12:03:00"';
second = '"15-Apr-2014 08:55:00"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UACinv4 from 14.April 2014 kl. 12:03 - 15.April 2014
kl.08:54

for i=l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [14 17]) = nan;
end
end

Timerange. Downtime, Removed all inv. Lightening?

first = '02-Aug-2014 10:53:00"';
second = '06-Aug-2014 08:20:00"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inv from 02.August 2014 kl. 10:53 -

06.August 2014 k1.08:19. Lightning?

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,12:17) = nan;
end

end
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Timerange. Downtime for all inv.

first = '26-Aug-2014 16:46:00"';
second = '29-Aug-2014"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inv from 26.August 2014 kl.16:46-
28.Aug(including)

for i=1l:length(LogicalArr)
if LogicalArr(i,:)==
dataa (i, 12:17) = nan;
end

end

Timerange.downtime all inv

first = '22-0ct-2014 08:19:00"';
second = '24-0Oct-2014";
LogicalArr = ( first <= data time.time & data time.time<= second );

Removing IAC/UAC all inv from 22-23 Oct-2014

for i=l:length(LogicalArr)
if LogicalArr(i,:)==
dataa (i, [12:17]) = nan;
end

end

Timerange. Calibrating DHI.

first = '05-Nov-2014 12:11:00"';
second = 'l6-Mar-2015 13:40:00"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing DHI from 5.Nov 2014 kl. 12:11 - 16.Mar 2015 kl. 13:40.

if LogicalArr(i,:)==1
dataa(i,2) = nan;
end

end

XXX



al

Power Prediction of Photovoltaic System using Neural Network Models I- UiA gf";'\:’;ég':y

A

Timerange. Calibrating GTI. Moved GHI to GTI

first = "05-Nov-2014 12:34:00";
second = '26-Jan—-2015 14:24:00°';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing GHI from 5.Nov 2014 kl. 12:34 - 26.Jan 2015 kl. 14:23

for i=l:length (LogicalArr)
if LogicalArr(i,:)==1
dataa(i,3) = dataa(i,1);
end
end
for i=l:length (LogicalArr)
if LogicalArr(i,:)==1
dataa(i,1l) = nan;
end
end

Timerange.downtime all inv

first = '28-Apr-2015 12:51:00";
second = '"28-Apr-2015 13:3%:00";
LogicalArr = ( first <= data time.time & data time.time<= second );

Removing IAC/UAC all inv from 28-Apr-2015 12:51-13:38

for i=l:length (LogicalArr)
if LogicalArr(i,:)==1
dataa(i, [12:17]) = nan;
end
end

Timerange. Downtime inv1.

first = "19-Jun—-2015 08:53:00";
second = '19-Jun—-2015 11:30:00";
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IACinv1 and UACinv1 from 19.Jun 2015 kl. 08:53 - kl.
11:29

for i=l:length (LogicalArr)
if LogicalArr(i,:)==1
dataa (i, [12 15]) = nan;

end
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end

Timerange. Downtime inv1.

first = '27-Aug-2015 19:00:00";
second = '03-Sep-2015 06:00:00";

LogicalArr = ( first <= data time.time & data time.time< second );

ol
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Removing IAC and UAC all inv from 27.Aug 2015 kl. 19:00 - 3.Sep

2015

$k1l. 06:00
for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,12:17) = nan;
end
end

Timerange. Downtime all inv.

first = '09-Jun-2016 19:30:00"';
second = '20-Jun-2016 12:11:00';
LogicalArr = ( first <= data time.time & data time.time< second

20.Jun2016kl.12:10

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa (i, 12:17) = nan;
end

end

Timerange. Downtime all inv.

first = '17-Nov-2016 11:30:00"';
second = '21-Nov-2016 12:50:00"';

)

Removing IAC/UAC all inv from 09.Jun 2016 kl. 19:30 -

LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inv from 17. Nov 2016 kl. 11:3 -

21.Nov2016kl.12:50

for i=1:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,12:17) = nan;
end
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end

Timerange. Downtime all inv.

first = '23-May-2017 21:04:00"';
second = '24-May-2017 09:15:00"';
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inv from 23.May 2017 kl. 21.04 -
23.May2017kl.09:14

for i=l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,12:17) = nan;
end

end

Timerange. Downtime all inv.

first = '01-Sep-2017";
second = '02-Sep-2017";
LogicalArr = ( first <= data time.time & data time.time< second );

Removing IAC/UAC all inv from 01.Sep 2017 - 02. Sep 2017

for i=1l:length(LogicalArr)
if LogicalArr(i,:)==1
dataa(i,12:17) = nan;
end
end
for i=1:length(LogicalArr)

if LogicalArr (i, :)==1
dataa(i,1:3) = nan;

end

end

TimeZone

rl = '22-May-2012";

sl = '27-0Oct-2012";

r2 = '31-Mar-2013"';

s2 = '26-0ct-2013";

r3 = '30-Mar-2014";

s3 = '25-0ct-2014";

r4 = '29-Mar-2015";

s4 = '24-0ct-2015";

r5 = '27-Mar-2016";

s5 = '29-0Oct-2016";
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ré = '26-Mar-2017";

s6 = '28-0ct-2017";

LogicalArr = ( rl <= data_time.time & data time.time<= sl | r2 <=...
data time.time & data time.time<= s2 | r3 <= data time.time &

data time.time<= s3 | r4 <= data time.time & data time.time<= s4 |...
r5 <= data time.time & data time.time<= s5 | r6 <= data_time.time &
data time.time<= s6);

Correcting TimeZone

for i=1:length(LogicalArr)
if LogicalArr(i,:)==
dataa (i, 32) = 2;
end

end
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A.7 AIR MAss — MATLAB ScrIPT

Author: Camilla Lie
Date: 24.05.2019

o0 o°

Load data

data = readtable('clean hour.txt'); % Hourly data May 2012-Feb. 2018
alltime = data.time; % Time

doy = data.doy; % Day of year

Time

date time = datenum(alltime);

date = floor(date time);

time = date_ time-date;

Constants
latitude = 58.1535345;
longitude = 8.0020142;

delta = -23.45 * cosd(360.* (doy+10) ./365); % Solar declination angle
altitude = 20;

Time Zone

rl = '22-May-2012"'; % UTCH+2
sl = '"27-0ct-2012"; % UTC+1
r2 = '31-Mar-2013"'; % UTC+2
s2 = '26-0ct-2013"; % UTC+1
r3 = '30-Mar-2014"; % UTC+2
s3 = '25-0ct-2014"; % UTC+1
r4 = '29-Mar-2015"; % UTC+2
s4 = '24-0ct-2015"; % UTC+1
r5 = '27-Mar-2016"; % UTC+2
s5 = '29-0ct-2016"; % UTC+1
r6 = '26-Mar-2017"; % UTC+2
s6 = '28-0ct-2017";

)

> TimeZone

LogicalArr = ( rl <= alltime & alltime<= sl | r2 <= alltime & alltime<=...
s2 | r3 <= alltime & alltime<= s3 | rd4 <= alltime & alltime<= s4 | r5...
<= alltime & alltime<= s5 | r6 <= alltime & alltime<= s6);

dst = LogicalArr';
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dst tz = double(dst); % Time zone

Get correct timeZone

for i=l:length(dst tz)

if dst tz(i) == 1
tz (i) = 2;
elseif dst _tz (i) == 0
tz (1) = 1;
end
end
tz =tz'; % Time zone
time = time';
delta = delta'; % Solar declination angle

B = 360* (doy-81) /365;

% ET = difference between Appearent solar time and Mean solar time

ET = (9.87*sin(2*B)-7.53*cosd(B)-1.5*sind(B)) '; % Equation of Time
solarTime = ((time.*24-double (dst)).*60+4.* (longitude-1.*15)+ET)./60./24;
t h = (solarTime*24-12)*15; % Hours angle

Theta calculations (zenith angle)

theta = acosd(sind(latitude) *sind(delta)+... % Zenith angle
cosd(latitude) *cosd(delta) .*cosd(t_h));

thetal = theta; % For scaled AM
theta2 = theta; % For theta <= 89 degrees

% Scaling
for i=1:length (thetal)
if thetal (i)>=(90)
thetal (i)= thetal(i)- thetal(i)*0.03;
end
end

for i=1l:length (thetal)
if thetal(i)>=(90)
theta(i)= thetal(i)- thetal(i)*0.03;
end
end

for i=1l:length (thetal)
if thetal(i)>=(90)
thetal (i)= 89.8;
end

end
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% Maximum theta <=89
for i=1:length (theta?)
if theta2 (i)>=89
theta2 (i)= 89;
end
end

Air mass calculations

AMl= ((exp(-0.0001184*altitude)) ./ (cosd(thetal)+0.5057.*...
(96.080+thetal) .~ (-1.634)))"'; % Scaled AM
AM2= ((exp(-0.0001184*altitude)) ./ (cosd(theta2)+0.5057.*...
)) !

(96.080+theta2) .~ (-1.634) g % theta <=89
figure

subplot(2,1,1)

plot(alltime (14134:40436),AM1 (14134:40436), 'LineWidth',1)

grid
title('\fontsize{1l3} (
ylabel ("Air mass [-]'

a)')

)

set (gca, 'FontSize',18)

subplot (2,1,2)

plot (alltime (14134:40436),AM2(14134:40436), "'LineWidth', 1)

grid

title('\fontsize{13}(b)")

% ylabel ('Air mass [-]1")
)

set (gca, '"FontSize',18
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A.8 PRINCIPAL COMPONENT ANALYSIS (PCA) — MATLAB ScrIPT

% Author: Camilla Lie
% Date: 24.05.2019

Import data

data invl = readtable('invl.txt');

Variables

datal = [data invl.GHIavg,data_invl.VS,data invl.airtemp];

Standardize

norm all = normalize(datal); % normalize in MATLAB = standardize (mean=0, STD=1)

Principal Component Analysis (PCA)

MATLAB function

[coeff, score, latent, tsquared, explained] = pca(norm _all, 'Rows', 'complete'); % If there

is missing data

figure;
pareto (explained)
xlabel ('Principal Component')

figure;

[handlesPareto, axesPareto] = pareto(explained);

yticks = get (axesPareto(2),'YTick");

RightYLabels = cellstr (get (axesPareto(2), 'YTickLabel'));
x1 = xlim;

set (axesPareto(2), 'YTickLabel', [])

xlabel ('Principal Component', 'fontsize',20)

ylabel ('Variance Explained (%)', 'fontsize',20)
set (gca, "FontSize',20)
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A.9 AVERAGE MUTUAL INFORMATION (AMI) — MATLAB ScCRIPT

)

% Reference:
R. D. Thomas, N. C. Moses, E. A. Semple, and A. J. Strang,
"An efficient algorithm for the computation of average mutual

information: Validation and implementation in Matlab," Journal of

Mathematical Psychology, vol. 61, pp. 45-59, 2014/08/01/ 2014.

A o0 oo oe

function AMI = average mutual information (data)
function AMI = average mutual information (data)
Calculates average mutual information between
two

columns of data. It uses kernel density
estimation,

with a globally adjusted Gaussian kernel.

Input should be an n-by-2 matrix, with data sets
in adjacent

column vectors.

o O o0 d° O o0 A oO° o0 o° o° o°

Output is a scalar.

n = length (data);
X = data(:,1);
Y = data(:,2);

Example below is for normal reference rule in
2 dims, Scott (1992).
hx = std(X)/(n"(1/6));
hy = std(Y)/(n"(1/6));

% Compute univariate marginal density functions.

o0 oo

X = univariate kernel density(X, X, hx);
y = univariate kernel density (Y, Y, hy);

(g g

% Compute joint probability density.
JointP xy = bivariate kernel density(data, data, hx, hy);
AMI = sum(log2 (JointP xy./(P_x.*P _y))/n);

end

function y = bivariate kernel density(value, data, Hone, Htwo)
function y = bivariate kernel density(value,
data, Hone, Htwo)

Calculates bivariate kernel density estimates

of probability.

Inputs are: value (m x 2 matrix), where density
is estimated;

data (n x 2 matrix), the data used to

estimate the density;

Hone (scalar) and Htwo (scalar) to use

for the widths of density estimation.

Output is an m-vector of probabilities estimated

0 00 o0 d° de A0 o O o° d°o d° oo

at the values in ’'value’.
= size(data);
s(1);

size (value) ;

(g}
Il
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number pts = t(1);
rho matrix = corr(data);
rho = rho matrix(1l,2);
% The adjusted covariance matrix:
W = [Hone”2 rho*Hone*Htwo; rho*Hone*Htwo Htwo"2];
Differences = linear depth (value,-data);
prob = mvnpdf (Differences, [0 0],W);
Cumprob = cumsum(prob) ;
v (1) (1/n) *Cumprob (n) ;
for i = 2:number pts

index = n*i;
y(i) = (1/(n))* (Cumprob (index)-Cumprob (index - n));
i=1+1;
end
y =vy';
end
function y = Extended(vector,n)
Takes an m-dimensional row vector and outputs an
n-by-m matrix with n-many consecutive repeats of
the vector. Similarly, it takes an
m-dimensional column vector and outputs an

m-by-n matrix.

A0 o° oo o de oo

Else, it returns the original input.

M = vector;
if size(vector,l) == 1
M = zeros(n,length(vector));
for i = 1:n
M(i,:) = vector;
i=1+1;
end
end
if size(vector,2) ==
M = zeros (length(vector),n);
for i = 1:n
M(:,1) = vector;
i=1+1;
end
end
y = M;
end

function y = linear depth (feet, toes)
linear depth takes a matrix ‘feet’ and lengthens

it in blocks, takes a matrix ‘toes’ and lengthens

o0 oo oe

it in Extended repeats, and then adds the% lengthened ‘feet’ and
achieve

all sum combinations of their rows.

o° o°

feet and toes have the same number of columns
if size(feet, 2) == size(toes, 2)
a = size(feet, 1);
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&l

b = size(toes, 1);
Blocks = zeros(a*b, size(toes, 2));
Bricks = Blocks;

for 1 = 1l:a
Blocks ((i-1)*b + 1: i*b,:) = Extended(feet(i,:),b):
Bricks((i-1)*b + 1: i*b,:) = toes;
i=1+1;
end
end
y = Blocks + Bricks;
end

function y = univariate kernel density(value,data, window)

o
°

A o° o0 A o o A o° o° o°

® 83 5 o

function y = univariate kernel density(value,
data, window)

Estimates univariate density using kernel
density estimation.

Inputs are: value (m-vector), where density is
estimated;

data (n-vector), the data used to

estimate the density;

window (scalar), used for the width of
density estimation.

Output is an m-vector of probabilities.

= window;

length (data) ;

length (value) ;

We use matrix operations to speed up computation

of a double-sum.

Prob = zeros(n, m);

G
H

= Extended(value, n);
= Extended(data', m);

Prob = normpdf ((G - H)/h);

fhat = sum(Prob)/ (n*h);

y

%
°

= fhat';
end

Code Below:

o0 o°

Author: Camilla Lie
Date: 24.05.2019

Import data

datal = readtable('invl.txt');

Adapting data matrix

XL
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This is performed to get a matrix [hours x days] for all data. Matrix will be as long as the longest day of the year
(number of hours) but days with fewer hours will then have "NaN" for corresponding hour. This is performed to be able
to calculate AMI over a continuous dataset as time-lag is involved (e.g. a time lag of 2 hours will compare hour x to
hour x+2, but if there is no more hours for relevant day, this cannot be calculated. Thus, the model will go to the next
day instead to calculate AMI with corresponding time lag.

timee = datal.time; % Time

% Variables

jourreference = [1 1]; % Month/day
reference = datetime([timee (1) .Year jourreferencel]);
njour = fix(days(timee - reference) + 1);

[~, ~, Jjourindex] = unique (njour);
colonnesjour = accumarray (jourindex, datal.VsS, [], @Q@(c) {c(:)}); % Variable = GHI,
WS or AT

maxhauteur = max(cellfun (@numel, colonnesjour));
colonnesjour = cellfun(@(c) [c; nan(maxhauteur - numel(c), 1)], colonnesjour,
'UniformOutput', false);

colonnesjour = [colonnesjour{:}];

% Power

colonnesjourl = accumarray(jourindex, datal.PACinvl, [], @(c) {c(:)}); % Power
variable

maxhauteurl = max(cellfun (@numel, colonnesjourl));
colonnesjourl = cellfun(@(c) [c; nan(maxhauteurl - numel(c), 1)], colonnesjourl,
'UniformOutput', false);

colonnesjourl = [colonnesjourl{:}1];
var = colonnesjour; % Vector with variable (GHI, WS or AT)
power = colonnesjourl; % Vector with Power (AC)

AMI Time-lag Calculations

for k = 1:4 % Lags (hour)
wl=[]; % Vector with Variable
w2=1[1; % Vector with power (AC)
for i = 400:900 % Days
j=1; % Hours
while (j+k-1<=19)&& (~isnan(var (j+k-1,1))) % Avoid discontinuity in AMI
calculations
variable(j) = var(j,1i): % Vector with continuous varibale
values
pwr (j) = power (j+(k-1),1); % Vector with corresponding power
values
Jj =3+l
end
wl = [wl;variable']; % Vector with continuous varibale values
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w2 = [w2;pwr']; $ Vector with corresponding power values

clearvars ghi pwr

end
AMI val (k) = average mutual information([wl w2]); % AMI-calculation

clearvars wl w2;

end

Write Tables

AMI = array2table (AMI val);

writetable (AMI, 'AMI ws invl.txt')
writetable (AMI, 'AMI at invl.txt')
writetable (AMI, 'AMI ghi invl.txt')

Plotting

ws = readtable('AMI ws invl.txt');
at readtable ('AMI at invl.txt');
ghi = readtable ('AMI ghi invl.txt');

ws table2array (ws);
at = table2array(at);

ghi = table2array(ghi);

figure

plot (x,ghi, 'LineWidth', 2)

hold on

plot(x,at, 'Linewidth', 2)

plot (x,ws, 'LineWidth', 2)

ylabel ('Average Mutual Information')

xlabel ('Time lag (hours)"')

grid

set (gca, 'FontSize',20, 'XTick',0:4, '"FontName', 'Calibri')
legend('Global horizontal irradiance', 'Air temperature', 'Wind speed')
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A.10 DATA DivisioN — MATLAB ScRIPT

Author: Camilla Lie
Date: 24.05.2019

This is an example from Suntech PV modules (invl), but was also done with
Sharp and REC. Each of the PV modules had their sub-sets divided
separately, meaning the three sets (training, validation and test) are
not divided equally between the three types of modules. They are divided
randomly to obtain the lowest percentage difference for the coefficent of

variation within each of the variables.

Load data

[

datal = readtable('invl am89.txt'); % Using Air Mass theta <= 89 degrees

o
°

Remove variables that will not be used

datal = removevars(datal, {'DHIavg', 'GTIavg','doy',"'tz"});

Choose time-interval

FINV1

time findl= datevec(datal.time);

yearl = time findl(:,1:3);

yearl = datetime (yearl);

yearl = datetime (yearl, 'InputFormat', 'dd/MMM/yyyy', 'Format', '"MMM-yyyy');
startl = find(yearl=='01-Jan-2014',1,"'first');
stopl = find(yearl==' 31-Dec-2016"',1,"'last'");

Divide into datasets

data invl = datal(startl:stopl,:);

o
°

Removal of NaNs

data invl = rmmissing(data_invl);

Normalize data

invl norm = normalize(data invl(:,2:end));

Choose set for INV1 (SUNTECH)

o o of oo

$555555$$$5555S SHOULD NOT BE CHANGED AFTER DIVISION $$$$$$$$5$5555$$
p = 0.70;

SINV1

[ml,nl] = size(inv3 norm);
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% trainIndl = (idx1((l:round(p*ml))))"';

% val = idxl ((round(p*ml)+l:end));

$ valIndl = (val(l:round(length(val)/2)))"';

% testIndl = (val (round(length(val)/2)+1l:end))"';
x1 = data_inv3(trainIndl,:);

yl = data inv3(vallIndl, :);
z1l = data inv3(testIndl,:);

o° o o°

e e e e e e e e e e e

% TRAINING
% Mean
avgen = nanmean (x1.GHIavg);
avgto = nanmean (x1.VS);
avgtre = nanmean (xl.airtemp) ;
avgfem = nanmean (x1.AM2);
avgseks = nanmean (x1.PACinvl);
% Standard Deviation
stden = nanstd(xl.GHIavg);
stdto = nanstd(x1.VS);
stdtre = nanstd(xl.airtemp) ;
stdfem = nanstd(xl.AM2) ;
stdseks = nanstd(xl.PACinvl) ;

% Coefficient of Variation

cven = avgen./stden;

cvto = avgto./stdto;

cvtre = avgtre./stdtre;

cvfem = avgfem./stdfem;

cvseks = avgseks./stdseks;

% Descriptve statistics training set SUNTECH

train_invl avg = [avgen stden cven; avgto stdto cvto; avgtre stdtre...
cvtre; avgfem stdfem cvfem; avgseks stdseks cvseks]

% VALIDATION
% Mean
avgenval = nanmean (yl.GHIavg) ;
avgtoval = nanmean(yl.VS);
avgtreval = nanmean (yl.airtemp);
avgfemval = nanmean (yl.AM2);
avgseksval = nanmean (yl.PACinvl);

% Standard Deviation

stdenval = nanstd(yl.GHIavg);
stdtoval = nanstd(yl.VS);
stdtreval = nanstd(yl.airtemp);
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stdfemval = nanstd(yl.AM2);
stdseksval = nanstd(yl.PACinvl);
% Coefficient of Variation

cvenval = avgenval./stdenval;
cvtoval = avgtoval./stdtoval;
cvtreval = avgtreval./stdtreval;
cvfemval = avgfemval./stdfemval;
cvseksval = avgseksval./stdseksval;

% Descriptve statistics validation set SUNTECH

val invl avg = [avgenval stdenval cvenval; avgtoval stdtoval cvtoval;...

avgtreval stdtreval cvtreval; avgfemval stdfemval cvfemval;...
avgseksval stdseksval cvseksval]

% TESTING
% Mean
avgentest = nanmean (zl.GHIavg);
avgtotest = nanmean(z1l.VS);
avgtretest = nanmean(zl.airtemp);
avgfemtest = nanmean (z1l.AM2);
avgsekstest = nanmean(z1l.PACinvl);
% Standard Deviation
stdentest = nanstd(zl.GHIavgqg);
stdtotest = nanstd(z1l.VS);
stdtretest = nanstd(zl.airtemp);
stdfemtest = nanstd(z1l.AM2);
stdsekstest = nanstd(zl.PACinvl);
% Coefficient of Variation
cventest = avgentest./stdentest;
cvtotest = avgtotest./stdtotest;
cvtretest = avgtretest./stdtretest;
cvfemtest = avgfemtest./stdfemtest;
cvsekstest = avgsekstest./stdsekstest;

% Descriptve statistics test set SUNTECH

test invl avg = [avgentest stdentest cventest; avgtotest stdtotest...
cvtotest; avgtretest stdtretest cvtretest ; avgfemtest stdfemtest...

cvfemtest; avgsekstest stdsekstest cvsekstest]

train vall = [train invl avg,val invl avg test invl avg];
train valll = array2table(train vall);
train valll.Properties.VariableNames = {'AVG train' 'STD train' 'CV_train'

'STD val' 'CV_val' 'AVG test' 'STD test' 'CV_test'};

[

% Percentage difference
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&l

CVl diffl = 100.*[(train valll.CV train-train valll.CV val)./...
train valll.CV _val, (train valll.CV_train-train valll.CV test)./...
train valll.CV_test, (train_valll.CV_val—train_valll.CV_test)./...

train valll.CV_test ];

INDEX FOR INV1

idx1 = idx1"; x1.idx1 = trainindl; y1.idx1 = vallndl; z1.idx1 = testindl;

idxl train = xl.idx;
idxl val = yl.idx;
idxl test = zl.idx;

o0 o0 o

time = data invl.time;

Training indices
Validation indices

Test indices

invl norm.time = time;

invl.time = time;

invl norm t = movevars(invl norm, 'time', 'before', 'GHIavg');
invl t = movevars(data invl, 'time', 'before', 'GHIavg');

train invl norm = invl norm t (idxl train,:);
train invl norm.idx = idxl train;

train invl = invl t(idxl train,:);

train invl.idx = idxl train;

val invl norm = invl norm t (idxl val,:);
validation

val invl norm.idx = idxl val;

val invl = invl t(idxl val,:);

validation

val invl.idx = idxl val;

test invl norm = invl norm t (idxl test,:);
test invl norm.idx = idxl test;

test invl = invl t(idxl test,:);

test invl.idx = idxl test;

Write table SUNTECH

o o° o0 o° o°

oo oo

o° o° oo

oo

Extracting only indeces from
Including indices in table
Extracting only indices from
Including indices in table

Extracting only indices from

Including indices in table

Extracting only indices from

Including indices in table
Extracting only indices from
including indices in table
Extracting only indices from

Including indices in tabl

- University
U |A of Agder

training

training

testing

testing

writetable(invl_norm_t,'invl_norm.txt"); writetable(invl_t,'inv1.txt"); writetable(train_invl_norm,'train_invl_norm.txt');
writetable(train_inv1,'train_inv1.txt"); writetable(val_invl_norm,'val_invl_norm.txt"); writetable(val_inv1,'val_inv1.txt");
writetable(test_invl_norm,'test_invl_norm.txt'); writetable(test_inv1,'test_inv1.txt');
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A.11 INPUT SELECTION
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Figure 55: Hourly wind speed for relevant years
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Figure 56: Hourly air temperature for relevant years
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Figure 57: Hourly global horizontal irradiance for relevant years
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Figure 58: Air mass using scaling (a) and maximum zenith angle (6:) of 89° (b)
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A.12 VALIDATION CHECK

Table 23: Performance parameters Suntech modules using 6 and 1000 validation checks

ol

UiA

Performance 6 validation checks 1000 validation checks

parameters 4 10 20_2 4 10 20_2
MSE train 0.0645 | 0.0538 | 0.0510 | 0.0644 | 0.0515 | 0.0479
MSE validation 0.0590 | 0.0504 | 0.0490 | 0.0589 | 0.0485 | 0.0470
MSE test 0.0579 | 0.0505 | 0.0480 | 0.0578 | 0.0485 | 0.0464
MAE train 0.1598 0.1459 0.1402 0.1595 0.1427 0.1367
MAE validation 0.1541 | 0.1437 | 0.1403 | 0.1539 | 0.1410 | 0.1380
MAE test 0.1520 0.1428 0.1382 0.1516 0.1402 0.1362
MARE train 1.0875 | 0.9121 | 0.9621 | 1.0656 | -0.3081 | -0.3054
MARE validation 0.8084 | 0.7323 | 0.7563 | 0.8181 | -0.0624 | -0.0706
MARE test 0.6880 | 0.6094 | 0.6041 | 0.6838 | 0.1088 | 0.1323
MBE train -0.0005 | 0.0019 | 0.0009 | -0.0002 | 0.3081 | 0.3054
MBE validation -0.0017 | -0.0020 | -0.0017 | -0.0012 | 0.0654 | 0.0706
MBE test -0.0062 | -0.0056 | -0.0071 | -0.0062 | 0.1088 | 0.1323
RA2 train 0.9360 | 0.9466 | 0.9494 | 0.9361 | 0.9741 | 0.9760
RA2 validation 0.9397 | 0.9485 | 0.9499 | 0.9398 | 0.9749 | 0.9757
RA2 test 0.9411 | 0.9486 | 0.9512 | 0.9412 | 0.9751 | 0.9762
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A.13

Di1SCARDED TESTS —4 AND 120 NEURONS

Table 24: Performance parameters with 4 and 120 neurons, Suntech modules. Averaged 50 runs

ol

- University
U |A of Agder

suntech 4 neurons 120 neurons
Training Validation Test Training Validation Test
MSE 0.0644 0.0589 0.0578 0.0451 0.0504 0.0511
MARE 1.0656 0.8181 0.6838 1.0958 0.7935 0.6105
MAE 0.1595 0.1539 0.1516 0.1315 0.1406 0.1392
MBE -0.0002 -0.0012 | -0.0062 0.0027 0.0005 | -0.0060
R? 0.9361 0.9398 0.9412 0.9552 0.9485 0.9480
Epoch 418 110
Time 11 423

LIl
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A.14 ExAMPLE OF MODEL TRAINING 50 RUNS — SUNTECH MODULES

Suntech (20-2-1)

Runs MSE train|MSE valid{MSE test |MAE train|MAE valid| MAE test | MARE trai MARE valil MARE tes{ MBE train| MBE valid{MBE test |R"2 train |R"2 validaR"2 test
1| 0.0446| 0.0450| 0.0430| 0.1300] 0.1352] 0.1298| 0.3492| 0.0761| 0.1322| 0.0009| -0.0047| -0.0071] 0.9557| 0.9540[ 0.9563
2| 0.0445| 0.0454| 0.0443| 0.1299| 0.1332] 0.1313] 0.2157| 0.0528| 0.1199| 0.0022| -0.0018| -0.0031] 0.9558| 0.9536| 0.9549
3 0.0460 0.0462 0.0455 0.1335 0.1352 0.1343 0.6762 0.0891 0.1589| -0.0004| -0.0037| -0.0065 0.9544 0.9528 0.9538
4| 0.0482| 0.0456| 0.0444| 0.1345| 0.1349| 0.1312| 0.3968| 0.0619| 0.1341] 0.0001] -0.0032| -0.0093| 0.9522| 0.9534| 0.9548
5| 0.0466| 0.0449| 0.0436] 0.1332| 0.1332| 0.1313| 0.3559| 0.0742| 0.1485| 0.0017| -0.0042| -0.0064| 0.9538| 0.9541| 0.9557
6 0.0474 0.0458 0.0448 0.1345 0.1351 0.1329 0.4881 0.0587 0.1526| -0.0003| -0.0024| -0.0084 0.9530 0.9531 0.9544
7| 0.0484| 0.0473| 0.0461] 0.1365| 0.1384| 0.1351] 0.3603] 0.1028 0.1212] 0.0005| -0.0038] -0.0083| 0.9519| 0.9516| 0.9532
8 0.0443 0.0440 0.0449 0.1291 0.1325 0.1308 0.3820 0.0655 0.1312 0.0001] -0.0048| -0.0061 0.9560 0.9550 0.9544
9| 0.0442| 0.0445| 0.0440[ 0.1293| 0.1334| 0.1303] 0.3272] 0.0625| 0.1247| -0.0002] -0.0050| -0.0065| 0.9561| 0.9545| 0.9552

10| 0.0481| 0.0456| 0.0456| 0.1330{ 0.1335| 0.1311] 0.3173] 0.1263] 0.1479| 0.0008| -0.0033| -0.0073| 0.9523| 0.9534| 0.9536
11 0.0453 0.0459 0.0435 0.1294 0.1346 0.1295 0.3309 0.0418 0.1102 0.0012| -0.0044| -0.0054 0.9551 0.9531 0.9557
12| 0.0440| 0.0444| 0.0439| 0.1288| 0.1325| 0.1297| 0.2841] 0.0443| 0.1091| -0.0001| -0.0040| -0.0063| 0.9563| 0.9547| 0.9554
13| 0.0473| 0.0475| 0.0467| 0.1358| 0.1391| 0.1381| 0.3669| 0.0761] 0.0899| 0.0006| -0.0037| -0.0085| 0.9531| 0.9514| 0.9525
14 0.0467 0.0463 0.0456 0.1330 0.1363 0.1335 0.4170 0.0677 0.1514| -0.0008| -0.0030| -0.0068 0.9536 0.9527 0.9536
15| 0.0464| 0.0458| 0.0454| 0.1309| 0.1332| 0.1310[ 0.3435] 0.0763] 0.1385| 0.0001| -0.0036| -0.0081| 0.9540| 0.9532] 0.9538
16| 0.0460| 0.0458| 0.0477| 0.1334| 0.1362| 0.1361| 0.4165| 0.1011] 0.1307| 0.0005| -0.0017| -0.0061| 0.9544| 0.9532] 0.9515
17 0.0448 0.0454 0.0451 0.1290 0.1317 0.1315 0.5408 0.0746 0.1313| -0.0006/ -0.0050| -0.0074 0.9555 0.9536 0.9541
18| 0.0445| 0.0446| 0.0454| 0.1299| 0.1339| 0.1318] 0.3085| 0.1104| 0.1584| -0.0005| -0.0059| -0.0078| 0.9559| 0.9544| 0.9539
19| 0.0460| 0.0450| 0.0445| 0.1333| 0.1339] 0.1328| 0.4199| 0.0316] 0.1281| 0.0011| -0.0016| -0.0057| 0.9544| 0.9540| 0.9548
20 0.0469 0.0468 0.0464 0.1337 0.1363 0.1340 0.3174 0.0584 0.1173 0.0012| -0.0033| -0.0052 0.9535 0.9522 0.9528
21| 0.0440/ 0.0435| 0.0439| 0.1280] 0.1304] 0.1302] 0.3151] 0.0694| 0.1510{ -0.0002| -0.0044| -0.0051] 0.9563| 0.9555| 0.9554
22 0.0458 0.0474 0.0470 0.1332 0.1378 0.1357 0.2838 0.0756 0.1588| -0.0003| -0.0050| -0.0065 0.9546 0.9515 0.9522
23 0.0458 0.0458 0.0437 0.1314 0.1341 0.1310 0.4987 0.0381 0.1287 0.0008| -0.0021| -0.0074 0.9545 0.9532 0.9556
24| 0.0496/ 0.0471| 0.0468| 0.1384| 0.1379] 0.1373| 0.2671| 0.0712| 0.1166| -0.0017| -0.0057| -0.0087| 0.9508| 0.9519| 0.9525
25 0.0466 0.0455 0.0458 0.1334 0.1349 0.1339 0.4524 0.1030 0.1424 0.0006| -0.0023| -0.0070 0.9537 0.9535 0.9534
26| 0.0452| 0.0453| 0.0513| 0.1308] 0.1340| 0.1349| 0.2830] 0.0537| 0.1212| 0.0000] -0.0049| -0.0103| 0.9551| 0.9537| 0.9478
27| 0.0491] 0.0467| 0.0525| 0.1377| 0.1368] 0.1389| 0.3186| 0.0492| 0.1067| -0.0002| -0.0051| -0.0101] 0.9513| 0.9523| 0.9466
28 0.0462 0.0456 0.0457 0.1331 0.1364 0.1337 0.4100 0.0992 0.1879| -0.0001| -0.0033| -0.0094 0.9542 0.9534 0.9536
29| 0.0456| 0.0456| 0.0445| 0.1304| 0.1340| 0.1313| 0.4728| 0.0775] 0.1531| 0.0010| -0.0028| -0.0056| 0.9547| 0.9534| 0.9548
30/ 0.0457| 0.0445| 0.0445| 0.1317| 0.1338] 0.1310] 0.4410[ 0.0326] 0.1768| 0.0006| -0.0021| -0.0061| 0.9547| 0.9545| 0.9547
31 0.0446 0.0440 0.0442 0.1303 0.1326 0.1313 0.2476 0.0123 0.1409 0.0014| -0.0016| -0.0044 0.9557 0.9551 0.9551
32| 0.0443| 0.0461| 0.0450| 0.1292] 0.1351] 0.1314| 0.2739| 0.0850[ 0.1510| 0.0000| -0.0054| -0.0066| 0.9560| 0.9529| 0.9543
33| 0.0452| 0.0446| 0.0444| 0.1305| 0.1325| 0.1304] 0.3450] 0.0387| 0.1361| 0.0007| -0.0060| -0.0050| 0.9552| 0.9544| 0.9548
34 0.0440 0.0435 0.0452 0.1294 0.1320 0.1316 0.4108 0.0679 0.1616| -0.0001| -0.0047| -0.0071 0.9563 0.9556 0.9540
35| 0.0483| 0.0457| 0.0448| 0.1351] 0.1351] 0.1314] 0.3072| 0.0888| 0.1556| 0.0006| -0.0022| -0.0077| 0.9521| 0.9533| 0.9545
36| 0.0453| 0.0449| 0.0446| 0.1317| 0.1338] 0.1326| 0.2963| 0.0824| 0.1431| 0.0017| -0.0026| -0.0034| 0.9551| 0.9541| 0.9547
37 0.0475 0.0476 0.0473 0.1367 0.1392 0.1374 0.2443 0.1241 0.1008| -0.0001| -0.0047| -0.0073 0.9529 0.9514 0.9520
38| 0.0456/ 0.0441| 0.0434| 0.1303] 0.1323] 0.1296| 0.3894| 0.0860{ 0.1337| 0.0010| -0.0018| -0.0073| 0.9548| 0.9549| 0.9559
39| 0.0454| 0.0456| 0.0444| 0.1306| 0.1341] 0.1311] 0.4147| 0.0487| 0.1510| -0.0014| -0.0051| -0.0088| 0.9550| 0.9534| 0.9549
40[ 0.0443| 0.0453| 0.0472| 0.1295| 0.1345| 0.1340/ 0.3428| 0.0719| 0.1441] 0.0002| -0.0043| -0.0074| 0.9560{ 0.9538| 0.9521
41| 0.0466| 0.0458| 0.0451| 0.1334] 0.1349| 0.1323| 0.2951| 0.0761] 0.1396| 0.0009| -0.0012| -0.0073| 0.9538| 0.9532| 0.9542
42 0.0461 0.0458 0.0435 0.1329 0.1331 0.1312 0.3452 0.0389 0.1473| -0.0013| -0.0058| -0.0101 0.9543 0.9532 0.9558
43| 0.0455| 0.0460( 0.0452| 0.1312] 0.1363] 0.1339| 0.3051] 0.0899| 0.1545| 0.0000| -0.0049| -0.0085] 0.9549| 0.9530[ 0.9540
44| 0.0542| 0.0502| 0.0484| 0.1436] 0.1405| 0.1379| 0.0554| 0.0161| 0.1681] 0.0021| -0.0006| -0.0067| 0.9463| 0.9487| 0.9508
45 0.0447 0.0437 0.0439 0.1299 0.1314 0.1308 0.3930 0.0336 0.1178 0.0007| -0.0059| -0.0059 0.9556 0.9553 0.9553
46| 0.0450( 0.0451| 0.0455| 0.1312] 0.1339] 0.1335| 0.4720/ 0.1073] 0.1382] 0.0009| -0.0028| -0.0053| 0.9553| 0.9539| 0.9537
47| 0.0460| 0.0449| 0.0451| 0.1311] 0.1324] 0.1317| 0.2466| 0.0617| 0.1374| 0.0002| -0.0035| -0.0067| 0.9544| 0.9541| 0.9542
48 0.0460 0.0473 0.0460 0.1341 0.1383 0.1363 0.2325 0.1029 0.1391 0.0002| -0.0057| -0.0056 0.9544 0.9517 0.9532
49| 0.0460| 0.0456| 0.0453| 0.1330] 0.1350] 0.1340/ 0.3595| 0.0903] 0.1708 -0.0011] -0.0057| -0.0094| 0.9544| 0.9534| 0.9540
50/ 0.0463] 0.0450/ 0.0439| 0.1315] 0.1337] 0.1306] 0.3207| 0.0636] 0.1512| 0.0000| -0.0042| -0.0071] 0.9541] 0.9540[ 0.9553
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A.15 MODEL TRAINING RESULTS — EXAMPLE SUNTECH

Best Validation Performance is 0.046795 at epoch 393
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Figure 60: Performance of 20-2-1 model Suntech

Gradient = 0.00052343, at epoch 1000

gradient

Mu = 1e-07, at epoch 1000

Validation Checks = 607, at epoch 1000
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Figure 61: Training state 20-2-1 model Suntech
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Figure 62: Error histogram 20-2-1 model Suntech
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Figure 63: Regression plot 20-2-1 model Suntech
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A.16 PERFORMANCE PARAMETERS — SCALED AIR MASS

Table 25: Performance parameters Suntech PV modules using scaled air mass

Suntech MSE MARE MAE MBE R? Epoch | Time
Train set 0.0623 0.1697 0.1538 0.0007 0.9382
8 Validation set 0.0578 0.0584 0.1500 -0.0005 0.9410 443 19
Test set 0.0556 0.1614 0.1469 -0.0064 0.9435
Train set 0.0615 0.1382 0.1527 0.0012 0.9390
10 | Validation set 0.0574 0.0447 0.1492 0.0003 0.9414 520 19
Test set 0.0553 0.1623 0.1463 -0.0064 0.9438
Train set 0.0586 0.1315 0.1488 0.0017 0.9418
20 | Validation set 0.0567 0.0379 0.1484 0.0009 0.9420 542 35
Test set 0.0548 0.1645 0.1453 -0.0061 0.9443
Train set 0.0574 0.1410 0.1472 0.0016 0.9431
30 | Validation set 0.0570 0.0340 0.1481 0.0020 0.9417 551 60
Test set 0.0557 0.1627 0.1457 -0.0056 0.9433
Train set 0.0549 0.1563 0.1448 0.0023 0.9456
50 | Validation set 0.0576 0.0268 0.1489 0.0027 0.9412 522 104
Test set 0.0570 0.1564 0.1467 -0.0051 0.9420
Train set 0.0599 0.1154 0.1506 0.0013 0.9406
120 | Validation set 0.0603 0.0946 0.1521 0.0024 0.9384 48 478
Test set 0.0596 0.1630 0.1509 -0.0056 0.9394
Train set 0.0588 0.1851 0.1493 0.0002 0.9417
10_2 | Validation set 0.0552 0.0337 0.1465 -0.0014 0.9436 737 25
Test set 0.0533 0.1601 0.1437 -0.0077 0.9459
Train set 0.0568 0.1864 0.1470 0.0006 0.9436
20_2 | Validation set 0.0557 0.0394 0.1470 0.0001 0.9430 650 36
Test set 0.0548 0.1672 0.1446 -0.0075 0.9443
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Table 26: Performance parameters Sharp PV modules using scaled air mass

University
of Agder

Sharp MSE MARE MAE MBE R? Epoch | Time
Train set 0.0343 0.7801 | 0.1190 -0.0001 0.9656
8 Validation set 0.0337 0.0173 | 0.1191 0.0019 0.9664 555 17
Test set 0.0396 0.0659 | 0.1278 0.0010 0.9606
Train set 0.0339 0.7231 | 0.1172 0.0005 0.9661
10 | Validation set 0.0334 0.0172 | 0.1177 0.0023 0.9667 619 24
Test set 0.0393 0.0679 | 0.1263 0.0016 0.9609
Train set 0.0325 0.6440 | 0.1134 0.0010 0.9675
20 | Validation set 0.0332 0.0294 | 0.1162 0.0024 0.9669 684 25
Test set 0.0390 0.0638 | 0.1243 0.0026 0.9612
Train set 0.0318 0.5922 | 0.1113 0.0012 0.9681
30 | Validation set 0.0336 0.0245 | 0.1156 0.0022 0.9665 745 70
Test set 0.0393 0.0608 | 0.1234 0.0026 0.9609
Train set 0.0315 0.7098 | 0.1109 0.0011 0.9685
50 | Validation set 0.0345 0.0152 | 0.1172 0.0016 0.9656 546 112
Test set 0.0404 0.0564 | 0.1252 0.0019 0.9598
Train set 0.0317 1.0081 | 0.1134 0.0024 0.9682
120 | Validation set 0.0362 0.0194 | 0.1219 0.0029 0.9639 218 433
Test set 0.0426 0.0441 | 0.1309 0.0013 0.9576
Train set 0.0336 0.6576 | 0.1159 0.0001 0.9663
10_2 | Validation set 0.0333 0.0200 | 0.1167 0.0018 0.9668 808 26
Test set 0.0391 0.0712 | 0.1250 0.0011 0.9611
Train set 0.0327 0.7324 | 0.1140 0.0004 0.9672
20_2 | Validation set 0.0335 0.0228 | 0.1165 0.0014 0.9666 724 27
Test set 0.0394 0.0653 | 0.1246 0.0013 0.9608
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Table 27: Performance parameters REC PV modules using scaled air mass

i UiA

University
of Agder

REC MSE MARE MAE MBE R? Epoch | Time

Train set 0.0547 0.0976 | 0.1349 0.0010 0.9459

8 Validation set 0.0565 0.0714 | 0.1310 0.0013 0.9404 511 17
Test set 0.0588 0.7558 | 0.1380 -0.0021 0.9412
Train set 0.0540 0.0951 | 0.1337 0.0010 0.9466

10 | validation set 0.0561 0.0719 | 0.1301 0.0015 0.9409 481 18
Test set 0.0583 0.7622 | 0.1370 -0.0023 0.9417
Train set 0.0528 0.0804 | 0.1325 0.0018 0.9477

20 | Validation set 0.0563 0.0824 | 0.1306 0.0025 0.9406 414 51
Test set 0.0578 0.6797 | 0.1364 -0.0018 0.9422
Train set 0.0526 0.0793 | 0.1324 0.0024 0.9480

30 | Validation set 0.0567 0.0858 | 0.1314 0.0031 0.9402 342 76
Test set 0.0580 0.6227 | 0.1366 -0.0010 0.9420
Train set 0.0523 0.0773 | 0.1325 0.0031 0.9482

50 | Validation set 0.0571 0.0971 | 0.1329 0.0039 0.9397 237 80
Test set 0.0586 0.5461 | 0.1377 -0.0002 0.9415
Train set 0.0519 0.0719 | 0.1326 0.0033 0.9486

120 | Validation set 0.0583 0.0983 | 0.1355 0.0041 0.9385 115 474
Test set 0.0595 0.4389 | 0.1390 0.0003 0.9405
Train set 0.0532 0.0832 | 0.1327 0.0009 0.9473

1(2)_ Validation set 0.0558 0.0704 | 0.1294 0.0012 0.9412 771 24
Test set 0.0576 0.7121 | 0.1359 -0.0024 0.9424
Train set 0.0522 0.0788 | 0.1317 0.0014 0.9484

2(2)_ Validation set 0.0559 0.0802 | 0.1300 0.0019 0.9410 519 37
Test set 0.0577 0.5891 | 0.1356 -0.0022 0.9423
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A.17 PERFORMANCE PARAMETERS — AIR MASS (62 < 89°)

Table 28: Performance parameters Suntech PV module using air mass with 6z< 89°

Neurons | Set MSE MARE MAE MBE RA2 Epoch | Time

Train set 0.0543 0.2892 0.1469 0.0018 0.9462 313 19
8 Validation set 0.0506 0.0678 0.1443 | -0.0027 0.9483
Test set 0.0503 0.1167 0.1434 | -0.0054 0.9489

Train set 0.0515 0.3081 0.1427 0.0025 0.9489 333 25
10 Validation set 0.0485 0.0624 0.1410 | -0.0026 0.9504
Test set 0.0485 0.1088 0.1402 | -0.0047 0.9507

Train set 0.0479 0.3054 0.1367 0.0028 0.9525 381 34
20 Validation set 0.0470 0.0706 0.1380 | -0.0021 0.9520
Test set 0.0464 0.1323 0.1362 | -0.0043 0.9529

Train set 0.0458 0.3568 0.1335 0.0026 0.9545 415 27
30 Validation set 0.0470 0.0700 0.1377 | -0.0021 0.9520
Test set 0.0472 0.1388 0.1360 | -0.0048 0.9521

Train set 0.0444 0.4102 0.1311 0.0026 0.9559 522 104
50 Validation set 0.0474 0.0485 0.1376 | -0.0009 0.9515
Test set 0.0481 0.1405 0.1366 | -0.0050 0.9511

Train set 0.0494 0.3259 0.1375 0.0005 0.9510 595 22
10 2 Validation set 0.0469 0.0738 0.1370 | -0.0043 0.9521
Test set 0.0468 0.1225 0.1357 | -0.0071 0.9524

Train set 0.0461 0.3531 0.1323 0.0003 0.9543 584 23
20_2 Validation set 0.0456 0.0695 0.1347 | -0.0038 0.9534
Test set 0.0454 0.1392 0.1327 | -0.0070 0.9539
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Table 29: Performance parameters Sharp PV module using air mass with 6z< 89°

University
of Agder

Neurons | Set MSE MARE MAE MBE R? Epoch | Time

Train set 0.0299 0.3593 0.1122 0.0006 | 0.9700 528 20
8 Validation set 0.0289 0.0506 0.1114 0.0031 | 0.9712
Test set 0.0351 0.0567 0.1223 -0.0006 | 0.9650

Train set 0.0289 0.2337 0.1092 0.0006 | 0.9711 456 20
10 Validation set 0.0278 | 0.0564 0.1083 0.0029 | 0.9723
Test set 0.0343 0.0529 0.1195 -0.0012 | 0.9659

Train set 0.0272 0.2362 0.1030 0.0008 | 0.9728 482 20
20 Validation set 0.0268 | 0.0674 0.1038 0.0021 | 0.9733
Test set 0.0328 | 0.0561 0.1140 -0.0003 | 0.9673

Train set 0.0265 0.3269 0.1015 0.0009 | 0.9735 387 30
30 Validation set 0.0270 | 0.0683 0.1035 0.0017 | 0.9731
Test set 0.0328 | 0.0585 0.1138 0.0001 | 0.9673

Train set 0.0252 0.3477 0.0987 0.0008 | 0.9747 365 58
50 Validation set 0.0273 0.0732 0.1034 0.0009 | 0.9728
Test set 0.0330 | 0.0584 0.1133 0.0004 | 0.9671

Train set 0.0280 | 0.3430 0.1056 0.0000 | 0.9719 550 26
10_2 Validation set 0.0273 0.0559 0.1055 0.0016 | 0.9727
Test set 0.0333 0.0567 0.1154 -0.0012 | 0.9668

Train set 0.0265 0.3394 0.1014 0.0002 | 0.9735 494 41
20 2 Validation set 0.0268 | 0.0573 0.1029 0.0007 | 0.9733
Test set 0.0325 0.0576 0.1124 -0.0008 | 0.9676
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Table 30: Performance parameters REC PV module using air mass with 6z< 89°

University
of Agder

Neurons | Set MSE MARE MAE MBE R? Epoch | Time

Train set 0.0474 0.1033 0.1259 0.0011 0.9531 283 14
8 Validation set 0.0508 0.0514 0.1259 0.0004 0.9465
Test set 0.0514 0.8000 0.1291 -0.0007 0.9486

Train set 0.0464 0.0913 0.1245 0.0018 0.9541 325 16
10 Validation set 0.0502 0.0459 0.1249 0.0014 | 0.9471
Test set 0.0511 0.8166 0.1283 -0.0008 0.9489

Train set 0.0439 0.0646 0.1206 0.0018 0.9565 380 25
20 Validation set 0.0491 0.0458 0.1217 0.0017 0.9482
Test set 0.0497 0.7454 0.1253 -0.0017 0.9503

Train set 0.0428 0.0599 0.1187 0.0017 0.9576 335 40
30 Validation set 0.0488 0.0460 0.1210 0.0014 0.9485
Test set 0.0496 0.7055 0.1244 -0.0018 0.9505

Train set 0.0423 0.0632 0.1176 0.0025 0.9582 119 81
50 Validation set 0.0489 0.0548 0.1209 0.0019 0.9484
Test set 0.0503 0.6384 0.1252 -0.0014 0.9497

Train set 0.0448 0.0823 0.1206 0.0004 0.9557 651 21
10_2 Validation set 0.0488 0.0339 0.1208 -0.0001 0.9485
Test set 0.0500 0.8118 0.1245 -0.0026 0.9500

Train set 0.0424 0.0724 0.1173 0.0007 0.9580 420 32
20 2 Validation set 0.0480 0.0246 0.1191 0.0002 0.9494
Test set 0.0492 0.7549 0.1223 -0.0033 0.9508
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A.18 MODEL TRAINING RESULTS — EXAMPLE SHARP

Best Validation Performance is 0.027175 at epoch 510
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Figure 64: Performance 20-2-1 model Sharp

Training: R=0.98599

Validation: R=0.98637

Output ~= 0.98*Target + 0.00076
Output ~= 0.98*Target + -0.0015

Test: R=0.98379 All: R=0.98572

O Data 25 O Data

Fit

Output ~= 0.97*Target + 0.0023
Output ~= 0.97*Target + 0.00064

Target Target

Figure 65: Regression plot 20-2-1 model Sharp
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Figure 67: Error histogram 20-2-1 model Sharp
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A.19 ExAMPLE OF MODEL TRAINING 50 RUNS — SHARP M ODULES

Sharp (20-2-1)

Runs MSE train|MSE valid{MSE test |MAE train|MAE valid| MAE test | MARE trai MARE valil MARE tes{ MBE train| MBE valid{MBE test |R"2 train |R"2 validaR"2 test
1| 0.0265| 0.0262| 0.0322| 0.1019| 0.1018] 0.1133| 0.3087| 0.0458| 0.0516| -0.0005| 0.0003| -0.0022| 0.9735| 0.9739| 0.9680
2| 0.0269| 0.0261| 0.0329| 0.1018] 0.1024| 0.1138| 0.4083| 0.0658| 0.0573| 0.0018| 0.0025| -0.0011] 0.9730| 0.9740[ 0.9673
3 0.0273 0.0272 0.0330 0.1001 0.1021 0.1112 0.5038 0.0721 0.0696 0.0002 0.0004| -0.0017 0.9726 0.9729 0.9671
4| 0.0264| 0.0257| 0.0316] 0.0998| 0.1002| 0.1097| 0.5123] 0.0291] 0.0577| 0.0003| 0.0010] -0.0004| 0.9736| 0.9744| 0.9685
5/ 0.0258| 0.0261| 0.0312| 0.1013] 0.1027| 0.1109| 0.4583| 0.0394| 0.0575/ 0.0020| 0.0027| 0.0011] 0.9742| 0.9740| 0.9689
6 0.0259 0.0265 0.0315 0.1025 0.1036 0.1122 0.0924 0.0138 0.0482| -0.0013| -0.0023| -0.0019 0.9740 0.9736 0.9686
7| 0.0254| 0.0260( 0.0316] 0.0971| 0.0996/ 0.1081| 0.1229| 0.0689| 0.0563| 0.0015] 0.0007| -0.0002| 0.9745| 0.9741| 0.9686
8 0.0268 0.0263 0.0322 0.1007 0.1021 0.1116 0.1158 0.0597 0.0596 0.0004 0.0004| -0.0012 0.9732 0.9738 0.9680
9| 0.0287| 0.0286| 0.0347| 0.1088| 0.1092| 0.1204| 0.2256| 0.0441] 0.0624| -0.0005| -0.0007| 0.0005| 0.9712| 0.9715] 0.9655

10| 0.0255| 0.0276| 0.0319] 0.1019] 0.1055| 0.1126] 0.0605| 0.0600| 0.0583| 0.0002| 0.0003| -0.0020| 0.9745| 0.9725| 0.9682
11 0.0255 0.0259 0.0315 0.0972 0.0998 0.1080 0.6667 0.0607 0.0576 0.0001| -0.0002| -0.0021 0.9745 0.9742 0.9687
12| 0.0260] 0.0273| 0.0337| 0.1013| 0.1042| 0.1141] 0.0550| 0.0463| 0.0551| 0.0002| 0.0003| 0.0008| 0.9740| 0.9728| 0.9664
13| 0.0286| 0.0279| 0.0344| 0.1067| 0.1067| 0.1185] 0.4770| 0.0712] 0.0647| 0.0007| 0.0004| 0.0004| 0.9714| 0.9722] 0.9657
14 0.0253 0.0264 0.0317 0.1012 0.1033 0.1131 0.0666 0.0010 0.0429| -0.0016| -0.0022| -0.0016 0.9746 0.9737 0.9684
15| 0.0268| 0.0275| 0.0327| 0.1047| 0.1057| 0.1152| 0.3314] 0.0633] 0.0647| 0.0001| 0.0011| -0.0003] 0.9731] 0.9725| 0.9674
16| 0.0267| 0.0264| 0.0325 0.1033| 0.1037| 0.1146] 0.5625| 0.0419| 0.0438| -0.0004| 0.0002| -0.0020| 0.9732| 0.9737| 0.9677
17 0.0300 0.0299 0.0353 0.1122 0.1130 0.1233 0.5858 0.0606 0.0623| -0.0001 0.0011| -0.0006 0.9700 0.9702 0.9649
18| 0.0261| 0.0263| 0.0318] 0.1003| 0.1017| 0.1102| 0.6497| 0.0556| 0.0600/ -0.0003| 0.0007| -0.0013| 0.9738 0.9738] 0.9683
19| 0.0253| 0.0262| 0.0319| 0.0960{ 0.0992| 0.1077| 0.2629| 0.0703] 0.0616| 0.0001| 0.0002| -0.0012| 0.9747| 0.9739] 0.9682
20 0.0267 0.0262 0.0320 0.1007 0.1016 0.1107 0.4548 0.0374 0.0522 0.0012 0.0005 0.0005 0.9733 0.9739 0.9681
21| 0.0264| 0.0263| 0.0327| 0.0985| 0.1008] 0.1104| 0.0381] 0.0707| 0.0636] 0.0000] 0.0013| -0.0020| 0.9736| 0.9738| 0.9674
22 0.0248 0.0259 0.0312 0.0955 0.0990 0.1077 0.5358 0.0539 0.0518| -0.0002 0.0005| -0.0014 0.9752 0.9741 0.9690
23 0.0263 0.0258 0.0313 0.0986 0.0997 0.1088 0.1745 0.0531 0.0544| -0.0004 0.0009| -0.0025 0.9737 0.9743 0.9688
24| 0.0279| 0.0279| 0.0333| 0.1056| 0.1063| 0.1161] 0.1447| 0.0781| 0.0617| 0.0010| 0.0004| 0.0009| 0.9721] 0.9722| 0.9669
25 0.0263 0.0260 0.0313 0.1023 0.1027 0.1126 0.5108 0.0469 0.0663 0.0005 0.0018 0.0003 0.9737 0.9741 0.9688
26| 0.0255| 0.0271| 0.0326| 0.0972] 0.1004] 0.1094| 0.5855| 0.0615] 0.0720| -0.0015| -0.0003| -0.0029| 0.9745| 0.9730[ 0.9675
27| 0.0255| 0.0260/ 0.0320/ 0.0989| 0.0997| 0.1104| 0.5393| 0.0412| 0.0562| 0.0004| 0.0002| 0.0003| 0.9744| 0.9741] 0.9681
28 0.0262 0.0260 0.0318 0.0987 0.1002 0.1095 0.1452 0.0811 0.0681| -0.0007 0.0007| -0.0010 0.9738 0.9741 0.9684
29| 0.0273| 0.0272| 0.0324| 0.1047| 0.1055| 0.1149| 0.9903| 0.0654| 0.0588| 0.0011| 0.0022| 0.0021] 0.9727| 0.9729| 0.9677
30/ 0.0269| 0.0266| 0.0406| 0.1049| 0.1047| 0.1175] 0.1547| 0.0718] 0.0521| 0.0010| 0.0027| -0.0015] 0.9730| 0.9735| 0.9596
31 0.0274 0.0266 0.0326 0.1056 0.1050 0.1155 0.4318 0.0723 0.0500 0.0006 0.0025 0.0003 0.9725 0.9735 0.9675
32| 0.0260/ 0.0266/ 0.0311| 0.1004| 0.1023] 0.1103| 0.1370] 0.0303| 0.0496| -0.0002| -0.0006| -0.0008| 0.9740| 0.9735| 0.9691
33| 0.0260/ 0.0266/ 0.0321| 0.1027| 0.1038] 0.1132] 0.2805| 0.0475] 0.0366| -0.0001| -0.0001| -0.0012| 0.9740| 0.9735| 0.9681
34 0.0266 0.0264 0.0324 0.1033 0.1037 0.1145 0.3722 0.0137 0.0587 0.0003 0.0016| -0.0021 0.9734 0.9737 0.9677
35| 0.0254| 0.0281| 0.0312| 0.0979| 0.1017| 0.1074| 0.1739| 0.0618] 0.0637| 0.0001| 0.0006| -0.0004| 0.9745| 0.9720[ 0.9689
36| 0.0262| 0.0262| 0.0326] 0.1038] 0.1041] 0.1153| 0.6889| 0.0705| 0.0518| 0.0000| 0.0009| -0.0011| 0.9738| 0.9738| 0.9676
37 0.0262 0.0265 0.0319 0.1002 0.1023 0.1109 0.1613 0.0612 0.0537 0.0014 0.0011 0.0005 0.9738 0.9736 0.9683
38| 0.0274| 0.0273| 0.0336| 0.1078] 0.1081] 0.1204| 0.0511] 0.1008| 0.0504| -0.0009| -0.0005| -0.0014| 0.9725| 0.9728| 0.9665
39| 0.0281| 0.0274| 0.0331] 0.1085| 0.1082] 0.1192| 0.1142| 0.0744| 0.0567| -0.0001| 0.0005| -0.0016| 0.9719| 0.9727| 0.9670
40[ 0.0267| 0.0260| 0.0320] 0.0989| 0.0999| 0.1082| 0.5253| 0.1059| 0.0561] 0.0000] 0.0013| -0.0019| 0.9733| 0.9741] 0.9681
41| 0.0266| 0.0318| 0.0319| 0.0985| 0.1016] 0.1091| 0.2199| 0.0716| 0.0576/ 0.0011] 0.0005] -0.0002| 0.9733| 0.9683| 0.9682
42 0.0263 0.0261 0.0317 0.1020 0.1027 0.1124 0.5993 0.0714 0.0638 0.0003 0.0017 0.0006 0.9737 0.9740 0.9685
43| 0.0263| 0.0263| 0.0323| 0.0995| 0.1009| 0.1103| 0.4096| 0.0465| 0.0632| 0.0005| 0.0018] 0.0008| 0.9736] 0.9738] 0.9679
44| 0.0275] 0.0281| 0.0330/ 0.1010{ 0.1035| 0.1114| 0.2869| 0.0507| 0.0469| 0.0002] 0.0015] 0.0001| 0.9725 0.9720] 0.9671
45 0.0267 0.0261 0.0325 0.1024 0.1026 0.1135 0.2404 0.0491 0.0622| -0.0012 0.0000| -0.0033 0.9732 0.9740 0.9676
46| 0.0259| 0.0275| 0.0327| 0.0986| 0.1021] 0.1110/ 0.7332] 0.0577| 0.0681] 0.0005| -0.0001] -0.0017| 0.9740| 0.9726] 0.9674
47| 0.0250| 0.0266| 0.0317| 0.0960| 0.1004| 0.1071] 0.3893| 0.0615/ 0.0624| 0.0002] 0.0001] -0.0009| 0.9749| 0.9735] 0.9685
48 0.0258 0.0263 0.0322 0.0987 0.1004 0.1108 0.1549 0.0746 0.0604 0.0007 0.0003 0.0001 0.9741 0.9738 0.9680
49| 0.0253| 0.0255| 0.0317| 0.0977| 0.0993| 0.1091| 0.0653| 0.0333] 0.0475/ 0.0004| 0.0006| -0.0006] 0.9746| 0.9746| 0.9685
50/ 0.0280| 0.0275| 0.0335| 0.1022| 0.1031] 0.1136] 0.1972| 0.0789| 0.0702| 0.0018| 0.0012] 0.0012] 0.9719] 0.9726] 0.9667
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A.20 MODEL TRAINING RESULTS — ExXAMPLE REC

Best Validation Performance is 0.047499 at epoch 357
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Figure 68: Performance 20-2-1 model REC
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Figure 69: Regression plot 20-2-1 model REC
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A.21 ExAmPLE OF MODEL TRAINING 50 RUNS — REC MODULES

REC (20-2-1) Modules
Runs MSE train|MSE valid{MSE test |MAE train|MAE valid| MAE test | MARE trai MARE valil MARE tes{ MBE train| MBE valid{MBE test |R"2 train |R"2 validaR"2 test

1| 0.0421) 0.0477| 0.0483] 0.1177| 0.1201] 0.1223| 0.0694| 0.0215 0.8048| 0.0007| 0.0002| -0.0031] 0.9583| 0.9497| 0.9517

2| 0.0408| 0.0474| 0.0492| 0.1148| 0.1175| 0.1219] 0.0478| 0.0271| 0.8069| 0.0003| -0.0009| -0.0046] 0.9596| 0.9500{ 0.9508

3 0.0413 0.0480 0.0550 0.1151 0.1182 0.1229 0.0883 0.0074 0.7333| -0.0005| -0.0004| -0.0071 0.9591 0.9494 0.9451

4| 0.0438] 0.0487| 0.0503| 0.1209| 0.1214| 0.1260/ 0.0667| 0.0527| 0.8213] 0.0013]| 0.0020] -0.0029| 0.9566| 0.9487| 0.9497

5| 0.0424| 0.0471| 0.0482| 0.1170/ 0.1187| 0.1220/ 0.0583| 0.0186 0.6778 0.0009| 0.0000] -0.0024| 0.9581| 0.9503| 0.9519

6 0.0430 0.0487 0.0483 0.1200 0.1225 0.1249 0.0520 0.0309 0.6178 0.0017| -0.0008| -0.0019 0.9575 0.9487 0.9517

7| 0.0423| 0.0474| 0.0477| 0.1160/ 0.1161] 0.1191] 0.0751] 0.0139] 0.7720| -0.0004| -0.0024| -0.0049| 0.9581| 0.9501| 0.9523

8 0.0414 0.0472 0.0493 0.1154 0.1191 0.1216 0.0864 0.0439 0.8289| -0.0006| -0.0017| -0.0042 0.9591 0.9502 0.9507

9| 0.0413| 0.0473| 0.0498| 0.1168| 0.1198| 0.1242| 0.0982| 0.0234| 0.7385| -0.0002] 0.0004| -0.0034| 0.9592| 0.9501| 0.9502
10| 0.0424| 0.0484| 0.0498| 0.1166| 0.1194| 0.1222| 0.0472| 0.0120] 0.8194| -0.0002| 0.0004| -0.0059| 0.9581| 0.9489| 0.9503
11 0.0413 0.0475 0.0485 0.1157 0.1167 0.1193 0.0730 0.0082 0.7815| -0.0001 0.0000| -0.0044 0.9592 0.9499 0.9516
12| 0.0427| 0.0482| 0.0492| 0.1165 0.1187| 0.1219] 0.0352| 0.0273] 0.7852| 0.0011| 0.0012| -0.0039| 0.9577| 0.9491] 0.9508
13| 0.0414| 0.0475| 0.0468| 0.1142| 0.1172| 0.1183| 0.0736] 0.0175] 0.8031] 0.0017| 0.0020| -0.0021| 0.9590| 0.9499| 0.9533
14 0.0411 0.0473 0.0478 0.1144 0.1168 0.1199 0.0630 0.0049 0.6778| -0.0006| -0.0002| -0.0036 0.9593 0.9501 0.9523
15| 0.0427| 0.0481| 0.0492| 0.1165 0.1197| 0.1214] 0.1006] 0.0281] 0.7500/ 0.0029| 0.0029| -0.0012| 0.9578| 0.9493| 0.9508
16| 0.0445| 0.0496| 0.0497| 0.1211] 0.1219| 0.1262| 0.0656] 0.0611] 0.7336] -0.0003| -0.0010| -0.0055| 0.9560| 0.9477| 0.9504
17 0.0416 0.0482 0.0487 0.1165 0.1195 0.1215 0.0899 0.0223 0.5713 0.0002 0.0004| -0.0046 0.9589 0.9491 0.9513
18| 0.0415] 0.0483| 0.0487| 0.1183| 0.1216] 0.1245] 0.0659| 0.0285| 0.6854| 0.0041| 0.0035| 0.0003] 0.9590| 0.9491] 0.9514
19| 0.0425| 0.0480| 0.0485 0.1170{ 0.1190| 0.1207| 0.0743] 0.0353] 0.7942| -0.0002| -0.0005| -0.0046| 0.9579| 0.9493| 0.9515
20 0.0377 0.0451 0.0518 0.1157 0.1190 0.1235 0.0960 0.0073 0.7875 0.0019 0.0003| -0.0017 0.9627 0.9525 0.9483
21| 0.0432| 0.0479| 0.0493| 0.1176| 0.1183] 0.1223| 0.0918] 0.0071| 0.7776] 0.0061| 0.0058| 0.0017| 0.9572| 0.9495| 0.9507
22 0.0412 0.0478 0.0490 0.1150 0.1196 0.1219 0.0892 0.0167 0.7525| -0.0006| -0.0001| -0.0047 0.9593 0.9496 0.9511
23 0.0421 0.0482 0.0478 0.1161 0.1182 0.1205 0.0834 0.0095 0.7868 0.0005 0.0009| -0.0033 0.9583 0.9492 0.9523
24| 0.0426/ 0.0491| 0.0482| 0.1169| 0.1193] 0.1210] 0.0645] 0.0051| 0.7230| 0.0005| -0.0008| -0.0029| 0.9578| 0.9483| 0.9519
25 0.0432 0.0482 0.0499 0.1189 0.1203 0.1237 0.0969 0.0182 0.6322 0.0004| -0.0024| -0.0028 0.9572 0.9492 0.9501
26| 0.0420/ 0.0471| 0.0476| 0.1154| 0.1158] 0.1193| 0.0876| 0.0095 0.6946| 0.0010| -0.0002| -0.0030| 0.9585| 0.9503| 0.9525
27| 0.0424| 0.0483| 0.0497| 0.1159| 0.1172] 0.1213| 0.0946| 0.0081| 0.7696| 0.0001| 0.0004| -0.0039| 0.9580| 0.9491| 0.9504
28 0.0429 0.0492 0.0508 0.1193 0.1219 0.1252 0.0819 0.0486 0.3267 0.0002| -0.0020( -0.0034 0.9575 0.9481 0.9493
29| 0.0410/ 0.0470/ 0.0498| 0.1147| 0.1167| 0.1203| 0.0617| 0.0240[ 0.8536| -0.0004| -0.0014| -0.0067| 0.9594| 0.9504| 0.9503
30/ 0.0440/ 0.0480| 0.0502| 0.1201] 0.1201] 0.1248| 0.0753| 0.0463| 0.7466| 0.0004| -0.0010| -0.0015] 0.9564| 0.9494| 0.9498
31 0.0426 0.0470 0.0500 0.1161 0.1180 0.1229 0.0679 0.0269 0.7078 0.0024 0.0007| -0.0013 0.9579 0.9504 0.9500
32| 0.0421| 0.0472| 0.0472| 0.1156| 0.1161] 0.1196] 0.0845] 0.0121| 0.7869| 0.0014| 0.0016| -0.0019| 0.9583| 0.9502| 0.9528
33| 0.0427| 0.0484| 0.0483| 0.1163| 0.1179] 0.1213| 0.0827| 0.0062| 0.8270| 0.0004| -0.0011| -0.0040| 0.9577| 0.9490( 0.9512
34 0.0430 0.0478 0.0477 0.1174 0.1187 0.1208 0.0395 0.0247 0.7838 0.0003 0.0001| -0.0046 0.9574 0.9496 0.9524
35| 0.0432| 0.0487| 0.0491| 0.1213] 0.1225| 0.1256| 0.0841| 0.0186| 0.8092| 0.0040| 0.0034| 0.0000| 0.9572| 0.9487| 0.9509
36| 0.0436| 0.0483| 0.0490| 0.1197| 0.1204| 0.1237| 0.0489| 0.0439| 0.7216] 0.0014| 0.0010| -0.0018| 0.9568| 0.9491| 0.9510
37 0.0423 0.0482 0.0492 0.1168 0.1194 0.1225 0.0611 0.0267 0.7423| -0.0003| -0.0010{ -0.0034 0.9581 0.9492 0.9509
38| 0.0436| 0.0487| 0.0510/ 0.1193] 0.1206] 0.1256| 0.0620] 0.0507| 0.7238| 0.0036] 0.0028| -0.0006| 0.9568| 0.9487| 0.9490
39| 0.0426/ 0.0481| 0.0478 0.1152] 0.1171] 0.1187| 0.0928| 0.0068| 0.8464| 0.0001| 0.0005| -0.0028| 0.9579| 0.9493| 0.9523
40{ 0.0412| 0.0476| 0.0486| 0.1137| 0.1165| 0.1192| 0.0623| 0.0165| 0.7840| 0.0002| -0.0003| -0.0035] 0.9593| 0.9498| 0.9514
41| 0.0433| 0.0486| 0.0491| 0.1186] 0.1205| 0.1234| 0.0448| 0.0373| 0.8600] 0.0020| 0.0011] -0.0033| 0.9571| 0.9488| 0.9510
42 0.0437 0.0475 0.0478 0.1182 0.1178 0.1207 0.0922 0.0206 0.8116| -0.0062| -0.0075| -0.0100 0.9567 0.9499 0.9522
43| 0.0416] 0.0477| 0.0516] 0.1146] 0.1170] 0.1212| 0.0924| 0.0031] 0.7941] -0.0002] 0.0010] -0.0045] 0.9588| 0.9497| 0.9484
44| 0.0431| 0.0477| 0.0514| 0.1194] 0.1199] 0.1252| 0.0405| 0.0162| 0.8295| 0.0029| 0.0025| -0.0011| 0.9573| 0.9497| 0.9486
45 0.0426 0.0485 0.0483 0.1186 0.1191 0.1224 0.0634 0.0236 0.8224| -0.0015| -0.0008| -0.0069 0.9579 0.9489 0.9518
46| 0.0435] 0.0484| 0.0475| 0.1184] 0.1201] 0.1207| 0.0906| 0.0206| 0.7508| -0.0002| -0.0004| -0.0036] 0.9570[ 0.9489| 0.9525
47| 0.0426] 0.0490| 0.0483| 0.1182] 0.1201] 0.1228| 0.0761| 0.0414| 0.6969| 0.0015| 0.0005| -0.0027| 0.9578| 0.9484| 0.9518
48 0.0443 0.0489 0.0493 0.1214 0.1212 0.1262 0.0638 0.0550 0.7366| -0.0003| -0.0012| -0.0034 0.9562 0.9485 0.9508
49| 0.0439| 0.0478| 0.0507| 0.1188] 0.1180] 0.1230/ 0.0665| 0.0398| 0.8116| 0.0001] -0.0010] -0.0020] 0.9566| 0.9496| 0.9494
50/ 0.0440[ 0.0484| 0.0483 0.1215| 0.1212] 0.1253] 0.0527| 0.0662| 0.7541| 0.0042| 0.0031] -0.0007| 0.9565| 0.9490| 0.9513
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A.22 ExAMPLE OF PROGRAMMING CoDE ANN MobpeL— MATLAB

% Author: Camilla Lie
% Date: 24.05.2019

0880885558855 558555585558585555885595885558855988895888555888858
$$55555555558555555555555555S ANN-MODEL $$55555555555555855558855$
F8 000855888855 88855558585958855588855588555885558885558855988855588

Tables

T error = [];

T pred all = [];

T pred_test = [];
T pred train = [];
T pred val = [];

T train = [];

Load all data for TRAINING of model

)

% Training dataset

invlt = readtable('train invlam.txt');
inv3t = readtable('train inv3am.txt');
inv4t = readtable('train invé4am.txt');

% Validation dataset
invlv = readtable('val invlam.txt');
inv3v = readtable('val inv3am.txt');

invdv = readtable('val invédam.txt');

% Test dataset

invltest = readtable('test invlam.txt');
inv3test = readtable('test inv3am.txt');
invdtest = readtable('test invdam.txt');
% Standardized training dataset

invlt n = readtable('train invl normam.txt');

inv3t n readtable('train inv3 normam.txt');

inv4t n = readtable('train inv4 normam.txt');
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)

% Standardized validation dataset

invlv_n = readtable('val invl normam.txt');
inv3v_n = readtable('val inv3 normam.txt');
inv4v_n = readtable('val inv4 normam.txt');

% Standardized test dataset

invltest n = readtable('test invl normam.txt');
inv3test n = readtable('test inv3 normam.txt');
invdtest n = readtable('test inv4 normam.txt');

Load data for TESTING of model

% All data

invl = readtable('invlam.txt');
inv3 = readtable('inv3am.txt');
inv4 = readtable('invdam.txt');

% Standardized all data

invln = readtable('invl normam.txt');
inv3n = readtable('inv3 normam.txt');
inv4dn = readtable('inv4 normam.txt');

)

3 Input selection for model TRAINING
input_testln = [invln.GHIavg,invln.VS,invln.airtemp,invln.AM2]"'; 5 AM = scaled, AM2

= theta<=89 degrees

input test3n = [inv3n.GHIavg,inv3n.VS,inv3n.airtemp,inv3n.AM2]"'; % AM = scaled, AM2
= theta<=89 degrees
input test4n = [inv4n.GHIavg,inv4n.VS,invé4n.airtemp,inv4n.AM2]"'; % AM = scaled, AM2

= theta<=89 degrees

% Output for model TRAINING

target testln = [invln.PACinvl]';
target test3n = [inv3n.PACinv3]';
target testd4n = [inv4n.PACinv4]';
all test norml = [input testln' target testln'];

% Input selection for model TESTING

input testingln = [invltest n.GHIavg,invltest n.VS,invltest n.airtemp,invltest n.AM2]';
input testing3n = [inv3test n.GHIavg,inv3test n.VS,inv3test n.airtemp,inv3test n.AM2]';
input testing4n = [inv4test n.GHIavg,invé4test n.VS,inv4test n.airtemp, inv4test n.AM2]';

% Target for model TESTING

target testingln = [invltest n.PACinvl]';
target testing3n = [inv3test n.PACinv3]';
[inv4test n.PACinv4]';

target testingén
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Standardized data

invla = table2array(invl(:,2:end));
inv3a = tableZarray(inv3(:,2:end));

invd4a = table2array(invé4 (:,2:end));

)

Standard deviation

STD1 = nanstd(invla(:,2));
STD3 nanstd(inv3a(:,2));
STD4 = nanstd(invda(:,2));

% Mean
meanl = nanmean (invla(:,2));
mean3 = nanmean (inv3a(:,2));

mean4d = nanmean (invda(:,2));

% Standardized
STDlinam = nanstd(invla(:, [1,3,4,6]))

meanlinam = nanmean (invla(:,[1,3,4,6]1));
For model purposes

3

% Input variabels (lines shuffled) sorted for training, validation and test
input trainl = [invlt n.GHIavg,invlt n.VS,invlt n.airtemp,invlt n.AM2;...
invlv_n.GHIavg,invlv n.VS,invlv _n.airtemp,invlv _n.AM2;...
invltest n.GHIavg,invltest n.VS,invltest n.airtemp,invltest n.AM2]';
input train3 = [inv3t n.GHIavg,inv3t n.VS,inv3t n.airtemp,inv3t n.AM2;...
inv3v_n.GHIavg,inv3v_n.VS,inv3v_n.airtemp,inv3v_n.AM2;...
inv3test n.GHIavg,inv3test n.VS,inv3test n.airtemp,inv3test n.AM2]';
input traind4 = [inv4t n.GHIavg,inv4t n.VS,inv4t n.airtemp, inv4t n.AM2;...
inv4v_n.GHIavg,inv4v n.VS,inv4v _n.airtemp,inv4v _n.AM2;...

invdtest n.GHIavg,inv4test n.VS,inv4test n.airtemp,invé4test n.AM2]';

target trainl = [invlt n.PACinvl;invlv n.PACinvl;invltest n.PACinvl]';
target train3 = [inv3t n.PACinv3;inv3v_n.PACinv3;inv3test n.PACinv3]';
target traind4 = [inv4t n.PACinv4;inv4v n.PACinv4;inv4test n.PACinv4]';
all train = [input trainl' target trainl'];

Hold-Out Set

[}

ml = readtable('maraprliinvliam.txt'); % Data for March-April 2017

LXX
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maraprl = [ml.GHIavg,ml.VS,ml.airtemp,ml.AM2]"'; Input variables

maraprln = (maraprl'-meanlinam)./STDlinam; Normalize input variables

o0 oe oo

maraprtargl = ml.PACinvl; Output (target)

Normalize output

)

maraprtln = (maraprtargl'-meanl) ./STD1;

MEPS forecasted weather

Load either 'twodatforecast' or ‘onedayforecast'

mepsl = readtable ('twodayforecast.txt'); % Forecasted data
MEPS = [ml.GHIavg,ml.VS,ml.airtemp,ml.AM2]"'; % Input variables

MEPSn = (MEPS'-meanlinam)./STDlinam; % Normalize input variables
MEPStarg = mepsl.PACinvl; % Output (target)
MEPStn = (MEPStarg'-meanl)./STD1; % Normalize output

SPECIFY NETWORK

for i = 1:50 % Run network several times
clearvars net tr
[trainInd,vallnd, testInd] = divideind(length(all train),l:height (invlt),...
height (invlt)+1l:height (invlt)+1l+height (invlv),height (invlt)+1l+height...
(invlv)+l:length(all train));

net = feedforwardnet ([20 2], 'trainlm'); % Network configuration
net.divideFcn = 'divideind'; % Data-division
net.divideParam.trainInd = trainInd; % Training set

oo

net.divideParam.valInd = vallInd; Validation set
net.divideParam.testInd = testInd; % Test set

Validation check
Recommended by MATLAB

Set low to avoid early stopping

net.trainParam.max fail = 1000;

o° o°

net.trainParam.epochs = 1000;
net.trainParam.min grad = 1e-1000;
net.trainParam.goal = le-7; Set low to avoid early stopping

net.trainParam.mu max = 1e300; Set high to avoid early stopping

o0 o de  ae

net.layers{2}.transferFcn = 'tansig'; Transfer function hidden layer
net.layers{3}.transferFcn = 'tansig'; % Transfer function output layer
net.performFcn = 'mse'; % Mean Squared Error

TRAIN NETWORK

tilcs

[net,tr] = train(net,input trainl,target trainl); > Train network with input/output
ElapsedTime = toc;

ANN (feedforward) Model

x and t can be changed to hold-out set or MEPS data
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x = input trainl; Input for model evaluation

t = target trainl; Corresponding target

Predict for = net(x); Predict using input variables

o° o° o° o

el = gsubtract (t,Predict for); Error predicted-target

o

performance = perform(net,t,Predict for); Model performance

Model Evaluation

)

% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1l};

valTargets = t .* tr.valMask{l};

testTargets = t .* tr.testMask{l};

testTarg = t(testInd);

valTarg = t(vallInd);

trainTarg = t(trainInd);

% ERRORS
e = gsubtract (t(trainInd),Predict for(trainInd));
ev = gsubtract (t(vallnd),Predict for(vallnd)):;
et = gsubtract (t(testlInd),Predict for(testInd));

% MEAN SQUARE ERROR
MSE = immse (t (trainInd),Predict for(trainlInd));
MSEv = immse (t(valInd),Predict for(valInd));
MSEt = immse (t(testInd),Predict for(testInd));

MEAN ABSOLUTE ERROR
MAE = mae (e);

MAEV = mae (ev) ;

MAEt = mae (et);

o

% MEAN ABSOLUTE RELATIVE ERROR
MARE = mean (abs(e./t(trainInd)));
MAREvV = mean (abs (ev./t(vallInd)));
MAREt = mean (abs(et./t (testInd)));

% MEAN BIAS ERROR
MBE = mean (e);
MBEvV = mean (ev) ;
MBEt = mean (et) ;

[

% Rsquared

Rsq s = 1 - sum((t(trainInd) - Predict for(trainInd)).”2)/sum(...
(t(trainInd) - mean(t(trainInd))) .”2);

Rsqv_s = 1 - sum((t(valInd) - Predict for(valInd)).”2)/sum(...
(t(valInd) - mean(t(valInd))) .”2);

Rsgt s = 1 - sum((t(testInd) - Predict for(testInd)).”2)/sum(...
(t (testInd) - mean(t(testInd))) .”2);

De-standardization
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% Test set
test pred = (Predict for(testInd').*STDl+meanl)';
test targ = (t(testInd).*STDl+meanl)"';

 Validation set
val pred = (Predict for(valInd').*STDl+meanl)';
val _targ = (t(vallnd).*STDl+meanl)';

)

% Training set
train pred = (Predict for(trainInd').*STDl+meanl)';
train targ = (t(trainInd).*STDl+meanl)';

Network Specifications
weights = getwb (net);

ElapsedTime = array2table (ElapsedTime) ;

j = ones(length(TT),1).*1i;

tes = ones(length(testInd),1l).*i;
tra = ones(length(trainInd),l).*i;
val = ones(length(vallInd),1l).*1i;
wel = ones (length (weights),1) *i;

o = (l:length(tr.epoch))';

en = {tr.trainFcn};

to = {tr.divideFcn};
tre = {tr.best perf};
fire = {tr.best vperf};
fem = {tr.best tperf};

seks = {tr.best epoch};
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sju = {tr.time(end)};
For Tables
T error = [T error; MSE MSEv MSEt MAE MAEv MAEt MARE MAREv MAREt MBE MBEv...
MBEt Rsqg s Rsqv_s Rsqt s 1i];
T pred all = [T pred all; yt' tt' YT TT jl;
T pred test = [T pred test; testPred' testTarg' test pred test targ tes];
T pred train = [T pred train; trainPred' trainTarg' train pred...
train targ tral;
T pred val = [T pred val; valPred' valTarg' val pred val targ vall;
T train = [T train; seks sju i];
T wbo = [T wb; weights weil;
T state = [T _state;tr.perf' tr.vperf' tr.tperf' o];
end

Array2table

T error = array2table(T error);

T error.Properties.VariableNames ={'MSEtrain', 'MSEval', 'MSEtest', 'MAEtrain',
'MAEval', '"MAEtest', 'MAREtrain', '"MAREval',6 'MAREtest',

'MBEtrain', '"MBEval', 'MBEtest', 'Rsqtrain 2', 'Rsgval 2', 'Rsqgtest 2' 'i'};

T pred all = array2table(T pred all);

T pred all.Properties.VariableNames = {'Predicted norm', 'Target norm', 'Predicted',
'Target', 'j'};

T pred test = array2table(T pred test);

T pred test.Properties.VariableNames = {'Predicted norm', 'Target norm', 'Predicted',
'Target', '1'};

T pred train = array2table(T pred train);

T pred train.Properties.VariableNames = {'Predicted norm', 'Target norm', 'Predicted',
'Target', 'm'};

T pred val = array2table(T pred val);

T pred.val.Properties.VariableNames = {'Predicted norm', 'Target norm', 'Predicted',
'Target', 'n'};

T train = array2table(T train);

T train.Properties.VariableNames = {'best epoch', 'TimeElapsed','i'};

T wb = array2table (T wb);

T wb.Properties.VariableNames = {'Weights', 'k'};

T state = array2table(T_state);

T state.Properties.VariableNames = {'Perf', 'vPerf', 'tPerf',6 'epoch'};

Plotting for model performance observation

timetest = invl.time;
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time findtest = datevec(timetest);
time test = time findtest(:,1:3);
time test = datetime(time test);

dato = '06-Jun-2015";

time test = datetime(time test, 'InputFormat', 'dd/MMM/yyyy','Format', 'MMM-yyyy'):
start test = find(time test== dato,1, 'first');

stop test = find(time test== dato,1, 'last');

datol = '05-Feb-2016";

time testl = datetime(time test, 'InputFormat', 'dd/MMM/yyyy','Format', 'MMM-yyyy'):
start testl = find(time testl== datol,1l, 'first');

stop testl = find(time testl== datol,1, 'last');

PLOT for model observations
figure

plot (timetest (start test:stop test), (TT(start test:stop test)),'b', 'LineWidth',1.2)
hold on

plot (timetest (start test:stop test), (YT (start test:stop test)),'r',6 'LineWidth',61.2)
grid;

legend ('Target Output Power', 'Predicted Output Power', 'Location', 'Northwest')
ylabel ('"W")

title('GHI,WS,airtemp, AM2. LM'")

set (gca, 'FontSize',18);

figure

plot (timetest (start testl:stop testl), (TT (start testl:stop testl)),'b', 'LineWidth',1.2)
hold on

plot (timetest (start testl:stop testl), (YT (start testl:stop testl)),'r', 'LineWidth',1.2)
grid;

legend ('Target Output Power', 'Predicted Output Power', 'Location', 'Northwest')

ylabel ('W")

title('GHI,WS,airtemp, AM2. LM')

set (gca, 'FontSize',18);

Write Tables

writetable(T_error,'error_20_2LM1000f_ghi_vs_t AM2_inv1l_50.txt"); writetable(T_pred_all,
‘pred_all_20_2L.M1000f_ghi_vs_t AM2_invl_50.txt");
writetable(T_pred_test,'pred_test_20_2LM1000f_ghi_vs_t AM2_inv1_50.txt');
writetable(T_pred_train,'pred_train_20_2LM1000f_ghi_vs_t AM2_invl_50.txt");
writetable(T_pred_val,'pred_val_20_2LM1000f_ghi_vs_t AM_invl_50.txt");
writetable(T_train,'trainfcn_20_2LM1000f_ghi_vs_t_AM2_inv1l_50.txt");
writetable(T_wb,'wb_20_2LM1000f_ghi_vs_t_AM2_inv1l_50.txt");
writetable(T_state,'state_20_2L.M1000f_ghi_vs_t_AM2_inv1l_50.txt");
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