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ABSTRACT 

This work considers a photovoltaic (PV) system installed on the rooftop of Agder Energi’s headquarters 

located at Kjøita, Kristiansand. The system includes three different types of solar PV modules; Suntech 

(multi-Si), Sharp (a-Si/µ-Si) and REC (multi-Si), that have a total installed DC capacity of 45 kWp. The 

system is grid-connected and instrumented for research and monitoring purposes. Artificial Neural 

Network (ANN) models were trained to obtain the lowest mean square error (MSE), by testing different 

configurations using a model-based trial and error approach. The model configurations that gave the 

lowest (MSE) were used to predict the power production from each of the PV modules using forecasted 

weather parameters obtained from MEPS (MetCoOp Ensemble Prediction System), with a one-day 

ahead and two-days ahead forecast horizon.  

The input selection of the models was based on both model-free and model-based approach, where 

the final input selection resulted in global horizontal irradiance, wind speed, air temperature and air 

mass, with the power (AC) production as output (target). The results indicated that the model 

configurations of 20 hidden neurons in first hidden layer, and 2 hidden neurons in second hidden layer 

gave the lowest MSE for all PV modules. Results from the test sets showed that the best model for 

Suntech gave MSE = 0.0454, Sharp gave MSE = 0.0325 and REC gave MSE = 0.0492. R2-values between 

0.95 and 0.96 were obtained for all three models, indicating good fitting of the predicted values and 

the targets. Testing the Suntech and REC models with a hold-out set provided slightly less precise 

predictions compared to the results from the test set, while a higher precision was found for Sharp 

modules. Testing the model configurations with forecasted weather parameters indicated that the 

forecast accuracy of the weather will influence the power prediction, and the performance parameters 

will be accordingly. The one-day ahead forecasts provided MSE equal to 0.2647, 0.2378 and 0.2647, 

and for the two-days ahead forecast horizon an MSE equal to 0.2996, 0.2252 and 0.2719 for Suntech, 

Sharp and REC, respectively. An error much higher compared to the test set and hold-out set for the 

models, which inevitably was expected due to the weather forecast uncertainties. 

Based on the findings in this work, it can be concluded that a further optimization of the models will 

be necessary before obtaining even more precise predictions. However, the models did show good 

fitting for several days and a potential for using ANN models for power prediction of PV modules. 
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PREFACE 

This thesis is a result of the project in the master course ENE500, which concludes my two year long 

Renewable Energy Engineering Masters education at the University of Agder (UiA) in Grimstad, 

Norway. I have previously finished a bachelor’s degree in Renewable Energy at the Norwegian 

University of Science and Technology (NTNU) in Gjøvik, Norway. 

The master’s thesis corresponds to 30 study credits, which corresponds to a time period between 

07.01.2019 and 24.05.2019. This thesis considers power prediction of a photovoltaic (PV) system 

located in Kjøita, Kristiansand, instrumented with PV modules from three different manufacturers. 

ANN models based on feedforward neural networks have been used to train three models 

corresponding to each of the PV modules, in order to predict AC power production. An increase of grid-

connected PV systems has been seen each year, introducing a necessity to accurately predict power 

production from PV systems, as this can influence the stability of the electricity grid.  

My interest in solar power started early in my bachelor’s course and has continued to grow as I have 

had several projects related to this subject throughout both the bachelor’s and master’s degree. 

Although I did not have any knowledge regarding Artificial Neural Network (ANN) when I started this 

thesis, I have come a long way in a short amount of time. Learning how to develop an ANN model was 

time consuming and a lot of trial and error was needed to understand the concept behind it. Having a 

large dataset with millions of samples was also challenging to handle, especially when combining the 

data with the ANN models. 

I wish to thank my supervisors Sathyajith Mathew, Joao Leal and Anne Gerd Imenes at UiA, for 

guidance, encouragement and useful inputs regarding my thesis. They provided data from the relevant 

PV system that allowed me to do this work. I also want to thank Ghali Yakoub for providing historical 

forecasted data from MEPS (MetCoOp Ensemble Prediction System), which allowed me to test the 

models with actual forecasted data. Last, I want to thank family and friends for support and 

encouragement throughout the entire period.  
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1. INTRODUCTION 

As an increase of grid-connected photovoltaic (PV) systems can be seen over the last few last years, 

having accurate forecasts for the power production fed into the grid has become more of an important 

issue. In 2018, approximately 23.5 MWp of PV system capacity was installed in Norway, which was an 

increase of 29% compared to 2017. Globally, a total capacity of PV installed at the end of 2017 was 

approximately 400 GWp, accounting for about 2% of the total power production worldwide. For the 

last years, the amount of installed PV capacity in Norway has increased from 9 MWp to 45 MWp (at the 

end of 2017) and are expected to continue to rise for upcoming years. The reason for an increase of 

PV systems is primarily because of the reduction of the investment cost, which decreased with 10-20% 

from 2015 to 2017, but also factors such as incentives, TEK-regulations (regulations on technical 

requirements for building works) and EU directives have played a role. As this increase have been 

expected to continue for years ahead, the grid-connected PV systems will lead to higher changes in the 

electricity grid and can create instabilities due to sudden changes in weather [1]. 

For grid operators to be able to handle sudden changes of power in the grid, accurate predictions of 

output power from PV systems can contribute to reveal important information to regulate the 

electricity grid more efficiently. Variation in solar irradiance due to weather fluctuations causes 

variations in the power production from PV systems and as the use of large-scale grid connected PV 

system also is increasing, it will be important to strengthen the prediction of PV system output power. 

Artificial neural network (ANN) has the advantage to overcome limitations of traditional methods to 

solve complex problems that are difficult to model and analyze, and is therefore viewed as a 

convenient method to forecast solar radiation intensity and power output of PV systems. ANNs have 

become a widely used method in the forecasting field, with the aim to find the most accurate approach 

[2].  

ANNs are non-linear computational models that can be used for a variety of problems, including 

classification, speech recognition, clustering, prediction and forecasting. Recent research has shown 

that ANNs have powerful pattern classification and recognition capabilities as they are able to learn 

and generalize from experience. They learn from examples and even with unknown or hard to describe 

underlying relationships, ANNs can capture these subtle functional relationships. Having enough data 

or observations allow for solving problems whose solutions require knowledge that is difficult to 

specify. The ANNs ability to generalize allows for data containing noisy information to be correctly 

inferred and are capable of performing non-linear modeling without a priori knowledge about an input-

output variable relationship. Because of this, ANNs are seen as a more general and flexible modeling 

tool for forecasting [3].  

1.1. PROBLEM DEFINITION 
This work considers Artificial Neural Network (ANN) models using input variables from historical 

measured data from a PV system, to predict power production at any time of the year. Three different 

types of PV modules are being studied, whereas also three different ANN models will be trained and 

tested, each model corresponding to each of the PV modules. Having an insight to which configurations 

that give the best performance parameters, i.e. lowest mean square error (MSE), these models will be 

used with historical forecasted weather data from a forecasting service.  



Power Prediction of Photovoltaic System using Neural Network Models 

 

2 

 

Based on this, the following goal was established: 

• Potential of using ANN models for PV power prediction and their application to power forecast 

based on MetCoOp Ensemble Prediction System (MEPS). 

Further on, it was also established three sub goals: 

- Determine the relevant input parameters that should be used in the ANN models. 

- Find the configuration (number of hidden neurons and layers) that provides the best model 

performance. 

- Evaluate how the ANN models perform with a hold-out dataset and forecasted weather 

parameters coming from MEPS. 

The three sub goals listed above will thus contribute to reach the main goal of this study. In the 

methodology section (section 3) the methodology for achieving these goals is presented. 

1.2. LIMITATIONS AND ASSUMPTIONS 
To be able to achieve the goal of this work, several limitations and assumptions were made along the 

way. The main limitations and assumptions made in this work will be presented in this subsection, 

while a more explanatory description will be stated in the methodology section in this work.  

As there was little previous knowledge regarding certain aspects of this work, the process or reaching 

the goal was mainly based on a trial and error approach. Data obtained from the PV system was 

recorded on minute-basis, but for an Artificial Neural Network (ANN) model to work with forecasted 

weather data obtained from MEPS (MetCoOp Ensemble Prediction System), which was obtained on 

hourly basis, it was decided to also use the on-site data with hourly values. As the data contained 

samples with missing data and/or data that could have been compromised, it was desirable to filter 

out this data. This will be considered data-manipulation, which again can affect the models’ 

performance. As there was a maintenance log for the system, this was used to filter out data that had 

been compromised because of maintenance, software updates or similar. Additional data-

manipulation was not performed in this work. Due to this, if any compromised data not stated in the 

maintenance log, could at some extent influence the ANN model performance and careful 

considerations regarding results from the data samples must be taken.   

An ANN model was chosen to be used as a prediction model for power production. This was chosen 

based on the models’ ability of generalization and literature review that supports the use of this type 

of model for non-linear prediction systems. How ANNs work will be explained throughout the report 

and a literature review will also be presented. 

For the ANN model to be used with forecasted weather parameters, it was necessary to find the 

optimal model configurations. For this, a model-based trial and error approach was used. To limit the 

extent of the model testing, seven tests with a variation of hidden layers and hidden neurons in the 

network were considered. It was created three different ANN models, one for each of the PV modules. 

The seven tests included a variation with a low number and a relatively high number of neurons in one 

hidden layer, where also some tests included a second hidden layer. As mentioned above, there was 

no previous experience from training such models and a random composition of hidden neurons and 

layers were chosen. Before the seven tests could be performed, certain configurations were tested to 

see which would provide a model with better performance. The mean square error (MSE) was used as 
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the performance parameter to decide which model configuration that indicated the most precise 

model. Other performance parameters were also considered and discussed, but the choice of the most 

optimal model out of the seven tests were chosen from the lowest MSE value. This parameter is the 

default performance parameter in MATLAB’s toolbox, which was used for developing and testing the 

ANN models. 

A preliminary report related to this thesis done by Lie [4], characterized parameters from the PV system 

at Kjøita, Kristiansand. Due to lack of information regarding the measured parameters on-site, the 

results would be considered uncertain because of vague pre-processing of the raw data. It was, 

however, uncovered some weaknesses in the data, i.e. the DC power production was lower than the 

AC power production. This was considered a large deviation, and the DC power will for this work be 

considered non-valid due to sensors uncertainties. Thus, the AC power will be used. 

If other limitations or assumptions were made throughout this work in order to reach the goal, this will 

be specified in the methodology section. 

1.3. THESIS STRUCTURE 
The structure of this thesis involves a theoretical background that will include a brief literature review 

related to topics in this thesis. The literature review will give an indication of previously done research 

related to this work and give an understanding of main contributors that is important to consider when 

developing ANN models for PV systems. The theoretical background will cover aspects that is 

considered important to have insight about before reading the methodology, results and discussion 

sections.  

The methodology section will have information based on the theoretical background and a further 

description regarding assumptions and the progress in this work will be presented. Important decisions 

such as input selection, data division (dividing data into subsets for ANN model training purposes), 

model structure and performance will be presented, completed with a discussion of the method choice 

for this work. 

The result and discussion section will present and illustrate the objective of this work together with a 

discussion regarding the results. The results will present the steps from obtaining the raw data, to the 

results from the final testing of the different ANN models where a discussion regarding performance 

parameters will be of importance. Finally, a conclusion will be presented followed by suggestions for 

further work. 
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2. THEORETICAL BACKGROUND 

2.1. LITERATURE REVIEW 
A review of photovoltaic power forecasting by Antonanzas et al. [5] from 2016, assesses different 

techniques and approaches to improve the accuracy and reduce uncertainty in prediction models. The 

review is considering the latest advancements and with it follows a summary of the main techniques 

used to issue the predictions along with a discussion regarding the benefits of the different techniques. 

The review concludes that ANNs are the most commonly used machine learning techniques among 

solar power forecasting as they have proven useful in a wide variety of situations and with many inputs 

variables. The next most used techniques are the support vector machines that use supervised 

modeling method. They are strong when it comes to generalization capacity and have a great ability 

to deal with non-linear problems. As the most common model of PV forecasting is based on ANNs, the 

parameters and the ANN method approach can vary. Reviewing several publications, frequent 

variables used in models were the global horizontal irradiance (GHI), temperature (ambient) and 

power (historical data) (e.g. in [6, 7]).  

Omar et al. [8] used artificial neural networks (ANNs) ensembles to predict power output with input 

variables global horizontal irradiance, wind speed, air temperature, pressure, humidity cloud cover and 

time of year and day. Different numbers of hidden layers and hidden neurons were altered to see the 

difference in errors from the trained models. The results from this study showed that averaging the 

output forecasts from an ensemble of similar configuration networks were likely to perform better 

regarding a day-ahead forecasting than a single network of the same configurations.  

Kudo et al. [6] suggested the use of normalized solar radiation when training an ANN network for solar 

power based on weather parameters. The weather varies for different seasons, and the use of only 

one season for a model would require large amount of data, it was suggested that the normalized 

radiation could give the model better performance. The normalized radiation was obtained by dividing 

the solar radiation with the extraterrestrial radiation.  

A study by Liu et al. [9] was done to see the correlation between output power from a PV system with 

solar irradiance and air temperature. The output power indicated a linear correlation with the solar 

irradiance intensity, while the air temperature gave neither positive nor negative linear correlation, 

meaning the power output has a non-linear correlation with air temperature. The air temperature was 

therefore considered an important parameter that will influence the power output. As this study used 

several different input variables for solar radiation intensity and temperatures, the optimal 

architecture of the network was found to be 28-20-11, with results indicating good performance of 

forecasts of daily power output of the relevant PV system. Another study, done by Oudjana et al. [10], 

defines three models to train a feedforward neural network, involving different input variables. A 

model with only air temperature as input showed a large forecast error due to low correlation between 

air temperature and power output. A second model included only solar irradiance and provided an 

acceptable error. A third model included both air temperature and irradiance, which consequently also 

provided the best model of the three, with the lowest error.   

Kaldellis et al. [11] discuss the temperature and wind speed impact on the efficiency of a PV 

installation. The findings show that the photovoltaic conversion process depend on the solar irradiance 
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and the module temperature, where the module temperature is affected by the solar irradiance, air 

temperature and ventilation (wind speed), as well as the technical characteristics of the PV panels. The 

study highlights the importance of the wind speed impact and that it plays a fundamental role in 

determining the modules’ temperature and accordingly their efficiency. The study concludes that 

determination of the wind’s effect on the thermal loss mechanisms of PV panels are close, but not 

identical to those in PV simulations and literature.  

Defining a network depends on several configurations. In a study done by Sulaiman et al. [12], 

investigate the performance of a multi-layer feedforward neural network (MLFNN) technique 

compared with a linear regression (LR) model. For the neural network technique, a configuration with 

Levenberg-Marquardt activation function, 18 hidden neurons in one layer using logsig as activation 

function and purelin as activation function in output layer, was chosen as the best training parameters 

that provided the lowest error. The results show that the classes MFLNN had superior prediction 

performance compared to the LR during training and testing.  

2.2. SOLAR RADIATION  
The solar radiation from the sun’s surface (extraterrestrial radiation) is relatively constant throughout 

the year, often indicated as the solar constant (1367 W/m2). But as is reaches the earth’s surface, it 

has been affected by the earth’s atmosphere due to absorption and scattering. On clear, cloud-free 

days, the maximum radiation reaching the earth’s surface occurs as the sun is directly overhead, 

because of shorter pathlength through the atmosphere. Figure 1 illustrates the spectrum of solar 

radiation, where the black line represents the idealized radiation from the sun which can be seen as a 

blackbody with temperature at approximately 5778 K, the yellow area represents the radiation outside 

the atmosphere and the red area represents the radiation at sea level. 

 

Figure 1: Solar radiation spectrum outside the atmosphere and at the earth’s surface [13] 

The red curve is varying due to absorption bands occurring in the atmosphere from various gases. Due 

to scattering of radiation in the atmosphere, the solar radiation reaching the earth’s surface is not 

constant. This scattering is occurring due to molecules, aerosols and dust particles and scattered light 

is known as diffuse radiation. Diffuse radiation is typically 10% of the global radiation when the sun is 
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directly overhead on a clear day. Figure 2 illustrates the direct and diffuse radiation reaching the 

earth’s surface. 

 

Figure 2: Direct and diffuse solar irradiance 

• Global Horizontal Irradiance: the sum of the direct and diffuse irradiance emitted onto a 

horizontal surface [14, pp. 18].    

• Diffuse Horizontal Irradiance: radiation that is scattered or diffused by particles in the 

atmosphere or reflected by the earth’s surface. It is measured on a horizontal surface where 

the direct sunlight is being blocked by a ball or disc by using e.g. a pyranometer [14, pp. 18].  

• Global Tilted Irradiance: Measuring the irradiance in plane with a tilted PV module gives the 

global tilted irradiance, which corresponds to the same amount of irradiance that the PV 

modules receive [14, pp. 21].  

2.3. AIR MASS (AM)  
The pathlength the sunlight travels through the atmosphere to reach the earth’s surface is referred to 

as the air mass. The air mass varies throughout the day, depending on the location of the sun relative 

to the earth. Equation (1) can be used to calculate the air mass based on the assumption of a 

homogenous, non-refractive atmosphere. This equation introduces an error of approximately 10% 

close to the horizon (when the sun’s elevation angle is 10° above the horizon). To account for this error, 

equation (2) can be used, which takes the variation of atmospheric density into account. 

 
𝐴𝑀 =  

1

𝑐𝑜𝑠(𝛳𝑍)
 

 

(1) 

 
𝐴𝑀 =  

𝑒−0.0001184∗ℎ

𝑐𝑜𝑠(𝛳𝑍)  + 0.5057 ∗ (96.080 + 𝛳𝑍)−1.634
 (2) 

where h is the site altitude [m] and ϴZ is the zenith angle [°]. This angle is a good approximation down 

to ≈ 10°. As the sun is directly overhead, the air mass is at its lowest, meaning more sunlight reaches 

through the atmosphere. As the location of the sun moves towards the horizon, the zenith angle, ϴz, 

becomes higher, hence the air mass increases. Figure 3 shows the amount of atmosphere (air mass) 
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the radiation from the sun must pass through to reach the earth’s surface and how it depends on the 

sun’s position on the sky. 

 

Figure 3: Air mass 

The zenith angle can be calculated using equation (3). 

 cos(𝛳𝑍) = cos(𝜙) cos(𝛿) cos(𝜔) + sin(𝜙) sin(𝛿) (3) 

where ϕ is the latitude angle, δ is the solar declination angle and ω is the hour angle. 

The declination angle (δ) can be calculated by using equation (4). 

 
𝛿 = 23.45° ∗ sin (360° ∗ (

284 + 𝐷

365
)) (4) 

where D is the day of the year. To calculate the hour angle (ω), equation (5) can be used. 

 
sin(ѡ) =  

sin(𝛼)  − sin(𝛿) sin(𝜙)

cos(δ) cos(𝜙)
 (5) 

where α is the altitude angle. 

To get the altitude angle, α, equation (6) can be used. 

 sin(𝛼) = sin(𝛿) sin(𝜙) + cos(𝛿) cos(𝜔) cos(𝜙) (6) 

2.4. PHOTOVOLTAIC SYSTEM 
Individual solar cells electrically connected together is called a PV module, and are done so to increase 

their power output. The cells are packed so that they are protected from the environment and to 

protect the used from electric shock. The effects that are considered the most important in PV modules 

or arrays are [15]: 

• losses due to mismatched solar cells interconnections 

• module temperature 

• PV modules failure modes 
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The top surface material of the cells should be impervious to water, good impact resistance, stable 

under prolonged UV exposure and low thermal resistivity. In addition, reflection from the front surface 

should be low. To reduce this reflection, applying anti-reflection coating to the top surface can be 

done, but an issue with the robustness of these coatings are to be found. A technique that can be used 

instead, is to “roughen” or texture the surface. However, this technique is more likely to attach dust 

and dirt to the top layer of the modules, thus less “self-cleaning”, where the advantage of less 

reflection is outweighed by losses from top surface soiling [15]. 

A representation of how the different terms from PV cells to arrays can be seen in Figure 4. 

 

Figure 4: From solar cell to solar array 

Several PV cells make up a PV module, several modules connected in series is referred to as a PV string 

and several PV modules (strings) make up a PV array. By having several PV arrays connected togheter 

and into a house or the electricity grid, make up a PV system. A simplified grid-connected PV-system is 

illustrated in Figure 5. 

 

Figure 5: Simplified schematic of grid-connected PV system 

Figure 5 illustrates how solar (PV) modules or arrays are connected to a charge controller that again is 

connected to a DC/AC inverter and/or batteries. Solar cells produce direct current (DC), which needs 

to be converted into alternating current (AC) if it is to be fed to the electricity grid. DC energy can be 

stored in a battery or used in e.g. home appliances. The charge controller with MPPT (maximum power 

point tracker) or PWM (pulse width modulator) is typically used, and is needed if a battery is connected 
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to the system. The charge controller determines if the power generated from the solar modules is 

needed to charge the batteries, used in home appliances or fed to the grid. The controller is preventing 

the battery from overcharging and makes sure the electricity stored in the battery does not to get back 

to the solar modules during no-production periods [14, pp. 99-105]. 

2.5. SOLAR CELL MATERIALS 
According to Basore’s [16] definition, there are three different material structures divided by crystal 

grain size; crystalline, multi-/polycrystalline and amorphous. The three different material structures 

are illustrated in Figure 6 and represents the arrangements of the atoms for each material. The 

following descriptions of the materials are based on Wenham et al. [14, pp. 31-33]. 

 

Figure 6: Material structures 

2.5.1. Crystalline Silicon 

Crystalline silicon includes atoms arranged in a regular pattern with an ordered crystal structure. The 

manufacturing process for this technology is a careful and time-consuming process, making it the most 

expensive type of silicon. The crystalline silicone usually has the highest quality but because of the 

cost, multi/polycrystalline and amorphous silicon are increasingly being used. 

2.5.2. Multi/polycrystalline Silicon (multi-Si) 

Multicrystalline or polycrystalline materials require a grain size on the order of a few millimeters to 

avoid significant recombination losses. The production technique for this material is less critical than 

for single crystal material, resulting in a cheaper type of material. This material has a lower quality than 

the crystalline material due to the grain boundaries blocking carrier flow, which results in a greater 

recombination loss. 

2.5.3. Amorphous Silicon (a-Si/µ-Si) 

In this type of material, there is no long-range order in the atom arrangement structure, which will 

result in a more challenging way to obtain reasonable current flows in a PV cell configuration. The band 

gap for amorphous silicon is 1.7 eV, while in crystalline silicone has a 1.1 eV band gap, and the 

absorption coefficient of a-Si is much higher than that of crystalline silicon. a-Si is commonly called 

“thin film”, due to having very thin films of semiconductor that are deposited onto glass or other low-

cost substrates and are often used in calculators and watches. The material is cheaper to produce than 

the crystalline material but in return the efficiency and lifetime is lower. 
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2.6. SOLAR CELL OUTPUT 
Photovoltaic (PV) cells convert sunlight directly into electricity with the use of semiconductors. 

According to Wenham et al. [14, pp. 53] single-junction solar cells have a theoretical efficiency limit 

around 30%. Conventional solar cells are made of crystalline silicone because of high efficiency. These 

cell types can have an efficiency up to 24-25% under laboratory conditions and state-of-the-art 

technology, while commercially, mass-produced cells have an efficiency typically around 13-19% [14, 

pp. 53].  

The output of a PV module depends on several different weather conditions and operational state of 

the cells. Weather conditions such as irradiance and cell temperature have proven to influence the 

output power, where also variables like wind velocity, humidity and pressure influence the irradiance 

and cell temperature. The module temperature has the effect on the cell output in such a way that an 

increase of temperature, results in a decrease in cell output. The effect of temperature on the 

maximum power output (Pmp) for silicon is represented with equation (7), given by Wenham et al. [14, 

pp. 47]. 

 1

𝑃𝑚𝑝

𝑑𝑃𝑚𝑝

𝑑𝑇
=  −(0.004~0.005)°𝐶−1 (7) 

Where Pmp is the maximum power and T is the cell temperature.  

Figure 7 represents the typical effect of increasing temperature of a solar cell. 

 

Figure 7: The effect of temperature on the I-V characteristics of a solar cell [17] 

As seen from Figure 7, an increase of temperature has the effect of increasing the ISC and decreasing 

the VOC, ultimately reduce the fill factor (FF), hence the reduce the cell output. The fill factor is the ratio 

of the maximum power (Pmp) from the solar cell to the product of the open circuit voltage (VOC) and 

short circuit current (ISC) [14, pp. 44], see equation (8). 
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𝐹𝐹 =  

𝑃𝑚𝑝

𝑉𝑂𝐶 ∗ 𝐼𝑆𝐶
 (8) 

Other aspects that can affect the cell output are the resistances (parasitic series and shunt). 

Contributors to the series resistance can be the bulk resistance on the semiconductor material, metallic 

contacts and interconnections. The shunt resistance is due to impurities near the junction and p-n 

junction non-idealities. Aspects such as faults/failures, dirt, shading and degradation will also have a 

negative effect on the output of a solar cell. For even more information of the behavior of solar cells, 

Wenham et al. [14] can be reviewed.  

2.7. ARTIFICIAL INTELLIGENCE (AI) 
Understanding intelligence and building intelligent systems are definite goals of artificial intelligence 

(AI). The definition, however, is widely discussed and agreeing on an accurate description is 

challenging. Many have tried to come up with a reasonable definition that covers all aspects, but 

weaknesses can still be found in the definitions. Elain Rich came up with the definition; 

“Artificial Intelligence is the study of how to make computers do things at which, at the moment, people 

are better.” [18] 

This definition characterizes what AI researches have been doing for the last 50 years and will even be 

up to date in year 2050, as stated by Ertel [19, pp. 2].  

AI is a broad branch of computer science, with the goal of a system that can function intelligently and 

independently. It can widely be divided into two main areas; symbolic learning and statistical learning 

[20, pp. 31]. The symbolic learning includes computer visions and robotics, where image processing is 

used. Machine learning uses pattern recognition for either statistical learning or deep learning. 

Statistical learning deals with techniques for speech recognition and natural language processing. 

There are different types of deep learning in machines, which are essentially different techniques to 

replicate what the human brain does. For the machine learning area, it is essential with data for the 

machine to be able to learn [19]. To see an overview of how the three areas are connected, see Figure 

8, that shows that deep learning is part of machine learning, that again is a branch of artificial 

intelligence.  

 

Figure 8: Subsets of Artificial Intelligence (AI) 
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2.8. MACHINE LEARNING 
As seen in Figure 8, machine learning (ML) is part of artificial intelligence. By using example data or 

past experience, ML can be used to optimize a performance criterion using computational algorithms. 

Such algorithms turn empirical data into usable models [21]. A significant interest in machine learning 

is to develop efficient algorithms for designing models, to do analyses and predictions, where big data 

has become of particular importance. Big data refers to large amounts of data with high dimensions, 

which will need algorithms to be computationally efficient and robust in their performance as the 

datasets can include noise and missing values [22]. 

Machine learning can either be shallow learning or deep learning, depending on their credit 

assignment paths or learning ability. These paths are possibly learnable chains of causal links between 

actions and effects. Usually, machine learning is divided into two main methods; supervised and 

unsupervised learning.  Whether a model uses supervised or unsupervised learning, depends on the 

available data. For the supervised model the data used for training is labeled, while for unsupervised 

learning, the data is unlabeled. Labeled data refers to a dataset that includes attributes (sorted data 

within categories), observations of each attribute and features (targets). As unsupervised models do 

not have labelled data, they will have to understand the data by for example using clustering 

techniques. Figure 9 provides an overview of machine learning methods [23].  

 

Figure 9: Machine learning scheme 

Supervised learning establishes a learning process as it continuously adjusts the predictive model by 

comparing the predicted results with the actual results, until the predicted results of the model reach 

an expected performance. For a supervised model, both the input and output data is known, but the 

relationship between the variables may be unknown [24, pp. 5-9]. A common goal with supervised 

neural network training is to find weights that yield lower values of error that is being calculated from 

the model. Within supervised learning there are two methods, classification and regression [22].  

Unsupervised learning has only knowledge about the input data, so the data will be grouped or 

interpreted based only on input data. It encodes raw data in a form that is more convenient for 

subsequent goal-directed learning and can be connected to topics of regularization and compression 

[24]. Clustering is a multivariate statistical technique aiming to find pattern in any shape in a large 

dataset by collecting similar individuals of homogeneous classes [25]. 
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2.8.1. Classification 

Techniques that uses classification predicts categorical responses by classifying the input data into 

categories [23]. A classification task involves assigning an unknown pattern to a number of known 

classes. By having a rule that fits the past data and which can also fit new data, predictions can be 

made for novel instances [21]. 

2.8.2. Regression 

A regression task can be considered a curve fitting problem, where the output variable is a non-discrete 

variable that takes values in an interval in the real axis or in a region in the complex numbers plane. 

Having a data set including training points of yi and xi, where i can represent any real number higher 

than 1, it is possible to estimate a function f, whose graph fits the data [22]. If a new data point with 

an unknown output value occurs, the function from the trained model can be used to predict its output 

value. Figure 10 illustrates a simple linear regression example where a new point is being predicted 

with the function that has been designed to fit the available training data set. 

 

Figure 10: Linear regression example 

The blue points in Figure 10 represents the training data and the red points on the x-axis represents a 

new point to the data set. The green point is the new output value ŷ, predicted from the trained model 

with an equation equal to (9).  

 �̂�  = 𝑓(𝑥) (9) 

where ŷ is the output values, and f(x) is a function derived from a trained model [22, pp. 3-4].  

2.9. ARTIFICIAL NEURAL NETWORKS (ANNS) 
ANNs consist of different layers connected to each other and work on the structure and functions of a 

human brain. They can perform complex algorithms to train a neural network by learning from huge 

volumes of data. 

A standard neural network (NN) consists of many neurons, which is a connected processor that 

produce a sequence of real-valued activations. Input neurons activate through sensors perceiving 

information from the environment, other neurons get activated by weighting connections from 

previous neurons. Depending on the connection of the neurons, the wanted output, or the desired 

behavior of the network, long causal chains of computational stages may be required [24]. 
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2.9.1. Neural Network Terms 

Neuron (node/perceptron): A neuron is the basic unit of a neural network. It receives a certain amount 

of inputs and a bias value, where the input value is multiplied with a weight value. Each neuron is 

connected to another neuron, which each connection has an associated weight value. 

Transfer function (activation function): The transfer function (also called activation function) defines 

the output of a neuron in terms of the induced local field. Commonly used transfer functions are 

represented in Figure 11. The functions are determined whether the local field is above or below zero, 

calculating a layer’s output from its net input. 

 

Figure 11: Transfer functions. a = output, n = input 

The logsig-function is a Log-Sigmoid transfer function that generates output between 0 and 1 as the 

neuron’s input goes from zero to positive infinity. The tansig-function is Tan-Sigmoid transfer function, 

which takes both negative and positive input values and the purelin-function is a linear transfer 

function. The sigmoid functions are most commonly used in pattern recognition, while the linear 

function is used for function fitting problems [26]. 

Backpropagation: The backpropagation algorithm is used to calculate a networks performance with 

respect to weights and bias variables. The algorithm is often used on a validation set of a neural 

network model (this will be explained in more detail in following subsections) and can be used to stop 

the network training if the errors calculated by the backpropagation algorithm fails to improve. The 

predicted value is compared to the target value, and a loss function is used to calculate the error 

between the two points. The average of the loss functions of the entire training set is called the cost 

function and is measured by for example the mean square error (MSE). A commonly used 

backpropagation is the Levenberg-Marquardt jj, which uses the Jacobian jX, and can be calculated 

based on: 

 𝑗𝑗 = 𝑗𝑋 ∗ 𝑗𝑋 

𝑗𝑒 = 𝑗𝑋 ∗ 휀 

𝑑𝑋 =  
−(𝑗𝑗 + 𝐼 ∗ 𝑚𝑢)

𝑗𝑒
 (10) 

where jX is the Jacobian matrix, ε is all the errors, I is the identity matrix and mu is the adaptive value 

[27]. 

Weights: Weights will be assigned to each neuron where the goal of training a model is to update the 

weight values to decrease the loss (error). The weights represent the strengths of connection between 
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neurons and decide how much the input will influence the output. If the weight has a value of zero, 

this input will not influence the output at all. An increasing positive weight value will increase the 

output, while a negative weight will decrease the output. How fast the network learns is based on the 

learning rate, which is the rate at which the weights are being updated. For each new weight update 

using the backpropagation, which is the same as one iteration (epoch), the learning rate will decide 

the new weight update. 

Epoch: Also called iteration, is the term used for each weight-update. For each epoch, the weight 

assigned to the connections are updated with the use of backpropagation. The backpropagation 

algorithm will decide the weight update and based on wanted outcome of the model (i.e. performance 

of the model) and continue to iterate until the goal of the model performance is reached.  

2.9.2. Feedforward Neural Network (FFNN) 

A FFNN is structured with layers where information flows from the input layer, through hidden layer(s) 

to the output layer, without any loops or cycles in the network. However, depending on the number 

of layers of perceptrons, the network can be without a hidden layer, describing a single layer 

perceptron.  

1. Single Layer Perceptron 

A single layer perceptron contains only an input layer and an output layer and is the simplest form of 

neural network. A representation of the perceptron can be seen in Figure 12. 

 

Figure 12: Nonlinear model of a perceptron (neuron) 

The inputs in the perceptron (neuron) may come from the environment or be the outputs from other 

perceptrons. Each input is associated with a connecting weight, which are being summed and defined 

by an transfer function, before obtaining the output a [21, pp. 271]. 

2. Multilayer Perceptron 

This class of ANN has one or more hidden layers with computation neurons. It is called a hidden layer 

because it is not seen directly either on the input side or the output side. The purpose of the hidden 

layers is to intervene in a useful manner between the external input and output of the model, by 

computing its own activation value. How many layers the network has determines the width of the 
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model [28, pp. 165]. Each neuron in the hidden layers receives input from other units and computes a 

value that is being forwarded to the next layer. Figure 13 represents a network with two hidden layers. 

 

Figure 13: Multilayer feedforward neural network with two hidden layers 

All inputs are each connected to the first hidden layer, but not to each other. The input then passes 

through the transfer function of the perceptrons (neuron) and are passed on to the next layer, until it 

reaches the output layer. The model learns by updating the weights (backpropagation). This algorithm 

helps the model to learn and update the weights in order to increase the efficiencies [21, pp. 279]. The 

network illustrated in Figure 13 can be referred to as a 3-4-4-1 network, as there are 3 inputs, 4 hidden 

neurons in first hidden layer and 4 in second, and 1 output.  

In practice, it is more common to only use one hidden layer of neurons as a network with more than 

one layer makes the network quite complicated to analyze. But if a hidden layer contains many hidden 

neurons, it may be sensible to go to multiple hidden layers [21, pp. 281]. 

2.9.3. Recurrent Neural Network (RNN) 

If a network includes feedback connections, it is called recurrent neural network (RNN). This type of 

network has self-connections or connections to neurons in the previous layers, in contrast to a 

feedforward network which only sends information in one direction. RNN acts as a short-term 

memory, allowing the network to remember what happened in the past [21, pp. 305-306]. The 

difference between a recurrent network and a feedforward network is illustrated with Figure 14. 

 

Figure 14: Recurrent (left) and feedforward (right) neural network [29] 
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2.10. ANN MODEL DEVELOPMENT PROCESS 
There are several steps that can be followed in the process of developing an artificial neural network 

(ANN). Depending on the available data and what is desired to achieve from the model, the method 

can vary. In the following subsections, a brief description of the steps in developing an ANN model will 

be presented, based on Figure 15. The four first steps in Figure 15 can be considered the data-

preprocessing part, and the three last can be considered dealing with the ANN models. The 

descriptions have been based on Maier et al. [30]. 

 

Figure 15: Steps in ANN model development process 

According to Maier et al. [30], all ANN prediction models take the term in equation (11): 

 𝑡 = 𝑓(𝑎, 𝑊) +  휀 (11) 

where t is the model output (target), f(a,W) is the functional relationship between model outputs, 

inputs and parameters, a is the model inputs, W is the connection weights and ε is the model error.  

f(a,W) will be governed by the model architecture and geometry (e.g. number of hidden layers and 

neurons, type of transfer function) and the parameters need to be defined. 

2.10.1. Choice of Potential Inputs and Targets 

Depending on available parameters/data, the input selection possibilities will be restricted. If a model 

is to be based on weather parameters, it is important to identify what parameters and how much data 

is available. The target (output) of the model is to be based on the input variables. 

2.10.2. Data Processing 

Having the input selection determined, processing of the data should be performed. This step is 

important to be certain that the training of the model is based on correct, unbiased data. This step 

includes gathering data and processing it before using it in an ANN model. It can also be necessary to 

scale the data that will be used as input variables, to avoid problems with assigning weights for data 



Power Prediction of Photovoltaic System using Neural Network Models 

 

19 

 

on different scales. This can be done by standardizing the data, allowing an input selection without 

extreme differences in maximum and minimum values.  

2.10.3. Input Selection 

This can be a model-free approach, which uses statistical measures of significant, or model-based 

approach, that choose the input variables based on the performance of the model. The first approach 

can use methods for dimensionality reduction, which can exclude variables providing redundant 

information because the variable is closely related to another input variable. This can increase the 

likelihood of overfitting (overtraining) [21, pp. 120]. The latter approach will involve training and 

evaluating the model several times to observe what provides the best performance of a trained model.  

2.10.4. Data Division 

Data division involves dividing the data samples into sub-sets for the training process. A data division 

usually involves three sets; a training, validation and test set. The training set will be used to train the 

model, or in other words, assign the connection weights. The validation set can be used as a stopping 

criterion (also called early stopping), so the model will stop altering the weights as a performance 

indicator have failed to improve. A test set will be used as an unseen data set for the model to test 

new data to observe the performance of the model. How this division is decided can be evaluated with 

the use of statistical properties, or by using random division. The latter case can make it difficult to 

compare the performance of different model configurations, as it is uncertain if the model is able to 

capture the relationship and generalize it, depending on different pattern in the validation set.  

2.10.5. Model Architecture 

The most popular architecture is the feedforward multilayer perceptron model, due to its complexity 

and ability to generalize data. To estimate the relationship between input and output variables, the 

model architecture has a significant impact. 

2.10.6. Model Optimization and Evaluation 

The optimization of the model can be divided into three main aspects: 

I. Model structure selection 

II. Model calibration 

III. Performance evaluation 

The model structure, along with the model architecture, defines the functional form (f(a,W) from 

equation (11)) of the relationship between the inputs and output(s) of the model. The optimal network 

structure can be obtained, generally by finding a balance between generalization ability and network 

complexity. Having too low complexity of the model, e.g. network size and number of free parameters, 

the network might have problems capturing the desired input-output relationship. However, if a too 

complex network structure is used, the generalization ability and processing speed might decrease, 

resulting in a model that is more difficult to calibrate and less transparent.  

The calibration of the model has the aim to find a set of connection weights that represent the desired 

input-output relationship in a best way possible. Overfitting can be of an issue, but where optimal 

generalization ability is achieved when a suitable error measure between actual and predicted outputs 

in a test set is minimized. This applies if the data in the training and testing set are representative of 

the modelling domain.  
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Overfitting is a phenomenon when a model learns too many input-output examples, resulting in a 

network finding a feature (i.e. noisy data) in the training data, memorizing this feature that is not true 

of the underlying function that is to be modeled. Thus, a model will lose its ability to generalize 

between similar input-output relationship. Figure 16 illustrates the generalization ability of a model 

based on overfitting and underfitting [31, pp. 164-165]. 

 

Figure 16: Overfitting and underfitting versus good generalization (optimum) 

The performance evaluation of the model calibration can be assessed by evaluating one or more 

criteria. Maier et al. [30] suggests that if overfitting is a concern, the test data should be used for 

evaluating the model.  
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3. METHODOLOGY 

This section explains the progress followed in this work. The case study for this work will first be 

presented, along with a brief description of the instrumentation at the system. For the Artificial Neural 

Network (ANN) models to be based on valid datapoints, various pre-processing techniques was used 

on the relevant variables. A feedforward neural network with backpropagation in MATLAB have been 

chosen to create a model for each of the PV-module types located at Kjøita, Kristiansand. As there are 

several weather parameters measured at the location, it will be relevant to investigate which of the 

variables are of importance to the model and if there are any lagging values related to these variables, 

worth considering. The method for creating a model will be a model-based approach for establishing 

an optimal number of hidden neurons and hidden layers, depending on performance parameters. The 

models are to be tested with forecasted weather parameters to observe the performance of the 

models by also including possible errors from weather forecast deviations. This will be elaborated in 

more details in the upcoming subsections. 

3.1. CASE STUDY – KJØITA PV SYSTEM 
The data was obtained from a research project at the headquarters of Agder Energi in Kristiansand (PV 

system owner) performed in collaboration with several partners including the University of Agder [32]. 

The PV modules are installed on top of Agder Energi’s headquarter located in Kjøita, Kristiansand, 

south in Norway (lat. 58.154, long. 8.001 and altitude 20 m). The PV system consists of two different 

PV technologies with three different PV cells suppliers. The total system is illustrated in Figure 17 and 

key information regarding the PV modules relevant for this work can be found in Table 1. 

 
Figure 17: Instrumentation and data collection overview at Kjøita, Kristiansand (appendix A.1) 
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Table 1: Key information regarding PV system at Kjøita 

PV module type PV 
technology 

Efficiency 
(ηSTC) 

Installed power 
(kWp) 

Area 
(m2) 

No. 
modules 

Suntech STP225-20/Wd Poly-Si 13.6% 5.40 1.65 24 

Sharp NA-F135 (G5) a-Si 9.5% 2.43 1.42 18 

REC 225PE Poly-Si 13.6% 5.40 1.65 24 

 
The three PV module types are connected to three different inverters, logging data separately. For the 

Suntech (of type Elkem Solar Silicone) and REC modules (of the traditional Siemens-process type), the 

inverters have two strings with 12 modules connected in each, while Sharp has 9 modules connected 

in each. At the same time as the inverter is logging data, sensors are also measuring the DC and AC 

current and voltage (see Figure 17). An overview of the parameters measured at Kjøita PV system can 

be found in Table 2 and an illustration of the PV modules on the roof of Agder Energy’s headquarter 

can be found in Figure 18. Technical data for the PV modules can be found in appendix A.2. 

Table 2: Parameters logged at Kjøita PV system 

Parameter Unit 

Global horizontal irradiance W/m2 

Diffuse horizontal irradiance W/m2 

Global tilted irradiance W/m2 

Wind speed m/s 

Wind direction - 

Air temperature °C 

Module temperature (mid- and end-of-array) °C 

Current (AC and DC) A 

Voltage (AC and DC) V 

 

 
Figure 18: PV system on rooftop of Agder Energi’s headquarter, Kjøita (appendix A.1) 
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The inverters installed are of type Eltek Theia HE-t series where a capacity of 4.6 kWp was installed for 

the m-Si modules Suntech and REC (with a maximum efficiency of 97.3%) and a capacity of 2.9 kWp for 

the Sharp thin film modules (maximum efficiency of 97%). See appendix A.3 for datasheet. A Campbell 

Scientific Datalogger CR1000 with AM416 Multiplexer is used to record the measurements in the 

datalogging system. The irradiation sensors used are 3 x Kipp&Zonen CMP 11 secondary standard 

pyranometers with CVF3 ventilation units, measuring global tilted irradiance (GTI). A Kipp&Zonen 

SOLYS2 two-axis tracker with shading ball assembly measure the global horizontal irradiance (GHI) and 

diffuse horizontal irradiance (DHI). Temperature sensors are mounted on the back of the modules. The 

sensors are six Campbell Scientific 110 PV surface temperature probes. There are installed 2 

temperature sensors for each type of PV modules, one on the module at the end of the array and one 

on the module in the middle of the array. To measure the ambient temperature, wind speed and 

direction, an R.M. Young 5103 instrument from Campbell Scientific is installed. The DC and AC voltage 

and current for the three PV arrays are measured with transducers from LEM and Phoenix. 

3.1.1. Solar Irradiance and Power Production Relationship On-Site 

Power production from PV systems have proven to be linearly correlated with solar irradiance. Module 

temperature have also been proven to affect the efficiency of a solar cell, where parameters such as 

solar irradiance, air temperature and wind speed thus have an effect of the module temperature [9, 

11]. Figure 19 illustrates the relationship between solar irradiance and power production for each of 

the PV modules for two random days. 

 

 

Figure 19: Relationship between solar irradiance and power production 

The same trends (the behavior of irradiance related to the power) can be observed for all the PV 

modules and the solar irradiance. An increase of solar irradiance appears to result in an increase in 

power, and opposite, a decrease of irradiance corresponds to a decrease of power production. The 

power production from Sharp PV modules are naturally lower compared to Suntech and REC, due to 

lower installed power and number of modules installed.  
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3.2. FORECASTED WEATHER PARAMETERS 
The forecasted weather information is gathered from MEPS (MetCoOp Ensemble Prediction System), 

which is an atmospheric ensemble model that covers Scandinavia and the Nordic seas. MEPS is the 

cooperation around numerical weather prediction between Sweden, Norway and Finland, established 

in 2011. The forecasts are updated every 6 hours daily, with three-hourly cycling for data assimilation 

and a horizontal resolution between 1 and 2.5 km and a forecast horizon of 67 hours. Boundary 

perturbations are generated from European Centre for Medium-Range Weather Forecasts (ECMWF) 

using the SLAF (Scaled Lagged Average Forecasting) method, which is a scaling method of the forecasts. 

The data is offered by the Norwegian meteorological institute and freely available to the public for use. 

For more detailed information regarding the forecasted weather information, it is recommended to 

review [33]. 

Data was only available from November 2016 as earlier forecasts were no longer saved in the database. 

The forecasted weather parameters available from MEPS that could be used for this purpose are 

presented in Table 3.  

Table 3: Forecasted weather parameters from MEPS 

Parameters Unit 

Accumulated downward surface shortwave radiation J/m2 

Wind speed (10 m, x-direction) m/s 

Air temperature (10 m) K 

The accumulated downward surface shortwave radiation was processed in such a way that it was on 

hourly basis and provided the global horizontal irradiance [W/m2]. The wind speed and air temperature 

were predicted at 10 m above the ground, whereas Kjøita PV system is mounted 20 m over the ground 

(roof of the building). Obstacles such as trees and buildings can cause turbulence and therefore vary 

by height above ground level. The wind speed is averaged over one hour, which was considered to 

provide a decent estimation of the wind speed at 20 m. The forecast update at 06:00 UTC for relevant 

days was obtained, thus a two-day ahead forecast horizon could be used. Difference in the time zone 

(Norwegian time is thus UTC+2/+1 hour(s), depending on time of year) was considered when using the 

forecasted data. The forecasted weather data along with the actual measured weather data can be 

found in appendix A.4. 

3.3. DATA AND MODEL STRUCTURE 
To meet the goal of this work, the software MATLAB was the main tool used for this purpose. MATLAB 

has implemented different machine learning toolboxes that provide additional algorithms for training 

a network, such as a feedforward neural network. An overview of the toolboxes used for machine 

learning and deep learning in MATLAB, can be reviewed in [23]. 

Figure 20 presents a flowchart of the workflow pursued in this work. Before ANN models could be 

implemented, the dataset had to be pre-processed, including filtering of non-valid data recordings 

from the data logging center. Another part of the data pre-processing is the division of the data into 

training, validation and testing set, as well as standardizing the data to better fit in an ANN model. 
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After the pre-processing, implementation and optimization of the models were performed, before the 

trained models were tested with historic on-site data and historic forecasted weather data. These 

steps will be described in more details in the following subsections. 

 

Figure 20: Flowchart of work approach 

3.4. DATA PRE-PROCESSING 
Before any pre-processing of the raw data, there were 2 878 626 timesteps (samples) for 25 different 

variables. To prepare the data for a neural network model, different approaches were performed to 

filter out data with low validity or known biases in the dataset. The methods used for data pre-

processing will now be explained and is illustrated in Figure 21.  

 

Figure 21: Pre-processing of dataset 

Figure 21 illustrates there are three different datasets used in this work; inverter data, sensor data and 

MEPS data. The inverter data was obtained on a monthly basis measured by the inverters on-site, the 

sensor data are measured on minute-basis by AC and DC sensors on-site and the MEPS data is the 

forecasted weather parameters, on hourly basis. The sensor data went through a filtering process, 

which will be explained below, and the data were validated with one another. The inverter data was 

considered valid, allowing the sensor data to be validated on a monthly basis. The forecasted data from 

MEPS were compared with the filtered, validated data. Parameters from these datasets were used for 

input selection which is divided into two parts; model-free and model-based approach. The model-

free approach involves principal component analysis (PCA) and average mutual information (AMI), 

which will be explained in following subsections. The model-based approach will be based on the ANN 

model performances and from this include additional input variables if necessary. As the input 
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selection has been decided, the relevant data samples will be divided into different sets for ANN 

training purposes and standardized. 

3.4.1. Data Filtering 

The data filtering was performed in two parts;  

Filtering of times without sunlight 

For the ANN models to only consider datapoints where the PV modules produce power from sunlight, 

samples before sunrise and after sunset were removed from the dataset. This process was performed 

by using one of MATLAB’s functions, created by Mahoot and can be found in [34], to calculate times 

of sunrise and sunset each day of the year at the exact location. The longitude, latitude and time zone 

were considered in this process. The MATLAB code for removal of times without sunlight in PV system 

dataset can be found in appendix A.5.  

Filtering using maintenance log 

For a PV system to operate at its best, service and maintenance is crucial to avoid additional losses. 

For certain periods of time, the system has various reasons for not operating or the sensors did not 

give valid measurements. The maintenance log was therefore thoroughly reviewed and datapoints 

that were not considered valid filtered out from the dataset. Not valid datapoints could be times where 

sensors were calibrated, a software update of the inverter was necessary or e.g. cleaning the module 

surface which could influence the performance during this period. All comments in the maintenance 

log were double-checked with a visualization of the logged data, and at times where vague comments 

in the log presented, it was taken a decision on whether to keeping the sample in the data set or not. 

As it was desired to keep as much data as possible, but not keep data that could influence the precision 

of an ANN model, all decisions were carefully considered. In case of doubt, data was removed from 

the set. See appendix A.6 for the MATLAB script created for filtering of data. 

3.4.2. Data Validation 

The sensor calibration of the voltage, VOC, and current, ISC, (AC and DC) was reported to have had some 

complications, which resulted in data samples that were uncertain. In a preliminary study with 

characterization of the relevant PV system done by Lie [4], the DC power was measured as lower than 

the AC power, which should not be the case due to losses. The DC measurements were not considered 

further in this work, as the sensors were not measuring valid values. The AC power calculated from IAC 

and VAC were compared to the logged data from the inverter. Because the sensor-data had some issues 

with the calibration of the sensors, it was desired to check the validity of the values. To do this, 

recorded data from the inverters measured on monthly basis was available for cross-checking.  

3.4.3. Input Selection 

The input variables that were used in the ANN model were chosen based on three main aspects: 

1. Available on-site and forecasted weather parameters 

2. Results from model-free approaches; principal component analysis (PCA) and average mutual 

information (AMI) 

3. Model-based analysis comparing performance from training ANN models 

Also, information obtained from literature review have been used to select input variables. Liu [9] 

evaluated the irradiance and air temperature’s effect on power output and Kaldellis [11] evaluated the 
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air temperature and wind speed’s effect on the output. Both indicating correlation between solar 

irradiance and power, and an effect from temperature. The module temperature would be affected by 

other parameters, such as the solar irradiance, wind speed and technical characteristics of relevant PV 

panels.  

Input selection based on number 1 and 2 listed above was chosen before the actual training and testing 

of the ANN models. After observing some of the prediction results based on these two aspects, it was 

decided to use a model-based approach to include another input parameter, the air mass. If the 

performance parameters would improve by including air mass, this would also be part of the input 

selection of the models. 

Because there are three different types of PV modules installed on the roof, three different models 

will be trained. Suntech and REC are of the same material and have the same installed capacity but is 

from two different manufacturers. The Sharp modules, however, is of thin film material and have a 

lower installed capacity. The input selection for the three modules will be the same and based on the 

three criteria listed above.    

As the forecasted parameters included the air temperature, it was decided to use the air temperature 

measured on-site to train models. Based on Kaldellis. [11], the wind speed had an effect on the module 

temperature of the cells, and could have an impact on the modules behavior. It was thus decided to 

use air temperature along with wind speed, opposed to module temperature as this would need 

additional calculations, which could introduce errors the models would be trained on.  

The initial assumption of which parameters that should be included in an ANN model is presented in 

Table 4. 

Table 4: Initial assumption of input and output parameters of ANN models 

Inputs Output 

𝐺𝐻𝐼, 𝑊𝑆, 𝑇 𝑃𝐴𝐶  

In Table 4, GHI is the global horizontal irradiance, T is the air temperature and PAC is the AC power 

production from the relevant PV modules. 

3.4.4. Air Mass (Model-Based Approach) 

The air mass was calculated as it could be used as an input variable in the ANN models. The air mass 

will give an indication of the sun’s location on the sky, which will vary with time. As the irradiance for 

a horizontal surface (GHI) was available from the weather station parameters, the air mass can 

contribute with information regarding the spectral variations. Meaning different conditions can give 

the same GHI-value and by including air mass this will provide information regarding the sun’s position. 

To calculate the most accurate values for air mass, equation (2) from subsection 2.3 in the theoretical 

background was used. For the early morning hours and late evening hours, the sun’s zenith angle is 

high, meaning the sun is close to the horizon. For these calculations, a zenith angle between 0 and 90° 

was used, where 90° is at the horizon and 0° is right overhead.  

As there are uncertainties related to air mass calculations at times when the sun is close to the horizon, 

the equation did at some early and late hours indicate a zenith angle higher than 90°. This error was 

corrected by scaling the zenith angle, allowing the value to become just below 90°. This will only occur 
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at times when few measurements were included within the relevant hour, because of the time of 

sunrise or sunset and the power production is significantly low.  

This calculated air mass is supposed to give the model an indication to where the sun is on the sky 

relative to the earth surface, but as the models were trained it was noticed some outlier predictions 

where the air mass was suspected to interfere in a negative way. Because of this, the models were also 

tested by including a safety margin related to the air mass. This would make the highest possible zenith 

angle equal to 89° and used to avoid having high air mass values. See appendix A.7 for MATLAB script 

including calculations. 

3.4.5. Principal Component Analysis (Model-Free Approach) 

Having a dataset with several variables, it could be difficult to evaluate the importance of each variable. 

Principal component analysis (PCA) is a method that seeks to maximize the variance and ensure that 

the variables are independent of one another. This can eventually yield a better test or give more 

stable estimates of regression coefficients [35]. As mentioned in subsection 2.10 (ANN Model 

Development Process) regarding input selection, having more input variables than necessary can 

increase the likelihood of overfitting.   

PCA seeks to maximize the variance with an unsupervised method and can be used when several 

measurements are made on each individual or object in one or more samples. The principal 

components are the eigenvector of the covariance matrix of the input sample with the largest 

eigenvalue  [21, pp. 120-123]. 

Calculation of principal components can follow these steps: 

1. Standardization of data 

2. Compute covariance matrix 

3. Compute eigenvectors and eigenvalues of the covariance matrix 

4. Evaluate the principal components’ explained variance 

As the PCA has as many principal components as there are variables in the dataset, the principal 

components will present the dimension in which the variance of the entire dataset is explained. The 

first component will explain most of the variance and the second will explain the second most and so 

on. The last principal component, which explains the least of the variance in the dataset, will thus be 

evaluated if it is necessary to include in final input selection.  

Figure 22 illustrates the two principal components of a dataset including two variables. 
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Figure 22: Principal components of a two-dimensional dataset 

In MATLAB, PCA can be calculated with the following procedure (equation (12)) , which follows the 

four steps above [36]. 

 [𝑐𝑜𝑒𝑓𝑓, 𝑠𝑐𝑜𝑟𝑒, 𝑙𝑎𝑡𝑒𝑛𝑡, 𝑡𝑠𝑞𝑢𝑎𝑟𝑒𝑑, 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑]  =  𝑝𝑐𝑎(𝑋) (12) 

where: 

coeff = p-by-p matrix where each column contains coefficients for principal component 

score = matrix with principal component scores, rows = observations, columns = components 

latent = eigenvalues of the covariance matrix (variances) of X 

tsquared = Hotelling’s T-Squared Static, sum of squares of the standardized scores of each observation 

explained = Total variance explained by each principal component, in percentage 

X = Matrix with dataset, rows = observations and columns = components 

See appendix A.8 for script created in MATLAB to calculate PCA. 

3.4.6. Average Mutual Information (Model-Free Approach) 

Given knowledge of one variable (X), mutual information quantifies the dependence of another 

random variable (Y) [37]. These variables must be sampled simultaneously, and the mutual information 

can intuitively be information of how much one variable says about another. One theorem of the 

mutual information states that the mutual information between two variables is zero if they are 

statistically independent [38]. The AMI uses the variable’s joint density function p(x,y) relative to their 

marginals, p(x) and p(y), to be defined as the negative of the entropy where entropy is a function which 

attempts to characterize the “unpredictability” of a random variable [37, p. 15, 38].  

The mutual information can be calculated by using equation (13). 

 
𝐼(𝑋, 𝑌) =  ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)𝑋,𝑌
 (13) 

where p(x) and p(y) are the marginal distributions of X and Y, and p(x,y) is the joint density function of 

X and Y. 
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AMI does not provide a finite value as a correlation coefficient does (usually an absolute value between 

0 and 1). The mutual information provides a value that can range from 0, meaning complete 

independence, to infinity for completely correlated and continuous pair. 

To calculate the AMI for the different input variables relative to AC power output from the dataset, 

some processing of the data samples had to be done. Because the AMI calculations are based on a 

continuous dataset, whereas data from Kjøita was discontinuous because of the pre-processing (e.g. 

filtering out hours without sunlight present), some alteration of the data samples were needed before 

implementing the AMI function. Variables that were used for AMI calculations were the solar 

irradiance (GHI), ambient temperature and the wind speed, that were compared with the power (AC). 

If these inputs were to have any lagging values, meaning that they are influenced by previous 

measurements, the AMI can reveal this, and the lagging values should be included as input in the ANN 

model.  

The AMI calculations were based on Thomas et al. [37]. This calculation requires continuous samples, 

where some adaptation of the data used in the calculations would have to be done. See appendix A.9 

for MATLAB script used for calculations related to AMI. 

3.4.7. Data Standardization 

For the input and output variables presented in Table 4  to be suitable to an ANN model, they were 

standardized. The standardization method used had the properties such that the mean would be 

approximately equal to zero and the standard deviation approximately equal to one for each of the 

features, see equation (14). 

 
𝑍 =  

𝑥 −  �̅�

𝑆𝑇𝐷
 (14) 

where Z is the scaled score,  �̅� is the mean and STD is the standard deviation associated to x.  

3.4.8. Data Division 

The data was divided into training, validation and testing set with a 70% training, 15% validation and 

15% testing. It was desirable to see whether a random data division would give a fair representation 

of the entire dataset, meaning that no matter how the dataset was divided, approximately the same 

coefficient of variation was achieved. To calculate this coefficient, equation (15) was used. 

 
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  

𝑆𝑇𝐷

�̅�
 (15) 

where STD is the standard deviation and �̅� is the mean.  

These coefficients can be compared by testing different randomizations of the data samples (i.e. 

shuffling the lines).  All lines in the data sets were randomized until a low deviation between the 

coefficients was reached. To evaluate a suitable data division, the absolute relative error between the 

coefficients of variation was found by using the absolute relative error equation, see equation (16). 

 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  |

𝛥𝑥

𝑥
| = | 

𝑥0 − 𝑥

𝑥
| (16) 

where Δx is the error, x is the true value and x0 is the inferred value. 

It was decided that an absolute relative error lower than 3% would be appropriate and the lines were 

shuffled until this criterion was reached. How the data division was performed in MATLAB can be seen 
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in appendix A.10, presenting an example from using the Suntech PV modules. This procedure was done 

for each of the PV modules. 

3.5. MODEL ARCHITECTURE 
An ANN (feedforward neural network) in MATLAB has these main aspects to consider when developing 

a model: 

• Transfer function 

• Training algorithm (backpropagation algorithm) 

• Number of hidden neurons 

• Number of hidden layers 

• Number of epochs 

• Weight initializer  

• Validation check 

For a model to be created and fit the purpose of this work, a method with trial and error was used. As 

there are several configurations that are included in creating an ANN model, it was decided to keep 

some constant and vary others to see which would provide the best model based on lowest mean 

square error (MSE). See Table 5 for an overview of constant configurations. 

Table 5: Constant parameter configurations for model training 

Parameter Configuration 

Network Feedforward 

Data division (training-validation-testing) 70-15-15 

Training algorithm Levenberg-Marquardt 

Transfer function (hidden layer(s)) Tansig 

Transfer function (output layer) Tansig 

Weight Initializer Random 

Maximum epochs 1000 

Validation check (MSE) 1000 

Runs 50 

Each test was run 50 times, to account for variation of the initialization weights (the weights the models 

starts with to train a model will differ as they have random initialization). Other configurations than in 

Table 5 were tested, but as the result did not give valid output results or provided low performance 

parameters, these configurations were discarded. These configurations included input selection, 

different transfer functions and validation checks as well as number of hidden neurons and layers. 

Results regarding this will be briefly presented in the results and discussion section. 

Beside the constant configurations of the model, two configurations were changed to find the optimal 

model based on lowest mean square error (model-based approach): 
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I. Hidden layers 

II. Hidden neurons 

To be able to decide these two configurations, it was created 7 different tests. The tests can be seen 

in Table 6 and were decided based on a trial and error method and to include a high number of neurons 

and low number of neurons.  

Table 6: List of tests for optimal training configuration 

Test number Neurons in  

hidden layer 1 

Neurons in  

hidden layer 2 

1 8 - 

2 10 - 

3 20 - 

4 30 - 

5 50 - 

6 10 2 

7 20 2 

As there was no previous experience with testing a feedforward neural network, the configurations 

were chosen based on results from learning how to use the MATLAB toolbox, and a variation between 

a low and large number of hidden neurons to see how the model performance changes.  

Two additional tests were also performed but discarded as they did not appear to give good 

performance results based on a few training rounds. Tests that were discarded: 

I. 4 neurons in one hidden layer 

II. 120 neurons in one hidden layer 

Results from this will be commented in the results and discussion section of this thesis. 

To find the model that gives the lowest mean square error, all configurations except those listed in 

Table 6, were kept constant.  

3.5.1. Model Optimization (Early Stopping) 

For the model to avoid overfitting (overtraining) the network, it was needed to stop the training before 

this would occur. The training was therefore provided with a validation set, which would indicate when 

the network started to overfit, by stopping at a mean square error (MSE) value which would not 

improve after several new iterations. To find the best model, the validation check was set to 1000, as 

shown in Table 5. MATLAB’s default configuration for this validation check was at 6, but with some 

experience by training the model several times, it was decided to use a high validation check to be able 

to obtain the lowest MSE. 

3.5.2. Training Algorithm (Backpropagation) 

The backpropagation algorithm chosen was based on MATLAB’s recommendations with respect to 

training time and memory requirements. As a model can be trained using different training algorithm, 
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it was for this work decided to work with and optimize the model based on one training algorithm. The 

algorithm chosen was the Levenberg-Marquardt algorithm, as this is often the fastest backpropagation 

algorithm in the Deep Learning Toolbox and highly recommended as a first-choice supervised 

algorithm, according to documentation provided by MathWorks [27]. 

The Levenberg-Marquardt algorithm is implemented in the feedforward toolbox and is well suited for 

a network where the mean squared error (MSE) is the performance index. The algorithm uses small 

steps to update the weights and with each epoch checks the error. If the error has increased or 

decreased, the steps for updating the weights are changed accordingly to eventually obtain 

convergence where minimum error is found [39]. 

3.5.3. Transfer Function 

The transfer function used for hidden layers and output layer was tansig (hyperbolic tangent Sigmoid). 

This function deals with both negative and positive values, as this was necessary due to standardized 

input and output data. The default function in MATLAB was the purelin, which was first tested to 

observe the model performance. It was discovered that by using this function, the model could make 

predictions that would get non-valid results such as negative power production. The logsig function 

was also tested, but also provided non-valid results. Results related to this will be briefly presented in 

the results and discussion section. 

The equation for the tansig-transfer function is shown in equation (17), which describes the 

input/output relation. 

 
𝑎 =  

𝑒𝑛 − 𝑒−𝑛

𝑒𝑛 + 𝑒−𝑛
 (17) 

where a is the output and n is the input. 

3.5.4. Model Evaluation 

To select a model, the mean squared error (MSE) would be compared for the seven tests (see Table 6) 

performed for each of the PV modules. In order to evaluate the performance of these tests, metrics 

mean square error (MSE), R-squared (R2), mean absolute relative error (MARE), mean absolute error 

(MAE) and mean bias error (MBE) will be included. All performance parameters will be calculated by 

using the standardized data. 

The network performance for a feedforward neural network is evaluated by calculating the mean 

square error (MSE), which in MATLAB uses the function immse, see equation (18).  

 
𝑀𝑆𝐸 =

1

𝑁
∑(𝑡𝑖 − 𝑎𝑖)2

𝑁

𝑖=1

=  𝑖𝑚𝑚𝑠𝑒(𝑡𝑖 , 𝑎𝑖) (18) 

where N is number of outputs, ti is the target outputs and ai is the network outputs [27]. 

R2 represents the statistical measure of how the variance of one dependent variable is explained by 

variables in a regression model and is calculated with equation (19). 

 
𝑅2 = 1 −  ∑

(𝑎𝑖 −  𝑡𝑖)2

(𝑡𝑖 − 𝑡�̅�)2

𝑖

 (19) 

where 𝑡�̅� is the mean target value, ai and ti as in equation (18). 
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Mean absolute relative error (MARE) is calculated with equation (20), mean absolute error (MAE) with 

equation (21) and the mean bias error (MBE) with equation (22). 

 
𝑀𝐴𝑅𝐸 =  

1

𝑁
∑ |

𝑡𝑖 − 𝑎𝑖

𝑡𝑖
|

𝑁

𝑖=1

 (20) 

 
𝑀𝐴𝐸 =  

1

𝑁
∑(|𝑡𝑖 − 𝑎𝑖|)

𝑁

𝑖=1

 (21) 

 
𝑀𝐵𝐸 =  

1

𝑁
∑(𝑡𝑖 − 𝑎𝑖)

𝑁

𝑖=1

 (22) 

where N, ti and ai is as in equation (18). 

3.6. TESTING OF THE ANN MODELS 
After having the seven tests with the evaluation parameters described in subsection 3.5.4 Model 

Evaluation, it will be possible to decide which of the model configurations (number of hidden layer and 

hidden neurons) that provide models with lowest mean square error (MSE). This model configuration 

will then be used with new data sets (a hold-out set and weather forecast data) and observed how the 

models perform.  

For the final part, it was desired to test the models with historical forecasted weather parameters. 

Historical data from 24. April-30. April 2017 was obtained, which allowed for a two-days ahead forecast 

horizon for the 26.-30. April and a one-day ahead forecast horizon for 25.-30. April (as there was not 

obtained data from two days ahead of 25. April). As the ANN model should have been optimized as 

much as possible with the previously stated criteria, the prediction output of the model should mostly 

be influenced by the forecast error. A two day ahead forecast is expected to have a higher error 

compared to the one day ahead forecasts, due to more uncertainties in weather conditions.  

Different MATLAB scripts with ANN models were created for each of the PV modules, to see an 

example of how this code was developed, see appendix A.22, which uses data from Suntech PV 

modules. 

3.7. CHOICE OF METHOD 
There are several ways to find a well performing model and its model configurations. Several methods 

can be time consuming, which is why a model-based method have been the main focus in this work, 

with the goal to obtain the lowest mean square error (MSE) by comparing the models. 

Recommendations from previously done research and MATLAB’s neural network toolbox guide have 

also been an influencer to decisions that have been made throughout the process (e.g. training 

algorithm).  

Throughout the testing of the different model configurations, certain aspects were discovered that 

would compromise the model performance by reducing its performance. As most of these aspects 

have been discussed throughout this subsection, the main attributes to deciding ANN model 

configurations used in this work are listed below, along with parameters tested. 
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I. Input selection 

1. Without air mass 

2. With scaled air mass 

3. With maximum air mass (≤ 89°) 

II. Transfer function 

1. purelin 

2. logsig 

3. tansig 

III. Validation checks  

1. 6 

2. 1000 

IV. Number of tests 

1. Seven 

2. Nine (including 4 and 120 hidden neurons in one hidden layer) 

The highlighted configurations were those that provided a model performance of satisfaction, and 

results related to this will be presented in results and discussion section.  

Other limitations were also needed to be able to achieve results in this work, whereas some could be 

part of reducing the model performance. One aspect that was not included in this work, that could 

give large deviations on certain days, is the precipitation. During times with heavy snowfall where the 

snow remains on the PV modules, a large deviation will occur if the sun starts shining as there will be 

no production. This should be considered when evaluating the model performances, if large errors 

occur.  

Grid search is a method that goes through several hyperparameters, testing several different 

parameters at the time. This method has not been applied in this work as the only changing parameters 

were the hidden layers and neurons. It was thus decided to test with certain compositions of these 

parameters and evaluate the models based on this.  

Underfitting and overfitting can be of an issue if the model is being overtrained. High epochs can cause 

this, but as a validation set has been applied in the training phase, this was considered a low risk. 

Based on this, a method that uses model-free approaches, such as for the principal component analysis 

and the average mutual information, was performed before the network training. And a model-based 

approach for the testing of the hidden layers and neurons, as well as including one extra input 

parameter (air mass).  
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4. RESULTS AND DISCUSSION 

Based on the progress described in section 3 Methodology, results from this will now be presented. 

The input selection along with the ANN model specifications will firstly be presented. Results related 

to the training of the models will then be presented, followed by results from the models being tested 

with the forecasted weather data obtained from MEPS (MetCoOp Ensemble Prediction System). The 

model performances will be discussed along the way. The performance parameters are all calculated 

based on the standardized data. All model structures (number of hidden layers and neurons) will be 

referred to without including number of input variables, as this is constant for all (e.g. 5-5-1, meaning 

5 hidden neurons in first and second layer, and 1 in the output layer). 

4.1. INPUT SELECTION 
The input selection for the ANN models were, as mention in section 3 Methodology, based on available 

data on-site and from MEPS’ weather forecasts, model-free approach and model-based approach. The 

input selection from the model-free and models-based approaches with the available data will in the 

following subsections be presented. 

4.1.1. Principal Component Analysis (Model-Free Approach) 

The principal component analysis (PCA) were to find the dimensions where most of the variance in the 

dataset was explained. Depending on the last principal component and its percentage of variance 

explained, it will be assessed if the dimension (variable) is necessary to include in the input selection. 

Figure 23 shows the principal component analysis based on three variables, global horizontal 

irradiance, wind speed and air temperature. 

 

Figure 23: Pareto-chart of principal components 

Figure 23 indicates that in order to explain the variances of the dataset, all three dimensions (variables) 

should be included. As the last component explains approximately 18% of the variance, this should 

also be included even though it explains the least. Nevertheless, this does not directly mean that these 

three variables explain the output power, it means that to explain the variance of the dataset provided 

to the principal component analysis, all three dimensions must be included. 
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4.1.2. Average Mutual Information (Model-Free Approach) 

The average mutual information can reveal if there is a non-linear correlation between the input 

parameters and the output, with regard to time lag. Figure 24 presents the AMI between the global 

horizontal irradiance, air temperature and wind speed, relative to the AC power production. To 

calculate this, 500 days was used in order to obtain the AMI.  

 

Figure 24: Average mutual information with a 4-hour time lag 

From Figure 24, it can be observed a higher non-linear correlation between the solar irradiance (GHI), 

and the power output compared to the air temperature and wind speed. It does not appear to be any 

lagging values on hourly basis as all graphs drop after zero time lag (at the time of measurement). This 

indicates that the past hours (up to 4 hours back in time), the variables do not influence the power and 

should not be considered in an ANN model, as the AMI value drops for each time lag.   

4.1.3. Air Mass (Model-Based Approach) 

As the air mass could be of interest due to training a model based on several seasons, this was included 

to the input selection to observe the effect. It was noticed a distinguishable pattern during morning 

hours from the test results of the trained models, with a predicted power higher than the actual power 

when air mass was not included. Figure 25 illustrates the effect of including air mass as input variable 

for two days in April 2017, illustrated with predicted power using a feedforward model for Suntech PV 

modules (from a test set).  
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Figure 25: Including air mass to input selection, red and yellow line represent power predictions 

Two days in April were used to demonstrate how the air mass affected the predicted output power. It 

is clear that the air mass contributes to a prediction output closer to the target. The predicted output 

without air mass as input appeared to have a higher prediction from sunrise to around 11:00 in the 

morning, which was a pattern that seem to occur on several occasions. As the predictions seem to 

improve, or in other words have better fitting to the target power, the air mass was decided to be 

included as an input variable for training models.  

Two different approaches were used to calculate the air mass, as explained in subsection 3.4.4, due to 

high values with a scaling method. 

4.1.4. Data Validation 

After the pre-processing of the data (described in subsection 3.4 Data Pre-Processing), the data that 

could be used in training ANN models were validated. As sensor data could at some occasions have 

unreliable measured values, this data was compared to the monthly energy data measured by the 

inverters which was considered having valid values. 

Figure 26 presents the two dataset (sensor data and inverter data) and how they can compare on a 

monthly basis for the Suntech, Sharp and REC PV modules, respectively. 
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Figure 26: Comparing monthly energy production for (a) Suntech, (b) Sharp and (c) REC 

As seen in Figure 26, certain months seem to have more deviations than others. Years 2014, 2015 and 

2016 had monthly sensor values that were comparable to the inverter data and were considered valid. 

The months March and April 2017 also had low deviations and could be used for additional testing 

purposes of the models. Other years than those mentioned, appeared to have more deviations and 

were discarded for the rest of this work. During winter months (December to February, typically), 

irradiation- and hence power output- are low, and any uncertainties and/or offsets or noise in the 

sensor data will be relatively larger compared to the inverter data. Keeping this data may affect the 

model and should thus be carefully considered when evaluating a model performance.  

For testing of the model with unseen data for continuous days, the months March and April 2017 were 

suggested to be used as test data (hold-out data), to illustrate how the models behave with typical 

values for different days. As these months have little variation from the monthly inverter data (see 

Figure 26) this was considered valid for testing purposes. This data will be referred to as hold-out set, 

as it is not part of the dataset related to the training of the models. Figure 27 presents the hourly power 

production for all three types of PV modules for the relevant months.  
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Figure 27: Suntech (a), Sharp (b) and REC (c) power production on hourly basis from hold-out set 

The comparing of the three PV modules in Figure 27, similar patterns can be observed, which also 

allows for data validation. For Sharp, Figure 27(b), it can be observed a lower power production 

compared to Suntech and REC, due to the installed capacity and number of modules, referring to Table 

1. 

Table 7 presents data samples used for training, validation and test set in the ANN models and hold-

out data that will present results from the trained model based on continuous days, along with number 

of samples for each of the PV modules. 

Table 7: Data used for model training and testing 

Data Time Samples 

Data for ANN model training 01. January 2014 - 31. December 2016 

13 275 (Suntech) 

13 303 (Sharp) 

13 290 (REC) 

Hold-out data for testing 01. March - 30. April 2017 864 (all) 

The number of samples in Table 7 for ANN model training differ for each of the PV modules. The reason 

for this is that there are some missing values (related to power production for each PV module), in the 

datasets which were not included. 

4.1.5. Final Input Selection 

By including the air mass as an input variable to the model, a distinguishable offset in the power 

prediction in the morning appeared to disappear (Figure 25), and the air mass was thus included for 

further model training. From the PCA analysis, all three variables (global horizontal irradiance, air 

temperature and wind speed) were required to explain the variance of the full dataset. The AMI 

indicated that there was no time lag for any of the weather parameters on hourly basis and no lagging 
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values were thus included. Based on these matters, the input and output variables of the models would 

be as presented in Table 8. 

Table 8: Final inputs and output for ANN models 

Inputs Output 

𝐺𝐻𝐼, 𝑊𝑆, 𝑇, 𝑨𝑴 𝑃𝐴𝐶  

In Table 8, GHI is the global horizontal irradiance, T is the air temperature, AM is the air mass and PAC 

is the AC power output. 

The inputs and output values are on hourly basis, and a graphic representation of all the variables used 

in training, validation and testing can be seen in appendix A.11. 

In Figure 58 (a) in appendix A.11, the air mass has high peaks at times when the sun is close to the 

horizon, especially during summer (June-August). In Figure 58(b), the peaks have been cut-off and it is 

easier to see the shape of the air mass during daytime at summer and winter months. These two 

different ways of calculating the air mass will be tested as input variables in the ANN models to see if 

it can improve the model further by evaluating the performance parameters.  

4.2. DATA DIVISION 
After having decided on the input selection, a division of the data into three separate sets was 

performed. These sets were divided in such a way that the training set was 70%, and validation 15% 

and test set 15% of the total data samples, after the filtering and validation of the data. The data was 

divided so that the coefficient of variation (CV) would not exceed an absolute relative difference of 3% 

when comparing the parameter for each of the sets. Table 9 presents the descriptive statistics of the 

best randomization that was used when training ANN models.  

Table 9: Descriptive statistics of the data division 

PV 
module 

Variable Training set Validation set Test set 

Mean STD CV Mean STD CV Mean STD CV 

Suntech 

GHI 229.36 232.05 0.99 222.47 226.54 0.98 226.06 229.34 0.99 

WS 2.43 1.25 1.95 2.43 1.27 1.91 2.47 1.26 1.95 

AT 11.49 6.35 1.81 11.27 6.16 1.83 11.48 6.21 1.85 

AM 11.37 17.77 0.64 11.98 18.23 0.66 11.57 17.91 0.65 

PAC 1177.83 1334.48 0.88 1140.78 1315.29 0.87 1153.98 1318.50 0.88 

Sharp 

GHI 226.69 230.51 0.98 227.03 230.74 0.98 233.18 231.98 1.01 

WS 2.42 1.25 1.94 2.47 1.25 1.97 2.47 1.28 1.94 

AT 11.44 6.29 1.82 11.51 6.30 1.83 11.43 6.29 1.82 

AM 11.55 17.90 0.65 11.17 17.60 0.63 11.55 17.60 0.64 

PAC 470.73 515.25 0.91 474.34 516.26 0.92 483.49 517.35 0.93 

REC 

GHI 229.10 231.80 0.99 223.42 225.63 0.99 224.81 230.85 0.97 

WS 2.43 1.25 1.95 2.45 1.28 1.91 2.43 1.25 1.95 

AT 11.45 6.27 1.83 11.56 6.35 1.82 11.37 6.34 1.79 

AM 11.49 17.84 0.64 11.65 18.06 0.65 11.38 18.06 0.64 

PAC 1188.15 1303.35 0.91 1152.04 1262.94 0.91 1164.58 1297.09 0.90 
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In Table 9, GHI is the global horizontal irradiance, WS is the wind speed, AT air temperature, AM the 

air mass and PAC is the AC power production. 

4.3. TRANSFER FUNCTION 
Before deciding on a transfer function that would be appropriate for the input-output variable 

relationship, different transfer functions were tested with the model configurations. Three different 

transfer functions were tested (tansig, purelin and logsig), whereas two of the three functions proved 

not to give the optimal input-output relationship. Figure 28 and Figure 29 show examples from unseen 

test data (from hold-out set of Suntech PV modules) by training models with purelin and logsig transfer 

functions, respectively, which provided the poorest relationships. 

 

Figure 28: Example of (a) 10-1 and (b) 20-2-1 configuration and purelin as transfer function 



Power Prediction of Photovoltaic System using Neural Network Models 

 

44 

 

 

Figure 29: Example of network with 20-2-1 configuration and logsig as transfer function  

Figure 28 illustrates prediction results by using purelin as transfer function in the output layer. The red 

circle in (a) marks an area where the models predicted negative power, which should never occur as 

the produced AC power is never measured less than 0. In Figure 28(b), the predicted power has high 

peaks on two occasions, which is during sunny days, but as the capacity of the inverter connected to 

Suntech PV modules is at 4.6 kWp, peaks should not be predicted this high. 

In Figure 29, the logsig transfer function was used in the output layer, and it does not provide values 

down to 0. Because the logsig function only provides values between 0 and 1 and the standardization 

of the data has values less than 0, this would not be the appropriate transfer function for the model.  

Because these two functions did not provide the wanted outcome, the tansig transfer function was 

chosen to further use in the model development. Results presented in the following subsections will 

therefore have tansig as the transfer function in hidden layers and output layer. A representation of 

the tansig function used in the hold-out set can be seen in Figure 30. 

 

Figure 30: Example of network with 20-2-1 configuration and tansig as transfer function 
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4.4. VALIDATION CHECKS 
The default in MATLAB is to use a validation check of 6, meaning if the mean square error (MSE) value 

for the validation set would not improve after six epochs (backpropagations for weight alterations), 

the model would stop training. This was found to give lower performance parameters when training 

different models compared to using a higher validation check value. Because of this, it was tested with 

1000 validations checks, meaning the model will run through all epochs (configuration set to maximum 

epochs 1000, see Table 5). Nevertheless, if the models find their optimal weights at a lower epoch, this 

will still be used as the optimal and performance parameters will be based on this. To illustrate with 

an example the difference using 6 validation checks to 1000, see Figure 31, where the y-axis is the 

percentage relative difference between the MSE values for 6 and 1000 validations checks. These 

configurations were tested with three different neuron structures; 4 hidden neurons in one layer (4-

1), 10 hidden neurons in one layer (10-1) and 20 hidden neurons in first layer and 2 in second hidden 

layer (20-2-1). 

 

Figure 31: Percentage difference MSE (6 versus 1000 validation checks), Suntech PV modules 

Figure 31 represents the mean square error deviation in percentage between a validation check of 6 

and 1000. A positive percentage indicating MSE higher for 6 validation checks, which it is in all cases. 

This illustrates that a higher MSE was obtained for all datasets in the three different configurations of 

ANN models. Illustrated with an ANN model trained with Suntech PV modules. All performance 

parameters from using either 6 or 1000 validation checks, can be found in appendix A.12. 

4.5. MODEL STRUCTURE AND PERFORMANCE EVALUATION 
The models have been trained with the seven different tests listed in Table 6 and results related to this 

will be presented in the following subsections. The models were first tested with air mass values that 

were scaled, but after observing predicted values far away from the target values, the models were 

also trained with an air mass with ϴZ ≤ 89°. This was tested to see if it could improve the model 

performances. The results from using the two different methods showed an overall improvement of 

the models by having air mass with ϴZ ≤ 89°, and performances based on this will be presented, as well 

as a regression representation of the models using the two different air masses for comparison 

purposes. 

The configurations that provided the lowest mean square error (MSE) on the test set, were chosen as 

the optimal configuration for the different PV modules and used for testing with forecasted weather 
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data. To evaluate the performance parameters, all training procedures were run 50 times to account 

for difference in initialization weights. All performance parameters will thus be presented with an 

averaged value from these tests, if not stated otherwise. 

It was previously mentioned in 3.5 in the Methodology section that tests with 4 hidden neurons and 

120 hidden neurons in one hidden layer were not included in the tests. These configurations appeared 

to have poorer performance compared to the seven tests presented in Table 6 and was therefore 

excluded from further testing. Examples from this can be seen in appendix A.13, where models were 

trained with Suntech PV modules. 

4.5.1. Suntech PV Modules 

Table 10 presents the results of the seven different tests performed using different numbers of hidden 

layers and hidden neurons.  

Table 10: Test results Suntech PV modules, averaged for 50 runs 

Performance 
Parameters 

Test set 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 

8 
neurons 

10 
neurons 

20 
neurons 

30 
neurons 

50 
neurons 

10_2 
neurons 

20_2 
neurons 

MSE 0.0503 0.0485 0.0464 0.0472 0.0481 0.0468 0.0454 

MARE 0.1167 0.1088 0.1323 0.1388 0.1405 0.1225 0.1392 

MAE 0.1434 0.1402 0.1362 0.1360 0.1366 0.1357 0.1327 

MBE -0.0054 -0.0047 -0.0043 -0.0048 -0.0050 -0.0071 -0.0070 

R2 0.9489 0.9507 0.9529 0.9521 0.9511 0.9524 0.9539 

Best epoch 313 333 381 415 522 595 584 

Time (s) 19 25 34 27 104 22 23 

All tests appear to result with performance parameters relatively similar to each other, but test 7 gave 

the lowest mean square error (MSE) of 0.0454. This test had 2 hidden layers with 20 hidden neurons 

in the first and 2 hidden neurons in the second layer. Test 7 shows that mean average relative error 

(MARE) is relatively low, corresponding to approximately 14% absolute difference between the 

predicted and target values. Mean absolute error (MAE) and mean bias error (MBE) have a value of 

0.1327 and -0.007 respectively. The MBE shows that the model overall tends to slightly overpredict. At 

last, the R2-value (coefficient of determination) is above 0.95, meaning the prediction ability is high. 

The average epoch where the model found its lowest mean square error due to early stopping, can be 

seen increasing as the number of neurons increase. The same effect can be seen on average time it 

takes the model to finish training the network (until it reaches 1000 epochs). It appears that the 

network needs more time to solve the input-output relationship as the complexity of the model 

increases.  

Table 11 presents the training, validation and test results using configurations in test 7 (20-2-1). 
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Table 11: Performance parameters for test 7, Suntech modules 

Performance 
parameter 

Test 7 20-2-1 model 

Train set Validation set Test set 

MSE 0.0461 0.0456 0.0454 

MARE 0.3531 0.0695 0.1392 

MAE 0.1323 0.1347 0.1327 

MBE 0.0003 -0.0038 -0.0070 

R2 0.9543 0.9534 0.9539 

The training set appears to have higher MSE and MARE values compared to the validation and test set, 

indicating that there are occasions with larger deviations from the target value in the training set. 

MARE is sensitive to outliers, meaning a large prediction deviation will influence MARE more than 

other performance parameters. MBE in the training set indicates slightly underprediction, while 

slightly overprediction for the validation and test set, while MAE is approximately equal for the three 

sets, slightly higher in the validation set. To see results from MATLAB for one network training example, 

see appendix A.15. Figure 63 appendix A.15 shows that there are more errors in the training set 

compared to the validation and test set, when the target power is supposed to be predicted low but is 

predicted high, which would appear to be the reason for the high MARE value in the training set. In 

appendix A.14, performance parameters for all 50 runs in test 7 are presented. 

A network of 20-2-1, based on previously explained criteria was chosen as optimal configuration, 

where a schematic structure of the model can be seen in Figure 32 and prediction results from the test 

set is presented in Figure 33 and Figure 34. The prediction results (regression models) are based on 

test set with approximately equal MSE as for the average of 50 runs. 

 

Figure 32: Neural network structure 

 

Figure 33: Prediction versus target values using scaled air mass (Suntech). MSE = 0.0533 
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Figure 34: Prediction versus target values using air mass with ϴZ ≤ 89° (Suntech). MSE = 0.0454 

The same patterns can be noticed for the two different figures (Figure 33 and Figure 34), but the outlier 

prediction (indicated with red arrow in Figure 33) has for the latter figure disappeared. Based on this 

finding model seems to behave more stable after removing the high peaks of the air mass and gives a 

higher R2 value of 0.954 compared to 0.946 (averaged over 50 runs). Overall, the ANN model appears 

to do predictions with slightly higher precision during low and high power production, and where the 

largest deviations seem to be at approximately 1.5 kW. This deviation is relatively high, which can for 

some occasions have a deviation more than twice as high as the target value. As mentioned in the 

Limitation and Assumption section (1.2), snow cover was not included in the model and deviations 

related to this could be one explanation for deviations as the model would still predict power 

production if snow was covering the modules. Other than this, the deviations are difficult to assess 

without further investigations. Whether it is the trained model that have not managed to find the 

optimal input-output relationship, or if there are deviations in the raw data, is not clear by only looking 

at these results.  

Model performances were also obtained for the scaled air mass input variable, see appendix A.16 Table 

25 for results from this. Model performances using ϴZ ≤ 89° can be found in appendix A.17, Table 28. 

4.5.2. Sharp PV Modules 

Performance parameters from training a model with Sharp PV modules are presented in Table 12, 

representing the results for the test sets. 

Table 12: Test results Sharp PV modules, averaged for 50 runs 

Test set Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 

8 
neurons 

10 
neurons 

20 
neurons 

30 
neurons 

50 
neurons 

10_2 
neurons 

20_2 
neurons 

MSE 0.0351 0.0343 0.0328 0.0328 0.0330 0.0333 0.0325 

MARE 0.0567 0.0529 0.0561 0.0585 0.0584 0.0567 0.0576 

MAE 0.1223 0.1195 0.1141 0.1138 0.1133 0.1154 0.1124 

MBE -0.0006 -0.0012 -0.0003 0.0001 0.0004 -0.0012 -0.0008 

R2 0.9650 0.9659 0.9673 0.9673 0.9671 0.9668 0.9676 

Best epoch 528 456 482 378 365 550 494 

Time per run (s) 20 20 20 29 58 26 41 

From the test results of model for the Sharp PV modules, the configurations with the lowest mean 

square error (MSE) is for test 7, with 20 neurons in first hidden layer and 2 neurons in second hidden 
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layer, the same configuration as for Suntech. A representation of this can be found in Figure 32, in 

subsection 4.5.1 Suntech PV Modules, as they are equal. The difference between the MSE values for 

each test does not vary by much either, meaning the model is able to do predictions well with different 

numbers of neurons in hidden layers. The mean absolute relative error (MARE) is low, as well for mean 

bias error (MBE), with values of 0.0576 and -0.0008, respectively. The MBE indicates slightly 

overpredictions on the overall test set. The mean absolute error (MAE) is fairly low, with a value of 

0.1124. The R2 have a high value of 0.9676, which indicates high precision. It can be worth noticing 

that the errors for the Sharp modules are lower than for the Suntech modules. This suggests that the 

model configurations can better find the input-output relationship with the thin film PV modules 

(Sharp) than for the Suntech modules. The average best epochs appear to decrease as the complexity 

of the models increase, indicating that the model tend to have an early-stopping epoch at a lower value 

than with less complex models. The time it takes the models to run through all epochs (1000) increases 

with the complexity of the model. 

Table 13 presents the performance parameters for test 7 for the Sharp modules. 

Table 13: Performance parameters for test 7, Sharp modules 

Performance 
parameter 

Test 7 20-2-1 model 

Train set Validation set Test set 

MSE 0.0265 0.0268 0.0325 

MARE 0.3394 0.0573 0.0576 

MAE 0.1014 0.1029 0.1124 

MBE 0.0002 0.0007 -0.0008 

R2 0.9735 0.9733 0.9676 

The MSE is low for all sets, as well as the MAE and MBE. MAE is slightly higher for the test set compared 

to the training and validation, and MBE indicates modest overprediction for the training and validation 

set. MARE for training set is high compared to the validation and test set, meaning the training set 

appear to have larger prediction deviations than the two other sets. As MARE is sensitive to outliers, it 

appears that results from the training set have prediction values further from the target values, due to 

a higher MARE-value in this set. To see results from MATLAB for one training example, see appendix 

A.18, where less precise predictions can be observed for the training set (Figure 65), also indicated by 

MARE in Table 13. In appendix A.19, performance parameters for all 50 runs in test 7 are presented. 

Reducing the peaks of the air mass appeared to remove predictions that were far from the target value 

for Suntech, but by studying Figure 35 and Figure 36, this does not appear to correct the one outlier 

prediction for the Sharp modules. The following figures are based on test set with approximately equal 

MSE as for the average of 50 runs. 
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Figure 35: Prediction versus target values using scaled air mass (Sharp). MSE = 0.0335 

 

Figure 36: Prediction versus target values using air mass with ϴZ ≤ 89° (Sharp) MSE = 0.0325 

By making this change in the air mass, it does however provide a R2 value of 0.968 compared to 0.961, 

meaning the model is able to predict the observed outcome (targets) with higher precisions, as well as 

the MSE is lower for the latter case. The overall highest deviations appear to be between 0.5 and 1 

kW, where the lowest errors seem to occur during low and high productions.  

For performance parameter results for the scaled air mass, see appendix A.16, Table 26. Appendix 

A.17, Table 29 presents all performance parameters for air mass using theta ≤ 89°. 
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4.5.3. REC PV Modules 

Finally, the model configurations tested with the REC PV modules, where the results can be seen in 

Table 14. 

Table 14: Test results REC PV modules, averaged for 50 runs 

Performance 
Parameters- 

Test set 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 

8 
neurons 

10 
neurons 

20 
neurons 

30 
neurons 

50 
neurons 

10_2 
neurons 

20_2 
neurons 

MSE 0.0514 0.0511 0.0497 0.0496 0.0503 0.0500 0.0492 

MARE 0.8000 0.8166 0.7454 0.7055 0.6384 0.8118 0.7549 

MAE 0.1291 0.1283 0.1253 0.1244 0.1252 0.1245 0.1223 

MBE -0.0007 -0.0008 -0.0017 -0.0018 -0.0014 -0.0026 -0.0033 

R2 0.9486 0.9489 0.9503 0.9505 0.9497 0.9500 0.9508 

Best epoch 283 325 380 335 199 651 420 

Time (s) 14 16 25 40 81 21 32 

The highest errors for the performance parameters were found for the REC PV modules when 

compared to the other two PV modules. The test that provided the lowest mean square error (MSE) 

was test 7 (20-2-1), which is also the same as for both Suntech and Sharp, and a representation of this 

can be found in Figure 32. The MSE was in this case 0.0492, but when it comes to the mean absolute 

relative error (MARE), the error has a high value of 0.75. MARE is, as previously mentioned, sensitive 

to larger errors, meaning it could appear to be certain predicted values that are further away from the 

target values. The mean bias error (MBE) appears to be relatively low, but as negative and positive 

cancel each other out when calculating this error, this may not give a fair representation of the model 

due to the high MARE value. The MAE is relatively low, meaning the overall average errors are not too 

high. R2 is quite high with a value of approximately 0.95. 

The performance parameters related to the REC modules for the best performing model based on the 

seven tests, are presented in Table 15. 

Table 15: Performance parameters for test 7, REC modules 

Performance 
Parameters 

Test 7 
20-2-1 

Train set Validation set Test set 

MSE 0.0424 0.0480 0.0492 

MARE 0.0724 0.0246 0.7549 

MAE 0.1173 0.1191 0.1223 

MBE 0.0007 0.0002 -0.0033 

R2 0.9580 0.9494 0.9508 

What can be observed for the different sets for the REC modules, is that the test set has higher values 

for the error parameters compared to the training and validation sets, see Table 15. Comparing this to 

the performance parameters for Suntech and Sharp, which indicated lower errors for the test and 

validation set, could give an indication of not optimal data division, errors in the datasets or a poor 

input-output prediction relationship. As the data division for the three PV modules was done 

separately, meaning the lines were shuffled in a way that would provide similar coefficient of variation 

depending on each of the modules, the data samples in the test set for REC modules may not be the 
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same as for Suntech. If there are deviations in the raw data where the PV modules for some reason do 

not produce power that the model suspects, this could give large deviations in the outcome as MARE 

in Table 15. Even though the errors in the performance parameters in the test set appear to be 

relatively high, the R2 value indicate that the overall predictions of the set are related to the target 

values. To see results from MATLAB for one training example, see appendix A.20. In appendix A.21, 

performance parameters for all 50 runs are presented. 

Figure 37 and Figure 38 represents the predicted values compared to the target, with different air 

masses and the chosen configurations. Each result is represented by a test set with MSE approximately 

equal as for the average of 50 runs. 

 

Figure 37: Prediction versus target values using scaled air mass (REC).  MSE = 0.0576 

 

Figure 38: Prediction versus target values using air mass ϴZ ≤ 89°(REC).  MSE = 0.0492 

As the MARE suggested, there are several outliers of predicted values that have larger deviations 

compared to the target values. This appears to occur mostly as the power production is low, between 

no production and 1.5 kW. After adjusting the air mass, both the MSE and R2-value appear to improve, 

but there are still several predictions far from the targets.  

Performance parameters using scaled air mass can be found in appendix A.16, Table 27 and results 

using ϴZ ≤ 89° can be found in Appendix A.17, Table 30. 
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4.6. MODEL CHOICE 
The three PV modules have the same input data, but the weights can still be assigned differently due 

to the output data not being the same. As seen from the test results for all the PV modules (Table 10,  

Table 12 and Table 14), the variations between the different tests within each PV module were all 

comparable. Because the training-procedures were run 50 times, the average for each run would differ 

slightly, but not enough to change the average values significantly by doing more re-runs. All tests were 

based on the same number of re-runs and should therefore be comparable. As the models all had the 

same input variables and the output values would presumably have variation similar to each other, it 

was before the testing assumed that the models for each of the PV modules would have the same 

configurations. The performance parameters from the seven tests did show some variations for each 

of the PV modules, but at the end indicated the best performing models to be with a configuration of 

20-2-1 (20 neurons in first hidden layer, 2 in second hidden layer) for all three modules.  

The mean squared error (MSE) for the Sharp modules is lower than for Suntech and REC, meaning the 

model had better fitting to the target values. MARE is sensitive to larger deviations, which for the REC 

test set indicated large deviations, which the regression plot (Figure 38) supported. The mean absolute 

error (MAE) and mean bias error (MBE) indicated that the models did tend to either over- or 

underpredict, where the overall MBE indicated slight overprediction for all three models (in the test 

set). The R2- values indicated good fitting for all models, with values between 0.9508 and 0.9676. 

Another aspect to consider when training a model is the amount of time it requires. As each model 

needs to be trained individually to assert for different behaviors of the different PV modules, three 

models were created. The results of training the models indicated that the more complex the model 

is, the longer it takes to train the model. But by studying the best epoch, it is the configurations with 

the highest amounts of neurons that tend to find its lowest mean square error (MSE) first. Meaning 

that the models with many neurons takes longer to complete each iteration (epoch) but can usually 

find its optimal weights at an earlier epoch (except for Suntech, where a higher complexity of the 

model also involved a higher number of best epoch). The results for using a high number of hidden 

neurons, such as the test with 120 neurons (see appendix A.13), required on average 423 second to 

run through 1000 epoch for one training. This involved a total time of almost 6 hours to train 50 

separate models, which is a time-consuming process and with that many neurons would also make the 

network complex. 

As a model with too many hidden layers and/or hidden neurons can make the model too complex and 

decrease the ability of generalization, it is important to consider this while choosing a model. However, 

depending on the input variables and the relationship to the output, the optimal number of neurons 

can vary based on the desired performance. The models chosen for the three PV modules in this work 

were based on a model-based approach and can only represent the model with best performance out 

of the tests that have been performed. This can, however, be a good indication of how ANN models 

can perform doing power prediction with the relevant PV system based on three years of historical 

data. 

Based on this, models with configurations shown in Table 16 gave the best model performances based 

on the tests that have been performed. The configurations apply for all three PV modules. 
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Table 16: Chosen model configurations for all three PV modules 

Parameters Configuration 

Network Feedforward 

Data division (training-validation-testing) 70-15-15 

Training algorithm Levenberg-Marquardt 

Transfer function (hidden layer(s)) Tansig 

Transfer function (output layer) Tansig 

Weight Initializer Random 

Validation check (MSE) 1000 

Maximum epochs 1000 

Runs 50 

Number of hidden layers 2 

Number of hidden neurons in layer #1 20 

Number of hidden neurons in layer #2 2 

4.7. MODEL TESTING USING HOLD-OUT SET  
Based on the chosen model configurations for each type of PV modules found in subsection 4.5, 

continuous days in March and April 2017 were chosen to test with these configurations. A confidence 

interval of 95% was chosen to represent the variation of training the same model 50 times, to get the 

variations from the weight initializations.  

4.7.1. Suntech PV Modules 

The ANN model trained with Suntech modules gave an average R2 of 0.9539 and a mean square error 

(MSE) of 0.0454 (test set), meaning the relationship between the predicted output power and the 

target output power was relatively good. The chosen configuration was a 20-2-1 feedforward neural 

network and by testing the continuous days in March and April 2017, the results for the hold-out set 

became as in Table 17. 

Table 17: Performance parameters Suntech modules March/April 2017 

Performance 
parameters 

Suntech PV Modules 

MSE 0.0602 

MARE 0.3356 

MAE 0.1448 

MBE 0.0021 

R2 0.9403 

The MSE appears to have a higher value compared to the test set from the training of the network, 

0.0602 versus 0.0454. The R2-value is relatively high, meaning the model still has a good fit to the 
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targets. MARE does, however, indicate predictions with more deviations, while the MAE indicates an 

average error of 0.1448. The MBE imply that the model tends to underpredict on average for the entire 

set.  

Figure 39 presents the prediction results from the two relevant months in 2017 with the chosen 

configuration of the ANN model. The results from one training that gave approximately the same MSE 

as for the 50 tests averaged have been chosen to demonstrate the performance. 

 

Figure 39: Test results from model with Suntech modules, hold-out set. MSE =0.0598 

By visually inspect the prediction results compared to the target values in Figure 39, the model appears 

to have certain occurrences with both under- and overpredictions. For higher production-periods 

(during peaks around midday), the model tends to underpredict, but does at certain occasions appear 

to have a relatively close fitting to the target as well. There can also be observed higher prediction 

deviations in the first week of March. This will be investigated further in upcoming subsections. To 

inspect the model performance further, two random weeks have been chosen to graphically present 

the predictions. One week is in the beginning of March and one week in the end of April 2017 are 

presented in see Figure 40 and Figure 41, respectively. A 95% confidence interval will demonstrate 

most of the 50 runs, along with the averaged predictions from these runs.  

 

Figure 40: Prediction results Suntech for a week in March 2017 
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Figure 41: Prediction results Suntech for a week in April 2017 

Figure 40 and Figure 41 show that the predictions and target relationship is relatively good for most 

hours during the relevant weeks. However, there are some hours the model seems to vary the 

predictions with up to 1 kW, which is a significant deviation. The model appears to underestimate 

slightly for high production (close to peak power, 4.6 kW for the Suntech modules). On 24. April 2017, 

the model seems to have a more difficult time predicting the power. By studying the input variables 

during these few hours (between 10:00 and 14:00), there seem to be a high wind speed compared to 

the average. Other input parameters seem to be consistent without any extreme values, which raises 

the idea that the wind speed might make the model more uncertain. Also, a high peak in the 

predictions can be observed on 25. April compared to the target power (first peak during this day). A 

closer look at the input variables during these days will be investigated at the end of this subsection.  

The overall outcome of the two weeks tested seem to have a relationship fairly similar to the target, 

with some uncertainties.  

4.7.2. Sharp PV Modules 

The same two months as for Suntech have been tested for the 20-2-1 network for the Sharp modules, 

and the results are presented in Table 18. 

Table 18: Performance parameters Sharp March/April 2017 

Performance 
parameter 

Sharp PV modules 

MSE 0.0306 

MARE 0.0290 

MAE 0.1088 

MBE 0.0010 

R2 0.9657 

The model performance for March and April 2017 for the Sharp PV modules indicates that the model 

performs better with the hold-out set compared to the test set in the training process (see Table 13), 

meaning the predictions made for these continuous days appear more precise than the test set. MARE 

is low with a value of 0.029 and the model is slightly underpredicting as the MBE is 0.001. The R2- value 
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is, however, slightly lower than the test set (0.966 compared to 0.968), meaning certain predictions 

affects the regression line to be slightly lower. MAE shows an error of 0.1088, which is relatively low.  

Figure 42 presents the predictions for one of the trained models that had similar MSE as the average 

for 50 runs.  

 

Figure 42: Test results from model with Sharp modules, hold-out set. MSE = 0.030 

It can be observed certain periods where the model underpredicts compared to the target values, but 

the deviation often seem to be less if compared to the results in Figure 39, for the Suntech modules. 

A few occurrences with higher predictions than the targets can also be observed. 

Figure 43 and Figure 44 presents the predictions with 95% confidence interval and the average over 

the 50 re-runs, for the same two weeks as for Suntech.  

 

Figure 43: Prediction results Sharp for a week in March 2017 
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Figure 44: Prediction results Sharp for a week in April 2017 

The same patterns can be observed for the Sharp PV modules as for the Suntech modules. The network 

output deviates slightly more as the power production is high. But by studying the mean predicted 

(green dotted line) and the target in Figure 43 and Figure 44, they seem to overlap each other better 

compared to Suntech. It is worth noticing that for 24. April 2017 the predicted power deviates with 

approximately 2 kW. As mentioned in the previous subsection (4.7.1), the wind speed is high during 

this time period and various weights given for this parameter can influence the outcome during 

extreme values. This drop in the power prediction did not occur for all training runs, meaning some 

training rounds had weights that obviously had the deviations higher. Further investigations of this will 

be done in later subsection. 

4.7.3. REC PV Modules 

The model configurations for REC PV modules was the same as for Suntech and Sharp, a network with 

configuration of 20-2-1. The R2 value was 0.9508 and the mean square error (MSE) was 0.0492. Results 

for the model using data for the same two months as for Suntech and Sharp, are presented in Table 

19. 

Table 19: Performance parameters REC modules March/April 2017 

Performance 
parameters 

REC PV modules 

MSE 0.0627 

MARE 0.0567 

MAE 0.1345 

MBE 0.0030 

R2 0.9359 

The performance parameters for the REC modules in the hold-out set appeared to perform slightly 

poorer compared to the test set in the training process (see Table 15). MARE, however, has a low value 

of approximately 5.7% absolute percentage error. The MSE for the hold-out set was 0.0627 and the 

MSE from the test set was 0.0492. As the MBE for the hold-out set is proposing that the model is 

slightly underpredicting, while for the test set it is slightly overpredicting. MAE indicates that the 
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overall average absolute error is fairly low, yet higher compared to the test set. A representation for 

the entire hold-out set is presented in Figure 45. 

 

Figure 45: Test results from model with REC modules, hold-out set. MSE = 0.0627 

The model appears to do prediction well compared to the target values, but with some over- and 

underpredictions occurring for certain days. The MBE for the hold-out set shows a slight 

underprediction, with a value of 0.0030. Certain days do tend to have a high prediction compared to 

the target, such as for 7. March, and low prediction for 8. March, which appeared to have the same as 

for Suntech, see Figure 39. Further investigation regarding these days will be presented in the nest 

subsection. 

Prediction results for the two weeks in March and April 2017 for the REC modules are presented in 

Figure 46 and Figure 47. 

 

Figure 46: Prediction results REC for a week in March 2017 
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Figure 47: Prediction results REC for a week in April 2017 

As for the other two PV modules (see subsection 4.7.1 and 4.7.2), it can be observed the same patterns. 

This was however expected due to the same input variables, but with a different output (power 

production), the results could deviate slightly. Also, for 24. April 2017, the model has difficulties giving 

an output similar to the target and the dip appears to be even more significant than for the other two 

PV modules and has the same peak for 25. April. 

4.7.4. Analysis March and April 2017 

Because of distinctive deviations in the first week of March 2017 and on 24. April and 25. April 2017, 

it was desired to further analyze the input variables during these days. It was observed a drop in the 

predicted power at around 12:00 on 24. April and a higher predicted power at around 10:00 on 25. 

April 2017. Figure 48  and Figure 49 illustrates the weather parameters for relevant days. 

 

 

Figure 48: Weather parameters 24. -30. April 2017 (left) and 24.-25. April 2017 (right) 
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Figure 49: Air mass 24. -30. April 2017 (left) and 24.-25. April 2017 (right) 

The only parameter that appears to have a variation larger than others for 24. April is the wind speed, 

see blue arrow in Figure 48. Allowing the suggestion that wind speed can compromise the models in 

such a way that can occasionally lower the performance of the models. For 25. April, all models 

appeared to give a prediction with a high peak at 10:00 (previously observed in Figure 41, Figure 44 

and Figure 47). By studying the weather parameters in Figure 48 during the relevant time, it does not 

appear to be as high peak in the irradiance as the prediction results suggested. Neither the air 

temperature, wind speed or the air mass indicate any extreme values that could imply the models 

predicting such a high power production at this hour. This could indicate an input-output relationship 

not optimal. 

It was also noticed higher prediction errors for Suntech and REC on 07. And 09 March. Figure 50 

presents the relationship between the global horizontal irradiance and the power production for 

respective days. 

 

Figure 50: (a) Suntech, (b) Sharp and (c) REC power production versus solar irradiance 
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It is obvious from observing Figure 50 that the model predicts mostly based on the solar irradiance. 

However, the targets appear to be lower for the two days commented above, where Suntech and REC 

have the highest prediction deviations. From investigating the historical weather from a nearby 

weather station (Grimstad), it can be observed precipitation during these days and a negative air 

temperature, indicating snow fall. This could suggest that there is snow on top of the modules, causing 

low power production. As the ANN models do not consider snow cover, they will thus not discover this 

deviation. The precipitation from a weather station located at Grimstad was used as it was the closest 

weather station that had logged the precipitation for the relevant days.  

4.8. MODEL TESTING USING MEPS WEATHER FORECASTS 
The final part of this work was to investigate how the different models behave with weather forecasts. 

Data obtained from MEPS was used as input to the trained models that gave the best performances 

for each of the PV modules. Due to uncertainties in weather forecasts, the performance parameters 

will also be affected by this. However, as these models are to predict future power production, it is 

crucial that the forecasted weather data can be used with the trained models. Data obtained from 24. 

April to 30. April 2017, with a forecast horizon of 67 hours have been used to illustrate how the models 

perform with the forecasted weather. The results have been averaged from 50 runs, as the predicted 

power for each hour had slight deviations for each run. Each day has been compared to the actual 

power production for the relevant day. To review the forecasted weather in comparison to the 

measured on-site weather parameters, see appendix A.4. 

All models for the following subsections have the configuration listed in Table 16 and are trained on 

the sets for each individual PV module.  

4.8.1. Suntech PV Modules 

Because of the uncertainties related to weather forecasts, the ANN models will also give predictions 

based on these uncertainties and larger errors compared to using on-site weather data are to be 

expected.  

Table 20 presents the performance parameters for the Suntech PV modules with one- and two-days 

ahead forecast horizons. 

Table 20: Performance parameters with forecasted weather from MEPS, Suntech modules 

Performance 
parameters 

Suntech 

One-day 
ahead 

Two-days 
ahead 

MSE 0.2647 0.2996 

MARE 0.7755 0.7168 

MAE 0.2991 0.3020 

MBE -0.1194 0.0800 

R2 0.7991 0.7995 

As expected, the mean square error (MSE) is higher when using forecasted parameters compared to 

using on-site weather data. The parameters presented in Table 20 will represent both the model 

performance as well as the weather forecast performance, where deviations from both will affect the 

outcome of the predictions. As weather forecasts tend to be more precise with a forecast horizon 

closer to the actual day, the results from the model indicates the same. The mean absolute relative 

error (MARE) is high, meaning certain predictions are deviating from the target. Both MAE and MBE 



Power Prediction of Photovoltaic System using Neural Network Models 

 

63 

 

are higher compared to the test and hold-out sets. MBE indicates an overall overprediction for the 

one-day ahead and underprediction for the two-days ahead. R2 is also lower than for the test and 

hold-out set, indicating a lower prediction ability. 

Prediction results related to the forecasted weather data with the best performing model 

configurations can be seen in Figure 51. 

 

Figure 51: Power predictions (red and yellow line) of 25.-30. April 2017, Suntech PV modules 

As 25. April, in Figure 51, only has one-day ahead forecast horizon is due to the obtained data was from 

24. April 2017, which prevented to get data from two-days ahead of the 25. April. The predictions in 

the figure illustrates the importance of accurate weather forecasts and how the deviations of the 

predicted values from the model can differ from the target values. For clear days (such as 26. April and 

30. April), the model tends to predict a lower power production compared to the actual production. 

As these days probably did not have much clouds, the model should be able to give a prediction close 

to the target. However, studying the forecasted weather parameters in comparison to the measured 

on-site parameters in appendix A.4, the forecasted solar irradiance, which is considered the highest 

influencer to the power production, is lower than the actual irradiance for the same time period. Due 

to this, the predicted power is lower compared to the target. It can also be observed deviations related 

to dips and peaks in the power production, as can clearly be seen for days 25. April, where a time shift 

of when the predicted power appears compared to the target. Comparing the forecasts from two days 

ahead to the one-day ahead, most predictions using the one-day ahead forecast seem to be more 

precise compared to the two-days ahead, which should be expected due to the uncertainties related 

to weather change.  
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4.8.2. Sharp PV Modules 

The model configuration with 20-2-1 ANN was used to predict power using weather forecast for the 

Sharp modules, and results can be seen in Table 21. 

Table 21: Performance parameters with forecasted weather from MEPS, Sharp modules 

Performance  
parameters 

Sharp 

One-day 
ahead 

Two-days 
ahead 

MSE 0.2378 0.2252 

MARE 0.8884 1.0678 

MAE 0.2723 0.2595 

MBE -0.1295 0.0119 

R2 0.8069 0.8389 

Also the errors are higher for the Sharp model compared to the test and hold-out set, but the two-

days ahead forecast appears to have a slightly lower MSE compared to the one-day ahead. However, 

MARE is higher for the two-days ahead compared to the one-day ahead forecast. MAE is higher for the 

one-day ahead, where MBE indicates that the predictions tend to overestimate the power production 

for the one-day ahead, but underestimate the power for the two-days ahead. To visually inspect the 

prediction results, see Figure 52. 

 

Figure 52: Power predictions (red and yellow line) of 25.-30. April 2017, Sharp PV modules 

The same pattern for the predicted values using the forecasted weather parameters can be seen for 

the Sharp modules, as it was for Suntech. The predicted power during sunny days (26. and 30. April) 

do appear to be slightly closer to the target power during midday, compared to the Suntech model. 

27. April was forecasted to be a clear day, which is why the predicted values became as shown in Figure 

52. The MBE shows that the one-day ahead forecast had the tendency to overpredict, which 28. April 

could be a large contributor to, and the two-days ahead MBE indicated underprediction, which appears 

to be the case for most days, except for 27. April after 11:00. 
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4.8.3. REC PV Modules 

Table 22 presents the results from a one- and two-days ahead forecast horizon, with the model trained 

with REC PV modules. 

Table 22: Performance parameters with forecasted weather from MEPS, REC modules 

Performance 
parameters 

REC 

One-day 
ahead 

Two-days 
ahead 

MSE 0.2647 0.2719 

MARE 0.4703 0.8570 

MAE 0.3040 0.3005 

MBE -0.1100 0.0576 

R2 0.7955 0.8145 

Also the errors are higher for the forecasted weather data compared to the on-site data for the REC 

modules, which was expected. The errors are lower for the one-day ahead forecast horizon compared 

to the two-day forecast horizon, but the R2-value appear to be slighly lower. As for the other two PV 

modules, MARE is relavitely high and MBE for one-day ahead indicates overprediction and for two-

days ahead underprediction. 

Figure 53 presents the predictions using a trained model for the REC modules, using the forecasted 

weather parameters. 

 

Figure 53: Power predictions (red and yellow line) of 25.-30. April 2017, REC modules 

As for the other two models, the model trained for the REC PV modules follow the patterns of the 

forecasted weather parameters, where the solar irradiance appears to have the largest impact on the 

power production. 
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4.9. COMPARISON OF MODEL PERFORMANCES 
The three different types of PV modules ended up having the same model configurations of 20-2-1, 

but the performance parameters were different based on the training of the models. Figure 54 

compare the mean square errors (MSE) for each of the PV modules from the results obtained in this 

work. 

 

Figure 54: Mean square error (MSE) comparison of all PV modules 

Based on Figure 54, Sharp PV modules show an overall lower mean square error compared to the other 

two PV modules, for all sets the models were tested on. The test set and hold out set have comparable 

errors for all PV modules, as for the one-day ahead and two-days ahead forecast horizon. Sharp has a 

lower rated power and is made of thin film material, which provides the module with different 

technical aspect compared to Suntech and REC, which is of multicrystalline silicon. Whether this is an 

impact to why the model has lower error when based on the Sharp modules cannot be decided based 

only on these results but is an interesting observation for the PV modules located at the same location. 

One other aspect to consider is how the data division was performed for each of the PV modules. As 

the different subsets (training, validation and test set) may include different hours for the different PV 

modules (meaning the test set for Suntech most likely does not include the same hour sample as REC 

or Sharp), the results from the test set may not be directly comparable. To make a fully comparable 

investigation of the model performances, additional analysis of the raw data should be performed, or 

a comparison of i.e. the hold-out set could be more representable. It was seen in subsection 4.7.4, 

when analyzing input data for days in March and April 2017 that snow cover most likely was an aspect 

that could cause larger prediction errors. This could be the case for several days, and where these 

deviations can be divided into different subsets for each of the PV modules.  
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5. CONCLUSION 

A dataset from a PV system located at Kjøita, Kristiansand was used to train and test ANN models. The 

raw data from the measurements on-site involved several uncertainties, thus a thoroughly review of a 

maintenance log was performed. The remaining data was divided into subsets used for training, 

validation and testing purposes.  

Principal component analysis (PCA) indicated that the variables wind speed, air temperature and global 

horizontal were needed to explain the variance and the average mutual information (AMI) indicated 

no time lag influence. A model-based approach was used when including air mass to the input 

variables, as this appeared to improve the overall precision of the prediction models.  

Seven different tests were compared, where each test included a model with a various number of 

hidden layers and neurons. Based on these tests, all three types of PV modules indicated that a 

configuration of 20-2-1 would provide the lowest mean square error (MSE) in the test set. Suntech 

obtained an MSE=0.0454, Sharp MSE=0.0325 and REC MSE=0.0492 using the test set. All R2-values 

from test set indicated values higher than 0.95, meaning the regression of the predicted values versus 

the target values had a good fit.  

The data division for the three PV modules was performed using coefficient of variation dividing into 

subsets training, validation and test. It was however observed similar patterns of mispredictions in the 

three sets. Due to these errors, mean absolute relative error (MARE) would show high values for all PV 

modules (but depending on subset) as it is sensitive to larger deviations. Larger deviations did for some 

occasions appear to be caused by high wind speed, while other deviations appear to occur because of 

snow cover which was not included in the ANN models. From a hold-out set it could be observed higher 

errors for Suntech and REC, while lower errors for Sharp compared to the test sets. Sharp had an overall 

better performance for all tests performed compared to the other two types of PV modules.  

Testing the models with data from MEPS (MetCoOp Ensemble Prediction System) weather forecast, 

showed that the ANN models can use the input data provided, but have MSE values higher than for 

the test and hold-out set, which was expected. This appeared to be mostly due to uncertainties in the 

weather forecasts. The tests were based on weather predictions from one-day ahead and two-days 

ahead forecast horizons, where the one-day ahead gave a lower MSE for Suntech and REC, but the 

two-day ahead have lower MSE for Sharp.  

Based on these findings, it can be concluded that ANN models for Kjøita PV system with three different 

types of PV modules show a potential of predicting PV power. The configurations with 20-2-1 with the 

relevant input selection used in this work, did show that for some occasion’s the predictions had 

relatively high deviations from the target values, while for other occasions were able to do predictions 

close to the target. The predictions performed with forecasted data did indicate that the models were 

able to use this data, and a potential can be found in using ANN models for power predictions. More 

precise prediction models can contribute with useful information to grid operators as an increase of 

installed PV power can be seen every year and is assumed to continue to increase for coming years. 

Large grid-connected PV systems or several smaller systems will contribute to feed the grid with 

fluctuating power, especially during days with changing weather conditions.  



Power Prediction of Photovoltaic System using Neural Network Models 

 

68 

 

5.1. FURTHER WORK 
Studying some of the prediction results with high deviations to the target values, high wind speed can 

be observed and how the models treat this value should be investigated further. As a principal 

component analysis may not always provide the optimal variables to include in an ANN model, due to 

it only investigates the variance of the dataset not the direct affect to the output (target), additional 

analysis will be necessary. Also, the air temperature was used in this work instead of the module 

temperature. Another attempt with using the module temperature should be performed to see if this 

can contribute to more precise predictions as the module temperature can have a direct effect on the 

efficiency of the modules. This would, however, involve having to convert air temperature to module 

temperature as the weather forecasts provide air temperature. One last input parameter that can be 

of interest to include is the snow cover. It was observed larger deviations for some of the predictions 

compared to the targets, which presumably was because of snow covering the PV modules. Including 

this variable can contribute to lower these deviations. Further optimization of ANN models can also be 

compared with a linear model, to investigate difference in performances. 

The models created for the purpose of this thesis include data from a 3-year period. Over time, 

degradation of the PV cells can occur, and as the feedforward network did not consider time-series, 

this degradation can influence the prediction results. As the degradation will only have limited effect 

on the output, this can be of importance if a model based on a longer time period is considered.  

The method for testing the models with different configurations was based on a trial and error model-

based approach by having seven different tests adjusting the hidden neurons and hidden layers of the 

models. A possibility to test models with several different parameters should be performed. This way 

more hyperparameters can be tested against each other and a more throughout decision of model 

configurations can be obtained. This can be done with the use of a grid search approach, which tests 

several different hyperparameters at the time. 

Another interesting aspect to look further into is how this model can be used with other PV systems. 

As the models have been trained specifically to this system, a more dynamic model that can be used 

with an ensemble of systems to be able to see the overall grid influence for an entire area could be 

relevant.  

With these points, the following suggestions to improve an ANN model of the purpose of prediction 

power production from the PV modules located at Kjøita are: 

- Excluding wind speed as input selection, using module temperature and/or snow cover 

- Additional data filtering and/or data mining can introduce further improvement of the results, 

thus obtaining a more precise prediction model. 

- Including a degradation model, or time series that takes the degradation into account 

- Grid search approach 

- Expand the ANN model to deal with an ensemble of PV systems within same area 
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APPENDICES 

A.1 PROJECT INFORMATION “SOLSTRØM PÅ NETT» 
Presentasjon av prosjektet Solstrøm på nett hos Agder Energi, Kristiansand. Presentasjon av Anne Gerd 

Imenes, Teknova AS, 19/10-2011. 
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A.2 TECHNICAL DATA – PV MODULES 
Sharp NA-135 (G5) Datasheet 
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REC 225PE – Datasheet 
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Suntech STP225 - 20/Wd Datasheet 
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A.3 TECHNICAL DATA – ELTEK INVERTER 
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A.4 MEPS – WEATHER FORECAST 
Global Horizontal Irradiance 
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A.5 SUNRISE/SUNSET – MATLAB SCRIPT 

 

 

 

  

 

  

 

  

 

   

% Author: Camilla Lie 

% Date: 24.05.2019 

Load data 

data = readtable('AllData.txt');            % Load all data 

sun = readtable('SunData_fixed.txt');       % Load sunrise/sunset times 

sun.SunRise =datetime(sun.SunRise); 

sun.SunSet =datetime(sun.SunSet); 

Removal of hours before sunrise and after sunset 

for i = 1:height(sun) 

    year = data.time.Year==sun.SunRise.Year(i); 

 

    month = data.time.Month==sun.SunRise.Month(i); 

 

    day = data.time.Day==sun.SunRise.Day(i); 

 

    trueIdx = all([year,month,day],2); 

    outsideScope = data.time(trueIdx)>=sun.SunRise(i) &... 

                   data.time(trueIdx)<=sun.SunSet(i); 

 

    trueIdx(trueIdx) = ~outsideScope; 

    data(trueIdx,:) = []; 

end 

data.Properties.VariableNames = {'GHIavg' 'DHIavg' 'GTIavg' 'VSavg' 'VDavg' 'IDCinv1' 

'IDCinv3' 'IDCinv4' 'UDCinv1' 'UDCinv3' 'UDCinv4' 'IACinv1' 'IACinv3' 'IACinv4' 

'UACinv1' 'UACinv3' 'UACinv4' 'PTeoa1' 'PTmoa1' 'PTeoa3' 'PTeoa4' 'PTmoa4' 'PTmoa3' 

'airtemp' 'time'}; 
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A.6 DATA FILTERING - MATLAB SCRIPT 
Inv1 = Suntech 

Inv3 = Sharp 

Inv4 = REC 

 

  

% Data filtering using Kjøita PV system maintanance log 

 

% Author: Camilla Lie 

% Date: 24.05.2019 

Import Data 

data_time = readtable('alldata.csv'); 

Include Day of year 

DV  = datevec(data_time.time);  % [N x 6] array 

DV  = DV(:, 1:3);   % [N x 3] array, no time 

DV2 = DV; 

DV2(:, 2:3) = 0;    % [N x 3], day before 01.Jan 

doy = cat(2, DV(:, [2 3]), datenum(DV) - datenum(DV2)); 

data_time.doy = doy(:,3); 

tz = 1; 

for i=1:height(data_time) 

    tz(i)=1; 

end 

data_time.tz = tz'; 

Remove time to create array 

dataa = data_time; 

dataa.time = []; 

IACinv4 values from start to 29.10.2012 kl. 14:30 changed to nan 

dataa.IACinv4(1:144186)=nan; 

dataa=table2array(dataa(:,1:end)); 

idxnan = isnan(dataa(:,14)); 

Replacing Power inv4 with NaN corresponding to previous section 

for i=1:144186 

    if idxnan(i,:)==1 

        dataa(i,27)=nan; 

    end 

end 
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Timerange. Invalid GHI. 

for i=1:length(dataa(:,1)) 

if dataa(i,1)==-999 

    dataa(i,1)=nan; 

end 

end 

Timerange. Poweroutage (Strømstans) 

first = '25-May-2012 12:55:00'; % This will be the first taken 

second = '29-May-2012 08:14:00'; % Time before is the last 

LogicalArr = ( data_time.time >= first  & data_time.time< second ); 

Removing IAC/UAC all inverters between 25.may kl 12:55 to 
29.May.2012 kl 08:13 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 

Timerange. DHI not valid before this 

first = '22-May-2012'; % This will be the first taken 

second = '23-Jun-2012'; % Time before is the last 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing DHI not valid between 22.May.2012 to 22.Jun.2012 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,2) = nan; 

    end 

end 

Timerange. Downtime inv 1 and 3. 

first = '04-Jul-2012 07:56:00'; 

second = '04-Jul-2012 09:27:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 
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Removing IAC/UAC inv1 and 3 from 04-Jul-2012 07:56 - 09:26 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12:13,15:16]) = nan; 

    end 

end 

Timerange. Update software all inv. 

first = '29-Oct-2012 12:19:00'; 

second = '29-Oct-2012 12:31:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inv from 29-Oct-2012 12:19 - kl. 12:31 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12:17]) = nan; 

    end 

end 

Timerange. Update software all inv. 

first = '29-Oct-2012 12:53:00'; 

second = '29-Oct-2012 13:10:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inv from 29-Oct-2012 12:53 - kl 13:09 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12:17]) = nan; 

    end 

end 

Timerange. Bad conntector inv1 

first = '29-Oct-2012 07:34:00'; 

second = '06-Dec-2012 15:40:00'; 

LogicalArr = ( first <= data_time.time & data_time.time<= second ); 
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Removing IAC/UAC inv1 from 29-Oct-2012 07:34 - 06-Dec-2012 15:40 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12,15]) = nan; 

    end 

end 

Timerange. Inverter calibration, pkt. 40 

first = '11-Jan-2013'; % This will be the first taken 

second = '19-Jan-2013'; % Time before is the last 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inverters between 11.jan.2013 to 18.jan.2013 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 

Timerange. Missing data (=0) for all inv, pkt. 40 

first = '15-May-2013 19:04:00'; % This will be the first taken 

second = '16-May-2013 09:30:00'; % Time before is the last 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inverters between 15.May.2013 kl 19:05 and 
16.May.2013 kl 09:30 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 

Timerange. Cleaning pyranometers. 

first = '31-May-2013 10:52:00'; 

second = '31-May-2013 11:24:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 
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Removing GHI/DHI/GTI from 31-May-2013 10:52 - kl. 11:23 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,1:3) = nan; 

    end 

end 

Timerange.downtime all inv 

first = '31-May-2013 13:14:00'; 

second = '31-May-2013 13:22:00'; 

LogicalArr = ( first <= data_time.time & data_time.time<= second ); 

Removing IAC/UAC all inv from 31-May-2013 13:14 - 13:22 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12:17]) = nan; 

    end 

end 

Timerange.downtime inv3 

first = '06-Jul-2013 04:34:00'; 

second = '11-Jul-2013'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC inv3 from 06-Jul-2013 04:34 - 11-Jul-2013 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[13,16]) = nan; 

    end 

end 

Timerange.downtime inv4 

first = '20-Jun-2013 13:27:00'; 

second = '20-Jun-2013 13:21:00'; 

LogicalArr = ( first <= data_time.time & data_time.time<= second ); 
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Removing IAC/UAC inv4 from 20-Jun-2013 13:27 - 13:21 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[14,17]) = nan; 

    end 

end 

Timerange. Cleaning pyranometers. 

first = '12-Feb-2014 11:56:00'; 

second = '12-Feb-2014 12:23:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing GHI/GTI/DHI from 12.Feb 2014 kl. 11:56 - 12:22 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,1:3) = nan; 

    end 

end 

Timerange.downtime inv1 

first = '17-Feb-2014 12:21:00'; 

second = '17-Feb-2014 12:30:00'; 

LogicalArr = ( first <= data_time.time & data_time.time<= second ); 

Removing IAC/UAC inv1 from 17-Feb-2014 12:21 - 12:30 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12,15]) = nan; 

    end 

end 

Timerange.downtime inv3 

first = '17-Feb-2014 11:55:00'; 

second = '17-Feb-2014 12:11:00'; 

LogicalArr = ( first <= data_time.time & data_time.time<= second ); 
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Removing IAC/UAC inv3 from 17-Feb-2014 11:55 - 12:11 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[13,16]) = nan; 

    end 

end 

Timerange.downtime inv4 

first = '17-Feb-2014 12:06:00'; 

second = '17-Feb-2014 15:02:00'; 

LogicalArr = ( first <= data_time.time & data_time.time<= second ); 

Removing IAC/UAC inv4 from '17-Feb-2014 12:06 - 15:02 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[14,17]) = nan; 

    end 

end 

Timerange. Inv1 stopped, lost data 

first = '07-Apr-2014 13:40:00'; 

second = '08-Apr-2014 12:55:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IACinv1 from 07.April 2014 kl. 13:40 - 08.April 2014 
kl.12:55 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12 15]) = nan; %IACinv1 and UACinv1 

    end 

end 

Timerange. Changed inv1 

first = '09-Apr-2014 12:42:00'; 

second = '10-Apr-2014 11:37:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 
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Removing IAC/UACinv1 from 09.April 2014 kl. 12:42 - 10.April 2014 
kl.11:37 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12 15]) = nan; 

    end 

end 

Timerange. Removed inv4 for a while. IS THIS WHEN INV4 IS 
CHANGED? 

first = '14-Apr-2014 12:03:00'; 

second = '15-Apr-2014 08:55:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UACinv4 from 14.April 2014 kl. 12:03 - 15.April 2014 
kl.08:54 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[14 17]) = nan; 

    end 

end 

Timerange. Downtime, Removed all inv. Lightening? 

first = '02-Aug-2014 10:53:00'; 

second = '06-Aug-2014 08:20:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inv from 02.August 2014 kl. 10:53 - 

     06.August 2014 kl.08:19. Lightning? 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 
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Timerange. Downtime for all inv. 

first = '26-Aug-2014 16:46:00'; 

second = '29-Aug-2014'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inv from 26.August 2014 kl.16:46-
28.Aug(including) 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 

Timerange.downtime all inv 

first = '22-Oct-2014 08:19:00'; 

second = '24-Oct-2014'; 

LogicalArr = ( first <= data_time.time & data_time.time<= second ); 

Removing IAC/UAC all inv from 22-23 Oct-2014 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,[12:17]) = nan; 

    end 

end 

Timerange. Calibrating DHI. 

first = '05-Nov-2014 12:11:00'; 

second = '16-Mar-2015 13:40:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing DHI from 5.Nov 2014 kl. 12:11 - 16.Mar 2015 kl. 13:40. 

    if LogicalArr(i,:)==1 

        dataa(i,2) = nan; 

    end 

end 
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end 

Timerange. Downtime inv1. 

first = '27-Aug-2015 19:00:00'; 

second = '03-Sep-2015 06:00:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC and UAC all inv from 27.Aug 2015 kl. 19:00 - 3.Sep 
2015 

%kl. 06:00 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 

Timerange. Downtime all inv. 

first = '09-Jun-2016 19:30:00'; 

second = '20-Jun-2016 12:11:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inv from 09.Jun 2016 kl. 19:30 - 
20.Jun2016kl.12:10 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 

Timerange. Downtime all inv. 

first = '17-Nov-2016 11:30:00'; 

second = '21-Nov-2016 12:50:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inv from 17. Nov 2016 kl. 11:3 -
21.Nov2016kl.12:50 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 
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end 

Timerange. Downtime all inv. 

first = '23-May-2017 21:04:00'; 

second = '24-May-2017 09:15:00'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inv from 23.May 2017 kl. 21.04 - 
23.May2017kl.09:14 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 

Timerange. Downtime all inv. 

first = '01-Sep-2017'; 

second = '02-Sep-2017'; 

LogicalArr = ( first <= data_time.time & data_time.time< second ); 

Removing IAC/UAC all inv from 01.Sep 2017 - 02. Sep 2017 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,12:17) = nan; 

    end 

end 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,1:3) = nan; 

    end 

end 

TimeZone 

r1 = '22-May-2012'; 

s1 = '27-Oct-2012'; 

r2 = '31-Mar-2013'; 

s2 = '26-Oct-2013'; 

r3 = '30-Mar-2014'; 

s3 = '25-Oct-2014'; 

r4 = '29-Mar-2015'; 

s4 = '24-Oct-2015'; 

r5 = '27-Mar-2016'; 

s5 = '29-Oct-2016'; 
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r6 = '26-Mar-2017'; 

s6 = '28-Oct-2017'; 

LogicalArr = ( r1 <= data_time.time & data_time.time<= s1 | r2 <=... 

    data_time.time & data_time.time<= s2 | r3 <= data_time.time & ... 

    data_time.time<= s3 | r4 <= data_time.time & data_time.time<= s4 |... 

    r5 <= data_time.time & data_time.time<= s5 | r6 <= data_time.time & ... 

    data_time.time<= s6); 

Correcting TimeZone 

for i=1:length(LogicalArr) 

    if LogicalArr(i,:)==1 

        dataa(i,32) = 2; 

    end 

end 
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A.7 AIR MASS – MATLAB SCRIPT 

 

  

% Author: Camilla Lie 

% Date: 24.05.2019 

Load data 

data = readtable('clean_hour.txt');     % Hourly data May 2012-Feb. 2018 

alltime = data.time;                    % Time 

doy = data.doy;                         % Day of year 

Time 

date_time = datenum(alltime); 

date = floor(date_time); 

time = date_time-date; 

Constants 

latitude = 58.1535345; 

longitude = 8.0020142; 

delta = -23.45 * cosd(360.*(doy+10)./365);   % Solar declination angle 

altitude = 20; 

Time Zone 

r1 = '22-May-2012';     % UTC+2 

s1 = '27-Oct-2012';     % UTC+1 

r2 = '31-Mar-2013';     % UTC+2 

s2 = '26-Oct-2013';     % UTC+1 

r3 = '30-Mar-2014';     % UTC+2 

s3 = '25-Oct-2014';     % UTC+1 

r4 = '29-Mar-2015';     % UTC+2 

s4 = '24-Oct-2015';     % UTC+1 

r5 = '27-Mar-2016';     % UTC+2 

s5 = '29-Oct-2016';     % UTC+1 

r6 = '26-Mar-2017';     % UTC+2 

s6 = '28-Oct-2017'; 

 

% TimeZone 

LogicalArr = ( r1 <= alltime & alltime<= s1 | r2 <= alltime & alltime<=... 

    s2 | r3 <= alltime & alltime<= s3 | r4 <= alltime & alltime<= s4 | r5... 

    <= alltime & alltime<= s5 | r6 <= alltime & alltime<= s6); 

 

dst = LogicalArr'; 
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dst_tz = double(dst);       % Time zone 

Get correct timeZone 

for i=1:length(dst_tz) 

    if dst_tz(i) == 1 

        tz(i) = 2; 

    elseif dst_tz(i) == 0 

        tz(i) = 1; 

    end 

end 

 

tz =tz';                % Time zone 

time = time'; 

delta = delta';         % Solar declination angle 

B = 360*(doy-81)/365; 

% ET = difference between Appearent solar time and Mean solar time 

ET = (9.87*sin(2*B)-7.53*cosd(B)-1.5*sind(B))';      % Equation of Time 

solarTime = ((time.*24-double(dst)).*60+4.*(longitude-1.*15)+ET)./60./24; 

t_h = (solarTime*24-12)*15;             % Hours angle 

Theta calculations (zenith angle) 

theta = acosd(sind(latitude)*sind(delta)+...    % Zenith angle 

    cosd(latitude)*cosd(delta).*cosd(t_h)); 

 

theta1 = theta;         % For scaled AM 

theta2 = theta;         % For theta <= 89 degrees 

 

% Scaling 

for i=1:length(theta1) 

    if theta1(i)>=(90) 

        theta1(i)= theta1(i)- theta1(i)*0.03; 

    end 

end 

 

for i=1:length(theta1) 

    if theta1(i)>=(90) 

        theta(i)= theta1(i)- theta1(i)*0.03; 

    end 

end 

 

for i=1:length(theta1) 

    if theta1(i)>=(90) 

        theta1(i)= 89.8; 

    end 

end 

 



Power Prediction of Photovoltaic System using Neural Network Models 

 

XXXVII 

 

  

% Maximum theta <=89 

for i=1:length(theta2) 

    if theta2(i)>=89 

        theta2(i)= 89; 

    end 

end 

Air mass calculations 

AM1= ((exp(-0.0001184*altitude))./(cosd(theta1)+0.5057.*... 

    (96.080+theta1).^(-1.634)))';                           % Scaled AM 

AM2= ((exp(-0.0001184*altitude))./(cosd(theta2)+0.5057.*... 

    (96.080+theta2).^(-1.634)))';                           % theta <=89 

 

figure 

subplot(2,1,1) 

plot(alltime(14134:40436),AM1(14134:40436),'LineWidth',1) 

grid 

title('\fontsize{13}(a)') 

ylabel('Air mass [-]') 

set(gca,'FontSize',18) 

 

subplot(2,1,2) 

plot(alltime(14134:40436),AM2(14134:40436),'LineWidth',1) 

grid 

title('\fontsize{13}(b)') 

% ylabel('Air mass [-]') 

set(gca,'FontSize',18) 
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A.8 PRINCIPAL COMPONENT ANALYSIS (PCA) – MATLAB SCRIPT 
  

  

% Author: Camilla Lie 

% Date: 24.05.2019 

Import data 

data_inv1 = readtable('inv1.txt'); 

Variables 

data1 = [data_inv1.GHIavg,data_inv1.VS,data_inv1.airtemp]; 

Standardize 

norm_all = normalize(data1);      % normalize in MATLAB = standardize (mean=0, STD=1) 

Principal Component Analysis (PCA) 

MATLAB function 

[coeff,score,latent,tsquared,explained] = pca(norm_all,'Rows','complete'); % If there 

is missing data 

 

figure; 

pareto(explained) 

xlabel('Principal Component') 

 

figure; 

[handlesPareto, axesPareto] = pareto(explained); 

yticks = get(axesPareto(2),'YTick'); 

RightYLabels = cellstr(get(axesPareto(2),'YTickLabel')); 

xl = xlim; 

set(axesPareto(2),'YTickLabel',[]) 

 

xlabel('Principal Component','fontsize',20) 

ylabel('Variance Explained (%)','fontsize',20) 

set(gca,'FontSize',20) 
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A.9 AVERAGE MUTUAL INFORMATION (AMI) – MATLAB SCRIPT 

 

  

% Reference: 

 % R. D. Thomas, N. C. Moses, E. A. Semple, and A. J. Strang, 

 % "An efficient algorithm for the computation of average mutual 

 % information: Validation and implementation in Matlab," Journal of 

 % Mathematical Psychology, vol. 61, pp. 45-59, 2014/08/01/ 2014. 

 

function AMI = average_mutual_information(data) 

% function AMI = average_mutual_information(data) 

% Calculates average mutual information between 

% two 

% columns of data. It uses kernel density 

% estimation, 

% with a globally adjusted Gaussian kernel. 

% 

% Input should be an n-by-2 matrix, with data sets 

% in adjacent 

% column vectors. 

% 

% Output is a scalar. 

n = length(data); 

X = data(:,1); 

Y = data(:,2); 

% Example below is for normal reference rule in 

% 2 dims, Scott (1992). 

hx = std(X)/(n^(1/6)); 

hy = std(Y)/(n^(1/6)); 

% Compute univariate marginal density functions. 

P_x = univariate_kernel_density(X, X, hx); 

P_y = univariate_kernel_density(Y, Y, hy); 

% Compute joint probability density. 

JointP_xy = bivariate_kernel_density(data, data, hx, hy); 

AMI = sum(log2(JointP_xy./(P_x.*P_y))/n); 

 

end 

function y = bivariate_kernel_density(value, data, Hone, Htwo) 

% function y = bivariate_kernel_density(value, 

% data, Hone, Htwo) 

% Calculates bivariate kernel density estimates 

% of probability. 

% Inputs are: value (m x 2 matrix), where density 

% is estimated; 

% data (n x 2 matrix), the data used to 

% estimate the density; 

% Hone (scalar) and Htwo (scalar) to use 

% for the widths of density estimation. 

% Output is an m-vector of probabilities estimated 

% at the values in ’value’. 

s = size(data); 

n = s(1); 

t = size(value); 
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number_pts = t(1); 

rho_matrix = corr(data); 

rho = rho_matrix(1,2); 

% The adjusted covariance matrix: 

W = [Hone^2 rho*Hone*Htwo; rho*Hone*Htwo Htwo^2]; 

Differences = linear_depth(value,-data); 

prob = mvnpdf(Differences,[0 0],W); 

Cumprob = cumsum(prob); 

y(1) = (1/n)*Cumprob(n); 

    for i = 2:number_pts 

        index = n*i; 

        y(i) = (1/(n))* (Cumprob(index)-Cumprob(index - n)); 

        i = i + 1; 

    end 

y = y'; 

end 

function y = Extended(vector,n) 

% Takes an m-dimensional row vector and outputs an 

% n-by-m matrix with n-many consecutive repeats of 

% the vector. Similarly, it takes an 

% m-dimensional column vector and outputs an 

% m-by-n matrix. 

% Else, it returns the original input. 

M = vector; 

    if size(vector,1) == 1 

        M = zeros(n,length(vector)); 

        for i = 1:n 

            M(i,:) = vector; 

            i = i + 1; 

        end 

    end 

    if size(vector,2) == 1 

        M = zeros(length(vector),n); 

        for i = 1:n 

            M(:,i) = vector; 

            i = i + 1; 

        end 

    end 

y = M; 

end 

function y = linear_depth(feet, toes) 

% linear_depth takes a matrix ‘feet’ and lengthens 

% it in blocks, takes a matrix ‘toes’ and lengthens 

% it in Extended repeats, and then adds the% lengthened ‘feet’ and ‘toes’ matrices to 

achieve 

% all sum combinations of their rows. 

% feet and toes have the same number of columns 

    if size(feet, 2) == size(toes, 2) 

        a = size(feet, 1); 
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        b = size(toes, 1); 

        Blocks = zeros(a*b, size(toes, 2)); 

        Bricks = Blocks; 

        for i = 1:a 

            Blocks((i-1)*b + 1: i*b,:) = Extended(feet(i,:),b); 

            Bricks((i-1)*b + 1: i*b,:) = toes; 

            i = i + 1; 

        end 

    end 

y = Blocks + Bricks; 

 

 

end 

function y = univariate_kernel_density(value,data, window) 

% function y = univariate_kernel_density(value, 

% data, window) 

% Estimates univariate density using kernel 

% density estimation. 

% Inputs are: value (m-vector), where density is 

% estimated; 

% data (n-vector), the data used to 

% estimate the density; 

% window (scalar), used for the width of 

% density estimation. 

% Output is an m-vector of probabilities. 

h = window; 

n = length(data); 

m = length(value); 

% We use matrix operations to speed up computation 

% of a double-sum. 

Prob = zeros(n, m); 

G = Extended(value, n); 

H = Extended(data', m); 

Prob = normpdf((G - H)/h); 

fhat = sum(Prob)/(n*h); 

y = fhat'; 

% end 

Code Below: 

% Author: Camilla Lie 

% Date: 24.05.2019 

Import data 

data1 = readtable('inv1.txt'); 

Adapting data matrix 
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This is performed to get a matrix [hours x days] for all data. Matrix will be as long as the longest day of the year 

(number of hours) but days with fewer hours will then have "NaN" for corresponding hour. This is performed to be able 

to calculate AMI over a continuous dataset as time-lag is involved (e.g. a time lag of 2 hours will compare hour x to 

hour x+2, but if there is no more hours for relevant day, this cannot be calculated. Thus, the model will go to the next 

day instead to calculate AMI with corresponding time lag. 

timee = data1.time;                         % Time 

 

% Variables 

jourreference = [1 1];                      % Month/day 

reference = datetime([timee(1).Year jourreference]); 

njour = fix(days(timee - reference) + 1); 

[~, ~, jourindex] = unique(njour); 

colonnesjour = accumarray(jourindex, data1.VS, [], @(c) {c(:)});    % Variable = GHI, 

WS or AT 

maxhauteur = max(cellfun(@numel, colonnesjour)); 

colonnesjour = cellfun(@(c) [c; nan(maxhauteur - numel(c), 1)], colonnesjour, 

'UniformOutput', false); 

colonnesjour = [colonnesjour{:}]; 

 

% Power 

colonnesjour1 = accumarray(jourindex, data1.PACinv1, [], @(c) {c(:)});  % Power 

variable 

maxhauteur1 = max(cellfun(@numel, colonnesjour1)); 

colonnesjour1 = cellfun(@(c) [c; nan(maxhauteur1 - numel(c), 1)], colonnesjour1, 

'UniformOutput', false); 

colonnesjour1 = [colonnesjour1{:}]; 

 

var = colonnesjour;         % Vector with variable (GHI, WS or AT) 

power = colonnesjour1;      % Vector with Power(AC) 

AMI Time-lag Calculations 

for k = 1:4                                 % Lags (hour) 

    w1=[];                                  % Vector with Variable 

    w2=[];                                  % Vector with power (AC) 

    for i = 400:900                         % Days 

        j = 1;                              % Hours 

        while (j+k-1<=19)&&(~isnan(var(j+k-1,i)))   % Avoid discontinuity in AMI 

calculations 

            variable(j) = var(j,i);                 % Vector with continuous varibale 

values 

            pwr(j) = power(j+(k-1),i);              % Vector with corresponding power 

values 

 

            j = j+1; 

        end 

        w1 = [w1;variable'];       % Vector with continuous varibale values 
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        w2 = [w2;pwr'];            % Vector with corresponding power values 

        clearvars ghi pwr 

 

    end 

    AMI_val(k) = average_mutual_information([w1 w2]);  % AMI-calculation 

    clearvars w1 w2; 

 

end 

Write Tables 

AMI = array2table(AMI_val); 

writetable(AMI,'AMI_ws_inv1.txt') 

writetable(AMI,'AMI_at_inv1.txt') 

writetable(AMI,'AMI_ghi_inv1.txt') 

Plotting 

ws = readtable('AMI_ws_inv1.txt'); 

at = readtable('AMI_at_inv1.txt'); 

ghi = readtable('AMI_ghi_inv1.txt'); 

 

ws = table2array(ws); 

at = table2array(at); 

ghi = table2array(ghi); 

 

figure 

plot(x,ghi,'LineWidth',2) 

hold on 

plot(x,at,'LineWidth',2) 

plot(x,ws,'LineWidth',2) 

ylabel('Average Mutual Information') 

xlabel('Time lag (hours)') 

grid 

set(gca,'FontSize',20,'XTick',0:4,'FontName','Calibri') 

legend('Global horizontal irradiance','Air temperature','Wind speed') 
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A.10 DATA DIVISION – MATLAB SCRIPT 

 

  

% Author: Camilla Lie 

% Date: 24.05.2019 

 

% This is an example from Suntech PV modules (inv1), but was also done with 

% Sharp and REC. Each of the PV modules had their sub-sets divided 

% separately, meaning the three sets (training, validation and test) are 

% not divided equally between the three types of modules. They are divided 

% randomly to obtain the lowest percentage difference for the coefficent of 

% variation within each of the variables. 

Load data 

data1 = readtable('inv1_am89.txt');     % Using Air Mass theta <= 89 degrees 

 

% Remove variables that will not be used 

data1 = removevars(data1,{'DHIavg','GTIavg','doy','tz'}); 

Choose time-interval 

    %INV1 

time_find1= datevec(data1.time); 

year1 = time_find1(:,1:3); 

year1 = datetime(year1); 

year1 = datetime(year1,'InputFormat','dd/MMM/yyyy','Format','MMM-yyyy'); 

start1 = find(year1=='01-Jan-2014',1,'first'); 

stop1 = find(year1==' 31-Dec-2016',1,'last'); 

Divide into datasets 

data_inv1 = data1(start1:stop1,:); 

 

% Removal of NaNs 

data_inv1 = rmmissing(data_inv1); 

Normalize data 

inv1_norm = normalize(data_inv1(:,2:end)); 

Choose set for INV1 (SUNTECH) 

    %$$$$$$$$$$$$$$ SHOULD NOT BE CHANGED AFTER DIVISION $$$$$$$$$$$$$$$ 

% p = 0.70; 

% 

%     %INV1 

% [m1,n1] = size(inv3_norm); 
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% trainInd1 = (idx1((1:round(p*m1))))'; 

% val = idx1((round(p*m1)+1:end)); 

% valInd1 = (val(1:round(length(val)/2)))'; 

% testInd1 = (val(round(length(val)/2)+1:end))'; 

 

% x1 = data_inv3(trainInd1,:); 

% y1 = data_inv3(valInd1,:); 

% z1 = data_inv3(testInd1,:); 

 

    %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

 

    % TRAINING 

% Mean 

avgen = nanmean(x1.GHIavg); 

avgto = nanmean(x1.VS); 

avgtre = nanmean(x1.airtemp); 

avgfem = nanmean(x1.AM2); 

avgseks = nanmean(x1.PACinv1); 

 

% Standard Deviation 

stden = nanstd(x1.GHIavg); 

stdto = nanstd(x1.VS); 

stdtre = nanstd(x1.airtemp); 

stdfem = nanstd(x1.AM2); 

stdseks = nanstd(x1.PACinv1); 

 

% Coefficient of Variation 

cven = avgen./stden; 

cvto = avgto./stdto; 

cvtre = avgtre./stdtre; 

cvfem = avgfem./stdfem; 

cvseks = avgseks./stdseks; 

 

% Descriptve statistics training set SUNTECH 

train_inv1_avg = [avgen stden cven; avgto stdto cvto; avgtre stdtre... 

    cvtre; avgfem stdfem cvfem; avgseks stdseks cvseks] 

 

    % VALIDATION 

% Mean 

avgenval = nanmean(y1.GHIavg); 

avgtoval = nanmean(y1.VS); 

avgtreval = nanmean(y1.airtemp); 

avgfemval = nanmean(y1.AM2); 

avgseksval = nanmean(y1.PACinv1); 

 

% Standard Deviation 

stdenval = nanstd(y1.GHIavg); 

stdtoval = nanstd(y1.VS); 

stdtreval = nanstd(y1.airtemp); 
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stdfemval = nanstd(y1.AM2); 

stdseksval = nanstd(y1.PACinv1); 

 

% Coefficient of Variation 

cvenval = avgenval./stdenval; 

cvtoval = avgtoval./stdtoval; 

cvtreval = avgtreval./stdtreval; 

cvfemval = avgfemval./stdfemval; 

cvseksval = avgseksval./stdseksval; 

 

% Descriptve statistics validation set SUNTECH 

val_inv1_avg = [avgenval stdenval cvenval; avgtoval stdtoval cvtoval;... 

    avgtreval stdtreval cvtreval; avgfemval stdfemval cvfemval;... 

    avgseksval stdseksval cvseksval] 

 

    % TESTING 

% Mean 

avgentest = nanmean(z1.GHIavg); 

avgtotest = nanmean(z1.VS); 

avgtretest = nanmean(z1.airtemp); 

avgfemtest = nanmean(z1.AM2); 

avgsekstest = nanmean(z1.PACinv1); 

 

% Standard Deviation 

stdentest = nanstd(z1.GHIavg); 

stdtotest = nanstd(z1.VS); 

stdtretest = nanstd(z1.airtemp); 

stdfemtest = nanstd(z1.AM2); 

stdsekstest = nanstd(z1.PACinv1); 

 

% Coefficient of Variation 

cventest = avgentest./stdentest; 

cvtotest = avgtotest./stdtotest; 

cvtretest = avgtretest./stdtretest; 

cvfemtest = avgfemtest./stdfemtest; 

cvsekstest = avgsekstest./stdsekstest; 

 

% Descriptve statistics test set SUNTECH 

test_inv1_avg = [avgentest stdentest cventest; avgtotest stdtotest... 

    cvtotest; avgtretest stdtretest cvtretest ; avgfemtest stdfemtest... 

    cvfemtest; avgsekstest stdsekstest cvsekstest] 

 

 

train_val1 = [train_inv1_avg,val_inv1_avg test_inv1_avg]; 

train_val11 = array2table(train_val1); 

train_val11.Properties.VariableNames = {'AVG_train' 'STD_train' 'CV_train' 'AVG_val' 

'STD_val' 'CV_val' 'AVG_test' 'STD_test' 'CV_test'}; 

 

% Percentage difference 
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CV1_diff1 = 100.*[(train_val11.CV_train-train_val11.CV_val)./... 

    train_val11.CV_val, (train_val11.CV_train-train_val11.CV_test)./... 

    train_val11.CV_test, (train_val11.CV_val-train_val11.CV_test)./... 

    train_val11.CV_test ]; 

INDEX FOR INV1 

idx1 = idx1'; x1.idx1 = trainInd1; y1.idx1 = valInd1; z1.idx1 = testInd1; 

idx1_train = x1.idx;                        % Training indices 

idx1_val = y1.idx;                          % Validation indices 

idx1_test = z1.idx;                         % Test indices 

 

time = data_inv1.time; 

inv1_norm.time = time; 

inv1.time = time; 

inv1_norm_t = movevars(inv1_norm,'time','before','GHIavg'); 

inv1_t = movevars(data_inv1,'time','before','GHIavg'); 

train_inv1_norm = inv1_norm_t(idx1_train,:);    % Extracting only indeces from training 

train_inv1_norm.idx = idx1_train;               % Including indices in table 

train_inv1 = inv1_t(idx1_train,:);              % Extracting only indices from training 

train_inv1.idx = idx1_train;                    % Including indices in table 

val_inv1_norm = inv1_norm_t(idx1_val,:);        % Extracting only indices from 

validation 

val_inv1_norm.idx = idx1_val;                   % Including indices in table 

val_inv1 = inv1_t(idx1_val,:);                  % Extracting only indices from 

validation 

val_inv1.idx = idx1_val;                        % Including indices in table 

test_inv1_norm = inv1_norm_t(idx1_test,:);      % Extracting only indices from testing 

test_inv1_norm.idx = idx1_test;                 % including indices in table 

test_inv1 = inv1_t(idx1_test,:);                % Extracting only indices from testing 

test_inv1.idx = idx1_test;                      % Including indices in tabl 

Write table SUNTECH 

writetable(inv1_norm_t,'inv1_norm.txt'); writetable(inv1_t,'inv1.txt'); writetable(train_inv1_norm,'train_inv1_norm.txt'); 

writetable(train_inv1,'train_inv1.txt'); writetable(val_inv1_norm,'val_inv1_norm.txt'); writetable(val_inv1,'val_inv1.txt'); 

writetable(test_inv1_norm,'test_inv1_norm.txt'); writetable(test_inv1,'test_inv1.txt'); 
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A.11 INPUT SELECTION 

 

Figure 55: Hourly wind speed for relevant years 

 

Figure 56: Hourly air temperature for relevant years 
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Figure 57: Hourly global horizontal irradiance for relevant years 

 

Figure 58: Air mass using scaling (a) and maximum zenith angle (ϴz) of 89° (b) 
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Figure 59: Hourly power production of (a) Suntech, (b) Sharp and (c) REC 
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A.12 VALIDATION CHECK 
Table 23: Performance parameters Suntech modules using 6 and 1000 validation checks 

Performance 
parameters 

6 validation checks 1000 validation checks 

4 10 20_2 4 10 20_2 

MSE train 0.0645 0.0538 0.0510 0.0644 0.0515 0.0479 

MSE validation 0.0590 0.0504 0.0490 0.0589 0.0485 0.0470 

MSE test 0.0579 0.0505 0.0480 0.0578 0.0485 0.0464 

MAE train 0.1598 0.1459 0.1402 0.1595 0.1427 0.1367 

MAE validation 0.1541 0.1437 0.1403 0.1539 0.1410 0.1380 

MAE test 0.1520 0.1428 0.1382 0.1516 0.1402 0.1362 

MARE train 1.0875 0.9121 0.9621 1.0656 -0.3081 -0.3054 

MARE validation 0.8084 0.7323 0.7563 0.8181 -0.0624 -0.0706 

MARE test 0.6880 0.6094 0.6041 0.6838 0.1088 0.1323 

MBE train -0.0005 0.0019 0.0009 -0.0002 0.3081 0.3054 

MBE validation -0.0017 -0.0020 -0.0017 -0.0012 0.0654 0.0706 

MBE test -0.0062 -0.0056 -0.0071 -0.0062 0.1088 0.1323 

R^2 train 0.9360 0.9466 0.9494 0.9361 0.9741 0.9760 

R^2 validation 0.9397 0.9485 0.9499 0.9398 0.9749 0.9757 

R^2 test 0.9411 0.9486 0.9512 0.9412 0.9751 0.9762 

 



Power Prediction of Photovoltaic System using Neural Network Models 

 

LII 

 

A.13 DISCARDED TESTS – 4 AND 120 NEURONS 
Table 24: Performance parameters with 4 and 120 neurons, Suntech modules. Averaged 50 runs 

Suntech 
4 neurons 120 neurons 

Training Validation Test Training Validation Test 

MSE 0.0644 0.0589 0.0578 0.0451 0.0504 0.0511 

MARE 1.0656 0.8181 0.6838 1.0958 0.7935 0.6105 

MAE 0.1595 0.1539 0.1516 0.1315 0.1406 0.1392 

MBE -0.0002 -0.0012 -0.0062 0.0027 0.0005 -0.0060 

R2 0.9361 0.9398 0.9412 0.9552 0.9485 0.9480 

Epoch 418 110 

Time 11 423 
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A.14 EXAMPLE OF MODEL TRAINING 50 RUNS – SUNTECH MODULES 

  

Runs MSE train MSE validationMSE test MAE train MAE validationMAE test MARE trainMARE validationMARE testMBE train MBE validationMBE test R^2 train R^2 validationR^2 test

1 0.0446 0.0450 0.0430 0.1300 0.1352 0.1298 0.3492 0.0761 0.1322 0.0009 -0.0047 -0.0071 0.9557 0.9540 0.9563

2 0.0445 0.0454 0.0443 0.1299 0.1332 0.1313 0.2157 0.0528 0.1199 0.0022 -0.0018 -0.0031 0.9558 0.9536 0.9549

3 0.0460 0.0462 0.0455 0.1335 0.1352 0.1343 0.6762 0.0891 0.1589 -0.0004 -0.0037 -0.0065 0.9544 0.9528 0.9538

4 0.0482 0.0456 0.0444 0.1345 0.1349 0.1312 0.3968 0.0619 0.1341 0.0001 -0.0032 -0.0093 0.9522 0.9534 0.9548

5 0.0466 0.0449 0.0436 0.1332 0.1332 0.1313 0.3559 0.0742 0.1485 0.0017 -0.0042 -0.0064 0.9538 0.9541 0.9557

6 0.0474 0.0458 0.0448 0.1345 0.1351 0.1329 0.4881 0.0587 0.1526 -0.0003 -0.0024 -0.0084 0.9530 0.9531 0.9544

7 0.0484 0.0473 0.0461 0.1365 0.1384 0.1351 0.3603 0.1028 0.1212 0.0005 -0.0038 -0.0088 0.9519 0.9516 0.9532

8 0.0443 0.0440 0.0449 0.1291 0.1325 0.1308 0.3820 0.0655 0.1312 0.0001 -0.0048 -0.0061 0.9560 0.9550 0.9544

9 0.0442 0.0445 0.0440 0.1293 0.1334 0.1303 0.3272 0.0625 0.1247 -0.0002 -0.0050 -0.0065 0.9561 0.9545 0.9552

10 0.0481 0.0456 0.0456 0.1330 0.1335 0.1311 0.3173 0.1263 0.1479 0.0008 -0.0033 -0.0073 0.9523 0.9534 0.9536

11 0.0453 0.0459 0.0435 0.1294 0.1346 0.1295 0.3309 0.0418 0.1102 0.0012 -0.0044 -0.0054 0.9551 0.9531 0.9557

12 0.0440 0.0444 0.0439 0.1288 0.1325 0.1297 0.2841 0.0443 0.1091 -0.0001 -0.0040 -0.0063 0.9563 0.9547 0.9554

13 0.0473 0.0475 0.0467 0.1358 0.1391 0.1381 0.3669 0.0761 0.0899 0.0006 -0.0037 -0.0085 0.9531 0.9514 0.9525

14 0.0467 0.0463 0.0456 0.1330 0.1363 0.1335 0.4170 0.0677 0.1514 -0.0008 -0.0030 -0.0068 0.9536 0.9527 0.9536

15 0.0464 0.0458 0.0454 0.1309 0.1332 0.1310 0.3435 0.0763 0.1385 0.0001 -0.0036 -0.0081 0.9540 0.9532 0.9538

16 0.0460 0.0458 0.0477 0.1334 0.1362 0.1361 0.4165 0.1011 0.1307 0.0005 -0.0017 -0.0061 0.9544 0.9532 0.9515

17 0.0448 0.0454 0.0451 0.1290 0.1317 0.1315 0.5408 0.0746 0.1313 -0.0006 -0.0050 -0.0074 0.9555 0.9536 0.9541

18 0.0445 0.0446 0.0454 0.1299 0.1339 0.1318 0.3085 0.1104 0.1584 -0.0005 -0.0059 -0.0078 0.9559 0.9544 0.9539

19 0.0460 0.0450 0.0445 0.1333 0.1339 0.1328 0.4199 0.0316 0.1281 0.0011 -0.0016 -0.0057 0.9544 0.9540 0.9548

20 0.0469 0.0468 0.0464 0.1337 0.1363 0.1340 0.3174 0.0584 0.1173 0.0012 -0.0033 -0.0052 0.9535 0.9522 0.9528

21 0.0440 0.0435 0.0439 0.1280 0.1304 0.1302 0.3151 0.0694 0.1510 -0.0002 -0.0044 -0.0051 0.9563 0.9555 0.9554

22 0.0458 0.0474 0.0470 0.1332 0.1378 0.1357 0.2838 0.0756 0.1588 -0.0003 -0.0050 -0.0065 0.9546 0.9515 0.9522

23 0.0458 0.0458 0.0437 0.1314 0.1341 0.1310 0.4987 0.0381 0.1287 0.0008 -0.0021 -0.0074 0.9545 0.9532 0.9556

24 0.0496 0.0471 0.0468 0.1384 0.1379 0.1373 0.2671 0.0712 0.1166 -0.0017 -0.0057 -0.0087 0.9508 0.9519 0.9525

25 0.0466 0.0455 0.0458 0.1334 0.1349 0.1339 0.4524 0.1030 0.1424 0.0006 -0.0023 -0.0070 0.9537 0.9535 0.9534

26 0.0452 0.0453 0.0513 0.1308 0.1340 0.1349 0.2830 0.0537 0.1212 0.0000 -0.0049 -0.0103 0.9551 0.9537 0.9478

27 0.0491 0.0467 0.0525 0.1377 0.1368 0.1389 0.3186 0.0492 0.1067 -0.0002 -0.0051 -0.0101 0.9513 0.9523 0.9466

28 0.0462 0.0456 0.0457 0.1331 0.1364 0.1337 0.4100 0.0992 0.1879 -0.0001 -0.0033 -0.0094 0.9542 0.9534 0.9536

29 0.0456 0.0456 0.0445 0.1304 0.1340 0.1313 0.4728 0.0775 0.1531 0.0010 -0.0028 -0.0056 0.9547 0.9534 0.9548

30 0.0457 0.0445 0.0445 0.1317 0.1338 0.1310 0.4410 0.0326 0.1768 0.0006 -0.0021 -0.0061 0.9547 0.9545 0.9547

31 0.0446 0.0440 0.0442 0.1303 0.1326 0.1313 0.2476 0.0123 0.1409 0.0014 -0.0016 -0.0044 0.9557 0.9551 0.9551

32 0.0443 0.0461 0.0450 0.1292 0.1351 0.1314 0.2739 0.0850 0.1510 0.0000 -0.0054 -0.0066 0.9560 0.9529 0.9543

33 0.0452 0.0446 0.0444 0.1305 0.1325 0.1304 0.3450 0.0387 0.1361 0.0007 -0.0060 -0.0050 0.9552 0.9544 0.9548

34 0.0440 0.0435 0.0452 0.1294 0.1320 0.1316 0.4108 0.0679 0.1616 -0.0001 -0.0047 -0.0071 0.9563 0.9556 0.9540

35 0.0483 0.0457 0.0448 0.1351 0.1351 0.1314 0.3072 0.0888 0.1556 0.0006 -0.0022 -0.0077 0.9521 0.9533 0.9545

36 0.0453 0.0449 0.0446 0.1317 0.1338 0.1326 0.2963 0.0824 0.1431 0.0017 -0.0026 -0.0034 0.9551 0.9541 0.9547

37 0.0475 0.0476 0.0473 0.1367 0.1392 0.1374 0.2443 0.1241 0.1008 -0.0001 -0.0047 -0.0073 0.9529 0.9514 0.9520

38 0.0456 0.0441 0.0434 0.1303 0.1323 0.1296 0.3894 0.0860 0.1337 0.0010 -0.0018 -0.0073 0.9548 0.9549 0.9559

39 0.0454 0.0456 0.0444 0.1306 0.1341 0.1311 0.4147 0.0487 0.1510 -0.0014 -0.0051 -0.0088 0.9550 0.9534 0.9549

40 0.0443 0.0453 0.0472 0.1295 0.1345 0.1340 0.3428 0.0719 0.1441 0.0002 -0.0043 -0.0074 0.9560 0.9538 0.9521

41 0.0466 0.0458 0.0451 0.1334 0.1349 0.1323 0.2951 0.0761 0.1396 0.0009 -0.0012 -0.0073 0.9538 0.9532 0.9542

42 0.0461 0.0458 0.0435 0.1329 0.1331 0.1312 0.3452 0.0389 0.1473 -0.0013 -0.0058 -0.0101 0.9543 0.9532 0.9558

43 0.0455 0.0460 0.0452 0.1312 0.1363 0.1339 0.3051 0.0899 0.1545 0.0000 -0.0049 -0.0085 0.9549 0.9530 0.9540

44 0.0542 0.0502 0.0484 0.1436 0.1405 0.1379 0.0554 0.0161 0.1681 0.0021 -0.0006 -0.0067 0.9463 0.9487 0.9508

45 0.0447 0.0437 0.0439 0.1299 0.1314 0.1308 0.3930 0.0336 0.1178 0.0007 -0.0059 -0.0059 0.9556 0.9553 0.9553

46 0.0450 0.0451 0.0455 0.1312 0.1339 0.1335 0.4720 0.1073 0.1382 0.0009 -0.0028 -0.0053 0.9553 0.9539 0.9537

47 0.0460 0.0449 0.0451 0.1311 0.1324 0.1317 0.2466 0.0617 0.1374 0.0002 -0.0035 -0.0067 0.9544 0.9541 0.9542

48 0.0460 0.0473 0.0460 0.1341 0.1383 0.1363 0.2325 0.1029 0.1391 0.0002 -0.0057 -0.0056 0.9544 0.9517 0.9532

49 0.0460 0.0456 0.0453 0.1330 0.1350 0.1340 0.3595 0.0903 0.1708 -0.0011 -0.0057 -0.0094 0.9544 0.9534 0.9540

50 0.0463 0.0450 0.0439 0.1315 0.1337 0.1306 0.3207 0.0636 0.1512 0.0000 -0.0042 -0.0071 0.9541 0.9540 0.9553

Suntech (20-2-1)
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A.15 MODEL TRAINING RESULTS – EXAMPLE SUNTECH 
 

 

Figure 60: Performance of 20-2-1 model Suntech 

 

 

Figure 61: Training state 20-2-1 model Suntech 
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Figure 62: Error histogram 20-2-1 model Suntech 

 

Figure 63: Regression plot 20-2-1 model Suntech 
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A.16 PERFORMANCE PARAMETERS – SCALED AIR MASS 
Table 25: Performance parameters Suntech PV modules using scaled air mass 

Suntech MSE MARE MAE MBE R2 Epoch Time 

8 

Train set 0.0623 0.1697 0.1538 0.0007 0.9382 

443 19 Validation set 0.0578 0.0584 0.1500 -0.0005 0.9410 

Test set 0.0556 0.1614 0.1469 -0.0064 0.9435 

10 

Train set 0.0615 0.1382 0.1527 0.0012 0.9390 

520 19 Validation set 0.0574 0.0447 0.1492 0.0003 0.9414 

Test set 0.0553 0.1623 0.1463 -0.0064 0.9438 

20 

Train set 0.0586 0.1315 0.1488 0.0017 0.9418 

542 35 Validation set 0.0567 0.0379 0.1484 0.0009 0.9420 

Test set 0.0548 0.1645 0.1453 -0.0061 0.9443 

30 

Train set 0.0574 0.1410 0.1472 0.0016 0.9431 

551 60 Validation set 0.0570 0.0340 0.1481 0.0020 0.9417 

Test set 0.0557 0.1627 0.1457 -0.0056 0.9433 

50 

Train set 0.0549 0.1563 0.1448 0.0023 0.9456 

522 104 Validation set 0.0576 0.0268 0.1489 0.0027 0.9412 

Test set 0.0570 0.1564 0.1467 -0.0051 0.9420 

120 

Train set 0.0599 0.1154 0.1506 0.0013 0.9406 

48 478 Validation set 0.0603 0.0946 0.1521 0.0024 0.9384 

Test set 0.0596 0.1630 0.1509 -0.0056 0.9394 

10_2 

Train set 0.0588 0.1851 0.1493 0.0002 0.9417 

737 25 Validation set 0.0552 0.0337 0.1465 -0.0014 0.9436 

Test set 0.0533 0.1601 0.1437 -0.0077 0.9459 

20_2 

Train set 0.0568 0.1864 0.1470 0.0006 0.9436 

650 36 Validation set 0.0557 0.0394 0.1470 0.0001 0.9430 

Test set 0.0548 0.1672 0.1446 -0.0075 0.9443 
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Table 26: Performance parameters Sharp PV modules using scaled air mass 

Sharp MSE MARE MAE MBE R2 Epoch Time 

8 

Train set 0.0343 0.7801 0.1190 -0.0001 0.9656 

555 17 Validation set 0.0337 0.0173 0.1191 0.0019 0.9664 

Test set 0.0396 0.0659 0.1278 0.0010 0.9606 

10 

Train set 0.0339 0.7231 0.1172 0.0005 0.9661 

619 24 Validation set 0.0334 0.0172 0.1177 0.0023 0.9667 

Test set 0.0393 0.0679 0.1263 0.0016 0.9609 

20 

Train set 0.0325 0.6440 0.1134 0.0010 0.9675 

684 25 Validation set 0.0332 0.0294 0.1162 0.0024 0.9669 

Test set 0.0390 0.0638 0.1243 0.0026 0.9612 

30 

Train set 0.0318 0.5922 0.1113 0.0012 0.9681 

745 70 Validation set 0.0336 0.0245 0.1156 0.0022 0.9665 

Test set 0.0393 0.0608 0.1234 0.0026 0.9609 

50 

Train set 0.0315 0.7098 0.1109 0.0011 0.9685 

546 112 Validation set 0.0345 0.0152 0.1172 0.0016 0.9656 

Test set 0.0404 0.0564 0.1252 0.0019 0.9598 

120 

Train set 0.0317 1.0081 0.1134 0.0024 0.9682 

218 433 Validation set 0.0362 0.0194 0.1219 0.0029 0.9639 

Test set 0.0426 0.0441 0.1309 0.0013 0.9576 

10_2 

Train set 0.0336 0.6576 0.1159 0.0001 0.9663 

808 26 Validation set 0.0333 0.0200 0.1167 0.0018 0.9668 

Test set 0.0391 0.0712 0.1250 0.0011 0.9611 

20_2 

Train set 0.0327 0.7324 0.1140 0.0004 0.9672 

724 27 Validation set 0.0335 0.0228 0.1165 0.0014 0.9666 

Test set 0.0394 0.0653 0.1246 0.0013 0.9608 
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Table 27: Performance parameters REC PV modules using scaled air mass 

REC MSE MARE MAE MBE R2 Epoch Time 

8 

Train set 0.0547 0.0976 0.1349 0.0010 0.9459 

511 17 Validation set 0.0565 0.0714 0.1310 0.0013 0.9404 

Test set 0.0588 0.7558 0.1380 -0.0021 0.9412 

10 

Train set 0.0540 0.0951 0.1337 0.0010 0.9466 

481 18 Validation set 0.0561 0.0719 0.1301 0.0015 0.9409 

Test set 0.0583 0.7622 0.1370 -0.0023 0.9417 

20 

Train set 0.0528 0.0804 0.1325 0.0018 0.9477 

414 51 Validation set 0.0563 0.0824 0.1306 0.0025 0.9406 

Test set 0.0578 0.6797 0.1364 -0.0018 0.9422 

30 

Train set 0.0526 0.0793 0.1324 0.0024 0.9480 

342 76 Validation set 0.0567 0.0858 0.1314 0.0031 0.9402 

Test set 0.0580 0.6227 0.1366 -0.0010 0.9420 

50 

Train set 0.0523 0.0773 0.1325 0.0031 0.9482 

237 80 Validation set 0.0571 0.0971 0.1329 0.0039 0.9397 

Test set 0.0586 0.5461 0.1377 -0.0002 0.9415 

120 

Train set 0.0519 0.0719 0.1326 0.0033 0.9486 

115 474 Validation set 0.0583 0.0983 0.1355 0.0041 0.9385 

Test set 0.0595 0.4389 0.1390 0.0003 0.9405 

10_
2 

Train set 0.0532 0.0832 0.1327 0.0009 0.9473 

771 24 Validation set 0.0558 0.0704 0.1294 0.0012 0.9412 

Test set 0.0576 0.7121 0.1359 -0.0024 0.9424 

20_
2 

Train set 0.0522 0.0788 0.1317 0.0014 0.9484 

519 37 Validation set 0.0559 0.0802 0.1300 0.0019 0.9410 

Test set 0.0577 0.5891 0.1356 -0.0022 0.9423 
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A.17 PERFORMANCE PARAMETERS – AIR MASS (ϴZ ≤ 89°) 
Table 28: Performance parameters Suntech PV module using air mass with ϴZ ≤ 89° 

Neurons Set MSE MARE MAE MBE R^2 Epoch Time 

8 

Train set 0.0543 0.2892 0.1469 0.0018 0.9462 313 
 

19 

Validation set 0.0506 0.0678 0.1443 -0.0027 0.9483 

Test set 0.0503 0.1167 0.1434 -0.0054 0.9489 

10 

Train set 0.0515 0.3081 0.1427 0.0025 0.9489 333 
 

25 

Validation set 0.0485 0.0624 0.1410 -0.0026 0.9504 

Test set 0.0485 0.1088 0.1402 -0.0047 0.9507 

20 

Train set 0.0479 0.3054 0.1367 0.0028 0.9525 381 34 

Validation set 0.0470 0.0706 0.1380 -0.0021 0.9520 

Test set 0.0464 0.1323 0.1362 -0.0043 0.9529 

30 

Train set 0.0458 0.3568 0.1335 0.0026 0.9545 415 27 

Validation set 0.0470 0.0700 0.1377 -0.0021 0.9520 

Test set 0.0472 0.1388 0.1360 -0.0048 0.9521 

50 

Train set 0.0444 0.4102 0.1311 0.0026 0.9559 522 104 

Validation set 0.0474 0.0485 0.1376 -0.0009 0.9515 

Test set 0.0481 0.1405 0.1366 -0.0050 0.9511 

10_2 

Train set 0.0494 0.3259 0.1375 0.0005 0.9510 595 22 

Validation set 0.0469 0.0738 0.1370 -0.0043 0.9521 

Test set 0.0468 0.1225 0.1357 -0.0071 0.9524 

20_2 

Train set 0.0461 0.3531 0.1323 0.0003 0.9543 584 23 

Validation set 0.0456 0.0695 0.1347 -0.0038 0.9534 

Test set 0.0454 0.1392 0.1327 -0.0070 0.9539 
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Table 29: Performance parameters Sharp PV module using air mass with ϴZ ≤ 89° 

Neurons Set MSE MARE MAE MBE R2 Epoch Time 

8 

Train set 0.0299 0.3593 0.1122 0.0006 0.9700 528 20 

Validation set 0.0289 0.0506 0.1114 0.0031 0.9712 

Test set 0.0351 0.0567 0.1223 -0.0006 0.9650 

10 

Train set 0.0289 0.2337 0.1092 0.0006 0.9711 456 20 

Validation set 0.0278 0.0564 0.1083 0.0029 0.9723 

Test set 0.0343 0.0529 0.1195 -0.0012 0.9659 

20 

Train set 0.0272 0.2362 0.1030 0.0008 0.9728 482 20 

Validation set 0.0268 0.0674 0.1038 0.0021 0.9733 

Test set 0.0328 0.0561 0.1140 -0.0003 0.9673 

30 

Train set 0.0265 0.3269 0.1015 0.0009 0.9735 387 30 

Validation set 0.0270 0.0683 0.1035 0.0017 0.9731 

Test set 0.0328 0.0585 0.1138 0.0001 0.9673 

50 

Train set 0.0252 0.3477 0.0987 0.0008 0.9747 365 58 

Validation set 0.0273 0.0732 0.1034 0.0009 0.9728 

Test set 0.0330 0.0584 0.1133 0.0004 0.9671 

10_2 

Train set 0.0280 0.3430 0.1056 0.0000 0.9719 550 26 

Validation set 0.0273 0.0559 0.1055 0.0016 0.9727 

Test set 0.0333 0.0567 0.1154 -0.0012 0.9668 

20_2 

Train set 0.0265 0.3394 0.1014 0.0002 0.9735 494 41 

Validation set 0.0268 0.0573 0.1029 0.0007 0.9733 

Test set 0.0325 0.0576 0.1124 -0.0008 0.9676 
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Table 30: Performance parameters REC PV module using air mass with ϴZ ≤ 89° 

Neurons Set MSE MARE MAE MBE R2 Epoch Time 

8 

Train set 0.0474 0.1033 0.1259 0.0011 0.9531 283 14 

Validation set 0.0508 0.0514 0.1259 0.0004 0.9465 

Test set 0.0514 0.8000 0.1291 -0.0007 0.9486 

10 

Train set 0.0464 0.0913 0.1245 0.0018 0.9541 325 16 

Validation set 0.0502 0.0459 0.1249 0.0014 0.9471 

Test set 0.0511 0.8166 0.1283 -0.0008 0.9489 

20 

Train set 0.0439 0.0646 0.1206 0.0018 0.9565 380 25 

Validation set 0.0491 0.0458 0.1217 0.0017 0.9482 

Test set 0.0497 0.7454 0.1253 -0.0017 0.9503 

30 

Train set 0.0428 0.0599 0.1187 0.0017 0.9576 335 40 

Validation set 0.0488 0.0460 0.1210 0.0014 0.9485 

Test set 0.0496 0.7055 0.1244 -0.0018 0.9505 

50 

Train set 0.0423 0.0632 0.1176 0.0025 0.9582 119 81 

Validation set 0.0489 0.0548 0.1209 0.0019 0.9484 

Test set 0.0503 0.6384 0.1252 -0.0014 0.9497 

10_2 

Train set 0.0448 0.0823 0.1206 0.0004 0.9557 651 21 

Validation set 0.0488 0.0339 0.1208 -0.0001 0.9485 

Test set 0.0500 0.8118 0.1245 -0.0026 0.9500 

20_2 

Train set 0.0424 0.0724 0.1173 0.0007 0.9580 420 32 

Validation set 0.0480 0.0246 0.1191 0.0002 0.9494 

Test set 0.0492 0.7549 0.1223 -0.0033 0.9508 
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A.18 MODEL TRAINING RESULTS – EXAMPLE SHARP 
 

 

Figure 64: Performance 20-2-1 model Sharp 

 

Figure 65: Regression plot 20-2-1 model Sharp 
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Figure 66: Training state 20-2-1 model Sharp 

 

Figure 67: Error histogram 20-2-1 model Sharp 
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A.19 EXAMPLE OF MODEL TRAINING 50 RUNS – SHARP MODULES 

  

Runs MSE train MSE validationMSE test MAE train MAE validationMAE test MARE trainMARE validationMARE testMBE train MBE validationMBE test R^2 train R^2 validationR^2 test

1 0.0265 0.0262 0.0322 0.1019 0.1018 0.1133 0.3087 0.0458 0.0516 -0.0005 0.0003 -0.0022 0.9735 0.9739 0.9680

2 0.0269 0.0261 0.0329 0.1018 0.1024 0.1138 0.4083 0.0658 0.0573 0.0018 0.0025 -0.0011 0.9730 0.9740 0.9673

3 0.0273 0.0272 0.0330 0.1001 0.1021 0.1112 0.5038 0.0721 0.0696 0.0002 0.0004 -0.0017 0.9726 0.9729 0.9671

4 0.0264 0.0257 0.0316 0.0998 0.1002 0.1097 0.5123 0.0291 0.0577 0.0003 0.0010 -0.0004 0.9736 0.9744 0.9685

5 0.0258 0.0261 0.0312 0.1013 0.1027 0.1109 0.4583 0.0394 0.0575 0.0020 0.0027 0.0011 0.9742 0.9740 0.9689

6 0.0259 0.0265 0.0315 0.1025 0.1036 0.1122 0.0924 0.0138 0.0482 -0.0013 -0.0023 -0.0019 0.9740 0.9736 0.9686

7 0.0254 0.0260 0.0316 0.0971 0.0996 0.1081 0.1229 0.0689 0.0563 0.0015 0.0007 -0.0002 0.9745 0.9741 0.9686

8 0.0268 0.0263 0.0322 0.1007 0.1021 0.1116 0.1158 0.0597 0.0596 0.0004 0.0004 -0.0012 0.9732 0.9738 0.9680

9 0.0287 0.0286 0.0347 0.1088 0.1092 0.1204 0.2256 0.0441 0.0624 -0.0005 -0.0007 0.0005 0.9712 0.9715 0.9655

10 0.0255 0.0276 0.0319 0.1019 0.1055 0.1126 0.0605 0.0600 0.0583 0.0002 0.0003 -0.0020 0.9745 0.9725 0.9682

11 0.0255 0.0259 0.0315 0.0972 0.0998 0.1080 0.6667 0.0607 0.0576 0.0001 -0.0002 -0.0021 0.9745 0.9742 0.9687

12 0.0260 0.0273 0.0337 0.1013 0.1042 0.1141 0.0550 0.0463 0.0551 0.0002 0.0003 0.0008 0.9740 0.9728 0.9664

13 0.0286 0.0279 0.0344 0.1067 0.1067 0.1185 0.4770 0.0712 0.0647 0.0007 0.0004 0.0004 0.9714 0.9722 0.9657

14 0.0253 0.0264 0.0317 0.1012 0.1033 0.1131 0.0666 0.0010 0.0429 -0.0016 -0.0022 -0.0016 0.9746 0.9737 0.9684

15 0.0268 0.0275 0.0327 0.1047 0.1057 0.1152 0.3314 0.0633 0.0647 0.0001 0.0011 -0.0003 0.9731 0.9725 0.9674

16 0.0267 0.0264 0.0325 0.1033 0.1037 0.1146 0.5625 0.0419 0.0438 -0.0004 0.0002 -0.0020 0.9732 0.9737 0.9677

17 0.0300 0.0299 0.0353 0.1122 0.1130 0.1233 0.5858 0.0606 0.0623 -0.0001 0.0011 -0.0006 0.9700 0.9702 0.9649

18 0.0261 0.0263 0.0318 0.1003 0.1017 0.1102 0.6497 0.0556 0.0600 -0.0003 0.0007 -0.0013 0.9738 0.9738 0.9683

19 0.0253 0.0262 0.0319 0.0960 0.0992 0.1077 0.2629 0.0703 0.0616 0.0001 0.0002 -0.0012 0.9747 0.9739 0.9682

20 0.0267 0.0262 0.0320 0.1007 0.1016 0.1107 0.4548 0.0374 0.0522 0.0012 0.0005 0.0005 0.9733 0.9739 0.9681

21 0.0264 0.0263 0.0327 0.0985 0.1008 0.1104 0.0381 0.0707 0.0636 0.0000 0.0013 -0.0020 0.9736 0.9738 0.9674

22 0.0248 0.0259 0.0312 0.0955 0.0990 0.1077 0.5358 0.0539 0.0518 -0.0002 0.0005 -0.0014 0.9752 0.9741 0.9690

23 0.0263 0.0258 0.0313 0.0986 0.0997 0.1088 0.1745 0.0531 0.0544 -0.0004 0.0009 -0.0025 0.9737 0.9743 0.9688

24 0.0279 0.0279 0.0333 0.1056 0.1063 0.1161 0.1447 0.0781 0.0617 0.0010 0.0004 0.0009 0.9721 0.9722 0.9669

25 0.0263 0.0260 0.0313 0.1023 0.1027 0.1126 0.5108 0.0469 0.0663 0.0005 0.0018 0.0003 0.9737 0.9741 0.9688

26 0.0255 0.0271 0.0326 0.0972 0.1004 0.1094 0.5855 0.0615 0.0720 -0.0015 -0.0003 -0.0029 0.9745 0.9730 0.9675

27 0.0255 0.0260 0.0320 0.0989 0.0997 0.1104 0.5393 0.0412 0.0562 0.0004 0.0002 0.0003 0.9744 0.9741 0.9681

28 0.0262 0.0260 0.0318 0.0987 0.1002 0.1095 0.1452 0.0811 0.0681 -0.0007 0.0007 -0.0010 0.9738 0.9741 0.9684

29 0.0273 0.0272 0.0324 0.1047 0.1055 0.1149 0.9903 0.0654 0.0588 0.0011 0.0022 0.0021 0.9727 0.9729 0.9677

30 0.0269 0.0266 0.0406 0.1049 0.1047 0.1175 0.1547 0.0718 0.0521 0.0010 0.0027 -0.0015 0.9730 0.9735 0.9596

31 0.0274 0.0266 0.0326 0.1056 0.1050 0.1155 0.4318 0.0723 0.0500 0.0006 0.0025 0.0003 0.9725 0.9735 0.9675

32 0.0260 0.0266 0.0311 0.1004 0.1023 0.1103 0.1370 0.0303 0.0496 -0.0002 -0.0006 -0.0008 0.9740 0.9735 0.9691

33 0.0260 0.0266 0.0321 0.1027 0.1038 0.1132 0.2805 0.0475 0.0366 -0.0001 -0.0001 -0.0012 0.9740 0.9735 0.9681

34 0.0266 0.0264 0.0324 0.1033 0.1037 0.1145 0.3722 0.0137 0.0587 0.0003 0.0016 -0.0021 0.9734 0.9737 0.9677

35 0.0254 0.0281 0.0312 0.0979 0.1017 0.1074 0.1739 0.0618 0.0637 0.0001 0.0006 -0.0004 0.9745 0.9720 0.9689

36 0.0262 0.0262 0.0326 0.1038 0.1041 0.1153 0.6889 0.0705 0.0518 0.0000 0.0009 -0.0011 0.9738 0.9738 0.9676

37 0.0262 0.0265 0.0319 0.1002 0.1023 0.1109 0.1613 0.0612 0.0537 0.0014 0.0011 0.0005 0.9738 0.9736 0.9683

38 0.0274 0.0273 0.0336 0.1078 0.1081 0.1204 0.0511 0.1008 0.0504 -0.0009 -0.0005 -0.0014 0.9725 0.9728 0.9665

39 0.0281 0.0274 0.0331 0.1085 0.1082 0.1192 0.1142 0.0744 0.0567 -0.0001 0.0005 -0.0016 0.9719 0.9727 0.9670

40 0.0267 0.0260 0.0320 0.0989 0.0999 0.1082 0.5253 0.1059 0.0561 0.0000 0.0013 -0.0019 0.9733 0.9741 0.9681

41 0.0266 0.0318 0.0319 0.0985 0.1016 0.1091 0.2199 0.0716 0.0576 0.0011 0.0005 -0.0002 0.9733 0.9683 0.9682

42 0.0263 0.0261 0.0317 0.1020 0.1027 0.1124 0.5993 0.0714 0.0638 0.0003 0.0017 0.0006 0.9737 0.9740 0.9685

43 0.0263 0.0263 0.0323 0.0995 0.1009 0.1103 0.4096 0.0465 0.0632 0.0005 0.0018 0.0008 0.9736 0.9738 0.9679

44 0.0275 0.0281 0.0330 0.1010 0.1035 0.1114 0.2869 0.0507 0.0469 0.0002 0.0015 0.0001 0.9725 0.9720 0.9671

45 0.0267 0.0261 0.0325 0.1024 0.1026 0.1135 0.2404 0.0491 0.0622 -0.0012 0.0000 -0.0033 0.9732 0.9740 0.9676

46 0.0259 0.0275 0.0327 0.0986 0.1021 0.1110 0.7332 0.0577 0.0681 0.0005 -0.0001 -0.0017 0.9740 0.9726 0.9674

47 0.0250 0.0266 0.0317 0.0960 0.1004 0.1071 0.3893 0.0615 0.0624 0.0002 0.0001 -0.0009 0.9749 0.9735 0.9685

48 0.0258 0.0263 0.0322 0.0987 0.1004 0.1108 0.1549 0.0746 0.0604 0.0007 0.0003 0.0001 0.9741 0.9738 0.9680

49 0.0253 0.0255 0.0317 0.0977 0.0993 0.1091 0.0653 0.0333 0.0475 0.0004 0.0006 -0.0006 0.9746 0.9746 0.9685

50 0.0280 0.0275 0.0335 0.1022 0.1031 0.1136 0.1972 0.0789 0.0702 0.0018 0.0012 0.0012 0.9719 0.9726 0.9667

Sharp (20-2-1)
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A.20 MODEL TRAINING RESULTS – EXAMPLE REC 
 

 

Figure 68: Performance 20-2-1 model REC 

 

Figure 69: Regression plot 20-2-1 model REC 
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Figure 70: Training state 20-2-1 model REC 

 

 

Figure 71: Error histogram 20-2-1 model REC 
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A.21 EXAMPLE OF MODEL TRAINING 50 RUNS – REC MODULES 

  

Runs MSE train MSE validationMSE test MAE train MAE validationMAE test MARE trainMARE validationMARE testMBE train MBE validationMBE test R^2 train R^2 validationR^2 test

1 0.0421 0.0477 0.0483 0.1177 0.1201 0.1223 0.0694 0.0215 0.8048 0.0007 0.0002 -0.0031 0.9583 0.9497 0.9517

2 0.0408 0.0474 0.0492 0.1148 0.1175 0.1219 0.0478 0.0271 0.8069 0.0003 -0.0009 -0.0046 0.9596 0.9500 0.9508

3 0.0413 0.0480 0.0550 0.1151 0.1182 0.1229 0.0883 0.0074 0.7333 -0.0005 -0.0004 -0.0071 0.9591 0.9494 0.9451

4 0.0438 0.0487 0.0503 0.1209 0.1214 0.1260 0.0667 0.0527 0.8213 0.0013 0.0020 -0.0029 0.9566 0.9487 0.9497

5 0.0424 0.0471 0.0482 0.1170 0.1187 0.1220 0.0583 0.0186 0.6778 0.0009 0.0000 -0.0024 0.9581 0.9503 0.9519

6 0.0430 0.0487 0.0483 0.1200 0.1225 0.1249 0.0520 0.0309 0.6178 0.0017 -0.0008 -0.0019 0.9575 0.9487 0.9517

7 0.0423 0.0474 0.0477 0.1160 0.1161 0.1191 0.0751 0.0139 0.7720 -0.0004 -0.0024 -0.0049 0.9581 0.9501 0.9523

8 0.0414 0.0472 0.0493 0.1154 0.1191 0.1216 0.0864 0.0439 0.8289 -0.0006 -0.0017 -0.0042 0.9591 0.9502 0.9507

9 0.0413 0.0473 0.0498 0.1168 0.1198 0.1242 0.0982 0.0234 0.7385 -0.0002 0.0004 -0.0034 0.9592 0.9501 0.9502

10 0.0424 0.0484 0.0498 0.1166 0.1194 0.1222 0.0472 0.0120 0.8194 -0.0002 0.0004 -0.0059 0.9581 0.9489 0.9503

11 0.0413 0.0475 0.0485 0.1157 0.1167 0.1193 0.0730 0.0082 0.7815 -0.0001 0.0000 -0.0044 0.9592 0.9499 0.9516

12 0.0427 0.0482 0.0492 0.1165 0.1187 0.1219 0.0352 0.0273 0.7852 0.0011 0.0012 -0.0039 0.9577 0.9491 0.9508

13 0.0414 0.0475 0.0468 0.1142 0.1172 0.1183 0.0736 0.0175 0.8031 0.0017 0.0020 -0.0021 0.9590 0.9499 0.9533

14 0.0411 0.0473 0.0478 0.1144 0.1168 0.1199 0.0630 0.0049 0.6778 -0.0006 -0.0002 -0.0036 0.9593 0.9501 0.9523

15 0.0427 0.0481 0.0492 0.1165 0.1197 0.1214 0.1006 0.0281 0.7500 0.0029 0.0029 -0.0012 0.9578 0.9493 0.9508

16 0.0445 0.0496 0.0497 0.1211 0.1219 0.1262 0.0656 0.0611 0.7336 -0.0003 -0.0010 -0.0055 0.9560 0.9477 0.9504

17 0.0416 0.0482 0.0487 0.1165 0.1195 0.1215 0.0899 0.0223 0.5713 0.0002 0.0004 -0.0046 0.9589 0.9491 0.9513

18 0.0415 0.0483 0.0487 0.1183 0.1216 0.1245 0.0659 0.0285 0.6854 0.0041 0.0035 0.0003 0.9590 0.9491 0.9514

19 0.0425 0.0480 0.0485 0.1170 0.1190 0.1207 0.0743 0.0353 0.7942 -0.0002 -0.0005 -0.0046 0.9579 0.9493 0.9515

20 0.0377 0.0451 0.0518 0.1157 0.1190 0.1235 0.0960 0.0073 0.7875 0.0019 0.0003 -0.0017 0.9627 0.9525 0.9483

21 0.0432 0.0479 0.0493 0.1176 0.1183 0.1223 0.0918 0.0071 0.7776 0.0061 0.0058 0.0017 0.9572 0.9495 0.9507

22 0.0412 0.0478 0.0490 0.1150 0.1196 0.1219 0.0892 0.0167 0.7525 -0.0006 -0.0001 -0.0047 0.9593 0.9496 0.9511

23 0.0421 0.0482 0.0478 0.1161 0.1182 0.1205 0.0834 0.0095 0.7868 0.0005 0.0009 -0.0033 0.9583 0.9492 0.9523

24 0.0426 0.0491 0.0482 0.1169 0.1193 0.1210 0.0645 0.0051 0.7230 0.0005 -0.0008 -0.0029 0.9578 0.9483 0.9519

25 0.0432 0.0482 0.0499 0.1189 0.1203 0.1237 0.0969 0.0182 0.6322 0.0004 -0.0024 -0.0028 0.9572 0.9492 0.9501

26 0.0420 0.0471 0.0476 0.1154 0.1158 0.1193 0.0876 0.0095 0.6946 0.0010 -0.0002 -0.0030 0.9585 0.9503 0.9525

27 0.0424 0.0483 0.0497 0.1159 0.1172 0.1213 0.0946 0.0081 0.7696 0.0001 0.0004 -0.0039 0.9580 0.9491 0.9504

28 0.0429 0.0492 0.0508 0.1193 0.1219 0.1252 0.0819 0.0486 0.3267 0.0002 -0.0020 -0.0034 0.9575 0.9481 0.9493

29 0.0410 0.0470 0.0498 0.1147 0.1167 0.1203 0.0617 0.0240 0.8536 -0.0004 -0.0014 -0.0067 0.9594 0.9504 0.9503

30 0.0440 0.0480 0.0502 0.1201 0.1201 0.1248 0.0753 0.0463 0.7466 0.0004 -0.0010 -0.0015 0.9564 0.9494 0.9498

31 0.0426 0.0470 0.0500 0.1161 0.1180 0.1229 0.0679 0.0269 0.7078 0.0024 0.0007 -0.0013 0.9579 0.9504 0.9500

32 0.0421 0.0472 0.0472 0.1156 0.1161 0.1196 0.0845 0.0121 0.7869 0.0014 0.0016 -0.0019 0.9583 0.9502 0.9528

33 0.0427 0.0484 0.0488 0.1163 0.1179 0.1213 0.0827 0.0062 0.8270 0.0004 -0.0011 -0.0040 0.9577 0.9490 0.9512

34 0.0430 0.0478 0.0477 0.1174 0.1187 0.1208 0.0395 0.0247 0.7838 0.0003 0.0001 -0.0046 0.9574 0.9496 0.9524

35 0.0432 0.0487 0.0491 0.1213 0.1225 0.1256 0.0841 0.0186 0.8092 0.0040 0.0034 0.0000 0.9572 0.9487 0.9509

36 0.0436 0.0483 0.0490 0.1197 0.1204 0.1237 0.0489 0.0439 0.7216 0.0014 0.0010 -0.0018 0.9568 0.9491 0.9510

37 0.0423 0.0482 0.0492 0.1168 0.1194 0.1225 0.0611 0.0267 0.7423 -0.0003 -0.0010 -0.0034 0.9581 0.9492 0.9509

38 0.0436 0.0487 0.0510 0.1193 0.1206 0.1256 0.0620 0.0507 0.7238 0.0036 0.0028 -0.0006 0.9568 0.9487 0.9490

39 0.0426 0.0481 0.0478 0.1152 0.1171 0.1187 0.0928 0.0068 0.8464 0.0001 0.0005 -0.0028 0.9579 0.9493 0.9523

40 0.0412 0.0476 0.0486 0.1137 0.1165 0.1192 0.0623 0.0165 0.7840 0.0002 -0.0003 -0.0035 0.9593 0.9498 0.9514

41 0.0433 0.0486 0.0491 0.1186 0.1205 0.1234 0.0448 0.0373 0.8600 0.0020 0.0011 -0.0033 0.9571 0.9488 0.9510

42 0.0437 0.0475 0.0478 0.1182 0.1178 0.1207 0.0922 0.0206 0.8116 -0.0062 -0.0075 -0.0100 0.9567 0.9499 0.9522

43 0.0416 0.0477 0.0516 0.1146 0.1170 0.1212 0.0924 0.0031 0.7941 -0.0002 0.0010 -0.0045 0.9588 0.9497 0.9484

44 0.0431 0.0477 0.0514 0.1194 0.1199 0.1252 0.0405 0.0162 0.8295 0.0029 0.0025 -0.0011 0.9573 0.9497 0.9486

45 0.0426 0.0485 0.0483 0.1186 0.1191 0.1224 0.0634 0.0236 0.8224 -0.0015 -0.0008 -0.0069 0.9579 0.9489 0.9518

46 0.0435 0.0484 0.0475 0.1184 0.1201 0.1207 0.0906 0.0206 0.7508 -0.0002 -0.0004 -0.0036 0.9570 0.9489 0.9525

47 0.0426 0.0490 0.0483 0.1182 0.1201 0.1228 0.0761 0.0414 0.6969 0.0015 0.0005 -0.0027 0.9578 0.9484 0.9518

48 0.0443 0.0489 0.0493 0.1214 0.1212 0.1262 0.0638 0.0550 0.7366 -0.0003 -0.0012 -0.0034 0.9562 0.9485 0.9508

49 0.0439 0.0478 0.0507 0.1188 0.1180 0.1230 0.0665 0.0398 0.8116 0.0001 -0.0010 -0.0020 0.9566 0.9496 0.9494

50 0.0440 0.0484 0.0488 0.1215 0.1212 0.1253 0.0527 0.0662 0.7541 0.0042 0.0031 -0.0007 0.9565 0.9490 0.9513

REC (20-2-1) Modules
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A.22 EXAMPLE OF PROGRAMMING CODE ANN MODEL – MATLAB 
 

  

% Author: Camilla Lie 

% Date: 24.05.2019 

 

 

    %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

    %$$$$$$$$$$$$$$$$$$$$$$$$$$$$ ANN-MODEL $$$$$$$$$$$$$$$$$$$$$$$$$$ 

    %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

Tables 

T_error = []; 

T_pred_all = []; 

T_pred_test = []; 

T_pred_train = []; 

T_pred_val = []; 

T_train = []; 

T_wb = []; 

T_state = []; 

Load all data for TRAINING of model 

% Training dataset 

inv1t = readtable('train_inv1am.txt'); 

inv3t = readtable('train_inv3am.txt'); 

inv4t = readtable('train_inv4am.txt'); 

 

% Validation dataset 

inv1v = readtable('val_inv1am.txt'); 

inv3v = readtable('val_inv3am.txt'); 

inv4v = readtable('val_inv4am.txt'); 

 

% Test dataset 

inv1test = readtable('test_inv1am.txt'); 

inv3test = readtable('test_inv3am.txt'); 

inv4test = readtable('test_inv4am.txt'); 

 

% Standardized training dataset 

inv1t_n = readtable('train_inv1_normam.txt'); 

inv3t_n = readtable('train_inv3_normam.txt'); 

inv4t_n = readtable('train_inv4_normam.txt'); 
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% Standardized validation dataset 

inv1v_n = readtable('val_inv1_normam.txt'); 

inv3v_n = readtable('val_inv3_normam.txt'); 

inv4v_n = readtable('val_inv4_normam.txt'); 

 

% Standardized test dataset 

inv1test_n = readtable('test_inv1_normam.txt'); 

inv3test_n = readtable('test_inv3_normam.txt'); 

inv4test_n = readtable('test_inv4_normam.txt'); 

Load data for TESTING of model 

% All data 

inv1 = readtable('inv1am.txt'); 

inv3 = readtable('inv3am.txt'); 

inv4 = readtable('inv4am.txt'); 

 

% Standardized all data 

inv1n = readtable('inv1_normam.txt'); 

inv3n = readtable('inv3_normam.txt'); 

inv4n = readtable('inv4_normam.txt'); 

 

% Input selection for model TRAINING 

input_test1n = [inv1n.GHIavg,inv1n.VS,inv1n.airtemp,inv1n.AM2]';    % AM = scaled, AM2 

= theta<=89 degrees 

input_test3n = [inv3n.GHIavg,inv3n.VS,inv3n.airtemp,inv3n.AM2]';    % AM = scaled, AM2 

= theta<=89 degrees 

input_test4n = [inv4n.GHIavg,inv4n.VS,inv4n.airtemp,inv4n.AM2]';    % AM = scaled, AM2 

= theta<=89 degrees 

 

% Output for model TRAINING 

target_test1n = [inv1n.PACinv1]'; 

target_test3n = [inv3n.PACinv3]'; 

target_test4n = [inv4n.PACinv4]'; 

 

all_test_norm1 = [input_test1n' target_test1n']; 

 

 

% Input selection for model TESTING 

input_testing1n = [inv1test_n.GHIavg,inv1test_n.VS,inv1test_n.airtemp,inv1test_n.AM2]'; 

input_testing3n = [inv3test_n.GHIavg,inv3test_n.VS,inv3test_n.airtemp,inv3test_n.AM2]'; 

input_testing4n = [inv4test_n.GHIavg,inv4test_n.VS,inv4test_n.airtemp,inv4test_n.AM2]'; 

 

% Target for model TESTING 

target_testing1n = [inv1test_n.PACinv1]'; 

target_testing3n = [inv3test_n.PACinv3]'; 

target_testing4n = [inv4test_n.PACinv4]'; 
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Standardized data 

inv1a = table2array(inv1(:,2:end)); 

inv3a = table2array(inv3(:,2:end)); 

inv4a = table2array(inv4(:,2:end)); 

 

% Standard deviation 

STD1 = nanstd(inv1a(:,2)); 

STD3 = nanstd(inv3a(:,2)); 

STD4 = nanstd(inv4a(:,2)); 

 

% Mean 

mean1 = nanmean(inv1a(:,2)); 

mean3 = nanmean(inv3a(:,2)); 

mean4 = nanmean(inv4a(:,2)); 

 

% Standardized 

STD1inam = nanstd(inv1a(:,[1,3,4,6])); 

mean1inam = nanmean(inv1a(:,[1,3,4,6])); 

For model purposes 

% Input variabels (lines shuffled) sorted for training, validation and test 

input_train1 = [inv1t_n.GHIavg,inv1t_n.VS,inv1t_n.airtemp,inv1t_n.AM2;... 

    inv1v_n.GHIavg,inv1v_n.VS,inv1v_n.airtemp,inv1v_n.AM2;... 

    inv1test_n.GHIavg,inv1test_n.VS,inv1test_n.airtemp,inv1test_n.AM2]'; 

input_train3 = [inv3t_n.GHIavg,inv3t_n.VS,inv3t_n.airtemp,inv3t_n.AM2;... 

    inv3v_n.GHIavg,inv3v_n.VS,inv3v_n.airtemp,inv3v_n.AM2;... 

    inv3test_n.GHIavg,inv3test_n.VS,inv3test_n.airtemp,inv3test_n.AM2]'; 

input_train4 = [inv4t_n.GHIavg,inv4t_n.VS,inv4t_n.airtemp,inv4t_n.AM2;... 

    inv4v_n.GHIavg,inv4v_n.VS,inv4v_n.airtemp,inv4v_n.AM2;... 

    inv4test_n.GHIavg,inv4test_n.VS,inv4test_n.airtemp,inv4test_n.AM2]'; 

 

% Target variabels (lines shuffled) sorted for training, validation and test 

target_train1 = [inv1t_n.PACinv1;inv1v_n.PACinv1;inv1test_n.PACinv1]'; 

target_train3 = [inv3t_n.PACinv3;inv3v_n.PACinv3;inv3test_n.PACinv3]'; 

target_train4 = [inv4t_n.PACinv4;inv4v_n.PACinv4;inv4test_n.PACinv4]'; 

 

all_train = [input_train1' target_train1']; 

Hold-Out Set 

m1 = readtable('marapr17inv1am.txt');               % Data for March-April 2017 
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marapr1 = [m1.GHIavg,m1.VS,m1.airtemp,m1.AM2]';     % Input variables 

marapr1n = (marapr1'-mean1inam)./STD1inam;          % Normalize input variables 

maraprtarg1 = m1.PACinv1;                           % Output (target) 

maraprt1n = (maraprtarg1'-mean1)./STD1;             % Normalize output 

MEPS forecasted weather 

Load either 'twodatforecast' or 'onedayforecast' 

meps1 = readtable('twodayforecast.txt');               % Forecasted data 

MEPS = [m1.GHIavg,m1.VS,m1.airtemp,m1.AM2]';     % Input variables 

MEPSn = (MEPS'-mean1inam)./STD1inam;          % Normalize input variables 

MEPStarg = meps1.PACinv1;                           % Output (target) 

MEPStn = (MEPStarg'-mean1)./STD1;             % Normalize output 

SPECIFY NETWORK 

  for i = 1:50                                      % Run network several times 

       clearvars net tr 

[trainInd,valInd,testInd] = divideind(length(all_train),1:height(inv1t),... 

    height(inv1t)+1:height(inv1t)+1+height(inv1v),height(inv1t)+1+height... 

    (inv1v)+1:length(all_train)); 

 

net = feedforwardnet([20 2],'trainlm');             % Network configuration 

net.divideFcn = 'divideind';                        % Data-division 

net.divideParam.trainInd = trainInd;                % Training set 

net.divideParam.valInd = valInd;                    % Validation set 

net.divideParam.testInd = testInd;                  % Test set 

net.trainParam.max_fail = 1000;                     % Validation check 

net.trainParam.epochs = 1000;                       % Recommended by MATLAB 

net.trainParam.min_grad = 1e-1000;                  % Set low to avoid early stopping 

net.trainParam.goal = 1e-7;                         % Set low to avoid early stopping 

net.trainParam.mu_max = 1e300;                      % Set high to avoid early stopping 

net.layers{2}.transferFcn = 'tansig';               % Transfer function hidden layer 

net.layers{3}.transferFcn = 'tansig';               % Transfer function output layer 

net.performFcn = 'mse';                             % Mean Squared Error 

TRAIN NETWORK 

tic; 

[net,tr] = train(net,input_train1,target_train1);   % Train network with input/output 

ElapsedTime = toc; 

ANN (feedforward) Model 

x and t can be changed to hold-out set or MEPS data 
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x = input_train1;                                   % Input for model evaluation 

t = target_train1;                                  % Corresponding target 

Predict_for = net(x);                               % Predict using input variables 

e1 = gsubtract(t,Predict_for);                      % Error predicted-target 

performance = perform(net,t,Predict_for);           % Model performance 

Model Evaluation 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

testTarg = t(testInd); 

valTarg = t(valInd); 

trainTarg = t(trainInd); 

 

    % ERRORS 

e = gsubtract(t(trainInd),Predict_for(trainInd)); 

ev = gsubtract(t(valInd),Predict_for(valInd)); 

et = gsubtract(t(testInd),Predict_for(testInd)); 

 

    % MEAN SQUARE ERROR 

MSE = immse(t(trainInd),Predict_for(trainInd)); 

MSEv = immse(t(valInd),Predict_for(valInd)); 

MSEt = immse(t(testInd),Predict_for(testInd)); 

 

    % MEAN ABSOLUTE ERROR 

MAE = mae(e); 

MAEv = mae(ev); 

MAEt = mae(et); 

 

    % MEAN ABSOLUTE RELATIVE ERROR 

MARE = mean(abs(e./t(trainInd))); 

MAREv = mean(abs(ev./t(valInd))); 

MAREt = mean(abs(et./t(testInd))); 

 

    % MEAN BIAS ERROR 

MBE = mean(e); 

MBEv = mean(ev); 

MBEt = mean(et); 

 

    % Rsquared 

Rsq_s = 1 - sum((t(trainInd) - Predict_for(trainInd)).^2)/sum(... 

    (t(trainInd) - mean(t(trainInd))).^2); 

Rsqv_s = 1 - sum((t(valInd) - Predict_for(valInd)).^2)/sum(... 

    (t(valInd) - mean(t(valInd))).^2); 

Rsqt_s = 1 - sum((t(testInd) - Predict_for(testInd)).^2)/sum(... 

    (t(testInd) - mean(t(testInd))).^2); 

De-standardization 
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% Test set 

test_pred = (Predict_for(testInd').*STD1+mean1)'; 

test_targ = (t(testInd).*STD1+mean1)'; 

 

% Validation set 

val_pred = (Predict_for(valInd').*STD1+mean1)'; 

val_targ = (t(valInd).*STD1+mean1)'; 

 

% Training set 

train_pred = (Predict_for(trainInd').*STD1+mean1)'; 

train_targ = (t(trainInd).*STD1+mean1)'; 

Network Specifications 

weights = getwb(net); 

ElapsedTime = array2table(ElapsedTime); 

 

j = ones(length(TT),1).*i; 

tes = ones(length(testInd),1).*i; 

tra = ones(length(trainInd),1).*i; 

val = ones(length(valInd),1).*i; 

wei = ones(length(weights),1)*i; 

o = (1:length(tr.epoch))'; 

 

en = {tr.trainFcn}; 

to = {tr.divideFcn}; 

tre = {tr.best_perf}; 

fire = {tr.best_vperf}; 

fem = {tr.best_tperf}; 

seks = {tr.best_epoch}; 
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sju = {tr.time(end)}; 

For Tables 

T_error = [T_error; MSE MSEv MSEt MAE MAEv MAEt MARE MAREv MAREt MBE MBEv... 

    MBEt Rsq_s Rsqv_s Rsqt_s i]; 

T_pred_all = [T_pred_all; yt' tt' YT TT j]; 

T_pred_test = [T_pred_test; testPred' testTarg' test_pred test_targ tes]; 

T_pred_train = [T_pred_train; trainPred' trainTarg' train_pred... 

    train_targ  tra]; 

T_pred_val = [T_pred_val; valPred' valTarg' val_pred val_targ  val]; 

T_train = [T_train; seks sju i]; 

T_wb = [T_wb; weights wei]; 

T_state = [T_state;tr.perf' tr.vperf' tr.tperf' o]; 

  end 

Array2table 

T_error = array2table(T_error); 

T_error.Properties.VariableNames ={'MSEtrain','MSEval','MSEtest', 'MAEtrain', 

'MAEval','MAEtest', 'MAREtrain','MAREval','MAREtest', 

'MBEtrain','MBEval','MBEtest','Rsqtrain_2', 'Rsqval_2', 'Rsqtest_2' 'i'}; 

T_pred_all = array2table(T_pred_all); 

T_pred_all.Properties.VariableNames = {'Predicted_norm', 'Target_norm', 'Predicted', 

'Target', 'j'}; 

T_pred_test = array2table(T_pred_test); 

T_pred_test.Properties.VariableNames = {'Predicted_norm', 'Target_norm', 'Predicted', 

'Target', 'l'}; 

T_pred_train = array2table(T_pred_train); 

T_pred_train.Properties.VariableNames = {'Predicted_norm', 'Target_norm', 'Predicted', 

'Target', 'm'}; 

T_pred_val = array2table(T_pred_val); 

T_pred.val.Properties.VariableNames = {'Predicted_norm', 'Target_norm', 'Predicted', 

'Target', 'n'}; 

T_train = array2table(T_train); 

T_train.Properties.VariableNames = {'best_epoch','TimeElapsed','i'}; 

T_wb = array2table(T_wb); 

T_wb.Properties.VariableNames = {'Weights', 'k'}; 

T_state = array2table(T_state); 

T_state.Properties.VariableNames = {'Perf', 'vPerf', 'tPerf','epoch'}; 

Plotting for model performance observation 

timetest = inv1.time; 
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time_findtest = datevec(timetest); 

time_test = time_findtest(:,1:3); 

time_test = datetime(time_test); 

dato = '06-Jun-2015'; 

time_test = datetime(time_test,'InputFormat','dd/MMM/yyyy','Format','MMM-yyyy'); 

start_test = find(time_test== dato,1,'first'); 

stop_test = find(time_test==  dato,1,'last'); 

 

dato1 = '05-Feb-2016'; 

time_test1 = datetime(time_test,'InputFormat','dd/MMM/yyyy','Format','MMM-yyyy'); 

start_test1 = find(time_test1== dato1,1,'first'); 

stop_test1 = find(time_test1==  dato1,1,'last'); 

PLOT for model observations 

figure 

plot(timetest(start_test:stop_test),(TT(start_test:stop_test)),'b','LineWidth',1.2) 

hold on 

plot(timetest(start_test:stop_test),(YT(start_test:stop_test)),'r','LineWidth',1.2) 

grid; 

legend('Target Output Power','Predicted Output Power','Location','Northwest') 

ylabel('W') 

title('GHI,WS,airtemp, AM2. LM') 

set(gca,'FontSize',18); 

 

figure 

plot(timetest(start_test1:stop_test1),(TT(start_test1:stop_test1)),'b','LineWidth',1.2) 

hold on 

plot(timetest(start_test1:stop_test1),(YT(start_test1:stop_test1)),'r','LineWidth',1.2) 

grid; 

legend('Target Output Power','Predicted Output Power','Location','Northwest') 

ylabel('W') 

title('GHI,WS,airtemp, AM2. LM') 

set(gca,'FontSize',18); 

Write Tables 

writetable(T_error,'error_20_2LM1000f_ghi_vs_t_AM2_inv1_50.txt'); writetable(T_pred_all, 

'pred_all_20_2LM1000f_ghi_vs_t_AM2_inv1_50.txt'); 

writetable(T_pred_test,'pred_test_20_2LM1000f_ghi_vs_t_AM2_inv1_50.txt'); 

writetable(T_pred_train,'pred_train_20_2LM1000f_ghi_vs_t_AM2_inv1_50.txt'); 

writetable(T_pred_val,'pred_val_20_2LM1000f_ghi_vs_t_AM_inv1_50.txt'); 

writetable(T_train,'trainfcn_20_2LM1000f_ghi_vs_t_AM2_inv1_50.txt'); 

writetable(T_wb,'wb_20_2LM1000f_ghi_vs_t_AM2_inv1_50.txt'); 

writetable(T_state,'state_20_2LM1000f_ghi_vs_t_AM2_inv1_50.txt'); 


