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Abstract

With the Tsetlin Machine recently released, much research has been done on its
capabilities, with great success. However, the lack of tools available, and general
knowledge of the Tsetlin Machine prevents it from being adopted by the indus-
try. As a result, it is today mostly used in academic environments. To increase
the general availability of the algorithm, this thesis introduces an introductory
description to the algorithm and proposes an architecture that allows the use of
multiple CPU threads and multiple GPUs to execute the algorithm in parallel. In
addition, this thesis investigates several key aspects of the algorithm and how it
could be improved, like introducing dynamic self-learning parameters and parallel
reduction techniques for the Tsetlin Machine. The results show that the pro-
posed architecture improves execution speed. Further, the Tsetlin Machine was
able to adjust its own ”s” parameter from a bad initial parameter towards, and
finally converge with the known optimal value. The results from this thesis lay
the foundation for creating powerful tools that allow for rapid development using
the Tsetlin Machine in popular languages with high performance.
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Chapter 1

Introduction

1.1 Motivation

The use of machine learning is growing by the days [40]. Never before have there
been so much; data available; powerful computers; demand for tools and compe-
tence. In the middle of all of this, some key techniques have gained popularity,
namely neural networks [50]. One of the main issues with Neural Networks is
that they are hard to debug [48]. As a result, it is hard to understand why the
model chooses a given output [48]. Moreover, after Prof. Ole-Christoffer Granmo
released his paper on the Tsetlin Machine [16], some work has been done on the
Tsetlin Machine. It has proven capable of handling large datasets and solves many
difficult classification problems [16] [5]. Just as important, the Tsetlin Machine is
more transparent than Neural Networks. Consequently, allowing data scientists
to better understand the reasoning of the output from the algorithm [16].

Nevertheless, neural networks are more widely used throughout the industry than
the Tsetlin Machine for classification tasks. One of the key reasons for this is that
the industry has tools available to assist developers in making machine learning
models, like Tensorflow [52]. In order to move the Tsetlin Machine one step closer
to being adopted by the industry, a common architecture is required that allows
for rapid development and scalability [7].

The motivation behind this thesis is to look at what parts of the Tsetlin Machine
algorithm that can be optimized and improved in order to move the algorithm
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1.2. Thesis definition Introduction

beyond the academic community. This thesis focuses on the architecture of exe-
cuting the Tsetlin Machine algorithm both technically and on paper in order to
find common ground. In addition, performance will be a key focus throughout
this thesis, since that would be one key factor to allow the Tsetlin Machine to
handle more advanced tasks.

1.2 Thesis definition

The work shown throughout this Thesis is tightly connected to the following Goals
and Hypotheses. These Goals and Hypotheses are listed in their own following
sections.

1.2.1 Thesis Goals

The main goals of the thesis are divided into five sub-goals.

Goal 1: Provide an introductory description of how the Tsetlin Machine
algorithm works.

Goal 2: Propose a new architecture for the Tsetlin Machine that allows for
parallel execution on CPU and the use of multiple GPUs.

Goal 3: Investigate CPU parallelism versus GPU parallelism on various
datasets.

Goal 4: Investigate CPU versus GPU on the ”counting votes” phase of the
Tsetlin Machine algorithm and when to use which.

Goal 5: Investigate whether dynamic parameters allow the model to find
optimal parameters or not.

The first goal is to provide a simplified description of the core mechanics in the
Tsetlin Machine algorithm. This could allow a broader audience to understand
the inner mechanics faster than reading the current papers [16].

The second goal is to rewrite the core algorithm to allow for parallel execution
on the CPU and on multiple GPUs. The effect of this is utilizing the resources
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on the system that is executing the algorithm. In addition, it would allow the
algorithm to handle even more complex problems.

The third goal is to utilize the results from Goal 2, in order to see if there are
any performance differences related to executing the Tsetlin Machine on various
datasets.

The fourth goal is to analyze a specific phase in the Tsetlin Machine algorithm,
called ”counting votes”. This phase is interesting in particular since it is a vital
part of the algorithm.

The last and fifth goal is to take a closer look at whether dynamic parameters help
the model to find the best parameters or not. Effectively, allowing the algorithm
to adjust its own parameters in order to gain a higher learning rate between each
epoch.

1.2.2 Hypotheses

In addition to the thesis goals, the thesis will test the following Hypotheses.

Hypothesis 1: The GPU reduction helps execution speed on larger datasets
than CPU reduction.

Hypothesis 2: Dynamic parameters allows the algorithm to learn a good
parameter value during training.

Hypothesis 1 states that GPU reduction helps execution speed on larger datasets
compared to CPU implementations. Thus, making GPU a preferred choice if the
datasets become large.

Hypothesis 2 states that during training, the algorithm should be able to learn
a good parameter. In other words, the algorithm should be able to find a good
parameter for the model during training and then use it for training.

1.2.3 Scope & Limitations

During this thesis, more advanced iterations of the Tsetlin Machine has been
released. These include The Fast Tsetlin Machine [19]. However, this thesis
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1.3. Research Methodology Introduction

will focus on the implementation that was first introduced in the original Tsetlin
Machine paper [16].

The datasets that were investigated were datasets that have already been com-
pared to other versions of the Tsetlin Machine. Therefore, data-preprocessing is
not a part of this thesis.

1.3 Research Methodology

The purpose of this thesis is to investigate what needs to be done in order to
improve the Tsetlin Machine algorithm. Several aspects of the algorithms were
investigated and almost all works related to implementing the Tsetlin Machine
were re-written from the ground in order to fit the desired goals of this thesis.

Each of the chapters has its own contribution to this thesis. The experiments
performed in each of the chapters were considered independent from one another.
Meaning, they do not depend on one another. Each chapter has a fixed structure
that adheres to the following structure:

1. Introduction to the problem. The problem is introduced and justified
in order for the reader to understand why this is relevant to the Tsetlin
Machine algorithm.

2. A Proposed Solution is presented in order to solve the problem.

3. The Experiment needed to prove this solution is described.

4. Following are the Results from the experiments presented.

5. Lastly, a Conclusion is given to the problem and its proposed solution,
based on the results from the experiment.

The processes and proposed solutions in this thesis mainly uses Unified Modelling
Language (UML) to illustrate processes [49]. These graphs have been created
using a tool called PlantUML [47].
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1.4 Contributions

In the machine learning field, there exists many methods and algorithms to solve
various problems. One of the most popular approaches is the use of Artificial
Neural Networks [13]. These techniques have several large frameworks and tools
that enable the developer to quickly utilize very complex algorithms in an easy
and reliable way. Tensorflow [52] and Keras [11] are examples of such tools. By
having these tools, the industry can quickly implement Neural Networks into its
daily operations at big scales.

In 2018, Prof. Ole-Christoffer introduced the Tsetlin Machine algorithm [16].
From his research, new techniques and algorithms were created. Some of them
being capable of solving many of the same tasks as Neural Networks were capable
of. However, tools for solving these tasks using the Tsetlin Machine algorithm
were still lacking.

This thesis proposes some changes to the Tsetlin Machine algorithm. Thus, bring-
ing it closer to generalize the concept and making tools for the algorithm. In ad-
dition, providing an easy architecture allows for more research and development
to be done on the algorithm.

With the Tsetlin Machine allowing to change its own hyper-parameters, it becomes
much simpler to create new models and approach new problems knowing that most
of the advanced mechanics will adjust itself to fit the problem.

1.5 Thesis outline

The thesis is divided into several chapters where the main topic will be as follows:

• Chapter 2 provides some essential background information that is relevant
to some of the main topics throughout this thesis.

• Chapter 3 investigates the current state-of-art surrounding the Tsetlin
Machine and provides an introduction to the algorithm.

• Chapter 4 explains the proposed architecture and how parallelism would
affect the algorithm.

7



1.5. Thesis outline Introduction

• Chapter 5 proposes a new method of counting votes within the Tsetlin
Machine using parallel reduction.

• Chapter 6 shows how dynamic parameters can be utilized to allow the
algorithm to learn its own parameters.

• Chapter 7 concludes this thesis and provides some insights on possible
future work.
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Chapter 2

Background

In the field of machine learning, there exists many algorithms and techniques
for solving the same problem. One of the most common lately is called neural
networks. However, neural networks can be very complex to understand and
hard to compute. As a result of that, a new trend has started that desires the
algorithms to explain in deeper details why a model has concluded with a given
action or result [23] [48]. This is the case especially in medical appliances, where
for example a doctor needs to know why a patient has been classified as having
cancer [39].

Another important aspect of machine learning is the required amount of training
data that is required for the model to learn a generic approach to a problem. As
problems grow, the model requires more and more data. These problems remain
difficult to solve, mostly due to the lack of data available [23].

2.1 Neural Networks

Neural Networks are a set of nodes (neurons) that are connected to each other in
a dense network. We call this network an Artificial Neural Network (ANN) [32].
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2.1. Neural Networks Background

Input

X0

X1

X2

X3

Weights Weights1. Layer

N0

N1

N2

N3

N4

N5

Output

O0

O1

Figure 2.1: A single layer neural network.

In Figure 2.1, the inputs are the different features of a given sample that are
passed to the model during training. The lines between the nodes in Figure 2.1
are called weights. The weights are just some mutable decimal numbers that are
multiplied with the output from the previous node, resulting in a new value that
will be processed by the node and its sum function. The output from this node
will be calculated from the activation function, resulting in one of the two outputs
being activated [33].

During the training, the weights (which are mutable) change. The weights change
in order to adjust the correct output to be triggered based on the given input
values [29]. In the end, we are left with some weights that fits the model [42].
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2.1. Neural Networks Background

However, in order to calculate the ”correct” weights for a model, we need to
perform a big amount of computation [53] [41].

Input

X0

X1

X2

X3

1. Layer

N0

N1

N2

N3

N4

N5

2. Layer

N0

N1

N2

N3

N4

N5

3. Layer

N0

N1

N2

N3

N4

N5

Output

O0

O1

Figure 2.2: A small deep neural network (DNN).

Neural Networks is not limited to ”one single layer” of nodes. In fact, they may
contain many more. This is called Deep Neural Networks and the technique is
called Deep Learning [37]. In Figure 2.2, there are many more layers that work
together to solve a problem. Gradually, like many other algorithms, when the
model grows, the required computational work increases [12].

As a consequence, when multiple layers are introduced, like in Figure 2.2, the
model becomes less transparent and it is harder to understand why the output
was selected by the model. As a result of this, new models are being proposed
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2.2. Learning Automaton Background

that try to increase transparency and to reason more like humans [30].

2.2 Learning Automaton

The Learning Automaton is in short, a simple decision-making mechanism that
can learn from previous experiences and adapt to those [17]. These automatons
consist of a mutable state that may yield an output. Understanding how a Tsetlin
Automaton works is fundamental to understanding the Tsetlin Machine and its
concepts.

0 1 2 3

Output = 0 Output = 1

Punish
Reward

Punish

Reward

Reward

Punish Punish
Reward

Figure 2.3: One Tsetlin Automaton and how the states describes what ac-
tion/output it will yield.

As shown in Figure 2.3, an automaton may have several states (in this case four),
where the state indicates what the output from the Automaton will become if
asked. In order to compute what the output will become when asked, we need to
know the current state and the max state.

2.2.1 Input data

The Learning Automaton is a very simple unit. Therefore, it only accepts a
single discrete value of either true or false ({1, 0}), both during training and when
evaluating the Automation. This makes it ideal for the computer since it allows
the computer to utilize a single bit to represent the input data for the Automaton.
Although, this often involves more prepossessing of both the training data and
evaluation data that is associated with the Automaton.
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2.2. Learning Automaton Background

2.2.2 Training process

During training, the Automaton starts with a random value between 1 and the
MaxState. MaxState is a parameter that is set during the creation of the Au-
tomaton. In fact, the Automaton will only receive reward or punishment events.
These events are determined by the feedback mechanism. Usually, a bad output
from the Automaton should result in a punishment, while a correct action should
result in reward. Furthermore, it is important to state that this is not always the
case as.

Action(As, F ) =



As+1, if 1 ≤ s ≤ 2
MaxState and F = Penalty

As−1, if 2
MaxState < s ≤ MaxState and F = Penalty

As−1, if 1 < s ≤ 2
MaxState and F = Reward

As+1, if 2
MaxState < s < MaxState and F = Reward

As, otherwise.

(2.1)

Feedback can be given to the Automaton by an external referee or evaluation
function. Based on the feedback, the state of the Automaton may either decrease,
increase or stay the same position. Like shown in Equation 2.1, the Automaton
state is given as As and the feedback is given as F . Either the feedback will be
reward. Otherwise, it would be punishment.

2.2.3 Output

Output(As) =

{
0 if 1 ≤ s ≤ 2

MaxState

1 if 2
MaxState < s ≤ MaxState.

(2.2)

To evaluate the automaton, we use an output function, see Equation 2.2. If the
function evaluates to 1, we know that the automaton’s output is 1. Equally, if the
function evaluates to 0, the output is 0.

In order to facilitate learning, the Learning Automaton are able to learn by its
action using either punishment or reward. Recall Figure 2.3, here we can observe
that any reward feedback will change the state in a direction further away from
the middle. However, any punishment feedback will move the state further into
the center, and eventually on the other side.
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2.3. Collective of Learning Automatas Background

2.3 Collective of Learning Automatas

In Section 2.2, the dynamics of one single Automaton is described. In this section,
the mechanics of many Automata are described in detail.

2 4 3 1 4

Figure 2.4: A small collective of 5 Automata, where the max state is 4, ranging
from 1 to 4 inclusive. The output of each Automata is highlighted in different
colors; green represents 1; red represents 0.

.

As seen in Figure 2.4, there are two Automata that have an output of 0, while the
other three have an output of 1. There are several ways the collective can have a
consensus on an output. Some of them are as follows.

• Majority vote where the majority of the outputs will be the final vote. In
Figure 2.4, a majority vote would result in the output of 1. This approach is
often used for discrete classification where the output needs to be absolute.

• Counting votes could be utilized when the model wants to find out how
much something matches a model or does not match a model. From Fig-
ure 2.4, the result could have been either 3 if it was interesting in finding
similarities or 2 if it was interesting in finding differences.

One common application or experiment is called The Gur Game [54]. In this
game, the Automata acts as a decentralized system that each controls whether a
sensor should be turned on or off. The sensors are controlled by the Automata
output, where an output of 0 indicates the sensors to turn off, while an output of
1 indicates the sensors to be turned on. The goal is for all the sensors to conserve
power, and not have any more than the desired amount of sensors turned on.
However, a minimum number of sensors needs to be turned on in order to get
a good reading. In addition, there is no communication between the Automata
since this is a decentralized system.

The solution for this was presented by M.L Tsetlin [54]. Thus, proving the power
of multiple Automata working together, even when they have no knowledge of
one another.
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2.4. Logical gates Background

2.4 Logical gates

The use of logic gates is some of the most fundamental parts of a computer.
Ranging from various gates that can perform different calculations, there are two
interesting gates regarding this thesis, namely the AND, and the IMPLY gate
[31] [36]. Sometimes these gates are called operations based on the use case.

AND(a, b) =

{
1 if a = 1 ∧ b = 1
0 if a = 0 ∨ b = 0

(2.3)

a b a ∧ b

0 0 0

1 0 0

0 1 0

1 1 1

Table 2.1: Truth table for AND gate/operation

IMPLY(a, b) =

{
0 if a = 1 ∧ b = 0
1 otherwise

(2.4)

a b a =⇒ b

0 0 1

1 0 0

0 1 1

1 1 1

Table 2.2: Truth table for IMPLY gate/operation

Understanding how both the AND (Equation 2.3), and IMPLY (2.4) works is im-
portant for understanding the Tsetlin Machine. Truth tables for both operations
are included as Table 2.1 and Table 2.2.
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2.5. Kernels Background

2.5 Kernels

Kernels are a fundamental part of GPU programming. Thus, understanding how
each kernel executes is crucial to understand the choices made during this thesis.
Therefore, this section will briefly explain the mechanics of a kernel.

A kernel is simply just a function that is being executed on multiple processors
in a GPU. This function does not look like a traditional function from regular
programming. For instance, it cannot return a value. In order to store results,
the logic for persisting the results from computations needs to be assigned to each
processor [24] [9].

Source Matrix 1 2 3 4 5 6 7 8 9

Kernel Threads 12

t0

22

t1

32

t2

42

t3

52

t4

62

t5

72

t6

82

t7

92

t8

Result Matrix 1 4 9 16 25 36 49 64 82

Figure 2.5: A simple GPU Kernel that squares all values in a matrix and stores
them in a new matrix.

In Figure 2.5, the source matrix of the values 1..9, is to be squared. In tradi-
tional computing, this is easily achieved using a ”for loop”. However, in GPU
programming, each of the elements can be calculated at once on each of their own
processors. The results from the computation are stored in a new matrix, that is
accessible from the program.

This is just a trivial example that might not yield any improvements at all, but
imagine matrices with millions of elements running being calculated on a single
processor versus being calculated on a GPU in a kernel. This is where the GPU
outperforms CPU by a large magnitude.
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Chapter 3

Introduction to the Tsetlin
Machine

This chapter provides an introductory description of the Tsetlin Machine algo-
rithm and its mechanics [16]. Moreover, some new abstract techniques for both
performing evaluation and training are introduced to simplify even more. This
chapter is related to Goal 1 of the thesis.

3.1 Multi-class Tsetlin Machine

In April 2018, Prof. Ole-Christoffer Granmo published the first paper regarding
The Tsetlin Machine [16]. This paper explains the mechanics of Tsetlin Automa-
tons and how they can be utilized in larger models and therefore being able to
tackle more complex tasks than before. However, it did not take long before
several revisions were submitted. One of them included the Multi-class Tsetlin
Machine that this thesis focuses on [16] [5].

The mechanics of The Classical Tsetlin Machine builds upon the topics introduced
in Chapter 2. Using those mechanics, The Classical Tsetlin Machine is a pure
classification algorithm that tries to generate conjunctive clauses that can be
utilized in order to check if a sample belongs to a class or not. With this base, the
Classical Multi-class Tsetlin Machine was introduced. The main difference being
able to classify between multiple classes/categories and not only two.
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3.1. Multi-class Tsetlin Machine Introduction to the Tsetlin Machine

Input

Conjuctive clauses

Summation

Argmax operator

Selected class

1

2

3

4

5

Class 1 Class 2

0 1 0 ... 0 0 1

∧ ∧ ∧ ∧

∑ ∑

Argmax

1 or 2

→ → → →

0/1

+

0/1

-

0/1

+

0/1

-

Z Z

Figure 3.1: The Classical Multi-class Tsetlin Machine.

As seen in Figure 3.1, the procedure is mainly divided into 5 steps. These steps
are briefly described in the following way:

1. The input is provided as a 1D array/list consisting of the values 0 or 1.
These are the features or characteristics of a sample that is provided to the
model.

2. The conjunctive clauses are evaluated against the input. The possible out-
puts of each clause are either 0 or 1. A value of 0 tells the model that the
sample does not match the pattern that particular clause has learned, while
1 indicates a match.

3. During the summation phase, the output from the previous step is added
together using a voting system where the odd indexed clauses either ”casts
a vote” for this being the wrong class (negative vote) or a blank vote. The
even indexed clauses ”cast a vote” for this being the correct class (positive
vote) or a blank vote. The vote will be either negative or positive if the
output of the clause was evaluated to 1 (true) and blank if 0 (false).
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3.2. Structure Introduction to the Tsetlin Machine

4. A number from each of the classes are collected by the argmax step. Here,
the largest value is selected as ”the most likely class”.

5. In the end, the final output is represented as a number that can be mapped
to something more meaningful depending on the application utilizing the
algorithm.

3.2 Structure

To better understand how the Tsetlin Machine algorithm performs, it is impor-
tant to understand how the data and the model are structured. These can be
structured in various ways depending on the implementation of the Tsetlin Ma-
chine algorithm. In order to make the explanation of the algorithm simpler, this
thesis only focuses the one implementation described in this chapter.

3.2.1 Input data

Before reviewing the model, it is important to see what kind of data the Tsetlin
Machine accepts during training and evaluation. The Tsetlin Machine handles
discrete input. In short, only values of either 1 or 0 (true or false) are accepted.
Meaning, in many cases, some kind if pre-processing of input data are required.
Typically, the input data is represented as a 1D array where the length/size of
the array is the number of features that are extracted from the data.

I hated you liked they that movie disliked loved the

S0 1 0 0 1 0 1 1 0 0 0

S1 0 0 1 0 0 0 1 1 0 1

S2 1 1 1 0 0 0 0 0 0 0

S3 0 0 0 0 1 0 1 0 1 1

Table 3.1: Shows how documents can be converted into vectors that acts as input
data for a Tsetlin Machine model.

In Table 3.1, an example of how these features could be extracted is illustrated
by using a ”bag-of-words” example [14]. The samples (Sx) are assigned to equally
sized vectors where each of the elements are aligned. The value in each element
can either be 0 or 1, depending on if the word is present in the sample or not. The
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3.2. Structure Introduction to the Tsetlin Machine

same technique can be applied to pictures, however, this process involves more
pre-processing.

3.2.2 Model

The Tsetlin Machine model consists of n given classes. Each of those classes has
a 2D matrix which has several components that have different meaning and tasks
during both training and the evaluation of the model. The two dimensions of this
matrix are as follows:

1. Clause - There are no limits to how many Clauses a model could or should
have. However, the number of Clauses has a big impact on the training
process, if configured badly. Too many Clauses would result in longer train-
ing time and more resource allocation, whereas too few could result in some
patterns not being detected in data.

2. Automata - The number of Automata should always be twice the amount
of features (components of the input data). I.e. if the input data has 34
features, the number of Automata should be 68.

In addition to the 2D matrix, the model has some additional values that are
essential to know:

• The number of Classes.

• The number of Clauses per Class.

• The number of Automatas per Clause.

• The number of Features on the input data.

• The number of States per Automata.

It is important to note that in the current state-of-the-art and implementations,
these values must be known during compile-time. This also applies to the other
variables introduced in this section.
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3.3. Training Introduction to the Tsetlin Machine

3.3 Training

The training process of the Tsetlin Machine is an interactive process. Therefore,
several steps need to be performed in a given order. These are as follows:

1. Conversion - Convert the model to a state model.

2. Evaluate - Evaluate a sample against the state model.

3. Count votes - Count/sum the votes from each of the Classes.

4. Calculate feedback - Calculate what type of feedback to give each Clause.

5. Perform feedback - Perform the feedback on each of the Automata.

In order to simplify the process, the following steps will focus on how one class,
in particular, evaluates one single sample and its ”part” of the model.

3.3.1 Conversion

In order for the Automaton to function, a step that involves calculating the output
of each of the Automata is required. To achieve that, Equation 2.2 is utilized on
each of the Automata in the model.
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Model

Clause0 128

A0

32

A1

52

A2

64

A3

2

A4

98

A5

140

A6

80

A7

3

A8

100

A9

49

A10

11

A11

Clause1 32 67 164 1 15 98 163 120 23 187 11 87

Clause2 43 76 187 12 9 126 147 23 36 151 98 43

Clause3 111 21 54 65 4 76 79 124 1 34 48 15

State model

Clause0 1

A0

0

A1

0

A2

0

A3

0

A4

0

A5

1

A6

0

A7

0

A8

0

A9

0

A10

0

A11

Clause1 0 0 1 0 0 0 1 1 0 1 0 0

Clause2 0 0 1 0 0 1 1 0 0 1 0 0

Clause3 1 0 0 0 0 0 0 1 0 0 0 0

Output(state, statemax)

Figure 3.2: The conversion process of a Tsetlin Machine model to a state model.
The Output function that is utilized is Equation 2.2. In this example, the statemax

is set to the value of 200.

Once the action of each of the Automata in the model has been calculated as
shown in Figure 3.2, the result is stored as a state model. This state model is
used in the next phase when the model should be evaluated.
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3.3. Training Introduction to the Tsetlin Machine

3.3.2 Evaluate

In this step, the training data is introduced. In the previous step (See 3.3.1),
the model was converted to a state model. That state model will be used when
evaluating the clause’s output values with the sample. However, before that is
possible, the sample needs to be ”expanded”.

Samplex 1

F0

1

F1

0

F2

1

F3

0

F4

0

F5

New Samplex 1

F0

0

F1

1

F2

0

F3

0

F4

1

F5

1

F6

0

F7

0

F8

1

F9

0

F10

1

F11

¬ ¬ ¬ ¬ ¬ ¬

Figure 3.3: A sample with 6 given features, is expanded to a new sample with 12
features.

The proposed sample expansion, takes the value Fx and stores it in the new sample
at location F2x, while at the same time negating the value and storing it as well in
F2x+1. The sample expansion is illustrated in Figure 3.3, where the total amount
of features has grown to twice as many features. This is one important aspect of
The Tsetlin Machine that is easily ignored. However, being an abstract concept,
the mathematical process is best described using Figure 3.3. Nevertheless, the
actual process of expanding the sample vector is a computationally costly process
that is not feasible.
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State model

Clause0 1

A0

0

A1

0

A2

0

A3

0

A4

0

A5

1

A6

0

A7

0

A8

0

A9

0

A10

0

A11

Clause1 0 0 1 0 0 0 1 1 0 1 0 0

Clause2 0 0 1 0 0 1 1 0 0 1 0 0

Clause3 1 0 0 0 0 0 0 1 0 0 0 0

Sample

Samplex 1

F0

0

F1

1

F2

0

F3

0

F4

1

F5

1

F6

0

F7

0

F8

1

F9

0

F10

1

F11

Imply(Ax, Fx)

State model

Clause0 1

A0

1

A1

1

A2

1

A3

1

A4

1

A5

1

A6

1

A7

1

A8

1

A9

1

A10

1

A11

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Clause1 1 1 1 1 1 1 1 0 1 1 1 1∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Clause2 1 1 1 1 1 1 1 1 1 1 1 1∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Clause3 1 1 1 1 1 1 1 0 1 1 1 1∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

Figure 3.4: A sample and a state model that uses the IMPLY operation on each of
the elements to create conjunctive clauses consisting of logical AND operations.

As seen in Figure 3.4, each of the four clause’s Automata is implied with the
aligned feature from the given sample. Thus, forming four conjunctive clauses
built by the output from the IMPLY function. Each of those elements is se-
quentially passed through the AND gate, resulting in either the output of 1 or
0.

In Figure 3.4, the final output from each of the clauses is as follows:
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• Clause0: 1

• Clause1: 0

• Clause2: 1

• Clause3: 0

3.3.3 Counting votes

In this step, the output of each of the Clauses in a Class is stored into one value
called V . In addition, the Tsetlin Machine’s reduce operation takes into account
the index number of the clause to determine what the clause tries to learn. Clauses
with ”even” numbered indexes are counted as positive votes, while Clauses with
”odd” numbered indexes, are counted as negative votes. Because of this, ”even”
numbers include 0 (N0). Thereafter, the T (threshold variable) is introduced.
This value is used to ”clip” the final votes.

V =
n∑

even

Clausex −
n∑
odd

Clausex (3.1)

V =
n∑

x=0

Clausex · (1− (2 · (x mod 2)) (3.2)

This operation can be achieved using one of two formulas. Equation 3.1 is a sim-
plified version of Equation 3.2. The latter is often used in most implementations
due to its ease on computer resources. However, the essence of the operation
remains the same.

Finally, the Votes (V ) value is passed through a threshold function like shown in
Equation 3.3.

Threshold(V ) =


T if V > T
−T if V < −T
V otherwise

(3.3)

The result from Equation 3.3, will be passed on to the phase of the Tsetlin Ma-
chine. The T is a hyperparameter that is given to the model at the start of the
training process. T is used to help alleviate the vanishing signal-to-noise ratio
problem [5].
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3.3.4 Calculate feedback

In this step, the Tsetlin Machine will calculate what type of feedback to provide
for each of the Clauses. The various types of feedback are as follows:

• No feedback will be given to either of the automatas in the Clause.

• Type 1 Feedback is given to combat false negatives and amplify true
positives.

• Type 2 Feedback is given to combat false positives.

Feedback(V, T ) =

{
0 if r > T−V

2·T
1 otherwise

(3.4)

All of the Clauses will be tested with Equation 3.4. In Equation 3.4 r is a ”pseudo-
random” number that exists between 0 and to 1 exclusive ( r ∈ R | r ∈ [0..1) ).
The output of 0 (false) indicates that no feedback will be given to the tested
Clause. However, an output of 1 (true) will progress the Clause to test whether
it should receive Type 1 or Type 2 feedback.

even = {x/2 ∈ N0 | x <= n }
odd = {x/2 /∈ N0 | x <= n } (3.5)

FeedbackType(Index, Target) =


1 if Target = 0 ∧ Index ∈ odd
2 if Target = 0 ∧ Index ∈ even
1 if Target = 1 ∧ Index ∈ even
2 if Target = 1 ∧ Index ∈ odd

(3.6)

The sets of even and odd is the sets of all even numbers and odd numbers. These
sets can be constructed using the set constructors from Equation 3.5. n is the
number of Clauses in each class of the model.

Target is simply a number from 0 to 1 ({0, 1}). 0 indicates that the sample that
is being trained on should not evaluate to the current Class and 1 indicates that
the model should evaluate to the current Class.
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With that knowledge, and by utilizing Equation 3.6, the feedback type can be
determined for each of the clauses in the Class. These values are carried over to
the next step where the feedback will finally, be performed.

3.3.5 Perform feedback

The final step of the training process is to actually give the feedback to all of
the Clauses and Automata that are subject to feedback. The Clauses that were
assigned a type of feedback in the previous process are either subject to Type 1 or
Type 2 feedback. The actual feedback process is different depending on whether
the execution happens on the CPU or the GPU. However, based on the previous
steps, two truth tables lay out the probability of how likely it is for each of the
Automata to receive a reward, punishment or nothing based on its output and
output of the Clause.

Document →
Target Clause:

Target Literal:

1

1 0

0

1 0

Action 1

Action 0

P(Reward)

P(Inaction)

P(Punish)

P(Reward)

P(Inaction)

P(Punish)

s−1
s

1
s

0

NA

NA

NA

0

1
s

s−1
s

1
s

s−1
s

0

0

s−1
s

1
s

0

s−1
s

1
s

1
s

s−1
s

0

1
s

s−1
s

0

Table 3.2: Probability table for Type 1 Feedback. [16]
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Document →
Target Clause:

Target Literal:

1

1 0

0

1 0

Action 1

Action 0

P(Reward)

P(Inaction)

P(Punish)

P(Reward)

P(Inaction)

P(Punish)

0

1.0

0

NA

NA

NA

0

1.0

0

0

0

1.0

0

1.0

0

0

1.0

0

0

1.0

0

0

1.0

0

Table 3.3: Probability table for Type 2 Feedback. [16]

From both Table 3.2 and Table 3.3, the probability for what type of feedback that
is provided for each of the Automatas in a Clause is given.
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3.4 Conclusion

In this Chapter, the Multi-Class Tsetlin Machine was introduced and a description
of its mechanics was provided. The algorithm was simplified. For example, a new
mechanism to explain the conjunctive clause evaluation against a given input
was presented using logic gates. This method gives a gentle introduction to the
Tsetlin Machine algorithm. However, like mentioned, the actual implementation
varies from implementation to implementation [21] [22] [20] [18]. Nevertheless,
the abstract concept remains the same.

This concludes Goal 1 of the thesis, where the goal was to provide an introductory
description of how the algorithm works. This approach does not describe the
technical implementation, but rather the overall structure and how the algorithm
can be mathematically modeled.
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Chapter 4

Proposed Architecture

In order to achieve the goals of this thesis, the Tsetlin Machine algorithm required
some major changes. Throughout this chapter, a new architecture for the Tsetlin
Machine is proposed. The new architecture is divided into two parts, namely CPU
and GPU. The main focus with the proposed architecture is to utilize modern
CPUs and GPUs ability to do work in parallel according to thesis Goal 2 and
Goal 3 [3] [4].

4.1 Model

The proposed structure for the Tsetlin Machine model consists of one single 3D
matrix. Each of the dimensions has, like the current Tsetlin Machine, their ”do-
main” and responsibilities [16].

1. Class - The model has as many components in this dimension as there are
Classes (final output variances/labels). I.e. in a binary setup where there
are two possible labels, the number of Classes would be 2.

2. Clause - There are no limits to how many Clauses a model could or should
have. However, the number of Clauses has a big impact on the training
process if configured badly. Too many Clauses would result in longer training
time and more resource allocation, while too little could result in some
patterns not being detected in data.
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3. Automata - The number of Automata should always be twice the amount
of features (components of the input data). I.e. if the input data has 34
features, the number of Automata should be 68.

By utilizing a 3D matrix as a model, the Tsetlin Machine becomes much more
modular, since there is just one contiguous array of integers that is used instead
of multiple objects like the current implementations today have [22] [20].

Another important aspect of storing the entire model in one matrix is the com-
patibility between several systems. In this thesis, a CPU architecture and a GPU
architecture is proposed. Even though the programming and flow of execution
are different, the model remains the same on both implementations.

In addition to the matrix, some knowledge of the model is required:

• The number of Classes.

• The number of Clauses per Class.

• The number of Automata per Clause.

• The number of Features on the input data.

• The number of States per Automata.

In the proposed architecture of the Tsetlin Machine, these values can be configured
during runtime. In contrast, the current implementations of the Tsetlin Machine
only allow these to be configured during compile-time [21]. As a result, if any of
these values were to change at any given time in a system, the system would have
to re-compile the entire code or module where the algorithm resides.
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Matrix 1 Matrix 2

Source Matrix

1 2 3

4 5 6

7 8 9

15 25 35

45 55 65

75 85 95

Raw array 1 2 3 4 5 6 7 8 9 15 25 35 45 55 65 75 85 95

Figure 4.1: 2 2D-matrices represented using one 1D array.

In Figure 4.1, two different matrices are represented using a one-dimensional ar-
ray. This technique is often referred to as ”stride” [10]. By using Figure 4.1’s
technique of representing multiple matrices in one array, the model gains some
advanced features that will be discussed throughout this thesis. In the proposed
architecture, this technique is utilized on a 3D matrix. The concept remains the
same, only that (from Figure 4.1,) Matrix 1 (Z = 0) and Matrix 2 (Z = 1), rep-
resents the Clauses and Automata from two different Classes, respectively. This
technique is widely used in popular libraries like Numpy (Python library) [56].

4.2 CPU

The modern CPU’s main advantage is that it has few, but very fast processing
units. Often capable of several billion calculations per second. Thus, utilizing a
modern CPU’s multiple cores are crucial to maximizing the performance and at
the same time reducing the amount of time required to train and evaluate [34].

The proposed solution involves using multiple threads under one single process
that holds the memory and resources required to complete the training and eval-
uation [55].

33



4.2. CPU Proposed Architecture

4.2.1 Training

The training process of the Tsetlin Machine is a complex task that involves sev-
eral steps that are required. First, memory for the training process needs to be
allocated. This is only memory that is being used during the training, this in-
cludes space for the Clause outputs, votes and what feedback type to give to each
Clause.

Thereafter, the training process starts. The amount of epochs to run is given to
the model. Multi-threading is utilized in order to speed up training. The amount
of threads to create equals the number of classes in the model. Each thread is
assigned the task of training their respective class. Inside each thread, a given
amount of batches starts. In each batch, all the training samples are being trained
on. More details on the training process will be presented later in this section.

Once each thread finishes its training, it is joined back to the main thread which
takes the algorithm into the evaluation phase. In this phase, a set of validation
data will be evaluated against the model. This allows the model to receive input on
how good, accuracy the model has. In addition, precision and recall are calculated
for each class. Like before, new threads are created to handle their respective
classes. Once created, they loop through the validation samples and saves their
votes for each sample in a shared array for each thread. When all the validation
samples are validated against, the threads are joined back to the main thread.

The last step involves calculating the accuracy of the model in order to check
whether it has improved or not during the training. This is done using the scores
from the validation data and checking if the samples with the highest score match
the label for that sample.

These steps are repeated for the given amount of epochs. When finished, the
allocated memory from the first step. These steps are illustrated in Figure 4.2.

34



4.2. CPU Proposed Architecture

Figure 4.2: The flow of execution with the CPU training process.

As seen in Figure 4.2, the classes are being trained on each of their own threads
that belong to the Main Thread. Each of these threads will ensure that its given
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class will be trained on all the samples that are given to the model.

Figure 4.2 gives a brief overview of all the steps in the entire training process.
However, from here on, the thesis will focus on one of the classes training to give
a more detailed view of the process. Diving deeper into the training process of
one Class, several steps are performed. During training on one sample, the first
step involves validating the Clauses for that Class. Thereafter, the output from
Clauses is used to get a score. This score is used when performing feedback. These
steps are illustrated in Figure 4.3.

Figure 4.3: The training process in detail for one class on CPU.
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The process has been simplified from Figure 3.1 where the algorithm was explained
in greater detail. However, in order to simplify the steps and make them more
versatile, the steps have been reduced to three parts:

1. Validate clauses is validated against the current sample the model is being
trained on. The output of each clause is stored for use in the next step.

2. Count votes is where the votes are counted for and the result is stored for
the next step.

3. Perform feedback is the last step for a given sample in the training pro-
cess. Here all the clauses receive their feedback based on their output in the
previous steps.

By simplifying the algorithm into three steps, instead of five, the algorithm be-
comes simpler to comprehend. Moreover, it makes it easier to focus on each of the
steps in terms of what part to optimize. Nonetheless, the underlying steps in the
algorithm remain mostly the same, but the general abstraction of the algorithm
has been simplified.
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4.2.2 Evaluation

During the evaluation phase, threads are created, one for each Class. Thereafter,
all the samples that are to be evaluated, are evaluated using the two steps first
introduced in Section 4.2.1. Namely, validate clauses and count votes. Since
there is no need for feedback when evaluating, this part is not performed during
evaluation. This is why evaluating a model is much faster than training on one.
These steps are illustrated in Figure 4.4 and remain mostly the same as in the
original Tsetlin Machine implementation [16].

Figure 4.4: The flow of execution with the CPU evaluation process.
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4.3 GPU

Utilizing a GPU to its full extent is a very complex and difficult task. There are
so many variables to consider, like latency, memory bandwidth, memory banks,
and much more [9]. Nevertheless, with proper configuration, the GPU may act
as a powerful parallel computing unit [46]. The goals of this thesis do not make
that task any easier since variables can be set at runtime. In short, compiler
optimizations like definitions is therefore impossible.

In this section, an architectural approach that tries to efficiently utilize one or
more GPUs is proposed. There are several problems related to this approach, like
how to distribute the data to more GPUs and which GPU is supposed to handle
what tasks? In order to solve and explain the proposed approach, this section is
divided into several subsections that try to address the issues as they arise with
the training.

39



4.3. GPU Proposed Architecture

4.3.1 Distribution of work

Managing how a GPU is utilized in one of the most complex tasks of GPU pro-
gramming [8]. The underlying system needs some kind of orchestration or idea of
how to utilize one or multiple GPUs. One popular way to facilitate the work on
GPUs is the use of streams [26] [35]. Streams are both simple and very complex.
Therefore, in this thesis, we will be using streams just as a queue of execution.
This queue uses a FIFO (First In First Out) algorithm [15]. In short, this means
that the first task that is queued is the first one to execute.

With this in mind, it is time to organize the work. Due to the nature of the
Tsetlin Machine algorithm, each of the classes has no dependencies of each other
during training or evaluation. Consequently, making them an excellent way to
separate logic into each stream.

Figure 4.5: Streams tasked with handling one class each on one GPU.

From Figure 4.5 the idea of using one stream per class is illustrated. Streams are
pinned to the current GPU upon creation, but there can be more than one stream
per GPU. Thus, making the streams act as queues to organize the work for each
Class.
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Figure 4.6: Streams tasked with handling one class each on multiple GPU.

Likewise, in Figure 4.6, streams can be distributed onto multiple GPUs.

4.3.2 Kernels

The Kernels in the GPU architecture is designed around the data model. For
instance, this means that the kernels should be compatible no matter how many
Automata each Clause in the model has. In order to achieve this, a technique
called ”striding” is utilized [25]. This technique involves that each of the pro-
cessors in the GPU handles more than one element, or in this case, Automata.
However, this becomes relevant when models grow beyond 512 features or the
model has more than 1024 Automata due to the warp limits of CUDA [43].

The GPU version has introduced four new kernels that are associated with the
architecture. These are as follows:

• Validate clauses is responsible for evaluating the clauses against a given
sample and storing the outputs in a given array. Thus, making the kernel
responsible for handling the second step from Figure 3.1.

• Count votes is responsible for reducing the votes into a single score for the
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previous kernel. The score is then stored at a given place from the kernel.
This makes the kernel responsible for step three from Figure 3.1.

• Calculate feedback is responsible for calculating what type of feedback
each Clause should receive.

• Give feedback handles the feedback that is given to the model during
training. This kernel is only used when the model is being trained. Thus,
making this kernel responsible for determining the feedback and actually
applying it to the model.

With these kernels, the architecture completes the algorithm and is able to per-
form the required tasks for training and evaluation.

4.3.3 Multiple GPUs

A problem that arises when using multiple GPUs is how to select which GPU for
each class. In this thesis, there is no intelligent selecting of the GPUs. However,
the distribution of streams to GPUs is used using a simple equation.

Device(C,G) = C mod |G| (4.1)

From Equation 4.1, it is possible to quickly assign a device to the class. Using C
as the Class id, and G as a set of available devices (GPUs), it is possible to use
the modulo operation on the cardinality of G to assign a device to a class/stream.
As a result, the output from Equation 4.1, is the index of the device in G to use
(assuming indexes starts at 0).
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Class ID Stream ID GPU ID

0 2 0

1 3 1

2 4 2

3 5 0

4 6 1

5 7 2

6 8 0

7 9 1

8 10 2

9 11 0

10 12 1

Table 4.1: An example of how the distribution of Streams and GPUs look like on
a system with 3 GPUs.

Table 4.1 utilizes Equation 4.1 to assign a GPU to each of the Classes. The
Stream ID is just for illustration purposes, they have no coherence with the other
values and the actual values would depend on whether the GPUs have other tasks
besides the Tsetlin Machine.

4.3.4 Training

Training the Tsetlin Machine model is a complicated process that has been de-
scribed in Section 3.3. Furthermore, the requirement of running on multiple GPUs
makes the problem even more complicated. Figure 4.7 presents an overview of
how the training process happens across the entire system with multiple GPUs.

First, memory is allocated to each of the GPUs that are to be used during the
training process. Then, the training starts and a loop over all the epochs to train
on begins. Like in the CPU implementation, threads for each Class are created
on the host. Each of these threads is assigned one GPU to utilize. The first step
for these threads is to create/activate one stream that it will use. This allows the
stream to act as a queue for the host thread to queue kernel launches.

Once the stream is created, the thread starts to loop the batches and samples like
in the CPU implementation, however, now they are being executed on GPUs. At
the end of each batch, the host thread waits for each stream to complete its given
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tasks. This is called synchronization [26].

Later, when the batches have been completed, the host threads are being joined
back to the main thread before the evaluation phase starts. The evaluation phase
follows the same patterns as the CPU implementation, one thread is being created
for each Class. Again, a stream is created/activated for this class. Following is
the evaluation of all the validation samples that have been given to the model.
Later, the streams are joined and terminated, and the host threads are joined
back the main thread.

Finally, the statistics for the model are being generated based on the evaluation
phase. Statistics like, model accuracy and class precision and recall are calculated
for each class.

When all the epochs finish, the memory allocated on each GPU is de-allocated.
An overall illustration that shows these steps is shown in Figure 4.7.
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Figure 4.7: The flow of execution with the GPU training process.
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As seen in Figure 4.7, the final GPU architecture is more complicated than a pure
CPU version. In this example the setup is as follows:

• The host, in other words, all code that is executed on the host side (CPU
related execution).

• 2 Devices, in other words, 2 GPUs that are directly attached/connected
to the host.

• 2 Classes or labels that the model should differentiate.

• 4 Streams in total, 2 that are assigned to the GPUs for memory transfer
(default stream), and 2 that are assigned to each of the classes.

Still, there is more happening here that is possible to describe in one figure.
Therefore, the following description will focus on one class alone.

In Figure 4.8 the focus is around one Class. This class has one CPU thread, and
one GPU Stream. As seen inside the loop of ”All samples”, there are 4 GPU
kernels being launched. These kernels perform the entire training for this class.
They are divided into 4 different kernels:

• Validate clauses is responsible for calculating the output of all the Clauses
when subjecting the given sample to the model.

• Count votes is responsible for counting the votes/output from the clauses
in the previous step.

• Calculate feedback is responsible for calculating the feedback to each
Clause.

• Give feedback handles the feedback that is to be given to each of the
Clauses and Automata.

These steps are repeated for all the samples and batches and eventually the epochs.
An illustration of this is shown in Figure 4.8.
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Figure 4.8: CPU and GPU together train one single class in deeper detail.

4.3.5 Evaluation

The evaluation of the samples is illustrated in Figure 4.9. Like in Figure 4.8,
Figure 4.9 utilizes kernels that run on the GPU to evaluate a sample. However,
when evaluating, there is no feedback involved for the model. Hence, making the
process a bit simpler than when training.

The design around the kernels has from the start been about re-usability in order
to minimize the complexity of the architecture and its belonging code. As a result,
by re-using the kernels from Section 4.3.4, most of the logic can be reused for this
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purpose.

Because of this, the two kernels associated with validate clauses and count votes
are used for each sample. An illustration of this is provided in Figure 4.9.

Figure 4.9: CPU and GPU together evaluate one single class in further detail.
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4.4 Experiments

In order to test CPU and GPU implementation against one another, two datasets
were utilized:

• Noisy XOR dataset [22].

• Iris dataset [21].

These datasets have been used on other implementations of the Tsetlin Machine
[22] [21]. As a result, the datasets have been pre-processed by the repository
owners and may, therefore, be biased. However, the validity of the dataset is not
the focus of these experiments.

Each of these datasets will be individually tested in their own experiments. First,
in experiment 1, the Noisy XOR dataset will be tested. Secondly, the Iris dataset
will be tested in experiment 2.

4.4.1 Datasets

The datasets are small in size, but should still allow for the difference to be shown
in execution time. The configuration of each of the datasets is listed in Table 4.2.

Features Labels Train. Samples Val. Samples

Noisy XOR 12 2 5 000 5 000

Iris 16 3 120 30

Table 4.2: The configuration of the datasets used in the experiments for the
proposed architecture.

4.4.2 Models

The configuration for the models that will be trained on the datasets is listed
in Table 4.3. These configurations are the same as proposed by the repositories
where they were retrieved from [22] [21].
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Classes Clauses Automata States

Noisy XOR 2 10 24 100

Iris 3 300 32 100

Table 4.3: The configuration of the models used in the experiments for the pro-
posed architecture.

4.4.3 Training parameters

During training, the parameters used for each dataset and model, are listed in
Table 4.4. These parameters are the same as proposed by the repositories where
the datasets were retrieved from [22] [21].

Batches Threshold S

Noisy XOR 200 25 3.9

Iris 100 10 3.0

Table 4.4: The training parameters used in the experiments for the proposed
architecture.

4.4.4 Metrics and parameters

In order to validate Goal 3, several tests will be performed on the two datasets.
The metric to be measured is the execution time per epoch. This metric enhances
the view on how the CPU performs versus single and multiple GPUs.

On experiment 1, the following tests were performed:

• Multi-threaded CPU, one thread per class.

• 1 GPU shared among both classes.

• 2 GPUs, one per class.

On experiment 2, the following tests were performed:

• Multi-threaded CPU, one thread per class.
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• 1 GPU shared among all three classes.

• 2 GPUs, shared among all three classes.

• 3 GPUs, one per class.

All the mentioned tests will be performed over a period of 100 epochs to make up
for noise that could be introduced on the system which could affect runtime.

4.5 Results

In this section, the results from experiment 1 and experiment 2 are presented.
The results have been divided into each of their own subsections 1.

4.5.1 Experiment 1

CPU 1 GPU 2 GPU

Epochs 100 100 100

Mean 2.344687 29.464554 12.364357

Std 0.325126 1.130496 0.256826

Min 2.023810 26.425700 11.818900

Max 3.163360 32.455300 13.153100

Table 4.5: The results when measuring the execution time from experiment 1 with
a multi-threaded CPU implementation, 1 GPU and 2 GPUs.

From the results in Table 4.5, the multi-threaded CPU version outperforms the
GPU implementations. However, by adding more GPUs to the execution, the
total runtime is reduced. A plot of the runtime across epochs along with average
helplines is provided in Figure 4.10.

1More detailed results and a Jupyter Notebook are available at this thesis’s Github repository
[44]
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Figure 4.10: The execution time of an entire epoch for each of the configurations
in experiment 1.

4.5.2 Experiment 2

From the results in Table 4.6, the multi-threaded CPU version outperforms the
GPU implementations. However, by adding more GPUs to the execution, the
total runtime is reduced. A plot of the runtime across epochs along with average
helplines is provided in Figure 4.11.
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CPU 1 GPU 2 GPUs 3 GPUs

Epochs 100 100 100 100

Mean 0.716166 4.712603 3.279649 2.439178

Std 0.077709 0.484669 0.527712 0.665278

Min 0.600583 3.343220 2.259240 1.564340

Max 0.931968 5.619580 5.007240 3.648040

Table 4.6: The results when measuring the execution time from experiment 2 with
a multi-threaded CPU implementation, 1 GPU, 2 GPUs, and 3 GPUs.

Figure 4.11: The execution time of an entire epoch for each of the configurations
in experiment 2.
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4.6 Conclusion

Surprisingly, the multi-threaded CPU implementation outperformed both a single
and multiple GPUs in both experiments. This could be because of the limited
dataset sizes, thus making massive parallelism slower due to the limited amount
of work available for each GPU thread.

However, as expected, multiple GPUs performed better than a single GPU. This
was clearly shown in Figure 4.11, where the average execution time was cut by
more than a second going from 1 to 2 GPUs. The performance gain from 2 to 3
GPUs was not that significant.

This concludes Goal 2 and 3 of the thesis. Goal 2 was to propose a new architecture
that allowed for parallel execution of the Tsetlin Machine. This was performed
in Section 4.4, and since this yielded results, the goal should be considered com-
plete. Goal 3 was to investigate CPU parallelism versus GPU parallelism. This
was performed in Section 4.4 and the results from this comparison was shown in
Section 4.5.
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CPU and GPU reduction

In the Tsetlin Machine, the reduction is used to count the votes during the second
step in the training process [16]. While the current implementation is in small
cases great, problems arise when the numbers of clauses increase beyond thousands
and into millions [51]. The solution for this is to utilize parallel reduction in the
counting phase of the Tsetlin Machine. This chapter will take a closer look at
Goal 4.

In this chapter, a solution for how to utilize the GPU to perform a parallel reduc-
tion of votes is introduced. In addition, a performance comparison of the proposed
solution and traditional looping with various sized arrays was performed.

5.1 The problem with regular counting

In the Tsetlin Machine, votes are an important factor that is computed many
times during the training process (this is described in section 3.3). To perform
this action, Equation 3.1 or Equation 3.2 is utilized.

The biggest issue with the current architecture of the Tsetlin Machine is that the
counting is processed sequentially by one processing unit [16]. Thus, resulting in
longer execution time as the amount of data grows.

Figure 5.1 illustrates how this becomes a problem when the number of Clauses
grows into the thousands and beyond. Each of the outputs is sequentially calcu-
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lated by one processing unit. Thereby, resulting in a longer execution time that
grows by the number of elements to process, as shown in Figure 5.1.

Figure 5.1: The current implementation of the Tsetlin Machine uses one CPU to
count the output from each Clause in a Class.

5.2 Proposed solution

There are several ways of implementing a reduction algorithm in a GPU [38] [27].
In order to implement a parallel in the Tsetlin Machine, the polarity of a Clause
needs to be addressed (votes for and against the class). Luckily, Equation 3.2
already has this mechanism implemented. Therefore, the proposed solution is
to use parallel reduction with sequential addressing [27] combined with partial
reduction [27]. There is one important requirement related to this approach. The
amount of threads (processors) that execute the algorithm, needs to be a product
of 2 (2x). This is due to how the proposed solution loops through the outputs of
Clauses, see Figure 5.2 and Figure 5.3.
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Clause outputs 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0

Accessed in Loop 1 Loop 2 Loop 3 Loop 4

Threads 0 1 2 3

Polarity function f f f f

Shared mem. 1 -1 1 -3

Figure 5.2: Multiple threads calculate a partial sum using a stridden (stride)
loop through the array of Clause outputs. Finally, the output is stored in shared
memory after being altered by the polarity of the Clauses.

First, the polarity of the Clause output needs to be calculated. This is achieved
using a stridden parallel loop through the outputs from the Clauses. This tech-
nique allows the work to be distributed across several threads. An example of
this is shown in Figure 5.2. In this example, there are 16 Clause outputs that
are being processed by 4 threads. The total amount of work that needs to be
performed by each of the threads can be performed in 4 loops. If it was only one
thread, the total number of loops would have been 16.

Secondly, the task is to add all the numbers in the shared memory together.
In Figure 5.3, an example of how that is done with the proposed solution is
performed. This task is divided into 5 steps (since there are 25 sums in the shared
memory).

I.e. in Figure 5.3, the sums are distributed in all the elements in the shared
memory array, a total of 16 elements. First, threads from 0 through 7, retrieves
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the score at their own index, and the score at an index of their own index + an
offset of 8. Thus, thread 0 calculates the sum of the value in position 0 and 8.
The output is stored in the cell with the same index as the thread id.

The next step is to reduce the offset and remove half of the threads. The amount
of threads that will be used in the next step is 8/2 = 4. In addition, the offset is
divided by 2. Thereby, resulting in a new offset of 4.

This cycle is repeated until there is only one thread left. Then, the result from
the reduction will be stored at index 0, as seen in Figure 5.3.

1. Shared mem. 2 -5 23 21 -10 4 3 -6 -15 12 2 9 -15 9 -12 0

Threads 0 1 2 3 4 5 6 7

2. Shared mem. -13 7 25 30 -25 13 -18 -6 -15 12 2 9 -15 9 -12 0

Threads 0 1 2 3

3. Shared mem. -38 20 7 24 -25 13 -18 -6 -15 12 2 9 -15 9 -12 0

Threads 0 1

4. Shared mem. -31 44 7 24 -25 13 -18 -6 -15 12 2 9 -15 9 -12 0

Threads 0

5. Shared mem. 13 44 7 24 -25 13 -18 -6 -15 12 2 9 -15 9 -12 0

Figure 5.3: An example of how to reduce the partial sums from the first step using
8 threads and 16 sums.
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5.3 Experiment

In order to test the CPU versus GPU reduction, an experiment was conducted.
The experiment consisted of the same mechanics as of the Count votes phase in
the Tsetlin Machine algorithm. Recall, in this phase, the Tsetlin Machine is to
count the outputs from each Clause within a Class and apply a polarity on the
sum. The following conditions are tested:

• The correctness of the procedure. In other words, if the results are correct.

• The execution time of the procedure.

The test was conducted 50 000 times to eliminate noise in the measurement, on
31 different dataset sizes. Ranging from 20 all the way to (including) 230 number
of Clause outputs. The intent was to see if the execution time was better on any
of the two algorithms, and if so, find a guideline for when one of them was to be
utilized over the other.

5.4 Results

The results from running the experiments 50 000 times and calculating the average
execution time on each of the dataset sizes are shown in Table 5.1 1.

In addition, a side by side plot of the results in Table 5.1, is shown in Figure 5.4.

1More detailed results and a Jupyter Notebook are available at this thesis’s Github repository
[44]
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Dataset size CPU GPU

20 0.0000014041 0.0000122265

21 0.0000004752 0.0000071717

22 0.0000004665 0.0000070232

23 0.0000005544 0.0000071622

24 0.0000005090 0.0000065421

25 0.0000005031 0.0000066912

26 0.0000006107 0.0000066723

27 0.0000007293 0.0000066653

28 0.0000009789 0.0000066826

29 0.0000015052 0.0000067128

210 0.0000029674 0.0000067577

211 0.0000049448 0.0000069495

212 0.0000094619 0.0000074599

213 0.0000184260 0.0000084084

214 0.0000362890 0.0000103301

215 0.0000718008 0.0000141564

216 0.0001417443 0.0000217758

217 0.0002839911 0.0000378221

218 0.0005715443 0.0000703452

219 0.0011348340 0.0001332294

220 0.0022774922 0.0002570482

221 0.0045425669 0.0005043868

222 0.0090661810 0.0013593011

223 0.0181292382 0.0027688047

224 0.0363013888 0.0057922750

225 0.0727972486 0.0122280613

226 0.1459792105 0.0257625273

227 0.2925265660 0.0530825586

228 0.5862823975 0.1077091220

229 1.1773335444 0.2166417535

230 2.3725780540 0.4349740997

Table 5.1: Average execution time from running the reduction experiment 50 000
times on both CPU and GPU. Time is represented in seconds.
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Figure 5.4: A comparison of the average results from CPU and GPU reduction
from Table 5.1.

5.5 Conclusion

From the results, one can easily extrapolate when a CPU reduction pattern is to
be utilized and when a GPU reduction pattern is to be utilized. It is clear that the
power of the CPU outperforms the GPU on smaller datasets. However, when the
number of elements to calculate grows beyond approximate 212, a GPU reduction
pattern should be utilized to save execution time. This is clarified in Figure 5.4.

The reason why GPU is slower than the CPU on smaller datasets is probably due
to the speed on each of threads in the GPU not being fast enough to compete
with a much faster single core CPU. In addition to running on slower hardware,
the reduction method on GPU brings some overhead that, when used on smaller
datasets, becomes significant enough to increase the total execution time. How-
ever, on larger datasets, this overhead seems to almost disappear due to the
computing time required to process that many elements.
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This concludes Goal 4 of the thesis, where the goal was to investigate CPU versus
GPU on counting votes. The results from this experiment show that there is a
threshold for when to use CPU and when to use GPU when counting the votes
with these proposed solutions.

Finally, regarding Hypothesis 2 with its given premise and the evidence provided
in this chapter, it is safe to assume that this hypothesis is correct.
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Dynamic Parameters

One major drawback with the current implementations of the Tsetlin Machine
is that all of the parameters need to be known during compile time [22] [20]. In
a production environment, this is simply not an option. Often decisions need to
be taken quickly by the system, and in other setups, the machine may not even
have a compiler installed. To circumvent this problem, an implementation where
these parameters could be set and even adjusted during runtime is proposed. The
advantages of this approach are many [45], and include the following:

1. Adjusting the parameters do not require the code to recompile.

2. The parameters could be adjusted during the training.

3. Even changing the domain and model do not require a recompile.

Nonetheless, these advantages do not come for free. The most important drawback
with this approach is that the code can never be as fast as hardcoded values [6].
This chapter is related to thesis Goal 5.

6.1 Dynamic S value

The first interesting value to look at in the Tsetlin Machine is the s parameter.
This value is used to adjust how fast the training occurs. The higher this value
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is, the slower the algorithm learns, while the lower the value is, the faster the
algorithm learns. The difficult part is to find a balance between fast and precise
learning [17].

By utilizing dynamic parameters, the Tsetlin Machine can update this value dur-
ing training and even try to search for an optimal value to use. Using a technique
called Stochastic Search On The Line (SSL) [57], the algorithm is able to search
for a value that gives better accuracy than the previous value.

Step 1

Step 2

Step 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

0.4

1

0.6

2

0.38

0

0.62

1

0.7

2

0.59

0

0.98

1

0.55

2

0.60

Initial value = 5.5

New value = 4.5

New value = 3.5

Keep value = 3.5

Attempted value Selected value

Figure 6.1: An example of how the s changes during training using SSL using an
initial value of 5.5 and a d of 0.5.

The s value needs to be initially set to a decimal number. The amount to move (d)
in a positive or negative direction is required as well. In Figure 6.1, an example of
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the algorithm is divided into three steps. In the first step, an initial value of s is
passed to the model and the accuracy of the model is measured to 0.4 with an s of
5.5. Thereafter, the s value is adjusted to 4.5 (decremented by d) and measured
to 0.6. Lastly, an s value of 6.5 (incremented by d) is attempted and measured to
an accuracy of 0.38. From these three results, the optimal result is to decrement
the s value by d. The new s value is selected and stored as 4.5. These steps are
repeated until the end of the training, as seen in Figure 6.1.

The parameters that need to be set in order for this technique to be applied are
the following:

• s - An initial s value needs to be set in order for the model to have somewhere
to start.

• d - The amount the s should move between the epochs.

In addition, it is required to know what action to try out. In order to calculate
that, Equation 6.1 is proposed and utilized.

Action = Epochx mod 3 (6.1)

The Action could either be 0, 1 or 2. With that given Action, the model knows
what the next value of s should be, as shown in Figure 6.1. Thereby, an Action
of 0 would indicate that it should run with the current s value. An Action of 1,
indicates that it should decrement the s by d and evaluate with that. Last, if an
Action of 2 is given, the model should increment the s by d, and then evaluate
the model.

The final adjustment of the model happens on Epochs where the Action equals
0, except for Epoch0.
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6.2 Experiment

In order to test the proposed dynamic s value, several tests are required. First, it
is essential to see that the algorithm manages to adjust itself towards an optimal
value. Thereafter, this test needs to be repeated for several scenarios.

In order to verify that the s approaches an optimal solution, we need a dataset that
we know the optimal s value from. The Noisy XOR dataset [22], have already been
tested in Tsetlin Machine paper, where the calculated optimal value is estimated
to be 3.9 [16].

Several tests were required to verify if the s value is able to learn by itself:

1. Experiment - NoisyXOR dataset, with an initial s value of 15 and d of 0.5.

2. Experiment - NoisyXOR dataset, with an initial s value of 0.5 and d of
0.5.

3. Experiment - NoisyXOR dataset, with an initial s value of 15.0 and d of
1.0.

4. Experiment - NoisyXOR dataset, with an initial s value of 1.0 and d of
1.0.
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6.3 Results

Following is the results of the experiments described in Section 6.2. A graph
of all the experiments is shown in Figure 6.2. Next, individual graphs of each
experiment, are shown in each subsection hereafter 1.

Figure 6.2: Plot from each of the experiments from the dynamic s value.

1More detailed results and a Jupyter Notebook are available at this thesis’s Github repository
[44]
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6.3.1 Experiment 1

In Figure 6.3, the s starts out at 15.0 and after a while starts to adjust itself down
towards the optimal s value. Once the s reaches 4.5 it starts to fluctuate around
this position through the rest of the experiment.

Figure 6.3: The s changes during the epochs for experiment 1.
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6.3.2 Experiment 2

In Figure 6.4, the s starts out at 0.5 and after a while starts to adjust itself up
towards the optimal s value. Once the s reaches 5.0 it starts to flat out and
fluctuate around 4.5 and 3.5. through the rest of the experiment.

Figure 6.4: The s changes during the epochs for experiment 2.
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6.3.3 Experiment 3

In Figure 6.5, the s starts out at 15.0 and after a while starts to adjust itself down
towards the optimal s value. Once the s reaches 4.5 it starts to fluctuate around
this position through the rest of the experiment.

Figure 6.5: The s changes during the epochs for experiment 3.
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6.3.4 Experiment 4

In Figure 6.6, the s starts out at 1.0 and after a while starts to adjust itself down
towards the optimal s value. Once the s reaches 4.0 it starts to fluctuate around
this position through the rest of the experiment.

Figure 6.6: The s changes during the epochs for experiment 4.
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6.4 Conclusion

As seen in Figure 6.2, the s value was able to adjust itself towards the known op-
timum value from the Tsetlin Machine paper [16]. Although in some cases it took
many epochs before the adjustments, this could have been introduced by noise
in training or the fact that the environment changes for each run. Nevertheless,
with a primitive d, the model is still able to adjust the s to move closer towards
an optimum value.

In the experiments, the known optimal s value was not reachable (since it was
outside of the jumpable values). However, early in the testing, a too small d value
did not allow the s value to move at all. Thereby, resulting in the s value staying
at the same location. This could have been a consequence of the environment
being too unstable to handle such small changes, making the accuracy changes
from adjusting s, more or less random.

This concludes Goal 5 of this thesis, where dynamic parameters help the model to
find optimal parameters. The experiments show that it is possible to find a good
parameter, however, it might be difficult to pinpoint the exact best parameter.
Nevertheless, that is not always required as long as the final results are good
enough.

This test was conducted on only one dataset, it is expected that following the
same procedure would yield almost the same results on another dataset.

With regards to Hypothesis 2 and the evidence provided in this Chapter, it is
clear that the model is able to adjust and improve some of its parameters (s
value) during training.

72



Chapter 7

Conclusion and Future Work

In this chapter, a thesis wide conclusion is presented that concludes all of the
chapters respectively conclusions. In addition, some proposals for future work are
given.

7.1 Conclusion

This thesis proposed a new architecture and investigated several aspects of the
Tsetlin Machine algorithm. First, the Tsetlin Machine algorithm was introduced
on an abstract level. Secondly, a proposed architecture for allowing the Tsetlin
Machine to be executed in parallel on both CPU and GPU was suggested and
tested. Thirdly, a solution for performing the reduction in order to count the
votes in the Tsetlin Machine was tested on the CPU and GPU. Lastly, a solution
for adjusting the s value during training was suggested using the stochastic search
on the line [57].

In Chapter 3, Goal 1 was to provide an introductory description of the Tsetlin
Machine algorithm. With the sample expansion and using logic gates, a proposed
description was provided.

Further, in Chapter 4 and according to Goal 2, an architecture that allowed for
parallelization of both CPU and GPUs was proposed. As a result, two experiments
were conducted in accordance with Goal 3. They presented evidence that the
proposed architecture works. Thus, utilizing more GPUs helps to reduce the total
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training time. One interesting outcome in the results in Section 4.5, was the fact
that the multi-threaded CPU implementation was faster than multiple GPUs. As
mentioned, this could be the result of the datasets not being large enough that
parallelism on GPUs was beneficial.

Next, in Chapter 5 and Goal 4, a technique called reduction, was introduced. This
technique provided evidence for Hypothesis 1 to be true. Regardless, this raised
some new questions, like when is the model large? However, if the algorithm is
to handle larger models with larger datasets, it is without question a good idea
to have a fast reduction method. Considering this is one of the vital parts of the
algorithm.

In Chapter 6 and Goal 5, incorporated the Stochastic Search On The Line algo-
rithm into the Tsetlin Machine algorithm. Consequently, allowing the algorithm
to search for optimal hyperparameters during training. Just as important, this
provided evidence for Hypothesis 2 to be true. The model showed signs of be-
ing able to learn a better parameter during training. In addition, it seemed to
converge towards the known optimal value. As a result, providing the strongest
evidence for Hypothesis 2 to be true.

The findings in this thesis open the door for many new paths for the Tsetlin
Machine algorithm. Some being highlighted in the next section of this chapter.

7.2 Future work

In this section, future work is proposed and suggestions for what to improve or
research, related to this thesis.

7.2.1 Synergy with Fast Tsetlin Machine

Even though not a part of this thesis, it is clear that a synergy approach between
the proposed framework and the Fast Tsetlin Machine is all but inevitable. This
would bring huge performance improvement to the algorithm, therefore, allow-
ing it to handle even more complex problems that require more computational
resources.
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7.2.2 Python bindings

In order to move the Tsetlin Machine algorithm from the academic community
into the industry, the right tools are required. Creating a connection from Python
into this architecture allows developers with little knowledge for machine learning,
to utilize the algorithm for their domain.

7.2.3 Implement Regression

Since this thesis was started, more abbreviations of the Tsetlin Machine has been
introduced. One of them is the Regression Tsetlin Machine [1]. Investigating the
possibility of implementing the regression Tsetlin Machine with this architecture,
is something that is worth investigating. This would make the Tsetlin Machine
more capable of solving new tasks.

7.2.4 Look at improved search mechanics for s parameter

From the experiments in Chapter 6, the s value was adjusted during training
to find an optimal value. This however, could take many epochs and if the s
value starts way of the optimal position, it might not be able to find it with a
low d value. An improved mechanism for searching and testing out values, could
enhance this feature.

7.2.5 Complete CUDA implementation

With the latest GPUs from Nvidia, comes new features. One of them being
dynamic parallelism [2]. This concept, combined with Cooperative Groups [28]
could be a natural next step for the algorithm. As a consequence, allowing the
training process to run completely on one more GPUs.
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Appendices

A Hardware Specification

All the tests was conducted on a Nvidia DGX-2 server with the following specifi-
cations.

Operating System Ubuntu 18.04 LTS

Processor Intel Xeon Platinum 8168 x4 @ 24 C (96 C in total) 2.7GHz

Memory 1.5 TB DDR4

Graphics 16x Tesla V100-SXM3-32GB with NVLINK
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