
	

	

	
	
	
	
	
	
	
	
	
	

	
	
	
	

	

The Maritime Pickup and Delivery
Problem with Cost and Time Window
Constraints: System Modeling and A*
Based Solution
	

CHRISTOPHER DAMBAKK

SUPERVISOR
Associate Professor Lei Jiao

University of Agder, 2019
Faculty of Engineering and Science
Department of ICT

Abstract

In the ship chartering business, more and more shipment orders
are based on pickup and delivery in an on-demand manner rather
than conventional scheduled routines. In this situation, it is nec-
essary to estimate and compare the cost of shipments in order to
determine the cheapest one for a certain order. For now, these cal-
culations are based on static, empirical estimates and simplifications,
and do not reflect the complexity of the real world. In this thesis,
we study the Maritime Pickup and Delivery Problem with Cost and
Time Window Constraints. We first formulate the problem mathe-
matically, which is conjectured NP-hard. Thereafter, we propose an
A* based prototype which finds the optimal solution with complexity
O(bεd). We compare the prototype with a dynamic programming ap-
proach and simulation results show that both algorithms find global
optimal and that A* finds the solution more efficiently, traversing
fewer nodes and edges.

iii

Preface

This thesis concludes the master’s education in Communication
and Information Technology (ICT), at the University of Agder, Nor-
way.

Several people have supported and contributed to the completion of
this project. I want to thank in particular my supervisor, Associate
Professor Lei Jiao. He has provided excellent guidance and refreshing
perspectives when the tasks ahead were challenging. I would also like
to thank Jayson Mackie, co-worker and friend, for proofreading my
report.

Grimstad, 24th of May 2019.

v

Table of Contents

Abstract iii

Preface v

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1

1.1 Problem Statement . 2

1.1.1 Thesis Goals 4

1.2 Contributions . 4

1.3 Thesis Structure . 5

2 Background 7

2.1 Literature Review . 7

2.1.1 Maritime Pathfinding 10

2.2 Technical Background 12

2.2.1 Graph Data Structure 13

2.2.2 Pathfinding and A* 13

3 Problem Formulation 17

3.1 Description of the Problem 17

3.2 Model and Notations 19

3.3 Mathematical Formulation 20

3.4 Complexity . 24

4 Proposed Solution 25

vii

Table of Contents Table of Contents

4.1 Graph Implementation 25
4.2 GeoJSON . 27
4.3 Prototype Implementation 28

4.3.1 A* Implementation 28
4.3.2 Dynamic Programming Approach 31
4.3.3 Cost Functions 33

4.4 Complexity . 34

5 Results 39
5.1 Simulation Environment 39
5.2 Concrete Examples . 40
5.3 Simulation Results in Statistics 43

6 Conclusion and Future Work 47
6.1 Conclusions . 47
6.2 Future Work . 48

References 51

viii

List of Figures

1.1 Sabrina 1, a typical, so-called handymax bulk carrier [1]. 2

2.1 Euclidean distance as heuristic 15

3.1 An example of a graph to represent the world. 19

4.1 Graph of the Mediterranean Sea 26
4.2 Vertex relations . 27
4.3 One use of GeoJSON to define areas with a certain

cost, for example the Suez Canal. 28

5.1 Examples of routes generated and compared by the
prototype. 41

5.2 Comparing the number of nodes and vertices pro-
cessed by the two approaches. 45

ix

List of Tables

3.1 Summary of the mathematical notations 23

5.1 Simulation configuration 40
5.2 Finding the cheapest combination of ship and loading

port for transporting cargo to USWWO. 43
5.3 Simulation results . 44

xi

List of Algorithms

4.1 Applying A* to all possible combinations 31
4.2 A* pseudo code . 36
4.3 Dynamic programming approach pseudo code 37

xiii

Chapter 1

Introduction

Ship chartering companies are regularly faced with the task of de-
termining the price of a shipment which they can offer to a potential
customer. These costs are manually calculated based on static esti-
mates that may not reflect the complexity of the real world.

In this thesis, we study the Maritime Pickup and Delivery Prob-
lem with Cost and Time Window Constraints (MPDPCTWC). We
propose a novel way of deciding a ship and a path from pickup to
delivery which minimizes the cost of a shipment. The cost estima-
tion includes operation costs, the price of buying raw materials, and
external factors like canal prices, sea conditions, and weather.

To solve the MPDPCTWC problem, we define a model and im-
plement an A* (pronounced A-star) based prototype to combine
pathfinding and cost estimation in order to find the optimal com-
bination of ships and routes able to carry out the shipment. The
prototype shows promising results and we propose improvements to
include more specific domain knowledge.

1

1.1. Problem Statement Introduction

1.1 Problem Statement

In the world of shipping, dry bulk carriers, for instance Sabrina 1 in
Figure 1.1, are ships that transport dry cargoes such as ores, grain
or coal. These vessels are characterized by their hatches on the deck
that cover the cargo holds which contain the raw materials. The
cargo is transported from a wide spread of locations to ports that
hold factories which need the materials.

Figure 1.1: Sabrina 1, a typical, so-called
handymax bulk carrier [1].

Dry bulk shipping is usually
done on-request by a contractor,
similar to how the taxi indus-
try works, in contrast to liner
shipping1. For example, a fac-
tory that needs raw materials
can place an order2 with a ship-
ping company. Then the ship-
ping company has to determine
where to buy the materials and
with which ship to transport the
cargo. The ship must travel
from its initial position to the pickup port to load the materials
and then deliver it at the destination port.

Klaveness3 is a company that owns and controls dry bulk carriers.
One of their many challenges is to plan which vessel to assign to
which shipment in order to minimize costs. This is a complex task,
even for experienced planners. Each task includes several unknowns,
and the cost estimation can quickly become imprecise. Additionally,
this work is mostly done manually, making it time-consuming and
prone to errors.

As with other real-world applications, the domain is subject to a set
of complex constraints. Some constraints are firm, meaning that they

1Typically container vessels transporting containers from one port to another,
often according to pre-defined schedules, comparable to bus routes.

2A purchase agreement for a certain quantity of materials to be delivered. We
assume that the shipping company may freely decide where to buy cargo.

3https://klaveness.com/

2

https://klaveness.com/

1.1. Problem Statement Introduction

can not be violated, and others are soft, meaning that they can be
broken — but at a cost. The soft constraints are weighted differently,
making some of them more important than others. Examples of firm
and soft constraints include, but is not limited to:

• The size of the ship: A large ship can not travel in the Suez
Canal or the Panama Canal. Larger ships are, however, able
to carry more load.

• Time: There are several time constraints: A ship must be at
the delivery port during certain service time windows. If a ship
fails to meet the time window, it might not be served. Also,
the ship needs to be at the destination within another time
window.

• Contracts: Some ships only travel between certain ports,
countries or continents according to constraints defined in a
contract.

• Pricing: The price of raw materials may vary between dif-
ferent ports and this must be taken into consideration when
selecting where to buy cargo.

• Operation costs: The price of operating a ship, including
staff, fuel, insurance, etc. A loaded ship is more expensive to
operate as the fuel costs are higher.

• Sea conditions: Some paths at sea are more favorable than
others due to external factors such as underwater streams or
icy seas.

• Weather: Weather conditions such as wind and storms affect
the route a ship selects and therefore the cost.

• Ports and canals: Certain ports, canals, and other areas
charge an additional cost.

The result of planning should be a route that transports materials
from a loading port to a destination with the lowest possible costs,
obeying all the firm constraints and finding the best compromise of

3

1.2. Contributions Introduction

the soft constraints. By providing a software platform capable of
such planning, ship chartering companies can make better decisions
to lower costs.

The research on pathfinding in the context of shipping is in its
early stages. Previous work such as the Petrobras Challenge [2], [3],
and [4], and other planning challenges [5] mostly focus on optimizing
routing and planning of liner shipping systems and are comparable
to other well-researched vehicle routing problems. The doctoral dis-
sertation by Dolinskaya [6] proposes an algorithm capable of finding
a ship’s fastest route based on real-time sensor data, but only on a
local scale. Beeker [7] presents an algorithm able to find the shortest
path avoiding the limitations of the arcs in a network by using De-
launay triangulation. However, this work also focuses on finding the
shortest path and does not include costs and other constraints. Our
thesis is taking a well-known algorithm for solving problems similar
to the Traveling Salesman Problem and applies it to the open field
of global ship pickup and delivery optimization.

1.1.1 Thesis Goals

To solve the Maritime Pickup and Delivery Problem With Cost and
Time Window Constraints, we outline the following goals in our
study:

Goal 1: Formulate the problem mathematically and evaluate the
complexity.

Goal 2: Design and implement an algorithm capable of finding
optimal routes from a starting point, through a pickup port, and to
its final destination for the given constraints.

1.2 Contributions

This thesis introduces a solution to the MPDPCTWC problem by
applying a known technique for pathfinding to bulk carrier shipping.

4

1.3. Thesis Structure Introduction

The contributions of this thesis include:

1. An implementation of the A* search algorithm with cost and
time window constraints applied to the context of dry bulk
pickup and delivery. The algorithm can find the optimal ship
and route for the current set of constraints.

2. A framework for route planning that can be extended to include
a vast variety of costs and constraints to account for real world
conditions.

1.3 Thesis Structure

This thesis is structured as follows. Chapter 2 presents the current
research on pathfinding and route optimization, both in general and
in the maritime domain, before formulating and modeling the pickup
and delivery problem in Chapter 3. The implementation of the algo-
rithm to solve the problem is covered in Chapter 4 and the results are
presented in Chapter 5. Finally, we conclude the thesis and propose
future work in Chapter 6.

5

Chapter 2

Background

This chapter reviews the current research on pathfinding before look-
ing into the research on maritime use-cases similar to our problem.
We cover theory regarding different pathfinding techniques and dis-
cuss their features, including their strengths and weaknesses. Then,
we give a technical description of the concepts and algorithms dis-
cussed in this thesis.

2.1 Literature Review

Pathfinding is a thoroughly studied subject in computer science. In
essence, pathfinding is similar to the shortest path problem defined in
graph theory, which aims to find the best path (shortest, cheapest, or
some other criteria) between two nodes in a graph. The use-cases for
pathfinding include, but are not limited to, maze solving [8, 9], game
development [10, 11], robotics [12, 13, 14], and logistics [2, 3, 4, 5].

In the survey of path planning algorithms conducted by Souissi et al.
in 2013 [15], they present a wide range of classic pathfinding algo-
rithms and variations developed in recent decades and suitable appli-
cations and scenarios. Amongst these methods are Dijkstra and A*,
Rapidly-exploring Random Trees, and Potential Fields, which will

7

2.1. Literature Review Background

be explained throughout this section.

The A* pathfinding algorithm origins back to 1968 when Hart, Nils-
son, and Raphael [16] extended Dijkstra’s algorithm [17] to include
a heuristic to reduce the number of nodes to be visited. This im-
provement sped up the search process while still guaranteeing the
most optimal solution. Today, the original implementation is still
highly popular and regarded as the state-of-the-art within pathfind-
ing. However, some improvements have been proposed to deal with
specific use-cases. One such improvement is Lifelong Planning A*
(LPA*) [18, 19] which caches the intermediate results from previous
searches to speed up future searches starting from the same point
in the graph. The cached values must, however, be recalculated
each time the starting point changes. Another variant is Hierar-
chical Pathfinding A* (HPA*), proposed by Botea et al. [20]. This
approach abstracts the graph into a more coarse-grained, clustered
graph to reduce the complexity and search effort of pathfinding be-
tween nodes that are far apart. Botea et al. compare HPA* as trav-
eling on a motorway between cities before entering the city roads.
This abstraction does, however, mean that the algorithm produces
sub-optimal solutions. They reported that their implementation of
HPA* was up to 10 times faster than conventional A* and within
1% of the optimal path.

LaValle introduced Rapidly-exploring Search Trees (RRTs) [21] with
the aim to quickly explore unsearched regions. Amongst several use-
cases, RRTs have shown to be applicable to pathfinding. Inspired by
other randomized path planning techniques such as Randomized Po-
tential Field [22] and Probabilistic Roadmaps [23], RTTs are charac-
terized as a tree expansion search which is biased towards unexplored
areas. Čáp et al. [21, 24] applied RRT for a co-operative pathfinding
problem to co-ordinate multiple agents (such as autonomous aircrafts
or cars) to find the shortest path for all agents while at the same
time avoiding collisions. They concluded that their implementation
of RRT, MR-RRT*, was more efficient than other similar approaches
on large environments, but produces sub-optimal routes.

A third family of pathfinding algorithms are Potential Fields, intro-
duced by Khatib [25]. He presented an approach for robot obstacle

8

2.1. Literature Review Background

avoidance in real-time by coupling environment sensing with low-
level robot control. The concept of Potential Fields can be described
as the sum of attractiveness to the global goal and repulsiveness from
obstacles at any position. Potential Fields are prone to local min-
ima, as described by Mabrouk and McInnes [26] who also suggests
possible countermeasures.

A recent paper by Mirjalili et al. demonstrates how Ant Colony
Optimization (ACO) can be used for pathfinding of an Autonomous
Underwater Vehicle (AUV) and other domains similar to the Trav-
eling Salesman Problem [14]. ACO is a well-known technique in the
field of swarm intelligence to explore the environment and find the
shortest path — similar to how real-world ants behave to find food
sources. Their ACO implementation was tested in case studies with
up to 200 way-points and the ACO algorithm quickly converged and
found the shortest path covering all points. However, as with other
non-deterministic swarm algorithms, the convergence time of ACO
is uncertain.

In game development, pathfinding is widely used to make NPCs1

appear intelligent by moving in meaningful patterns and directions.
Millington’s book, Artificial Intelligence for Games [27], presents Di-
jkstra and A* as the two major go-to algorithms for performing
pathfinding in games. Both algorithms are able to work with models
of the game world and also have the performance and memory foot-
print required for real-time games. Additionally, A* can be extended
to take different types of factors into account, such as different ca-
pabilities of the NPCs, current state of the game, other NPCs or
players nearby, or a combination of these. Redfern improved his
pathfinding algorithm in his game based on player-tracked move-
ments [10]. He modeled the player behavior as heatmaps and used
a heuristic function to guide the entities in good directions based on
the heatmap of previous behaviours. This approach is interesting as
it shows that the pathfinding algorithm can take a wide variety of
factors and constraints into account, not only distance or travel time.
Artificial Intelligence for Games [27] also discusses a similar feature
using influence maps. Their use-cases include finding the best path
for different military units with certain characteristics in a particular

1Non-Playable Character, an element controlled by the computer

9

2.1. Literature Review Background

terrain.

2.1.1 Research on Maritime Pickup and Delivery, Pathfind-
ing, and Optimization

The research in the maratime domain has mostly focused on route
optimization and organizing a fleet of ships to efficiently deliver goods
across a set of destinations and minimizing repositioning2. This kind
of optimization goals are common for the traffic pattern known as
Liner shipping. In this pattern the available ports and ships are lim-
ited, the ships travel according to schedules, and the problem scale
is local, similar to bus routes in a city. Another shipping pattern,
called Tramp shipping, let ships transport cargo on-request, much
like a taxi service. Finally, we have Industrial shipping, where ship-
ping companies control their own fleet of ships [28]. Our pickup and
delivery problem falls in between the latter two patterns.

A common constraint in the shipping domain is service time win-
dows. A port is often subject to heavy traffic, and to cope with this,
ships are assigned certain time windows in which service must start.
This constraint is usually considered as a hard constraint in the lit-
erature, but can in fact often be violated for an inconvenience cost.
Fagerholt [29] suggested an optimization algorithm that takes the in-
convenience cost into account to find the most optimal schedule. He
modeled the Traveling Salesman Problem with Capacity, Soft Time
Windows, and Precedence Constraints (TSP-CSTWPC) problem as
sequences of nodes to represent schedules. Candidate schedules were
generated to find the most optimal one, applying different inconve-
nience cost functions. His approach found the most optimal solution
in three out of four experiments.

For the case of Tramp shipping, Fagerholt and collegues [30] pro-
posed a model to allow a fleet of ships to co-operate on a cargo
delivery by splitting loads while still obeying the time windows of
the involved ports. Their results showed that splitting loads can sig-
nificantly improve schedule quality as well as increasing a company’s

2Moving an empty container or ship.

10

2.1. Literature Review Background

profit from the reduced sailing costs and the opportunity to bring
additional cargo that is not part of the original shipment contract.

A well-known problem in the shipping planning domain is the Petro-
bras challenge [2], [3], [4]. This challenge was proposed at the Inter-
national Competition on Knowledge Engineering for Planning and
Scheduling (ICKEPS) [31] to motivate research innovations to be
applied to real-world problems. The objective of the Petrobras chal-
lenge is to optimize the fuel cost, the number of ships, and the waiting
time when distributing cargo across a set of petroleum platforms,
without breaking any of the ship, platform, or port capacity con-
straints. The Petrobras challenge has a lot in common with both
planning and scheduling problems, and can be approached in differ-
ent manners.

The first attempt to solve the Petrobras Challenge was submitted
by Toropila et al. [2], who proposed three solutions. Two of their
solutions tackled the problem as a planning problem, using the in-
dustry standard planning modelling language PDDL [32] to represent
the domain and SGPlan [33] to compute the plans. They also im-
plemented a third approach, a Monte Carlo Tree Search (MCTS)
version that resulted in, at that time, state-of-the-art results. Then,
in 2013, Barták and collegues [3] changed the PDDL model by de-
scribing the sequences of actions as a Finite State Automaton. This
could in turn be used to guide the planner to only explore “proper”
paths and thus improve efficiency. Lastly, in 2014, Barták et al. [4]
aimed to improve the efficiency even further by utilizing the tabling
feature of the Picat language. They showed that they are able to
outperform the MCTS version described earlier.

The contributions regarding maritime pathfinding is limited but cov-
ered by the doctoral dissertation by Dolinskaya [6]. Her research
aims to develop a system that can, based on real-time measurements
and forecasts, control a vessel and find an optimal path to the des-
tination in a direction, location, and time dependent environment,
while minimizing travel time, fuel consumption and obeying motion
restrictions (such as turn sharpness). Using real-time vessel sensors
and surrounding environment data, such as forcasted wave-field, she
developed a pathfinding algorithm to determine the most favorable

11

2.2. Technical Background Background

path. She argues that the pathfinding algorithm must be indepen-
dent of the speed function as it differs for each vessel and that an
analytical function cannot accurately describe the vessel movement.

Although the main goal of finding the optimal path at sea and mini-
mizing cost is the same as ours, Dolinskaya and her collegues focuses
on finding the local best path within a radius of 10 minutes of travel
time, while our work has a global perspective. Because of the rela-
tively short travel time range, her use-case is real-time navigation,
whereas we aim to estimate the cost of future operations and com-
pare possible shipments in the planning phase. She also uses ship
sensor data and information about the surrounding environment as
input to the pathfinder, unlike our model which is based on the whole
world, weather forecasts and global sea conditions such as underwa-
ter streams.

In contrast to the traditional graph model required when performing
pathfinding, Beeker [7] suggests to use Delaunay triangulation to
yield the actual shortest path from any position to any port. He
argues that a major weakness of current pathfinding algorithms is
their tight dependency to a graph representation of the world. If a
ship is not at a node’s location when the simulation begins or the
destination changes mid travel, the pathfinder requires the ship to
find the closest node before starting the search — with the possibility
of the generated path deviating considerably from the actual shortest
path. Although his work presents a novel and promising approach
of finding the shortest path at sea, he does not include cost or time
window constraints.

2.2 Technical Background

This section aims to give the reader a basic introduction of how
pathfinding algorithms, and A* in particular, works and give an
understanding of the terms used when discussing pathfinding.

12

2.2. Technical Background Background

2.2.1 Graph Data Structure

In computer science, the graph data structure, closely related to
mathematical graphs, is a way to model the relation between objects
in the real world as vertices (also called nodes) and edges. The
applications of graphs ranges from the study of molecules and atoms
to database design and resource allocation and scheduling, and is
considered a fundamental concept. [34]

Pathfinding algorithms in computer applications often require the
world to be modeled as a graph. In essence, the graph is a sim-
plification of the real world where edges between nodes represent
possible paths. If the graph is suitably abstracted, it can be used by
pathfinding algorithms to find paths matching any constraints and,
in turn, be applied to real-world use-cases.

Each edge in a graph used for pathfinding, is assigned a cost. This
cost may represent distance, time required to travel the edge, or
some other metric. This measurement is often non-negative and we
say that the graph is weighted. Also, for the case of pathfinding,
the graphs are often directed meaning, that edges can only be trav-
eled in one direction. However, two nodes may have two parallel
but opposite directed edges between them allowing non-symmetrical
costs.

2.2.2 Pathfinding and A*

The problem of finding the shortest, cheapest or preferred path in an
environment is a task that computer science has studied for a long
time, and has gained increased importance and focus with the rise of
use-cases such as robots, UAVs and more. Pathfinding algorithms,
and A* in particular, have long been used in game development
to make computer controlled elements behave intelligently. In this
section, we will explain the workings of pathfinding algorithms such
as A*.

The A* pathfinding algorithm is an extension of the famous Dijkstra
algorithm invented by the Dutch computer scientist Edsger W. Di-

13

2.2. Technical Background Background

jkstra [17]. A* and Dijkstra are graph traversing algorithms to find
the shortest path between two nodes in a graph. By modeling the
world as a graph and assign cost to the edges, they can also be used
for pathfinding. Both algorithms are deterministic and will generate
a complete, guaranteed optimal path in finite time. [35]

Both Dijkstra and A* work around two main lists; the open list
and the closed list. The open list is a priority queue containing
all nodes in the graph to be processed, ordered by their correct,
accumulated cost, and that the algorithm considers to be part of the
final path. The closed list contains all nodes that has been visited
and processed by the algorithm. At each iteration, the pathfinder
selects the cheapest (most promising path to the goal) node from
the open list and evaluates the outgoing edges from this node. All
the neighboring nodes are added to the open list and the current
node is moved to the closed list. This process continues until the
destination node is reached. As both algorithms always selects the
most promising node at each step, the first time they reach the goal
node will be the optimal path. [27, 35]

The difference between the two algorithms lies in how the A* guides
its search towards promising nodes due to the introduction of heuris-
tics, as explained in the following paragraphs.

Heuristics

The main difference between the Dijkstra and A* algorithm is the
evaluation of the next nodes when stepping through the graph. A*
uses a heuristic function h(n) to assign a value that indicates how
likely the node is to be a part of the globally best path. This value
should be as close to the final cost as possible if continuing the current
path. When selecting the next node to process from the open list,
the cheapest node is the node with the lowest sum of the cost so far
and the heuristic value. Consequently, A* becomes biased towards
exploring nodes that are more likely to be part of the final path.
This concept is exemplified in Figure 2.1. [35]

It is important that the heuristic does not overestimate the actual

14

2.2. Technical Background Background

Figure 2.1: Example where a heuristic function is used to optimize the search process.
The dotted lines represent the Euclidean distance. When using Dijkstra, node A will
be processed before node B because of the lower cost so far. On the other hand, A*
will process node B first because it has a lower Estimated total cost, and thus finds the
optimal path to the destination more quickly.

cost of the final path. If so, the pathfinder will generate suboptimal
solutions as the selection from the open list will be wrong and lead
the pathfinder the wrong way. A common heuristic is the Euclidean
distance from the current node to the destination. Even if the path
to the goal is the same as the Euclidean distance, the heuristic will
not be greater than the final cost. We say that the heuristic is ad-
missible [36].

An admissible heuristic is required when using A* for tree-search.
When searching a graph the requirement is slightly more strict. We
say that the heuristic function must be consistent [36]. A heuristic
h(n) is consistent, and thus also admissible, if the estimated cost
from node n to the goal is lower than the sum of the cost from node
n to its successor n′ and the the estimated cost from node n′ to the
goal node, as shown by the following inequality:

h(n) ≤ c(n, n′) + h(n′).

By making the heuristic match the final cost as closely as possible,
it can make A* even more efficient by reducing the number of nodes
processed, as they remain further down the open list and are never
explored. If the heuristic value at a node is the same as the ac-
tual cost to the goal, as in Figure 2.1, we say that the algorithm is
perfectly informed at that node [37].

15

Chapter 3

Problem Formulation

This chapter elaborates on the problem to be solved and explains
the intricacy before defining the mathematical model necessary to
describe the problem. We present the graph notations, the objective
function, and the constraints.

3.1 Description of the Problem

This project aims to help ship chartering companies assign a vessel to
a shipment. Imagine a shipping company receives an order to deliver
a certain amount of coal to a factory. If the shipping company accepts
the order, they must decide where to buy the coal, with which ship
to transport the cargo, and which route the ship should travel while
minimizing the total cost.

The destination port is fixed for each shipment order. This is the port
where the cargo must be delivered and is out of the shipping com-
pany’s control. However, the shipping company may decide where to
buy cargo. Different ports may offer the requested cargo to various
prices due to supply and demand. It might be worth buying more
expensive cargo to avoid bad weather conditions or travel a longer
route to buy cheaper cargo.

17

3.2. Model and Notations Problem Formulation

Due to traffic congestion at busy ports, each vessel may be assigned
a so-called service time window in which the ship must arrive to be
serviced [29, 30]. We assume these time windows are firm, mean-
ing that a ship arriving outside the given time window will not be
serviced, and in turn result in the ship not being able to carry out
the shipment according to the requirements. Service time windows
apply to both pickup ports and the destination port.

The shipping company may also have multiple vessels spread across
the world that can carry out the shipment. Some vessels have a more
favorable start location than others, with regards to distance to the
pickup ports, or sea and weather conditions between the current
position and the destination.

Today, shipping companies manually compare potential ships for an
order based on well-established list of prices and estimated operation
costs. These are static and inaccurate as they include estimated costs
of every possible condition (sea, weather, waiting times), which may
provide too many, vague or conflicting options.

We aim to make better estimates that can more accurately reflect the
final cost of a shipment by combining more up-to-date price forecasts,
more accurate travel details and operation costs, including weather
and sea conditions, in the evaluation process. This estimation can
be applied to every combination of vessel and pickup port to find the
one with the lowest overall cost.

To summarize, the goal is to find the most optimal compromise of all
the external factors and those that can be decided by the shipping
company. These factors include which ship to select for the shipment,
which port to buy cargo, which route to travel from the vessel’s initial
position to the pickup port, and which route to travel from the pickup
port to the destination port.

18

3.2. Model and Notations Problem Formulation

Figure 3.1: An example of a graph to represent the world.

3.2 The Graph Model and Notations

Figure 3.1 shows an example graph used to represent the world.
The mathematical formulation for this kind of graph is as follows:
given l number of aggregated locations and n number of ports, we
have in total m = l+ n vertices (also known as nodes). The vertices
are connected by edges, which are ordered pairs represented in a
m × m matrix X. The binary element xij within X equals to 1 if
there is an edge from i to j, and 0 otherwise, as shown in Eq. (3.1).

xij =

{
1 if there is an edge from i to j ,

0 otherwise.
(3.1)

With matrix X we can represent the vertices and the edges as a di-
rected, weighted graph G(V,E), where V is the set of vertices and E
is the set of edges. A vertex vt ∈ V where t ∈ [1, 2, . . . ,m] is a geo-
graphical location at sea or land (such as a port), defined by latitude
and longitude. An edge ea,b ∈ E where va ∈ V, vb ∈ V, a 6= b
is a connection from vertex va to vertex vb and the cost of traveling
along that edge is ωa,b.

19

3.3. Mathematical Formulation Problem Formulation

3.3 Problem Definition and Mathematical For-
mulation

To describe the problem in a formal manner, we introduce the fol-
lowing notations: let S = {s1, s2, . . . , so} be the set of ships and si
be the ith ship belonging to S and o is the total number of ships. All
ships have a max load capacity, denoted sidwt

1 and an initial position
denoted as the vertex vsi,0.

Let P = {p1, p2, . . . , pn} be the set of ports and pj be the jth port in
P . Let P η,si ⊂ P be the subset of ports where ship si may buy and
pick up cargo and let pa,si ∈ P η,si be the ath pickup port for ship
si. A ship si in S may load cargo from any of the ports in P η,si . Let
P η = ∪∀siP η,si and V η = ∪∀sivsi,0.

Define pd ∈ P\P η\V η as the final destination port where the cargo
is to be delivered. pd is not any of the pickup ports in P η nor any of
the source positions in V η and is fixed for all ships in S, i.e., there
is one destination for all ships in the current shipment. We assume
that all pickup ports in P η have enough raw materials to cover the
need of a purchase. The number of tonnes of raw materials to buy is
denoted τ and the price of raw materials pr tonnes in port pi ∈ P η
is γpi .

Define PSAsi,pa,si as the set of all paths that ship si may travel from
vsi,0 to pa,si , and one particular path in PSAsi,pa,si is denoted by
psasi,pa,si ,k, where k is the index of the paths. Let {ej}(psasi,pa,si ,k)
be the set of edges in psasi,pa,si ,k, indexed by j.

Similarly, let PADsi,pa,si
be the set of paths that ship si may travel

from pa,si to pd, and one particular path in PADsi,pa,si
is denoted by

padsi,pa,si ,k, where k is the index of the paths. Let {ej}(padsi,pa,si ,k)
be the set of edges in padsi,pa,si ,k, indexed by j. Let µsi,α and µsi,β
be the factor for operating cost of an empty and a loaded ship si,
respectively.

1Deadweight Tonnage — a metric of how much cargo a ship may carry in
terms of weight.

20

3.3. Mathematical Formulation Problem Formulation

The set of cost functions, Csi , are applied to each ship si, and
Wsi is the set of the corresponding weights, both indexed by k ∈
{1, 2, 3, . . . , |Csi |} as csi,k and wsi,k, where |Csi | and |Wsi | are the
cardinality of Csi and Wsi , respectively, and clearly |Csi | = |Wsi |
holds.

The arrival time of ship si in port pj ∈ P η,si ∪ pd is denoted tsi,pj .
Also, all ports may have a certain service time window for a certain
ship. The service time window for ship si in port pj is [asi,pj , bsi,pj]
for all si ∈ S and all pj ∈ P η,si ∪ pd. This also applies to the
destination port pd. We denote the actual departure time for ship si
from its initial position as tvsi,0 . We also assume that ships travel at
the same, constant, economic speed [38].

The notations are summarized in Table 3.1.

An objective function to minimize the overall cost for a certain ship-
ment, can be formulated as

min
{si, pa,si ,psasi,pa,si ,k, padsi,pa,si ,k}

τγpa +
∑

eq∈{ej}(psasi,pa,si ,k)

f(eq, si) µsi,α

+
∑

eq∈{ej}(padsi,pa,si ,k)

f(eq, si) µsi,β

 ,

∀si ∈ S, pa,si ∈ P η,si ,
psasi,pa,si ,k ∈ PSAsi,pa,si , padsi,pa,si ,k ∈ PADsi,pa,si

,

(3.2)

where

f(eq, si) =
∑

k∈{1,2,3,...,|C|}

csi,kwsi,k, for edge eq and ship si. (3.3)

21

3.3. Mathematical Formulation Problem Formulation

subject to

|Csi | = |Wsi | , ∀ si ∈ S, (3.4)

wsi,j ∈ [0, 1], ∀ wsi,j ∈Wsi , si ∈ S, (3.5)

asi,pj ≤ tsi,pj ≤ bsi,pj , ∀ si ∈ S, pj ∈ P, (3.6)

tsi,0 ≤ tsi,pj < tsi,pd , ∀ si ∈ S, pj ∈ P
η,si , pd ∈ P\P η\V η, (3.7)

0 < τ ≤ sidwt , ∀ si ∈ S, (3.8)

0 ≤ f(eq, si), ∀ eq ∈ psasi,pa,si ,k ∪ padsi,pa,si ,k, (3.9)

∀ si ∈ S, ∀ pa,si ∈ P η,si ,
∀ psasi,pa,si ,k ∈ PSAsi,pa,si
∀ padsi,pa,si ,k ∈ PADsi,pa,si

,

µsi,α ≤ µsi,β, ∀ si ∈ S. (3.10)

The objective function, Eq. (3.2), minimizes the cost of purchasing
and transporting cargo. The expression consists of three addends:
the price of raw materials, the cost of traveling to the pickup port,
and lastly traveling from the pickup port to the final destination.
The parameters that can be tuned to minimize the function are the
ship to transport cargo, the port to pick up cargo, the path from the
vessel’s initial position to the pickup port, and the path from the
pickup port to the destination port. The cost of traveling an edge
in a path is the sum of a set of cost functions and corresponding
weights, represented in Eq. (3.3).

The objective function is subject to constraints, which are as follows.
Eq. (3.4) and Eq. (3.5) shows that the number of cost functions and
weights is the same, and that the value of each weight is in the
inclusive range from 0 to 1. Eq. (3.6) defines that a ship si may
only be served at port pj during the port’s service time window for
ship si. This constraint applies to both pickup ports and destination
ports as P contains all ports.

Eq. (3.7) states that ship si must pick up cargo before it can deliver
it, making it impossible to pick up cargo in the destination port.
However, ship si can pick up cargo in its starting position.

Ship si can not load more cargo than the ship’s capacity, according

22

3.3. Mathematical Formulation Problem Formulation

Description

G(V,E) Graph with verticies V and edges E

vt Vertex in V

ea,b An edge from vertex va to vertex vb
S Set of ships

si Ship belonging to S

sidwt Ship si’s Deadweight Tonnage

vsi,0 Initial vertex/position of ship si
P Set of ports

pj Port belonging to P

P η,si Subset of ports that have available raw materials for ship si
pa,si Port in P η,si

V η V η = ∪∀sivsi,0. The set of initial positions of ships

P η P η = ∪∀siP η,si .
Subset of ports that have available raw
materials for ship si.

pd Destination port, in P\P η\V η

τ Amount (in tonnes) of raw materials to buy

γpi Price of raw materials in port pi
PSAsi,pa,si Set of paths that a ship si may travel from vsi,0 to pa,si
PADsi,pa,si

Set of paths that a ship si may travel from pa,si to pd
psasi,pa,si ,k Path in PSAsi,pa,si
padsi,pa,si ,k Path in PADsi,pa,si

µsi,α Operating cost of empty ship si
µsi,β Operating cost of loaded ship si
Csi Set of cost functions applicable to ship si
Wsi Set of weights corresponding to the cost functions in Csi
csi,k Cost function in Csi
wsi,k Weight in Wsi

|Csi | Cardinality of Csi
|Wsi | Cardinality of Wsi

tsi,pj Arrival time of ship si in port pj
[asi,pj , bsi,pj] Service time window for ship si in port pj
tvsi,0 Initial departure time of si from vertex vsi,0

Table 3.1: Summary of the mathematical notations

23

3.4. Complexity Problem Formulation

to Eq. (3.8). Finally, Eq. (3.9) states that the cost for ship si of
traveling edge ek has a non-negative cost and Eq. (3.10) states that
it is more expensive to operate a loaded ship than an empty ship.

3.4 Complexity

The Pickup and Delivery Problem is in general NP-hard [39, 40,
41]. For our Maritime Pickup and Delivery Problem with Cost and
Time Window Constraints, we conjuncture that the hardness of the
problem is also NP-hard when comparing to the hardness of similar
problems [5, 42, 43].

24

Chapter 4

Proposed Solution

This chapter describes the implementation of the prototype in de-
tail, starting with the graph and continuing with the pathfinding
algorithm. We cover the data structures used and present pseudo
code for both the proposed algorithm and the dynamic programming
(DP) approach used for verification. We also evaluate the complexity
of both algorithms. The results from the prototype will be presented
in Chapter 5.

4.1 Graph Implementation

As discussed in Section 3.2, the world is modeled as a graph data
structure consisting of vertices and edges. In the prototype, we im-
plement a graph with a vertex on every combination of latitude and
longitude. The vertices on land are removed, and the remaining ver-
tices are connected to surrounding vertices by edges. Then the ports
are added as verticies and connected to nearby vertices by edges. A
part of the graph is visualized in Figure 4.1. All vertices are con-
nected by two parallel but opposite directed edges making it possible
to assign different cost between a pair of vertices based on direction.
Figure 4.2 shows how a vertex is connected to nearby vertices. The
cost of an edge is calculated at runtime as it depends on the current

25

4.1. Graph Implementation Proposed Solution

state of the pathfinder, the constraints, and the current simulated
time.

Figure 4.1: A visualization of the graph representing the seas, here a view of the Mediter-
ranean Sea. The edge south of Spain connects the Atlantic and the Mediterranean Sea.
Also, notice the Suez Canal in the bottom right corner of the figure.

Each edge is assigned a distance value which is the Great-circle dis-
tance1 between two locations on the earth’s surface. Because the
earth is a globe, the vertices at longitute −180 are connected with
their counterpart vertex at longitute +180 and vice versa by edges
with a distance of 0 km. In Figure 4.1, these edges are shown as
the horizontal lines crossing land. Connecting the vertices in this
manner makes the graph an infinite, directed, weighted graph.

The latitudes and longitudes ranges from −90 to 90 and −180 to
180, respectively, and results in a total of 180 · 360 = 64800 vertices.
Further, when removing the vertices on land, including the ports, and
making the edges directed, we end up with 31641 vertices connected
by a total of 244078 edges. The vertices have an average branching
factor of b = 244078

31641 ≈ 7.7

1The shortest distance between two locations on a sphere [44].

26

4.2. GeoJSON Proposed Solution

Figure 4.2: Vertices that Vertex A is connected to. The circles represent vertices in the
graph and the arrows represent directed edges.

4.2 GeoJSON

To represent and describe geospatial data the prototype uses the
GeoJSON format, defined in RFC 7946 [45]. This JSON based for-
mat allows us to visualize paths, areas, and points of interest and can
be used to input information about specific areas to the pathfinder.
The results from the pathfinding algorithm can be exported and
viewed in a GeoJSON enabled tool. Note that the visualization of
such GeoJSON models is dependent on the selected tool and is out
of scope for this project. Other formats to represent geospatial data
are also available.

In our prototype, GeoJSON is used to assign cost functions to cer-
tain areas; for example, setting the cost of traveling through the
Suez Canal. As both the graph and the cost functions are based
on geospatial data, the pathfinding algorithm can reason about the
cost on each step. Figure 4.3 shows a visual representation of the
area around the Suez Canal, which is loaded into the prototype and
assigned a cost. Every time the pathfinder travels through this area
it adds the additional cost to the current path.

27

4.3. Prototype Implementation Proposed Solution

Figure 4.3: One use of GeoJSON to define areas with a certain cost, for example the
Suez Canal.

4.3 Prototype Implementation

Here, we describe the implementation and provide pseudo code for
the algorithms. The source code for both approaches and for gen-
erating the graph is available on GitHub2. Although the presented
pseudo code is sequential, the actual implementation uses paralleliza-
tion to speed up the search.

4.3.1 A* Implementation

As explained in Section 3.3, the task of finding the optimal shipment
is twofold. First, we need to find the optimal path from the starting
position to the pickup port, and then from the pickup port to the
destination port. We perform pathfinding using A* on both these
intermediate routes and sum the costs. We do the same for all com-
binations of ships and pickup ports and select the combination with
the lowest cost. The search for an optimal combination of ships and
pickup ports is described as pseudo code in Algorithm 4.1.

2https://github.com/Dambakk/ShippingRouter

28

https://github.com/Dambakk/ShippingRouter

4.3. Prototype Implementation Proposed Solution

In Algorithm 4.1, line 2 initializes an empty list to contain the results.
Line 3 and 4 iterates the available ships and pickup ports, respec-
tively. The actual pathfinding is done on line 5 and 6, first from the
starting position to the pickup port and then from the pickup port
to the destination. The result is stored as a pair of path and cost in
the list from line 2. The function returns the path with the lowest
cost from line 10.

Searching every possible combination of ship and pickup port, as
described in Algorithm 4.1, is affordable as the number of ships and
ports are often limited to at maximum ten each, and the search is
run in advance of the shipment without any firm time restrictions.
Also, the reward of finding the global optimal compared to a sub-
optimal solution in the shipping industry can be significant in terms
of money.

Pseudo code for A* is presented in Algorithm 4.2. We select the
Great-circle distance as the heuristic to guide the pathfinder. As
discussed in Section 2.2.2, it is crucial that we choose a consistent
(and thus also admissible) heuristic, as a consistent heuristic guaran-
tees A* to find the optimal solution. The Great-circle distance is the
shortest possible path between two locations at the earth’s surface
and, because all costs are non-negative, will always be lower than
the final cost and thus ensure that A* finds the optimal solution if
it exists.

Our implementation of A* is similar to the one described in Sec-
tion 2.2.2, but modified to fit the maritime domain. Similar to tra-
ditional A*, we process the most promising node in the open list
until the open list is empty or we reach the goal. We also calculate
the cost and the heuristic at each step and store the values in that
node. The cost is the sum of all cost functions multiplied with their
corresponding weight. If the calculated cost is better than any pre-
viously calculated cost for that node, we store a reference to that
connection to be able to traverse back to the start when we reach
the goal. Different from traditional A*, we check whether all time
windows are obeyed at each step and stop exploring that particular
path if not.

29

4.3. Prototype Implementation Proposed Solution

In Algorithm 4.2, line 2 and 3 declares the open and closed lists. The
open list contains the starting point pa and the closed list is empty.
The while-loop on line 4 runs as long as the open list is not empty.
The open list gets populated while the pathfinder is running. If the
open list gets empty and the goal is not reached, there exists no path
to the goal. On line 5, we get the cheapest node from the open list,
meaning the node with the lowest combined cost and heuristic value.
If this node is the goal node, we will break from the loop, as achieved
with the if statement on line 6 and 7.

If we have not reached the goal yet, we look at the outgoing edges
from the current node, as shown on line 9 and 10. On lines 11-13, we
make sure that we are meeting all time windows. If we do not, we
will not explore the current path any further. Then, on line 14, we
calculate the cost of the current path as the cost up to the previous
node and the cost of the traveled edge.

In the following if statement on lines 15-30, we consider three sce-
narios. The first is if the current node is already in the closed list.
This means we are processing a node that has already been processed
and we check to see if we found a better path on line 16. If that is
the case, it might be a globally better path containing the current
node. We remove the node from the closed list as it is no longer
considered fully processed.

The second clause, on lines 22-27, is run if the current node is already
in the open list. This means we have processed a nearby node and
that the current node is queued for processing. We check if the
current path is better than the previous path to the same node, and
if so update the costs for that node, as shown on lines 23-25. If not,
it means there is a cheaper path to same node, and line 26 will stop
exploring the current path any further.

If neither of the two previous cases trigger, it means the current
node is an un-visited node. In every case, we calculate the heuristic
value for the current node as the Great-circle distance to the goal,
as explained above.

Finally, on lines 31-36, we store the calculated values and a pointer

30

4.3. Prototype Implementation Proposed Solution

to the edge we just traveled. The values will be used in the next
iteration of the while loop and the pointer will be used to traverse
from the goal node back to the starting node when the algorithm
finishes. If the open list does not already contain the current node,
we add it. When we reach the end of the for loop processing all the
edges going out of the current node, on lines 38-39, we move the
node from the open list to the closed list.

After the while loop ending on line 41, we assume the goal is reached.
Then, we can find the path from the goal to the starting node by
following the pointers to the previous best edge all the way until we
reach the start node, as represented by lines 44-47. By reversing the
path, as done on line 48, we get the optimal path from the starting
node to the goal node. The path and the corresponding cost is
returned from the function.

Algorithm 4.1 Applying A* to all possible combinations
Input Graph G with vertices V and edges E, Ships S, All ports P , Ports with cargo

available P η , Destination port pd ∈ P\P η\V η , Amount of cargo to buy τ
Output Pair(path, cost) the path with the minimum cost

1: function Perform Search(G(V,E), S, P, P η , pd, τ)
2: pathsWithCost ← []
3: for all si ← s0, . . . , so ∈ S do . Loop all ships
4: for all pa,si ← p0,si , . . . , pn,si ∈ P η,si do . Loop all available loading ports
5: path1, cost1 ← Perform A*(G(V,E), P si, vsi,0, pa,si) . From initial

position to loading port
6: path2, cost2 ← Perform A*(G(V,E), P si, pa,si , pd) . From loading

port to destination port
7: pathsWithCost[pa,si] ← (path1 + path2, cost1 + cost2 + τ · γpa,si

)
8: end for
9: end for

10: return min(pathsWithCost)
11: end function

4.3.2 Dynamic Programming Approach

In order to validate the optimality of the prototype, we implement
a search using dynamic programming (DP) to explore all possible
paths to determine the optimal one. The DP approach does not use
any heuristic and will process all nodes and edges.

The dynamic programming approach takes all outgoing edges from

31

4.3. Prototype Implementation Proposed Solution

the starting position and calculates and saves the cost of traveling
those edges together with a pointer to the previous node with the
cheapest cost. Then it takes the end node of the processed edges and
runs the search on all the outgoing edges recursively, terminating
when all edges have been processed. When finished, it is possible
to follow the pointers to previous cheapest node from the goal node
and back to the starting node, resulting in the optimal path.

To make the search more efficient, we stop exploring paths that lead
to a node we have already visited if it has an already lower cost. If
that is the case it means we have found a more expensive path to
the same node, which we are not interested in and can therefore stop
exploring that path. Similarly, if a path does not meet the required
time windows we will also stop exploring that path. Pseudo code for
the DP algorithm is provided in Algorithm 4.3.

The DP approach in Algorithm 4.3 starts off by defining three global
key-value stores in the first block. These will hold pointers to the
vertex’s previous best vertex, the previous vertex’s best cost, and
the previous vertex’s best time for each of the nodes processed by
the algorithm.

The second block consist of two parts. The first part (lines 2-4)
finds the optimal path from the start position to the pickup port.
The second part (lines 5-7) finds the optimal path from the pickup
port to the destination port. Both parts start by getting all the
outgoing edges from each part’s starting position and pass them to
the recursive function ExploreEdges, which will process all the edges
in a Breadth-First [36] approach. When done, the optimal path (and
the corresponding cost) can be found by following the pointers from
the goal node and back to the starting node in the same way as with
A*.

The ExploreEdges function in the last block is a tail recursive func-
tion to iterate all the edges in the graph. It first checks the stop
condition for the recursion (any more edges to process) on line 2 and
returns if it is met. Then it initializes an empty list that will contain
all the edges to be processed in the next iteration on line 5. We loop
the edges from the input on line 6. On line 7 we get all the outgoing

32

4.3. Prototype Implementation Proposed Solution

edges from the end node of the current edge and append them to
the list defined on line 5. We check the time window constraints on
lines 8-10 and calculate the cost for the current path so far at line 11.
If the cost is lower than any previous cost calculated for the same
vertex, we update the pointers defined in the first block, as shown
in lines 12-15. If the cost is higher, we stop exploring that path as it
will never be better than the already cheaper path, as shown in the
else clause on lines 16-18.

The if statement on lines 19-21 stops exploring the current path if
we have reached the goal. When reaching the end of the for loop on
line 22, we have processed all edges in the function input. We take
the now populated list of next edges to explore and call the same
function on line 23. The recursion stops when all edges have been
processed.

4.3.3 Cost Functions

To dynamically apply cost to an edge based on the current state, we
define a set of cost functions. Both algorithms support the following
costs:

• Operation Cost: The cost of operating an empty or loaded
ship. This cost includes fuel costs, staff, insurance, etc.

• Polygon Cost: Cost of traveling through a certain area, for
example, the Suez Canal or the Panama Canal.

• Polygon Gradient Cost: Cost for a certain area that in-
creases the longer a ship is in the area, the further it travels in
a certain direction, or by some other measurement. For exam-
ple, the cost of traveling in the Antarctic Sea increases as the
latitude increase.

• Polygon Direction Dependent Cost: Cost for traveling
in a certain area and with a certain direction or within a spec-
ified heading range. The cost decreases with a factor of the
difference between the specified target heading and the actual

33

4.4. Complexity Proposed Solution

heading. This is useful for modeling weather and sea condi-
tions.

• Time Window Constraint: A specified time window in
which a ship must enter the port to be serviced. Failing to
meet the time window will result in an invalid path.

• Cargo Cost: Cost per tonne of buying cargo at a specific
port.

4.4 Complexity

A* Algorithm

The complexity of A* is similar to the Breadth-First Search [36]
algorithm in that it expands all nodes at each step. Assuming the
worst-case scenario without heuristics, we will at first step process
all outgoing edges b from the starting node, and in the next iteration
process every outgoing edge for all the edges in the previous step, b2,
and so on. For a solution with depth d, the algorithm will process
the following number of nodes:

b+ b2 + b3 + . . .+ bd−1 + bd,

and hence the complexity of O(bd).

However, A*’s complexity also depends on the quality of the heuris-
tic. To measure the quality we introduce the heuristic’s relative
error, that is, how far off the heuristic is from optimal. According
to Russell and Norvig [36], the relative error is defined as

ε ≡ h∗ − h
h∗

,

where h∗ is the actual cost of traveling from the starting node to the
destination node and h is the value of our heuristic function. As the

34

4.4. Complexity Proposed Solution

heuristic h is admissible (always underestimates the final cost), then

0 ≤ ε ≤ 1,

and

bεd ≤ bd.

With the relative error ε, we can more precisely define the complex-
ity of A* as O(bεd), where b is the branching factor of the nodes
and d is the depth of the solution. The complexity increases as the
length of the solution increase because the algorithm must process
exponentially more nodes. However, if the heuristic is suitable, the
relative error ε will be low and thus reduce the complexity.

Dynamic Programming Approach

The dynamic programming approach always processes all nodes and
edges resulting in a complexity of O(|V | · |E|) for a graph G(V,E)
where V is the set of vertices and E is the set of edges [46, 47].
The actual implementation does, as previously discussed, include
optimizations to reduce the number of edges to process, but in the
worst case will process all vertices and edges.

35

4.4. Complexity Proposed Solution

Algorithm 4.2 A* pseudo code
Input Graph G with vertices V and edges E, Ports P , Ship si ∈ S, Starting

position pa ∈ P , Goal position pb ∈ P
Output Pair of path and cost to the path with the lowest cost.

1: function Perform A*(G(V,E), P, si, pa, pb)
2: openList ← [pa] . List containing pa
3: closedList ← [] . Empty list
4: while openList 6= ∅ do
5: va ← getCheapestElement(openList)
6: if va = pb then . Reached goal
7: break
8: else
9: E′ ← getOutgoingConnections(va)

10: for all ea,b ∈ E′ do . Recall that ea,b is an edge from va to vb
11: if vb = pj and not asi,pj ≤ tsi,pj ≤ bsi,pj ∀pj ∈ P then
12: continue . Did not reach time window. Stop exploring this path
13: end if
14: nextCost ← va.costSoFar +

∑|C|
k=0 csi,k · wsi,k

15: if vb ∈ closedList then
16: if vb.costSoFar ≥ nextCost then . Found better path
17: closedList − = vb
18: heuristicValue ← CalculateHeuristic(vb, pb)
19: else
20: continue . Not a better path. Stop exploring this path.
21: end if
22: else if vb ∈ openList then
23: if vb.costSoFar ≥ nextCost then . Found better path
24: heuristicValue ← CalculateHeuristic(vb, pb)
25: else
26: continue . Not a better path. Stop exploring this path.
27: end if
28: else . vb is a new un-visited node
29: heuristicValue ← CalculateHeuristic(vb, pb)
30: end if
31: vb.costSoFar ← nextCost
32: vb.estimatedTotalCost ← nextCost + heuristicValue
33: vb.prevBestEdge ← ea,b
34: if vb 6∈ openList then
35: openList + = vb
36: end if
37: end for
38: openList − = vb
39: closedList + = vb
40: end if
41: end while . No more nodes to process
42: finalCost ← va.costSoFar
43: path ← []
44: while va 6= pa do . Traverse back to the start
45: path + = va.prevBestEdge
46: va ← va.prevBestEdgea
47: end while
48: return (reverse(path), finalCost)
49: end function

36

4.4. Complexity Proposed Solution

Algorithm 4.3 Dynamic programming approach pseudo code
Input Graph G with vertices V and edges E, Ship si ∈ S, Port with available

cargo pa ∈ P η,si , Destination port pd ∈ P\P η\V η , Amount of cargo to buy τ

1: global variables
2: prevBestVertex ← {}
3: prevBestCost ← {}
4: prevBestTime ← {}
5: end global variables

1: function Perform DP Search(G, si, pa, pd, τ)
2: E′ ← G.getOutgoingEdges(vsi,0)
3: exploreEdges(E′, pa, G) . From start position to loading port
4: (path1, cost1) ← extractBestPathFromPointers(pa)

5: E′ ← G.getOutgoingEdges(pa)
6: exploreEdges(E′, pd, G) . From loading port to destination port
7: (path2, cost2) ← extractBestPathFromPointers(pd)
8: return (path1 + path2, cost1 + cost2 + τ · γpa,si
9: end function

1: function exploreEdges(E′, pj , G)
2: if E′ = ∅ then
3: return
4: end if

5: E′′ ← []
6: for all ea,b ∈ E′ do . Recall that ea,b is an edge from va to vb
7: E′′ ← E′′ +G.getOutgoingEdges(vb)
8: if vb = pj and not asi,pj ≤ tsi,pj ≤ bsi,pj ∀pj ∈ P then
9: continue . Did not reach time window. Stop exploring this path

10: end if

11: cost ← prevBestCost[va] + si.calculateCost(ea,b)
12: if cost < prevBestCost[vb] then
13: prevBestCost[vb] ← cost . Found a cheaper path to vb
14: prevBestVertex[vb] ← va
15: prevBestTime[vb] ← currentTime
16: else if cost >= prevBestCost[vb] then
17: break . Found a more expensive path to vb. Stop exploring this path.
18: end if

19: if vb == pj then
20: break . Reached goal. Do not continue exploring this path
21: end if
22: end for

23: exploreEdges(E′′, pj , G) . Recursive call until all edges are evaluated
24: end function

37

Chapter 5

Results

In this chapter, we present the results of a large scale simulation on
990 different shipment orders. We evaluate the performance of the
prototype and compare it to the dynamic programming approach.
The results are examined and matched to the complexity analysis in
the previous chapter. We show examples of how costs and constraints
affect the generated routes.

5.1 Simulation Environment

The prototype is a Java Virtual Machine based software written in
the Kotlin programming language, running Java 10.0.2 and Kotlin
1.3.30. All simulations shown in this chapter use the configuration
listed in Table 5.1. We refer the reader to the GitHub-repository1

for source code, a full list of dependencies, examples, and further
instructions on how to use the platform. To visualize the results,
we use the GeoJSON format, and we suggest using GeoJSON.io2 for
viewing such files. All ports are identified by its UN/LOCODE3.

1https://github.com/Dambakk/ShippingRouter
2http://geojson.io
3United Nations Code for Trade and Transport Locations, https://www.

unece.org/cefact/locode/service/location.

39

https://github.com/Dambakk/ShippingRouter
http://geojson.io
https://www.unece.org/cefact/locode/service/location
https://www.unece.org/cefact/locode/service/location

5.2. Concrete Examples Results

Cost type Info Value/Cost/Time window Weight

Ship Constraint Max capacity (DWT) 1 000 tonnes
Operation Cost Empty ship 25
Operation Cost Loaded ship 250
Polygon Cost Suez Canal 10 000 1.0
Polygon Cost Panama Canal 10 000 1.0
Polygon Gradient Cost Antarctica Function of distance 1.0

Polygon Direction Dependent Cost Taiwan Strait
100 000
(heading=255, angle=90)

1.0

Polygon Direction Dependent Cost Gulf Stream
100
(heading=45, angle=90)

1.0

Time Window Constraint ARRGA 0 - 10 000
Time Window Constraint AUBUY 0 - 100 000
Time Window Constraint CNXGA 0 - 10 000
Time Window Constraint JPETA 0 - 5 000
Time Window Constraint PHMNL 0 - 5 000
Time Window Constraint QAMES 0 - 4 500
Time Window Constraint USCRP 0 - 7 000
Cargo Cost (pr tonne) ARRGA 1 000
Cargo Cost (pr tonne) AUBUY 5 000
Cargo Cost (pr tonne) BMFPT 100
Cargo Cost (pr tonne) CNTAX 400
Cargo Cost (pr tonne) CNTXG 1 200
Cargo Cost (pr tonne) JPETA 1 500
Cargo Cost (pr tonne) KRYOS 8 000
Cargo Cost (pr tonne) PHMNL 300
Cargo Cost (pr tonne) QAMES 600
Cargo Cost (pr tonne) USFPO 1 900
Cargo Cost (pr tonne) USWWO 6 500

Table 5.1: Simulation configuration

5.2 Simulation Results for Concrete
Examples

To illustrate how the prototype works, we will first demonstrate how
adding costs and constraints effects the generated routes. Then, we
will show how the prototype performs a simulation by example.

Each shipment order has a fixed destination port. The factors that
can be decided by the shipping company to affect the cost is which
ship to assign to the shipment and where to buy the cargo. For the
following example, we assume that we only have one available ship
with a starting location in the port CNXGA (red marker) in China,
a shipment to be delivered in port USWWO (green marker) in the
USA, and three possible ports to buy cargo in: QAMES (blue) in
Qatar, ARRGA (purple) in Argentina, and USCRP (orange) in the
USA. Figure 5.1 shows the possible routes when only performing

40

5.2. Concrete Examples Results

pathfinding based on distance (named as näıve pathfinding), when
adding operation and cargo cost, and when adding all costs listed
in Table 5.1. A thicker line means a cheaper route compared to the
other routes in the current simulation.

(a) Näıve algorithm.

(b) Solution with cargo cost and operation cost.

(c) Solution with all costs and constraints.

Figure 5.1: Examples of routes generated and compared by the prototype.

41

5.2. Concrete Examples Results

In Figure 5.1(a), the prototype performs näıve pathfinding, using no
additional costs other than the Great-Circle distance. As we can see,
the pickup port in the USA, close to the destination, has the thickest
line as it is the cheapest route out of these three alternatives. Notice
how the paths tend to stay north as long as possible when above the
equator, and south as long as possible when below the equator. This
is expected behavior and is due to the curvature of the earth and
Great-circle geometry making it the shortest path on a sphere.

When adding operation costs and cargo prices according to Table 5.1,
the prototype generate the routes in Figure 5.1(b). Although the
algorithm suggests the same routes as in Figure 5.1(a), it now states
that the route with pickup port in Argentina is cheaper than the
route with a pickup port in Qatar, while still recommending the
route with a pickup port in the USA, close to the destination, as the
cheapest.

Figure 5.1(c) shows the generated routes when all cost functions
and constraints listed in Table 5.1 are applied. In contrast to the
two previous figures, the path from China to Argentina now tends
to stay close to the equator for as long as possible before heading
south to the pickup port. This is because of the additional cost of
traveling in the Antarctic Sea. Also, the path crossing the North
Atlantic Ocean now avoids the north-west stream and wind of the
Gulf Stream. Even though the pickup port in the USA is closer to
the destination, in this example, all the combined costs make buying
cargo in Argentina the overall cheapest route.

Until now, the examples have assumed only one available ship to
select for each shipment. When using the prototype on a real-world
shipment order, there are typically several available ships spread
across the world. To demonstrate, we let all ships have the same at-
tributes (size, loading capacity, etc.), but different starting location.
Then we can search every combination of available ship and pickup
port for the one resulting in the cheapest shipment. As an example,
Table 5.2 shows the result after simulating transporting cargo to the
port USWWO. It considers all available ships and pickup ports, and
finds that selecting the ship in the CNTAX port and buying cargo
in the BMFPT port results in the cheapest shipment, as highlighted

42

5.3. Simulation Results in Statistics Results

Variable factors Fixed factors

Ship’s position Loading port Destination port Cost

CNTAX ARRGA 4916605

CNTAX AUBUY 11101790

CNTAX BMFPT 1208412

CNTAX KRYOS 13352830

...

CNTAX USFPO

USWWO

2784368

... ... USWWO ...

BMFPT ARRGA 4540113

BMFPT CNTAX 6644714

BMFPT JPETA 7342133

...

BMFPT USFPO

USWWO

2144020

Table 5.2: Finding the cheapest combination of ship and loading port for transporting
cargo to USWWO.

in green. The same procedure is applied to every shipment order
simulation. Note that the route for each combination of ports can
be vizualized in the same manner as in Figure 5.1.

Recall that searching all combinations, as in Table 5.2, is affordable
as the available ships and pickup ports are often limited, there are no
firm time restrictions, and the reward of finding the global optimal
is significant in terms of money.

5.3 Simulation Results in Statistics

In order to evaluate the overall performance of the prototype, we run
a large scale simulation. The shipment orders in this simulation are
based on all combinations of three out of 11 ports and all permuta-
tions of these three ports, replicating in total 990 distinct shipments
(all with different combinations of starting position, pickup port and
destination port). As in the previous examples, we let all ships have
the same attributes, but different starting locations, as represented
by the Ship pos column. For each ship, we compare the available
pickup ports, denoted by the pickup port column. The Dest port
column represent the destination port for the current shipment. In

43

5.3. Simulation Results in Statistics Results

Solution depth Cost Num Nodes Num Edges
#

Ship pos Pickup port Dest port A* DP A* DP A* DP

1 CNTAX ARRGA USFPO 268 268 4960025 46131 62767 358716 720243

2 CNTAX CNTXG ARRGA 188 188 6738294 26065 62767 201649 868401

3 JPETA USWWO ARRGA 264 264 10191607 34704 62767 269186 805081

4 CNTXG JPETA PHMNL 31 31 2309379 1124 62767 8370 857448

5 USFPO BMFPT ARRGA 106 106 3106289 12638 62767 98143 764100

...

989 USWWO QAMES BMFPT 408 408 6335884 54402 62767 419998 763638

990 USWWO USFPO KRYOS 179 179 7273761 27606 62767 213846 768729

Average 229.43 229.43 6394765.19 32898.92 62767.00 254590.64 816619.94

Table 5.3: Simulation results

the remaining columns, we compare the length (number of edges)
and the estimated cost of the generated paths, as well as the num-
ber of nodes and edges processed by each algorithm to generate the
solution.

As expected, the A* algorithm always find the same, optimal path as
the dynamic programming approach, confirming that A*’s heuristic
is admissible4. We also see that A* processes fewer nodes than the
DP algorithm which always processes all nodes. This is expected
as A*’s search is limited by the heuristic. Likewise, A* processes
fewer edges than DP in order to obtain the same result. Figure 5.2
visualizes the relation between the number of nodes and the solution
depth, as well as the number of edges and the solution depth.

Figure 5.2(a) shows the number of nodes each algorithm processes to
find the optimal path. As we can see, the number of nodes required
for the A* algorithm increases in an exponential manner as the so-
lution depth increase until it approaches the maximum number of
nodes in the graph. This correlates to the complexity O(bεd), where
the complexity is exponential to the depth d of the solution. The DP
approach always handles all nodes, hence the line, and correspond
to the first factor of DPs complexity O(|V | · |E|).

Figure 5.2(b) shows the number of edges that are being processed
by each algorithm. Similar to Figure 5.2(a), A* has an exponential
tendency until it reaches the maximum number of nodes in the graph.
Even though DP’s complexity suggests that it should process the
same number of edges regardless of the solution depth, optimizations

4The heuristic always underestimates. See Section 2.2.2.

44

5.3. Simulation Results in Statistics Results

(a) Relation between solution depth and
number of nodes processed to find optimal
path.

(b) Relation between solution depth and
number of edges processed to find optimal
path.

Figure 5.2: Comparing the number of nodes and vertices processed by the two ap-
proaches.

to the implementation that excludes invalid and expensive paths
decrease the number of edges to process, hence the variations as
shown in the figure. In the worst-case scenario, DP will also handle
all edges.

Although A*’s complexity, O(bεd), is exponential in terms of solution
depth and DP has complexity O(|V | · |E|), the error factor, ε, rep-
resenting the heuristic, will make sure the complexity of A* is still
lower than DP’s, as confirmed by the figures.

45

Chapter 6

Conclusion and Future
Work

This chapter summarizes and concludes the work and the software
presented in this thesis. We also suggest improvements to the pro-
totype and areas that require further research.

6.1 Conclusions

In this thesis, we have defined and modeled the Maritime Pickup
and Delivery Problem with Cost and Time Window Constraints to
help ship chartering companies estimate and compare the cost of
shipments. The model gives a precise definition of the underlying
graph, the objective function, and the constraints that apply in the
shipping domain. Together, they make a formal description of an op-
timization problem, which is conjectured as NP-hard, and we solved
it using a custom-made, A* based algorithm.

The algorithm is part of a software platform capable of generating
and comparing solutions in order to find the optimal one across a
given set of ships and ports. We demonstrated that the A* based
algorithm is able to generate optimal paths and find the best compro-

47

6.2. Future Work Conclusion and Future Work

mise of the given costs and constraints with a complexity of O(bεd).
An implementation using dynamic programming verified the results.

6.2 Future Work

The current state of the prototype provides a framework to define
real-world costs and constraints, and the focus of future work should
be to use this framework to precisely replicate the domain. Specif-
ically, we suggest the following improvements for achieving a more
accurate model:

1. A real-time weather modeling tool

2. Predicting cargo prices

3. Real-time ship data for replanning

4. Support for repositioning, split loads, and ship co-operation

To begin with, we suggest putting effort into converting weather
data to suitable cost functions. The weather affect ship routes, both
in the short-term and long-term and modeling it precisely can give
better cost estimations. People with domain knowledge must define
the cost of each factor and decide its weighting compared to other
costs.

Secondly, being able to predict cargo prices is crucial to know whether
to buy or wait and is already a hot research topic for shipping com-
panies. Extending the prototype using neural networks to predict
cargo prices can enable the prototype to compare shipments in terms
of time in the future and decide whether to buy or wait.

Thirdly, by implementing real-time input from ships at sea, this pro-
totype can extend its use from planning to cost estimation of re-
planning routes for ships at sea. Replanning may occur when new
information becomes available or factors that affect the route, like
weather, changes.

48

6.2. Future Work Conclusion and Future Work

Finally, research on other, more mature Vehicle Routing Problems
focuses on features like co-operation of multiple vehicles, splitting
loads to optimize vehicle capacity, and minimize repositioning. All
these concepts apply to our problem and should be studied further.

Moreover, in terms of implementation, we suggest putting more ef-
fort into the graph abstraction. This includes both creating a more
detailed graph when close to ports or in canals, as well as insert-
ing well-known long-distance routes. To programmatically create a
more detailed graph when needed, we suggest looking into applying
Adaptive Mesh Refinement, a technique to increase grid resolution
in areas of interest.

Although the prototype finds solutions within a reasonable time, the
running time can be improved. The current implementation uses
parallelization to run up to four simulations in parallel. Refactoring
could enable the program to run even more simulations at the same
time and thus shorten the running time even further. Also, A* relies
on heavy list manipulations. Carefully selecting and implementing
data structures may also help reduce running time.

49

References

[1] W. Commons, “Sabrina I,” 2006.

[2] D. Toropila, F. Dvorak, O. Trunda, M. Hanes, and R. Barták,
“Three approaches to solve the petrobras challenge: Exploit-
ing planning techniques for solving real-life logistics problems,”
pp. 191–198, 11 2012.

[3] R. Barták and N.-F. Zhou, “On modeling planning problems:
Experience from the petrobras challenge,” in Advances in Soft
Computing and Its Applications (F. Castro, A. Gelbukh, and
M. González, eds.), (Berlin, Heidelberg), pp. 466–477, Springer
Berlin Heidelberg, 2013.

[4] R. Barták and n.-f. Zhou, “Using tabled logic programming to
solve the petrobras planning problem,” Theory and Practice of
Logic Programming, vol. 14, 05 2014.

[5] A. Charisis, N. Mitrovic, and E. Kaisar, “Container shipping
route and schedule design with port time windows and coordi-
nated arrivals,” 11 2018.

[6] I. S. Dolinskaya, “Optimal path finding in direction, location,
and time dependent environments,” Naval Research Logistics
(NRL), vol. 59, no. 5, pp. 325–339, 2012.

[7] E. Beeker, “An algorithm for finding the shortest sailing dis-
tance from any maritime navigable point to a designated port,”
Mathematical and Computer Modelling, vol. 39, no. 6, pp. 641
– 647, 2004. Defense transportation: Algorithms, models, and
applications for the 21st century.

51

References References

[8] N. Hazim, S. S. M. Al-Dabbagh, and M. A. S. Naser, “Pathfind-
ing in strategy games and maze solving using A* search al-
gorithm,” Journal of Computer and Communications, vol. 04,
pp. 15–25, 01 2016.

[9] and, “A comparative study of a-star algorithms for search and
rescue in perfect maze,” in 2011 International Conference on
Electric Information and Control Engineering, pp. 24–27, April
2011.

[10] S. Redfer, “Player-traced empirical cost-surfaces for A*
pathfinding,” 2011.

[11] B. Stout, “Smart moves: Intelligent pathfinding,” 1997.

[12] J. Bruce and M. Veloso, “Real-time randomized path planning
for robot navigation,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 3, pp. 2383–2388 vol.3,
Sep. 2002.

[13] Z. A. Algfoor, M. S. Sunar, and H. Kolivand, “A comprehensive
study on pathfinding techniques for robotics and video games,”
Int. J. Comput. Games Technol., vol. 2015, pp. 7:7–7:7, Jan.
2015.

[14] S. Mirjalili, J. Song Dong, and A. Lewis, Ant Colony Optimizer:
Theory, Literature Review, and Application in AUV Path Plan-
ning, pp. 7–21. Cham: Springer International Publishing, 2020.

[15] O. Souissi, R. Benatitallah, D. Duvivier, A. Artiba, N. Belanger,
and P. Feyzeau, “Path planning: A 2013 survey,” in Proceedings
of 2013 International Conference on Industrial Engineering and
Systems Management (IESM), pp. 1–8, Oct 2013.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans-
actions on Systems Science and Cybernetics, vol. 4, pp. 100–107,
July 1968.

[17] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, pp. 269–271, Dec 1959.

52

References References

[18] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth National
Conference on Artificial Intelligence, (Menlo Park, CA, USA),
pp. 476–483, American Association for Artificial Intelligence,
2002.

[19] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artif. Intell., vol. 155, pp. 93–146, May 2004.

[20] A. Botea, M. Müller, and J. Schaeffer, “Near optimal hierarchi-
cal path-finding,” Journal of Game Development, vol. 1, pp. 7–
28, 2004.

[21] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for
path planning,” tech. rep., 1998.

[22] L. Kavraki and J. . Latombe, “Randomized preprocessing of
configuration for fast path planning,” in Proceedings of the 1994
IEEE International Conference on Robotics and Automation,
pp. 2138–2145 vol.3, May 1994.

[23] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Transactions on Robotics and Au-
tomation, vol. 12, pp. 566–580, Aug 1996.

[24] M. Čáp, P. Novák, J. Vokŕınek, and M. Pěchouček, “Multi-agent
rrt: Sampling-based cooperative pathfinding,” in Proceedings of
the 2013 International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’13, (Richland, SC), pp. 1263–
1264, International Foundation for Autonomous Agents and
Multiagent Systems, 2013.

[25] O. Khatib, “Real-time obstacle avoidance for manipulators and
mobile robots,” in Proceedings. 1985 IEEE International Con-
ference on Robotics and Automation, vol. 2, pp. 500–505, March
1985.

[26] M. Mabrouk and C. McInnes, “Solving the potential field local
minimum problem using internal agent states,” Robotics and
Autonomous Systems, vol. 56, no. 12, pp. 1050 – 1060, 2008.
Towards Autonomous Robotic Systems 2008: Mobile Robotics
in the UK.

53

References References

[27] I. Millington and J. Funge, Artificial Intelligence for Games,
Second Edition. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2nd ed., 2009.

[28] S. A. Lawrence, International sea transport: the years ahead
[by] S. A. Lawrence. Lexington Books Lexington, Mass, 1972.

[29] K. Fagerholt, “Ship scheduling with soft time windows: An op-
timisation based approach,” European Journal of Operational
Research, vol. 131, pp. 559–571, 02 2001.

[30] H. Andersson, M. Christiansen, and K. Fagerholt, “The mar-
itime pickup and delivery problem with time windows and split
loads,” INFOR: Information Systems and Operational Research,
vol. 49, no. 2, pp. 79–91, 2011.

[31] ICKEPS, “Planning ship operations on petroleum platforms
and ports.” online, 2012.

[32] A. Gerevini and D. Long, “BNF description of PDDL3.0.” on-
line, 2005.

[33] C.-W. Hsu and B. Wah, “The SGPlan planning system in IPC-
6,” 08 2008.

[34] S. , S. , and N. Dr, “Applications of graph theory in computer
science an overview,” International Journal of Engineering Sci-
ence and Technology, vol. 2, 09 2010.

[35] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to
heuristic-based path planning,” 01 2005.

[36] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach. Upper Saddle River, NJ, USA: Prentice Hall Press,
3rd ed., 2009.

[37] R. Dechter and J. Pearl, The Optimality of A*, pp. 166–199.
New York, NY: Springer New York, 1988.

[38] D. Sekar, “Tanker world scale index.”

[39] P. Toth and D. Vigo, The Vehicle Routing Problem. Mono-
graphs on Discrete Mathematics and Applications, Society for
Industrial and Applied Mathematics, 2002.

54

References References

[40] Y. Gong, J. Zhang, O. Liu, R. Huang, H. S. Chung, and Y. Shi,
“Optimizing the vehicle routing problem with time windows: A
discrete particle swarm optimization approach,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 42, pp. 254–267, March 2012.

[41] M. W. P. Savelsbergh, “Local search in routing problems with
time windows,” Annals of Operations Research, vol. 4, pp. 285–
305, Dec 1985.

[42] M. M. Solomon, “Algorithms for the vehicle routing and
scheduling problems with time window constraints,” Operations
Research, vol. 35, no. 2, pp. 254–265, 1987.

[43] H.-F. Wang and Y.-Y. Chen, “A genetic algorithm for the si-
multaneous delivery and pickup problems with time window,”
Computers & Industrial Engineering, vol. 62, no. 1, pp. 84 – 95,
2012.

[44] “The great circle distance,” Apr 2018.

[45] Butler et al., “The GeoJSON Format,” RFC 7946, RFC Editor,
August 2016.

[46] R. Bellman, On a Routing Problem. P (Rand Corporation),
Rand Corporation, 1956.

[47] A. V. Goldberg and T. Radzik, “A heuristic improvement of the
bellman-ford algorithm,” Applied Mathematics Letters, vol. 6,
no. 3, pp. 3 – 6, 1993.

55

	Abstract
	Preface
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Statement
	Thesis Goals

	Contributions
	Thesis Structure

	Background
	Literature Review
	Maritime Pathfinding

	Technical Background
	Graph Data Structure
	Pathfinding and A*

	Problem Formulation
	Description of the Problem
	Model and Notations
	Mathematical Formulation
	Complexity

	Proposed Solution
	Graph Implementation
	GeoJSON
	Prototype Implementation
	A* Implementation
	Dynamic Programming Approach
	Cost Functions

	Complexity

	Results
	Simulation Environment
	Concrete Examples
	Simulation Results in Statistics

	Conclusion and Future Work
	Conclusions
	Future Work

	References

