
!

Computer Vision based
Auxiliary System for Computer
Assembly: System Design and
Implementation

ERIK BØTUN & HENRIK BUGGE HALVORSEN

SUPERVISOR
Associate Professor Lei Jiao

University of Agder, 2019
Faculty of Engineering and Science
Department of ICT

UiA
University of Agder

Master’s thesis

Faculty of Engineering and Science

Department of ICT

c� 2019 Erik Bøtun

Henrik Bugge Halvorsen. All rights reserved

Abstract

This thesis proposes a solution that employs AI in assisting a human with
little or no technical background for computer assembly in real-time with-
out any form of other assistance. To achieve this goal, a state-of-the-art
object detection, namely Lighthead R-CNN is adopted as foundation. Al-
terations and modifications of the algorithm are carried out to achieve the
optimal trade-o↵ between accuracy loss and speed gain. In more details,
it is expected to reduce the complexity of the algorithm in order to make
the solution applicable in a computer with limited computational capacity.
Numerical results show that the proposed solution is 5.25% lower in terms
of accuracy but almost 8 times faster compared with the competitors. In
addition to the objective comparisons, we did subjective testing by inviting
non-technical people to assemble di↵erent PCs with assistance of the pro-
posed system. The results of the testing show a successful rate of 95.99%.
It is worth mentioning that the unsuccessful cases are mainly due to the
ignorances of the guide or the detector by human beings, rather than error
output of the AI based solution.

iii

Preface

This thesis is the result of the course IKT-590 Mater’s thesis at the Depart-
ment of Information Communication Technology, Faculty of Engineering
and Science, University of Agder (UiA) in Grimstad, Norway.

We would like to express our thanks and gratitude to supervisor Associate
Professor Lei Jiao from UiA for his supervision and guidance throughout
the project. He has given valuable assistance and feedback in regards to the
thesis content and research work. We would also like to thank him for his
patience and trust in us when we had a sudden change of heart in thesis
topic.

v

Table of Contents

Abstract iii

Preface v

List of Abbreviation ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 4
1.2 Thesis definition . 4

1.2.1 Thesis Goals . 4
1.2.2 Hypotheses . 5
1.2.3 Field of research . 5

1.3 Thesis Objective . 5
1.4 Contributions . 5
1.5 Thesis outline . 6

2 Background Theory and State-of-the-Art 7
2.1 Object Detection . 7

2.1.1 Detection Type . 8
2.1.2 Loss Function . 8
2.1.3 Feature Extraction . 9
2.1.4 Annotation . 9

2.2 Two-Stage Object Detector 10
2.2.1 Region Proposals Family 11

2.3 One stage Object Detectors 12
2.3.1 You Only Look Once 13
2.3.2 Single Shot MultiBox Detector 13

vii

Table of Contents Table of Contents

2.4 Related work . 14
2.5 State-of-the-art . 15

2.5.1 Mask R-CNN . 15
2.5.2 YOLOv3 . 16
2.5.3 Lighthead R-CNN . 17

3 AI based Auxiliary System 19
3.1 General Approach . 19

3.1.1 Step-by-step Guide . 20
3.1.2 Compatibility . 23
3.1.3 Database lookup . 24
3.1.4 Prediction and Tracking 24

3.2 Data Set . 25
3.2.1 Data Gathering . 25
3.2.2 Annotation Format . 27

3.3 Lighthead R-CNN . 27
3.3.1 Backbone . 28
3.3.2 Stripping the Model 29

3.4 Preparing the model . 31

4 Experiments and Results 33
4.1 Performance of the Detector 33

4.1.1 Explanation of Mean Average Precision 34
4.1.2 COCO Benchmarking Test 35
4.1.3 Evaluation of Steps and Detection 38

4.2 Tests on Real Users . 44

5 Conclusion and Future Work 49
5.1 Conclusion . 49
5.2 Discussion and Future Work 50

References 56

Appendices 57
A Hardware Specification . 57
B Class Description . 58

viii

List of Abbreviation

AR Augmented Reality. 3

CNN Convolutional Neural Networks. 11

CPU Central Processing Unit. 3

FPN Feature Pyramid Network. 11

GPU Graphics Processing Unit. 3

ITS Intelligent Tutoring Systems. 14

PSU Power Supply Unit. 3

RAM Random Access Memory. 3

ROI Region Of Interest. 17

ix

List of Figures

2.1 Di↵erence between object detection and semantic segmenta-
tion [4]. 8

2.2 Accuracy vs time, detector model and feature extractor [4]. . 9
2.3 Annotation of a swan using polygons and a box [8]. 10
2.4 Latest design of a feature pyramid, the FPN [12]. 11
2.5 Anchors placed on an image and its respective anchor boxes . 12
2.6 High-level explanation of how YOLO works [16]. 13
2.7 Multimarkers can be seen as the black and white squares [2]. 14
2.8 Setup of the MAT environment [2]. 15
2.9 A prediction of a crowd with bounding boxes and masks ap-

plied. 16
2.10 Comparison of YOLOv3 and other popular detection models

[18] [19]. 16
2.11 A is a Faster-RCNN structure, B is lighthead-RCNN’s struc-

ture [1]. 18

3.1 Approach A, using an external computer. 20
3.2 Approach A, using a 5G edge computing network solution. . . 20
3.3 Approach B, only using a phone. 21
3.4 Mass detection, with even more instances confusion can arise. 21
3.5 Structure of the compatibility-check database. 24

4.1 IoU of a cat. 35
4.2 Evaluation of training, 30 epochs, 1000 ⇥ 800 image size. . . 37
4.3 Di↵erence between DDR3 and 4 [30]. 40
4.4 Summary of 13 users across every step. 47

Figures not cited are either taken by the group themselves or does not
require admission as per stated by authors.

xi

List of Tables

3.1 Internal parts . 26
3.2 External parts . 26
3.3 Popular backbones, accuracy refers to tests performed on

ImageNets validation dataset. Accuracy can di↵er on the
test used and modification of the backbone (i.e. xception is
lighter, but resnet101 can usually be made heavier and more
powerful [27]. 30

4.1 Comparison of accuracy on a COCO test to other implemen-
tations. 37

4.2 Steps with the completion rate and error-free rate in per-
centage as well as time. The numbers are an average over 13
di↵erent participants. 46

1 Internal parts . 58
2 External parts . 59

xiii

Chapter 1

Introduction

Desktop computers are very common tools as of today and can be found
everywhere from o�ces to private owners. However, as desktop computers
do not come pre-assembled as laptops do, they have to be assembled by
someone with the required knowledge. Some vendors will build a computer
as part of a package, but one will usually end up paying a little bit extra
compared to doing the assembly oneself. A fee might not be directly at-
tached, but buying di↵erent parts from di↵erent stores to achieve the best
total price is not an option unless one can assemble a computer. Thus,
one might turn to friends, family or even vendors to assembly a computer.
However, the assembly of a computer is not a complex task, but might
seem overwhelming to newcomers when met with the di↵erent components
required. Even with numerous guides and how-to’s online, if one does not
possess a somewhat understanding of computers, it can be easy to turn to
other solutions, which people earn money on. Thus, there is place for a so-
lution that can guide and assist a complete newcomer in computer assembly
as if a person were guiding them.

There already exists numerous guides on how to do assemble computers
online. However, many tend to still let others do the work. There could
be several reasons to the issue; even with a multitude of video guides on
how to assemble, one will still have to decide oneself what goes where, but
from what one understood from the video and thus uncertainty can arise.
Another reason could be the same as of changing tires; Simple, yet many
people can not be bothered to learn or do it themselves.

1

Introduction

By introducing a new method, a guiding computer vision system, it can be
interesting to see if people who usually are unable to assemble a computer
are able to. If so, it can be a substitute for vendors o↵ering assembly, as
well as allowing purchase of components from di↵erent stores if one does
not know how to build a computer.

Another aspect of the task is the idea of AI reproduction. Computers creat-
ing themselves might seem far fetched, although the project can be seen as
a stepping stone. If AI is ever to reproduce, it has to know how to assemble
itself and what goes where. While there are numerous other issues related
to computer reproduction, we believe solving the problem at hand is one
small part of it.

While the assembly of a computer might not be hard, creating a system
that is able to closely guide a person to can be a challenge. Such a system
should be able to tell the name and the feature of the component, where it
goes on the motherboard and how it is connected. To be able to tell what a
component is to someone with little to no knowledge, visuals has to be used.
This approach brings various challenges with it. There are many di↵erent
components in a computer when everything has to be explained. Further-
more, there are variations within each of these, such as DDR 3 and DDR
4, which means compatibility is also a factor. CPUs are not universal to all
motherboards, and depending on visuals alone to understand compatibility
might not be optimal. It has to be thorough, as every little stage where a
user can become uncertain could result in failure.

The system should be live filming, as it would be obnoxious to take singular
pictures for every stage along the process, as well as it would be more
beneficial for a user to be actively able to see the area of interest. The
system must be light as well as precise if it is to run in real-time and be
functional.

Additionally, the usage of a state-of-the-art algorithm which in theory is
excellent for the task proposed is planned [1]. However, while it does exist
a paper on it, there is very little explanation on how to use it other than
a code example proposed by the author, which is tailored to their specific
case. Some have reproduced it, albeit the amount of information is scarce
compared to other object detection implementations. There exist little to no
actual implementation in an application. Thus, it is interesting to see how
well it performs in real applications as well, rather than just their claimed

2

Introduction

results.

While there does exist similar solutions and guides on how to build a com-
puter, there are no methods that use AI to understand the individual exter-
nal components (CPU, GPU, cables, etc.) and internal components (CPU
socket, power sockets, etc.), mapping them to each other. The most closely
approach is a tutoring system combining augmented reality together with
a computer tutoring module. However, this requires an AR setup and an
external computer [2]. This covers the area of teaching computer assem-
bly rather than the assisting and guidance of building ones own computer,
which could be highly personalized. The main approach is rather to assist
in the assembly of a computer, able to adapt to components present. What
one learns from such an approach is however an indirect e↵ect of this.

There are several important elements to solving such an issue; every com-
ponent needs to be properly detected. A false detection (i.e. detecting
RAM as a GPU) will result in a confused user. Detecting existing slots
on a motherboard is also needed, as these must be mapped to the existing
components the user possess. At this stage, compatibility is addressed to
see if the components will actually fit onto the motherboard. Connectors
and cables from the PSU, as well as inputs to the external components are
also checked for, as these are steps along the assembly process that could
confuse a user. Ultimately, the assisting system should make the assembly
of a computer feel like LEGO for a user. For such a system to properly
function, it must be light and accurate, keeping extra setup to a minimum.

There are some limitations to the system. It does not take computer cases
into consideration, but rather the assembly of parts onto the motherboard
itself. Connectors from a computer case onto a motherboard are indeed
a thing but usually includes functions such as stock fans, external power-
button and LED lights. It is not required for a computer to function and
is thus excluded. Lastly, for compatibility to be possible, there has to be a
limitation of motherboards supported. Thus, it will function as a proof and
demo that it is indeed possible. Extending the model to detect additional
motherboards is however possible. Lastly, the purpose of the project is to
see if AI is capable of assisting a human in assembling the computer itself,
not to connect external devices such as a monitor, mouse or keyboard.

3

1.1. Motivation Introduction

1.1 Motivation

The main motivation for creating the solution is that nothing solves the
issue as of yet to the best of our knowledge. While there exists similar
approaches using AR, their goal is di↵erent and more importantly require
additional hardware and setup. It is a learning environment more than an
assistant. Thus, it is very interesting to see how well the proposed system
performs with real people that have little to no previous knowledge of the
inside of a computer.

Another reason is to be part of something that can introduce and help
newcomers to the scene of computers. It can be overwhelming on where to
start when building ones first computer, and while watching videos online
on how to’s exist, it is not the same as having a person guiding one through
the process. This goes for young and old alike looking to enter the field. It
can be a good starter tool.

Lastly, to introduce an additional implementation of Lighthead R-CNN to
the scene, as there is scarcity of existing implementations as of now, espe-
cially in actual applications. Reasons to this could be caused by di�culties
of implementing the Lighthead R-CNN algorithm from paper.

1.2 Thesis definition

This section describes the goals of this thesis, hypotheses on the issue and
the fields of research it touches.

1.2.1 Thesis Goals

Goal 1: Create a system that can assist a person with low technical skills
in assembling a computer through visual guidance.

Goal 2: Make the system able to detect compatibility issues.

Goal 3: Make the algorithm a hybrid between speed and accuracy for the
best trade-o↵ while still being able to complete the task.

4

1.3. Thesis Objective Introduction

1.2.2 Hypotheses

Hypothesis 1: It is possible to reliably detect components and sockets
on a motherboard using object detection to assist in computer assembly in
real-time.

Hypothesis 2: It is possible to develop a system that can assist a person
with lesser technical understanding in assembling a computer through visual
guidance.

Hypothesis 3: It is possible, to some extent, to replace vendors o↵ering
similar services with such a solution.

1.2.3 Field of research

This thesis touches several interesting fields such as computer vision, artifi-
cial intelligence and cognitive learning.

1.3 Thesis Objective

The objective of this thesis is to see if it is possible to create a solution
which can help newcomers to the field to assemble computers through visual
real-time guidance, even with little to no knowledge of computers. It will
detect individual components, map them to the corresponding socket on a
motherboard while also checking for compatibility.

1.4 Contributions

• A system that is able to assist humans with little to no previous knowl-
edge in the field of computers to assemble a computer through visual
real-time guidance.

• Experiments to show that such an approach works and can potentially
be extended to replace existing solutions.

5

1.5. Thesis outline Introduction

• An implementation of Lighthead R-CNN in an application, which ex-
ists next to none before.

• An implementation of Lighthead R-CNN which is able to do real-time
tracking.

• Additions to the field of annotations.

1.5 Thesis outline

The report has the following outline:

• Chapter 2 talks about theoretical background of the research area,
outlines the previous work in the field and the state-of-the-art.

• Chapter 3 explains the proposed solution.

• Chapter 4 details the experiments and results.

• Chapter 5 concludes the thesis and summarizes the future work.

6

Chapter 2

Background Theory and
State-of-the-Art

Computer vision and object detection is a field with considerable amount
of research and di↵ering approaches. Where some optimizes for accuracy,
others go for speed. While there are improvements overall to the area, it is
usually required to sacrifice one for the other. Thus, there is a multitude
of methods approaching the field di↵erently. The best choice is often de-
pendant on what the scenario is. In this section, the di↵erent work relevant
to object detection is explained to understand what this thesis is based o↵
and knowledge required for later chapters. There are numerous variants
but only the theory of a handful are explained as they often take ideas from
each other, making many of the approaches somewhat similar. It should
be su�cient to gain an understanding of how the field of object detection
functions.

2.1 Object Detection

Object detection, much as the name states, is a technique to enable a com-
puter to detect specific objects in an image. They take an image as input
and, based on the network used and design, the detected object of interest
[3]. Most of these techniques share a similar start path but di↵er as they
go on. First and foremost, they are deep neural networks and are based o↵

7

2.1. Object Detection Background Theory and State-of-the-Art

the original idea of how to understand an image. How they di↵er is often
through design and implementation choices rather than the model itself.
This section describes the most common features object detectors share.

2.1.1 Detection Type

When an object is detected, it is important how it is represented. The main
method used is through bounding boxes, which are rectangles surrounding
the object of interest [3]. However, if one wants to get the specific silhouette
of an object, this is not su�cient. Thus, semantic segmentation exists which
applies a detection specifically on the object with a polynomial structure.

Figure 2.1: Di↵erence between object detection and semantic segmentation
[4].

2.1.2 Loss Function

The loss function is important as it is how the algorithms weight these
boxes di↵erently. For example, the di↵erence of a few pixels on a small box
can be made significantly more impactful than if the bounding box is large
through loss functions. To further enhance this, weights can be applied to
the di↵erent loss functions for better result, depending on what is needed
[3]. While they all have these functions, this is a part that might vary
greatly and create distinction between the approaches.

8

2.1. Object Detection Background Theory and State-of-the-Art

2.1.3 Feature Extraction

When understanding an image, a lot of raw data is processed. If the entire
network had to process all the data from an image, it would be very slow.
Thus, feature extractors are used to find the most impactful features in an
image by combining many variables into features, for example a specific
shape [5]. As such, speed is achieved at the loss of less important details.
Some popular feature extractors are VGG, Resnet and MobileNet [3]. They
are often referred to as “backbones”, largely representing the rest of the
network in terms of accuracy and speed. What to use depends on the
scenario in question, as some have a focus on speed whereas other prioritize
accuracy. This goes for the detector as well.

Figure 2.2: Accuracy vs time, detector model and feature extractor [4].

2.1.4 Annotation

When training an AI in object detection, a specific type of data is required.
Parts of it are done through annotation, which in essence shows the AI a
“ground truth”, what to look for in an image. This is done through sil-

9

2.2. Two-Stage Object Detector

houettes of an object or bounding boxes. The process of annotation is a
manual, time-consuming process. This means having multiple classes to
detect and large datasets will drastically increase the time spent on anno-
tating. There are large pre-annotated datasets such as ImageNet or COCO,
which include common objects [6] [7], albeit it does not include computer
components. While it may not include a specific object one wants to detect,
it does make for great starter weights (i.e. understanding electronics, but
not specific parts). To create annotations a tool is required [8], which there
are many options. An image together with its respective annotation file
creates the foundation of the training and validation data.

Figure 2.3: Annotation of a swan using polygons and a box [8].

2.2 Two-Stage Object Detector

While there are many object detection methods, they can be divided into
two; two-stage detectors and one-stage detectors. The two-stage detectors
mainly consist of the R-CNN family, a region-based approach to object
detection. The idea is to first propose a set of regions that have interest
through a “regional proposal network”. The next stage is to only process
these proposed regions for classification. This methods allows for detection
of small details and usually result in a higher accuracy [9]. However, since
there can be a high amount of regions proposed, they are usually slower
than one-stage detectors (albeit only one of the reasons as to why).

10

2.2. Two-Stage Object Detector

2.2.1 Region Proposals Family

The region proposal family is what the two-stage object detectors mainly
consists of. Some popular ones are R-CNN, Fast R-CNN, Faster R-CNN
and Mask R-CNN [10]. They are conceptually alike, but each iteration have
improvements or modifications to the previous [11].

Similar to other methods, they use a feature extraction. However, a network
called Feature Pyramid Network is used as well [12]. It is handy to use when
objects or details of interest are located in very di↵erent size and location
in an image, as the algorithm might try to classify the object based on size,
not its features.

Figure 2.4: Latest design of a feature pyramid, the FPN [12].

The bottom-up part of FPN is a regular CNN for feature extraction as
mentioned earlier. The further up, resolution decreases. Strong features
will persist, but lesser will disappear at the top layers. The network will
reconstruct images from these layers, creating features based o↵ the spatial
resolution decrease. However, up and down-sampling means objects will not
be precise in terms of location. Thus, connections between the reconstructed
layers and the corresponding feature map are added to help predicting a
location better [12].The idea is to take an image, alter the size and create
features at di↵erent scales.

Next is the algorithm-defining regional proposal network [13]. Its purpose
is to check if a section in an image may contain interesting objects by using
the feature map produced from the FPN as input. A box is slided over
the input feature map and creating “anchors” [10] [11]. These anchors are
at the center of these boxes, through altering the size ratio of these boxes
many di↵erent segments of the image are covered and checked for interesting
features. For each anchor, several other anchor boxes are created as well to
cover area.

11

2.3. One stage Object Detectors

Figure 2.5: Anchors placed on an image and its respective anchor boxes

Scanning anchor boxes can be somewhat fast, as it uses the feature map from
the FPN to prevent redundant calculations. However, even if increasing the
amount of anchors created for each image might increase accuracy, it will
decrease the inference speed.

2.3 One stage Object Detectors

Instead of using one network to propose regions and second one to fine-tune
and predict from these proposals, one-stage predictors use a fixed number
of predictions on a grid. There are no intermediate tasks that must be
performed before it can produce an output [14] [9]. This is faster and
usually leads to a simpler architecture, albeit it can somewhat reduce the
accuracy. Much like two-stage detectors, it starts o↵ feeding an image to a
feature extractor to obtain the features of an image.

12

2.3. One stage Object Detectors

2.3.1 You Only Look Once

As seen from earlier, other methods use the region proposals approach. A
popular series of networks called “YOLO” will only look at an image once
[15]. The network splits an image into a grid, 13 ⇥ 13 cells, each which
will generate bounding boxes B encapsulating an object. These are just
predictions, thus a confidence score that actually tells how certain the box
contains an object is used. If said box has a confidence high enough the area
contains an object, it may predict a probability for the object belonging to
classes specified. In total, C ⇥ C ⇥ B boxes are generated, far less than of
two-stage detectors [9] [14]. Thus, it is able to do inference at a high speed.

Figure 2.6: High-level explanation of how YOLO works [16].

YOLO uses a custom backbone developed by the same person developing
the YOLO-series, called “darknet”. Essentially, it is a small neural network
framework used for feature extraction just as ResNet or VGG.

2.3.2 Single Shot MultiBox Detector

Normally, CNN networks will shrink the feature map as it goes through
deeper layers. The deep layers covers larger receptive fields, whereas the
shallow layers cover smaller fields. SSD’s uses this and lets shallow layers
predict smaller objects and deeper layers to find big objects [9]. However,
as these shallow layers might not generate enough high-level features, SSD
performs worse at predicting small objects rather than large ones [17].

13

2.4. Related work Background Theory and State-of-the-Art

SSD uses multiple feature maps from an FPN [12], but discards bottom
layers as they are too high in resolution. The accuracy gained is lackluster
to justify the loss in speed, as this is significant (region proposals family
networks use the entire pyramid, thus loses speed). Hence, SSD only uses
upper layers of an FPN for detection [17].

Both YOLO and SSD are one-stage detectors, although there are some clear
distinctions. SSD does not predict a value for the probability of an object
and then the class label, but rather directly predicts a class being present
in the given area scanned. This is di↵erent from YOLO-networks, which
first looks for the chance of an object being present, thereafter predicting
the object’s class [14].

2.4 Related work

The most closely related work to this project is a system consisting of aug-
mented reality (AR) combined with an ITS, namely Motherboard Assembly
Tutor (MAT) [2]. The goal of the system is to assist with training for man-
ual assembly tasks, somewhat covering the goals of this project. However,
its limitations are clear: An AR setup is required as well as the ITS sys-
tem. This means a person capable of setting up said system is more than
likely able to assemble a computer as well. Furthermore, it does not detect
individual components through object detection, but rather by using “mul-
timarkers” seen below. It serves multiple purposes such as relativity of one
object to another as well as drawing 3D parts.

Figure 2.7: Multimarkers can be seen as the black and white squares [2].

14

2.5. State-of-the-art Background Theory and State-of-the-Art

While it does a good job in providing a learning environment, it is not
capable of providing assistance to a newcomer without additional human
support or previous setup, which this projects aims to solve.

Figure 2.8: Setup of the MAT environment [2].

2.5 State-of-the-art

This section describes the most recent prominent models from the di↵erent
approaches to object detection. More could be added, but these are seen as
the most relevant to this thesis.

2.5.1 Mask R-CNN

Mask R-CNN, a two-stage detector, is one of the latest additions to the
region proposals family. It is heavily based o↵ Faster R-CNN, but with
some extensions and modifications. It adds a branch called masks, essen-
tially adding masks upon the already existing bounding boxes. Thus, it is
capable of generating predictions inside these bounding boxes, resulting in
silhouettes of the object. Ultimately, it is capable of reaching very high-
quality segmentation of objects, but at the cost of speed [10]. Thus, mask
R-CNN usually only excel when speed or real-time detection is not a criteria.

15

2.5. State-of-the-art Background Theory and State-of-the-Art

Figure 2.9: A prediction of a crowd with bounding boxes and masks applied.

2.5.2 YOLOv3

YOLOv3 is the latest version in the YOLO-series. While being more accu-
rate, it has lost some of its speed [18]. However, this means it is able to
compete with algorithms performing better accuracy-wise, but at a much
higher speed than these [15].

Figure 2.10: Comparison of YOLOv3 and other popular detection models
[18] [19].

16

2.5. State-of-the-art Background Theory and State-of-the-Art

The backbone and underlying architecture of the model has been changed.
Previous iterations had issues with detecting smaller objects caused by the
size of the small network and lack of features. Residual blocks have been
added and it now uses Darknet + ResNet for a total of 53 layers, naming
it “Darknet-53”. This can be doubled for accuracy, albeit this negatively
a↵ects the speed.

The version has dropped its softmax function for class predictions; this
is because a softmax function assumes classes are mutually exclusive [20].
However, the assumption can be false for certain datasets, since a class
banana can be a class food. Furthermore, it adapts the FPN from the
RPN-family to detect objects of lesser size. Lastly, it predicts at three
scales rather than one, downsampling the input image by 32, 16 and 8 [18]
[9]. Hence, a lot more bounding boxes are generated and the accuracy of
detecting smaller objects is higher. However, these additions to the network
does slow it down compared to previous versions.

2.5.3 Lighthead R-CNN

While algorithms from both one and two-stage are good at certain things,
they all have their drawbacks usually related to being one or two-stage.
This is where Lightead R-CNN comes in, being a two-stage detector. It uses
the concepts and methods described earlier from two-stage, but tackles the
issues that two-stage detectors usually have, a lesser speed. The headers
of these algorithms are often the issue, as they have large feature maps
that have a cascading e↵ect further down the network. Large feature maps
means more work for the [13], actual regions of interest, ROI-pooling and
so forth. Lighthead alters the heavy header by using a thinner feature map.
Replacing the backbone with tinier networks such as Xception rather than
ResNet50/101, allows it to become the fastest performing algorithm of both
one and two-stage detectors [1]. Using a heavier backbone makes it slower,
but in return higher accuracy. Thus, Lighthead R-CNN is a flexible model
that can be fitted into many scenarios.

Specifically there are primarily two parts making the network fast and ac-
curate, being RoI warping and the small R-CNN subnet. Other algorithms
tends to use heavy headers, whereas Lighthead R-CNN utilizes a simple
and cheap fully-connected subnet. The process starts o↵ with the network
proposing the thin feature map. This, in contrast to for example R-FCN, is

17

2.5. State-of-the-art Background Theory and State-of-the-Art

done by large separable convolution. The next part is RoI-warping on the
thin feature map. In essence, this warps a certain RoI on the feature map to
a fixed dimension, which changes the shape of the feature map [1]. Accord-
ing to the authors, this results in an increase in both accuracy and speed
[21]. Furthermore, RoI-pooling (for each RoI taken as input, a section on
the feature map corresponding to the specific RoI is resized to a fixed size)
is applied to reduce the overhead proposed to the R-CNN subnet, which
significantly improves performance.

Figure 2.11: A is a Faster-RCNN structure, B is lighthead-RCNN’s structure
[1].

18

Chapter 3

AI based Auxiliary System

This chapter aims to describe the solution proposed to solve the issue at
hand, as well as why these decisions were made.

3.1 General Approach

As stated earlier, the problem is to create a system that is able to visually
guide a newcomer to assemble a computer in real-time without human sup-
port. Hence, object detection is a good starting point. A person does not
need to know what the individual parts are or where they are supposed to
go, but simply scan the area and the specific part required will be auto-
matically detected. From there, they will be told where to place it through
real-time visuals. The idea is to use a simple camera such as those in mobile
phones.

If the system is to feel real-time, it has to be capable of handling around 7-10
frames per second. Therefore, the network has to be lightweight. Further-
more, when deciding on what to use, the results proving the performance of
di↵erent models can be somewhat misguiding to our scenario. One cannot
expect a user to be in possession of multiple powerful GPUs. However, it
needs to be accurate as well and the trade-o↵ between the two is important
to be aware of. One approach is to solve the issue by connecting the phone
to an external computer and let the external computer do the predictions.

19

3.1. General Approach AI based Auxiliary System

Naturally, this will result in higher accuracy as it allows for a heavier net-
work as more computational power is available. However, this means an
external computer for computation is required. This is the approach used
in the project.

Figure 3.1: Approach A, using an external computer.

In a real application instead of using an external computer present at a
users location, 5G can be utilized. From a mobile phone the data can
be transferred to an edge computer in a base station of a 5G network,
o✏oading the workload the external computer located at a users location
has to perform. As such, the computational power required is outsourced
to the edge computer and a user will only require a cellphone to use the
application while avoiding the issue of delay if using a regular cloud solution
were introduced.

Figure 3.2: Approach A, using a 5G edge computing network solution.

Another approach is to make the network so small it is capable of running
on mobile devices. An obvious downside of this is the drop in accuracy, but
gain the ability to not be dependant on any external support other than
the download of an application. However, such an approach might lose too
much accuracy to the point where it cannot provide reliable support.

3.1.1 Step-by-step Guide

As the system is supposed to be an assistance to newcomers, it is important
it does not feel overwhelming to use. Thus, proposing every class simulta-

20

3.1. General Approach AI based Auxiliary System

Figure 3.3: Approach B, only using a phone.

neously is a bad idea and would look like a mess of detections at the screen
at once. Even with color codes for classes, it would be too hard to see and
ultimately result in confusion. Therefore, a guide following a linear pat-
tern is proposed. Its aim is to solve each step individually to minimize the
potential of failure in assembly.

Figure 3.4: Mass detection, with even more instances confusion can arise.

This is done through deactivation of every other class other than the one
in question, i.e. at the CPU stage only a detector of the CPU is active.
From there, the corresponding CPU socket will be activated, deactivating
the detection of the CPU itself.

21

3.1. General Approach AI based Auxiliary System

It is assumed the parts are laying around visible to the camera.

• The initial stage looks for the specific motherboard. This allows to
check for which type of RAM is supported, CPU socket type and
supported CPUs.

• Next, scanning of external parts is done, looking for RAM. The system
will detect the RAM and which RAM-type (DD3 or DDR4). Since
it knows which type of RAM the motherboard supports, it can tell
compatibility-issues at this point.

• Next is scanning for a RAM-slot, mapping the RAM and RAM-slot
together.

• User is told to check the CPU package box, then look specific informa-
tion displayed on the box (what generation and socket-type) and see if
this matches the proposed information obtained through the scanning
of the motherboard.

• CPU is detected as well, in case a user does not possess the box but
has the CPU (albeit this will not allow for compatibility check).

• Detecting CPU-socket.

• Detecting CPU fan.

• Detecting Fan Slot.

• Detecting Fan Power slot.

• Detecting Fan Power cable.

• Detecting PSU.

• Detecting 8 and 6 pin power connectors (GPU).

• Detecting GPU.

• Detecting PCI-E 16.

• Detecting 8 and 6 pin power slots (GPU).

• Detecting 24 pin power connector.

• Detecting 24 pin power slot.

22

3.1. General Approach AI based Auxiliary System

• Detecting 8 pin power connector (CPU).

• Detecting 8 pin power slot (CPU).

• Detecting S-ATA cables.

• Detecting S-ATA slot on motherboard.

• Detecting SSD/HDD.

• Detecting SSD/HDD S-ATA input.

• Detecting SSD/HDD power cable.

• Detecting SSD/HDD power input.

There are explanatory steps between some of the steps where it is required,
however this is roughly the steps taken by the system to guide a user through
assembly. It is assumed the user is able to fit a component and will ask for
the next step when finished with the current task. Further, the task is to
assemble a computer, not connect to a monitor, power outlet and other
devices which is why those potential steps are excluded.

3.1.2 Compatibility

The compatibility primarily boils down to the CPU and RAM, being sev-
eral ways on how to approach this. For the CPU, it is possible to check
for the specific socket type present. However, the level of detail in di↵er-
ence between socket types can be very minuscule. Furthermore, detecting
a specific socket type is not enough; di↵erent motherboards only supports
certain types of CPU, regardless if the socket in question fits. This is some-
what di↵erent with RAM, where it usually only supports the RAM slot type
present on the motherboard. Hence, detecting the specific slot type present
would solve this issue. However, the problem of supported CPU types still
persist.

A solution to cover both above issues exist; by looking at the motherboard
itself instead. Through this, one can use a lookup on what type of CPU
(i.e AMD or Intel), socket type and generation support. Further, supported
RAM versions can be checked for through lookup as well. There are however
downsides to such an approach too. A user will have to check the box

23

3.1. General Approach AI based Auxiliary System

the CPU came in manually, looking for the information provided by the
lookup check. For example, even though the system detects the specific
motherboard and provides the user with its compatible versions, a user
will have to manually crosscheck if the information provided matches with
what they have. However, this should be a minor issue as this information
tends to be very visible, as well as the system telling the user what to
look for. Additionally, this means only motherboards told to detect for
are supported (albeit this can quite easily be extended) and a database for
lookup is required.

3.1.3 Database lookup

A MySQL (XAMPP) solution is used for the database. The system detects
which motherboard is present and queries the database for its compatibles.
It returns the socket type, supported CPUs and the RAM supported respec-
tive to where it is in the guiding process. For the purpose of demonstration,
only three motherboards are used.

Figure 3.5: Structure of the compatibility-check database.

3.1.4 Prediction and Tracking

To track objects, a predictor for the model is built so it can receive video
input. The input given is from an external live camera and each frame
received is run through the model. For the prediction to go smoothly it relies
on the network being lightweight. Frames per second from the external live
camera is lowered to fit the inference time to minimize the delay. If too
many frames arrive at the predictor, it will discard these frames. This is

24

3.2. Data Set AI based Auxiliary System

done as there is little interest in detecting an object seconds ago, and every
frame is not needed to understand the object of interest.

The predictor is built to properly fit the task at hand. The weights are
loaded into the model at the start of the prediction, albeit only the classes
described in the specific step are activated. When a class is activated and
found, its location and name is applied to the frame and displayed. Every
class has its own threshold. This means the predictor needs to adjust the re-
quirements of a class to be detected. This is implemented due to a di↵erence
in detection between classes, where some are detected easier than others.
Further, it functions to reduce the chance of false positives where some
classes may look similar at specific angles. Information regarding the steps
are located on the top of the screen when the user is scanning for objects.
Information provided changes dynamically in the guide, as information is
based o↵ the motherboard scanned in the start. The respective information
and compatibility is grabbed from an external database according to the
motherboard detected.

3.2 Data Set

A total of 29 classes are used (excluding the background) with a total of
1396 instances, split into external and internal. The internal section covers
the classes that cannot be removed and are found on the motherboard itself
or components. It also includes the motherboard. External classes are the
loose components placed by the user. The classes will be mapped to their
corresponding counterpart. See appendix B for a complete overview of the
classes.

3.2.1 Data Gathering

There are no image database that specifically have computer components,
especially not something so specific as the sockets or pins on a motherboard.
However, some can be found on more general free image databases such as
shutterstock or pixabay. Other good sources of data is the websites selling
these types of hardware, as they usually have many di↵erent images of the
hardware as well as di↵erent angles of it. Lastly and the main source of
data, the group has taken pictures themselves to get specific instances of

25

3.2. Data Set AI based Auxiliary System

Part Instances
ASUS Z97-AR (motherboard) 17
MSI Z87-G45 Gaming (motherboard) 21
Gateway TBGM-01 23
PCI-express x16 171
CPU socket 59
6-pin power connector slot 48
8-pin power connector slot GPU 28
8-pin power connector slot CPU 67
24-pin power connector slot 70
S-ATA slot 129
CPU fan slot 40
Fan power slot 63
SSD/HDD power slot 56
RAM slots 75

Table 3.1: Internal parts

Part Instances
SSD 34
HDD 19
DDR3 RAM 105
DDR4 RAM 19
SSD/HDD power cable 23
GPU 34
CPU 30
CPU fan power connector 45
CPU fan 29
PSU 31
6-pin power connector 34
8-pin power connector GPU 23
8-pin power connector CPU 10
24-pin power connector 46
S-ATA cable 36

Table 3.2: External parts

26

3.3. Lighthead R-CNN AI based Auxiliary System

each class from varying angles. This helps when trying to detect objects
real-time, as the pictures are taken in a similar scenario as to how a user
will use a camera to detect an object.

Having images alone is not enough; annotation is needed which is described
in chapter 2. This has been done manually by the group on the images
gathered through above mentioned method. The tool used in this project
to create these annotations is VGG Image annotator [8]. There is a total of
1396 annotations split over 29 classes.

These images, together with their respective annotations, will be given as
an addition to datasets such as COCO [7] and ImageNet [6], as the data
used in this thesis is lackluster elsewhere.

3.2.2 Annotation Format

Originally, the annotation files created through the VGG tool comes in a
JSON format. Moreover, it contains a lot of unnecessary information not
used in this project. Hence, a script to strip these annotation of information
besides what is an absolute necessity has been created. By doing so, the
file size of individual annotation file decreases, which in some cases adds up
fast if large amount of pictures are used for training and validation. It also
speeds up the process of loading said files. Lastly, the files are converted
from JSON files to ODGT (Object Detection Ground Truth) files, which in
essence are text files.

3.3 Lighthead R-CNN

There are several issues to be aware of when designing such a solution and
choosing an algorithm. Two-stage object detectors are primarily focused
on accuracy. While this is good for detecting larger objects as well as
detailed one, they have the downside of being slow. This is a deal breaker
when making a system which must be light and real-time. The one-stage
detectors are usually fast, but lack the ability to properly detect object
smaller detailed objects. This is also not ideal, as many of the computer
components, especially the ones considered internal, are very small with
some distinguishing features.

27

3.3. Lighthead R-CNN AI based Auxiliary System

Fortunately, there are some algorithms that are hybrid in terms of accu-
racy versus speed, in this case Lighthead R-CNN. It is, as described in
chapter 2, a state-of-the-art two-stage object detector able to be both fast
and accurate, whilst also being flexible to suit the preferred scenario bet-
ter. Mainly, the network achieves this through lighter headers than other
two-stage algorithms as larger ones incur heavy calculations deeper into a
model. However, having a good algorithm is only a starting point. If it is
to run close to real-time on realistic hardware, further stripping and modi-
fication of the network is required as direct implementation will result in a
slow inference speed [22] [23].

3.3.1 Backbone

Backbones, described in chapter 2, significantly impacts the accuracy and
speed of a network. Lighthead R-CNN is usually based o↵ ResNet101 for
its high accuracy results and Xception-like networks for its speed. How-
ever, these are tested on computers with powerful GPU’s. To make it even
lighter and faster, a tinier backbone can be used but at the cost of accuracy,
meaning there has to be a middle ground for it to still be viable in detecting
objects with details. This does of course depend on the approach used (see
figure 4.1 and 4.2), where approach A allows for a heavier network than B
does.

As stated above, even though ResNet101 might seem to be an ideal solu-
tion for a backbone, it struggles to achieve a high FPS when proposed with
detection of a live video feed. Furthermore, it requires significant compu-
tational power to do so as well. Include a large amount of classes and the
size of the trained model increases drastically. Usually, such a backbone fits
more to a more static type of object detection that does not depend too
heavily on speed and is normally seen when reaching for high mAPs (see
4.1.1). To be able to detect in real-time with lesser computational power, as
this projects aims to solve, a lighter backbone could be used. Some popular
ones fitting to the scenario in question are MobilenetV2, Shu✏enetV2 and
Xception, each with their pros and cons [24] [25].

At the current state, it seems obvious to downgrade the backbone to some-
thing lighter as mentioned above. However, by looking at di↵erent frame
rates, one can realize a high FPS is not required to e↵ectively understand
where an object is in real-time. The di↵erence between 20, 10 and even 5

28

3.3. Lighthead R-CNN AI based Auxiliary System

FPS is very noticeable, but of lesser importance when trying to understand
the location of the object or what it actually is [26]. Hence, a real-time feel
can still be achieved even at lower FPS, which in turn allows for a heavier
network. This means the accuracy and detector is better, but at the cost
of speed which is not needed anyway. Hence, a Resnet101 backbone is used
instead of downgrading. To make up for the loss in speed caused by using
larger networks, some other alterations are done to parts usually responsible
for larger computational time. The amount of anchors created per image
have been reduced. Boxes proposed potentially containing object of inter-
est have been reduced per image, resulting in a lot less to predict and scan
over. It lessens the ability to detect objects where details are important
and where the detector is somewhat uncertain the area contains anything
of interest. The amount of proposed regions is reduced as well, this com-
bined with smaller images drastically increases the frame rate. Simply put,
having to scan over fewer areas in a smaller area is much faster than having
to scan many times in many areas over a large area.

3.3.2 Stripping the Model

Alternations are done in advance of training to reach the goal of a fast
and accurate model. As the backbone does consist of many parameters,
the optimal solution would be to reduce the amount of data stored. The
variables of interest need to be adjusted in a correct manner to keep balance
between the preferred accuracy and speed.

The initial algorithm creates large weights, resulting in a bad inference time
when using a heavy backbone such as ResNet101. One solution to achieve
better inference speed is a reduction of weight size and parameters produced.
The second part is reducing potential scanned areas. Anchors, as explained
from above, are boxes of varying aspect ratios shifted over an image. Each
ratio has several scales, and each scale can have many bounding boxes,
being a prediction to be refined. This goes for every anchor produced as
well, creating exponentially larger weights if a large amount of anchors are
used in combination with larger images. Hence, to produce smaller weights
an aspect ratio of anchors are set to 1:2, 1:1 and 2:1. Further, in direct
correlation with image size and the objects of interest, a scaling of 82, 162

and 322 is used. This means the maximum size an object can be detected
at is 1024 pixels, while the minimum size is 64 pixels.

29

3.3. Lighthead R-CNN AI based Auxiliary System

Model Size
Top-1

Accuracy
Top-5

Accuracy Parameters
Xception 88 MB 0.790 0.945 22,910,480
VGG16 528 MB 0.713 0.901 138,357,544
VGG19 549 MB 0.713 0.900 143,667,240
ResNet50 98 MB 0.749 0.921 25,636,712
ResNet101 171 MB 0.764 0.928 44,707,176
ResNet152 232 MB 0.766 0.931 60,419,944
ResNet50V2 98 MB 0.760 0.930 25,613,800
ResNet101V2 171 MB 0.772 0.938 44,675,560
ResNet152V2 232 MB 0.780 0.942 60,380,648
ResNeXt50 96 MB 0.777 0.938 25,097,128
ResNeXt101 170 MB 0.787 0.943 44,315,560
InceptionV3 92 MB 0.779 0.937 23,851,784
InceptionResNetV2 215 MB 0.803 0.953 55,873,736
MobileNet 16 MB 0.704 0.895 4,253,864
MobileNetV2 14 MB 0.713 0.901 3,538,984
DenseNet121 33 MB 0.750 0.923 8,062,504
DenseNet169 57 MB 0.762 0.932 14,307,880
DenseNet201 80 MB 0.773 0.936 20,242,984
NASNetMobile 23 MB 0.744 0.919 5,326,716
NASNetLarge 343 MB 0.825 0.960 88,949,818

Table 3.3: Popular backbones, accuracy refers to tests performed on Ima-
geNets validation dataset. Accuracy can di↵er on the test used and modi-
fication of the backbone (i.e. xception is lighter, but resnet101 can usually
be made heavier and more powerful [27].

Each frame is allowed a maximum of 9 anchors and each anchor can produce
no more than 350 bounding boxes. In theory, this means a maximum of 3150
bounding boxes can be produced per frame, each which has to be further
refined by the RoI network. It loses the ability to detect objects in images
of higher quality as the max size is 1024 pixels, albeit this is a non-issue
in the task at hand as images are smaller than the maximum detection
box. Increasing anchor scaling to include 642 and 1282 allows for extreme
detection, but at a high cost; Having a max size of 16384 pixels requires
significant computational power, especially when considering the additional
amount of bounding boxes per frame per anchor required to cover such an
area.

The image size in training is a variable that has a large impact on the model
regarding accuracy and speed. Dynamically, the shorter edge of an image is

30

3.4. Preparing the model AI based Auxiliary System

forced to 800 pixels and a longer edge is reduced to 1000 pixels. This specific
change is done to minimize the loss of details in the images and gain a fair
amount of speed. Using less pixels adds less data to the weights. If the
image size is further reduced the speed would greatly increase, but it does
sacrifice a large amount of accuracy which is not feasible in this setting.

The combination results in roughly 15% reduced weight size produced in
training, together with anchors specific to the images used in the project
and a significant less amount of data to be scanned in each frame when
predicting, ultimately meaning a large gain in inference speed. As seen
in section 4.1, the loss in accuracy is fairly small compared to the speed
increase.

3.4 Preparing the model

In preparation to training, the model was changed from being based on the
COCO dataset to be based on the motherboard dataset. All of the parts
based on the COCO dataset of the model have either been fully removed or
changed.

The ODGT (Object Detection Ground Truth) file consists of image name,
bounding boxes, class names, image size, and the image path of each image.
The model needs all these variables to start training. Each image is set be
around a specific resolution to avoid large scale resizing when it is used in
training. If the image is too small or too big the resizing of the image could
lead to some degree of loss.

The number of classes used in the model are 29. The learning rate is set
before training but changes throughout. The model consists of 30 epochs,
and on epoch 25 the learning rate is multiplied with 0.1 and on epoch 30 the
learning rate is multiplied by 0.01. The reason for this change in learning
rate this late is due to avoiding big adjustments of the weights at the end
of training. The full code is available on github. 1

1
https://github.com/ebotun/lighthead_rcnn

31

https://github.com/ebotun/lighthead_rcnn

Chapter 4

Experiments and Results

In the report two approaches has been tested, first performance of the net-
work. This goes in regards of the inference time, frames per second achieved
and the accuracy of the detector.

The second part of testing is related to use of the application. The test
aims to see how well the solution performs on assisting humans in computer
assembly. As there are little amount of previous testing on the topic, test
parameters included have been created by the group themselves to what
seems logical.

4.1 Performance of the Detector

This section explains the experiments and results regarding the performance
of the network. In the implementation proposed, the experiments are per-
formed on real-time data. This means a camera is feeding the detector with
a live video stream. The ability of the detector to detect the object of in-
terest is what to be tested. However, such an approach makes it somewhat
hard to compare to other approaches, which is explained in section 4.1.4.

Further, the detector is locked to a certain frame per second. The reason
behind this is accuracy; By sacrificing speed and inference time, an increase
in accuracy and better detection is achieved. However, they have to be at
an equilibrium. Even though real-time and frames per second is di↵erent,

33

4.1. Performance of the Detector Experiments and Results

a frame rate of 1 is hardly usable. Furthermore, it is unnecessary to have a
frame rate of 20 [26]. At that point it is more a quality of life aspect than
providing better support for the user. As such, the detector is optimized to
the scenario of achieving 7-10 frames per second at an image size of 1000 ⇥
800.

4.1.1 Explanation of Mean Average Precision

When evaluating di↵erent models and implementations, there is a di↵erent
approach on how object detection is measured. Essentially there are two
parts to measure:

• Decide if there is an object of interest present in the image or not.

• Decide where the object of interest is located.

Furthermore, a multitude of classes might be present. Imagine its task is
to detect cats, dogs and pizzas, but there is a majority of cats and dogs.
It could in theory be extremely bad at detecting pizzas, but since it is
amazing at detecting cats and dogs a simple accuracy approach will show
biased results. Hence, a confidence score is given to each box detecting an
object, essentially saying “I am 60% sure there is a cat inside this box”.

Because of the issue above, an Average Precision (AP) is used. AP uses
precision and recall from the model used. Keeping it short, precision in a
detector measures the false positive rate (this means the ratio of true objects
detected to the total objects the model has detected, the percentage of the
predictions which are correct) [28] [29]. Even if a detector has a ratio of 1,
it might not detect everything; it only means all its attempted detections
are correct.

Precision =
TruePositive

TruePositive+ FalsePositive
. (4.1)

Recall =
TruePositive

TruePositive+ FalseNegatives
. (4.2)

Recall is the measure of false negative rate. It measures the ability of the
detector to find all the positives. An example would be being able to find

34

4.1. Performance of the Detector Experiments and Results

60% of the amount of cats present in an image. These factors are directly
dependant on each other to function, as well as the threshold set. Threshold
is the confidence score the detector must cross before an object is positively
detected. A high threshold means when guessing, it is usually correct but
misses a lot of other objects present (high precision, but low recall). On
the other hand, a low threshold does the opposite; detects everything, but
inaccurately. Hence, the threshold set greatly a↵ects the results. Finally,
the AP score is created by taking the average precision value across all the
recall values. The exacts mathematical equation di↵ers, depending on tests
used (COCO, PASCAL VOC) [7].

To understand localization measures, Intersection over Union is used (IoU).
In short, it measures how well the predictions overlaps with the ground
truth box. Moreover, the mAP score is calculated by taking the mean
AP of all classes over all the IoU thresholds. COCO tests can be seen as
mAP@[.5:.95], meaning they go from an AP with an IoU of 50% overlap
to 95% overlap. The average of these is what creates the mean average
precision (mAP), which is the measure used by many detectors today [28]
[29]. This does however only tell how accurate a detector is, not its speed.

Figure 4.1: IoU of a cat.

4.1.2 COCO Benchmarking Test

To have some sort of benchmark in regards to performance, a comparison
to other existing implementation is done. However, there are very few im-
plementations, even lesser with stated results. To rather have a reliably
understanding of its performance, three implementations have been used
as benchmark; A Chainer implementation, a Pytorch implementation and
the original paper. It is worth mentioning every implementation is done

35

4.1. Performance of the Detector Experiments and Results

in regards to the original paper. However, as the public code of Light-
head R-CNN is far too specific to their case of testing, recreation creates
unique results, which can be seen from various people trying to recreate the
Lighthead R-CNN results.

Furthermore, these implementations usually focus on either speed or ac-
curacy, not a trade-o↵ in between. The aim of the project is to optimize
accuracy and achieve an acceptable frame-rate at the same time, not either
or. Further, it is better for such a problem to trade o↵ higher FPS, such as
30, in the favor of accuracy gain. As such, a certain bias may be present as
the approach of existing solution might not be optimized to the scenario in
question, while the approach taken in the project might not surpass results
achieved by other implementations aiming to optimize specifically accuracy
or speed.

Lastly, the results provided by the di↵erent implementers have to a certain
degree be trusted, as recreating every implementation is not feasible time-
wise, as well as the availability of hardware in regards to what each approach
have used.

The original paper primarily shows two results; one for a high accuracy and
one for speed. The speed of the network is at 102 FPS with an mAP of
30.7 (224 ⇥ 224 images) [1], performed on the COCO 2014 dataset test.
The approach uses an Xception-like backbone, essentially trading accuracy
for speed. The accuracy approach uses Resnet101 with an mAP@[0.5:0.95]
of 40 (tested on trainval 2014) but an unreported speed at the level of
accuracy. The prediction and training is done on 8 Nvidia Titan XP [21],
hence the inference time at 102 FPS cannot be compared to the availability
of hardware in this project (implementation on a Nvidia 1080 Ti) . Hence,
it is hard to use it as a benchmark but more as a guideline as the project
is based o↵ the algorithm. However, having an mAP@0.5:0.95 between 30-
40 while still achieving 7-10 FPS means beating the accuracy of an original
Xception implementation while still achieving the speed requirements of the
task.

The algorithm was trained for 30 epochs on a Nvidia 1080 Ti on the same
datasets as other Lighthead R-CNN implementations, COCO testval 2014
(80.000 images for training, 35.000 for validation, 5.000 for testing). The
result of training iterations can be seen in figure 4.2. Testing on newer
datasets could yield di↵erent results, hence the testing on old data for a

36

4.1. Performance of the Detector Experiments and Results

proper comparison. Results and comparisons are shown in table 4.1.

Figure 4.2: Evaluation of training, 30 epochs, 1000 ⇥ 800 image size.

Implementation mAP@0.5:0.95 mAP@0.5 mAP@0.75
Original 0.400 0.621 0.429
Original with Xception 0.307 - -
Implementation in Pytorch 0.3963 0.601 0.432
Implementation in Chainer 0.391 0.607 0.419
Ours 0.379 0.589 0.407

Table 4.1: Comparison of accuracy on a COCO test to other implementa-
tions.

Both the pytorch and chainer implementations have similar results to the
original, albeit somewhat lower accuracy. The implementations proposed
learns faster than the other implementations when tested on the same
dataset (the dataset created in the project). It is not as accurate as the
other implementations, albeit that is not the aim; it is to be faster to achieve
acceptable inference time while still having a higher mAP than when chang-
ing to a lighter backbone. The accuracy loss in mAP is acceptable at the
increase of speed achieved as it is just behind the other implementations
focusing solely on a high mAP and well above implementing lighter back-
bones.

As stated earlier, the network is optimized for a framerate of 7-10 FPS,

37

4.1. Performance of the Detector Experiments and Results

which it achieves with an mAP of 0.379 at an image size of 1000 ⇥ 800.
However when having a live video feed, additional images are fed into the
network as the rate of images sent are bound to external software and hard-
ware. Hence, a queue arise as the inference speed is lower than the rate of
image arrival and a delay incur. There is a limit to the delay, albeit the
aspect of real-time is lessened. Hence, in the two tests below image size is
reduced 640 ⇥ 480 to increase the FPS and reduce the delay. Naturally this
a↵ects the mAP@[0.5:0.95] which drops down to 0.339, which is still above
using other lighter backbones. As such, a theoretical max mAP is 0.379 but
because of external limitations some of it has to be sacrificed for additional
speed to compensate for delay.

Comparing the speed of di↵erent implementations is somewhat di�cult; first
o↵ there could be errors in reimplementation. Second, di↵erent hardware
plays a major role. If looking at the inference time of the original Lighthead
through graphs, it has an inference time of about 125 ms [1]. Directly this
means 8 FPS, but other forms of delay in real-time exist than pure prediction
of images. Transferring of data back an forth between an external camera to
a predictor, rendering of boxes and other similar issues not related directly
to prediction takes time. Further, the original implementation had 8 Pascal
TITAN XP GPUs at their disposal, whereas this project has one 1080 Ti
GPU but still achieving 7-10 FPS in real-time prediction. A recreation of
the original algorithm without modification on the 1080 ti had around 1
FPS, but errors in reimplementation can have occurred. The same goes
for the other implementations, achieving roughly the same speed as the
original but somewhat less mAP (albeit the aim of these were never speed,
but accuracy). The implementation proposed in the thesis is faster, but at
the cost of accuracy compared to other implementations. However, this is
ideal when faced with the problem the project aims to solve.

4.1.3 Evaluation of Steps and Detection

This section is about tests regarding the detection of individual components.
Its purpose is to see how well the solution performs in regards to the specific
problem faced. Further, it allows for unveiling issues, errors and weaknesses
of the proposed solution before it is tested on real users. This is done
preemptively to the last test to avoid unnecessary problems, improve upon
some annotations and weaknesses where required. Ultimately, it is done to
achieve optimal results of the final test which is the main focus of the project.

38

4.1. Performance of the Detector Experiments and Results

It is expected to film the whole object and not too partially. Further, filming
too close to an object might create obscurities. Hence, a user is told to film
at reasonable lengths depending on the object. Lastly, varying parts are
tested on; some included in the training data (even though the data set
used uses many di↵erent instances of the same class), some which have
similarities and some which are di↵erent. This is to avoid too much bias,
although most computer parts share very many similarities. Two di↵erent
CPUs are almost identical, the same goes for RAM, SSD, HDDs and so
forth.

Motherboard
The initial prediction is the motherboard, which it accurately predicts at
80-99% certainty. No other classes of motherboard is predicted, albeit only
three are present total. A large amount of motherboards could cloud this
part, although additional training data would counter this issue. The detec-
tion starts around a height of 70 cm down towards 25 cm before it becomes
inaccurate. Its detection angle is between 45 to 135 degrees. The initial
threshold of 40% is pushed to 60% to avoid false positives.

RAM
The detector starts detecting around 35 cm and gets better the closer it
gets, with a certainty between 70-99%. It does not detect false positives,
but cannot reliably detect the di↵erence between DDR4 and DDR3 when
it is at max distance and when both RAM pieces are green. This is most
likely caused by the main source of DDR3 being without an additional layer
of protection, whereas many of the DDR4 have this. The main di↵erence
is somewhat subtle and is hard to distinguish at a distance. However, the
issue perish when filmed close and the entire piece is in sight. Angle is
not important to detect RAM itself, but compatibility needs to be directly
above to see the distinguishing feature. Threshold is set to 40%.

RAM Slots
RAM slots are one of the best performing detections, with a certainty of
95-99% between 0-180 degrees. There are no false positives at a threshold
of 40%. It starts detection at 40 cm height, this could be stretched even
further by lowering the threshold albeit false positives could incur. More-
over, almost no other class has this level of height detection, rendering such
a change useless.

39

4.1. Performance of the Detector Experiments and Results

Figure 4.3: Di↵erence between DDR3 and 4 [30].

CPU
The CPU starts getting reliably detected at a height of 20 cm and below
with a certainty of 90-99%. It does so from both sides and almost any
angle with no false positives. Interestingly enough, the CPU socket was
not considered a CPU from the golden side, even though they share many
similarities. Threshold is set to 40%, as it needs to be somewhat close before
it starts detecting.

CPU Socket
CPU socket starts detection at 30 cm and below with a certainty between
80-99%. There are no false positives and can be detected from many angles.
Threshold is set to 40%.

CPU Fan
The CPU fan is detected at 35cm and below with a certainty between 40
and 99%. At a threshold of 40% there is one false positive, the PSU. This
is most likely caused by the fan itself, as it is only falsely detected at the
specific angle where the fan is visible on the PSU. To counter this, threshold
is adjusted to 60%.

CPU Fan Slot
CPU fan slot starts detection at 30 cm and below with a certainty between
60-99% with a max angle between 45-135 degrees. There are no false posi-
tives at a threshold of 40%.

CPU Fan Power Slot
CPU fan power slot has no false positives and starts its detection at 20 cm
height, with a certainty between 40-99%. Multiple angles are allowed for
with a degree between 20-160 and a threshold at 40%.

40

4.1. Performance of the Detector Experiments and Results

Fan Power Cable
The fan power cable is detected at 20 cm and below, but usually needs to
be somewhat close with an ideal angle to reliably detect. It has a certainty
between 40-99%, but has one false positive at specific angles (the 6-pin
cable).

PSU
The PSU has no false positives, but struggles at times when filmed directly
from above. Hence, a slight tilt is required to detect at 50% threshold,
which detection then start at 40 cm with a certainty between 40-99%.

6 and 8-Pin Power Connector GPU
The 6-pin connector is easily detected, but it grabs some part of the 8-
pin connector as well. This is expected as parts of the 8-pin are identical
to the 6-pin. It struggles a bit more to detect the 8-pin and needs to be
close, around 5-10 cm with a good lighting and angle. It the certainty
bounces between 10-99%, being one of the worse parts. It does not have
false positives other than the issue above, but this is of lesser consern as
both cables goes next to each other on the GPU. A threshold is set at 40%.
It shows that cables are hard to detect and requries close-up with proper
angles to correctly predict.

8-Pin Power Connector CPU
Much like above, the 8-pin CPU power connector requires close-up to prop-
erly detect (around 5-10 cm). It does not usually have false positives but
struggles when black cables of bad angles are used. This is most likely
caused by the lack of training on the class, which has only a total of 10
instances. At good angles and close range the certainty is above 90%, but
at bad angles it cannot be detected even at a threshold of 10%. Threshold
is set to 40% to avoid false positives, but additional instances in training
are added to compensate for the bad accuracy. The current implementation
detects both 8 pin CPU cables and 4+4.

GPU
The GPU starts to be detected around 30-35cm height with a certainty of
70-99%, depending on the side scanned. It is usually best detected when
the larges sides of the GPU is shown, not its thin sides. If one zooms into
a green RAM DDR4 piece, it can be detected as a GPU at a very specific
angle. However, the certainty is low and a user would normally never film
at this angle and range, essentially not making this a problem.

41

4.1. Performance of the Detector Experiments and Results

PCI-express x16
No false positives at any angle and height, which it starts to detect around
30 cm. When detecting, it always has a certainty between 90-99%. Angle
of detection can be from 0 to 180 degrees and threshold is set to 40%. This
is the best class detected of all, likely because of the amount of instances
compared to the rest. This goes to show increasing the training data further
can potentially enhance the rest of the classes as well.

6 and 8-Pin Power Slot GPU
The GPU 6 and 8-pin power slots have no false positives. The 6-pin is easily
detected, although the same issue from earlier persist; detecting parts of the
8-pin as a 6-pin. Again, this is not significant as both cables are going next
to each other on the same device. Detection starts around 20 cm and below
with a certainty between 60-99%, although it needs good lighting. The
threshold is set to 40%.

24-Pin Power Connector
The 24-pin power connector cable is the most easily detected cable with a
certainty between 40-90% and detection range from 20 cm. There are no
false positives at 40% threshold, but is usually best detected from above,
not directly into the pins themselves. Hence, some angulation is required
to detect but far less than other cables.

24-Pin Power Connector Slot
The 24-pin power connector slot starts detection at around 25 cm height,
able to be detected at many angles with a degree of 20-160 with a certainty
between 70-99%. Threshold is set to 40%, which it has no false positives.

8-Pin Power Connector Slot CPU
Height of 30 cm at first detection and angulation of 60-120 degree with
certainty between 70-99%. It is normally extremely stable at every angle
and with zero false positives at 40%.

SATA Cable
The SATA cable, being of the cable category, needs to be very close to the
camera before being detected. It starts o↵ at 10 cm and gets better when
closer, with a certainty between 50-99% but will only detect at certain
angles. It also predicts a cable being SATA regardless of the variant (some
are bent, some are straight). A false positive for SSD/HDD power cables
can occur at times from a specific angle, as it can look identical when tilted
correctly. In practice this is not an issue, as both cables go next to each other

42

4.1. Performance of the Detector Experiments and Results

on a HDD or SSD. Some other cables which have similarities to a SATA
can be falsely detected, hence the threshold is raised to 80% to reduce false
positives. However, SATA is not bound to the PSU. As such, guiding tips
are shown on screen to the user to not look for cables tethered to a PSU but
for external, individual cables. The detection ensures the user they have the
correct cable.

SATA Slots (internal)
While SATA slots are identical on both SSD/HDD and the motherboard,
they are split into two (internal and external) when testing. This is to reduce
false positives, as well as better guidance of a user to reduce confusion. On
internal, it detects at 20 cm and below, with a certainty between 70-99%.
At 40% threshold some false positives occur and thus it is pushed to 95%.
It needs to be filmed somewhat closer with this threshold, but its detection
is pretty clear when detected.

SSD and HDD
The SSD and HDD are both detected at a height of 30 cm and below with
a certainty between 70-99%. At times it can mix a HDD and SSD when the
metallic side of the HDD is shown, as it is identical in color to some SSDs.
However, this certainty is much lower and when a HDD is flipped showing
its lesser metallic side this issue cease to exist. This is not really an issue
as both components uses the same cables, however the threshold is raised
to 70% to reduce the false positive rate.

HDD/SSD SATA Slots (external)
As stated above, this is the external SATA slots found on the SSD and HDD.
It is detected from 15 cm and below, between 70-99% certainty. As earlier, it
can mix the SSD/HDD power slot and SATA slot at certain angles at lower
thresholds as they can look identical. This can be avoided by increasing the
threshold, albeit this is not necessary as both go next to each other on the
component and a user will most likely be able to distinguish this themselves
when holding the corresponding cables in hand and told the general location
of where to put said cables. Hence, the threshold is set to 40%.

SSD/HDD Power Cable
The power cables to SSD and HDD is detected around 5-10 cm and below,
between 40-90%. It needs to be close to the camera and in focus to detect at
all, although this goes for many of the cables. Much like the SATA cable, it
has false positive as a SATA cable at specific angles. As such, the threshold

43

4.2. Tests on Real Users Experiments and Results

is set to 70% to counter this.

SSD/HDD power slot
The power input on the SSD/HDD is detected at 5-10 cm and below, be-
tween 70-99% certainty. It does at times require adjustment of angle to
detect, but has no false positives. The threshold is set to 40%.

Summary
To summarize the tests, the internal components are almost a non-issue.
Furthermore, most of the external parts are easily detected as well, but
might require slight tilting of a camera to properly detect. Cables are defi-
nitely the most challenging category to detect. While parts of this is caused
by a lower amount of training data, it is also caused by the level of detail
present in combination with lower resolution images. As a result of this,
additional training data is added to where it is required to reinforce the de-
tection. Further, written tips are added at certain steps where errors may
occur. These are simple but e↵ective and important tips, such as telling a
user to try di↵erent angles, vary the distance and try more components if
he/she is unsure. When the detector finds the object of interest it is usually
pretty sure, but false positive can occur as a flicker, which is not the case
with true positives. As such, it is possible to reliably detect components and
sockets on a motherboard including compatibility checks, but it requires a
user to be aware of how to use the detector correctly.

4.2 Tests on Real Users

This section covers the experiment on real users, where persons with low
technical skills are given all the pieces required to assemble a computer as
well as the AI to assist them. While no information or guidance on how to
assemble a computer is given directly, tips and guidance on how to use the
detector is initially given. This is not orally given but textually through the
application itself. For example, it explains the di↵erence between internal
and external parts as this is a crucial part of the design of the system.
Further, it explains the ideal distance to scan at depending on what is
being scanned, to rotate an object and the camera if nothing seems to be
detected or try di↵erent components if a user is uncertain, as the detector is
usually very certain when the correct object of interest is at an ideal angle.
As for fitting, a user will have to align and put the components in place

44

4.2. Tests on Real Users Experiments and Results

themselves but with backup in forms of textual tips according to the step a
user is at.

The test itself is performed to see if implementing such a solution can sup-
port human beings of little previous experience with computer assembly.
The other tests are performed to understand the system’s capabilities and
weaknesses and improve upon these prior to this test to obtain better re-
sults. Users are tested individually without any human assistance with the
goal of assembly from start to finish. The goal is not to connect external
components such as a monitor or mice but assemble all the components
onto a motherboard itself. Evaluation is performed by two other individu-
als experienced in computer assembly. There is a di↵erence between errors
as well; Non-critical errors or error-free rate include struggles with fitting,
flickers of false positives and other related issues which does not stop a user
from finishing the assembly correctly. Critical errors include issues of zero
detection of an object of interest or a user simply not understanding on
how to execute a step, leading to failure in assembly. This is referred to
as the completion rate. Time is noted, but not seen as a critical parame-
ter. The solution was tested on a total of 13 people, all of similar technical
background.

Summarized, the completion rate of the user tests are at 95.99% with an
error-free rate of 86.54%. The average time of the steps accumulated is 29
minutes, albeit this does not include the amount of time spent in between
explanatory black screens which some users spent considerable time in, re-
sulting in a total time spent in assembly exceeding just around an hour.
This however, varied a lot. A video of the guide and images of some of the
participants in the assembly process can be seen in the link.1

Several interesting observations were made throughout the tests; Fitting
seemed to be an issue for some users, as they were often afraid of a compo-
nent being fragile and not using enough force to push a component or cable
into place. Some simply forgot to screw or properly fit components, resulting
in the component in question falling or being loosely fit. The compatibility
check worked as intended with one exception with DDR4, were a user fit
the RAM card between two RAM slots as it did not fit into the DDR3 slot.
At certain steps where users were stuck, they had to be reminded to read
the tips carefully. However, this led to reduction in the error-free rate. An
interesting part of the test was the increasingly di�culty in detecting the

1
https://www.youtube.com/watch?v=B1MpH66SGIM

45

https://www.youtube.com/watch?v=B1MpH66SGIM

4.2. Tests on Real Users Experiments and Results

Step
Completion

rate
Error-free

rate
Time in
seconds

Motherboard check 100 100 41.41307692
RAM detection 100 100 26.86384615
RAM slot detection and fitting 84.61538462 61.53846154 93.11769231
CPU detection and compatibility check 100 100 40.97153846
CPU socket and fitting 100 100 29.10230769
CPU fan 100 100 23.64076923
CPU fan slot and fitting 100 84.61538462 255.7692308
CPU fan power slot 61.53846154 46.15384615 127.4615385
Fan power cable and fitting 80.76923077 46.15384615 26.15384615
PSU 100 100 14.92307692
6 and 8-pin power connectors GPU 76.92307692 61.53846154 51.73230769
GPU detection 100 92.30769231 43.92307692
PCI-E 16 detection and fitting 100 100 189.0769231
6 and 8-pin power slots (GPU) and fitting 100 100 41.37615385
24-pin power connector 100 84.61538462 44.72615385
24-pin power slot and fitting 100 100 29.07692308
8-pin power connector (CPU) 100 84.61538462 23.85153846
8-pin power connector (CPU) and fitting 100 100 39.28384615
S-ATA cables 100 100 22.15
SSD/HDD 100 100 32.97076923
SSD/HDD S-ATA input and fitting internal 100 53.84615385 264.3846154
SSD/HDD S-ATA input and fitting on SSD 100 69.23076923 189.4615385
SSD/HDD power cable 100 92.30769231 52.30769231
SSD/HDD power input and fitting 100 100 37.36692308

Table 4.2: Steps with the completion rate and error-free rate in percentage
as well as time. The numbers are an average over 13 di↵erent participants.

correct object in question the further a user got into the guide; as more
parts are added onto the motherboard, the harder it gets to properly detect
the correct object. For the most part this was a non-issue and only resulting
in the participant using additional time to complete the current step. The
main observation made in the test was the variance of users. Even though
every participants had about the same amount of technical understanding,
the use of the guide varied a lot. Some heavily relied on the AI and its detec-
tion, entirely skipping the tips. This resulted in redundant scanning and an
increase in time used. Others did not seem to want to use the detector and
tried trail and error, also resulting in a larger time used than others. The
best group seemed to be the participants using a balance of the detector,
tips present on each step and thinking for themselves as well (i.e. a large
card cannot fit into a small 8-pin socket). The detector and its performance
was not an issue, but rather its usage. Generally, participants were able
to assemble a computer correctly with the assistance of the detector, albeit
the time usage varied greatly.

46

4.2. Tests on Real Users Experiments and Results

Figure 4.4: Summary of 13 users across every step.

47

Chapter 5

Conclusion and Future Work

This chapter concludes the thesis, discusses issues and talks about potential
future work for improvement.

5.1 Conclusion

The problem of AI assisting humans in computer assembly has been studied
in this work. To make a proper conclusion, hypotheses from the start are
checked. From the detection test, it is shown that an AI can indeed reli-
ably detect computer components and sockets on a motherboard. Further,
through modification and alteration to the existing algorithm, it is usable in
real-time on realistic hardware, such as a singular Nvidia 1080 ti rather than
8 Titan X while still achieving an mAP of 37.9%. Seen in the experiments
on real users with lesser technical understanding, artificial intelligence can
indeed not only assist, but also be completely relied upon to assemble a
computer. The approach led to a completion rate of 95.99% and an error-
free rate of 86.54%. However, while the detector itself is not an issue, the
extent of replacing a vendor is arguable. The assembly of the computer
itself is indeed possible, albeit a casing is usually preferred as well which is
not something that the approach takes into consideration. Furthermore, a
powerful external computer is required to process the images albeit this can
be outsourced using edge computing and 5G networks.

49

5.2. Discussion and Future Work Conclusion and Future Work

The work has been successful in verifying artificial intelligence’s ability to
assist humans with little to no technical background in computer assembly.
Given the computational power, other relevant algorithms and implementa-
tions were not able to fulfill the task at hand caused by their lack of speed
in favour of accuracy. The solution proposed proves its viability as an op-
tion to having a pre-built computer from a vendor or following online video
guides. It can also be seen as a stepping stone towards the self-reproduction
of AI by making new computers.

5.2 Discussion and Future Work

In hindsight, there are additions and other choices that could have been
made which could potentially improve the solution proposed. Firstmost is
the aspect of the detectors performance, in which there are several potential
improvements. To reduce the delay introduced by the camera, the render-
time through OpenCV can be improved by rewriting parts of the library
used, allowing for a decrease in delay when filming [31]. Another choice
with more potential impact is the change to a new backbone, a promis-
ing one with interesting results is shu✏enetv2. However, this would mean
restructuring the entire network, requiring significant amount of time. Fur-
ther, there is a lack of evidence if introducing said backbone will actually
result in improvement and thus requires further testing. Lastly, additional
training data would most likely improve the detection of components where
the detector struggles, such as cables. Proper lighting and good focus is al-
ways required, although it could potentially be compensated by additional
training data.

From the final test, several points of improvement to be made were revealed.
A common factor for all participants were the fact they did not like filming
on one device and looking at another screen for detection. This can have
had a negative impact on the results obtained in the test. Moreover, some
users did not like following a guide and simply ignored what to do at certain
points. It seemed the AI itself was rarely the issue but rather users not using
the detector or tips at all. Furthermore, issues as simple as forgetting to
screw a fan or putting a cable in place occurred. Improving the AI does
little when an error is mostly human-side. As such, an improvement could be
made to the textual explanation of the guide itself, be it graphical or textual.
The variation between participants were large at times, indicating external

50

5.2. Discussion and Future Work Conclusion and Future Work

human factors having a larger impact on the end result than expected.
As such, a larger test-base would be ideal to lessen the impact individual
persons can have on the test.

51

References

[1] Zeming Li et al. “Light-Head R-CNN: In Defense of Two-Stage Object
Detector”. In: CoRR abs/1711.07264 (2017). arXiv: 1711.07264. url:
http://arxiv.org/abs/1711.07264 (visited on February 23, 2019).

[2] Giles Westerfield, Antonija Mitrovic, and Mark Billinghurst. Intel-
ligent Augmented Reality Training for Motherboard Assembly. 2015.
url: https://link.springer.com/content/pdf/10.1007%5C%
2Fs40593-014-0032-x.pdf (visited on March 1, 2019).

[3] Jonathan Hui. Design choices, lessons learned and trends for object
detections? 2018. url: https : / / medium . com / @jonathan _ hui /

design- choices- lessons- learned- and- trends- for- object-

detections-4f48b59ec5ff (visited on February 23, 2019).

[4] Jonathan Huang et al. “Speed/accuracy trade-o↵s for modern convo-
lutional object detectors”. In: CoRR abs/1611.10012 (2016). arXiv:
1611.10012. url: http://arxiv.org/abs/1611.10012 (visited on
February 23, 2019).

[5] Deep AI. Feature Extraction. 2018. url: https : / / deepai . org /

machine-learning-glossary-and-terms/feature-extraction.

[6] Stanford Vision Lab. ImageNet. 2016. url: http://www.image-
net.org/ (visited on February 26, 2019).

[7] COCO Consortion. Common Objects in Common Context. 2018. url:
http://cocodataset.org/ (visited on February 25, 2019).

[8] Dutta A., Arandjelovic R., and Zissermann A. VGG Image Annotator.
2016. url: http://www.robots.ox.ac.uk/~vgg/software/vise/
(visited on February 25, 2019).

53

http://arxiv.org/abs/1711.07264
http://arxiv.org/abs/1711.07264
https://link.springer.com/content/pdf/10.1007%5C%2Fs40593-014-0032-x.pdf
https://link.springer.com/content/pdf/10.1007%5C%2Fs40593-014-0032-x.pdf
https://medium.com/@jonathan_hui/design-choices-lessons-learned-and-trends-for-object-detections-4f48b59ec5ff
https://medium.com/@jonathan_hui/design-choices-lessons-learned-and-trends-for-object-detections-4f48b59ec5ff
https://medium.com/@jonathan_hui/design-choices-lessons-learned-and-trends-for-object-detections-4f48b59ec5ff
http://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1611.10012
https://deepai.org/machine-learning-glossary-and-terms/feature-extraction
https://deepai.org/machine-learning-glossary-and-terms/feature-extraction
http://www.image-net.org/
http://www.image-net.org/
http://cocodataset.org/
http://www.robots.ox.ac.uk/~vgg/software/vise/

References References

[9] Lilian Weng. Object Detection Part 4: Fast Detection Models. 2018.
url: https://lilianweng.github.io/lil- log/2018/12/27/
object-detection-part-4.html (visited on February 28, 2019).

[10] Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017).
arXiv: 1703.06870. url: http://arxiv.org/abs/1703.06870
(visited on February 26, 2019).

[11] Rohith Gandhi. R-CNN, Fast R-CNN, Faster R-CNN, YOLO—Object
Detection Algorithms. 2018. url: https://towardsdatascience.
com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-

algorithms-36d53571365e (visited on February 26, 2019).

[12] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detec-
tion”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017). doi: 10.1109/cvpr.2017.106. url:
http://dx.doi.org/10.1109/CVPR.2017.106 (visited on Febru-
ary 26, 2019).

[13] Vahid Mirjalili. How does the region proposal network (RPN) in Faster
R-CNN work? 2018. url: https://www.quora.com/How-does-the-
region-proposal-network-RPN-in-Faster-R-CNN-work (visited
on February 28, 2019).

[14] Jeremy Jordan. An overview of object detection: one-stage methods.
2018. url: https://www.jeremyjordan.me/object-detection-
one-stage (visited on February 28, 2019).

[15] Joseph Redmon. pjreddie yolo website. 2018. url: https://pjreddie.
com/darknet/yolo/ (visited on March 1, 2019).

[16] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Ob-
ject Detection. 2016. url: https : / / www . cv - foundation . org /

openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_

CVPR_2016_paper.pdf (visited on March 1, 2019).

[17] Hao Gao. Understand Single Shot MultiBox Detector (SSD) and Im-
plement It in Pytorch. 2018. url: https://medium.com/@smallfishbigsea/
understand-ssd-and-implement-your-own-caa3232cd6ad (visited
on February 28, 2019).

[18] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improve-
ment”. In: CoRR abs/1804.02767 (2018). arXiv: 1804.02767. url:
http://arxiv.org/abs/1804.02767 (visited on March 1, 2019).

54

https://lilianweng.github.io/lil-log/2018/12/27/object-detection-part-4.html
https://lilianweng.github.io/lil-log/2018/12/27/object-detection-part-4.html
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://doi.org/10.1109/cvpr.2017.106
http://dx.doi.org/10.1109/CVPR.2017.106
https://www.quora.com/How-does-the-region-proposal-network-RPN-in-Faster-R-CNN-work
https://www.quora.com/How-does-the-region-proposal-network-RPN-in-Faster-R-CNN-work
https://www.jeremyjordan.me/object-detection-one-stage
https://www.jeremyjordan.me/object-detection-one-stage
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://medium.com/@smallfishbigsea/understand-ssd-and-implement-your-own-caa3232cd6ad
https://medium.com/@smallfishbigsea/understand-ssd-and-implement-your-own-caa3232cd6ad
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767

References References

[19] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In:
CoRR abs/1708.02002 (2017). arXiv: 1708 . 02002. url: http : / /
arxiv.org/abs/1708.02002 (visited on March 3, 2019).

[20] Ayoosh Kathuria. What’s new in YOLO v3? 2018. url: https://
towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

(visited on March 1, 2019).

[21] Zeming Li et al. Light-Head R-CNN: In Defense of Two-Stage Ob-
ject Detector. 2018. url: https://github.com/hwkim94/hwkim94.
github.io/wiki/Light- Head- R- CNN:- In- Defense- of- Two-

Stage-Object-Detector(2017) (visited on March 4, 2019).

[22] Hayabusa. ChainerCV and Light-Head R-CNN” Camera / Movie Com-
patible. 2018. url: https://cpp-learning.com/chainercv_light-
head-r-cnn (visited on March 4, 2019).

[23] Hayabusa. Object detection by ChainerCV and Light-Head R-CNN.
2018. url: https : / / www . youtube . com / watch ? v = dv3MA1Sv2ew
(visited on March 4, 2019).

[24] Ningning Ma et al. “Shu✏eNet V2: Practical Guidelines for E�cient
CNN Architecture Design”. In: CoRR abs/1807.11164 (2018). arXiv:
1807.11164. url: http://arxiv.org/abs/1807.11164 (visited on
March 5, 2019).

[25] François Chollet. “Xception: Deep Learning with Depthwise Separable
Convolutions”. In: CoRR abs/1610.02357 (2016). arXiv: 1610.02357.
url: http://arxiv.org/abs/1610.02357 (visited on March 5,
2019).

[26] WorldEyeCam. FPS comparison video 1fps 7fps 15fps 30fps. 2015.
url: https://www.youtube.com/watch?v=Igd0upqPi5c (visited on
March 25, 2019).

[27] Keras. Documentation for individual models. 2018. url: https://
keras.io/applications/ (visited on March 3, 2019).

[28] Jonathan Hui. mAP (mean Average Precision) for Object Detection.
2018. url: https : / / medium . com / @jonathan _ hui / map - mean -

average-precision-for-object-detection-45c121a31173 (vis-
ited on March 26, 2019).

[29] Timothy C Arlen. Understanding the mAP Evaluation Metric for Ob-
ject Detection. 2018. url: https://medium.com/@timothycarlen/
understanding-the-map-evaluation-metric-for-object-detection-

a07fe6962cf3 (visited on March 26, 2019).

55

http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://github.com/hwkim94/hwkim94.github.io/wiki/Light-Head-R-CNN:-In-Defense-of-Two-Stage-Object-Detector(2017)
https://github.com/hwkim94/hwkim94.github.io/wiki/Light-Head-R-CNN:-In-Defense-of-Two-Stage-Object-Detector(2017)
https://github.com/hwkim94/hwkim94.github.io/wiki/Light-Head-R-CNN:-In-Defense-of-Two-Stage-Object-Detector(2017)
https://cpp-learning.com/chainercv_light-head-r-cnn
https://cpp-learning.com/chainercv_light-head-r-cnn
https://www.youtube.com/watch?v=dv3MA1Sv2ew
http://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
https://www.youtube.com/watch?v=Igd0upqPi5c
https://keras.io/applications/
https://keras.io/applications/
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3

References References

[30] Matt Bach. Tech Primer: DDR4 RAM. 2014. url: https://www.
pugetsystems.com/labs/articles/Tech-Primer-DDR4-RAM-589/

(visited on April 11, 2019).

[31] Adrian Rosebrock. Faster video file FPS with cv2.VideoCapture and
OpenCV. 2017. url: https://www.pyimagesearch.com/2017/02/
06 / faster - video - file - fps - with - cv2 - videocapture - and -

opencv/ (visited on April 27, 2019).

56

https://www.pugetsystems.com/labs/articles/Tech-Primer-DDR4-RAM-589/
https://www.pugetsystems.com/labs/articles/Tech-Primer-DDR4-RAM-589/
https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/
https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/
https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/

Appendices

A Hardware Specification

Operating System Ubuntu 18.04
Processor Intel i7-8700K 3.70 GHz
Memory 16GB DDR4
Graphics 1 ⇥ NVIDIA GeForce 1080 ti

57

B Class Description

Part Images Note

ASUS Z97-AR (motherboard)

MSI Z87-G45 Gaming (motherboard)

Gateway TBGM-01

PCI-express x16

CPU socket

6-pin power connector slot

8-pin power connector slot GPU

8-pin power connector slot CPU

24-pin power connector slot

S-ATA slot

CPU fan slot

fan power slot

SSD/HDD power slot

RAM slots DDR 3 and 4

Table 1: Internal parts

58

Part Images Note

SSD

HDD

DDR3 RAM

DDR4 RAM

SSD/HDD power cable

GPU

CPU

CPU fan

CPU fan power connector

PSU

6-pin power connector

8-pin power connector GPU

8-pin power connector CPU

24-pin power connector

S-ATA cable

Table 2: External parts

59

	Abstract
	Preface
	List of Abbreviation
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis definition
	Thesis Goals
	Hypotheses
	Field of research

	Thesis Objective
	Contributions
	Thesis outline

	Background Theory and State-of-the-Art
	Object Detection
	Detection Type
	Loss Function
	Feature Extraction
	Annotation

	Two-Stage Object Detector
	Region Proposals Family

	One stage Object Detectors
	You Only Look Once
	Single Shot MultiBox Detector

	Related work
	State-of-the-art
	Mask R-CNN
	YOLOv3
	Lighthead R-CNN

	AI based Auxiliary System
	General Approach
	Step-by-step Guide
	Compatibility
	Database lookup
	Prediction and Tracking

	Data Set
	Data Gathering
	Annotation Format

	Lighthead R-CNN
	Backbone
	Stripping the Model

	Preparing the model

	Experiments and Results
	Performance of the Detector
	Explanation of Mean Average Precision
	COCO Benchmarking Test
	Evaluation of Steps and Detection

	Tests on Real Users

	Conclusion and Future Work
	Conclusion
	Discussion and Future Work

	References
	Appendices
	Hardware Specification
	Class Description

