
Expanding on the end-to-end
memory network for

goal-oriented dialogue

Peter Arentz Taraldsen and Vegard Vatne

SUPERVISORS
Raheleh Jafari

Morten Goodwin

Master’s Thesis
University of Agder, 2019

Faculty of Engineering and Science
Department of ICT

UiA
University of Agder
Master’s thesis

Faculty of Engineering and Science
Department of ICT
c© 2019 Peter Arentz Taraldsen and Vegard Vatne. All rights reserved

Abstract

A series of end-to-end models have been proposed in order to satisfy the
requirements of the Dialog System Technology Challenge: building an end-
to-end dialog system for goal-oriented applications. While these models
have proven to be a good solution for such tasks, they perform worse when
dealing with out-of-vocabulary tasks and none-synthetic data. Additionally,
they rely heavily on the use of an underlying knowledge base to achieve good
results.

We propose two new models that build on the end-to-end memory net-
work architecture. The goal of these two models is to better handle out-
of-vocabulary tasks and none-synthetic data. The first model changes the
bag-of-words representation of the data, into a paragraph vector represen-
tation treating all data sentences as unseen sentences. We call this model
the distributed bag-of-words end-to-end memory network (DbowN2N). The
second model adds a bidirectional long short-term memory layer at the
beginning of the model used for named entity recognition, to capture the
keywords in the sentences before feeding it through the memory network.
We call this network the key-tagging end-to-end memory network (KTN2N).

In our experiments, the DbowN2N model achieves similar results to that
of the state of the art regular memory network, suggesting that bag-of-words
representation of the sentences are as effective as Distributed bag-of-words
representations for dealing with tasks like this. The KTN2N model achieves
a considerable increase in accuracy over the plain memory network and
comparable results with state of the art memory networks such as the gated
memory network and unified weight-tying memory network.

iii

Preface

Expanding on the end-to-end memory network for goal-oriented dialogue is
a master thesis at the University of Agder. This project was suggested by
Raheleh Jafari. We would like to thank Raheleh Jafari for her tremendous
work guiding us through this project. Additionally, we would like to thank
Dr. Morten Goodwin for his valuable feedback on this project.

Peter Arentz Taraldsen and Vegard Vatne
Grimstad, May 2019

v

Table of Contents

Abstract iii

Preface v

Glossary xii

List of Figures xiv

List of Tables xv

List of Publications xvii

vii

Table of Contents Table of Contents

I Research Overview 1

1 Introduction 3
1.1 Problem statement . 4
1.2 Thesis Definition . 4
1.3 Report Outline . 5

2 Optimization algorithms 7
2.1 Loss functions . 8

2.1.1 Classification loss functions 9
2.1.2 Regression loss functions 12
2.1.3 Activation functions 18

2.2 Optimization . 27
2.2.1 Gradient Descent . 28

2.3 Conclusion . 34

3 End-to-End Memory Networks 35
3.1 Introduction . 35
3.2 Memory Networks . 36

3.2.1 End-to-End Memory Network with Single Hop 36
3.2.2 End-to-End Memory Network with Multiple Hops . . 38
3.2.3 Gated End-to-End Memory Network 39
3.2.4 End-to-End memory Networks with Unified Weight

Tying . 41
3.3 Experiment and results . 43

3.3.1 Experiment Setup . 43
3.3.2 Dataset . 43
3.3.3 Match features . 45
3.3.4 Experiment Results 45

3.4 Conclusion . 46

viii

Table of Contents Table of Contents

II Contributions 47

4 Proposed approach 49
4.1 Distributed bag-of-word memory network 50

4.1.1 Continuous word vectors 50
4.1.2 Paragraph vectors . 51
4.1.3 Proposed model . 52

4.2 Key-tagging Memory Network 53
4.2.1 Bi-directional LSTM 53
4.2.2 Proposed Model . 56

III Experiments and Results 61

5 Experiments with Proposed models 63
5.1 Introduction . 63
5.2 Experiments . 63
5.3 Results . 64

5.3.1 Tuning . 64
5.3.2 DbowN2N . 66
5.3.3 KTN2N . 68
5.3.4 Final Comparison . 69
5.3.5 Additional Experiment 70

6 Conclusion 71

References 73

ix

Glossary

binary classification problems Binary classification problems consider
assigning an individual to one of two categories, by measuring a series
of attributes [1]. 19, 22

deep learning Learning techniques allowing transformation of raw input
into higher level abstract representations for non-linear modules [2].
19, 21

feedforward neural networks Model containing computational neurons
connected with weights arranged in a layer-by-layer basis [3]. 19

gradient a vector of slopes (derivatives/partial derivatives) for each dimen-
sion in the input space [4]. 28

gradient saturation The linear value of neurons become either very big
or very small causing slow updates during training. 19, 21, 55

hidden layers A layer of neurons which is only connected to the input of
other neurons. xii, 20

nonlinear function A function that is not linear (does not follow a straight
line). 18, 19

one-stage object detection Predicting object in image without filtering
first, as done in two stage object detection. 10

probability distribution A distribution of values between 0 and 1 where
the sum of all the values equals to 1. 9, 10, 12, 18, 22

xi

Glossary Glossary

recurrent neural network Recurrent neural networks perform the same
task for every element of a sequence, with the output being depended
on the previous computations. [5]. 21

root mean square square root of the average of set values squared. 33

shallow network A neural network consisting of a low number of hidden
layers. 19

support Vector Machine Classifyer separating labels with a hyperplane
[6]. 11

xii

List of Figures

2.1 A single layer perceptron [7] 7

2.2 Loss function categories [8] 8

2.3 log loss w.r.t predicted probability [9] 10

2.4 focal foreground and background loss [10] 11

2.5 neural network generation of image [11] 11

2.6 MSE loss w.r.t predicted integer value [8] 12

2.7 MAE loss w.r.t predicted integer value [8] 13

2.8 MAE vs MSE gradient descent with fixed learning rate [8] . . 14

2.9 Huber loss with at delta 0.1, 1 and 10 w.r.t predicted float
value [8] . 15

2.10 Log-cosh loss w.r.t predicted float value [8] 16

2.11 Quantiile loss w.r.t predicted float value [8] 17

2.12 loss w.r.t predicted float value [8] 17

2.13 response comparison of SiLU and ReLU [2] 20

2.14 response comparison of dSiLU and Sigmoid [2] 21

2.15 Hyperbolic Tangent function response representation [2] . . . 22

2.16 The activation functions HardELiSH and ELiSH function
(red), and their derivatives (blue dotted) [2] 27

2.17 update direction given by gradient [4] 28

2.18 saddle point of z = x2 − y2 30

2.19 travel path of stochastic gradient descent [12] 31

2.20 travel path of stochastic gradient descent with and without
momentum [12] . 31

2.21 momentum and Nesterov accelerated gradient updates [12] . . 32

2.22 comparison of optimizing methods [12] 33

3.1 End-to-end memory network with a single hop[13] 37

3.2 A three layer end-to-end memory network[13] 38

3.3 Gated end-to-end memory network [14] 41

3.4 Illustrating the two different weight tying mechanisms in on
a N2N memory network with 3 hops [15] 41

xiii

List of Figures List of Figures

3.5 The different goal-oriented dialog tasks. A user (green) chats
with a dialog system. Where the dialog system predicts re-
sponses (blue) and API calls (red), giving the API call re-
sults(light red) [16] . 44

4.1 CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts the surrounding words
from the given current word [17] 51

4.2 The DbowN2N model . 53
4.3 memory cell architecture [18] 55
4.4 bi-directional LSTM architecture [19] 56
4.5 High level KTN2N architecture 59

xiv

List of Tables

3.1 The accuracy results of rule-based systems (RBS), TF-IDF,
nearest neighbour (NN), supervised embedding (S-emb), N2N,
GN2N and UN2N methods. 46

5.1 KTN2N hop comparison . 65
5.2 Comparison of Random Initialized Embedding vs Word2Vec

Embedding . 66
5.3 Results of The DbowN2N network on the babi dataset 67
5.4 Comparison of using training data from the respective tasks

and an external dataset with the DbowN2N 67
5.5 KTN2N vs baseline N2N with and without match features . . 68
5.6 Comparison of proposed models and state of the art N2N for

synthetic data . 69
5.7 KTN2N and DBowN2N versus regular N2N over Divorce-

dialog dataset . 70

xv

List of Publications

1. Taraldsen, P.A., Vatne, V., Jafari, R., Goodwin, M., Granmo, O-C.
(2019): End-to-End Memory Networks: A Survey. In: 19th Annual
UK Workshop on Computational Intelligence, September 4-6, 2019,
Portsmouth, United Kingdom (under review).

2. Vatne, V., Taraldsen, P.A., Jafari, R., Goodwin, M., Granmo, O-
C. (2019): Dialogue Systems using End-To-End Memory Networks:
Divorce Bot. In: Workshop: Chatbots for Social Good, September 3,
2019, Paphos, Cyprus (under review).

3. Taraldsen, P.A., Vatne, V., Jafari, R., Goodwin, M., Granmo, O-C.
(2019): A novel structure for end-to-end memory networks in a goal-
oriented domain. In: Journal of Intelligent & Fuzzy Systems (planning
to submit).

xvii

Part I

Research Overview

1

Chapter 1

Introduction

There are many benefits of using goal-oriented dialog systems and their
applications can be used in a wide range of domains. Among them is the case
of children of divorce, as it is a little researched domain and could benefit
from automation. The child may wish to gain certain legal information
regarding their circumstance and the system will query a database for the
appropriate information.

Constructing rule-based systems for goal-oriented dialogue is very effective
and not particularly challenging when dealing with synthetic data. However,
when dealing with real-world data the task becomes exponentially more
difficult. This can be remedied by using end-to-end networks, where all
components are learned from the dialogues themselves. In [16] Bordes et
al. introduce a testbed to train and evaluate goal-oriented dialog systems.
The goal of the dialog is to make a restaurant reservation based on a series
of user queries. A series of different learning systems has been proposed
in order to tackle this problem and among them is the end-to-end memory
network, which produced promising results.

End-to-End Memory networks, which stores dialog information into a writable
memory, shows high potential in solving goal oriented dialog problems.
From it, a series of iterations have been developed, such as gated mem-
ory network and unified weight-tying memory network.

The work on this thesis has resulted in 2 publications, which are currently
under review. Additionally, we plan another publication where we combine

3

1.1. Problem statement Introduction

the two proposed architectures described in chapter 4.

1.1 Problem statement

State of the art End-to-End Memory Networks has proven to be successful
when applied to goal oriented dialog task for synthetically generated data,
which can be seen in Table 3.1. The state of the art models results are above
99 % for test. However, the model has worse performance when operating
with real-world data. Also, when the networks were dealing with entity
words previously not seen under training, the accuracy scores would drop
considerably.

1.2 Thesis Definition

We aim to solve Memory Networks current issues by adding extensions to
the model. Our theory is that changing the way data is represented in
the memory network may allow it to surmise a more accurate meaning of
the queries. We have two proposed methods to achieve this. First is to
use a long short-term memory layer to identify keywords and predict their
meaning. Secondly, we will attempt to change the vector representation of
the sentences from a traditional bag-of-words representation to a paragraph
vector representation. We believe this could result in the network being
able to infer meaning to previously unseen words based on its surrounding
words. This will hopefully result in better results when dealing with the out-
of-vocabulary problem and when dealing with non-synthetically generated
data.

Lastly, correctly tuning the model should slightly improve the overall accu-
racy of the model, so finding the best methods for learning is imperative.

4

1.3. Report Outline Introduction

1.3 Report Outline

Chapter 2 presents the underlying loss and optimization functions often used
in learning networks. Chapter 3 presents the memory network which our
work originates from. Additionally, we look at some of the more successful
modified versions of the memory network, gated memory network and uni-
fied gate-tying memory network and compare their findings. Furthermore
we will explore the use of memory networks in the domain of children of
divorce. In chapter 4 we will present our two proposed models; distributed
bag-of-words memory network and bi-Lstm memory network. In chapter
5 we will present the datasets used and our results. In chapter 6 we will
summarize our findings and present our thoughts on them.

5

Chapter 2

Optimization algorithms

There are different ways of optimizing the training of a prediction model.
Machine learning can be applied to a vast amount of different domains. As
different domains may require different machine learning algorithms, they
may also be improved by how the machine learning algorithm is optimized.
Choosing the best suited algorithms may improve results and efficiency.
This chapter will explore some of the loss functions and optimization algo-
rithms that are commonly used to train machine learning algorithms.

Figure 2.1: A single layer perceptron [7]

Figure 2.1 shows how each input in a feature vector [x1, x2, x3] is assigned
a weight in a single layer perceptron. These weights are summarized to
produce the output prediction. Some of these weights are more important

7

2.1. Loss functions Optimization algorithms

than others and therefore needs to have a higher value. It is necessary to
have some functions that are able to find how wrong the current weights
are (loss functions), and how they should be updated (Optimizers) [7].

2.1 Loss functions

Loss functions are used in machine learning to measure the error of a pre-
diction in comparison to the true label (correct output value of the input
data), and is in most cases the distance between the prediction and the true
label [7].

J(W) = p− p̂ (2.1)

W can be interpreted as the input weights of a neural network layer. There
are multiple loss functions that return different loss and therefore might im-
pact the training considerably. Loss functions fall in the different categories,
as shown in Figure 2.2 [8].

Figure 2.2: Loss function categories [8]

8

2.1. Loss functions Optimization algorithms

Classification task in machine learning is to approximate a mapping function
from input variables to discrete output variables (called classes or categories)
[20]. For example, a classification task can approximate a function of some
input to a specific color in a set of colors.

Regression task in machine learning is to approximate a mapping function
from input variables to a continuous output variable, such as an integer or
float [20]. A regression task could be, for example, calculating mathematical
expressions.

There is however some overlapping between classification tasks and regres-
sion tasks, such as an integer does exist in the real number set which means
that it is possible to treat an integer as a class in a set of classes. Also, a
classification algorithm may predict a continues value, but this value will
exist in the class label probability [20].

2.1.1 Classification loss functions

Cross entropy and log loss are two loss functions that are mathematically
different. However, when calculating error rates between 0 and 1 they re-
solve to the same [9]. Cross entropy calculates an error by interpreting a
probability distribution. For each index/weight in the distribution, an error
will be given depending on whether that index is the true label index or
not. Cross entropy is given by:

− 1

N

N∑
c=1

(y log(p) + (1− y) log(1− p)) (2.2)

where N is the number of classes, log is the natural logarithm, y is the label
truth value (1 if the correct class, 0 otherwise) and p is the prediction for
class c. Only one part after the + sign is added for summation, since y
can only be 0 or 1. If the prediction value is high for the correct class, the
algorithm would result in a low error value. A low prediction value would
yield a high error value. Conversely, if the prediction value is high for the
wrong class, it would yield high error. The errors are distributed as log loss,
shown in Figure 2.3 [9].

9

2.1. Loss functions Optimization algorithms

Figure 2.3: log loss w.r.t predicted probability [9]

The error output of cross entropy drastically increases when probability
gets very low, as shown if figure 2.3. The purpose of increasing the error
drastically is to penalize confident wrong answers higher than when the
probability is spread, such that a probability distribution as [0.99, 0.01],
with last index being true label, would give an error of ≈ 4.6, while a
distribution of [0.5, 0.5] would give an error ≈ 0.7.

Focal loss was first introduced to address the one-stage object detection
scenario. Focal loss can be considered as an extension of cross entropy and
is defined by:

pt =

{
p, if y > 1

1− p, otherwise
(2.3)

FL(pt) = −α(1− pt)γ log(pt) (2.4)

Focal loss includes a tunable factor γ ≥ 0 for focusing hard negative ex-
amples during training. γ = 2 is said to give best results [21]. Also focal
loss comprise the balancing factor α from balanced cross entropy, to balance
the importance of positive/negatives. Figure 2.4 show the foreground and
background loss distribution dependant on the γ.

10

2.1. Loss functions Optimization algorithms

Figure 2.4: focal foreground and background loss [10]

KL (Kullback-Leibler) Divergent or Relative Entropy can be used as a loss
function to estimate the loss of information from input q to prediction p.
The KL Divergent is given by:

DKL(p||q) =

N∑
i=1

p(xi) log(
p(xi)

q(xi)
) (2.5)

KL Divergent can be used as a loss function for constructing the input as
shown in Figure 2.5 [11].

Figure 2.5: neural network generation of image [11]

Hinge loss is a loss function typically used in support Vector Machine. Hinge
loss is given by:

L(p) = max(0, 1− y • p) (2.6)

11

2.1. Loss functions Optimization algorithms

where p is the score or the probability distribution and y is the degree of
truth to the label (1 for true, -1 for false).

Hinge loss is said to be the preferred choice for classification tasks [22].

2.1.2 Regression loss functions

A commonly used regression loss function is Mean square error (MSE)[8].
MSE is given by:

MSE =

n∑
i=1

(yi − ypi)
2

n
(2.7)

and is the summation of the squared distance between the true label and
predicted value. Figure 2.6 demonstrates MSE loss function where the pre-
dicted values ranges between -10 000 and 10 000, and the true value is
100.

Figure 2.6: MSE loss w.r.t predicted integer value [8]

In MSE, the further away the predicted value is from the true value the
faster the error grows. A loss function that produces a constant increase
in error is Mean Absolute Error (MAE). In MAE the absolute value of the
distance between the predicted value and the true label is summarized to
produce the error as [8]:

12

2.1. Loss functions Optimization algorithms

MAE =

n∑
i=1

|yi − ypi |

n
(2.8)

MAE is able to measure the average magnitude of a set of predictions errors,
not considering directions. Mean Bias Error (MBE) considers directions
when measuring the average magnitude of errors in a set of predictions [8].

Figure 2.7: MAE loss w.r.t predicted integer value [8]

Figure 2.7 shows MAE loss function for values between -10 000 and 10 000
with true label 100. The figure shows that MAE error grows at a constant
rate when moving away from the true label. Considering the optimizing
method gradient descent, minimizing the loss of MSE and MAE, both would
travel towards value 100 with the decrease of loss. But, as further described
below in section 2.2.1, with a high learning rate or ”travel distance” MAE
might travel past the optimal point (value 100) as shown in Figure 2.8[8].

13

2.1. Loss functions Optimization algorithms

Figure 2.8: MAE vs MSE gradient descent with fixed learning rate [8]

The reason one can experience traveling past the optimal point with MAE
loss function, is that the gradient stays the same even though the loss is
decreasing. With MSE the gradient and the loss will decrease while closing
to the optimal point, causing the travel distance to decrease for each step
taken. Another property that is different between MSE and MAE is that
MSE tends to weight outlying weights higher than MAE, which in turn
means that in a set of data, rare points will be considered higher by MSE
than MAE. MSE should be considered when outlying data points are con-
sidered useful, while MAE should be considered if outlying data points are
considered as corrupt data. [8].

Considering a dataset that is heavily biased towards one value, as having
95% of the dataset being the value 1000, both MSE and MAE will fail. MAE
would most likely cause a prediction of 1000 of all inputs, while MSE would
produce more than 5% predictions that are not 1000. One could transform
the target variables in such a way that MSE or MAE are feasible solutions.
However, another possibility is to use the loss function Huber Loss instead.

Huber loss can be considered as a smooth MAE since it attains much of the
same attributes of MAE, but Huber loss takes a parameter (delta) which is
used as the starting point of smoothing as MSE. Huber loss is given by:

Lδ(y, f(x)) =

{
1
2(y − f(x))2, for |y − f(x)| ≤ δ
δ|y − f(x)| − 1

2δ
2, otherwise

(2.9)

Figure 2.9 shows how the Huber loss function acts as MAE until it reaches
δ, then it acts as MSE. The figure shows Huber with δ = 0.1, 1 and 10 with

14

2.1. Loss functions Optimization algorithms

the true value being 0 [8].

Figure 2.9: Huber loss with at delta 0.1, 1 and 10 w.r.t predicted float value
[8]

The benefit of Huber loss over MAE is that Huber loss is able to slow down
and converge towards the optimal point where loss is zero. Also, it is less
sensitive to outlying data points, but is more time consuming since the
parameter δ has to be tuned.

Another regression loss function is Log-Cosh loss which is the logarithm of
the hyperbolic cosine of the predicted error [8] as given by:

L(y, yp) =
n∑
i=1

log(cosh(ypi − yi)) (2.10)

Log-Cosh inherits all the benefits of Huber loss and decreases that rate of
wrong rare data point predictions as is typical of MSE, but does not exclude
them totally. Figure 2.10 shows how Log-Cosh error is distributed with the
true label being 0 [8].

15

2.1. Loss functions Optimization algorithms

Figure 2.10: Log-cosh loss w.r.t predicted float value [8]

The last regression loss function that will be mentioned is Quantile loss.
Quantile loss is typically useful when predicting intervals instead of point
values. Quantile is able to estimate intervals with the non-constant variance
of values and can be considered as an extension of MAE. Quantile loss takes
a parameter quantile γ, which is used to increase or decrease penalizing of
over and underestimations and ranges between 0 and 1. Quantile loss is
given by:

Lγ(y, yp) =
∑

i=yi<y
p
i

(γ − 1) • |yi − ypi |+
∑
yi≥ypi

(γ) • |yi − ypi | (2.11)

Below, in Figure 2.11, one can see how a low γ favours underestimation
while high γ favours overestimation.

16

2.1. Loss functions Optimization algorithms

Figure 2.11: Quantiile loss w.r.t predicted float value [8]

Figure 2.12 shows a loss comparison of the regression models described in
this section.

Figure 2.12: loss w.r.t predicted float value [8]

17

2.1. Loss functions Optimization algorithms

2.1.3 Activation functions

Nonlinear functions, also often referred to as activation functions, are able
to transform vectors values and is used in different layers of the network
depending on the output value ranges. For example, in order to calculate
the loss in classification tasks, the predicted output of the machine learn-
ing algorithm should be transformed into a probability distribution. Some
activation functions are:

• Sigmoid function f(x) = 1
1+e−x

• Hyperbolic Tangent function (Tanh) f(x) = (ex − e−x)/(ex + e−x)

• Softmax function f(xi) = exp(xi)/
∑
j

exp(xj)

• Softsign f(x) = x/(|x|+ 1)

• Rectified Linear Unit (ReLU) function f(x) = max(0, x) =

{
xi, if xi ≥ 0

0, if xi < 0

• Softplus function f(x) = log(1 + exp x)

• Exponential Linear Units (ELUs) f(x) =

{
x, if x > 0

α exp(x)− 1, if x ≤ 0

• Maxout function f(x) = max(wT1 x+ b1, w
T
2 x+ b2)

• Swish Function f(x) = x • sigmoid(x) = x/(1 + e−x)

• ELiSH f(x) =

{
x/(1 + e−x), if x ≥ 0

(ex − 1)/(1 + e−x), if x < 0

18

2.1. Loss functions Optimization algorithms

Sigmoid function

The Sigmoid activation function, also referred to as the squashing or logistic
function, is a nonlinear function used, for example, in feedforward neural
networks [2]. A Sigmoid function is described as:

f(x) =
1

1 + e−x
(2.12)

and is used in the output layer of deep learning models. Sigmoid function has
been successfully applied to neural network domains, such as binary classifi-
cation problems. The sigmoid activation function is highlighted as a highly
used activation function in shallow networks and is easy to understand, but
suffers major drawbacks as gradient saturation and slow convergence. Over
the years, research has produced:

• Hard Sigmoid Function

• Sigmoid-Weighted Linear Units (SiLU)

• Derivative of Sigmoid-Weighted Linear Units (dSiLU)

as three Sigmoid functions that are used in deep learning [2]. The Hard
Sigmoid funcion is described as:

f(x) = clip(
x+ 1

2
, 0, 1) (2.13)

and offers less computational cost compared to the soft Sigmoid function,
also showing promising results on deep learning based binary classification
problems [2].

The SiLu is an approximation function based on reinforcment learning and
is given by:

ak(s) = zkα(zk) (2.14)

where s is the input vector and zk is given by:

19

2.1. Loss functions Optimization algorithms

zk =
∑

wiksi + bk (2.15)

with bias bk and weight wi connected to hidden unit k. SiLu function is
only applicable in hidden layers of reinforcement based systems and is said
to outperform ReLU function 2.1.3 [2] as shown in figure 2.13.

Figure 2.13: response comparison of SiLU and ReLU [2]

The derivative of SiLU (dSiLU) is used in gradient descent 2.2.1 for learning
updates of weight parameters. The function is given by:

ak(s) = α(zk)(1 + zk(1− α(zk))) (2.16)

and is said to outperform the standard sigmoid function significantly [2] as
shown in figure 2.14.

20

2.1. Loss functions Optimization algorithms

Figure 2.14: response comparison of dSiLU and Sigmoid [2]

Hyperbolic Tangent

The Hyperbolic Tangent (Tanh) activation function is a zero-based function
that ranges between -1 and 1. The function is described as:

f(x) =
ex − e−x

ex + e−x
(2.17)

and performs better than Sigmoid functions for multi-layer neural networks
used in deep learning. The main advantage of the Tanh function is that
the output is centralized around zero, which is preferable during the back-
propagation process. However, as with the Sigmoid function, the Than
function does not solve the gradient saturation problem. The Tanh functions
are typically used in a recurrent neural network for speech recognition and
language processing tasks [2].

21

2.1. Loss functions Optimization algorithms

Figure 2.15: Hyperbolic Tangent function response representation [2]

Hard Hyperbolic Tangent (Hardtanh) function is a more computational ef-
ficient variant of the Tanh activation function. The Hardtanh function
has been applied to natural language applications and is said to be an im-
provement in speed and accuracy over the regular Tanh function [2]. The
Hardtanh is given by:

f(x) =

−1, if x < −1

x, if − 1 ≥ x ≤ 1

1, if x > 1

(2.18)

Softmax

The Softmax activation function is used to compute the probability distri-
bution for a vector of real numbers and is mostly used in output layers of
neural networks. The Softmax function can be used to produce the prob-
ability of a class in a set of classes. While Sigmoid functions are used in
binary classification problems, Softmax is used when there exist more than
two classes [2].

22

2.1. Loss functions Optimization algorithms

f(xi) =
exp(xi)∑
j

exp(xj)
(2.19)

Rectified Linear Unit

The rectified linear unit (ReLU) function eliminates the gradient saturation
problem, which is present in the activation functions above. To achieve this,
ReLU performs a threshold operation on each of the input elements, setting
all input elements with values less than zero to zero:

f(x) = max(0, x) =

{
xi, if xi ≥ 0

0, if xi < 0
(2.20)

The main advantage of using the ReLU activation function is that it offers
faster computation as it does not compute exponentials or divisions. The
first limitation of the ReLU activation function is that it overfits easily
compared to the sigmoid function. To reduce the effect of over-fitting, the
dropout technique has been adopted. The second limitation is that ReLU
units are fragile during training and can result in ’dead’ neurons. A large
gradient flowing through the network can cause the the weights to update
in such a way that the neurons will never activate again, thereby causing
the gradients flowing through these units to always be zero. However, the
ReLU has overall improved the performance of deep neural networks [2].

In order to deal with the dead neuron problem the leaky ReLU activation
function was proposed:

f(x) = αx+ x =

{
xi, if xi > 0

αx, if xi ≤ 0
(2.21)

The leaky RelU introduces a small negative slope, in order to keep the
weight updates alive during the propagation process.

23

2.1. Loss functions Optimization algorithms

Softplus

The Softplus function is a smooth primitive of the sigmoid function and
shares similarities with the ReLU function with its nonzero gradient prop-
erties. The smoothing properties gives it improved stabilization and per-
formance compared to Sigmoid and ReLU functions, where it required less
epochs to converge under training [2].

f(x) = log(1 + expx) (2.22)

The Softplus function has mainly been used in statistical applications, but
has also seen some use in speech recognition systems.

Exponential Linear Units (ELUs)

The Exponential linear unit (ELU) proposed in [23] is given by

f(x) =

{
x if x > 0

α(exp(x)− 1) if x ≤ 0
, f ′(x) =

{
1 if x > 0

f(x) + α if x ≤ 0

(2.23)

where α is a hyperparameter which controls the value to which the ELU
saturates for negative net inputs. As with ReLUs and LReLUs, the ELU
activation function diminish the vanishing gradient effect. The reason for
this is that the positive part is the identity, which means the derivative is one
instead of contractive. Tanh and sigmoid is on the other hand contractive
almost everywhere [23].

However, as opposed to ReLUs, the ELUs have negative values , which
pushes the mean of the activations closer to zero. This enable faster learning,
as they bring the gradient closer to natural gradient [23].

Although α can be set to any value, if α! = 1 the function would be not be
differentiable at x = 0. This means that learning the parameter α would
break differentiability at x = 0. For this reason an alteration was proposed
in [24] called parametric exponential linear unit (PELU) and is given by

24

2.1. Loss functions Optimization algorithms

f(x) =

{
ζx if x ≥ 0

α(exp(xβ)− 1) if x < 0
, α, β, ζ > 0 (2.24)

This activation function has reportedly better performance than the ELU
activation function used in CNN’s on the CIFAR-10/100 and ImageNet
datasets[24].

Maxout

The Maxout activation function applies non-linearity as the dot product
between the weights and the data of the network. It inherits the properties
of ReLU and LReLU where there are no dying neurons or saturation. The
big drawback of the Maxout function is that it is computationally expensive,
as it doubles all the parameters used in the neurons [2]. The function is given
by

f(x) = max(wT1 x+ b1, w
T
2 x+ b2) (2.25)

where w = weights, b = biases.

Swish

The Swish activation function is unlike the previous activation functions in
the sense that it is the first which combines two activation functions into one.
It combines the sigmoid and input function to create a hybrid activation
function. The swish function provides smoothness and is bounded below
zero and unbounded above zero and is given by [2]:

f(x) = x · sigmoid(x) =
x

1 + e−x
(2.26)

The Swish function does not suffer from vanishing gradient problems, but
still attains good propagation of information during training. Reportedly,
it performs better than ReLU on deep learning classification tasks [2].

25

2.1. Loss functions Optimization algorithms

ELiSH

The Exponential linear Squashing activation function (ELiSH) is the most
recently proposed activation function included and shares properties with,
and is highly inspired by the Swish function. It is based on the sigmoid and
ELU functions and is given by:

f(x) =

{
x

1+e−x , if x ≥ 0
ex−1
1+e−x , if x < 0

(2.27)

The similarities with swish is apparent, as the negative part of the function
is a multiplication of the Sigmoid and ELU functions and the positive part
remains the same as Swish [25].

HardELiSH is a variation of the ELiSH function. The name is derived from
the fact that the negative part is a multiplication of the HardSigmoid and
ELU functions and the positive part is a multiplication of the Linear and
the HardSigmoid functions [2] and is given by

f(x) =

{
x×max(0,min(1, x+1

2)), if x ≥ 0

(EX − 1)×max(0,min(1, x+1
2)), if x < 0

(2.28)

The motivation behind these activation functions was to take advantage
of composite functions. As with Swish, the Sigmoid functions improves
the informational flow and the Linear removes the issues with vanishing
gradients [2].

26

2.2. Optimization Optimization algorithms

Figure 2.16: The activation functions HardELiSH and ELiSH function (red),
and their derivatives (blue dotted) [2]

2.2 Optimization

Optimization can be considered the learning of most machine learning algo-
rithm. The optimization task is the task of minimizing the loss calculated
by the loss function in such a way that the mapping function between input
and output variables has the lowest loss, zero if possible. Typically optimiz-
ing in machine learning is altering the value of the weights in such a way
that the loss travel towards zero.

There are multiple ways for optimizing the mapping function, for example,
one may generate a set of random weights in hope that one of the sets will
be the correct. Generating random sets of weights will, given time, find
the best mapping function, but that is given time (most cases, very long
time). Another way is to increment or decrement each weight respectively
and check if the loss for the weights is higher or lower. Considering a
simple scenario, walking on a mountain where you want to get to the top
(without knowing where the top is), you could take one step and check if
you are higher above water, if not, step back and try another direction. By
stepping a certain amount of time one should on average be able to reach
the top faster than randomly landing all across the mountain.

Stepping seems like a good optimizing function, but finding the direction is

27

2.2. Optimization Optimization algorithms

cumbersome if one simply randomly chooses the direction. Some function
that describe the slope of the mountain is needed to optimize each step in
the stepping function. It turns out that there is a way of optimizing what
direction to take, one may consider it as a feeling of the mountain slope,
but in machine learning its following the gradient of the loss function [4].
Figure 2.17 below shows the steepest direction given by the gradient.

Figure 2.17: update direction given by gradient [4]

2.2.1 Gradient Descent

Gradient descent is a common algorithm used to update the mapping func-
tion between input and output variables, and uses loss functions loss output
to determine the best update. Gradient descent takes a tunable parameter
called learning rate, also called step, which determines the update size. The
rate of learning may deeply impact the minimizing function, since a high
learning rate will for sure cause the model to step over the optimal learning
point, while a low learning rate will increase the time it takes to learn a
task. Consider climbing a mountain and the learning rate to be the number
of meters you take each step. If the top of the mountain is 10 meters away,
but your step size is 20 meters, you will never be able to stand on the top,
you will simply overstep each time. On the other hand if the top is 100
meters away, but your step size is 0.0001 meter, it will take many hours to

28

2.2. Optimization Optimization algorithms

reach the top.

There are multiple versions of gradient descent, where batch gradient de-
scent can be considered the first version, or vanilla algorithm, and is given
by:

θ = θ − η • ∇θJ(θ) (2.29)

where η is the learning rate an ∇ is the gradient.

Batch gradient descent computes the descent of the whole training set to
make one update, which is not preferable for 3 reasons:

• size of memory used for one update

• time consumed per update

• no updates after initial training

Stochastic gradient descent on the other hand computes a gradient for each
sample x with true label y and is given by:

θ = θ − η • ∇θJ(θ;xi; yi) (2.30)

Since stochastic gradient descent computes the gradient at each example,
it is able to converge to a minima much faster. Stochastic gradient descent
also enables updates after initial training. Since stochastic gradient descent
updates weights at each example, the fluctuation of the travel path is larger
than the batch gradient descent. High fluctuation enables discoveries of new
possible best paths, but is prone to overshoot the optimal point. On the
other hand, it has been shown that decreasing the learning rate over time
will enable stochastic gradient descent to converge [12].

The third variant of gradient descent is mini-batch gradient descent. Mini-
batch gradient descent performs updates for small blocks of the training
data, and so can be considered to have the advantages of both vanilla gra-
dient descent and stochastic gradient descent [12]. Mini-batch gradient de-
scent is given by:

29

2.2. Optimization Optimization algorithms

θ = θ − η • ∇θJ(θ;xi:i+n; yi:i+n) (2.31)

where n is the the number of training example per batch.

Mini-batch gradient descent, because of its reduced variance and high effi-
ciency gradient matrix computation, can be considered the best choice of
the three described above. On the other hand, the original mini-batch gra-
dient descent came with some challenges. Getting trapped in a sub optimal
solution is one of the key challenges. Imagine climbing a mountain blind-
folded. You know that you are climbing a mountain, but do you know if
the climb ends in the actual top. Even though the mountain slopes down in
every direction you turn, the mountain may slope back up again and bring
you higher than the point at which you are currently standing.

A similar issue occurs when there are saddle points. Saddle points are when
one dimension slopes up while another slopes down as shown in figure 2.18.

Figure 2.18: saddle point of z = x2 − y2

The saddle points are typically surrounded with the same error causing the
gradient to go towards zero in all dimensions. There are also other similar
challenges that arise from using the gradient. Since the travel path is always

30

2.2. Optimization Optimization algorithms

along the steepest route, as shown in figure 2.19 below, one may be walking
up and down ravines without traveling in the optimal direction [12].

Figure 2.19: travel path of stochastic gradient descent [12]

A method called momentum dampens the constant shifting directions, while
accelerating the relevant directions. Stochastic gradient descent with mo-
mentum is given by:

vt = γvt−1 + η∇θJ(θ) (2.32)

θ = θ − vt (2.33)

where γ is used to get a fraction of the update vector from the previous
update. γ is typically set to 0.9 [12]. Efficiency for ravine scenarios is
increased when using momentum as shown in figure 2.20.

Figure 2.20: travel path of stochastic gradient descent with and without
momentum [12]

A challenge with momentum is the increase in speed, in that the accelera-
tion might cause overstepping, which might take additional steps to correct.

31

2.2. Optimization Optimization algorithms

Another model similar to momentum is Nesterov accelerated gradient. Nes-
terov accelerated gradient looks at the approximate future position, in ad-
dition to the last position from the momentum model. Nesterov accelerated
gradient is given by:

vt = γvt−1 + η∇θJ(θ − γvt−1) (2.34)

θ = θ − vt (2.35)

Figure 2.21 show how normal momentum (blue arrow) sharply accelerates
in a direction, while Nesterov accelerated gradient first makes an initial
calculation (brown error), and based on the approximate next position (red
arrow), makes an update (green arrow) that is more precise than the normal
momentum [12].

Figure 2.21: momentum and Nesterov accelerated gradient updates [12]

Another challenge of gradient descent variants are tuning the learning rate.
The learning rate is statically set as a value, either high or low, at the start
of training when using the gradient descent methods described above. In
terms a high learning rate might cause the model to not converge, while a low
learning rate will cause a longer learning time. The better solution would
be to start with a high learning rate and decrease it over time. Adagrand
aims to solve the learning rate issue by applying a learning rate update
during training, while, in addition, enabling individual learning rates per
parameter. Adagrand is given by:

gt,i = ∇θJ(θt,i) (2.36)

θt+1,i = θt,i −
η√

Gt,ii + ε
� gt,i (2.37)

32

2.2. Optimization Optimization algorithms

where gt,i is the gradient with respect to parameter θi, Gt ∈ Rd×d is a matrix
containing the sum of the gradients squares, and ε is a value to avoid division
by zero, typically 1e−8. The method is said to perform much worse without
the square root operation [12].

One flaw of Adagrand is that the accumulated sum in the denominator
grows rapidly, causing the learning rate to rapidly approach zero. When
learning rate is infinitely small, the learning itself becomes absent.

Another method called Adadelta reduces the aggressive decrease in learning
rate by restricting the accumulated gradients. Adadelta restricts accumu-
lated past gradients to a fixed size w. As opposed to storing the previous
squared gradients, Adadelta stores the decaying average of the past squared
gradients. Adadelta is given by:

∇θt = −RMS[∇θ]t−1
RMS[g]t

gt (2.38)

θt+1 = θt +∇θt (2.39)

where RMS is the root mean square, replacing learning rate as an initial
parameter. Observing figure 2.22 below, one could easily see that Adadelta
is outperforming the others for saddle point scenarios, while also performing
better on a regular loss surface [12].

Figure 2.22: comparison of optimizing methods [12]

Adam is a method that extends on Adadelta. Adam stores decaying aver-
ages of past squared gradients vt as Adadelta, while also, similar to momen-
tum, keeping an exponentially decaying average of past gradients mt [12].

33

2.3. Conclusion Optimization algorithms

Adam can typically be seen as applying friction, such that flat surfaces in
the error spaces are preferred. Adam is given by:

θt+1 = θt −
η√
v̂t
m̂t (2.40)

Where v̂t and m̂t are the bias-correction of the past squared gradients (vt)
and exponential past squared gradients (mt).

Adam is said to work well in practice, but a challenge of Adam is that due
to exponential averaging, informative mini batches that occur rarely are
diminished [12].

2.3 Conclusion

In this chapter we have explored the supervised, unsupervised and semi-
supervised learning methods. We have presented some of the more promi-
nent loss functions, including classification loss functions, regression loss
functions and activation functions. Lastly, we have explored some of the
more prominent optimization functions using gradient descent.

34

Chapter 3

End-to-End Memory
Networks

3.1 Introduction

Instructing machines that can converse like a human for real-world objec-
tives is possibly one of the crucial challenges in artificial intelligence. In
order to construct a significant conversation with human, the dialog system
is required to be qualified in the perception of natural language, constructing
intelligent decisions as well as producing proper replies [26, 27, 28]. Dialog
systems, recognized as interactive conversational agents, communicate with
the human through natural language in order to aid, supply information
and amuse. They are utilized in an extensive applications domain from
technical support services to language learning tools [29, 30].

In artificial intelligence area [31, 32, 33], end-to-end dialog systems has
gained interest because of the current progress of deep neural networks.
In [14] a gated end-to-end trainable memory network is proposed which is
learning in an end-to-end procedure without the utilization of any extra
supervision signal. In [16] the original task is broken down into short tasks
where they should be individually learned by the agent, and also built in
order to perform the original task. In [34] a long short term memory (LSTM)
model is suggested which learns in order to interact with APIs on behalf of
the user. In [35] a dynamic memory network is introduced which contains

35

3.2. Memory Networks End-to-End Memory Networks

tasks for part-of-speech classification as well as question answering, also uses
two gated recurrent units in order to carry out inference. In [36] the memory
network has been implemented which needed supervision in every layer of
the network. In [37] a set of four tasks in order to test the capability of end-
to-end dialog systems has been introduced which focuses on the domain
of movies entities. In [38] a word-based method to dialog state tracking
utilizing recurrent neural networks (RNNs) is proposed which needs less
feature engineering. Even though neural network models include a tiny
learning pipeline, they need a remarkable content of the training. Gated
recurrent network (GRU) and LSTM units permit RNNs to deal with the
longer texts needed for question answering. Additional advancements to be
mentioned as attention mechanisms, as well as memory networks, permit
the network to center around the most related facts.

In this chapter, the applications of different types of memory networks are
studied on data from the Dialog bAbI. The performance results demonstrate
that all the proposed techniques attain decent precision on the Dialog bAbI
datasets. The best performance is obtained utilizing UN2N.

3.2 Memory Networks

3.2.1 End-to-End Memory Network with Single Hop

We will first explain the end-to-end memory network (N2N) using a single
hop (shown in its entirety in figure 3.1) and in the next section, we will
explain how this structure is expanded into multiple hops. The N2N model
takes a discrete number of inputs (x̃1, x̃2...x̃i), which it writes to the memory,
a query q̃ and outputs an answer ã. The set of {x̃i} is converted into memory
vectors {m̃i} by using an embedding matrix Ã, with the size (d×V), where
d is the vector size and V is the number of words in the vocabulary. In
the same sense, the question q̃ is converted into the vector ũ, using the
embedding matrix B̃ with the same dimensions as Ã.

The matrices inner product is utilized in order to calculate the match be-
tween each the memory inputs m̃i and the question ũ, which will cause
the creation of the attention. Then, by performing a softmax operation on
the attention, the probability distribution p̃i across all the words from the
memory input is created.

36

3.2. Memory Networks End-to-End Memory Networks

p̃i = Softmax(ũT m̃i) (3.1)

Each of the input sentences x̃i has a corresponding output vector c̃i, which is
created using a third embedding matrix C̃. The response vector Õ is created
by the sum of output vectors weighed with the probability distribution of
the memory input.

Õ =
∑
i

p̃ic̃i (3.2)

Finally, in order to generate the predicted answer, the sum of the output
vector and the question embedding is passed through the weight matrix W̃
with a subsequent softmax operation.

ã = Softmax(W̃ (Õ + ũ)) (3.3)

Figure 3.1: End-to-end memory network with a single hop[13]

37

3.2. Memory Networks End-to-End Memory Networks

3.2.2 End-to-End Memory Network with Multiple Hops

The N2N architecture contains two major components: supporting memo-
ries and final answer prediction [13]. Supporting memories consist of a set
of input and output memory represented by memory cells. In complicated
tasks with the requirement of multiple supporting memories, the model can
be built to accommodate more than one set of input-output memories by
stacking a number of memory layers. Each memory layer in the model is
called a hop, also the input of the (K + 1)th hop is the output of the Kth
hop:

ũk+1 = õk + ũk (3.4)

Figure 3.2: A three layer end-to-end memory network[13]

Each layer contains its own embedding matrices ÃK and C̃K , which is uti-
lized to embed the memory inputs x̃i. The prediction of the answer to the
question q̃, is carried out by the last memory hop:

ã = softmax(W̃ (õk + ũk)) (3.5)

38

3.2. Memory Networks End-to-End Memory Networks

where ã is taken to be the predicted answer distribution, W̃ (of size V ×d) is
considered to be a parameter matrix for the model in order to learn, also K is
the total number of hops. The N2N architecture with three hop operations
is shown in Figure 3.2. The hard max operations within each layer are
substituted with a continuous weighting from the softmax. The method
takes a discrete set of inputs x̃1, ..., x̃n which are stored in the memory, a
question q̃, also outputs a reply ã. The model can write all x̃ to the memory
up to a fixed buffer size, also it obtains a continuous demonstration for x̃
and q̃. Afterward, the continuous demonstration is processed with multiple
hops in order to generate ã. This permits backpropagation of the error
signal through multiple memory accesses back to the input while training.

In addition to the architecture above, the model implements something
called match-features.

3.2.3 Gated End-to-End Memory Network

The gated end-to-end memory network (GN2N) adopts the idea of an adap-
tive gating mechanism introduced in Highway Networks in [39]. Highway
networks can be understood as an extension of a feedforward neural network
consisting of n layers, where the nth layer applies a non-linear transform H
(W̃H) on its input xn, to produce the output yn. Which makes xn the input
to the network and yn as the output:

yn = H(x, W̃H) (3.6)

In [39] Srivastava et al. additionally define two additional non-linear trans-
formations T (x, W̃T) and C(x, W̃C):

yn = H(x, W̃H) · T (x, W̃T) + x · C(x, W̃H) (3.7)

These transforms are called the transform and carry gate (C and T), as they
express how much of the output is produced by transforming and carrying
the input. Furthermore, for simplicity, the carry gate is set as C = 1−T (x):

yn = H(x, W̃H) · T (x, W̃T) + x · (1− T (x, W̃T)) (3.8)

39

3.2. Memory Networks End-to-End Memory Networks

Liu and Perez [14] argues that residual networks can be seen as a special case
of Highway Networks, where the transform and carry gate are substituted
by the identity mapping function. Which leaves us with:

y = H(x) + x (3.9)

Equation 3.4 is in fact very similar, where one can view õk as the residual
function and ũk as the shortcut connection. As opposed to hard-wired
skip connections in Residual networks, highway networks offer and adaptive
gating mechanism. This mechanism was therefore adopted into the memory
network (N2N), creating the gated memory network (GN2N). This makes
the network able to dynamically conditioning the memory reading operation
on the controller state ũK at every hop, see Figure 3.3. In GN2N, formula
3.4 is reformulated as below [14],

TK(ũk) = σ(W̃K
T ũ

K + b̃KT) (3.10)

ũK+1 = õK � TK(ũk) + ũk � (1− TK(ũK)) (3.11)

where W̃K
T ũ

K and b̃KT are taken to be the hop-specific parameter matrix
and bias term for the kth hop respectively. TK(x̃) is the transform gate for
the Kth hop and � is the Hadamard product.

40

3.2. Memory Networks End-to-End Memory Networks

Figure 3.3: Gated end-to-end memory network [14]

3.2.4 End-to-End memory Networks with Unified Weight
Tying

In [13], two kinds of weight tying are proposed for N2N, namely adjacent and
layer-wise. Layer-wise approach portions the input and output embedding
matrices across various hops (i.e., Ã1 = Ã2 = ... = ÃK and C̃1 = C̃2 = ... =
CK). Adjacent approach portions the output embedding for a given layer

with the corresponding input embedding (i.e., ˜AK+1 = C̃K). Furthermore,
the matrix W̃ which predicts the answer, as well as the question embedding
matrix B̃, are developed as W̃ T = C̃K and B̃ = Ã1. These weight tying
mechanisms are shown in figure 3.4, where the dotted lines indicate the
adjacent approach and the lines indicate the layer-wise approach.

B̃ Ã1 Ã2 Ã3

C̃1 C̃2 C̃3 W̃ T

Figure 3.4: Illustrating the two different weight tying mechanisms in on a
N2N memory network with 3 hops [15]

41

3.2. Memory Networks End-to-End Memory Networks

Both of these techniques reportedly [15] perform well, albeit inconsistently
on some tasks. Therefore in [15], a dynamic mechanism is designed which
permits the model to choose which of the two weight tying techniques on
the basis of the input. Therefore, the embedding matrices are developed
dynamically for every instance which makes UN2N more efficient compared
with N2N and GN2N where one weight tying technique is used throughout
all the embeddings. In UN2N a gating vector z̃, described in equation 3.15,
is used in order to develop the embedding matrices, ÃK , C̃K , B̃, and W̃ .
The embedding matrices are influenced by the information transported by
z̃ related to the input question ũ0 and the context sentences in the story
m̃t. Therefore,

ÃK+1 = ÃK � z̃ + C̃K � (1− z̃) (3.12)

C̃K+1 = C̃K � z̃ + C̃K � (1− z̃) (3.13)

where � is taken to be the column element-wise multiplication operation,
also C̃K+1 is the unconstrained embedding matrix. In 3.12 and 3.13, the
large value of z̃ leads UN2N towards the layer-wise approach and the small
value of z̃ leads UN2N towards the adjacent approach. In UN2N, at first,
the story is encoded by reading the memory one step at a time with a gated
recurrent unit (GRU) as below,

h̃t+1 = GRU(m̃t, h̃t) (3.14)

such that t is considered to be the recurrent time step, also m̃t is taken to
be the context sentence in the story at time t. Afterward, the following
relation is defined,

z̃ = σ(W̃z̃

[
ũ0

h̃T

]
+ b̃z̃) (3.15)

where h̃T is the last hidden state of the GRU which presents the story,
(W̃z̃ is considered as a weight matrix, b̃z̃ is bias term, σ is taken to be the

sigmoid function and

[
ũ0

h̃T

]
is the concatenation of ũ0 and h̃T . A linear

42

3.3. Experiment and results End-to-End Memory Networks

mapping GεRd×d is added for updating the connection between memory
hops as below,

ũK+1 = ÕK + (G� (1− z̃))ũK (3.16)

3.3 Experiment and results

3.3.1 Experiment Setup

In this section, the data results were gathered from a range of publications
which tackled the tasks of this dataset. Bordes et al.[16] provided the re-
sults for rule-based systems (RBS), TF-IDF match, Nearest Neighbor (NN),
Supervised Embeddings and Memory network (N2N). Liu & Perez provided
the results for the gated end-to-end memory network (GN2N) [14]. Liu et
al. provided the results for unified weight tying end-to-end memory network
(UN2N)[15].

3.3.2 Dataset

In Learning End-to-End Goal-Oriented Dialog [16], Bordes, et al. introduced
a testbed to train and evaluate end-to-end goal oriented dialog systems. The
dataset requires the systems to manipulate sentences and symbols in order
to conduct a conversation, perform API calls and use the information from
these API calls. The dataset is set in the context of restaurant reservation,
consisting of five tasks and includes a knowledge base (KB) containing dif-
ferent restaurants and their properties. These tasks cover different segments
of the conversation and will test the model’s ability to manage dialogues,
query the KB, interpreting these queries to continue the dialogue and deal-
ing with restaurant properties previously not seen under training (OOV
tasks).

Task 1: Issuing API calls The chatbot asks questions in order to fill
the missing areas, and finally produces a valid corresponding API call. The
questions asked by the bot is for collecting information in order to make the
prediction possible.

43

3.3. Experiment and results End-to-End Memory Networks

Task 2: Updating API calls In this part users update their requests. The
chatbot asks from users if they have finished their updates, then chatbot
generates updated API call.

Task 3: Demonstrating options The chatbot provides options to users
utilizing the corresponding API call.

Task 4: Generating additional information User can ask for the phone
number and address and the bot should use the knowledge bases facts cor-
rectly in order to reply.

Task 5: Organizing entire dialogues Tasks 1-4 are combined in order
to generate entire dialogues.

Figure 3.5: The different goal-oriented dialog tasks. A user (green) chats
with a dialog system. Where the dialog system predicts responses (blue)
and API calls (red), giving the API call results(light red) [16]

44

3.3. Experiment and results End-to-End Memory Networks

These five tasks are all generated from the same KB and it contains 1000
dialogues for training, validation and test[16]. In addition to these five tasks,
a sixth task was created. This task is similar to task five, as it contains full
dialogues, but instead of being generated, it is converted from the second
dialog state tracking challenge [40] and contains dialog extracted from a
real online concierge service. Task one to five also contains two test sets,
one which contains only entities which are used in the training set and one
which uses entities which are not seen in the training set.

3.3.3 Match features

Words that denote an entity have two important traits: 1. Exact matches
are usually more appropriate than approximate matches. 2. They frequently
appear as OOV words. This leads to two problems. Firstly, it is challenging
to differentiate between exact matches and approximate matches in a lower
embedding space. Secondly, words that has not been seen under training will
not have any available word embedding, which usually results in failure [16].
In order to deal with the issues regarding entity types, the different end-
to-end memory networks also implement something called match features,
suggested by Bordes et al.[16]. With this, they augment the vocabulary
with entity type words, one for each of the KB entity types. If a word is
found in Input/Memory, candidate and also is considered as a KB entity,
the candidate representation will be augmented with this KB entity type
word.

3.3.4 Experiment Results

Efficiency results on Dialog bAbI tasks are demonstrated in Table 1, with
rule-based systems, TF-IDF, nearest neighbor, supervised embedding, N2N,
GN2N, and UN2N. As is shown in Table 1, the rule-based system has a high
performance on tasks 1-5. However, its performance reduces when dealing
with DSTC-2 task. TF-IDF match has poor performance compared with
other methods on both the simulated tasks 1-5 and on the real data of task
6. The performance of the TFIDF match with match type features consider-
ably increases but is still behind the nearest neighbor technique. Supervised
embedding has higher performance compared with TF-IDF match and near-
est neighbor technique. In task 1, supervised embedding is fully successful

45

3.4. Conclusion End-to-End Memory Networks

but its performance reduces in task 2-5, even with match type features.
GN2N and UN2N models outperform the other methods in DSTC-2 task
and Dialog bAbI tasks respectively.

TF-IDF -match match
Task RBS

no type type
NN

S-emb N2N GN2N UN2N S-emb N2N GN2N UN2N

1.Issuing API calls 100 5.6 22.4 55.1 100 99.9 100 100 83.2 100 100 100

2.Updating API calls 100 3.4 16.4 68.3 68.4 100 100 100 68.4 98.3 100 100

3.Displaying options 100 8.0 8.0 58.8 64.9 74.9 74.9 74.9 64.9 74.9 74.9 74.9

4.Generating additional information 100 9.5 17.8 28.6 57.2 59.5 57.2 57.2 57.2 100 100 100

5.Full dialogs 100 4.6 8.1 57.1 75.4 96.1 96.3 99.2 76.2 93.4 98.0 99.4

Avarage 100 6.2 14.5 53.6 73.2 86.1 85.7 86.3 70.0 93.3 94.6 94.8

1.(OOV) Issuing API calls 100 5.8 22.4 44.1 60 72.3 82.4 83 67.2 96.5 100 100

2.(OOV) Updating API calls 100 3.5 16.8 68.3 68.3 78.9 78.9 78.9 68.3 94.5 94.5 94.5

3.(OOV) Displaying options 100 8.3 8.3 58.8 65 74.4 75.3 75.2 65 75.2 75.1 76.3

4.(OOV) Generating additional information 100 8.8 17.2 28.6 57 57.6 57 57 57.1 100 100 100

5.(OOV) Full dialogs 100 4.6 9 48.4 58.2 65.5 66.7 67.8 64.4 77.7 79.4 79.5

Avarage 100 6.4 14.7 49.6 61.7 69.7 72.1 72.4 64.4 88.8 89.7 89.8

6. Dialog state Tracking 2 33.3 1.6 1.6 21.9 22.6 41.1 47.4 42.4 22.1 41 48.7 42.9

Table 3.1: The accuracy results of rule-based systems (RBS), TF-IDF, near-
est neighbour (NN), supervised embedding (S-emb), N2N, GN2N and UN2N
methods.

3.4 Conclusion

End-to-end learning scheme is suitable for constructing the dialog system
because of its simplicity in training as well as effectiveness in model up-
dating. In this chapter, the applications of various memory networks are
studied on data from the Dialog bAbI. The performance results demonstrate
that all the proposed techniques attain decent precision on the Dialog bAbI
datasets. The best performance is obtained utilizing UN2N. In order to eval-
uate the true performance of the proposed methods, extra experimentation
are required utilizing wide non-synthetic dataset.

46

Part II

Contributions

47

Chapter 4

Proposed approach

In chapter 2 and 3 we have spoken of different optimization techniques and
memory networks. When doing our own testing of the memory networks
we found them to perform worse when dealing with non-synthetic data and
dealing with OOV-problems. In order to mitigate these problems, we are
going to explore different ways of representing the data in memory networks.
As is usual with machine learning algorithms like these, the data is required
to be represented as a vector of a fixed length. Among the most common
of these fixed length representations are bag-of-words and bag-of-n-grams
[41]. Bag-of-words representation is used in all of the memory networks
mentioned in chapter 3 and is often used for its simplicity and accuracy.
However, this representation is not without issues. In particular, as the
sentence representation is a concatenation of a series of word vectors, the
word order in a sentence is lost. As such, two different sentences can have
the exact same representation as long as the same words are used. Bag-
of-n-grams do consider word order in a short context, but it suffers from
data sparsity and high dimensionality [42]. There are two different repre-
sentations that are proposed, which not only preserve word order, but also
seek to attain some semantic meaning from the words. These models are
the continuous word vector model introduced by Mikolov et al. [17] and the
paragraph vector model introduced by Le & Mikolov [42].

Previous work [43] suggests that integrating a continuous word vector ar-
chitecture into the Memory network resulted in no noticeable benefit. How-
ever, we will briefly explain its architecture in this chapter as it serves to

49

4.1. Distributed bag-of-word memory networkProposed approach

gain an understanding of the paragraph vector architecture which builds
on ideas from it. We will propose a new memory network model used for
goal-oriented dialog and evaluate it by using the Dialog bAbI dataset [16].

4.1 Distributed bag-of-word memory network

4.1.1 Continuous word vectors

Mikelov et al. [17] aimed to create a natural language processing (NLP)
system which could produce high-quality word vectors from bigger datasets
compared with the work that was previously done by NLP systems which
produced continuous word representations. The goal was not only to have
similar words produce resembling vectors, but also that words can have
multiple dimensions of similarities as shown previously in [44]. As the goal
was to create a system which could handle bigger datasets, the system would
need lower training complexity than the competing systems.

The continuous bag-of-words model (CBOW) consists of input, projection
and output layers. In the input layer, the N previous words are encoded by
using 1-of-V coding, where V is the size of the vocabulary and the words
representations are of size D. The input layer is then projected onto the
projection layer which has a dimension of N×D, where the projection layer
is shared among all the words [17].

The skip-gram model is much like the CBOW model, but instead of pre-
dicting a word based on the context, it will take the current word and use
it to predict words within a specified range of that word. Both models can
be seen in figure 4.1[17].

Mikelov et al. [17] report that the continuous skip-gram model performs
better with semantic word relations and the CBOW model perform better
with syntactic word relations. Both of them perform considerably better
than previous continuous NLP systems.

50

4.1. Distributed bag-of-word memory networkProposed approach

Figure 4.1: CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts the surrounding words from the given
current word [17]

4.1.2 Paragraph vectors

Unlike the two previous NLP systems, where a continuous vector represen-
tation of a word is learned, the paragraph vector learns a continuous vector
representation for text pieces. These pieces can be as small as sentences or
entire documents. However, similarly to the previous, there are two related
architectures that mirror each other in shape. As with word vectors, in the
paragraph vector model word vectors are asked to contribute to a predic-
tion of a word. In this way, even though the word vectors are randomly
initialized, the model will eventually be able to learn the semantics of the
words as an indirect result of these prediction tasks.

The first model, Distributed Memory Model of Paragraph Vectors (PV-DM)
represents all the different paragraph vectors as a column in matrix D and
all the word vectors as a column in matrix W . Then, the word vectors and
paragraph vectors are concatenated or averaged in order to predict the next
word in the context.

The second model, Distributed bag-of-words of Paragraph Vectors (PV-
DBOW) is much like the skip-gram model. Instead of predicting based on

51

4.1. Distributed bag-of-word memory networkProposed approach

the context of the words, it will predict words randomly sampled from the
paragraph.

Which leads to our first proposed model.

4.1.3 Proposed model

The first of the two new models we propose in this paper is the Distributed
bag-of-words memory network. The name is derived from the usage of the
DBOW architecture for vector representations of documents.

It utilizes the base structure of the end-to-end memory network with one
key change. The three word embeddings A, B and C is replaced with the
use of a pre-trained distributed bag-of-words (DBOW) NLP. The idea is
that by passing these sentences to a paragraph vector NLP will alow the
network to learn the semantics of words. Specifically we hope it will be able
to identify key words such as restaurant names, locations and numbers as
this is essential to solve the goal oriented dialogue task set (more on this
later). All the queries and answers are passed through DBOW, where it is
inferred a sentence vector. In a sense, every sentence is treated as a never
before seen sentence. This means we can pass through sentences with words
never before seen by the memory network. As each of the sentences gets an
inferred vector, sentences that appear multiple times in the data will have
a slight variance in their vector value. However, increasing the training
epochs of the DBOW inference will result in more uniform results. This
added random noise will hopefully make it easier for the memory network
to generalize.

The reason we chose to use the DBOW architecture over the PV-DM is
that for the experiments, which we will explain more in depth later, word
ordering is not particularly important. Applying the PV-DM architecture
would allow us to expand our model to generate sentence answers from the
output from the memory network, as opposed to predicting a response from
a set of responses. We will however leave this for future work. The model
with a single hop can be seen in figure 4.2.

52

4.2. Key-tagging Memory Network Proposed approach

Figure 4.2: The DbowN2N model

4.2 Key-tagging Memory Network

DbowN2N is proposed to address the N2N problems that arise from OOV
and real-world data, but the synthetic data can also be improved. Studying
results from existing end-to-end Memory Networks in Table 3.1, one can
conclude that models using match-feature give better results than those
that do not. The next proposed model, the Key-tagging end-to-end Memory
Network (KTN2N), is inspired by the match-features 3.3.3. The KTN2N
uses a Bi-directional Long Short Term Memory to predict entity properties
for each word in the input query and memory.

4.2.1 Bi-directional LSTM

Long Short Term Memory Recurrent Neural Network (LSTM) models are
typically used to address problems where information storing is essential.
Word generation, as an example, is very hard when information of previous
words are lost. It would essentially be a guess, where the most common word
would be predicted. The LSTM architecture consists of memory blocks,
where each block consists of one or more memory cells [45]. A memory cell
is structured to contain relevant information in its state C. Each memory
cell takes an input ([ht−1, xi]), which is a concatenated list of sequence input

53

4.2. Key-tagging Memory Network Proposed approach

xi and previous memory cell output ht−1 = LSTM(ht−2xi−1). The input is
used to decide what to keep from the previous state (Ci−1), how to update
that state, and what to output.

The memory cell first decides what to keep from the previous state (Ct−1)
using a forget gate. The forget gate is a Sigmoid function 2.1.3 over the
input, producing a new vector ft where each value is either zero or one.

ft = σ(Wf · [ht−1, xt] + bf) (4.1)

Wf is the forget gate weight matrix that is multiplied with the input. The
vector ft is later multiplied with previous Ct−1 element-wise. When an
element of Ct−1 is multiplied with a zero-element in the ft vector, it is set
to zero, in other words, forgotten.

C ′t−1 = Ct−1 • ft (4.2)

The next step of the LSTM architecture is deciding what parts of the state
should be updated, and what values the state should be updated with. Both
actions are done in the input gate, where a Sigmoid function (it) is used to
decide what values to update:

it = σ(Wi · [ht−1, xt] + bi) (4.3)

while a Hyperbolic Tangent 2.1.3 is used on the input to generate an update
vector C̃t with values between -1 and 1.

C̃t = tahn(Wc · [ht−1, xt] + bi) (4.4)

Wi and Wc are separate weight matrices for the input gate actions. The
update vector C̃t is then multiplied with the filter vector it to generate the
new update. The update is then added on the filtered previous state C ′t−1
to produce the new state Ct:

Ct = C ′t−1 + (it • C̃t) (4.5)

54

4.2. Key-tagging Memory Network Proposed approach

The new sate Ct is then passed directly to the next memory cell, but also
to the output layer of the memory cell to produce output (ht).

The output layer acts as a filter of the current state, deciding which values
to output using another Sigmoid function ot,

ot = σ(Wo · [ht−1, xt] + bi) (4.6)

while also transforming the state vector with another Hyperbolic Tangent
function ht.

ht = ot • tahn(Ct) (4.7)

The output, which is now a vector of values between -1 and 1 are passed to
the next memory cell, which first, concatenates the output (ht) and the new
input xi+1, then apply the forget gate, input gate and lastly output gate as
shown in Figure 4.3.

Figure 4.3: memory cell architecture [18]

LSTM has been shown to successfully address the gradient saturation prob-
lems typical to Recurrent Neural Network architectures [45]. Bi-directional
LSTM is, in essence, two different LSTM layers that are facing in different
directions. In other words, input x0 is provided for memory cell LSTM0

in one layer, and in LSTMn in the other. The output of A0 and An is
first concatenated, then applied an activation function, to form output y0
as shown in Figure 4.4 [19].

55

4.2. Key-tagging Memory Network Proposed approach

Figure 4.4: bi-directional LSTM architecture [19]

Bi-directional LSTM is typically used to both store information of the past
in the first LSTM, while also store information about the future in the sec-
ond LSTM. As an example, given input sequence: ”I speak fluent French”,
the word ”French” would be sent as the first input to the second LSTM,
and ”fluent” as the second input and so on.

In the proposed model, the input is given as sequences of characters instead
of words. Having sequences of characters, the model should be able to per-
form well, even when there exists out of vocabulary words in the sequence.
This was also confirmed during experiments, where the Bi-directional LSTM
was able to predict entity properties perfectly across the entire dataset.

4.2.2 Proposed Model

The match feature results from previous N2N architectures were overall
better, which means that adding more information to the network should
increase the accuracy. The dialog-babi includes a file containing all restau-
rants for the synthetic data, where each restaurant is mapped to keywords.
For example, ”resto london moderate british 4stars” is mapped to:

• cuisine: british

• location: london

• price: moderat

• rating: 4

56

4.2. Key-tagging Memory Network Proposed approach

• phone: resto london moderate british 4stars phone

• address: resto london moderate british 4stars address

The file can be considered a database for all restaurants in the synthetic
data, and can be used to get restaurants from API calls. Also, all other
restaurants contain these entity properties, such as Indian is a cuisine of
resto london expensive indian 1stars. Indian can be considered a keyword
for the N2N network, as essentially, the memory network needs to isolate
words that map to entity properties. Typically a sentence containing the
word Indian would have something to do with cuisine, while cheap would
have something to do with the prize. If one word can represent the entire
query, one can assume that tagging the sentence with the entity property of
this word would increase the accuracy of the N2N model. This assumption
was the original motivation for the proposed KTN2N model.

The KTN2N model is extended from the plain N2N model without match-
features and includes a Bi-directional LSTM that predicts the entity proper-
ties for each word in the sentence. Each entity property are indexed, where
0 is used for the pad, and 1 is used for words that do not have a entity
property representation in the KB file. The sentence: ”I would like to order
Italian food” would, for example, have a entity property vector: [1, 1, 1, 1,
1, 2, 1], where the value ”2” represents the entity property ”cuisine”.

Both the user queries and the bot replies are fed through the Bi-directional
LSTM. Predicting entity properties for bot replies should be important, as
this will create a stronger correlation between the API call responses in the
memory and the correct candidate. Also, some of these entity properties, as
phone and address, are only seen in the bot replies. These entity properties
would not exist in the memory if the bot replies did not get passed through
the Bi-directional LSTM.

In one of our earlier iterations of the proposed model, we experimented
with appending the largest value from the entity property vector to the
input sentence. Quickly it was discovered that only appending one entity
property was not feasible, since one sentence could include multiple entity
properties, such as API calls. The solution was simply operating with the
whole entity property vector.

The first operation made with the entity property vector was a multiplica-
tion of embedded word xi and the entity property for that word ti. Multiply-

57

4.2. Key-tagging Memory Network Proposed approach

ing the word would increase the value of the words that had a feature in the
KB file, while having all other words, stay the same. Testing showed that
the multiplication confused the model more than it helped, and the final
accuracy was considerably decreased in comparison with the regular N2N.
Summation of input sentence and entity property vector was also tested,
but did not yield good results.

In our tests, concatenation of the reduced embedded word vector and the
entity property vector showed potential, as the test results showed that the
model’s accuracy was similar to the regular N2N. At this point, the N2N
did not contain any learning over the entity properties. And the latter part
of the concatenated vectors would only contain integers between zero and
the number of entity properties + 1. A weight matrix T was introduced, to
let the N2N model do learning on the entity properties, which also enabled
the entity property vector to have values between −∞ and ∞. The weight
matrix T is in the shape [t size + 1, d], where t size is the number of entity
properties, and d is the embedding size. The weight matrix is used on the
entity properties to produce the internal query entity property vector qt and
the memory entity property matrix mt as:

qt =
∑
i

Tz(q)i (4.8)

mti =
∑
j

Tz(s)ij (4.9)

where z denote the Bi-directional LSTM output, q denote input queries, and
s denote input memory. qt is then concatenated with the reduced weight
vector qemb of queries to produce the initial (u0) as:

qemb =
∑
i

Aqi (4.10)

u0 = qemb _ qt (4.11)

where _ denotes concatenation of the vectors. Now that u0 is extended to
shape 2d, the W output weight matrix is extended to have shape V × 2d.
mt is concatenated with the memory as:

58

4.2. Key-tagging Memory Network Proposed approach

memb
i =

∑
j

Asij (4.12)

mi = memb
i _mti (4.13)

Figure 4.5 shows the proposed KTN2N architecture.

Figure 4.5: High level KTN2N architecture

The proposed model is similar to the model proposed by Byoungjae et
al. in [43]. The Bi-directional Memory Network model proposed in [43]
concatenates the state of the forward LSTM with the state of the backward
LSTM to form u0 and m. However, in our model we form u0 and m with
the concatenation of both the input and output of the LSTM layer.

59

Part III

Experiments and Results

61

Chapter 5

Experiments with Proposed
models

5.1 Introduction

Our experiments mainly deal with the babi dataset proposed by Bordes, et
al. [16], which was also used in the experiments on the memory networks in
chapter 3 and a more thorough explanation can be found there. Addition-
ally, we have some tests with a smaller dataset we created ourselves. This
dataset is in the domain of children with divorced parents, where the goal
is to find answers to legal questions connected to this.

We perform a series of experiments using both models. We attempt to keep
the datasets as similar to the work done previously with memory networks,
so that a good comparison between our two new models and the already
existing ones can be made.

5.2 Experiments

Initial tests with the DbowN2N network were done using vector embeddings
of size 20, similarly to that of other memory networks [16][14][15]. These test
results were underwhelming and we attempted additional test by increasing

63

5.3. Results Experiments with Proposed models

the embedding size incrementally. The paper proposing paragraph vectors
[42] used a vector size of 400. We ended up on a more modest size of a 100,
which is still a significant increase of the initial size.

As opposed to the other memory network models, the DbowN2N model
appeared to benefit from using up to as many as 8 hops. This is a substantial
increase from what was observed previously, where the networks would get
diminishing returns after 2 to 4 hops depending on the task. We assume
there is a correlation between the increase of embedding size used in this
model and the optimum number of hops. As was suggested in the first
publication of memory networks [36], more complex tasks require more hops.

Training of both models was run over 100 epochs. The best model was
chosen from the validation set and the accuracy results were found using the
test set. The training on the Dbow component and the memory component
was done separately, running for 100 epochs each.

5.3 Results

5.3.1 Tuning

The hyper parameters studied were:

• sentence size

• memory size

• embedding size

• batch size

• hops

• learning rate

Both sentence size and memory size contributes to set a maximum num-
ber of sentences and memory respectively. As long as all sentences and
memories are below the maximum, the sentence and memory size will not
matter because all padded sentences and memories do not contribute to the

64

5.3. Results Experiments with Proposed models

embedded vector representations in the model (u,m). But if sentences are
longer than sentence size, keywords might get lost, since the sentence would
have to be cut down to sentence size. And if memories are longer than
memory size, sentences in the memory would get cut, which might cause
loss of information. Setting a large sentence size is preferable to avoid loss
of information, but memory size should be tuned such that there is minimal
loss of information, while also not having too much information. In our
case, a memory size of 50 was better than a memory size of 100, with an
average increase of 1 % prediction accuracy.

The embedding size slightly impacted the overall accuracy of the network.
An embedding size of 32 was found to give the highest results.

Interestingly batch size impacts were larger than first assumed. A batch
size of 256 resulted in quick convergence, but a batch size of 64 resulted
in a better convergence. The result could vary as much as 5 % prediction
accuracy, where a batch size of 64 was found to give the highest accuracy.

The number of hops also impacted the network overall, and, as shown in
Table 5.1, 5 hops resulted in a higher accuracy at task 5.

Hops Test accuracy

1 hop 95.8

3 hops 98.6

5 hops 99.0

10 hops 96.0

Table 5.1: KTN2N hop comparison

The learning rate was tuned to 0.001. Learning rate over 0.001 would over
step as described in 2.2.1.

Cross entropy loss and Hinge loss was tested with Adam optimizer, which
revealed that cross entropy loss with Softmax activation function was the
way to go. Adadelta optimizer was tested as well, but underperformed in
comparison with Adam.

Lastly, we tested the model with data shuffling, where the dataset was
shuffled at every epoch, but found no real impact on the prediction accuracy
after training.

65

5.3. Results Experiments with Proposed models

5.3.2 DbowN2N

In addition to testing the capabilities of paragraph vector representation,
we wanted to confirm that randomly initialized embeddings worked better
than word2vec initialized embeddings for these tasks. The results for our
test can be seen in Table 5.2 and seem to conform with results in previous
work done by Byoungjae et al. [43].

Task RIE Word2Vec

5. Organizing entire dialogues calls 96.1 67.2

Table 5.2: Comparison of Random Initialized Embedding vs Word2Vec Em-
bedding

As seen in Table 5.3, the DbowN2N network performed very similarly to
that of the baseline memory network without match features. However,
it is important to note that in order to get similar results, the DbowN2N
network required a considerable larger embedding size. In spite of this, the
computational time was not changed to drastically. We can assume that
this is because it only needs to train a single embedding for the sentences,
instead of 3.

We can observe that it still is not able to solve task 4 and the OOV-tasks
as we were hoping. One explanation for this could be that the dbow model
is not able to infer meaning to the keywords as we intended. The reason
for this could be that the variation of the sentence structure in the datasets
is very limited. In order to explore this issue, we did a test where the
Dbow component was trained using the training set from task 6, containing
data from real dialogues. This means that every dialogue from both the
training set and test set contained unknown restaurant properties and the
sentence structures varied much more. Additionally, the training set is a
much larger training set. The results can be seen in Table 5.4 and show
some improvement.

66

5.3. Results Experiments with Proposed models

Task plain N2N DbowN2N

1. Issuing API calls 99.9 99.2

2. Updating API calls 100 99.4

3. Displaying options 74.9 74.1

4. Generating additional information 59.5 57.2

5. Organizing entire dialogues calls 96.1 95.7

1. (OOV) Issuing API calls 72.3 68.7

2. (OOV) Updating API calls 78.9 77.8

3. (OOV) Displaying options 74.4 61.8

4. (OOV) Generating additional information 57.6 57.0

5. (OOV) Organizing entire dialogues calls 65.5 59.9

6. Dialog state tracking 2 41.9

Table 5.3: Results of The DbowN2N network on the babi dataset

Task
DbowN2N

internal dataset external dataset

1. (OOV) Issuing API calls 68.7 81.3

2. (OOV) Updating API calls 77.8 78.9

3. (OOV) Displaying options 61.8 72.1

4. (OOV) Generating additional information 57.0 57.0

5. (OOV) Organizing entire dialogues calls 59.9 65.7

Table 5.4: Comparison of using training data from the respective tasks and
an external dataset with the DbowN2N

67

5.3. Results Experiments with Proposed models

5.3.3 KTN2N

Before the final model of KTN2N were established, many experiments were
done, but they were all outperformed by the plain N2N model without match
type. Eventually, we came to the current proposed model giving intriguing
results, which can be seen in Table 5.5.

Task N2N N2N w/match KTN2N

1. Issuing API calls 99.9 100 99.6

2. Updating API calls 100 98.3 100

3. Displaying options 74.9 74.9 74.9

4. Generating additional information 59.5 100 57.2

5. Organizing entire dialogues calls 96.1 93.4 99.0

average 86.1 93.3 86.1

1. (OOV) Issuing API calls 72.3 96.5 78.4

2. (OOV) Updating API calls 78.9 94.5 78.9

3. (OOV) Displaying options 74.4 75.2 73.4

4. (OOV) Generating additional information 57.6 100 57.0

5. (OOV) Organizing entire dialogues calls 65.5 77.7 65.6

average 69.7 88.8 70.7

Table 5.5: KTN2N vs baseline N2N with and without match features

However, we observe that KTN2N still fails taks 4 and that it does not
provide as good of a solution to the OOV problem as the match-type feature
provides.

Interestingly without including API call responses in the data, the KTN2N
performed better on OOV task. A test on task 5 resulted in a score of 98.8
% accuracy for the test set, and 67.5 % for the out-of-vocabulary test set.
The theory is that the Network is able to match the API calls sentences to
the actual restaurant response, so including the API call responses might be
ambiguous or confusing. However, This is not the intended way, and looking
at the data, one can see that there is no order of the API call responses.
Ordering them from, for example, lowest to highest rated might result in
higher performance of the network.

68

5.3. Results Experiments with Proposed models

5.3.4 Final Comparison

Below follows a table determining how the two proposed models compare
against the baseline end-to-end memory network (N2N), the Gated end-
to-end (GN2N), and the Unified weight tying end-to-end memory network
(UN2N). The proposed models are compared against the N2N models with
match features, seeing that the baseline N2N results were better on average
with match features.

Task N2N GN2N UN2N DbowN2N KTN2N

1. Issuing API calls 100 100 100 99.2 99.6

2. Updating API calls 98.3 100 100 99.4 100

3. Displaying options 74.9 74.9 74.9 74.1 74.9

4. Generating additional information 100 100 100 57.2 57.2

5. Organizing entire dialogues calls 93.4 98.0 99.4 95.7 99.0

average 93.3 94.6 94.8 85.1 86.1

1. (OOV) Issuing API calls 96.5 100 100 68.7 78.4

2. (OOV) Updating API calls 94.5 94.5 94.5 77.8 78.9

3. (OOV) Displaying options 75.2 75.1 76.3 61.8 73.4

4. (OOV) Generating additional information 100 100 100 57.0 57.0

5. (OOV) Organizing entire dialogues calls 77.7 79.4 79.5 59.9 65.6

average 88.8 89.7 89.8 65 70.7

Table 5.6: Comparison of proposed models and state of the art N2N for
synthetic data

As shown in Table 5.6, both the DbowN2N and the KTN2N fails on task 4,
but when using the validation set as training data, KTN2N is able to get an
accuracy of 92 %. The reason for the sharp drop when using the validation
set as training set is not yet determined, but might suggest that there are
some key differences between the training and validation set in task 4.

Although the KTN2N failed on task 4, it showed a good performance for
task 5, containing the whole dialog. With an accuracy of 99 %, the KTN2N
model was only outperformed by the UN2N model on task 5. OOV results on
the other hand were not promising, as both the DbowN2N and the KTN2N
were outperformed on all of these tasks.

69

5.3. Results Experiments with Proposed models

5.3.5 Additional Experiment

We also tried to compare our proposed models against the baseline N2N
model using another dataset. The dataset was obtained from a youth infor-
mation service, with 50 dialogues between children with divorced parents
and counselor. The dataset does not include task 4, as seen in the babi
dataset, but includes task 1, 2, 3, and 5. As shown in Table 5.7, the dataset
is too small to be able to get any real value, but KTN2N seems to outper-
form the N2N on average.

Task N2N KTN2N DBowN2N

1. Issuing API calls 71.4 71.4 57.1

2. Updating API calls 50 50 50.0

3. Displaying options 57.1 71.4 57.1

5. Organizing entire dialogues calls 60 60 50.0

average 59.6 63.2 53.6

Table 5.7: KTN2N and DBowN2N versus regular N2N over Divorce-dialog
dataset

70

Chapter 6

Conclusion

There are many benefits of using goal-oriented dialog systems and their
application can be used in a wide range of domains. Building such a system
with rule-based architecture can be complex when dealing with real world
dialog as data. Another approach to building such a system is by using
the end-to-end memory network architecture, which has shown promising
results.

The state of the art end-to-end Memory Networks (N2N) uses bag-of-words
embeddings, where each word in the vocabulary is randomly initialized. Us-
ing a pre-trained Word2Vec model’s embedding to initialize the embeddings
of N2N should give more correlations between the words. However, initializ-
ing the word embeddings with Word2Vec did not yield good results. In fact,
the accuracy of the N2N network decreased considerably with a Word2Vec
embedding. The reason for the accuracy drop is not yet determined, but a
likely candidate is that randomly initialized embeddings can be considered
better than Word2Vec, for N2N.

The results from our distributed bag-of-word memory network (DBOWN2N)
was very similar to that of the plain N2N network which it originates from.
This suggests that the word embeddings are equally effective as paragraph
vectors for these tasks. However, the results by using randomly initialized
bow-embeddings can vary significantly from each execution as you could
get lucky or unlucky with the initialization. The results that are presented
from the plain memory network are the highest from several tests, and the

71

Conclusion

DbowN2N results stay much more similar over multiple tests.

Another thing to consider is that one of the main strengths of the paragraph
vector architecture is its ability to process a large amount of unlabeled data.
We limited ourselves to using only the data for each respective task for the
pre-trained DBOW. However, our experiments show that adding more data
from a different source improves the networks ability to solve these kinds of
tasks, especially the OOV-tasks.

Tagging key-words shows promising results, where the accuracy varies in
terms of how the tagging information is presented to the memory network.
Tagging a whole sentence as a single tag did not produce a higher accuracy
than the baseline N2N model. However, concatenating the sentence vec-
tors with a tag vector, containing the placement and type of key words, in-
creases the baseline accuracy overall. Character-based Bi-directional LSTM
provided high accuracy for predicting tags. Concatenating the input sen-
tences with the corresponding tag vector produced higher accuracy than
an element-wise summation. The proposed model Key-tagging end-to-end
Memory Network (KTN2N) had an accuracy of 99.0 % for full dialog data
(task 5), which is an increase of 5.6 % over the baseline memory network
with match features and is only narrowly beaten by the unified weight-tying
network.

72

References

[1] G. Parmigiani, “Decision theory: Bayesian,” in International Ency-
clopedia of the Social & Behavioral Sciences (N. J. Smelser and P. B.
Baltes, eds.), pp. 3327 – 3334, Oxford: Pergamon, 2001.

[2] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
Functions: Comparison of trends in Practice and Research for Deep
Learning,” arXiv e-prints, p. arXiv:1811.03378, Nov 2018.

[3] V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of feed-
forward neural networks: A review of two decades of research,” Engi-
neering Applications of Artificial Intelligence, vol. 60, pp. 97 – 116,
2017.

[4] A. Karpathy, A. Simpelo, O. Caglayan, M. Bosnjak, and
J. Chan, “Optimization: Stochastic gradient descent.” [online]
www.cs231n.github.io, Available at: http://cs231n.github.io/

optimization-1/. [Accessed 10 May. 2019].

[5] D. Britz, “Recurrent neural networks tutorial, part 1 – in-
troduction to rnns.” [online] www.wildml.com, Available at:
http://www.wildml.com/2015/09/recurrent-neural-networks-

tutorial-part-1-introduction-to-rnns/. [Accessed 02 May.
2019].

[6] OpenCV, “Introduction to support vector machines.” [online]
www.docs.opencv.org, Available at: https://docs.opencv.org/2.4.
13.7/doc/tutorials/ml/introduction_to_svm/introduction_to_

svm.html. [Accessed 10 May. 2019].

[7] A. Agrawal, “Loss functions and optimization algorithms. de-
mystified..” [online] www.medium.com, Available at: https:

73

http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-1/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
https://docs.opencv.org/2.4.13.7/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c

References References

//medium.com/data-science-group-iitr/loss-functions-and-

optimization-algorithms-demystified-bb92daff331c. [Accessed
02 May. 2019].

[8] P. Grover, “5 regression loss functions all machine learners
should know.” [online] www.heartbeat.fritz.ai, Available at:
https://heartbeat.fritz.ai/5-regression-loss-functions-

all-machine-learners-should-know-4fb140e9d4b0. [Accessed 03
May. 2019].

[9] B. Fortuner, M. Viana, and B. Kowshik, “Loss functions.” [on-
line] www.ml-cheatsheet.readthedocs.io, Available at: https://ml-

cheatsheet.readthedocs.io/en/latest/loss_functions.html.
[Accessed 06 May. 2019].

[10] S.-H. Tsang, “Review: Retinanet - focal loss (object de-
tection).” [online] www.towardsdatascience.com, Available at:
https://towardsdatascience.com/review-retinanet-focal-

loss-object-detection-38fba6afabe4. [Accessed 10 May. 2019].

[11] R. Sagar, “Decoding kl divergence and its significance in ma-
chine learning.” [online] www.analyticsindiamag.com, Available at:
https://www.analyticsindiamag.com/decoding-kl-divergence-

and-its-significance-in-machine-learning/. [Accessed 10 May.
2019].

[12] S. Ruder, “An overview of gradient descent optimization algorithms.”
[online] www.ruder.io, Available at: http://ruder.io/optimizing-

gradient-descent/. [Accessed 10 May. 2019].

[13] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end mem-
ory networks,” Proceedings of Advances in Neural Information Process-
ing Systems (NIPS 2015), vol. 1, pp. 2440 – 2448, 2015.

[14] F. Liu and J. Perez, “Gated end-to-end memory networks,” in Proceed-
ings of the 15th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long Papers, (Valencia,
Spain), pp. 1–10, Association for Computational Linguistics, Apr. 2017.

[15] F. Liu, T. Cohn, and T. Baldwin, “Improving end-to-end memory net-
works with unified weight tying,” in Proceedings of the Australasian
Language Technology Association Workshop 2017, (Brisbane, Aus-
tralia), pp. 16–24, Dec. 2017.

74

https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4
https://towardsdatascience.com/review-retinanet-focal-loss-object-detection-38fba6afabe4
https://www.analyticsindiamag.com/decoding-kl-divergence-and-its-significance-in-machine-learning/
https://www.analyticsindiamag.com/decoding-kl-divergence-and-its-significance-in-machine-learning/
http://ruder.io/optimizing-gradient-descent/
http://ruder.io/optimizing-gradient-descent/

References References

[16] A. Bordes, Y.-L. Boureau, and J. Weston, “Learning End-to-End Goal-
Oriented Dialog,” arXiv e-prints, p. arXiv:1605.07683, May 2016.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Esti-
mation of Word Representations in Vector Space,” arXiv e-prints,
p. arXiv:1301.3781, Jan 2013.

[18] C. Olah, “Understanding lstm networks,” Aug 2015.

[19] O. Yildirim, “A novel wavelet sequence based on deep bidirectional lstm
network model for ecg signal classification,” Computers in Biology and
Medicine, vol. 96, pp. 189 – 202, 2018.

[20] J. Brownlee, “Difference between classification and regression in
machine learning.” [online] www.machinelearningmastery.com, Avail-
able at: https://machinelearningmastery.com/classification-

versus-regression-in-machine-learning/. [Accessed 03 May.
2019].

[21] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss
for Dense Object Detection,” arXiv e-prints, p. arXiv:1708.02002, Aug
2017.

[22] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri, “Are
loss functions all the same?,” Neural computation, vol. 16, pp. 1063–76,
06 2004.

[23] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs),” arXiv
e-prints, p. arXiv:1511.07289, Nov 2015.

[24] L. Trottier, P. Giguère, and B. Chaib-draa, “Parametric Exponential
Linear Unit for Deep Convolutional Neural Networks,” arXiv e-prints,
p. arXiv:1605.09332, May 2016.

[25] M. Basirat and P. M. Roth, “The Quest for the Golden Activation
Function,” arXiv e-prints, p. arXiv:1808.00783, Aug 2018.

[26] T. Araujo, “Living up to the chatbot hype: The influence of anthropo-
morphic design cues and communicative agency framing on conversa-
tional agent and company perceptions,” Computers in Human Behav-
ior, vol. 85, pp. 183 – 189, 2018.

75

https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/

References References

[27] J. Hill, W. R. Ford, and I. G. Farreras, “Real conversations with ar-
tificial intelligence: A comparison between human–human online con-
versations and human–chatbot conversations,” Computers in Human
Behavior, vol. 49, pp. 245 – 250, 2015.

[28] S. Quarteroni, “A chatbot-based interactive question answering sys-
tem,” 11th Workshop on the Semantics and Pragmatics of Dialogue,
pp. 83 – 90, 2007.

[29] S. Young, M. Gašić, B. Thomson, and J. D. Williams, “Pomdp-based
statistical spoken dialog systems: A review,” Proceedings of the IEEE,
vol. 101, pp. 1160–1179, May 2013.

[30] B. Shawar and E. Atwell, “Chatbots: Are they really useful?,” LDV
Forum, vol. 22, pp. 29–49, 01 2007.

[31] R. Jafari and W. Yu, “Uncertainty nonlinear systems control with fuzzy
equations,” in 2015 IEEE International Conference on Systems, Man,
and Cybernetics, pp. 2885–2890, Oct 2015.

[32] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with
recurrent neural networks,” Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11), pp. 1017–1024, 01 2011.

[33] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A
Neural Image Caption Generator,” arXiv e-prints, p. arXiv:1411.4555,
Nov 2014.

[34] J. D. Williams and G. Zweig, “End-to-end LSTM-based dialog control
optimized with supervised and reinforcement learning,” arXiv e-prints,
p. arXiv:1606.01269, Jun 2016.

[35] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask Me Anything: Dynamic
Memory Networks for Natural Language Processing,” arXiv e-prints,
p. arXiv:1506.07285, Jun 2015.

[36] J. Weston, S. Chopra, and A. Bordes, “Memory Networks,” arXiv e-
prints, p. arXiv:1410.3916, Oct 2014.

[37] J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, A. Miller,
A. Szlam, and J. Weston, “Evaluating Prerequisite Qualities for Learn-
ing End-to-End Dialog Systems,” arXiv e-prints, p. arXiv:1511.06931,
Nov 2015.

76

[38] M. Henderson, B. Thomson, and S. Young, “Word-based dialog state
tracking with recurrent neural networks,” in SIGDIAL 2014 Confer-
ence, pp. 292–299, 01 2014.

[39] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway Networks,”
arXiv e-prints, p. arXiv:1505.00387, May 2015.

[40] M. Henderson, B. Thomson, and J. D. Williams, “The second dialog
state tracking challenge,” in Proceedings of the 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue (SIGDIAL),
(Philadelphia, PA, U.S.A.), pp. 263–272, Association for Computa-
tional Linguistics, June 2014.

[41] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–
162, 1954.

[42] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences
and Documents,” arXiv e-prints, p. arXiv:1405.4053, May 2014.

[43] B. Kim, K. Chung, J. Lee, J. Seo, and M.-W. Koo, “A bi-lstm memory
network for end-to-end goal-oriented dialog learning,” Computer Speech
& Language, vol. 53, pp. 217 – 230, 2019.

[44] T. Mikolov, W. tau Yih, and G. Zweig, “Linguistic regularities in con-
tinuous space word representations,” in HLT-NAACL, 2013.

[45] Z. Yu, V. Ramanarayanan, D. Suendermann-Oeft, X. Wang, K. Zech-
ner, L. Chen, J. Tao, A. Ivanou, and Y. Qian, “Using bidirectional lstm
recurrent neural networks to learn high-level abstractions of sequential
features for automated scoring of non-native spontaneous speech.”

References References

UiA University of Agder
Master’s thesis
Faculty of Engineering and Science
Department of ICT

c© 2019 Peter Arentz Taraldsen and Vegard Vatne. All rights reserved

78

	Abstract
	Preface
	Glossary
	List of Figures
	List of Tables
	List of Publications
	I Research Overview
	Introduction
	Problem statement
	Thesis Definition
	Report Outline

	Optimization algorithms
	Loss functions
	Classification loss functions
	Regression loss functions
	Activation functions

	Optimization
	Gradient Descent

	Conclusion

	End-to-End Memory Networks
	Introduction
	Memory Networks
	End-to-End Memory Network with Single Hop
	End-to-End Memory Network with Multiple Hops
	Gated End-to-End Memory Network
	End-to-End memory Networks with Unified Weight Tying

	Experiment and results
	Experiment Setup
	Dataset
	Match features
	Experiment Results

	Conclusion

	II Contributions
	Proposed approach
	Distributed bag-of-word memory network
	Continuous word vectors
	Paragraph vectors
	Proposed model

	Key-tagging Memory Network
	Bi-directional LSTM
	Proposed Model

	III Experiments and Results
	Experiments with Proposed models
	Introduction
	Experiments
	Results
	Tuning
	DbowN2N
	KTN2N
	Final Comparison
	Additional Experiment

	Conclusion
	References

