a

T UilA Yo

A

On the use of Denoising Autoencoders
and Deep Convolutional Adversarial
Networks for Automated Removal of

Date Stamps

Nicolas Anderson, Mikael Antero Paavola,
Johnny Sognnes

SUPERVISORS

Morten Goodwin, Xuan Zhang

Master’s Thesis
University of Agder, 2019
Faculty of Engineering and Science
Department of ICT

UiA
University of Agder
Master’s thesis

Faculty of Engineering and Science
Department of ICT
(© 2019 Nicolas Anderson, Mikael Antero Paavola, Johnny Sognnes. All rights reserved

Abstract

This thesis investigates to what extent the deep learning models such as Denoising
Autoencoder (DAE) and Deep Convolution General Adversarial Net (DCGAN)
automate the removal of the date stamps from images with high resolution while
preserving the rest of the images. Both DAE and DCGAN algorithms are im-
plemented with Convolutional Neural Networks (CNN). The DAE algorithm can
perform this task with entirely satisfactory results. The DAE can reconstruct the
original images from corrupted inputs with date stamps. While DCGAN delivers
poor yet interesting results. The images generated by the DCGAN are quite dif-
ferent from the reference images. All performed experiments in this thesis that
the quality of output images produced by DAE is far superior to that of the results
generated by DCGAN.

Keywords: Blind Image Inpainting, DAE, DCGAN, automated date stamp re-
moval

iii

Preface

On the use of Denoising Autoencoders and Deep Convolutional Adversarial Net-
works for automated removal of date stamps is the master thesis project done
by Nicolas Anderson, Mikael Antero Paavola, and Johnny Sognnes for the course
IK'T590 at the University of Agder. The project was suggested by us as we are
inspired by the interesting and challenging nature of blind image inpainting. It
was supervised by Associate Professor Morten Goodwin and Dr. Xuan Zhang.
We would like to thank our supervisors Associate Professor Morten Goodwin and
Dr. Xuan Zhang for their advice, supervision and insights throughout the master
thesis process.

Nicolas Anderson, Mikael Paavola and Johnny Sognnes
Grimstad, 23.05.2019

iv

Table of Contents

Abstract

Preface

Glossary

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3

1.4

1.5
1.6

2.1
2.2

2.3

Motivation
Goal
Problem Statement
1.3.1 Research Questions
1.3.2 Hypotheses
Assumptions and Limitations

1.4.1 Assumptions
1.4.2 Limitations
Contributions

Report Outline

Theoretical Background

Image Inpainting
Autoencoders

2.2.1 Undercomplete Autoencoder
2.2.2 Sparse Autoencoder
2.2.3 Denoising Autoencoder (DAE)
2.2.4 Contractive Autoencoder (CAE)
2.2.5 Variational Autoencoder (VAE)

Generative Adversarial Networks

iii

iv

viii

xi

xii

W W W W WD NN NN

© o 3 ot >

Table of Contents Table of Contents

3 State of the Art 15
3.1 Image Denoising and Inpainting with DNNs 15
3.2 Deep Convolutional Generative Adversarial Nets 17
3.3 Deep Blind Image Inpainting, 17
3.4 TImage Inpainting and Object Removal with Deep Convolutional GAN 19
3.5 Deep Image Prior 21
3.6 Context Encoders., 22
3.7 Evaluation Methods 23

4 Methodology 25
4.1 Dataset 25
4.2 Proposed Solution Lo oo 25
4.3 Proposed Denoising Autoencoder 26

4.3.1 Data Pre-processing 26
4.3.2 Network Architecture 27
4.3.3 Image Restoration 28
4.4 Proposed Deep Convolutional General Adversarial Net 30
4.4.1 Data Pre-processing 30
4.4.2 Network Architecture 31
4.4.3 Image Restoration 33
4.4.4 Proposed DAE and Discriminator 36
4.5 Evaluation for the proposed solutions 36
4.6 Tools. e 37
4.6.1 Software Tools 37
4.6.2 Hardware Tools 38

5 Results 39

5.1 DAE Experiment 40
5. 1.1 Test 1 . . . o o o o 41
5.1.2 Test 2 . . . o Lo 42
5.1.3 Test3 . . . o Lo 43
5.1.4 Test4d . . . o 44
5.1 Test b . . . o L 44
5.1.6 Test 6 45

5.2 DCGAN with date stamp Experiment 46

5.3 DCGAN without date stamp Experiment 48

5.4 DAFE and Discriminator Experiment 50

5.5 CompariSons e e 53
5.5.1 Visual evaluation of the results 53
5.5.2 Quantitative evaluation of the results 54

vi

Table of Contents Table of Contents

6 Conclusion and Future Work 57
6.1 Conclusion e 57
6.2 Future Work 58

Appendices 62

vii

Glossary

AE: Autoencoder

BCE: Binary Cross Entropy loss function
CAE: Contractive Autoencoder

CE: Context Encoder

CNN: Convolutional Neural Network

CV: Computer Vision

DAE: Denoising Autoencoder

DCGAN: Deep Convolutional General Adversarial Net
DNN: Deep Neural Network

DL: Deep Learning

GAN: Generative Adversarial Net

KSVD: A popular sparse coding technique
MAE: Mean Absolute Error

MOS: Mean Opinion Score

MSE: Mean Square Error

PSNR: Peak Signal-to-noise ratio

Relu: Rectifier Linear Unit

SSDA: Stacked Sparse Denoising Autoencoder
SSIM: Structured Similarity Index

VAE: Variational Autoencoder

viii

List of Figures

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2

3.3

3.4
3.5

3.6
3.7
3.8
3.9

3.10

3.11

4.1

Image with scratch before and after inpainting [3]. 6
Image with random superimposed text before and after inpainting

[2]. .« 6
Image with random holes before and after inpainting [4]. 7
The structure of an autoencoder [5]. 7
How an autoencoder works [7]. 8
Linear vs nonlinear dimensionality reduction [8]. 9
Images generated by a sparse autoencoder [7]. 10
A denoising autoencoder [8]. Lo 11
the network architecture of a vairational autoencoder [9]. 12
The GAN framework pits two adversaries against each other in a

game [10]. L 14
Model Architectures [2]. Lo o 16
Visual comparison of inpainting results from Noisy, SSDA and

KSVD. [2]. . . . 16
Generated bedrooms by DCGAN model after one training pass

through the LSUN dataset [11]. 17
Network Architecture of the proposed model [12]. 18
Image recovering using the deep blind image inpainting algorithm

(120, . .o 19
A failure example of the deep blind image inpainting technique [12]. 19
Network Architecture of the Generator [13]. 20
Network Architecture of the discriminator [13]. 21
Image Yuxin, one of the authors of this research, took in Zion

mountain [13].. 21
Text inpainting comparison between Deep Image Prior and Shepard

Networks [14]. L 22
Qualitative illustration of the inpainting using context encoders [15]. 23
The proposed workflow 26

ix

List of Figures List of Figures

4.2 Some of the corrupted data samples that were used as the input

data for the proposed models in this research 27
4.3 The network architecture of the DAE model. 27
4.4 The training workflow of DAE 0oL 29
4.5 The testing workflow of DAE 30
4.6 The network architecture of the Discriminator network of the DC-

GAN model. 31
4.7 The network architecture of the Generator network of the DCGAN

model. e 32
4.8 The training workflow of Discriminator of the DCGAN 34
4.9 The training workflow of Generator of the DCGAN 35
4.10 The testing workflow of DCGAN 36

5.1 Examples of results generated after the DAE is trained for 20
epochs. Top Row: the corrupted samples used as input samples.
Bottom Row: the output samples by the DAE model after the date
stampsremoval. 41

5.2 Results generated after the DAE is trained for 100 epochs. Top
Row: the corrupted samples used as input images. Bottom row:the
output samples by the DAE model after the date stamps removal. 41

5.3 Test 1losscurve. o 42
5.4 Test 2losscurve. 43
5.5 Test 3losscurve. L e 43
5.6 Test 4losscurve. e e e e 44
5.7 Test Hlosscurve. e 45
5.8 Test 6losscurve. L e 45
5.9 Generated images where additional date stamps appeared 46
5.10 Generated images where date stamps disappeared 46
5.11 Generated images where date stamps are preserved 47
5.12 Loss for each epoch of Generator network during training of the
DCGAN model in experiment 2. 48
5.13 Loss for each epoch of Discriminator network during training of the
DCGAN model in experiment 2 48
5.14 Generated images after 100 epochs 49
5.15 Loss for each epoch of Generator network during training of the
DCGAN model in experiment 3 50
5.16 Loss for each epoch of Discriminator network during training of the
DCGAN model in experiment 3 50

List of Figures

List of Figures

5.17

5.18

5.19

5.20

5.21

Generated image by DAE-Discriminator network after trained 1
epoch. Here, Top row: corrupted images with date stamps. Bottom
row: decoded images.
Generated image by DAE-Discriminator network after trained 100
epoch. Here, Top row: corrupted images with date stamps. Bottom
row: decoded images.
Loss for each epoch of DAE network during training of the DCGAN
model in experiment 4o
Loss for each epoch of Discriminator network during training of the
DCGAN model in experiment 4
Top row: reconstructed images by DAE model after date stamp re-
moval which has taken from 5.1 and Bottom row: generated images
by DCGAN model where date stamps disappeared and the image
is taken from 5.10o

xi

List of Tables

4.1
4.2

4.3

5.1

5.2

5.3

The description of network layers of DAE model
The description of network layers of Discriminator network of the
proposed DCGAN model
The description of network layers of Generator network of the pro-
posed DCGAN model

Quantitative evaluations for DAE Vs DCGAN. Here PSNR value
of DAE is for test 1 from the experiment 1 and PSNR value for
DCGAN represents for experiment 2.
Quantitative evaluation for DCGAN without date stamps. PSNR
value for DCGAN represents for experiment 3
Summary of Quantitative evaluations for different DAE tests in
Experiment 1. Here BCE means binary cross entropy, MSE means
mean squared error and MAE means mean absolute error. DAE
network is trained for 100 epochs in all these tests.

xii

55

Chapter 1

Introduction

Image inpainting is the method of removing the unwanted parts from an image
or restoring the original image from a corrupted version such as an image with
missing parts or scratches. This is typically done manually by using software tools
like Adobe Photoshop, but this is time-consuming and does not scale well when
dealing with large amounts of images.

In contrast to most existing inpainting techniques, blind inpainting methods deal
with more challenging inpainting issues. Notably, no prior information about the
original image and as well as no information about the location of the corrupted
regions is given to blind inpainting algorithms. That makes blind inpainting tasks
interesting to solve. Most blind inpainting techniques are built using Deep Neural
Networks (DNNs). Some blind inpainting algorithms have weaknesses as they
attempt to recover the image from a corrupted one by making assumptions about
those corrupted regions, or they do not have enough information about those dam-
aged locations. Whereas, other blinding algorithms do not have enough capacities
to handle various types and sizes of corrupted geometry shapes or depraved high-
resolution images.

This thesis focuses on solving one particular type of blind painting namely re-
moving the date stamp from the high resolution images. This is done with using
two algorithms namely Denoising Autoencoder (DAE) and Deep Convolutional
Generative Adversarial Net (DCGAN).

1.1. Motivation Introduction

1.1 Motivation

The primary motivation is to investigate if the deep learning models such as
DAE and DCGAN could automate the task of removing the date stamps from
a collection of images with high resolution. Another motivation is to discover
whether DAE or DCGAN performs better for this specific task.

1.2 Goal

The goal of this thesis is to solve the task of automating the removal of the date
stamps from the colored images with high resolutions while preserving the rest
of the image. Particularly, this thesis focuses on developing the different deep
learning models such as DAE and DCGAN to achieve the above-mentioned goal.

1.3 Problem Statement

The main issue addressed in this thesis is blind image inpainting where infor-
mation about the location of date stamps on images are not given to inpainting
algorithms. This makes the task of automatic removal of date stamps from the
images more interesting and challenging. Additionally, the thesis explores differ-
ent Deep Learning (DL) techniques and their ability to perform blind inpainting
without reducing the image quality. Some of those techniques can create blurry
images while some can leave missing holes or regions after date stamps are re-
moved. The above-mentioned issue can be tackled using supervised deep learning
techniques, especially DAE and DCGAN. Consequently, the desired result is that
these two models learn to remove the date stamps without damaging the original
quality, meaning that they output neither blurry images nor leave missing regions.

1.3.1 Research Questions

1. How can DAE and DCGAN models be used for removing the date stamps
from high resolution images?

2. To what extent can DAE and DCGAN handle datasets with colored high
resolution images?

3. How to evaluate objectively when the results achieved by DCGAN and DAE
are compared?

1.4. Assumptions and Limitations Introduction

1.3.2 Hypotheses

1. The DAE model can remove date stamps from colored images with high
resolution.

2. The DCGAN model can remove date stamps from colored images with high
resolution.

3. The output images produced after removing date stamps by DAE do not
have missing regions or holes.

4. The output images produced by the DCGAN after removing date stamps
do not have missing regions or holes.

5. The quality of output images produced by the DCGAN is better than that
of output by the DAE or vice versa.

1.4 Assumptions and Limitations

1.4.1 Assumptions

e Enough computational power is available to train and test DAE and DC-
GAN models for high quality images.

1.4.2 Limitations

e The scope of the topic is huge in a sense that two different deep learning
models are used for the inpainting, and a way to objectively evaluate the
results achieved by both of these models is investigated.

1.5 Contributions

This thesis presents automated removal of date stamps, a particular type of blind
image inpainting with the help of DAE and DCGAN algorithms. The DAE algo-
rithm is able to process high resolution colored images. This thesis also explores
the potential usefulness of DCGAN with different setups, and the possibility for
the network to blindly remove date stamps. The results are of interest even if
DCGAN does not produce desired results as stated by the hypotheses.

1.6. Report Outline Introduction

1.6 Report Outline

This Section briefly describes how the rest of the chapters in this report is orga-
nized.

e Chapter 2: Describes the various concepts and theories such as inpaint-
ing, blind inpainting, different types of Autoencoders (AEs) and General
Adversarial Network (GAN).

e Chapter 3: Mentions distinct state-of-the art techniques.

e Chapter 4: Explains about the datasets, tools, the proposed solutions for
DAE and DCGAN to remove the date stamps from the colored images with
high resolution.

e Chapter 5: Presents various results of DAE and DCGAN , discusses and
evaluates them.

e Chapter 6: Includes the conclusion for the thesis, the suggestion for im-
provements and suggestion of this thesis extension.

Chapter 2

Theoretical Background

This chapter presents summary knowledge about deep learning models such as
AE and GAN and image inpainting.

2.1 Image Inpainting

Corruption in images can occur through a plethora of different reasons. These
include noise introduced through acquisition channels such as Gaussian noise, to
physical damages on photographs such as scratches, wear, and tear, to overlaid
text or other graphics introduced by artificial editing. The goal of image restora-
tion techniques is to recover an uncorrupted image from a noisy observation of it.
Image inpainting, a type of image restoration, can be used to repair missing pixel
values, such as holes, scratches and missing regions, or to remove intricate pat-
terns such as text or other graphics placed on the image through artificial editing.
A necessity of image inpainting is to have a mask that detects the locations of an
image in which inpainting is required. The central idea of the image inpainting
algorithms is to fill in the corrupted, missing regions with accessible information
from their neighbors and eradicate the undesired objects. The goal is to modify a
corrupted image in an undetectable way so that an observer is unable to observe
that the image used to be noisy and has been restored. However, it is unfeasible
without prior information of that image [1].

Image inpainting and denoising are typical image recovering problems that are
both convenient by themselves and significant preprocessing steps of many other
applications. Image denoising issues appear when an image is corrupted by ad-
ditive white Gaussian noise which is typical result of many acquisition channels,
while image inpainting issues arise when some pixel values are missing or when

2.1. Image Inpainting Theoretical Background

we want to get rid of more practical patterns such as superimposed text or other
objects from the image. Image inpainting methods can be split into two classes,
namely non-blind inpainting and blind inpainting. In non-blind inpainting, the
corrupted regions that need to be fixed are provided to the algorithm as a priori,
while in blind inpainting, no information about the corrupted regions is given and
the algorithm must automatically analyze the pixels that need inpainting [2].

A set of different inpainting and blind inpainting techniques are demonstrated in
figures 2.1, 2.2, 2.3.

Figure 2.1: Image with scratch before and after inpainting [3].

Figure 2.2: Image with random superimposed text before and after inpainting [2].

2.2. Autoencoders Theoretical Background

VAl v
- T

Figure 2.3: Image with random holes before and after inpainting [4].

2.2 Autoencoders

Autoencoders are unsupervised neural networks that use backpropagation setting
the output values to be identical to inputs, i.e., it uses y® = 2. The general
structure of an autoencoder can be seen in Figure 2.4 where +1 refers to bias units,
LayerL, represents the input layer via Encoder, LayerLo represents the hidden
layer h via bottleneck and LayerLs represents the output layer via Decoder for
the reconstruction of inputs [5].

Layer L, Layer Ly

Layer L,

Figure 2.4: The structure of an autoencoder [5].

2.2. Autoencoders Theoretical Background

It contains two components namely an encoder function h = f(x) and a decoder
that represents a reconstruction r = g(h). If an autoencoder accomplishes in
learning to set g(f(z)) = = everywhere, then it is not actually useful. Autoen-
coders are rather designed to be unable to learn to copy perfectly. Mostly they
are limited in ways that let them to replicate only approximately, and to dupli-
cate only input that features the training data. Since the model is compelled to
prioritize which aspects of the input should be replicated, it often learns useful
properties of the data. Autoencoders can be used for dimensional reduction or
feature learning and information retrieval tasks [6].

—» Encoder —>E—> Decoder —>

original R Eructed
input iﬁ;zgs ructe

Ccompressed
representation

Figure 2.5: How an autoencoder works [7].

There exists a variety of autoencoders and among them, undercomplete autoen-
coder, sparse autoencoder, denoising autoencoder, contractive autoencoder and
variational autoencoder are well-known. They are further described in the coming
chapters.

2.2.1 Undercomplete Autoencoder

An autoencoder that has a smaller code dimension in the bottleneck than its
input dimension is called undercomplete. The bottleneck layer is the layer
with smallest code dimension. Learning an undercomplete representation forces
the autoencoder to capture the most notable features of the training data. The
learning process is simply expressed as minimizing a loss

L(z,g(f(x))) (2.1)

in which L is a loss function that penalizes g(f(x))for being different from x, such
as the mean squared error.

An autoencoder learns to extend the identical space as PCA (Principal Component
Analysis) when the decoder is linear and L is the mean squared error. In this
state, an autoencoder trained to carry out the replicating task has learned the
principal subspace of the training data as a side effect. Therefore, autoencoders

2.2. Autoencoders Theoretical Background

with nonlinear encoder function f and nonlinear decoder functions g can learn a
more effective nonlinear generalization of PCA. The difference between these two
approaches can be viewed in the Figure 2.6.

'y
- e
e
[@ °® Autoencoder

’ e® o e O

...._ ,."".--% e - ®)

° .

oe 8y
‘e
o PCA

Figure 2.6: Linear vs nonlinear dimensionality reduction [8].

If the encoder and decoder of an autoencoder is given too much capabilities,
it will learn to execute the copying task without extracting useful information
about the distribution of the data. Thus, it is necessary to put constraints on
autoencoders. The objective of constraining the capacity of an autoencoder is
achievable in a variety of ways by adding different regularization terms which
will be explained further in the coming chapters. However, an undercomplete
autoencoder is designed in such a way that it does not require any regularization
term as it has smaller code dimension than its input dimension [6].

2.2.2 Sparse Autoencoder

A sparse autoencoder is an autoencoder whose training contains a sparsity penalty
Q(h) on the hidden layer h in addition to the reconstruction error:

L(z,g(f(x))) + Q(h) (2.2)

in which g(h) is the decoder output, and h = f(z), is the encoder output. Fur-
thermore, the sparsity constraint can further be defined as

Q) =AY Ihi (2.3)

where A is a hyperparameter and i is the index of the layer.

2.2. Autoencoders Theoretical Background

Sparse autoencoders are usually used to learn features for another task like clas-
sification. An autoencoder with sparse regularization must respond to particular
statistical features of the dataset it has been trained on, rather than merely per-
forming as an identity function. In such a way, training to perform the replicating
task with a sparsity penalty can give a network that has learned useful features
as a result. The penalty term Q(h) can be considered as a regularizer term that
is added to a feedforward network whose main task is to reconstruct the output
which is similar to the input (unsupervised learning objective) and perhaps also
perform some supervised task that depends on these sparse features [6].

zl/lolyl 1]e]al<]7
zl/joldl/]v]a]ls]7

Figure 2.7: Images generated by a sparse autoencoder [7].

In Figure 2.7, the top row represents the original digits from the original MNIST
dataset, which is used as input and the bottom row depicts the reconstructed
digits generated by the sparse autoencoder. A more in-depth discussion on sparse
autoencoders is presented by Goodfellow [6] and Andrew Ng [5].

2.2.3 Denoising Autoencoder (DAE)
The denoising autoencoder (DAE) is an autoencoder that uses a corrupted
data point X as input and is trained to recover the original, uncorrupted data

point x as its output. That is illustrated in the Figure 2.8.
The loss function of the DAE can be described as

L(z,9(f(2))) (2.4)

in which X is a replica of x that has been corrupted by some type of noise [6]. A
deeper discussion on sparse autoencoders is presented by Goodfellow [6].

10

2.2. Autoencoders Theoretical Background

; N |
Measure

Add noise to the WA A f % / reconstruction
input image / loss against
N \» K XY, original image

Feed
corrupted
input into] \

autoencoder) J \ LAY

s =\

Figure 2.8: A denoising autoencoder [8].

2.2.4 Contractive Autoencoder (CAE)

The contractive autoencoder (CAE) model presents an explicit regularization on
the code h = f(x), encouraging the derivatives of f to be as small as attainable:

ath) = A |22 2

= (2.5)

F

The penalty ©(h) is the squared Frobenius norm (sum of the squared elements)
of the Jacobian matrix of partial derivatives related to the encoder function. The
loss function of the CAE model is defined as:

L(x,9(f(x)) +AY_ [IVahil® (2.6)

where A\ is a hyperparameter and V h; is the gradient field of hidden layer acti-
vations with respect to input x, summed over all i training samples.

This penalty (h) causes the CAE network to learn a function that does not
alter much when x changes to some extent. Since this penalty is used only at
training examples, the CAE is forced to learn features that capture information
about the training distribution. The name contractive emerges from the way
that the CAE folds space. Since the CAE is trained to withstand perturbations
of its input, it is encouraged to map a neighborhood of input points to a smaller
neighborhood of output points. One can think of this as contracting the input
neighborhood to a smaller output neighborhood [6].

11

2.3. Generative Adversarial Networks Theoretical Background

2.2.5 Variational Autoencoder (VAE)

The VAE is a form of autoencoder that uses learned approximate inference and
can be trained entirely with gradient-based methods. In order to generate a
sample from the network, the VAE picks a sample z from the code distribution
DPmodel(x]2). Then, x is sampled from a distribution pieder(%; 9(2)) = Pmoder(x]2).
Whereas the approximate inference network (or encoder) ¢(z|z) is deployed to get
z during training, and pyeqder(|2) is then viewed as a decoder network. This can
be seen in Figure 2.9.

The key concept behind the VAE is to train a parametric encoder (an inference
network or recognition model) which produces the parameters of ¢. Considering
z is a continuous variable, one can back-propagate through samples of z chosen
from q(z|2) = Gmodel(2; f(x;0)) to achieve a gradient with respect to 6. Learning
then involves £ (the variational lower bound) with respect to the parameters of
the encoder and decoder. All the expectations in £ may be estimated by Monte
Carlo sampling [6].

plx]2) l | atzi x

Latent space

representation.
MNeural network Neural network
mapping x to z. mapping z to x.

Figure 2.9: the network architecture of a vairational autoencoder [9].

2.3 Generative Adversarial Networks

GANSs are based on a game-theoretic scheme where a generator network com-
pete against a network called the discriminator. The generator network generates
samples z = g(2;09)). While the discriminator network differentiates between
samples taken from the training data and samples chosen from the generator net-
work. The discriminator emits a probability value given by d(z; Q(d)), pointing the
probability that x is a real training sample rather than fake example picked from

12

2.3. Generative Adversarial Networks Theoretical Background

the generator. This process is illustrated in Figure 2.10. The most straightforward
way to define learning in GANS is as a zero-sum game where a function v(9(9), 9())
decides the payoff of the discriminator. The generator gets —v(89),0()) as its
own payoff. Both the generator and discriminator networks seek to maximize
their payoff, so that at convergence

g*x = argminmng(g,d) (2.7)
g

The default choice for v is
0(9(9), H(d)) = Ex~paatalogd(z) + Ez~pmoderlog(l — d(x)) (2.8)

This motivates the discriminator to classify samples as real or fake precisely. Con-
currently, the generator tricks the discriminator into believing its examples are
positive. At convergence, samples generated by the generator are identical with
the actual data, and the discriminator yields % in all places. Then, the discrimi-
nator may be discontinued. The major motive for introducing GANSs is that the
learning process needs neither estimate inference nor estimate of a partition func-
tion gradient. When maxqv(g,d) is convex in 69, the method is guaranteed to
converge and is asymptotically consistent. However, if maxq4v(g,d) is not convex
and g and d are defined by neural networks, the nonconvergence emerges as a

problem which further causes GAN to underfit.

Alternative approach to zero-sum introduced by Goodfellow (2014) involves the
maximum likelihood. As maximum likelihood training converges, the reformu-
lation of the GAN should also converge given enough samples. Whereas, this new
formulation cannot improve convergence in reality, perhaps due to suboptimality
of the discriminator or high variance around the expected gradient.

Unlike zero-sum or equivalent to maximum likelihood, the best-performing
formulation of the GAN game in practical experiments is different. In that best-
performing formulation brought in by Goodfellow et al. (2014c), the generator
intends to enhance the log-probability that the discriminator makes an error rather
than focusing to reduce the log-probability that the discriminator makes the cor-
rect prediction. This motivation is derived from the observation that it causes
the derivative of the generator’s cost function with respect to the discrimina-
tor’s logits to last large even in the situation when the discriminator confidently
dismisses all generator examples. Even though stabilization of GAN learning is
still an open problem, GAN learning carries out well when the architecture and
hyperparameters of the model are cautiously selected [6].

13

2.3. Generative Adversarial Networks Theoretical Background

D tries to make

D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z)) near 1

t

Dlﬁ'erentlable
function D

x sampled from i sampled from
data model
Differentiable
function G
(Input noise z)

Figure 2.10: The GAN framework pits two adversaries against each other in a
game [10].

14

Chapter 3

State of the Art

The performance of image inpainting and blind image inpainting algorithms steadily
and progressively improve as the advancements in deep learning enhance. The re-
covering of images that are imposed by scratches, superimposed text, or graphics
by these algorithms are becoming as good as their human counterparts in these
recent years. Some of the remarkable researches that remove the unwanted text
or objects can be seen in the sub-chapters below.

3.1 Image Denoising and Inpainting with Deep Neural
Networks

Xie et al. [2] present a novel approach to low-level vision problems that fuses
sparse coding and deep networks pretrained with DAE. The proposed approach
can perform image denoising and complex blind inpainting tasks and can yield
the results that are comparable to that of KSVD, a popular sparse coding tech-
nique. The proposed model in this research is known as Stacked Sparse Denoising
Autoencoders (SSDA), and the architecture of the network is illustrated in Figure
3.1. A visual comparison of inpainting results between SSDA and KSVD can be
seen in Figure 3.2.

SSDA can automatically remove complicated patterns like an overlaid text from
an image, rather than simple patterns like pixels missing at random. Besides, it

does not need the location that requires inpainting to be given a priori.

Experimental results indicate the effectiveness of SSDA in the denoising and blind
inpainting works and also SSDA can improve the performance of unsupervised fea-

15

3.1. Image Denoising and Inpainting with DNNs State of the Art

ture learning. This research [2] also proposes a new training scheme for DAE that
can both denoise and inpaint images within a unified framework. The weakness
with SSDA is that it can remove only the noise patterns it has seen in the training
data. In other words, it can generalize to unseen but similar noise patterns [2].

Lixy) +—_

(00-00)

" s4a —o

0-0*0-0 ©=0

(OO0 ~00)

(OO ~-00]
(OO -00)

(&) Denoising aute-encoder (DA) architecture (b} Stacked sparse denoising auwto-encoder architecture

Figure 3.1: Model Architectures [2].

Figure 3.2: Visual comparison of inpainting results from Noisy, SSDA and KSVD.

2].

16

3.2. Deep Convolutional Generative Adversarial Nets State of the Art

3.2 Deep Convolutional Generative Adversarial Nets

The adoption of supervised learning with Convolutional Neural Networks (CNNs)
in computer vision (CV) applications has been popular during recent years while
unsupervised learning with CNNs within the CV applications domain is less pre-
ferred. Motivated by that, Alec Radford et al. [11] introduced a new GAN ap-
proach built on CNN called DCGAN in order to bridge the gap between the success
of CNNs for supervised learning and unsupervised learning. They also proposed
a more stable set of architectures for training GANs, and they also yielded con-
vincing evidence that adversarial networks learn useful representations of images
for supervised learning and generative modeling. They also made an important
observation which indicates that as models are trained longer they sometimes col-
lapse a subset of filters to a single oscillating model [11].

Figure 3.3: Generated bedrooms by DCGAN model after one training pass
through the LSUN dataset [11].

3.3 Deep Blind Image Inpainting

Liu et al. [12] introduce an efficient blind image inpainting algorithm to restore
a clear picture from a corrupted input directly. Inspired by the residual learn-
ing algorithm, Deep blind image inpainting [12] involves an encoder and decoder
architecture to capture the more useful information and formulate a robust loss

17

3.3. Deep Blind Image Inpainting State of the Art

function to handle with outliers. For the network architecture of the proposed
model, one can view Figure3.4.

The deep blind image inpainting algorithm can anticipate the missing information
in the corrupted regions, which improves image restoration. Consider Figure 3.5
in which their method directly learns the missing information in the corrupted
locations. By plugging the learned information into an input image, realistic im-
ages can be achieved.

Both qualitative and quantitative experiments indicate that the deep blind image
inpainting algorithm can handle the corrupted regions of arbitrary shapes, and it
can also execute positively against state-of-the-art techniques. However, the deep
blind image inpainting technique does not perform well when significant structures
or details that are unique in an image is corrupted. Figure 3.6 indicates a failure
sample in which the nose and mouse are densely corrupted, and the proposed
method fails to restore these two parts. Notably, their approach does not execute
well when unique structures are corrupted by large square[12].

ma= = m Gradient Input Output

(] i ™ ...

A 4 + Max Pooling 2x2

@! @ @ @ el @ @ 4 De-Conv 3x3, ReLU

EU :]‘ E Copy and Concatenate
4 t

= Pixel-wise Sum
i % e

W -/ A7 " . 1. L1Loss |
¥ i i H H A Vo H
#
‘-x

'54
4
3

Figure 3.4: Network Architecture of the proposed model [12].

18

3.4. Image Inpainting and Object Removal with Deep Convolutional
GAN State of the Art

dafinifio
i cogn
Tariny
Machin

"Can madahi

replaced wit
IQ,

(a) Corrupted image (b) Our restoration result (c) Learned residual image

Figure 3.5: Image recovering using the deep blind image inpainting algorithm [12].

(a) Input (b) Output

Figure 3.6: A failure example of the deep blind image inpainting technique [12].

3.4 Image Inpainting and Object Removal with Deep
Convolutional GAN

Fu et al. [13] present solving landscape picture inpaint problem with the DC-
GAN. The architecture of DCGAN in this project is formed with two networks,
namely the Generator and the Discriminator, which can be seen in Figure 3.7 and
Figure 3.8, respectively. Two reasons mainly motivate them. The first reason is
to remove the undesired objects from the taken pictures, and the second reason
is to explore the recently published DCGAN on image inpainting.

19

3.4. Image Inpainting and Object Removal with Deep Convolutional
GAN State of the Art

According to Fu et al.[13], the resulting model beats most of the existing pub-
lished solutions so far. A comparison between the original image, the cropped
image, and the reconstructed images produced by the Telea inpainting algorithm
and the DCGAN algorithm is shown in Figure 3.9.

There were two major challenges while the research[13] was conducted. One of
the challenges that made DCGAN difficult to train was that the discriminator
and the generator learn with different speeds. To get good training results, both
discriminator and generator have to be tuned so that they both are learning at
the same pace. Another challenge was the high cost in both time and memory
for the training of DCGAN. The GAN model used around 50 minutes to train 1
epoch, and it typically takes about 40 epochs to get decent results. Additionally,
memory overhead is also quite immense. CUDA crashes from time to time, which
leads to wasted training efforts[13].

V' 4 4 |

2BEIERxD 128= 12054 Bdxfd=1 8 2nE2n258 164182512 Bri=512
in |~ Encode Encode Encode Encode Encode Encode
Angu512
out = Decode Decode Decode [+— Decode Decode Decode

128128128 B4ME4ME5E 32%32HE12 1B 1B%1024 auER1024

"-|I

Figure 3.7: Network Architecture of the Generator [13].

20

3.5. Deep Image Prior State of the Art

"-ll

256w 256%3 128w 128wE4 EdxBdw 128 32w 3Iw256 A= 16512 A6x16x1 + Sigmaid

in |~ Encode — Encode —* Encode | Encode |—* Encode |+ out

Figure 3.8: Network Architecture of the discriminator [13].

Original Cropped Telea DC-GAN

Figure 3.9: Image Yuxin, one of the authors of this research, took in Zion mountain
[13].

3.5 Deep Image Prior

Ulyanov et al. [14] presents that the structure of a generator network is adequate
to capture a vast amount of low-level image statistics before any learning. To do
that, they show that a randomly-initialized neural network can be applied as a
handcrafted prior with excellent results in standard inverse problems like denois-
ing, super-resolution, and inpainting. According to Ulyanov et al. [14], the same
prior can also be adapted to invert deep neural representations to diagnose them
and to recover images based on flash-no flash input pairs.

Deep Image Prior algorithm [14] focuses on the inductive bias captured by stan-
dard generator network architectures in addition to its diverse applications. It also

21

3.6. Context Encoders State of the Art

links the gap between two popular image restoration methods such as learning-
based methods using deep convolutional networks and learning-free methods based
on handcrafted image priors such as self-similarity.

The architecture of the network can be found in the supplementary material on
their website[14]. The comparison of text image inpainting sample achieved by
the Deep Image Prior and Shepard networks can be seen in Figure 3.10 [14].

(a) Original image (b) Corrupted image (c) Shepard networks [27]

(d) Deep Image Prior

Figure 3.10: Text inpainting comparison between Deep Image Prior and Shepard
Networks [14].

3.6 Context Encoders

Pathak et al. [15] present an unsupervised visual learning algorithm driven by
context-based pixel prediction. This algorithm is called Context Encoders (CEs)
where a convolutional neural network is trained to generate the contents of an
arbitrary image region conditioned on its vicinity. To conduct successfully at this
task, CEs need to both comprehend the content of the whole image, as well as
produce a possible hypothesis for the missing part(s). While training CEs, the
authors of this research experimented with a standard pixel-wise reconstruction
loss, reconstruction, plus adversarial loss. The latter produced much better results
since it can better deal with multiple modes in the output. They also discovered
that a CE learns a representation that captures not just appearance but also the
semantics of visual structures. The effectiveness of CEs’ learned features for CNN
pretraining was quantitatively demonstrated on classification, detection and seg-
mentation tasks. Additionally, CEs can be applied for semantic inpainting tasks,
either stand-alone or as initialization for non-parametric techniques. The Quali-
tative illustration of the inpainting task is shown in Figure 3.11 where an input
image is given with a mission region (a), a human artist is inpainting it in (b), au-
tomatic inpainting using proposed context encoder trained with L2 reconstruction

22

3.7. Evaluation Methods State of the Art

loss in (c), and using both L2 and adversarial loss in (d) [15].

(c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Figure 3.11: Qualitative illustration of the inpainting using context encoders [15].

3.7 Evaluation Methods

The quality of an image changes over time due to various distortions such as pro-
cessing, compressing, and transmitting. There are two methods to evaluate image
quality, and they are called subjective and objective methods. The subjective
evaluation technique is considered as capital-intensive since it demands many ob-
servers and their opinion based judgments on large image dataset. Consider Mean
Opinion Score (MOS), a popular approach for subjective image quality measure-
ment. In MOS, a group of people is requested to compare original and corrupted
images to predict the quality of the damaged image. The mean score is used as
the image quality index. Even though this process reflects human perception, it is
considered to be too time-consuming and unrealistic to apply compared to other
image processing algorithms [16].

Whereas the objective evaluation technique applies automatic algorithms to check
the quality of an image without human interference. These objective approaches
are split into different classes based on the availability of the original image. They
are known as full-reference where the original image is available, reduced-

23

3.7. Evaluation Methods State of the Art

reference where the original image exists partly in a group of extracted features
as information that helps in the evaluation process, no-reference where there is
no original image. This is also known as “blind quality assessment”. Mean square
error (MSE), peak signal-to-noise ratio (PSNR), and Structural Similarity Index
(SSIM) are the most commonly used objective image quality measures[16].

Full-reference quality measures focus on original, corrupted and reconstruction
images. Full reference image quality measures could be categorized into six classes
of objective image assessment measures according to [16], that is

1.

Pixel difference-based measures such as MSE, signal-to-noise ratio (SNR)
and PSNR are simple to calculate.

Correlation-based measures where correlation is applied to calculate
the difference between two digital images. In image quality assessment,
correlation of pixels is used as a measure of the image quality.

Edge-based measure in which the edges in the original and the corrupted
images are found, and then a measure of displacement of edge positions or
there consistency are deployed to discover the image quality for the whole
image.

. Spectral distance-based measures where Discrete Fourier Transform is

deployed on the original and the damaged images. Here, the difference of the
Fourier magnitude or phase spectral is used as a measure of image quality,

Context-based measures where instead of comparing pixels in original
and damaged images, pixel neighborhoods are compared against each other
by finding the mutli-dimensional context probability to use it for calculating
image quality.

Human Visual System-based measures (HVS) in which image quality
is computed as the human eye would do. Typically, humans use contrast,
color and frequency changes in their measures.

24

Chapter 4

Methodology

This chapter presents an overview of the dataset and tools used in this research
and the proposed solution for DAE and DCGAN.

4.1 Dataset

The Food-11 dataset is an open source dataset available for research purposes
only. It includes 16643 food images in 11 major food classes. Those 11 classes
are Bread, Dairy product, Dessert, Egg, Fried food, Meat, Noodles/Pasta, Rice,
Seafood, Soup, and Vegetable/Fruit. The images in the downloaded dataset are
stored in three folders; training, validation, and evaluation. [17].

The images are all in excellent quality, and they are all colored and in high reso-
lution. The dataset was chosen for this reason.

4.2 Proposed Solution

The proposed solution for removing the date stamps from the colored, high-
resolution images involves the entire workflow of the experiments. The work-
flow is visualized in a model that gives a clear overview of the process, as in
Figure 4.1. This workflow is formed with four major components namely data
pre-processing that explains the corruption of dataset, the network design
of DAE and DCGAN models, image restoration that defines the training and
testing of DAE and DCGAN networks and finally evaluation of the proposed
solution that further defines the visual and objective via quantitative evaluation
of the results achieved in this thesis.

25

4.2. Proposed DAE Methodology

The proposed solution for DAE and DCGAN models are described in separate
workflows in the sections 4.3 and 4.4, describing in detail the workflow for each
algorithm.

Food-11 dataset Input image Network design Output image

Data pre-processing Image restoration Evaluation

» o=) DCGAN] i
: - —5 |—> Visual + PSNR value

DAE

Figure 4.1: The proposed workflow

4.3 Proposed Denoising Autoencoder

This section explains how the DAE model can be designed to remove the date
stamps from the high-resolution images. The section consists of the dataset cor-
ruption, network architecture of the DAE, how it is trained, and evaluation of the
output images. This proposed DAE is used to conduct DAE Experiment.

4.3.1 Data Pre-processing

The data pre-processing for the DAE model involves resizing and adding corrup-
tion to the Food-11 dataset. No normalization is done on the data before training.

Resizing: The Food-11 dataset contains images of varying dimensions. The
images vary from 0.05 to 56 megapixels. For these experiments, the images are
cropped to a square, then resized to 256 to 256. This size is chosen for two reasons.
First, due to the length and height of the images, parameters that are halved in
the pooling layers, are a power of 2. Second, this resolution size is high enough to
notice details and sharpness. Only 3 images in the original dataset have length
or height smaller than 256, and they are not used in the experiments.

Corruption: The date stamps used as an overlay on the Food-11 dataset are
supposed to imitate as the actual date stamps. The OpenCV library [18] is used
to insert date stamps onto the images within the Food-11 dataset. Each image
within this dataset is given a random date with white font color. The date stamp
has a random font type, size, and location, so the variation in the corruption of
the image will increase. The images with date stamps are considered corrupted

26

4.3. Proposed DAE Methodology

and are saved in separate folders. Some of the corrupted images can be seen in
Figure 4.2.

| 202411-03.

Figure 4.2: Some of the corrupted data samples that were used as the input data
for the proposed models in this research

4.3.2 Network Architecture

The proposed DAE model uses corrupted data as training samples and the ground
truth images as labels. The desired outcome is an image with quality as close to
ground truth as possible. The architecture of one of the proposed DAE models
can be seen in Figure 4.3, which has 10 layers in total. Figure 4.3 is generated
using [19]. The first 4 layers are called encoder and the middle layer via the bot-
tleneck of the DAE model is formed with two layers. The last 4 layers are the
decoder.

Throughout the entire network, batch normalization [20] and relu (rectifier linear
unit) activation function [6] was used between the convolution [6] and max pooling
[6] layers and the convolution and upsampling [6] layers. The output of the final
layer is fitted with a sigmoid activation function [6]. The “same padding” and a
batch size of 16 were used through the whole DAE network.

96 Encoder Bottleneck Decoder 96
96 96
256x256 256x256
@256x @128x128 48 @128x128 @256 3

@zsexzse @128x128 @54x54 @64x64 @128x128 @256x256
= T " Ty B
Input Max-Pool ‘Convolution Output

Convolution Max-Pool Upsampling Convolutlon Upsampling

C luti .
onvolution Convolution

Figure 4.3: The network architecture of the DAE model.

27

4.3. Proposed DAE Methodology

Number Suffix || Types of layers Output Shapes
layers

15t Input (256, 256, 3)
ond Convolution (256, 256, 96)
3rd Max pooling (128, 128, 96)
4t Convolution (128, 128, 48)
5th Max Pooling (64, 64, 48)
6t Convolution (64, 64, 48)
7th Upsampling (128, 128, 48)
gth Convolution (128, 128, 96)
gth Upsampling (256, 256, 96)
10t Convolution/Output (256, 256, 3)

Table 4.1: The description of network layers of DAE model

The 15 layer of the 10 layered network takes the input of a 256 %256 corrupted and
colored image from the Food-11 dataset. The 2°d layer encodes the image with
convolution and has 96 filters. The 3™ layer reduces the filter sizes to 128 % 128
with max pooling. The 4*" convolution layer with 48 filters encodes further the
output from the 3™ layer.

The two layers that are the bottleneck of the DAE namely the 5'" max pooling
and 6" convolution have the same number of filters, 48, and sizes are with the
5% layer of the encoder part further encoded into the size of 64 * 64.

The decoding process is the reverse of the encoding process. The 7 layer increases
the filter size into 1284128 with upsampling. The 8" layer decodes the image with
convolution. The 9™ layer increases the filter size into 256 % 256 with upsampling.
The final convolution layer of DAE decodes the result of the previous layer back
to original colored images without date stamps. Those output images are the
reconstructed images. A summarized description of all network layers of the
proposed DAE model can be seen in the table 4.1.

4.3.3 Image Restoration

This Section is split into two subsections that further define the training and
testing workflow of the DAE model.

28

4.3. Proposed DAE Methodology

Training

The code implementing the DAE is based on existing DAE code [21]. The training
of the DAE model is described in a workflow in Figure 4.4. The DAE network
takes the images from the training folder of the corrupted Food-11 dataset as
input images and learns to remove the date stamps by using the images from the
training folder of the original Food-11 dataset as reference. Adam [22] is used as
an optimizer, with the parameters of the optimizer set to default. Binary cross
entropy [23] is used to measure the training loss. Validation is done after each
epoch using the images from the validation folder. The training folders contain
9860 images each. The validation folders contain 3428 images each.

Training of the DAE model

denoising
autoencoder

% R 'T:',‘y—

=

loss

Figure 4.4: The training workflow of DAE

Testing

Figure 4.5 shows the testing workflow of the DAE model. After the DAE model
is trained to reconstruct images and remove date stamps, it is tested using the
images in the evaluation folder of the Food-11 dataset. This folder contains 3347
corrupted images. These images are reconstructed using the trained DAE model.
After the DAE is tested, the quality of the results produced by the DAE model is
further evaluated visually and quantitatively by using PSNR. The details of the
evaluation approach are presented in Section 4.5.

29

4.3. Proposed DCGAN Methodology

Used as Input Images Image Restoration / Output

| g <

Evaluation

|—'> Visual

V' + PSNR value

Figure 4.5: The testing workflow of DAE

4.4 Proposed Deep Convolutional General Adversar-
ial Net

This section contains the preprocessing needed for the DCGAN model, its network
architecture, the training procedure and the evaluation of the output images.
This section also explains how the DCGAN model can be designed to remove
date stamps from high-resolution images. Three experiments are done using the
DCGAN model, each with different architectures or inputs:

1. DCGAN with date stamps Experiment.
2. DCGAN without date stamps Experiment.

3. DAE and Discriminator Experiment.

4.4.1 Data Pre-processing

The corrupted images introduced in the Section for DAE 4.3.1 are used as input
images for both the DAE and DCGAN models. The images from the dataset are
downsized further to 64x64 size, to reduce training times.

Labeling: The file name of the images in the dataset is of format “xx_yyyy.jpg”,
with “xx” being the category of the image. In Experiment 2 and 3, the categories
are used to separate the images so that only one category is used. This is done to
get less variation in the dataset, because it is suspected that a dataset with large
variation will be more challenging to train. The image category is chosen before
training. The output images of the generator are based on the specified category.
The “Bread” class of the Food-11 dataset is the category that is used in these
experiments.

30

4.4. Proposed DCGAN Methodology

Augmentation: Data augmentation is performed on the dataset by flipping
each image, so both the original and the flipped image is in the dataset. This new
dataset is used for experiment 3.

4.4.2 Network Architecture

The architecture of the DCGAN model is similar to the original GAN model [24]
and uses convolutional neural networks to transform the layers inside the network.
There are no pooling layers in the network, and the pixel dimensions of the image
are reduced with convolution layers and “Same” padding. A batch size of 32 is
used.

Figure 4.6 shows the proposed architecture of the discriminator of the DCGAN
model. Figure 4.7 shows the proposed architecture of the generator of the DCGAN
model. Both figures are generated using [19].

128
64x64 128
@64 @32x32 @16x16 128 128 1x2048
3 @8x8 @4x4
@64x64 - .
DDDDDD ", 1x1
=S DDD D“n
DDD "o Qutput
Input %, -

Convolution - N i . -
. jon C lut :
Convolution Convolution tonvolution Flatten Dense

Convolution

Figure 4.6: The network architecture of the Discriminator network of the DCGAN
model.

Table 4.2 shows a summarized description of all network layers of the proposed
discriminator of DCGAN network. Throughout the discriminator network, batch
normalization with momentum of 0.9 and LeakyReLU activation function with
alpha value 0.1 was used as hyper-parameters between the convolution and con-
volution layers. The dropout function is used between the 7** flatten layer and the
dense output layer of the network. The final dense layer is fitted with a Sigmoid
activation function.

31

4.4. Proposed DCGAN Methodology

Number Suffix || Types of layers Output Shapes
layers

15t Input (64, 64, 3)

ond Convolution (64, 64, 128)

3rd Convolution (32, 32, 128)

4th Convolution (16, 16, 128)

5th Convolution (8, 8, 128)

6" Convolution (4, 4, 128)

7th Flatten (1, 2048)

gth Dense/Output (1, 1)

Table 4.2: The description of network layers of Discriminator network of the
proposed DCGAN model

1x32768
N 128 128 128 128 128 128 128
. @16x16 @16x16 @32x32 @32x32 @64x64 @64x64 @64x64

|

3
@64x64

=

Output

1x100

Input

Convolution Convolution Convolution

Conv-Transpose Conv-Transpose

Convolution Convolution
Reshape

Dense

Figure 4.7: The network architecture of the Generator network of the DCGAN
model.

Table 4.4.3 shows a summarized description of all network layers in the proposed
generator of the DCGAN network. Throughout the generator network, batch nor-
malization with momentum of 0.9 and LeakyReLU activation function with alpha
value 0.1 were used as hyper-parameters between the Dense and Reshape layers,
between convolution and convolution layers, and between the convolution and
conv-transpose layers. The final convolution layer is fitted with a Tanh activation
function.

32

4.4. Proposed DCGAN Methodology

Number Suffix || Types of layers Output Shapes
layers

15t Input (1, 100)

ond Dense (1, 32768)
3rd Reshape (16, 16, 128)
4th Convolution (16, 16 128)
5th Conv-Transpose (32, 32, 128)
6" Convolution (32, 32 128)
7th Conv-Transpose (64, 64, 128)
gth Convolution (64, 64, 128)
9th Convolution (64, 64, 128)
10t Convolution/Output (64, 64, 3)

Table 4.3: The description of network layers of Generator network of the proposed
DCGAN model

4.4.3 Image Restoration

Image restoration of DCGAN involves training and testing workflow of the DC-
GAN model.

Training

The code implementing the DCGAN is based on existing code [25]. Each epoch
of DCGAN is first set up to train the discriminator, then the generator. The
balancing is essential in order not to overtrain one of them, and make both able
to catch up with each other. Figures 4.8 and 4.9 show the training workflow of
the discriminator and generator of the DCGAN model, respectively.

The discriminator is trained by creating two batches of images and using these
as input to the discriminator model. One batch contains reference images, and
the other contains generated images. The output of the discriminator model is a
prediction on whether the generated image is real or false. First, the discriminator
trains on reference images. The correct prediction is that the images are real.
Then, the discriminator trains on generated images. The losses from both batches
are averaged, and the weights are updated.

33

4.4. Proposed DCGAN Methodology

Generator Generated image Real image

Noise

Hifftte =

v

A4
real/fake real/fake
prediction prediction
AV4 Av4
loss | | loss
AN AN
fake label

real label

Figure 4.8: The training workflow of Discriminator of the DCGAN

The generator is trained by turning off training for the discriminator, and training
the full DCGAN model. The generator input is a batch of random noise samples.
The generator output is a batch of generated images. The loss of the DCGAN
is low when many generated images are predicted as real and high when many
generated images are predicted as false. After the predictions, the weights of the
generator are updated to minimize the loss, while the weights of the discriminator
remain unchanged.

The generator is initially creating images from random noise, then after a while,
the weights in the generator layers turn the noisy input into a value that it assumes
the discriminator will predict to be true. An effect of the random input of the
generator is that the output image will not resemble any image in the dataset.
This will result in images without date stamps when trained with ground truth
images, but these images are not restored images, but completely new generated
images of food not seen before. Since the goal of the thesis is to remove date
stamps from images, this result is not useful.

34

4.4. Proposed DCGAN Methodology

Generator Generated image

Noise

Wit =

real/fake
real label E> <: prediction

Figure 4.9: The training workflow of Generator of the DCGAN

Testing

After the network has trained the desired number of epochs, the quality of gen-
erated images are evaluated. Since the generator and discriminator are trained
in parallel, evaluating the images using the network’s discriminator can result in
the same accuracy with a poorly performing network and with a well-performing
network. One possibility is using a classifier trained on all classes of the food-11
dataset.

In Experiment 2, the generated images are compared with the images with date
stamps, and in Experiment 3, the generated images are compared with the images
without date stamps. The evaluation method used is PSNR. The value can be
directly compared with the value of the DAE test.

The compared images are chosen randomly. This gives a worse PSNR value than
if the images had been compared directly. The result can still be of interest com-
pared to the worst case scenario, discussed in 4.5.

35

4.5. Evaluation for the proposed solutions Methodology

Generator Generated image

Noise

Wit =

Evaluation
Visunal
+ PSNR value

Figure 4.10: The testing workflow of DCGAN

4.4.4 Proposed DAE and Discriminator

The output generated in the experiment above, in Section 4.4.2 does not corre-
spond to any specific ground truth image because it uses random noise as input.
A proposed experiment for using DCGAN to restore a specific input image us-
ing blind inpainting, is to use the whole date-stamped image as an input to the
DCGAN network instead of the random vector that is the input of a generator.
This experiment requires a network that is able to do this. A possible solution is
to replace the generator with a DAE and train it together with a discriminator,
using the discriminator as an additional loss function of the GAN. This will be
referred to as a DAE-discriminator network.

4.5 Evaluation for the proposed solutions

The evaluation for the performed experimental results is done in two parts. The
first part is a visual evaluation, and the second part is an objective evaluation.
The details of the evaluation part can be seen in 5.5. The visual evaluation is
performed in Section 5.5.1, where the image quality is assessed by visually com-
paring the results generated by the proposed models DAE and DCGAN and an
opinion based judgment. The objective via quantitative evaluation is performed
in Section 5.5.2 by using PSNR to objectively and quantitatively compare the
results produced by DAE and DCGAN. PSNR is chosen as it is the most com-
monly used method to objectively and quantitatively compare the quality of the
images. It is preferred to use PSNR and not MSE because PSNR does not result
in very small numbers. In both the visual and objective approaches, the quality
of the original images is compared to the quality of the predicted images, the
reconstruction images in the case of DAE model, and the generated images in the
case of DCGAN model.

36

4.6. Tools Methodology

The whole image is used when comparing images for these experiments, and only
a portion of the image is corrupted. The reason for this choice is to include any
potential quality loss in locations where there is no text in the corrupted image.
This means that in this case, the PSNR value will be higher compared to other
experiments where the whole image is corrupted, as long as the rest of the output
image stays the same. The worst case scenario is a black image compared with a
white image, where MSE=1, PSNR=48.13dB. The average PSNR value between
ground truth images and date stamped images is 67.8.

Given an original image f and a predicted image g, both of the size M % N, the
PSNR between f and g is defined by:

2552
PSNR(f,g)= 1010g10(W(fg)) (4.1)
where
, M N
MSE(f.9) = 77 SO (i —9i) (4.2)

i=1 j=1
in which ¢ represents the horizontal pixel value and j represents the vertical pixel
value The PSNR value approaches infinity as the MSE approaches zero: this
means that a higher PSNR value provides a higher image quality. Whereas, a
small PSNR value indicates high numerical differences between images [26].

4.6 Tools

4.6.1 Software Tools

Developing the different deep learning models such as DAE and DCGAN were
done in python 3 programming language and main libraries such as Tensorflow
and Keras were used.

e Tensorflow is an open source machine learning system that runs at large
scale and in heterogeneous environments. It maps the nodes of a dataflow
graph across many machines in a cluster, and within a machine across mul-
tiple computational devices, including multi-core CPUs (Central Process-
ing Units), general-purpose GPUs (Graphical Processing Units), and TPUs
(Tensor Processing Units). TensorFlow enables developers to test with novel
optimizations and training algorithms. It also supports a variety of appli-
cations, with a focus on training and inference on deep neural networks
[27].

37

4.6. Tools Methodology

e Keras is a high-level neural networks API which is developed in python and
can run on top of software libraries such as TensorFlow, CNTK or Theano.
It can run smoothly on both CPU and GPU. Keras was implemented with
a focus on doing fast experiments [23].

4.6.2 Hardware Tools

e cair-gpuOl.uia.no: this is one of the gpu servers from the University of Agder
that is used in this thesis. Its hardware specifications are as as follows [28]:

DELL PowerEdge R730

— 2x NVIDIA Tesla K80

— 2x Intel Xeon E5-2660 2.0GHz 14C/28T

— 128GB 2400MHz DDR4 RAM

— 800GB Internal SSD, 20TB Shared storage.

this server use the following Software Stack.

— Kubernetes on NVIDIA GPUs (KONG)
— Ceph (ceph-ansible)
— JupyterHub

38

Chapter 5

Results

This Chapter is divided into five Sections. Each of the first four Sections describe
a distinct conducted experiment. The fifth Section is a visual and quantitative
comparison of the results where the quality of the images from experiment 2, 3,
and 4 are compared with the images from experiment 1.

The experiments in this research are as follows:

1. Experiment 1, in Section 5.1 evaluates setups of the various DAE tests and
show the performance for removing the date stamps over loss and PSNR.

2. Experiment 2, in Section 5.2 evaluates the setup of DCGAN with corrupted
images as the reference, and show the performance for removing the date
stamps over loss and PSNR.

3. Experiment 3, in Section 5.3 evaluates the setup of DCGAN with corrupted
images as the reference, and show the performance for removing the date
stamps over loss and PSNR.

4. Experiment 4, in Section 5.4 evaluates the setup of DAE-Discriminator, and
show the performance for removing the date stamps over the loss.

The purpose of these experiments is to see if the models can remove date stamps
from colored, high-resolution images or not, to evaluate the quality of the re-
constructed images, and to see how stable the training is from the loss curve.
Experiment 1 is designed with different DAE setups and different parameters,
which make up the various tests. The purpose is to see for each test how much
of the date stamps are left after training and compare the performance between
the tests to find the best setup. The purpose of Experiment 2 is to produce a
result that shows whether DCGAN can return uncorrupted images with good

39

5.1. DAE Experiment Results

quality from corrupted images. The purpose of Experiment 3 is to find out how
well the DCGAN model from Experiment 2 can perform with input data without
corruption. The images are expected to be of higher quality than the images from
Experiment 2 because there are fewer features to learn without corruption. The
purpose of Experiment 4 is to combine elements of the DCGAN model and the
DAE model and see whether the resulting hybrid model can produce images that
are close to the ground truth, instead of generating new images. Furthermore,
it is interesting to see how the output of a traditional DCGAN network changes
when the generator part is replaced by a DAE network.

5.1 Denoising Autoencoder Experiment

Experiment 1 uses the DAE architecture and contains 6 different tests with dif-
ferent parameters and code dimensions. In Test 1 the model is set to train for
20 epochs first and then set to train for 100 epochs. The resulting images are
then demonstrated in Figures 5.1 and 5.2. As for Tests 2-6, the DAE models are
set to train for 100 epochs. The images produced from tests 1-6 vary slightly in
quality as presented by the PSNR results in table 5.3. For visual brevity, only
image samples from Test 1 are presented. All tests use parameters as previously
stated in chapter 4.3 unless otherwise specified.

The DAE networks that are used in Test 1, 2, and 4 are overcomplete autoen-
coders with different convolution filters. BCE loss via optimization function is
used for Tests 1, 2, and 4. Whereas in Test 3, undercomplete autoencoder with
BCE loss function is used. While overcomplete autoencoder with MSE loss func-
tion is utilized in Test 5 and overcomplete autoencoder with mean absolute error
(MAE) loss is deployed in Test 6.

Typically, an overcomplete autoencoder means the bottleneck of the network has
an equal or larger dimension than the input dimension. Whereas an undercom-
plete autoencoder means the bottleneck has a smaller dimension than the input
dimension. A typical autoencoder is an undercomplete network that replicates the
input images. A typical DAE network is overcomplete as it takes corrupted input
images, and the corruption ensures that the network does not learn the identity
function. Hence it is necessary to formulate various versions of overcomplete DAE
networks in order to discover which overcomplete DAE variant can deliver the best
results. Therefore, Tests 1, 2, 4, 5, and 6 were designed and tested. Compared to
those tests, Test 3 is designed and tested as an undercomplete network in order to
discover if an undercomplete DAE model can outperform an overcomplete DAE.

40

5.1. DAE Experiment Results

5.1.1 Test 1

Figure 5.1 shows the results produced by the DAE model, where the network
is trained for 20 epochs. The results indicate the DAE can get rid of the date
stamps, but some images show remains of the date stamp still visible after removal.
However, after the network has trained for 100 epochs, the resulting output by
the DAE model 5.2 shows no remains of date stamps over images, the regions
where date stamps are removed are not noticeably blurry, and the results are very
satisfactory.

Figure 5.1: Examples of results generated after the DAE is trained for 20 epochs.
Top Row: the corrupted samples used as input samples. Bottom Row: the output
samples by the DAE model after the date stamps removal.

Figure 5.2: Results generated after the DAE is trained for 100 epochs. Top Row:
the corrupted samples used as input images. Bottom row:the output samples by
the DAE model after the date stamps removal.

41

5.1. DAE Experiment Results

model loss

0530
—— frain

0525 Rt

0520 4

05151

loss

0510 4

05051 |

U
0500 - e

——

0 20 40 60 80 100
epoch

Figure 5.3: Test 1 loss curve.

Observations: Results from Test 1 demonstrate that the output images pro-
duced after removing the date stamp by the DAE model do not leave missing
regions or holes. The images have left some corrupted regions when the network
is trained for 20 epochs, as shown in Figure 5.1. However, when the network is
trained for 100 epochs, the corrupted regions disappear. The PSNR value for
Test 1 is 77.7, which is computed after the network is trained for 100 epochs.
Figure 5.3 shows how much the test loss curve of the network is converging to the
training loss curve. The nature of the loss test curve indicates that the network
is stable between 20 to 80 epochs while it is unstable on some parts between 80
to 100 epochs. Overall, DAE model can perform well.

5.1.2 Test 2

The filters of the convolution layer 2 and 8 are reduced from 96 to 12. This mod-
ification of the DAE network is done to find out the best version of overcomplete
DAE that can deliver the best performance.

Observations: Figure 5.4 shows that the test loss is closer to the training loss,
with less variation. PSNR value for Test 2 is 78.9, which is computed after the
network is trained for 100 epochs. Compared to Test 1, the test loss of Test 2 is
smoother, and also the PSNR of Test 2 is slightly higher. This confirms that this
DAE variant works better than the DAE variant in Test 1.

42

5.1. DAE Experiment Results

model loss
—— frain
0525 test
0520
" 0515
k=l
0510
0505
- %M
0.500
0 20 a0 &0 80 100
epoch

Figure 5.4: Test 2 loss curve.

5.1.3 Test 3

The same changes from test 2 are carried over to test 3. Furthermore, four ad-
ditional layers are added to the network. The dimension of the bottleneck is
32x32x96, compressing the input with a factor of 2, making the encoder under-
complete. This modification of the DAE network is done to discover if an under-
complete DAE can perform better than an overcomplete DAE.

model loss
0530 { = train
test
0525 A
0520 A
w
w
2 0515 A \
05101 |
\
A ™
03051 \\HA_%W
0 20 40 60 80 100
epoch

Figure 5.5: Test 3 loss curve.

Observations: Figure 5.5 shows how much test loss is converging against the
training loss. PSNR value for Test 3 is 75.1, which is computed after the network
is trained for 100 epochs. Unlike loss curve Test 1, the test loss curve of Test

43

5.1. DAE Experiment Results

3 is smoother. Compared to tests 1 and 2, the PSNR value of test 3 is lower.
Interestingly, the test loss curve of Test 3 is similar to that of Test 2. Shortly, it
can be concluded by comparing other tests in Experiment 1 that an overcomplete
DAE performs better than that of an undercomplete DAE

5.1.4 Test 4

The filters of the convolution layer 4 and 6 are increased from 48 to 196. This
results in a bottleneck that is 4 times larger. This modification of the DAE
network is done to find out the best version of an overcomplete DAE that can
deliver the best performance.

model loss
—— frain
0520 test
0515
2 0510
0.505
0500 \\'\‘“_
——
0 20 40 60 80 100

epoch

Figure 5.6: Test 4 loss curve.

Observations: Figure 5.6 shows how much the test loss curve is converging
against the training loss. PSNR value for Test 4 is 78.8, which is computed after
the network is trained for 100 epochs. PSNR for Test 4 is higher than that of tests
1 and 3. The improvement of the results compared with the results in test 1 is
minimal. Potential additional tests with networks built deeper than the network
in this test will likely yield results that are much higher.

5.1.5 Test 5

MSE loss is used instead of BCE or MAE loss to determine if the DAE model
performs better with a different loss function. Apart from this modification, the
same network structure as Test 1 is used.

44

5.1. DAE Experiment Results

model loss

—— frain

0.008 test

0.006

loss

0.004

0.002 N

Figure 5.7: Test 5 loss curve.

Observations: PSNR value for Test 5 is 79.6, which is calculated after the
network is trained for 100 epochs. Figure 5.7 shows the performance of test loss
against the training loss in Test 5. It can be seen from this figure that somewhere
between 0 to 40 epochs, the test loss converges better than training loss.

5.1.6 Test 6

MAE loss is used instead of BCE or MSE loss to decide if DAE performs better.
Apart from this modification, the same network structure as Test 1 is used.

model loss
0071 — train
test
0.06
0.05
m 1
o
= 0.04 \
003 N
‘H\-
\HMH
0.02 pw e SR ATYL T PR
T
o 20 40 60 80 100
epoch

Figure 5.8: Test 6 loss curve.

Observations: PSNR value for Test 5 is 79.7, which is calculated after the
network is trained for 100 epochs. Figure 5.8 shows the performance of test loss

45

5.2. DCGAN with date stamp Experiment Results

against the training loss in Test 6. It can be seen from this figure that somewhere
between 0 to 50 epochs, the test loss converges better than training loss.

5.2 Deep Convolutional Generative Adversarial Net

This experiment is about the test with DCGAN with date stamps where the binary
cross entropy loss function is used. The results in 5.9, 5.10 and 5.11 are generated
after the network has trained for 100 epochs. This experiment yields interesting
results. This experiment can be split into three different types of results. Figure
5.9 shows the generated images where new date stamps such as 2 or 3 over the
images appeared. Whereas, it can be seen from the generated Figure 5.10 that
date stamps disappeared. DCGAN also generated images 5.11 where date stamps
are preserved.

2080l = 18-

Figure 5.9: Generated images where additional date stamps appeared

Figure 5.10: Generated images where date stamps disappeared

46

5.2. DCGAN with date stamp Experiment Results

Figure 5.11: Generated images where date stamps are preserved

Observations Unlike Experiment 1, the quality of generated results by DC-
GAN in the Experiment 5.2 are challenging to identify, but it seems DCGAN can
get rid of date stamps on some occasions. Therefore, it is hard to decide whether
the output images produced after removing the date stamp by DCGAN model
does not leave mission regions or holes. That is DCGAN sometimes generates
with new stamps appeared on the output. In some occasion, it produces images
where the date stamps disappeared. Other times, it generates images where the
date stamps are preserved. PSNR value for Experiment 2 is 51.2 which is com-
puted after the network is trained for 100 epochs.

Figure 5.12 shows a trend of increasing the cost for the generator, meaning it is
struggling to create convincing samples as the number of epochs increases. This
agrees with Figure 5.13, which shows that the discriminator has better than ran-
dom guessing from the start. Also, it continues to improve throughout the training
session. Near the end, it averages on 0.3, meaning the generator is only able to
create convincing images 30% of the time. This results in what is known as the
diminished gradient or vanishing gradient problem. This means that the genera-
tor gradient gradually diminishes and learns slower, and in some cases vanishes to
zero. A visual analysis Figure 5.12 shows that the cost seems to jump less from
epoch to epoch in the range epochs 60 to 100 than in the range 0 to 60. However,
this cost is still higher than ever before, indicating that the model is unable to
change.

47

5.3. DCGAN without date stamp Experiment Results

Generator loss with each epoch

25

15

Generator Loss

0,5

o 10 20 30 40 50 60 70 B0 90 100
Epoch

—a—Generator Loss

Figure 5.12: Loss for each epoch of Generator network during training of the
DCGAN model in experiment 2.

Discriminator loss with each epoch

AR s S SR S

0 10 20 30 40 50 60 70 80 a0 100

Discriminator |oss
s o I - - -
[=1 (=] w = L (=1

o

Epoch

—a— Discriminator Loss

Figure 5.13: Loss for each epoch of Discriminator network during training of the
DCGAN model in experiment 2

5.3 Deep Convolutional General Adversarial Net with-
out date stamp Experiment

This experiment is about the test with DCGAN without date stamps where the
binary cross entropy loss function is used. The objective of this experiment is to
discover how well the proposed DCGAN can handle the data without corruption

48

5.3. DCGAN without date stamp Experiment Results

and to compare it to the results where corruption was added. The results in the
Figure 5.14 is generated after 100 epochs. Compared to results from Experiment
2, the results from experiment 3 are more pleasing to see.

Figure 5.14: Generated images after 100 epochs

Observations: PSNR value for Experiment 3 is 51.2, which is computed after
the network is trained for 100 epochs. Results from this experiment demonstrate
that DCGAN can generate visually pleasing results. However, the generated re-
sults are still hard to identify. Figure 5.16 shows that the discriminator loss lies
on average in the range of 0.4 to 0.5. This means that the discriminator is only
slightly better than random guessing at separating the generated images from the
real images. Additionally, during the last 10 epochs, the cost shows little varia-
tion and follows an almost straight horizontal line. Figure 5.15 shows the loss of
the generator, which varies significantly during the training period. The change
in cost values change less drastically as the training progresses, and both mod-
els become more confident, up until epoch 90, where the data points are tightly
grouped. Since the discriminator from epoch 90 to the end is close to random
guessing, the cost values for the generator are close to optimal and have learned
an image representation that it only makes small changes to.

49

5.4. DAE and Discriminator Experiment Results

Generator loss with each epoch

Generator loss

] 10 20 30 a0 50 60 70 80 90 100
Epoch

—#—(Generator Loss

Figure 5.15: Loss for each epoch of Generator network during training of the
DCGAN model in experiment 3

Discriminator loss with each epoch

‘-"W

Discriminator loss
L= = T =T =T~ T =
[= [[45) £ tn =]

=]

0 10 20 30 40 50 &0 70 BO a0 100
Epoch

—g— Discriminator Loss

Figure 5.16: Loss for each epoch of Discriminator network during training of the
DCGAN model in experiment 3

5.4 Denoising Autoencoder and Discriminator Exper-
iment

This experiment is about the test with DAE and Discriminator model with date

stamps where the binary cross entropy loss function is applied. Here DAE is used
as a generator. The DAE-discriminator combination results in images that are

50

5.4. DAE and Discriminator Experiment Results

different from the inputs even outside the area of the date stamp. The colors have
changed. The generated results are unsatisfactory compared to the results from
experiment 1, 2, and 3. The entire image is changed, while the goal is only to
change the region with the date stamp. This can be seen in Figure 5.17 where the
network is trained for 1 epoch and in Figure 5.18 where the network is trained for
100 epochs.

Figure 5.17: Generated image by DAE-Discriminator network after trained 1
epoch. Here, Top row: corrupted images with date stamps. Bottom row: decoded
images.

2035-04-77 W= 54
=
2 A

Figure 5.18: Generated image by DAE-Discriminator network after trained 100
epoch. Here, Top row: corrupted images with date stamps. Bottom row: decoded
images.

Observations: The DAE-Discriminator model generates worse images than the
DCGAN model in Experiment 2. That is the whole output image changes entirely
in color. A PSNR for Experiment 4 is unnecessary, as a visual comparison be-
tween the results in Experiment 1 and 4 show that the DAE model is superior.
Figure 5.20 shows that the cost for the discriminator varies greatly from epoch
to epoch throughout most of the experiment. It does, however, stabilize a bit
near the end, jumping from loss values in-between 0.2 to 0.325 from epoch 90 to
100. The general trend shows that the discriminator performance is good, making
correct predictions up to 70% - 80% of the time (near the end). Figure 5.19 shows

o1

5.4. DAE and Discriminator Experiment Results

some interesting behavior on the DAE. At first, the model has a low cost and
little changes in cost from epoch to epoch in the range epochs 0 to 20. From this
point forward, as the DAE tries to optimize, or the discriminator learns to tell
the generated images apart from the actual images, the cost values jump widely
throughout the training period, until stabilizing again during the last 10 epochs.
The cost remains low near the end, which seems counter-intuitive when compared
against the discriminator loss, which is also low.

Looking at the decoded images reveals that they retain the shape and structure
of the food items, but change the colors of the images in drastic ways. For both
training sessions, this color shift is identical across the decoded images for each
epoch, which implies partial mode collapse. Meaning that while the images retain
their structure and shape, the colors become unvaried and similar in all decoded
examples.

The high performance of the discriminator is likely due to it detecting typical
patterns in the decoded images, and learning to predict them based on this, cor-
rectly. The variation in cost seen in both Figures is possibly due to the difference
in how much the color shifts each epoch. Some color compositions highlight the
structure of the image more than others, causing the discriminator to fluctuate
between false predictions from the similar structure of the images and correct
predictions based on color.

DAE loss with each epoch

25
*
-
< “ I.‘- Il
| \ "
gl,s r| | || || + I| ||I T'
- s | || I t e |
& 1 . L S R 4
BB RN
| ¢ || MVRY \y ¢ dlper!
05 o.‘ ...:..!‘. ‘u:. = |‘ J Q.'P 4 - ﬁ._“. M‘
o al % S
0 10 20 30 40 50 60 70 B0 a0 100

Figure 5.19: Loss for each epoch of DAFE network during training of the DCGAN
model in experiment 4

52

5.5. Comparisons Results

Discriminator loss with each epoch

[
L] I
1)
04 || .'I' .
| [}
, 035 . .'..'- * f .
S " [S b Il 'Y
- 0,3 '. q. | II.,.'". ..."'.pll| . .'I# '.I'. . ..o...
E 0.5 n P \Fe ®l e /| ' o | b“,
£ " m*u v \/ \ | " 'I.. '-‘ l .’ .h
= L ¢
= 02
@
2 p,15
0,1
0,05
0
0 10 20 30 40 50 60 70 &0 o0 100

Fnoch

Figure 5.20: Loss for each epoch of Discriminator network during training of the
DCGAN model in experiment 4

5.5 Comparisons

This Section involves two parts, namely visual evaluation and the quantitative
evaluation of the results.

5.5.1 Visual evaluation of the results

The objective of the visual evaluation is to visually compare the results yielded
by the DAE and DCGAN models based on opinion-based judgment. Figure 5.21
shows the results, where the top row shows the results of the DAE model from
Experiment 1, and the bottom row shows the result of the DCGAN model from
Experiment 2. By looking at this Figure, it can be clearly stated that the overall
quality of the images from the top row is superior to the images from the bottom
row. Top row images are produced after the DAE network is trained for just 20
epochs while the bottom row images are generated after the DCGAN network
is trained for 100 epochs. It is hard to say what sorts of food are shown in the
bottom row images while it is quite easy to identify that the top row images
represent rice, soup, and spaghetti.

93

5.5. Comparisons Results

Figure 5.21: Top row: reconstructed images by DAE model after date stamp
removal which has taken from 5.1 and Bottom row: generated images by DCGAN
model where date stamps disappeared and the image is taken from 5.10

Compared to the DAE model, the DCGAN model produces poor results in general.
Moreover, the DAE can completely get rid of the date stamps from the colored,
high-resolution images while the DCGAN struggles to remove the date stamps
and introduce much noise in the process. A visual comparison shows that the
DAE performs better than the DCGAN for automated date stamp removal from
high-resolution images.

5.5.2 Quantitative evaluation of the results

This Section addresses the qualitative evaluation of the results yielded by the DAE
and DCGAN models. PSNR metric is used to assess the results achieved by the
DAE and DCGAN models objectively. The reason why PSNR metrics are chosen
for this task is explained in Section 4.5. The table 5.1 shows the PSNR values for
the DAE model that is used for Test 1 in Experiment 1 and the DCGAN model
that is used for Experiment 2. PSNR values are calculated for both models after
they are trained for 100 epochs. It can be seen from this table that the PSNR
value of DAE is higher than that of DCGAN. The results show that the DAE
model performs better than the DCGAN in the task of removing date stamps
from high-resolution images.

o4

5.5. Comparisons Results

Dataset DAE/PSNR DCGAN/PSNR
Foodl1l 7.7 51.2

Table 5.1: Quantitative evaluations for DAE Vs DCGAN. Here PSNR value of
DAE is for test 1 from the experiment 1 and PSNR value for DCGAN represents
for experiment 2.

The table 5.2 shows the PSNR value of the DCGAN model that is tested in
Experiment 3, where the PSNR is computed after the network has trained for 100
epochs. The purpose of computing PSNR value for Experiment 3 is to find out
the performance of DCGAN when it is tested with uncorrupted images. It can
be seen from the tables 5.1 and 5.2 that there is a small difference between when
DCGAN is tested with corrupted images and when it is tested with uncorrupted
images.

Dataset DCGAN/PSNR
Foodl1 52.1

Table 5.2: Quantitative evaluation for DCGAN without date stamps. PSNR value
for DCGAN represents for experiment 3

Tests Network type Loss PSNR value
Test 1 overcomplete BCE 7.7
Test 2 overcomplete BCE 78.9
Test 3 undercomplete BCE 75.1
Test 4 overcomplete BCE 78.8
Test 5 overcomplete MSE 79.6
Test 6 overcomplete MAE 79.7

Table 5.3: Summary of Quantitative evaluations for different DAE tests in Exper-
iment 1. Here BCE means binary cross entropy, MSE means mean squared error
and MAE means mean absolute error. DAE network is trained for 100 epochs in
all these tests.

The table 5.3 shows the summary of quantitative evaluations for various DAE
tests in Experiment 1. Here DAE is trained for 100 epochs in all tests, and PSNR
value for each test is computed after the network is trained for 100 epochs. By
comparing all PSNR values of tests in this table, it can be concluded that an
overcomplete DAE performs better than an undercomplete DAE. Hence there is
no motivation in designing an undercomplete DAE for the task of removing date

95

5.5. Comparisons Results

stamps from colored, high-resolution images. It can also be seen that the PSNR
value of Test 6 is the highest. Therefore, overcomplete DAE with MAE loss via
optimization performs best among all the conducted tests.

Overall, both visual and quantitative evaluation of the results indicates that the

DAE model is superior to the DCGAN model in eradicating the date stamps from
the colored, high-resolution images.

56

Chapter 6

Conclusion and Future Work

This chapter contains the Conclusion and Future Work Sections. The Conclusion
Section presents a review of the results in the experiments. The Future Work
Section presents various suggestions for improvements and suggestions for exper-
iments for the extension of this thesis.

6.1 Conclusion

The two neural network types used in this thesis are networks that are widely used
for image manipulation tasks, namely Denoising Autoencoder (DAE) and Deep
Convolutional Generative Adversarial Network (DCGAN). The experiments in
this thesis use and compare these networks for image inpainting tasks, specifically
the removal of date stamps from high resolution colored images.

Both visual and quantitative results clearly show that DAE performs better than
DCGAN for the automated removal of date stamps, and is able to remove date
stamps with very little blur and artifacts in the corrupted regions. The solu-
tion with the best performance achieves a PSNR value of 79.7. DAE can handle
256 * 256 colored images. With just 20 epochs, it yields outstanding results. The
reconstruction images without date stamps from the DAE output are converging
to the reference images. With the increasing epochs, the reconstruction images
by DAE become even better. The resulting images are less blurry and usable
in practice. The overall impression of the DAE model is that it yields entirely
satisfactory results. Considering the minimal improvement of the results in tests
with increased layers, potential networks that are built even deeper is likely to
yield the same results.

o7

6.2. Future Work Conclusion and Future Work

DCGAN can handle 64 * 64 colored images. However, the generated results by
DCGAN are of poor quality and does not meet the hypothesis. However, these
results are interesting since the generator network of DCGAN sometimes generates
images with one date stamp, other times with two or three stamps or other times
without any date stamps. The particular case where no date stamps are generated
can be useful. For example, a generated image with the same features as the
ground truth image and without a date stamp can be used to generate uncorrupted
datasets. The DAE-DCGAN model is unfit for automated removal of date stamps
from the high-resolution images.

6.2 Future Work

Further improvement of the DAE model can be done by searching for and im-
plementing other technologies that reduce the blurriness of the restored regions.
As for DCGAN, the challenge is to make the generated image look as similar to
the non-generated images as possible. The model can be trained on images with
larger resolution.

In the future, this thesis can be extended into blind video inpainting or solv-
ing more complicated image inpainting tasks such as a combination of super-
resolution, and removal of sketches, text or watermarks with different colors that
are blending in with the image to a larger degree than the corrupted images in
this thesis. Hence, one can find out how far the algorithms can go to perform said
tasks without damaging the original quality of the images.

o8

Bibliography

[1] S Shivaranjani and R Priyadharsini. “A survey on inpainting techniques”.
In: Electrical, Electronics, and Optimization Techniques (ICEEOT), Inter-
national Conference on. IEEE. 2016, pp. 2934-2937.

[2] Junyuan Xie, Linli Xu, and Enhong Chen. “Image denoising and inpainting
with deep neural networks”. In: Advances in neural information processing
systems. 2012, pp. 341-349.

[3] Jeena Joshua and Gopu Darsan. “Digital inpainting techniques: A survey”.
In: Intern. J. of Latest Research in Engineering and Technology 2 (2016),
pp- 34-36.

[4] Jiahui Yu et al. “Generative image inpainting with contextual attention”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 5505-5514.

[5] Andrew Ng et al. “Sparse autoencoder”. In: C'S294A Lecture notes 72.2011
(2011), pp. 1-19.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[7] Francois Chollet. Building Autoencoders in Keras. 2016. URL: https://
blog . keras.io/building- autoencoders-in-keras.html (visited on
03/30/2019).

[8] Jeremy Jordan. Introduction to autoencoders. 2018. URL: https: //www .
jeremyjordan.me/autoencoders/ (visited on 03/03/2019).

[9] Jeremy Jordan. Variational autoencoders. 2018. URL: https://www.jeremyjordan.
me/variational-autoencoders/ (visited on 03/03/2019).

[10] Tan Goodfellow. “NIPS 2016 tutorial: Generative adversarial networks”. In:
arXiv preprint arXiv:1701.00160 (2016).

99

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://www.jeremyjordan.me/autoencoders/
https://www.jeremyjordan.me/autoencoders/
https://www.jeremyjordan.me/variational-autoencoders/
https://www.jeremyjordan.me/variational-autoencoders/

Bibliography Bibliography

[11]

[12]

[13]

Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised represen-
tation learning with deep convolutional generative adversarial networks”.
In: arXiv preprint arXiv:1511.06434 (2015).

Yang Liu, Jinshan Pan, and Zhixun Su. “Deep Blind Image Inpainting”. In:
arXiv preprint arXiv:1712.09078 (2017).

Qiwen Fu, You Guan, and Yuxin Yang. Image Inpainting and Object Re-
moval with Deep Convolutional GAN. Tech. rep. URL: http://stanford.
edu/class/ee367/Winter2018/fu_guan_yang_ee367 _winl8_report.
pdf.

9

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Deep Image Prior”.
In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2018.

Deepak Pathak et al. “Context encoders: Feature learning by inpainting”. In:
Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016, pp. 2536-2544.

Yusra AY Al-Najjar, D Chen Soong, et al. “Comparison of image quality
assessment: PSNR, HVS, SSIM, UIQI”. In: Int. J. Sci. Eng. Res 3.8 (2012),
pp. 1-5.

Food-11: Food Image Dataset. [Online; accessed 30. January 2019]. URL:
https://mmspg.epfl.ch/food-image-datasets.

G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

Publication-ready NN-architecture schematics. [Online; accessed 24. April
2019]. Apr. 2019. URL: http://alexlenail .me/NN-SVG/LeNet.html.

Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2015).

The background resource for Denoising Autoencoder. [Online; accessed 02.
February 2019]. Feb. 2019. URL: https://github.com/shibuiwilliam/
Keras_Autoencoder/blob/master/Cifar_Conv_AutoEncoder.ipynb.

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

Francois Chollet et al. Keras. https://keras.io. 2015.

Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014, pp. 2672-2680.

60

http://stanford.edu/class/ee367/Winter2018/fu_guan_yang_ee367_win18_report.pdf
http://stanford.edu/class/ee367/Winter2018/fu_guan_yang_ee367_win18_report.pdf
http://stanford.edu/class/ee367/Winter2018/fu_guan_yang_ee367_win18_report.pdf
https://mmspg.epfl.ch/food-image-datasets
http://alexlenail.me/NN-SVG/LeNet.html
https://github.com/shibuiwilliam/Keras_Autoencoder/blob/master/Cifar_Conv_AutoEncoder.ipynb
https://github.com/shibuiwilliam/Keras_Autoencoder/blob/master/Cifar_Conv_AutoEncoder.ipynb
https://keras.io

Bibliography Bibliography

[25] The background resource for Deep Convolution General Adversarial Net.
[Online; accessed 11. March 2019]. Feb. 2019. URL: https://github.com/
utkd/gans/blob/master/cifari0dcgan. ipynb.

[26] Alain Hore and Djemel Ziou. “Image quality metrics: PSNR vs. SSIM”. In:
2010 20th International Conference on Pattern Recognition. IEEE. 2010,
pp. 2366-2369.

[27] Martin Abadi et al. “Tensorflow: A system for large-scale machine learning”.
In: 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16). 2016, pp. 265-283.

[28] cair-gpu01.uia.no. [Online; accessed 09 February 2019]. Jan. 2019. URL:
https : //tools . uia.no/bitbucket /projects/CAIR/ repos/ cair -
gpu/brouse.

61

https://github.com/utkd/gans/blob/master/cifar10dcgan.ipynb
https://github.com/utkd/gans/blob/master/cifar10dcgan.ipynb
https://tools.uia.no/bitbucket/projects/CAIR/repos/cair-gpu/browse
https://tools.uia.no/bitbucket/projects/CAIR/repos/cair-gpu/browse

Appendices

Code for this thesis is available at https://github.com/Nicolas-31/TKT590

https://github.com/Nicolas-31/IKT590

UiA University of Agder

Master’s thesis

Faculty of Engineering and Science
Department of ICT

© 2019 Nicolas Anderson, Mikael Antero Paavola, Johnny Sognnes. All rights reserved

	Abstract
	Preface
	Glossary
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goal
	Problem Statement
	Research Questions
	Hypotheses

	Assumptions and Limitations
	Assumptions
	Limitations

	Contributions
	Report Outline

	Theoretical Background
	Image Inpainting
	Autoencoders
	Undercomplete Autoencoder
	Sparse Autoencoder
	Denoising Autoencoder (DAE)
	Contractive Autoencoder (CAE)
	Variational Autoencoder (VAE)

	Generative Adversarial Networks

	State of the Art
	Image Denoising and Inpainting with DNNs
	Deep Convolutional Generative Adversarial Nets
	Deep Blind Image Inpainting
	Image Inpainting and Object Removal with Deep Convolutional GAN
	Deep Image Prior
	Context Encoders
	Evaluation Methods

	Methodology
	Dataset
	Proposed Solution
	Proposed Denoising Autoencoder
	Data Pre-processing
	Network Architecture
	Image Restoration

	Proposed Deep Convolutional General Adversarial Net
	Data Pre-processing
	Network Architecture
	Image Restoration
	Proposed DAE and Discriminator

	Evaluation for the proposed solutions
	Tools
	Software Tools
	Hardware Tools

	Results
	DAE Experiment
	Test 1
	Test 2
	Test 3
	Test 4
	Test 5
	Test 6

	DCGAN with date stamp Experiment
	DCGAN without date stamp Experiment
	DAE and Discriminator Experiment
	Comparisons
	Visual evaluation of the results
	Quantitative evaluation of the results

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices

