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Abstract 

This master thesis gives insight in structural behavior of network arch bridges. When designed with 
circular arches the bending moments tend to rise near the bridge ends. As suggestions for improving 
this problem two alternative arch geometries are investigated; arch with elliptical shape and a  
three-center arch shape.  

The arch geometries are modelled with different radius ratios. In addition, different variables are 
changed on the models which includes; arch rise, hanger inclination, number of hangers and the 
transition point between the curvatures. Two-dimensional numerical calculations are done using 
structural software. Only simple loads are applied to the bridges as the task is based om comparing 
the different arches.  

After analyzing the results, it is evident that a reduced radius ratio for both elliptical arches and 
three-center arches improves the bending moments near the arch ends. 
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 Introduction 

1.1 Goal 

The goal of this thesis is to contribute to the future development of network arch bridges. 

Optimization of structures in general lead to reductions in material use, costs and most importantly 

carbon emissions. 

My main objective of this thesis is to get a deeper understanding of what goes into the design of a 

bridge by doing literature study. The goal is also to get more knowledge of doing numerical 

calculations in structural software as this is valuable when I am going to start my engineering career.  

1.2 Background 

The construction industry is growing in parallel with the growth of the population. Focus on finding 

solutions that are innovative, cost effective and sustainable is getting more and more important. The 

network arch bridge is a structure for the future. Its slender, light, aesthetic, most parts can be 

prefabricated, it can be transported to construction sites by road or river. As Norway is a country 

with valleys and fjords, the network arch bridges versatility fits perfect.  

The first network arch bridge, Håkkadalsbrua was erected in 1963. For the first decade the number of 

bridges constructed was low. Today we can see that the network arch bridge is growing in popularity 

all over the world. 

After meetings with Per Tveit and Songxiong Ding autumn 2018 we discussed the possibility of 

writing a thesis about the curvature of the network arch bridge. For circular arches the bending 

moments tend to rise near the bridge end, see figure 1.1. The thesis focuses on optimization of the 

arch curvature in network arch bridges. 

Figure 1.1: Rise of bending moments at the arch ends [own figure]. 
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1.3 Delimitations  

Limited time and resources make it important to set boundaries for the thesis. The focus has been to 

investigate the arch geometry, and not the design of network arch bridges. As this thesis is based on 

the experimental method where results are highly dependent on a lot of numerical calculations of 

different models, the margin of error must be low. Therefore, in agreement with my supervisor, I 

decided that following simplifications to the calculations was reasonable: 

- Loads where simplified into unit loads and load combinations are limited. The reason is that 

the thesis is based on comparison of different arch geometries where the magnitude of the 

load is not as important, as long as it is the same for all the different models.  

- The bridge models are only analyzed by using two-dimensional calculations in software. 
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 Significance of the work 

Network arch bridges are slender bridge structures with low weight. A study done by Per Tveit shows 

that material use is considerably lower than for equivalent bridge structures.  

Deck and arches can be prefabricated at a manufacturing plant. Work under controlled environments 

leads to better safety, health and environment (SHE) and calls for more effective construction. The 

assembly on the construction site mostly consists of welding the arches and hanger connections. This 

is repetitive work where the risk of accidents is low. 

At Sunndalsøra a network arch bridge was constructed in 2016. At first the bridge was placed at a 

temporary location, before it was moved into its final place. To be able to move a whole bridge to a 

new location is very valuable. This also leads to the possibility for the bridge to be reused when its 

replaced by a new bridge. Smaller network arch bridges can be transported along the river which 

means that they can be erected in places that has limited access by road, which also leads to less 

impact on the areas around the construction site.  

This master thesis emphasizes the reduction of forces in the arch of network arch bridges. If it’s 

possible to reduce these forces that also means that smaller arch cross-sections can be used. Yet 

again this reduces the steel quantity which is economically and environmentally beneficial. Up till 

now most of network arch bridges are constructed with circular arches. The reason for this is almost 

exclusively because of ease of construction. If an arch shape with better structural properties also 

can be easy to construct it might be competitive with the circular arch. An arch consisting of one 

curvature at the wind portal and another for the rest of the arch might be just that.  

Additionally, the network arch bridge is a very aesthetically pleasing structure which blends into the 

environment. Further research and development of the bridge structure makes it more competitive 

and maybe we will see a lot more of these beautiful structures in the future.  
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 Literature study 

3.1 Historical overview 

Back in the 13th century BC the first bridge structures understood by men was constructed. These 

where stone structures constructed utilizing the arch shape to transfer the loads to the abutments 

[1].  

In the 19th century the first set of “rules” for masonry bridge constructions was formed. These rules 

were mainly based on the aesthetic aspect of the structure and to establish the structural form for 

the bridge. The rules where essentially of an empirical nature. 

The different shapes of the arch were first limited to a few recurring types: full semi-circular arch, 

circular or segmental arch. The semi-circular arch was advantageous because the compressive forces 

in the arch were transferred vertically to the springers. 

Anses de panier arches became normal to use in the end of the 18th century. It’s an arch compiled of 

curves with more than one center. The most widespread anses de panier is the three-center arch 

consisting of two smaller radius arches at the abutment area that is blended into one larger radius 

arch at the crown, see figure 3.1. 

During the early 1900s this bridge type was widely criticized for not being aesthetically pleasing 

because of the large variation of the curvature [2]. 

 

Figure 3.1: Three Center Arch in Amsterdam. [3] 

Later, the “semi-ellipse” was widely used because of the simplicity in calculating the shape of the 

curve. For masonry arch bridges this was not an especially good design since compressive forces in 

the arch was transferred as both vertical and horizontal components in the abutment. The horizontal 

forces were not easy to restrain. 
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The first sign of a tied arch bridge, also called bowstring arches, Nielsen bridges, Lohse girder and 

network arches were truss bridges with a curved upper chord/arch. Leonardo Da Vinci draw such a 

bridge back in 1482. Decades later, in 1796 the American engineer Robert Fulton designed a bridge 

which he called a “bowstring”. The idea was based on an arch where concentrated loads were 

uniformly distributed by trusses, and that the horizontal forces from the compression in the arch 

were taken up by a tie in between the arch ends, instead of the abutment.  

 

Through the 19th century many different types of arch bridges were built. Some examples are the 

bridges over Erie Canal, in New York, constructed 1850-1870. Around the same time the lenticular 

girder was developed, a truss with curved top and bottom chord, the traffic lanes would be an 

addition to the bottom chord, see figure 3.2. This design was not very practical when handling traffic, 

so around 1860, engineers began using trusses where only the top chord was shaped as an arch, so 

that the bottom chord could handle traffic directly.  

 

Figure 3.2: Da Vinci's drawing, right: Lenticular girder in Shanghai [4]. 

 

The first tied arch bridge with vertical hangers were built by Austrian engineer Josef Langer in 1883. 

Until this day this bridge design is still in use.  

In the 1920’s Danish engineer Octavius F. Nielsen came up with the idea of using inclined hangers 

instead of vertical hangers used in tied-arch bridges. Due to limitations in the analysis, the design had 

to be simplified so that none of the inclined hangers intersected. This bridge design had a high 

slenderness, and could reach spans of up to 145 m.  

The Nielsen bridge inspired engineer Per Tveit to start further development of these bridges. By 

using new analysis methods that allowed him to calculate and develop a tied-arch bridge with 

inclined hangers where some of them cross each other at least twice. He called it the “Network Arch 

Bridge” [5]. To date, the network arch bridge is the latest development of the tied-arch bridge.  

In the early stage of development Tveit suggested to his professor that the arch should be part of an 

ellipse, but the professor urged him to use arches that were part of a circle instead. It took a long 

time for Tveit to forget about the idea of using an elliptical arch shape [6]. 
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3.2 What is a network arch bridge? 

The network arch bridge can be compared to a simply supported I-beam. The arch acts as the 

compression flange, the main girders as the tension flange and the inclined hangers takes the shear 

force working as the web. The hangers distribute the force between the tie and arch so that little 

bending occur.  

The main difference between the network arch bridge and a tied arch bridge with vertical hangers 

becomes evident when only half of the bridge span is loaded. For the tied arch bridge, the axial 

forces in the arch and tie decreases, but the arch moves towards the unloaded side, which leads to 

an increase in both deflection and bending moments. When the network arch bridge is loaded on 

half the span the inclined hangers contributes to distribute the forces in an angle to the arch, where 

the cross section has larger stiffness, which leads to a decrease in bending moments and 

deformation, this is described in figure 3.3. 

As the network arch bridge is subjected to small moments in both arch and tie, a reduction of 

the cross-sections resistance to bending (moment of inertia) can be achieved for the different 

structural parts. This can lead to a reduction of cross- sections as the resistance against bending is 

defined from the cress-sectional area. This means that network arch bridges have low self-weight, 

and material costs gets lower [7, 8]. 

Tied arch bridge with vertical hangers Network arch bridge 

  

  

Figure 3.3: Half span load, top: deformation, bottom: bending moments [own figure]. 
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3.3 The arch 

Network arch bridges are for the most part built with arches in steel. Prefabrication and ease of 

transport makes it the most effective and economical material to use.  

A variety of cross-sections are used for network arch bridges. American wide flange beams, box-

sections and circular hollow sections are some of the types. Instability of the arch is most likely to 

happen out of the arch plane. For that reason, higher stiffness (EI) is required horizontally.  

So, the American wide flanged beams are tilted with their strong axis out of plane. Circular and box 

sections have large stiffness both vertically and horizontally and are therefore ideal for arches. 

For constructional purposes the wide flanged beam is desirable because of the simple connections 

between hangers and the arch web, it also allows for easy construction of the wind bracing at the 

arch flanges [8].  

 

Figure 3.4: Brandangersundbrua with circular hollow arches [9]. 

 

Figure 3.5: Tsukani Bridge with box-section arches [10]. 

 

Figure 3.6: Happy hollow zoo with wide flange arches [11]. 
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 Geometry of the arch 

The arch of the network arch bridge is most significant for the mechanical properties of the structure. 

How the arch geometry is obtained are dependent on different parameters: 

- The shape of the arch 

- Rise of the arch 

A pinned beam subjected to a uniformly distributed load (UDL) 

over the whole span will give a moment diagram that has  

a parabolic shape. For tied-arch bridges with vertical hangers the 

shape of the arch is parabolic for exactly this reason. When the 

UDL is “applied” to the arch, the moment is cancelled out,  

as the shape of the arch is the same as the moment diagram.  

An arch with close to no bending moment is preferable [12p. 479].  

This works because forces from the permanent loads and  

live loads over the whole bridge span is distributed through the 

vertical hangers and into the arch, see figure 3.7. 

 

The case is different for network arch bridges. Here the loads 

from the lower chord is distributed through the inclined hangers into the arch. Ideally the force 

should be perpendicular to the arch neutral axis. In that case, the arch would be loaded radially 

which correspond to an arch shape that supports radial loading, hence the circular shape [13].  

Per Tveit argued in [6] that the shape of the arch should be close to a second-degree parabola if the 

bridge is built with vertical hangers. For steel arches he recommends that a circular shape is used 

when designing a network arch bridge. The same argument was made by Pipinato [14] and Teich 

[13p. 247]  

Other advantages with using circular arches in relation to parabolic arch is that it shortens the wind 

portal of the bridge, gives more even axial force in the middle of the arch, and is easier to construct. 

Today the circular arch shape is the most widely used arch geometry for network arch bridges  

[6p. B-12]. 

 

 

Figure 3.7: UDL over a parabolic arch [12].  
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Ideally the shape of the arch should coincide with the compression line defined by the forces due to 

the loads. This will result in only normal forces in the arch. However, because the loads are rarely 

uniformly distributed, some bending moments arise in the arch. The bending moment at a given 

point of the arch is defines as the normal force acting at this point times its eccentricity relative to 

the axis of the arch [12]. In general, this can be described as: 𝑀𝑥 = 𝑁𝑥 × 𝑒, see figure 3.8.   

Figure 3.9 shows how a parabolic arch subjected to uniformly distributed vertical load. No bending 

moments arise for this particular case. 

 

When analyzing the bending moments in a circular arch, it is clear that the moments increase near 

the ends of the arch. Bruun and Shanack [15p. 63] explored the possibility of reducing the curvature 

at ends of the arch. A three-center arch was used in their studies, and the result showed that a 

reduced ratio at the end of the bridge hardly effected the bending moment or the hanger forces. 

They saw a reduction in the axial forces because of the steeper angle of the arch at the end. It was 

concluded that reducing the radius ratio to 0.8 is positive for the wind portal but has no negative 

effects on hanger forces and bending moments in the arch.  

  

Figure 3.9: Parabolic arch subjected to vertical 
UDL [12]. 

Figure 3.8: Moment in arch as a consequence of eccentricity [own figure] 
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Furthermore, Teich [13p. 234-246] did a more thorough investigation on the effect of changing the 

arch shape to minimize the bending moments. His research compared circular arches, parabolic 

arches, elliptical arches and arches with double radius (three-center arch). These are some main 

points of what his findings where: 

- Parabolic arch shape should not be used in the design of network arch bridges. This is 

because the bending moments increase substantially as the parabolic shape deviates from 

the compression line of the network arch bridge. 

- By investigating the optimal ratio for three center arches and elliptical arches, he concluded 

with the following: For three center arches the optimal radius ratio was 0.5 and for elliptical 

arch the optimal ratio was a little bit higher at 0.55. 

- As the ratio decreases the shape of the arch converges to a two-hinged frame. As a 

consequence of this the negative moments (upper side of the arch) at the wind portal rises.  

Figure 3.10 illustrates the maximum stress utilization that Teich found for the different arch shapes. 

The models are analyzed using 3D-simulation with full bridge load.  

 

 

  

Figure 3.10: Stress utilization for the different arch shapes [13]. 
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Rise of the arch 

The height of the arch is for most of the cases related to the aesthetic qualities of the bridge. If the 

rise of the arch is to high it will not blend into the surroundings [6p. B-1]. Per Tveit said in TNA that; 

“The arch rise should be about 15 % of the span; larger arch rises decrease internal forces but 

respecting aesthetics it should not exceed 17 % of the span” [8]. 

The decrease in axial force can be seen from the following. 

If a tied-arch bridge with vertical hangers are considered, this expression for axial force at the top of 

the arch is given: 

 
𝑁𝑑 =

𝑞𝑑 × 𝑊2

8 × 𝐻
 

(3.1) 

Where: 

qd Uniformly distributed line load over the whole span. 
W Bridge span. 
H Rise of the arch. 

For a network arch bridge an additional horizontal component comes from the inclined hangers. The  

formula was deduced by Tveit, which adds the contribution from the hanger force [8p. 5a].  

 
𝑁𝑑 =

𝑞𝑑 × 𝑊2

8 × 𝐻
+

𝐻 × 𝑞𝑑

2 ∗ 𝑡𝑎𝑛2α
 

(3.2) 

Where: 

α Angle of the hangers relative to the arch. 

If the rise of the arch is increased, it is clear from the formula that the axial force in the middle of the 

arch span will decrease. 
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3.4 The hangers 

The distribution of forces in the arch are highly dependent on the arrangement of the hangers. This 

being hanger inclination, number of hangers and the locations of the top and bottom nodes of the 

hangers with respect to the arch and tie [13]. 

Under ideal load conditions all hangers contribute to the arch being fully supported in the arch plane. 

In some load cases (often asymmetrical loading) hangers can become relaxed, these hangers stop 

supporting the arch which could cause global instability of the whole bridge structure. 

 Hanger types 

- Steel rod hangers with circular cross-section. These rods can be connected to the arch and 

tie by welded hanger connections or bolted connections, often fork connections are used. 

These types of hangers have good fatigue life and are relatively cheap if the welded type is 

used, see figure 3.11. 

 

- Cable hangers are often connected by anchorages which are fixed to the cables, also for 

connections are used to mount the cables to the chords. Three types of cables are used: 

spiral strand, locked coil or parallel strand, see figure 3.11 [16]. 

 

Rods are often used because they have several benefits compared to cables: 

- Joints are simple 

- Rods are easily prestressed without the need of special equipment 

- Their modulus of elasticity is approximately 15 % higher than cables 

For arch bridges with a high rise, which leads to long hangers, cables are advantageous. This is 

because the length of the rods when manufactured are limited. Rods can be welded to increase 

length. However, this must be carefully carried out, due to the risk of fatigue or brittle fracture [12].   

Figure 3.11: Left: Welded connection for steel rod, right: fork connection for spiral strand cable [16]. 
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 Hanger arrangement 

As mentioned earlier the arrangement of the hangers is of great importance to the static system of a 

network arch bridge. Unfortunately, the bridges being built have hanger arrangements that are 

based on the ease of construction and aesthetics. Teich [13] developed a guideline on how to 

optimize the hanger arrangement. The optimal hanger arrangement is obtained by following these 

structural parameters: 

- Minimizing the bending moments in the arch and tie 

- Sufficient resistance against hanger relaxation 

- Even force distribution in hangers, and use of the same cross-section for all hangers 

- Minimizing maximum force in the hangers, which reduces the cross-section area 

- Reduction of the force variations in the hangers to minimize fatigue 

- Aesthetic appearance.  

Teich [13] investigated five different hanger arrangements based on the criteria’s given above. In 

which he concluded that the radial hanger arrangement provides the best structural 

performance. The optimal force distribution does not apply for the most outer hangers. They 

have to be manually configured for each case. 

Radial hanger arrangement was developed by Brunn and Shanack [15] and are based on the idea 

that no bending moment will occur if the force is transferred radially to the arch when it has a 

circular shape. This can be achieved by a symmetrical loading around the radius of the curvature 

for the respective pair of hangers.  

The radial hanger arrangement has the following criteria’s, see figure 3.12. 

- Top hanger nodes are placed equidistantly (d) along the span of the arch. This ensures that 

only small local deformations occur in the arch when load is applied over the whole span [8]. 

- The hangers are tilted with the same angle (α) over the whole curvature of the arch.  

 

 

 

 

 

 

 

 

Figure 3.12: Radial hanger arrangement [15].  
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Furthermore, guidelines are used to determine number of hangers and inclination angle for a given 

bridge span, see figure 3.13. The maximum number of hangers should be limited to 50 per arch, 

more than 50 hangers gives little, or no increase in structural performance [13].  

 

 

 

 

 

 

 

 

 

3.5 Main girder and deck 

The main girder transfers loads into the hangers, which again are transferred to the arch. 

Additionally, the main girder takes up the horizontal forces from the arches. In that way the 

abutments only need to withstand the vertical force components from the arch.  

The distance between the bottom nodes of the hangers is decisive for the required bending stiffness 

of the main girder. Since the number of hangers are larger in a network arch bridge than on a tied-

arch bridge with vertical hangers, less bending stiffness is required and the girders can be more 

slender [16].  

When a load is applied to the bridge girder it is important that the load is distributed over a large 

area of the arch to reduce local bending moments. When the girder is relatively stiff in comparison to 

the arch, the diffusion of the loads happens as the girder bends, more hangers are tensioned, and 

this leads to a larger distribution of forces [12p. 481].  

Figure 3.14 shows a comparison between a network arch bridge with low and high stiffness in the 

girder, the bending moment is reduced in the arch when a girder with high stiffness is chosen.  

 

  

Figure 3.13: Crossing angles for different bridge spans, relevant to radial hanger arrangement [13]. 

Figure 3.14: Left: concentrated load on a deck with low stiffness, right: concentrated load on bridge with high stiffness 
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In the research of Teich [13] he found that using a stiffness ratio higher than 
𝐼𝑎𝑟𝑐ℎ

𝐼𝑔𝑖𝑟𝑑𝑒𝑟
=

1

3
 only gives a 

limited reduction of the stresses in the arch. Reduction was found to be between 3-10% depending 

om the slope of the hangers.  

For network arch bridges Tveit [6] recommends using concrete as the lower chord, both for 

economic reasons, and that the tensile forces between the arches is best absorbed by prestressing 

cables. When the deck is designed using concrete, the edge beams is casted with the deck, and 

prestressing run through these beams. Transverse bending moments are often larger than in the 

longitudinal direction because of the small distances between hangers. When the distance between 

arches exceed 12 meters, transverse prestressing should be considered. If the distance between the 

arches are over 20 meters, transversal steel beams will be needed.  

Edge beams made of steel it is often a I-section or a box-section. This makes connections to the 

hangers simple, even though it is not the most aesthetically pleasing appearance.   

3.6 Analysis 

In this chapter the geometrically non-linear analysis (GNL analysis) inputs will be highlighted. The 
information is important to determine a strategy to obtain valid results from the numerical analysis.  

The bridges are evaluated in the structural analysis software Robot Structural Analysis (RSA). RSA is  

  Solver setup 

Incremental method 

As a default, the incremental method is applied in RSA when a non-linear element is used in the 
model. The load is divided into increments. These loads are then applied on the structure in several 
load steps, or iterations. The following load increment is applied once the state of equilibrium is 
achieved for the previous increment. Figure 3.15 explains the incremental method [17].    

 

Figure 3.15: Incremental method of non-linear analysis [17].  
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The incremental method must be used for complex structures in cases where the impact of non-
linear effects is considerable, because if the load is applied all at once it is possible that there will be 
no convergence of the calculations. 

The default values for load increment number and maximum iteration number for one increment is 5 
and 40, respectively. 

Analysis process 

There are three different algorithms for solving non-linear problems: 

- The Initial Stress method.  

- The Modified Newton-Raphson method.  

- The Full Newton-Raphson method.  

The methods differ in the speed of the analysis, and the probability of convergence increases when 
using the Full Newton-Raphson method. By default, the Modified Newton-Raphson method is 
chosen.  
 

Advanced bar properties 

In RSA additional properties for bars can be specified: 

- Truss bars, where only axial forces act, linear analysis 

- Tension or compression bars, non-linear analysis 

Tension/compression bar analysis are performed the same way as for truss bars in RSA. Defining 
releases in the bar nodes are not possible when truss bars are selected.  

 

 

 

-  
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3.7  Buckling 

For a slender construction, like the network arch bridge, safety against buckling must be considered. 
Especially, since parts of the bridge structure are subjected to large compression forces. For network 
arch bridges with wind bracing there are manly two different types of buckling that can occur. 

- In-plane buckling of the arches. 

- Out-of-plane buckling of the wind bracing [7p. 26]. 

Per Tveit [6] developed the assumption of the in-plane buckling mode shape presented in figure 3.16. 
This shape is only valid for a certain combination of bridge geometry and cross-sections.  

Frank Schanack [18] did a parametric study to find an analytical model that could be valid for 
network arch bridges with different spans, hanger angles, rise and number of hangers. 

From the parametric study he concluded: 

Generally, the bending stiffness of the arch has the biggest influence on the buckling load. Less 
important is the arch-hanger angle and the hanger numbers. Further: 

1. The decisive load case is: full load over the whole bridge. 

 

2. Buckling load increases with the number of hangers. The reason for this is that the buckling 

length shortens as the wave crests of the buckling mode shape increases, which is the case 

for an increase the number of hangers. 

 

3. For the hangers he used radial hanger arrangement and found that steeper hangers give 

larger resistance against buckling. 

 

4. The tie may be considered as bending stiff. 

As the tie reaches a certain moment of inertia, where it may be considered totally stiff 

compared to the arch and hangers, no further increase of the moment of inertia leads to an 

increase of the buckling load. 

 

  

Figure 3.16: In-plane buckling of network arch bridge showing the buckling mode shape [6]. 
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5. By studying different moments of inertia for the arch, Schanack found that, according to 

Euler’s buckling theory the bending stiffness of the arch has a lot of impact on the buckling 

load and that larger bending stiffness increases the buckling load. Considering all the 

parameter variations this has the largest influence of the buckling load.  

 

6. The critical mode shape is a wave-like deformation of variable order.  

No study was done on the effect of the arch curvature on the in-plane buckling load. 

As described earlier the in-plane stability of the network arch bridge is generally better then tied arch 
bridges because of the supporting effect of the inclined hangers. This is if an optimal hanger 
arrangement is chosen, so that no relaxation of any hangers occur [16].  
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3.8 Moving loads 

 Envelopes 

When a bridge is subjected to multiple loading scenarios like live loads it can be hard to identify the 

position on the bridge that gives the largest stresses; whether it is moment, shear, axial force or 

deflection. Envelopes can be used for this. For example, for bending moments on a bridge as a result 

of a moving load. All the moment diagrams for the different load positions of the vehicle are 

compiled together, and only the location giving the largest moment in a given point is presented [19].   

 

3.9  Construction of network arches 

Steel bridges are prefabricated structures which are assembled/welded together at the construction 

site. Close attention to detail is very important because of all the welding that goes into the 

structure, by doing this under controlled conditions at a manufacturing plant a lot of potential errors 

are prevented.   

Arches are produced in segments, with the hanger connections being welded to each segment at the 

plant.  
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 Research question 

For a structure like the network arch bridge there are many areas that could be investigated in this 

master thesis. During literature study for the pre-project little work about the optimization of the 

bridge arch was found. After meetings with the supervisors at UiA we agreed that the thesis should 

be about the problems around the arch end. When using a circular shape for the arch the moments 

tend to rise at this area. A reduction of the radius at the bridge end will lower the moments. Based 

on that the following research question was formed: 

“How can the optimal curvature of a network arch bridge be obtained?” 

4.1 Sub questions 

To break down the research question into more manageable parts the following sub questions was 
formed: 

- “How will different curvatures effect the moments at the arch end?” 

- “What kind of arch shape will improve the structural behavior most?” 
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 Method 

The experimental method is based on changing only one variable at a time. By looking at, and 

changing one variable at a time, the results can be directly attributed to the independent variable. In 

that way it is possible to conclude whether this variable has an impact on the results or not. The 

different variables that is considered in this thesis are given in chapter 6.2. Parameters like loads,  

cross-sections, materials, supports and releases should be constant for all models to prevent 

misinterpretation of results. 

This chapter will give an overview of how the results were obtained by using numerical modeling and 

calculations. 

5.1 The arch geometries 

Based on the knowledge from the literature study on different arch shape it was decided that three 

different types of arch geometry would be interesting to investigate further. These three shapes are 

presented in the following chapter. 

 Circular arch 

The first geometrical shape is the arch that is part of a circle. That means that the arch will have the 

same radius over the whole bridge span. Optimizing the curvature of the network arch bridge is 

based on this shape because most network arch bridges built today uses this curvature. A description 

of the circular arch is given in figure 6.1. 

  

 

 

Figure 5.1: Circular arch shape [own figure]. 
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 Elliptical  

One of the alternative curvatures is a shape that is part of an ellipse. For this shape the arch radius 

varies over the whole bridge span. 

The elliptical arch is defined by the large radius (ra) and small radius (rb) which can be seen in figure 

6.3, this figure also shows the range that is used for the elliptical arch. 

Analysis is carried out with different ratios between ra and rb. The ratios are defined as 
𝑟𝑏

𝑟𝑎
.  

The respective radiuses are obtained by using the radius formula (6.1) that  

Teich [13, p. 237] presents in his thesis. Given parameters in the formula are the bridge length and 

the arch rise:  

 
𝑟𝑎 =

𝑟𝑏 × 𝑊

2 × √2 × 𝑟𝑏 − 𝐻 × √𝐻
 

(6.1) 

Where: 

W Bridge length. 

H Arch rise. 

The elliptical arch shape with its geometry is given in figure 6.2. 

  

Figure 5.2: Elliptical arch shape [own figure]. 

Figure 5.3: Relation between ra and rb, outlined region represents the used range for the bridge [own figure]. 
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 Three-center arch (TCA) 

Brunn and Shanacks [15] research on reduced radius at the wind portal were based on the following 

geometry. An arch consisting of two different radiuses. One radius for the main part of the arch (R) 

and one with reduced radius (r) at the end of the bridge on both sides. The ratio between the two 

radiuses are given as, 
𝑟

𝑅
. 

In this thesis two different configurations of TCA are investigated: 

- In figure 6.4 H, W and w remains unchanged regardless of the radius ratio. 

- In figure 6.5 W, H and h remains unchanged regardless of the radius ratio. 

The reasons for comparing these two configurations is that they have different advantages. The arch 

in figure 6.4 has a fixed length, w. For constructional reasons it might be required that the transition 

point where the two curvatures meet should be placed at a certain distance in z-direction. 

For the arch in figure 6.5 the height, h is fixed. This configuration can be used in cases where the 

transition point is placed at a certain distance in x-direction. 

  

Figure 5.4: Three center arch where span length, w is constant [own figure]. 

Figure 5.5: Three center arch where height, h is constant [own figure]. 
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Obtaining the geometry: 

To obtain the right geometry the challenge was to find an equation to describe the length of the  

bridge, W. Figure 6.6 shows the sketch used to find the arch geometry when h is fixed. 

This was done by finding an equation for the length, x (distance from the origin to the transition 

point). Then, the point (a,b) could be expressed, and finally an equation for W. Equations are given in 

table 6.1. In appendix E the expressions used to find the curvature when w is fixed are given.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1: Equations. 

Expression for x (distance from 

origin to the transition point) 
Expression for a Expression for b 

Expression for the bridge 

span, W: 

𝑥2 = 𝑅2 − (ℎ − 𝐻 + 𝑅)2 

𝒙 = √𝑹2 − (𝒉 − 𝑯 + 𝑹)2 
𝑎 = 𝑥 ×

(𝑅 − 𝑟)

𝑅
 𝑏 = ℎ − 𝑟 ×

(𝑅 − 𝐻 + ℎ)

𝑅
 𝑊 = 2 × (𝑎 + √𝑟2 − 𝑏2) 

Further the radiuses could be found by using the Goal Seek function in Excel. Goal Seek uses an 

approach where it back-solves a problem by plugging in guesses until it arrives at an answer. In this 

case it was used to find out how much the large radius, R must change for the length, W to be 200 

meters.  

It is worth mentioning that the formulas had to be deducted so that the tangents of the two radiuses 

coincided at the transition point. Any small change in angle at this point would lead to an increase of 

stresses.

Figure 5.6: Sketch used to obtain the expression for W [own figure]. 
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Strategy  

The strategy for analyzing the different arch geometry with different radius ratios. After a set of 

parameters is defined the structure is analyzed with different radius ratios. The ratio starts at 1.0 

(circular shape) and are reduced with increments of 0.1. As the theory states it is expected that the 

decrease of bending moment will stop at a given ratio. This ratio is set to 0.3.  

This is done by using the formulas given in table 6.1 for the TCA models and equation (6.1) for the 

elliptical arches in excel. 

AutoCAD is then used to draw 2D-models of each case. Further the models are imported into RSA for 

analyzing. 

5.2 Geometries 

Different variables are changed to see if this effects the structural behavior when the radius ratios 
are reduced. In table 6.2 and 6.3 the different models are shown. As can be seen, only one variable is 
changes at a time. 

Table 5.2: Models for TCA. 

Model Rise [m] Length [m] 
Hanger 

inclination [α] 
Transition point 

[m] 
Number of 

hangers 

1 30 200 30 h constant: 14,4 50 

2 30 200 30 w’ constant: 80 50 

3 30 200 40 h constant: 14,4 50 

4 34 200 30 h constant: 14,4 50 

5 30 200 30 h constant: 14,4 48 

Models that have the same arch geometry: Model 1, 3 and 4. 

Table 5.3: Models for elliptical arch. 

Model Rise [m] Length [m] Hanger inclination [α] 
Number of 

hangers 

6 30 200 30 50 

7 34 200 30 50 

8 30 200 30 48 

Models that have the same arch geometry: Model 1 and 2. 

Further on the different cases will be referred to by its model number. 
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 Explanation of variations 

Length 

The length of was decided to be constant at a length of 200 meters. 

Rise 

A rise of 30 and 34 meters are used because it represents the range of the ideal height of a network 
arch bridge. 15 and 17 % respectively, when a bridge span of 200 meters is considered. 

Hanger inclination 

Two hanger inclinations where chosen for TCA, 30 and 40 degrees. As chapter 3.4.2 states the 
optimal angle for a bridge-span of 200 meters is 33 degrees. It was chosen to look at 30 degrees for 
ease of modeling, and 40 degrees for comparison.  

Transition point 

This is only chosen for TCA. A height h=14,4 meters was chosen based on the example case in the 
thesis by Bruun and Schanack, where: ℎ = 0.48 × 𝑠𝑝𝑎𝑛 = 0.48 × 200 𝑚 = 14,4 𝑚 [15]. 

The distance w’ for model 2 was chosen to be 80 meters. This gives a height (h) of 11,46 m for the 
transition point in model 2 with no reduction of radius. As this is about 3 meters lower then 14,4 m 
comparisons on the effect of where the transition point is placed, can be discussed.  

Number of hangers 

As there is no increase in structural performance with more than 50 hangers per arch, 50 hangers 
where chosen. For comparison 48 hangers where chosen. 
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5.3 Modeling 

 AutoCAD 

After the ratios has been found for the respective arch geometries, the models are drawn in 

AutoCAD. The reason for this is that a complex structure like a network arch bridge is hard to model 

directly in RSA. Thereafter, the models are imported into RSA for further analyzes   

 Robot Structural Analysis (RSA) 

Inputs 

When importing the AutoCAD model into Robot number of arc discretization’s must be chosen. This 

is because Robot turns continuous arc element into discrete elements. When the number of 

elements is higher, the better it simulates the true arc shape. The graph below shows an arch 

spanning 200 meters with a rise of 30 meters (base case for modeling), the bending moments 

flattens out at a certain value as the number of elements increases. To speed up the analysis, the 

least number of elements that gives correct answers are preferable. Therefore, an arc discretization 

of 185 elements are chosen for all the models, see figure 6.7. 

 

 

 

 

 

 

 

 

Material data for the super structure are given in the table below. 

Table 5.4: Material types. 

Type Material Cross-section 
Moment of inertia [mm4] 

Iz 

Main girder S420 M/ML IPE 600 3,387E+07 

Main girder buckling (1) S420 M/ML IPE 800 1,129E+08 

Hangers S420 M/ML d = 60 mm - 

Arch (2) S420 M/ML KR 600x40 mm 2,773E+08 

- (1) A fictitious cross-section which purpose is to increase the in-plane bending stiffness  

of the main girder. 

- (2) Also, a fictitious cross-section to secure large bending stiffness both in-plane. 

Figure 5.7: Number of elements used in numerical calculations [own figure]. 
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Boundary conditions 

The models are supported as pinned at one end and pinned with free translation in x-direction at the 

other end. 

Hangers 

The hangers are modelled as non-linear tension bars. This makes for a more realistic modeling as the 

hangers in a network arch bridge cannot take any compression forces. 

Buckling 

The basic result of a buckling analysis gives critical coefficients (eigenvalues). The critical coefficient is 

the factor that the applied load should be multiplied with to obtain appropriate loss of stability. 

In Robot number of analyzed modes are selected before calculations. Outputs of critical coefficients 

can often be negative in Robot. These are values that implies that the applied load should be placed 

in the opposite direction for the given buckling mode to occur. The negative values should therefore 

be neglected and the first positive value appearing is the critical coefficient of the structure that 

should be investigated. The problem is that it may result in the unavoidable job to calculate a lot of 

critical coefficients before the first positive one occurs. When analyzing the different models, number 

of modes was set to 20 to ensure that one positive value would appear. 

Two-dimensional model 

The first step is to analyze the different arch geometries using a two-dimensional model in RSA, see 

figure below.  

After the results from the 2D-models are analyzed, three models are further investigated. These 

models will have the same basic geometry. TCA and the elliptical arch will be analyzed with their 

respective radius ratio that gives the best structural improvement. 

- Model A: Circular arch. 

Geometry: Length = 200 m, H = 30 m, α = 30֯ 

- Model B: TCA with the optimal radius ratio based on the results from the 2D analysis. 

Geometry: Length = 200 m, h = 14,4 m, H = 30 m, α = 30֯ 

- Model C: Elliptical arch with the optimal radius ratio based on the results from the 2D 

analysis. 

Geometry: Length = 200 m, H = 30 m, α = 30֯ 
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Loads 

As this thesis does not focus on design of network arch bridges the specific design loads on the 

bridge is not of importance. Only simple loads will be applied on the different bridge models, as it is 

the comparison between the results that are of importance, not the values themselves. Self-weight 

of the bridge models is neglected as the weight will be different every time one geometrical change 

is done to the structure, this can affect the results. 

Two load combinations (table 6.5) where used to analyze the different models, application of the 

loads is shown in figure 6.8. 

Table 5.5: Load combinations. 

 Dead load Load [kN/m] Live load Load [kN/m] 

Load combination 1 Full span 1 Full span 1 

Load combination 2 Full span 1 Half span 1 

 

 

Figure 5.8: Applied loads [own figure]. 

When analyzing moving load on the bridge deck. Vehicle is replaced with a concentrated unit load 

with magnitude of 1 kN. The load is applied in steps of 2 meters along the tie. 
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Non variables 

To narrow in the analyzing process some parameters was set to be constant for all the models. The 

bridge span is 200 meters. For the hangers, radial hanger arrangement is used. One problem arises 

with this, and that is when the ratio gets low and the curvature of the arch at the end of the bridge 

gets almost vertical. For those cases the hangers had to be manually adjusted to the tie. The distance 

between the top nodes stays constant. An example of this can be seen in figure 6.9. 

Outputs 

The following outputs will be of interest after analyzing the two-dimensional models: 

- Global extremes of bending moments in the arch, both positive (underside of the arch) and 

negative (upper side of the arch). 

- Global extremes of axial forces in the arch. 

- Largest tensile force in the hangers, and number of relaxed hangers. 

- Critical coefficients for comparison of in-plane buckling resistance. 

For the comparison of the optimal arch shapes the following outputs will be of interest: 

- Buckling mode shape with critical coefficient. 

- Bending moment envelope for moving load. 

- Global extremes for bending moment, axial force and hanger force. 

  

Figure 5.9: Adjustment of hangers at bridge end. Left: before, right: after [own figure]. 
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5.4 Weakness with the method 

As this method is based on a lot of modeling, one improvement could have been to develop a code 

to obtain plot for the bridge geometries easier. A broader number of cases could have been looked 

at, and increments between radio ratios could have been smaller, to obtain more accurate results.  

3D-models should have been used to further investigate the bridges with optimal radius ratio. 

Combinations containing wind loads and moving loads should have been carried out. In the wind 

portal of the bridge, large out-of-plane moments can occur. It would have been interesting to carry 

out an analysis for the different arch shapes here. 
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 Results 

In this chapter the results from analyzing the different arch shapes with all its models are presented. 
Basis for calculations refers to the appendix for each sub-chapter. 

6.1 Bending moments TCA 

 Positive bending moments 

Two-dimensional analysis in RSA gave the following results for the bending moments in TSA. Figure 

7.1 and 7.2 show the percentual reduction of positive bending moment in the arch for the different 

radius ratios. Figure 7.1 indicates the reduction when full unit load applied on the bridge deck. It can 

be seen from the graph that the bending moment is at its lowest when the radius ratio is at 0.4 for all 

cases except for model 4 where the reduction seems to be far less than for the other cases. Lowest 

bending moment can be found for model 1 and 5 with a reduction of 39 percent. See appendix B-1 

for values. 

 

 

  

Figure 6.1: Full load. 
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The results are quite similar for the bending moments under half load, figure 7.2. Here, some of the 

models have their lowest bending moments at ratio of 0.35. Still, model 1 and 5 has the largest 

reduction of around 40 percent.  

Figure 6.2: Half load. 
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 Negative bending moments 

Figure 7.3 shows the increase of negative bending moments in the arch when full load is applied. The 

vertical axis shows the actual bending moments with the applied unit loads. The radius ratio where 

the bending moments start to increase is the most important to look at. It shows that the increase 

happens between ratio 0.7 and 0.6 for all the 5 models.  
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Figure 6.3: Full load. 
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Negative bending moments starts to arise between ratio 0.6 and 0.5 when half load is applied, see 

Figure 7.4. Especially case 1, 2 and 5 has a large increase below ratio 0.4. 
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Figure 6.4: Half load. 
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6.2 Axial forces TCA 

Figure 7.5 illustrates the percentile reduction in axial force for the different model of TCA when full 

load is applied. Model 3 and 4 stand out from the others. Model 3 with a reduction at ratio 0.3 of 

little over 1 % and model 4 with a reduction higher than 7 %. It can be seen from the figure that the 

reduction of axial force flattens out as the ratio decreases. See appendix B-2 for values. 
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Figure 6.5: Full load. 
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When half load is applied there is a resemblance in the reduction of axial forces. All the models have 

decreased axial force of 7-10,5 % at ratio 0.3, see figure 7.6.  
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Figure 6.6: Half load. 
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6.3 Bending moments ellipse 

 Positive bending moments 

The results from the elliptical arch models applied with full load are illustrated in figure 7.7 the 
positive bending moments decreases for all the modes and has its lowest point at ratio 0.5-0.4.  
Mode 6 decreases the most at 51 percent. Mode 8 with 48 hangers has less reduction. See appendix 
B-1 for values. 

 

 
 

  

Figure 6.7: Full load. 
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Figure 7.8 illustrates the decrease of positive bending moment for the elliptical models when half 

load is applied. All modes have their lowest bending moments for ratio 0.5.  

  

Figure 6.8: Half load. 
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 Negative bending moments 

For the elliptical arches the negative bending moments rapidly increases between ratio 0.7 and 0.6, 
see figure 7.9. All the models follow more or less the same path.  
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Figure 6.9: Full load. 
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For the half-loaded load combination there is almost no distinction of the three cases. As seen in 

figure 7.10 the negative bending moments start to increase at ratio 0.6 and has an almost vertical 

increase at 0.5.  
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Figure 6.10: Half load. 
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6.4 Axial forces ellipse 

For full load the axial forces decrease as the radius ratio gets smaller. Model 7 shows a larger 
reduction at around 8 %, but there is a tendency for the axial forces to increase between ratio 0.4 
and 0.35, this also shows for model 8, see figure 7.11. See also appendix B-2 for values.  
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Figure 6.11: Full load. 
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Figure 7.12 illustrates the decrease on axial force for the elliptical arch models when half load is 

applied. It resembles the results for reduction of axial force in TCA for half load. All the models have 

the same decrease with small deviations.  
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Figure 6.12: Half load. 
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6.5 Relaxation of hangers 

Table 7.2 illustrates how many hangers that relax for the different models as the radius ratio 

decreases. For model 3, 4 and 5 almost no hangers relax even as the ratios get low. Over all, model 1 

has the highest number of relaxed hangers for TCA. The elliptical arches show that when the ratio 

goes lower than 0.6 number of relaxed hangers increase, see appendix B-3. 

Table 6.1: Number of relaxed hangers for det different models. 

Ratio 1 0,9 0,8 0,7 0,6 0,5 0,4 0,35 0,3 

Loads FL HL FL HL FL HL FL HL FL HL FL HL FL HL FL HL FL HL 

Mod1 - 1 - 1 - 1 - 1 2 1 2 1 2 5 2 11 4 12 

Mod2 - 1 - 1 - 1 2 1 2 1 2 1 2 4 2 7 2 12 

Mod3 - - - - - - - - - - - - - 1 - 1 2 1 

Mod4 - - - - - - - - - - - - - - - 2 2 5 

Mod5 - - - - - - - - - - - 1 - 3 - 8 - 12 

Mod6 - 1 - 1 - 1 - 1 - 3 - 8 - 12 6 20     

Mod7 - - - - - - - - - - - 2 8 18 - 26     

Mod8 - - - - - - - - - 3 - 7 - 14 4 24     
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6.6 Comparison 

 In-plane buckling modes 

Table 7.3 shows the buckling mode shapes for the different arch shapes. Buckling analysis was 
conducted in RSA by using full unit load on the bridges, and the stiffness of the tie was increased by 
changing it to a fictitious profile, IPE 800 with in-plane moment of inertia of 1,129E+08 mm4. 

Table 6.2: Buckling mode shape and critical coefficients for the optimal geometries [RSA]. 

Model A 
Number of wave crests: 3 

Critical coef.: 2,39246e+02 

 
Model B 

crestsNumber of wave : 4 
Critical coef.: 2,40443e+02 

 
Model C 
Number of wave crests: 3 

Critical coef.: 2,41549e+02 
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 Moving loads 

Figure 7.13-15 show the bending moment envelopes for the moving load calculations in RSA. 

 

 

 Forces 

Comparison of forces for the different shapes, see table 7.4. Values are for full unit load on the whole 
bridge span. 

Table 6.3: Comparison of results for the different arch shapes. 

Arch shape 
Positive bending 
moment [kNm] 

Negative bending 
moment [kNm] 

Axial force 
(compression) 

[kN] 

Hanger force 
[kN] 

Model A 44,64 0,41 358,94 29,45 

Model B 31,62 5,49 346,28 30,19 

Model C 32,42 0,03 345,98 29,76 

 

  

Figure 6.13: Moment envelope for model A. 

Figure 6.15: Moment envelope for model B. 

Figure 6.14: Moment envelope for model C. 
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 Discussion 

In this chapter the results from the thesis will be discussed. The validity of the results depends on the 

authors accuracy of constructing all the bridge models, and the software Robot Structural Analysis.  

First the different arch shapes will be reviewed by them self, before they all are compared to each 

other. 

7.1 Circular arch 

The base case of this thesis has been the circular arch shape of the network arch bridge. The circular 

arch shows great behavior when it comes to even distribution of axial forces in the arch, and 

consequently the tensile forces in the hangers are very even. This leads to small chance of relaxation 

of the hangers both under full and half loading of the bridge. This is the case if the optimal hanger 

arrangement is applied. As can be seen from table 7.2 one hanger relaxes under half load for model 

1,2 and 6 which can mean that the hanger angle was a little bit off.  

7.2 TCA 

Deriving the formula for calculation of different radius ratios for the three-center arch shape turned 

out to be more time consuming than expected. In addition, the method for finding obtaining the 

ratios was not optimal. It required a lot of trial and error for all the models, and the ratio outputs 

form the calculations did not give integer numbers. So, a method of retrieving the exact ratios would 

be preferable.  

As the positive moments decreases towards ratio 0.4-0.35 for model 1-4 (figure 7.1 and 7.2) the 

negative bending moments arise. When the radius ratio gets lower the shape of the arch goes 

towards the compression line of the arch. It is likely that it is the reason for the increase in positive 

bending moments. The results may indicate that the reduction of moments is very large for some of 

the models. For example, model 1 shows a decrease of positive moment from 44,64 kN (ratio 1.0) to 

27,35 kN (ratio 0.35) when full load is applied. At the same time the negative moments increase from 

0,41 kN (ratio 1.0) to 10,56 kN (ratio 0.35). So, overall it looks like the reduction of bending moments 

are not so large.  

From the results of axial forces in figure 7.5 model 4 has the largest reduction of axial force at around 

7 %. As this model has a higher rise then the others it can lead to a larger reduction of axial force. As 

explained in chapter 3.3.1, the shape of the arch start to resemble the behavior of a two-hinged arch 

when the radius ratio decreases. Therefore, it might be the reason that the reduction in arch 

compression force flattens out as the radius ratio decreases, this is most evident in the full load case, 

but there is a tendency for the axial forces to flatten out also for the half loading in figure 7.6. 
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In most cases the circular arch is chosen for its low production costs. For the arch itself it reasonable 

to believe that the production cost will not be much higher for the three-center arch. This is because 

the reduced curvature at the end of the arch could be limited to the first arch segment near the 

bridge end. The amount of welding of the arch segments would be the same. It is worth mentioning 

that the welding at the transition point between the curvatures must be carefully executed so that 

the stress will not rise at this point. Welding of hanger connections to the arch will most likely be 

more time consuming as the inclination of the hanger’s changes as the curvature change.  

7.3 Elliptical arch 

A lot of the same tendencies can be seen from the calculations of the elliptical arch shaped models.   

The results for the elliptical arch are taken from ratios 1.0 (circular) to 0.35. The reason for this is that 

a curvature with ratio lower that 0.35 gave an arch geometry where nearly no horizontal forces 

where transferred to the abutment. While analyzing it was also clear for all the models that there 

was no increase in structural behavior of the bridge when considering bending moments below ratio 

0.35. On top of that the hanger arrangement had to be manually changed for radius ratios 0.4 and 

0.35, as the slope of the hangers near the end became very horizontal near the bridge end.  

From the constructional view the elliptical arch shape may make for an expensive arch. The 

manufacturing of the arch segments will most likely be more complicated as every segment must be 

made with unique curvature. The same goes for the hanger connections to the arch. Aesthetically the 

elliptical arch seems to be quite pleasing to look at. There are no transition points like for TCA which 

gives a more even transition.   

For the elliptical arch a ratio of  
𝑟𝑏

𝑟𝑎
= 0.4 has a much steeper curvature at the arch end then 

𝑟

𝑅
= 0.4 

for the TCA. This means that the elliptical arch has larger eccentricity (see figure 3.8) then the TCA. 

That may be the reason for the more sudden inclination of both positive and negative bending 

moments in the elliptical arch that can be seen in figures 7.7 through 7.10. It seems that no matter 

which model (6,7 or 8) the bending moments arise at around ratio 0.5 for the elliptical arch. 

Rise of the arch 

Model 4 and 7 has an increased arch rise of 34 meters. The two models have the largest decrease of 

axial force when full load is applied. The values are 7,24 % and 8,35 %, respectively at radius ratios 

0.35. Chapter 3.3.1 implies that the axial forces will decrease with higher arch rise.  

Hanger inclination 

A model for hanger inclination of 40 degrees was only made for TCA. As the elliptical arch shapes 

gets really steep for the lowest ratios, the 40-degree inclination made modeling hard since almost all 

the hangers had to be manually adjusted to the tie. As this manual adjustment is a trial and error 

process it was decided that it should be exclude from the calculations. Model 3 has the lowest 

reduction in axial forces of all the TCA models when full load is applied. 
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Number of hangers 

Number of hangers seems to mainly effect the reduction of positive bending moments for both 

model 5 and 8, see figure 7.1, 7.2, 7.7 and 7.8. If the hanger number is reduced, the distance 

between the top node of the hangers in the arch increase. This can lead to an increase of local 

bending moments.  

Transition point 

Comparing model 1 and 2 that has the same variables except for the positioning of the transition 

point it can be seen from figure 7.1 through 7.6 that the difference between these two models are 

small. This indicates that the placement of the transition point may not influence the optimal 

curvature that much. 

7.4 Comparison 

Comparing results from figure 7.1 to 7.4 gives a mean radius ratio of around 0.5 for TCA. This is based 

on where the reduction of positive bending moments ends for all models in figure 7.1-7.2, and where 

the negative bending moments start to increase for all models in figure 7.3-7.4. 

Comparing results from figure 7.7 to 7.10 gives a mean radius ratio of around 0.6 for the elliptical 

arch. This is based on where the reduction of positive bending moments ends for all models in figure 

7.7-7.8, and where the negative bending moments start to increase for all models in figure 7.9-7.10. 

This is quite similar to what Teich found out in his research, see chapter 3.3.1. 

The in-plane buckling results from table 7.3 shows that there is slightly higher in-plane buckling 

resistance for model B and C compared to model A. The buckling resistance is dependent on the 

compressive forces in the investigated element. Since model A has a compressive axial force in the 

arch of 358,94 kN and model B and C har 346,94 kN and 345,98 kN, respectively, it could be the 

reason for the slightly larger buckling resistance.  

The bending moment envelopes for the moving load gives very similar results for model A and B. 

Bending moments for model C is higher. Model 6 (same geometry as model C) in table 7.1 shows that 

3 hangers relax under half loading. If one hanger relaxes the bending moment arises as the distance 

between the top nodes of the hanger’s doubles. If Model C is more likely to have relaxed hangers 

than the other two models, this might be the reason for the much larger bending moments.  

When comparing the forces for the different models A, B and C the results show that model B and C 

has a reduced positive bending moment of 29,2 % and 27,4 %, respectively. The negative moment 

increases slightly for model B compared to model A. For the axial forces the reduction of 3,5 % for 

model B and 3,6 % for model C.  
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 Conclusion 

The research question that I am going to answer in this thesis is: How can the optimal curvature of a 

network arch bridge be obtained? Two sub-questions where formed to help answering the research 

question: 

How will different curvatures effect the moments at the arch end? 

Two model types are analyzed in this project to see if they can improve in the circular arch shape. 

The three-center arch (TCA) and the elliptical arch. The models are constructed by incrementally 

decreasing the radius ratio at the bridge. Results are obtained by applying simple loads on the 

models. The results show that when applying simple loads on the whole bridge span and half bridge 

span, the bending moments decrease towards an optimal radius ratio. When designing bridges with 

elliptical arches or three-center arches it is advisable to use reduced radius ratios, the results indicate 

a radius ratio that should not be lower than 0.6 and 0.5, respectively. Investigation of these radius 

ratios in 3D-model with full design load is needed for these values to be validated. 

What kind of arch shape will improve the structural behavior most? 

From the analysis done in this thesis I cannot conclude with whether the three-center arch or the 

elliptical arch improves the structural behavior most. What I can conclude with is that both elliptical 

arch and TCA give better resistance of the bending moments at the end of the arch then by using 

circular arches. 

  



Master thesis – Severin Lie Rudi 

51 
 

 Suggestions for further work 

For further work a cost-benefit analysis would be interesting to investigate. As the design of the arch 
often is dependent on cost rather than structural behavior it would be interesting to see if 
production of for example a three-center arch is more expensive than a circular arch. 

An LCA analysis could identify what changes in environmental impact in could mean to change to a 

more optimal arch shape. 

Also, a comparison between a circular arch and an arch with reduced radius where they both are 

tested for all design verifications. 
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