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Abstract—In motion control technologies, an automatic
switching between trajectory following and set reference force,
upon the impact, is a frequently encountered requirement.
Despite both, motion and force controls, are something of well-
understood and elaborated in the control theory and engineer-
ing practice, a reliable switching between them is not always
self-evident. It can lead to undesired deadlocks, limit cycles,
chattering around switching point and, as consequence, to
wearing or damages in the controlled plant and its environment.
This paper contributes to analysis and understanding of the
autonomous switching from the motion to force control and
vice versa. Simple output and state feedback controllers are
assumed, and the conditions to be held in vicinity to the
switching state are explored. A simple yet robust hysteresis-
relay-based switching strategy is shown to be suitable for such
type of motion control applications. The hybrid automaton,
as most general tool, is used for exploring and analyzing
the transients. A multiple Lyapunov function approach is
applied for stability analysis of the switched control system.
A second-order system, with uncertain nonlinear dynamics, is
demonstrated as an illustrative numerical example.

I. INTRODUCTION

Motion and force controls are something of well-

understood and elaborated in the theory and practice, and

(since decades) have attracted attention of both, academic

research communities and practicing engineers in the various

application fields. The common paradigm of motion and

force controls, operating on the similar or even same system

plants, has been formerly established for robotics [1] and

mechatronics [2], in general, as two of the most appealing

application fields. Since there, multiple works have been

dedicated to a combination of both, while taking different

focus on the robustness, parameters adaptivity, impedance

variation, and possibility to have a common architecture of

the control system. Just to mention few of them here, in [3] a

hybrid position-force control of manipulators with a common

matched control action has been proposed and investigated

experimentally. Another simulation study of hybrid force-

motion control has been shown in [4] for robotic manipula-

tors, yet without explicitly defining and analyzing a suitable

switching strategy. An analysis and experimental evaluation

of the force control, applied to a robotic manipulator and

incorporating the controlled motion before an impact with

environment, has also been provided in [5].

In spite of numerous strategies and techniques have been

elaborated and applied in the motion and force control appli-

cations, especially in robotics, a reliable switching between

both is not self-evident and remains further on demanding

for theoretical research and experimental evidence. At that
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point, it can be mentioned that a hybrid motion-force control

clearly falls into the focus of switching (also hybrid) dynamic

systems, for which the theory has already been established

in the last two decades, see e.g. [6], [7], [8], [9], [10].

The aim of this paper is to address an autonomous

switching between the feedback motion and force controls.

To this end, we demonstrate suitability of a simple hysteresis-

relay-based strategy, which enables stable and robust changes

between both control actions and elaborates on a boundary

layer in the associated three-dimensional state-space. We

note that this switching strategy has been empirically tried

and attested in [11], while the potential applications and not

limited to hydraulic actuators and spread out from the tactile

instruments in medical technologies to the large robotic

manipulators and handling- or construction-machines.

The paper is organized as follows. The problem statement

of the second-order motion system with both, trajectory

following and set force, controls is given in Section II. In

Section III, we provide the required notations and analyze the

dynamic behavior of both feedback control systems. Also a

hysteresis-relay-based switching between both is introduced.

An associated hybrid automaton suitable for formalizing and

investigating the switched closed-loop system dynamics is

described in Section IV. The multiple Lyapunov function

approach is demonstrated in Section V for analyzing sta-

bility of the switched control system. A numerical example

of the second-order motion control system with nonlinear

dynamics and uncertainties is provided in Section VI, and

that for trajectory following and force controllers, including

the proposed autonomous switching. The paper is briefly

summarized and concluded in Section VII.

II. PROBLEM STATEMENT

We consider a relative motion system of type

ẋ1 = x2,

ẋ2 = −f(x1, x2)− sK(x1 −Xs) + u. (1)

The exogenous control signal, to be addressed later, is u. The

generalized motion coordinates are denoted by x1, here and

in the following as scalar value (meaning a 1-DOF system)

for the sake of simplicity. The nonlinear map of the system

dynamics is f(·), this allowing for uncertainties such that for

F = f̂ − f it holds ||F, Ḟ || < η. Here the nominal system

dynamics is f̂ , and η is some positive constant of uncertain-

ties norm. The threshold of a constrained displacement is

denoted by Xs and the binary switching variable is

s =

{
1, if (x1 −Xs) ≥ 0,

0, otherwise.
(2)

© 20XX IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted paper, IEEE MED'19 conference



The environmental stiffness of the impact, i.e. after un-

constrained relative displacement, is K � |f |. Note that,

for the sake of simplicity, neither restitution coefficient nor

structural damping of environmental contact are taken into

account. This simplifying assumption can be, however, lifted

on the costs of extending the system dynamics (1). Note

that such extensions might potentially improve accuracy

in describing the transients between the motion and force

control. However, they are less significant as for principles

and, therefore, omitted in the recent work. It is worth noting

that Xs constitutes boundary of a load-free displacement un-

der control, i.e. motion without counteracting environmental

forces. Beyond that value, cf. (2), a relative displacement

will be inherently restricted by a high stiffness K. Thus, a

penetration 0 < x1 − Xs < δ into environment is assumed

as always limited by some small positive constant δ.

Now we are in position to formulate the problem statement

that will be addressed and discussed in the rest of the paper.

For the hybrid dynamic system (1), two control laws are

assumed in the following:

u =

{
α
(
Xr, x1, t

)
while no impact,

β
(
Pr,K(x1 −Xs), t

)
otherwise.

(3)

The first control is for tracking the reference trajectory

Xr(t), assumed as at least once differentiable. The second

control is for set the reference force Pr. At this stage,

the case difference (3) constitutes some non-strict switch-

ing conditions that should be then formalized, hereupon

resulting in an autonomous switching control law. Note that

both controllers in (3) are defined as explicit functions of

time, since the derivative and integral terms can be equally

involved in addition to the system output value. Note that

the controllers α(·) and β(·) are understood to be each

asymptotically stable and capable of
∣∣Xr(t) − x1(t)

∣∣ < eα
and

∣∣Pr(t) −K(x1(t) − Xs)
∣∣ < eβ for all t > tr. Here tr

is the transient response time, and eα, eβ are the residual

control errors correspondingly.

The question that arises now is which autonomous switch-

ing, simple as possible, can be defined for ensuring both

controllers (3) keep the above defined performance, once the

system (1) changes from the controlled steady-state motion

to the controlled force upon an impact with environment. The

reversal switching, i.e. back from the force to motion control,

can be captured when surpassing some lower assigned Pr

set-value, below which the α-control takes over back, i.e. to

follow again a reference trajectory Xr(t) < Xs.

III. FEEDBACK CONTROLLERS WITH HYSTERESIS

SWITCHING

A. Motion control

First, consider the motion control of reference following,

while the ramp Xr(t) = Rt with a constant reference veloc-

ity R is assumed, that for the sake of simplicity yet without

loss of generality. Obviously, a standard linear feedback

control should equally include an integral error term so as

to compensate for f(·) and its uncertainties. Introducing the

corresponding feedback gains k1, k2 for the dynamic system

states, and k0 for the integral error state, one can write the

closed-loop control system (for the range x1 < Xs) as

ẋ2+f(x1, x2)+k2x2+k1x1+k0

∫
x1dt = Rt

(
k1+k0

1

2
t
)
.

(4)

Taking time derivative of the left- and right-hand side of (4),

and assuming zero initial conditions, one obtains

ẍ2 + ḟ(x1, x2) + k2ẋ2 + k1x2 + k0x1 = k1R+ k0Rt. (5)

It can be seen that from steady-state, including time-

derivative of nonlinear dynamics ḟ(·) = 0, a coefficients’

comparison of the left- and right-hand side of (5) yields

x̄2 = R,

x̄1 = Rt, (6)

while the bar (i.e. x̄) emphasizes the steady-state of cor-

responding dynamic variable. The stationary behavior (6)

implies the α-control in (4) can exactly track the reference

trajectory, provided the eigen-dynamics i.e. left-hand side of

(5) remains asymptotically stable despite uncertainties. The

latter can be assessed considering the full derivative

d

dt
f(x1, x2) =

∂f

∂x1
x2 +

∂f

∂x2
x1. (7)

Substituting (7) and x2 = ẋ1, and rewriting the left-hand-side

of (5) one obtain the characteristic (polynomial) equation of

the closed-loop control system as

...
x1 + k2ẍ1 +

( ∂f

∂x1
+ k1

)
ẋ1 +

( ∂f

∂x2
+ k0

)
x1 = 0. (8)

Obviously, the stability of characteristic equation (8) can

be guaranteed by an appropriate assignment of k0, k1, k2
gains, while the partial derivatives of the motion dynamics

should be taken into account. For systems with uncertainties,

i.e. η �= 0 cf. with Section II, a robust design of the

feedback gains should be ensured. For instance, an interval

polynomials test of stability can be performed based on the

Kharitonov’s theorem, see [12], [13] for details. A more

detailed analysis of the robust gains in (8) will be not further

addressed, as being out of main scope of the recent work.

B. Force control

Due to the fact that the motion dynamics becomes con-

strained upon an impact, meaning the motion system loses

a free integrator, the position feedback in control becomes

not longer required since −K(x1 −Xs) is already acting in

feedback. Assuming Xs = 0, for the sake of simplicity, one

can write the β-controlled motion system (1)-(3) as

ẋ2 + f(x1, x2) + k2x2 +Kx1 = Pr, (9)

that understands the set point command of the desired

force Pr. Since the environmental stiffness is assumed to

be relatively high, a sufficient control damping k2 should

be assigned to suppress oscillatory behavior at the impact

excitation. This is also with respect to uncertain dynamic

nonlinearities f(·) which might additionally contribute to



the transient oscillations around Xs ≤ x1Xs+ δ. Obviously,

ensuring a robust damping of the system at impact, a steady-

state K(x1(t) − Xs) = Pr for t > tr can be guaranteed,

which means setting of the reference force value.

Further we note that in case of some specific nonlinear sys-

tem dynamics, an additional state feedback −k1x1, equally

as an auxiliary gain i.e. GPr, can be desirable for shaping the

closed-loop behavior, cf. e.g. [2]. However, this case-specific

design measures will be omitted here, so that a generalized,

to say rigidly matched, force-controlled motion system as in

(9) will be considered in the following.

C. Autonomous switching

From viewpoint of the system dynamics, cf. (1), the thresh-

old Xs at impact constitutes a boundary layer within the

(x1, x2, x3) state-space, starting from which the controlled

motion (4) will comes to an equilibrium state in case either

k0 = 0 or the actuator boundaries Umin ≤ u(t) ≤ Umax

apply. A corresponding trajectory of the controlled motion

is exemplary drawn in Fig. 1. One can see that a forced

x

x
x

sX

Fig. 1. Phase portrait of (x1, x2, x3)-trajectory of the controlled motion
system at impact, with k0 = 0 ∨ Umin ≤ u(t) ≤ Umax control setting.

motion stops within a bounded force-displacement region,

while δ limits the penetration into environment after an

impact, cf. Section II. It is apparent that an autonomous

switching between the motion and force controls should

appear within this bounded region, while a force threshold

value γ is to be assigned as a design parameter. From Fig. 1

one can recognize that γ defines a vertical plane that should

always be traversed by a motion trajectory before the system

comes into an idle state. We recall that an ideal positioning

control possesses infinite stiffness, cf. with [2], so that the

γ-assignment is rather application-specific.

It is evident that at x3 = γ the plane becomes essential

for switching between the motion and force control, and

its boundary layer becomes relevant for a transient system

dynamics. We recall that a robust switching in one way

should be ensured without appearance of any deadlocks,

limit cycles, or sliding modes around the switching plane.

Whichever controller α ∨ β is in place, the transient over-

shoots and transient oscillations might occur within some

boundary range, so that a direct switching at x3 = γ appears

to be less suitable. Apart from the transient effects, the

process- and above all measurement-noise can furthermore

limit the performance of an autonomous switching. Another

issue to be taken into account, when designing the switching

law, is that the motion control (4) includes integrator of the

position control error. That one will keep an accumulated

control value even after switching to (9) force control. In

order to avoid an undesired, to say spurious, control coaction

when switching back, i.e. from β to α action, the integrator

in (4) should be reset. This will be taken into account when

specifying the hybrid automaton in Section IV.

An obvious strategy for avoiding the above mentioned

problems is using a non-ideal relay, i.e. with hysteresis,

which will create a force tolerance layer around x3 = γ
plane. Note that a hysteresis switching, especially scale-

independent hysteresis switching logic, has already been

used for hybrid dynamical systems, see e.g. [14]. A sym-

metric hysteresis-relay with input pγ = x3(t) + γ, which is

the force biased by the switching threshold γ, is given by

z+(t) = min
[
sign(pγ(t)+Ps),max

[
z(t), sign(pγ(t)−Ps)

]]
,

(10)

while the relay’s initial state at t0 is given by

z0 =

{
sign

(
pγ(t0)

)
, if pγ(t0) ∈ (−∞,−Ps] ∨ [Ps,∞),

{−1, 1} , otherwise,

(11)

see [15] for details. The hysteresis relay has memory of the

recent state, and keeps its value as long as pγ ∈ (−Ps, Ps),
where 0 < Ps < γ is the switching threshold parameter

to be assigned. Note that the hysteresis relay (10) contains

discontinuities, and switches immediately upon the thresh-

old values. Therefore, each change between the α and β
controllers takes place without transient delays in the phase.

Apparently, the codomain of the relay function is z ∈
{−1, 1}, so that the not-completed switching control law

(3) can now be rewritten to

u =

{
α
(
Xr, x1, t

)
if z = −1,

β
(
Pr, x3, t

)
if z = 1.

(12)

Apart from the linear feedback controllers α and β, the γ
and Ps values constitute additional design parameters.

IV. HYBRID AUTOMATON OF SWITCHED DYNAMICS

For analyzing the switched feedback control system,

with plant dynamics (1) and controllers (12), we use an

autonomous-switching hybrid system notation, cf. with [6],

and write the compact state-space notation as

ẋ(t) = Ami
x(t), (13)

m(t+) = ϕ
(
x(t),m(t)

)
. (14)

Here mi with i ∈ {1, 2, 3} are the switching modes of

both, the motion controlled system with varying-structure

plant (1), captured by m1, m2, and the forced controlled

system captured by m3. Note that for the motion control, an

autonomous system with zero reference is assumed, while

for the force control the Pr = const is the single exogenous

quantity incorporated into (13). The state vector is x =
[x0, x1, x2, x3]

T , while x0 captures the (integral) control

error and x3 constitutes a counteracting force at impact with

environment. The discrete transition (or switching) function



is ϕ, while m(t+) denotes the discrete system state (here

and further on also denoted as ‘mode’) which is piecewise-

continuous from the left. That means mi(t
+) is a so-called

‘successor’ of the recent mode mj(t) while i �= j. The above

notations allow for representing the switched dynamical

system (13), (14) as a hybrid automaton, see e.g. [10] for

details, which is well-comprehensible for analyzing indi-

vidual subsystems and switched transitions between those.

Beforehand, the single modes system matrices are specified

below, for the sake of completeness.

Assuming a linearized system nonlinearity (around an

operation point) to be f(x1, x2) ≈ L1x1 + L2x2 and

extracting the states dynamics from (1), (4) yield

Am1,2
=

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
−k0 −(L1 + k1) −(L2 + k2) −s
0 0 Ks 0

⎞
⎟⎟⎠ ,

(15)

with s = 0 for m1-mode, cf. (1), (2). For the m3-mode, with

the same states notation as above, one obtains

Am3
=

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 −L1 −(L2 + k2) −1
0 0 K 0

⎞
⎟⎟⎠ , (16)

based on the force control dynamics (9).

The hybrid automaton of the switched force-motion con-

trol system (13), (14) is depicted in Fig. 2. One can recognize

that the constrained motion control mode m2 at the impact

occurs always between the unconstrained motion control

m1 and force control m3 modes. Note that a supervised

switching-back to the motion control, omitted here due to

an autonomous system assumption without external reference

input, will require setting Pr < γ−Ps. Thereupon, the force

control would drive the system to x3 < γ − Ps that implies

an activation of the corresponding switching function and

transition back from m3 to m2.

mAmAA

m
mAmAA

m
mAmAA

m

sx X

sx X

sx P

sx P

x

Fig. 2. Hybrid automaton of switched motion/force feedback control.

V. MULTIPLE LYAPUNOV FUNCTIONS

For the defined hybrid automaton, we are interested to

show that the relay-based switching keeps the overall control

system asymptotically stable. Recall that the individual sub-

systems, i.e. governed by the feedback controllers α and β,

are asymptotically stable as has been assumed and discussed

in Section III. Despite this fact, an autonomous switching

between the asymptotically stable subsystems may lead to

destabilizing the trajectory solution as a whole, examples of

which are well-known in the literature, see e.g. [7].

Traditionally, the fact that a common Lyapunov func-

tion guarantees stability for arbitrary switching has led

researchers to search for conditions under which a common

Lyapunov function exists [8]. Although the necessary and

sufficient conditions for the existence of a common quadratic

Lyapunov function for switching between two stable linear

systems have been shown in [16], the finding of such suitable

Lyapunov function is nontrivial and rather case-specific. In

view of the i = 3 subsystems and varying structure between

the m1,2- and m3-switched systems, cf. Section IV, we

abstain from temptation of finding a common Lyapunov

function. Instead, we will make use of the so-called multiple

Lyapunov functions, see [7] for details, that can be assumed

for a slow switching between the single stable modes.

Note that a slow switching solely ensures that the intervals

between two consecutive switching times are large enough,

while the switching itself appears instantaneously, that is

without additional time delays or phase lags.

For m1 and m2 system modes, consider the Lyapunov

function candidate

V1,2 =
s

2K
x2
3 +

1

2
x2
2 +

L1 + k1
2

x2
1 + k0x0x1, (17)

which is positive definite for all x ∈ R
4 and radially

unbounded. Note that (17) is equally valid for Am1
and Am2

,

driven by the same α-controller, with a single difference of

s = 0 for the m1 mode. Taking the time derivative of (17)

and substituting the corresponding dynamics (15) results in

d

dt
V1,2 = −(L2 + k2)x

2
2 + k0x

2
1, (18)

which is negative definite if and only if

|x1| < L2 + k2
k0

|x2|. (19)

Since the α-control includes the integral error feedback, it

comes as not surprising that the time derivative of Lyapunov

function equally contains the square of x1, which is con-

tributing with positive sign. Recall that for zero reference

and non-zero initial conditions – assumption taken already

in Section IV for comprehensibility of analysis – the x1

state constitutes the position control error. Only when either

k0 = 0, meaning no integral control action, or x1 = 0,

meaning the motion system is in the set position, (18)

becomes negative definite for all x2 values including zero

velocity. Otherwise, when stopping outside of x1 = 0, the

closed-loop control system increases its energy level, i.e.

d/dt V1,2 > 0, which is in meaning of an integral control

action. The above consideration reveals (19) as a limiting

relationship between the relative displacement and velocity

for which a stable switching can take place. If (19) holds,

the energy increase rate, due to the integral control error, is

balanced by the energy dissipation rate due to the system and

control damping. This case a switched control system will

not exhibit an energy storage which, otherwise, might lead

to transient instabilities when switching from m2 to m3.



Further we note that once the velocity starts decreasing

after impact (cf. Fig. 1), the condition (19) can be used for

optimally designing the threshold force γ = K(x1 −Xs) of

autonomous switching. Then, the instantaneous (decreasing)

velocity is not longer required, and some reference velocity,

e.g. |x2| ∈ [0.5R, R], can be assigned in (19) for determining

the x1-value of an optimal switching.

In the same manner of developments as above, we intro-

duce the Lyapunov function candidate

V3 =
1

2K
x2
3 +

1

2
x2
2 +

L1

2
x2
1 (20)

for the m3 mode. Note that since the β-controller does not

have an integral control action, the x0 state is not contributing

to (20). The V3 function is positive definite and radially

unbounded, while

d

dt
V3 = −(L2 + k2)x

2
2 (21)

is only negative semi-definite since d/dt V3 = 0 for x2 = 0.

That is the control system in m3 mode has an invariant set

Ω = {x ∈ R
3 | x2 = 0, x1 > Xs}.

This comes as not surprising since an idle state with zero

velocity, behind the impact boundary layer, corresponds to

the force setting point requested by an external reference.

Now we can employ multiple Lyapunov functions, i.e.

(17), (20), for which one assumes the switching times t0 <
t1 < . . . ti so that a switching signal (z in our case) is

continuous from the right everywhere: z(ti) = limt→t+i
z(t)

for each i. For such switching sequence, following is suf-

ficient to be shown for a family of Lyapunov functions

{Vi : i ∈ mi} while Vi is decreasing on each interval

where mi mode is active. If for every mi the Vi-value at the

im
V t

t
t t t t

m

m
m

m

x

t t

t t

Fig. 3. Two Lyapunov functions for m2 and m3 modes.

end of each interval (immediately before switching) exceeds

its value at the end of next interval in which mi is active,

then the entire switched system is asymptotically stable; for

formal notation and proof we refer to cf. [7]. An alternating

Vi is schematically shown in Fig. 3 for the m2 and m3

modes. Here t1, t3 are the time instants where the hysteresis

relay is switching up, thus changing to the force control β.

Respectively, t2, t4 are those times where the hysteresis relay

is switching down, thus changing to the motion control α.

For (17) one can show that V2(t1) > V2(t3) due to

reduction of velocity x2(t1) > x2(t3) and apparently integral

control error state x0(t1) > x0(t3). Note that state values

of relative displacement and counteracting force remain the

same x1(t1) = x1(t3), x3(t1) = x3(t3) for both instants.

With the same argumentation line, one can show for (20)

that V3(t2) > V3(t4) and that due to the velocity reduction

i.e. x2(t2) > x2(t4). The above conditions allow concluding

an asymptotic stability of the switched system (13), (14),

provided the hysteresis amplitude 2Ps is sufficient to ensure

the required slow switching. That is the switching intervals

ti+1−ti are long enough for all i, so that the transient effects

disappear, upon which one can guarantee the reduction of

relative velocity and integral error of the motion control. We

notice that a qualitative measure of such intervals of slow

switching, and an associated selection of the hysteresis relay

parameters, are outside the scope of the recent work and

rather subject to our further investigations in the field.

VI. NUMERICAL EXAMPLE

Following numerical example is taken for evaluating the

autonomous switching motion-force control system designed

as above. The nonlinearity of dynamics is modeled as

f(x1, x2) = 0.2 cos(x1) + 0.5 tanh(10x2).

Note that the assumed f(·) approaches typical situation of

a mechanical manipulator, where the trigonometric function

of position state is due to the gravity, and the hyperbolic

tangent of the velocity state approximates the Coulomb

friction while smoothing discontinuity around zero crossing.

The environmental stiffness is assumed to be K = 10000.

0 0.5 1 1.5 2 2.5 3 3.5 4
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0

2.5
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x
1
, 
X

r

 

 

response

reference

Fig. 4. Reference motion trajectory Xr versus the controlled relative
displacement x1 constrained by Xs = 0 with switching to Pr = 4000.

The assigned feedback gains are k0 = 100000, k1 = 4000,

k2 = 150, and the hysteresis relay is parameterized with

γ = 1500 and Ps = 500. The impact state is assumed at

Xs = 0, that for the ease of interpretation. Furthermore, the

initial conditions are assumed to be x(t0) = [0, −5, 0, 0]T .

For evaluating the autonomous switching between the

motion and force controls, and that in both directions, a

periodic reference trajectory Xr(t) = 5 sin(0.5 t − π/2)
is applied. Simultaneously, a square-pulse sequence (of the

same period) with Pr = 4000 is assigned for the force set

point. This case, the reference force (for the β-controller)

will drop to zero each time the reference trajectory becomes

Xr < Ts. Thereupon, the switched back α-controller should



repetitively track the motion trajectory before coming again

to the impact with environment.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1000

2000

3000

4000

time (s)

x
3

Fig. 5. Controlled force x3 with Pr = 4000 setting point at impact.

The α-controlled relative displacement is shown in Fig.

4 versus the reference trajectory Xr. It can be seen that

after impact (at x1 = 0) certain penetration into environment

appears due to Pr = 4000. When passing the threshold
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−30
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x
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β −> α

α −> β

P
r
K
−1

Fig. 6. Phase portrait of periodic motion with indicated switching points
from α- to β-controller, from β- to α-controller, and force setting at Pr .

force value, the control loop is switching to β-controller

while neither transient oscillations nor signs of any temporal

instabilities can be observed. The corresponding controlled

force is shown in Fig. 5. The counteracting (environmental)

force x3 continuously increases, starting from the time in-

stants where x1 exceeds the Xs value. Note that no transient

changes in the x3 trajectory can be observed when switching

from α- to β-controller and vice versa. To complete the

picture about the system dynamics, the phase portrait in the

(x1, x2) coordinates is shown in Fig. 6. Here the half-plane

x1 > 0 corresponds to the constrained system motion upon

the impact with environment. Both switching points between

the α- and β-controllers are indicated. One can recognize

that the associated transient changes in relative velocity are

minor in both directions. The equilibrium point (PrK
−1, 0)

corresponds to the set force value of the β-controller.

VII. CONCLUSIONS

The problem of autonomous switching between the motion

and force controls has been addressed. For both asymp-

totically stable control subsystems it has been shown how

a simple yet robust hysteresis-relay-based switching strat-

egy can be efficiently incorporated. Autonomous-switching

hybrid system notation, with an associated hybrid automa-

ton, have been derived as suitable for an uniform system

description and related analysis. For analyzing stability of

the autonomous-switching motion-force control system, the

multiple Lyapunov functions approach has been used, relying

on the so-called slow switching conditions. The proposed

developments and analysis allow for further investigations

towards optimal parametrization of the switching hysteresis

relay, correspondingly time scales of the switching delay

and associated dynamic transients. Numerical example of

a second-order system with nonlinear dynamics has been

shown for motion and force control and autonomous switch-

ing between those. Application of the proposed approach to

more complex control and system dynamics are thinkable.
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