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ABSTRACT 

Genetic divergence among populations arises through natural selection or drift and is counteracted by 

connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the 

homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an 

important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with 

gene flow is not entirely understood. Here, we revisit the question whether inversions play a role in the 

divergence of connected populations of the marine fish Atlantic cod, by exploring a unique dataset combining 

whole-genome sequencing data and behavioral data obtained with acoustic telemetry. Within a confined fjord 

environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea 

population, the western Baltic population, and a local fjord-type cod. Continuous behavioral tracking over four 

years revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic 

differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously 

identified inversions, indicative for an adaptive barrier to gene flow. In addition, behavioral data indicated that 

North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. 

However, North Sea and fjord-type cod also occupy different depths, possibly contributing to prezygotic 

reproductive isolation and representing a behavioral barrier to gene flow. Our results provide the first insights into 

a complex interplay of genomic and behavioral isolating barriers in Atlantic cod and establish a new model 

system towards an understanding of the role of genomic structural variants in adaptation and diversification.  

 

Keywords: chromosomal rearrangements, gene flow, sympatric divergence, adaptation, behavioral traits, 

Atlantic cod 

 

1 INTRODUCTION 

How new species arise and adapt to their environments is a fundamental question in the field of evolutionary 

biology. Yet, our understanding of the genetic mechanisms behind speciation with gene flow is far from complete 

(Ravinet et al. 2017, Jorde et al. 2018a). Within the last decade, it has become accepted that population 
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divergence, adaptation, and speciation in the face of gene flow is no rare exception (Hey 2006; Nosil 2008), and 

advances in sequencing technology have begun to reveal the underlying genomic architecture of this complex 

process (Seehausen et al. 2014; Tigano & Friesen 2016; Wolf & Ellegren 2017; Wellenreuther & Bernatchez 

2018). Several studies recently highlighted the role of genomic structural variants such as inversions in 

adaptation and diversification (Kirkpatrick & Barton 2006; Lowry & Willis 2010; Jones et al. 2012; Fishman et al. 

2013; Lohse et al. 2015, among others). Such rearranged regions may constitute intrinsic postzygotic barriers to 

gene flow (through genetic incompatibilities), extrinsic postzygotic barriers (where hybrids suffer reduced fitness 

in the parental environment), or act through ecological adaptive barriers where sets of locally adaptive alleles are 

captured and protected against recombination, giving a selective advantage to the individuals carrying the 

rearranged regions and leading to their spread in the respective environment (Rieseberg 2001; Kirkpatrick & 

Barton 2006; Feder et al. 2012b). The presence of structural rearrangements can therefore promote early stages 

of ecological divergence, which may eventually lead to speciation (Feder et al. 2014a). Although theory predicts 

that in the face of gene flow, few large-effect alleles may similarly spread and contribute to divergence if selection 

is strong enough, adaptive alleles rather persist if architecturally linked (Yeaman &Otto 2011; Yeaman & Whitlock 

2011). Indeed, comparisons of sister species of rodents and birds revealed that sympatric sister species are 

more likely to differ by chromosomal rearrangements than allopatric ones (Castiglia 2013; Hooper & Price, 2017).  

In the marine fish Atlantic cod (Gadus morhua), four large (5 – 17 Mb) chromosomal rearrangements, each 

possessing high internal linkage disequilibrium (LD) have been detected (Berg et al. 2016; Sodeland et al. 2016; 

Kirubakaran et al. 2016), which show clinal distributions amongst the majority of populations throughout the entire 

species range in the North Atlantic Ocean, indicating a role in adaptation to local environments (Sodeland et al. 

2016; Kirubakaran et al. 2016; Berg et al. 2016; Barth et al. 2017a; Star et al. 2017; Berg et al. 2017). It is likely 

that all of these rearrangements represent old chromosomal inversions (~2 million years based on divergence 

time estimates of closely related species (Matschiner, personal communication 2015; Kirubakaran et al. 2016), 

hereafter for simplicity termed inversions), which may have evolved in allopatric refugia during Pleistocene 

glaciation cycles (Kirubakaran et al. 2016). As a marine batch spawner without any brood care, releasing 

thousands to millions of pelagic eggs to be distributed by ocean currents, Atlantic cod reside in environments that 

a priori seem to provide little boundaries to restrict connectivity amongst populations (Hutchings et al. 1999; Munk 

et al. 1999; Cowen & Sponaugle 2009; but see also Espeland et al. 2015). The inverted regions have therefore 

been associated with ecological adaptation of Atlantic cod to temperature (Bradbury et al. 2010; Therkildsen et al. 

2013), oxygen and salinity (Berg et al. 2015), coastal environments (Sodeland et al. 2016; Barth et al. 2017a), 

and with migration behavior (Hemmer-Hansen et al. 2013; Karlsen et al. 2013; Berg et al. 2016; Kirubakaran et 

al. 2016; Sinclair-Waters et al. 2018). While in some populations one or several of the inverted arrangements 

have reached near fixation, other represent strong frequency shifts relative to the ancestral arrangements, yet 
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other frequently possess both arrangements in similar numbers (Berg et al. 2016; Sodeland et al. 2016; 

Kirubakaran et al. 2016; Barth et al. 2017a; Star et al. 2017; Berg et al. 2017).  

In addition to structural rearrangements of the genome acting as postzygotic barriers to restrict gene flow 

between sympatric populations, prezygotic mechanisms including fitness advantages in the local environment, 

temporal, spatial or ecological shifts during the breeding season (causing allopatric reproduction), as well as 

behavioral differences (e.g., assortative mating), may also play a role (Coyne & Orr 2004, Jones 2006). For 

Atlantic cod, behavioral features that may contribute to prezygotic isolation such as spawning site fidelity, natal 

homing (Espeland et al. 2007; Skjæraasen et al. 2011; Bonanomi et al. 2016; Villegas-Ríos et al. 2017), and 

mate choice, as well as territorial behavior (Hutchings et al. 1999) have been described, questioning the hitherto 

outlined prominent role of ecological adaptation through the chromosomal inversions in the ecotype divergence of 

this species.    

To investigate the relative roles of different barrier mechanisms for the potential of adaptation and diversification 

in sympatric populations characterized by homogenizing gene flow, we here focus on a topographically restricted 

coastal fjord ecosystem in which the occurrence of three genetically differentiated types of Atlantic cod, a resident 

fjord-type, an oceanic North Sea-type, and a western Baltic-type have been reported (Barth et al. 2017a; Knutsen 

et al. 2018). Sympatric populations that are connected and exposed to gene flow, but exhibit distinct phenotypic 

or behavioral differences, represent well-suited systems to investigate genomic signatures of divergence since in 

these systems differentiated sites are expected to be rare and restricted to regions involved in adaptation (Coyne 

& Orr 2004). High connectivity through geographic overlap between the different cod types has previously been 

demonstrated (André et al. 2016; Barth et al. 2017a), and -despite low overall genetic differentiation- significant 

shifts in frequency of the inverted arrangements have been observed (Sodeland et al. 2016; Barth et al. 2017a). 

However, whether the adaptive properties of the inversions constitute the only barrier to gene flow, or whether 

other barriers may also play a role, is not known. For example, yet undetected additional genomic structural 

variation in the form of large-effect alleles (Yeaman &Otto 2011), or physical barriers such as seascapes and 

salinity, oxygen, or temperature gradients (Howe et al. 2010; Ciannelli et al. 2010; Rogers et al. 2014), as well as 

behavioral differences could act as additional mechanisms restricting connectivity and gene flow.  

Along the convoluted Norwegian coast, Atlantic cod show high site fidelity and restricted movement in studies 

using acoustic telemetry and longer-term mark-recapture data (Olsen and Moland 2011; Rogers et al. 2014; 

Aalvik et al. 2015; Freitas et al. 2016; Villegas-Ríos et al. 2017), limiting the potential for adult dispersal. 

However, long-distance spawning migrations have also been recorded (Skjæraasen et al. 2011; Neat et al. 

2014). Resident local behavioral units with spawning aggregations along the coast and inside the fjords, as well 

as physical retention of pelagic eggs through a fjord-inward flow (Ciannelli et al. 2010) may thus explain the 
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occurrence of different cod types and the genetic structuring documented in previous studies (Jorde et al. 2007; 

Knutsen et al. 2011). Yet, the degree to which settled juveniles stay and recruit to the local adult population is not 

known. Nevertheless, the relatively stable coexistence of early-stage eggs, larvae, and adults in spawning 

condition of at least two distinct Atlantic cod types indicate that several populations use the convoluted coastline 

for spawning, as nursery, and for long-term residence (Rogers et al. 2014; Barth et al. 2017a; Knutsen et al. 

2018; Jorde et al. 2018b).  

By using whole-genome sequencing data of more than 200 Atlantic cod specimens from one fjord and six 

adjacent locations, we here gain comprehensive insights into the genomic variation and population relationships 

of the fjord cod community. In order to clarify how these highly connected cod types maintain differentiation, we 

characterize potential barriers to gene flow in the genomic landscape. Additionally, we test whether behavioral 

differences, potentially acting as prezygotic barriers to gene flow, are present among the cod types and whether 

these are correlated with the inversion states. 

 

2 MATERIALS AND METHODS 

2.1 Sampling and bioinformatics 

A total of 204 individuals of Atlantic cod (Gadus morhua) from seven sites were sampled (Figure 1a, Table S1):  

Averøya, North Atlantic (AVE, N = 20), North Sea (LOW, N = 24; NOR, N = 24), Skagerrak Tvedestrand fjord 

(TVE, N = 70), and the western (ORE, N = 21; KIE, N = 22) and eastern Baltic Sea (BOR, N = 23). For all TVE 

individuals, both genomic and behavioral data were collected. DNA extraction, library preparation (Illumina 

Truseq DNA PCR-free kit, combinatorial dual index adapters), and sequencing (Illumina HiSeq 2500, V4 

chemistry, 2 x 125 bp paired-end) was performed at the Norwegian Sequencing Centre according to the Centre’s 

protocols (for a brief description see Barth et al. 2017b). Index-hopping (Kircher et al. 2012) should not constitute 

a problem given the sequencing strategy used. Mapping and genotype calling were performed following the 

method described by Star et al. (2017), employing the PALEOMIX v1.5 (Schubert et al. 2014) pipeline for read 

processing and mapping (BWA MEM v0.7, Li & Durbin 2009) against the GadMor2 genome (Star et al. 2011; 

Tørresen et al. 2017), and the GATK HAPLOTYPECALLER v3.4.46 (McKenna et al. 2010) for variant calling. 

Average read depth per sample was 9.84 +/-1.16 (Table S1). Filtering was performed using BCFTOOLS v1.3 (Li 

2011), VCFTOOLS v0.1.14 (Danecek et al. 2011), and PLINK v1.9 (Purcell et al. 2007) according to the following 

thresholds: FS < 60,  MQRankSum > -12.5, ReadPosRankSum > -8, QD > 2, MQ > 40, SnpGap = 10, number of 

indels = 0, number of alleles = 2, meanDP < 30, GQ > 20, DP > 3, missing data < 20%, minor allele count > 2, 

minor allele frequency (MAF) > 0.03, heterozygous excess (p < 0.001), and intrachromosomal LD (window size 
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10 kb; pairwise r
2
 threshold 0.8). Additionally, repetitive regions were excluded (Tørresen et al. 2017), leading to 

a dataset of 1,258,658 SNPs. For population genomic and phylogenetic analyses, linkage groups (LG) 01, 02, 

07, and 12 were excluded due to the presence of large inversions (Berg et al. 2016; Sodeland et al. 2016; 

Kirubakaran et al. 2016). Phylogenetic analyses were performed without MAF filtering. Because of biased call 

probability of heterozygotes at low sequencing depth (Nielsen et al. 2011), which does not affect individually 

based analyses (Figure S1) but can influence the estimates of population genetic parameters due to an overall 

higher or lower coverage per population, analyses of the genomic landscape were performed using a dataset 

where genotypes with less than seven reads (DP < 7) for a sample were set missing. 

 

2.2 Population differentiation and phylogenetic analyses 

Genome-wide population structure was inferred by performing hierarchical Principal Component Analyses (PCA) 

using smartPCA in EIGENSOFT v.6.0.1 (Patterson et al. 2006) including the function “lsqproject”, and through 

model-based clustering using ADMIXTURE v1.3 (Alexander et al. 2009). Mean standard errors for ADMIXTURE 

point estimates were calculated using 100 block-bootstrap resamplings. Three replicates, each testing for 1 to 6 

clusters (k) and 10-fold cross-validation was performed. Maximum likelihood phylogenetic inference was 

performed using RAxML v8.2.4 (Stamatakis 2014) under the GTRCAT model with ascertainment bias correction 

and 100 bootstrap replicates on a dataset including five randomly selected individuals per population. Only 

variable SNPs (781,038) were included and heterozygous SNPs were translated to ambiguity codes. The sister 

species of the Atlantic cod, the Alaska pollock (Gadus chalcogrammus; Malmstrøm et al. 2016) was used to root 

the tree. Homologous sites of G. chalcogrammus were identified through mapping against GadMor2 as described 

above and retrieving the consensus sequence using “mpileup” in SAMTOOLS v1.3 (Li 2011) setting MQ > 40. 

Five Canadian Atlantic cod individuals were included for subsequent rooting of the SNAPP phylogeny (see 

below). The species tree and population sizes were estimated using the multispecies coalescence approach in 

the add-on SNAPP v1.3.0 (Bryant et al. 2012) for BEAST2 v2.4.7 (Bouckaert et al. 2014), using the same 

individuals as for the maximum likelihood analysis (except G. chalcogrammus), but allowing no missing data. As 

SNAPP runtimes are very long on larger SNP sets, the dataset was reduced by applying a minimum distance of 

70,000 bp between SNPs, resulting in 3,307 SNPs. The script “snapp_prep.rb” (Stange et al. 2018) was used to 

prepare the input XML retaining the original settings except that theta values were not linked among branches. 

Three replicate analyses with random starting trees and a length of 1 million Markov-chain Monte Carlo (MCMC) 

steps were carried out. Convergence was assessed by effective sample size (ESS) values > 200 (Rambaut et al. 

2018) after discarding the first 5% of each chain as burnin and merging the posterior distributions. The summary 
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tree cloudogram (see Figure 1c) represents the entire tree set (28,503 trees), while for the representation of 

topology uncertainties only every 1,000
th

 tree was sampled.  

 

2.3 Genomic landscape 

To identify structural genomic barriers to gene flow, we used an equal number of 20 individuals (randomly 

downsampled) from each of the identified co-occurring North Sea (TVEn), western Baltic (KIE), and fjord-type 

(TVEf) populations (where TVEn and TVEf are the TVE specimens showing the North Sea and the fjord 

genotype, respectively, see results section 3.1; KIE was chosen as representative population for the western 

Baltic since only three western Baltic-type cod were collected in the fjord, see Figure 1b). Non-overlapping 50 

and 100 kb windowed chromosome scans to calculate the following measurements were performed using custom 

scripts: the pairwise fixation index (FST; as in Weir & Cockerham 1984), the pairwise between population 

sequence divergence (dxy; as in Ruegg et al. 2014), the proportion of fixed differences (df; see Ruegg et al. 

2014), and the nucleotide diversity (π). To detect divergent regions < 50 kb, we additionally ran BAYESCAN v2.1 

(Foll and Gaggiotti 2008) for each LG, evaluating the population pairs TVEf-TVEn, TVEf-KIE, and TVEn-KIE 

using default settings, but adjusting the prior odds for the neutral model (PO) to 1,000 due to the large number of 

SNPs. Convergence was assessed by ESS > 200 using the CODA package v0.18 (Plummer 2006) in R v3.3.3 

(R core team 2018). Genes and their associated Gene Ontology (GO) terms in diverged regions (for the inverted 

regions on LG02, 07, and 12 see Barney et al. 2017) were identified based on the GadMor2 genome annotation 

(Tørresen et al. 2017), considering all SNPs detected as outliers in the BAYESCAN analysis (log10(PO) > 1, 

False Discovery Rate (FDR) 0.05) as well as genes within 5 kb of such outlier SNPs. Enrichment tests for GO 

terms were performed for genes detected in comparisons TVEf-TVEn and TVEf-KIE, but not TVEn-KIE using 

Fisher’s exact test with the algorithm “weight01” in the TOPGO package v2.26 (Alexa & Rahnenfuhrer 2016) for 

R. All genes located in the highly differentiated region on LG16 (see results) were included in the GO-term test. 

The squared correlation between SNPs as a measure of LD (r
2
; using PLINK) was calculated using all 204 

individuals. SNPs in regions of putative inversions (LG01: positions 9,114,741-26,192,386; LG02: positions 

18,609,260-23,660,985; LG07: positions 13,622,710-23,019,113; LG12 positions: 426,531-13,445,150; see Barth 

et al. 2017a; Berg et al. 2016) were extracted, and the inversion state of all specimens was analyzed for each of 

these regions using smartPCA. Bootstrapping (Efron 1979; sample size 1,000,000) of individual genotypes was 

used to assess a possible overrepresentation of the inverted arrangement (or the ancestral arrangement, 

referring to the overall frequency among all samples) of all inverted regions, under the null hypothesis that the 

frequency of the tested arrangement within a population corresponds to its overall frequency across all 

populations. Bonferroni correction was applied in R to correct for multiple comparisons (Rice 1988). Maximum 
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likelihood phylogenetic inferences were performed using RAxML as described above, including only sequences 

of individuals homozygous for either the respective ancestral or inverted arrangement. 

 

2.4 Behavioral analyses 

A total of 70 Atlantic cod (mean body length 46 cm, range 30-75 cm) were captured and tagged in the 

Tvedestrand fjord in May 2011-2013 as described elsewhere (Olsen et al. 2012). Briefly, fish were captured using 

fyke-net fishing for 1-3 days. Fish selected for tagging were anesthetized, equipped with acoustic transmitter 

(Vemco V9P-2L, 508-660 days battery life), programmed to send the current depth and a fish identification code 

(fish ID) every 110-250 s. Transmitters recorded on average 16,402 (+5,489) locations per fish, in 2011 and 2012 

a maximal depth of 100 m (0.44 m resolution and 5 m accuracy), and in 2013 a maximum depth of 50 m (0.22 m 

resolution and 2.5 m accuracy). A fin-clip was taken and stored in ethanol for DNA analysis. Fish were released 

at their initial capture location. Previous experiments showed no mortality in the tagging process (Olsen & Moland 

2011; Olsen et al. 2012). An array of 33 underwater ultrasonic receivers (Vemco VR2W, 69kHz) were used to 

record and log transmitter signals (Villegas-Ríos et al. 2017). 

 

For each tagged fish, centers of activity (COA) were calculated in 30 min time bins following Simpfendorfer et al. 

(2002). Depth data time series and COA latitude/longitude plots were used to identify and remove all detections 

recorded after cessation of movement, i.e., death of the fish (Harrison et al. 2015). Code collisions and false 

detections were eliminated using a minimum of two detections per 24 h period. Diel vertical migration was 

estimated as the difference between average depth during the day and average depth at night, averaged over 

months (Freitas et al. 2015). Monthly home range was estimated as the kernel utilization distribution with a 

probability level of 95% using all COA from that month (fish were required to be present in the array during at 

least 20 days in any particular month). Monthly mean depth during daytime was calculated by averaging daily 

daytime mean depths. 

Individual fate was assigned based on detection patterns. Fish were classified as either: 1) alive within the study 

area (i.e., multiple detections indicated horizontal and vertical movements), 2) dispersed from the study area (i.e., 

directional movement towards the outermost receivers followed by an absence of detections for the rest of the 

study), or 3) dead within the study area (i.e., when the fish either stopped transmitting while inside the study area 

or started transmitting continuously at the same depth). 
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Linear mixed effects models were used to analyze variation in cod behavioral traits (BT). The study area (a no-

take marine reserve) holds a key spawning locality for local cod (Ciannelli et al. 2010) and we specifically 

explored whether Atlantic cod displayed contrasting behavior during the spawning season (January-April) 

compared to the feeding season (Espeland et al. 2007; Roney et al. 2018). The full linear mixed effects model, 

prior to model selection, included fixed effects of season (S), inversion state for the LG02, LG07, and LG12 

inverted regions (LG02, LG07, LG12), body size (L), and genetically determined sex (GS, Star et al. 2016). To 

explore our working hypothesis, we also included an interaction effect between season and inversion state: 

BT = c0 + c1,S + c2,LG02 + c3,LG07 + c4,LG12 + c5L + c6,GS + c7,SLG02 + c8,SLG07 + c9,SLG12 + c10,SL + 

c11,SGS 

where c0 is the intercept. Season was modeled as a factor with two levels (spawning and feeding), cod inversion 

states as factors with three levels (ancestral, heterozygous and inverted), body size as a continuous variable, and 

genetic sex as a factor with two levels (female and male).   

We included the following interaction effects: (i) between season and each of the inversions to explore whether 

any behavioral changes between feeding and spawning season depended on genotype, (ii) between season and 

body size because smaller fish might not be sexually mature and therefore not participate in spawning, and (iii) 

between season and sex since spawning behavior can differ between females and males, where males are 

known to defend territories associated with seafloor features during the spawning season (Meager et al. 2009; 

2012). Three behavioral traits were analyzed in separate models: (i) monthly home range size, (ii) monthly mean 

depth use, and (iii) monthly mean diel vertical migration. Home range size was log-transformed to stabilize the 

variance. Fish ID was included as a random effect to account for repeated (monthly) observations on fish 

behavior (among-individual variance). 

Next, we used the Lande-Arnold linear regression approach (Lande & Arnold 1983) to model fitness as relative 

longevity (days survived / mean days survived, S). Fish that dispersed permanently from the study area were 

excluded from this analysis since their fate cannot be determined. The full model included effects of inversion 

states (LG02, LG07, and LG12), body size (L), and genetic sex (GS): 

S = c0 + c1,LG02 + c2,LG07 + c3,LG12 + c4L + c5,GS 

In a final set of analyses, we replaced the inversion factor with a genotype factor where fish were defined as 

either North Sea-type (TVEn) or fjord-type (TVEf) based on genetic results (see Results section 3.1). A total of 22 

individuals could not be reliably defined as either of the two types (i.e., were classified as “intermediates”) and 

were excluded from these analyses. 
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We used the AIC criterion for model selection (Burnham and Anderson 1998). In a two-step process, we first 

decided on the most parsimonious model structure for effects of body size and sex on behavior, while 

maintaining all inversion state effects of interest. Next, we selected the most parsimonious model structure for 

inversion state effects on behavior.   

 

3 RESULTS 

3.1 Genomic variation and population relationships 

Genomic variation and relationships among all sampled specimens (Figure 1a) were explored using multivariate 

and clustering analyses, as well as phylogenetic methods. Applying PCA revealed the largest differentiation to be 

found between the eastern Baltic Sea sample (BOR) and all other samples, while the second largest variation 

was found between a combined North Sea cluster (NOR, LOW) and some of the fjord specimens (TVE) (Figure 

1b). The western Baltic samples (ORE, KIE) formed a separate, intermediately placed cluster, while the 

Norwegian coastal individuals (AVE) were recovered between the North Sea, the western Baltic, and the fjord 

(TVE) cluster. Individuals collected in the fjord (TVE) showed a split distribution, with about half of the specimens 

(N = 21) grouping with the North Sea cluster, while the remaining ones (N = 27) formed a well-defined private 

cluster (Figure 1b, fjord). Three TVE specimens were also placed within the western Baltic cluster, one within the 

Norwegian coastal cluster, and some individuals (N = 18) were distributed between the main clusters on PC2 and 

could not be clearly assigned to a particular cluster (referred to as ‘intermediate’ in 3.3, see also Table S2). 

Hierarchical exclusion of the most differentiated clusters (BOR, NOR, LOW), as well as separate analyses of the 

TVE specimens and the North Sea cluster, respectively, confirmed this overall pattern of population differentiation 

(Figure S1b-f). Using the software ADMIXTURE for maximum likelihood model-based inference of genomic 

variation, the best-supported models (lowest cross-validation error) were obtained assuming one to three 

clusters. As in the PCA results, the ADMIXTURE ancestry proportions yielded three main clusters represented by 

the eastern Baltic Sea sample, the North Sea samples, and half of the TVE sample, while the ancestry 

proportions of the western Baltic and Norwegian coastal samples appeared admixed (Figure S2a-c). 

To obtain estimates of between-population relationships, we constructed a phylogeny using the multispecies 

coalescence approach. Since the population genomic analyses above suggested the existence of distinct 

genotype units within the TVE sample, we subdivided the TVE specimens into a “fjord-type” termed TVEf, and a 

North Sea-type termed TVEn according to their position in the PCA (Figure 1c inset, Table S2). As a closely 

related outgroup, we chose five Atlantic cod specimens from the western North Atlantic (Twillingate, Canada; 

CAN), which were identified as sister population to our eastern North Atlantic samples based on a maximum 
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likelihood phylogeny rooted using the sister species of Atlantic cod, the Alaska pollock (Figure S3). The summary 

tree (Figure 1c) shows two well-supported monophyletic clades: one for the combined group of samples from the 

eastern Baltic Sea (BOR) and the western Baltic Sea (ORE, KIE), which also included the fjord-type TVE 

specimens (TVEf), and another for the North Sea populations (NOR, LOW), which included the North Sea-type 

TVE individuals (TVEn). Relative divergence times indicate that the eastern Baltic Sea population is evolutionary 

older than the TVEf and the western Baltic populations. Relative effective population sizes are larger in the North 

Sea (theta = 1.14) and western Baltic (theta = 1.43, KIE; and 1.34, ORE) than in the eastern Baltic Sea 

(theta = 0.04) and within the TVEf cod (theta = 0.52; Figure 1c). Alternative topologies indicate topological 

uncertainty due to incomplete lineage sorting or existing gene flow between the North Sea populations and the 

Baltic populations (Figure 1c). 

3.2 Barriers to gene flow in the genomic landscape  

Our population genomic analyses described the spatial and temporal co-occurrence of three genetically 

differentiated types of Atlantic cod within the Tvedestrand fjord ecosystem (TVE North-Sea type (TVEn), TVE 

fjord-type (TVEf), and TVE western Baltic-type cod). To identify genomic regions that may act as structural 

barriers to restrict gene flow between these groups, we performed genome scans testing for LD and 

differentiation. We identified three previously described large regions of strong LD and high inter-population 

divergence on LG 02, 07, and 12 (Figure 2a, see Figure S4 for all chromosomes and measurements). Besides 

these three regions, no other large regions of elevated LD accompanied by genetic divergence indicative for 

chromosomal rearrangements, were detected. However, several genome-wide distributed differentiation peaks, 

including a 117 kb region on LG16 (15,467,682-15,584,985) showing no signs of strong LD, but consistently high 

FST (> 0.6, Figure S5), indicate the existence of further smaller regions of fjord-type divergence. Fixed SNPs, 

commonly observed between diverging species, were not detected among the TVEn, TVEf, and KIE individuals. 

As regions of tightly linked loci have been proposed as promoters of divergence in sympatric populations (Feder 

et al. 2012a), SNPs within the three high LD regions were extracted and the inversion state for all regions, 

specimens, and populations, as well as their evolutionary relationships were analyzed. Applying PCA segregated 

specimens into three clusters on the first principal component axis (Figure 2b), visualizing the bi-allelic nature of 

the inversions in which homozygous individuals occurred in two groups, with heterozygous individuals located as 

intermediate, irrespective of sampling site. On the second axis, the ancestral arrangement showed relatively little 

divergence between populations (except for the eastern Baltic specimens on LG07), whereas higher divergence 

was observed between individuals carrying the inverted arrangement. Similar to the whole-genome analysis, the 

arrangements of TVE individuals clustered with either North Sea or western Baltic individuals, as well as within a 

private cluster for the inversion on LG02. A phylogenetic approach revealed that these TVE individuals form a 

monophyletic group, which was well separated from the eastern Baltic individuals (Figure 2c). All of these TVE 
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individuals belong to the fjord-type (TVEf). Similarly, TVEf individuals were mostly recovered within shared or 

neighboring clades for the ancestral and inverted arrangements of the inverted regions on LG07 and LG12. In 

contrast, TVEf individuals were recovered well dispersed among all other individuals sharing the ancestral LG02 

arrangement (Figure 2c). 

Frequency comparisons of the ancestral and inverted arrangements among populations revealed a significant 

overrepresentation of the ancestral LG02 arrangement in LOW (p < 0.001) as well as in TVEn (p < 0.01), and an 

overrepresentation of the inverted LG02 arrangement in BOR (p < 0.001) as well as in TVEf (p < 0.01) (Figure 

2d, Table S3). On LG07, the ancestral arrangement was also found to be overrepresented in LOW (p < 0.01), 

whereas the inverted arrangement on LG12 was overrepresented in NOR (p < 0.01) and AVE (p < 0.001). For 

TVEf, we also observed an overrepresentation of the inverted LG07 (p = 0.0043) and the ancestral LG12 

arrangement (p = 0.0041); however, both comparisons were not significant after correction for multiple 

comparisons. No significant yearly difference was detected within the TVE sample (Figure S6), and none of the 

inverted regions deviated from Hardy-Weinberg equilibrium (HWE) (p > 0.05; in LOW the inverted LG02 

arrangement is not present). All of the inverted regions segregated independently, and all but three of the 27 

possible combinations of homozygous ancestral, heterozygous, and homozygous inverted arrangements on the 

three LGs were present. The non-sampled combinations are: (i) homozygous for all inverted arrangements, (ii) 

homozygous for the inverted arrangement on LG02 and LG07 but heterozygous on LG12, and (iii) heterozygous 

on LG02 but homozygous for the inverted arrangement on LG07 and 12. However, due to few inverted 

arrangements, the chance of sampling all combinations within 204 individuals is small (< 0.00001, based on the 

observed frequencies at each inverted region). 

Several genome-wide distributed differentiation peaks not showing high LD were identified (Figure S4), which 

may indicate genes under positive selection among the cod types. Bayesian analyses to detect candidate loci 

under positive selection identified significant SNPs (q < 0.05) between TVEf-TVEn and TVEf-KIE, excluding 

SNPs also detected in TVEn-KIE, in 20 genes on four LGs (Table S4). The GadMor2 genome assembly includes 

14,060 predicted genes associated with GO terms (Tørresen 2017), of which 13,977 had called SNPs within a 

region of 5,000 bp up- or downstream from the genes’ coding sequence. GO enrichment analyses of the detected 

genes identified 12 significantly enriched GO terms (p < 0.05); however, none of these remained significant after 

FDR correction (Table S5). 
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3.3 Behavioral barriers to gene flow  

To investigate whether possessing the inverted arrangements, or genetically belonging to the fjord-type (TVEf) 

was correlated with behavioral differences constituting an additional prezygotic barrier to gene flow, we employed 

data from acoustically tagged specimens to calculate home range, mean depth, diel vertical migration, and 

survival. 

 

3.3.1 Home range 

A mixed effects model supported two-way interaction effects between the LG07 inversion state and season, on 

cod home range size (Table 1, Figure 3a, see Figure S7 for individual raw values). A simplified model excluding 

the LG07 inversion factor, as well as a more complex model including an effect of the LG02 inversion state had 

similar support (Table 1). Specifically, all inversion states and body sizes tended to increase their home range 

during the spawning season compared to the feeding season, while this effect was stronger for fish having the 

inverted LG07 arrangement and for larger fish (Table 2, Figure 3a). A total of 25% of the variation in home range 

was associated with fish ID (among-individual variance), while the fixed effects explained 18% of variance. 

Alternative models, where the inversion state was replaced with a factor describing genotype (TVEf vs. TVEn), 

revealed no significant effects of genotype, either as part of a two-way interaction with season or as a simple 

additive effect on home range (p > 0.50). 

 

3.3.2) Mean depth during daytime 

A mixed effects model supported two-way interaction effects of between body size and season, as well as sex 

and season on cod mean depth use during daytime (Table 1, Figure 3b). Alternative models including inversion 

state had little support (Table 1). Smaller cod tended to occupy deeper waters during the spawning season 

compared to larger cod (Table 2, Figure 3b). On average, males occupied deeper waters compared to females. 

During the spawning season, females shifted to somewhat shallower depths while this effect was the opposite for 

males (Table 2, Figure 3b). A total of 23% of the variation in mean depth use was associated with fish ID (among-

individual variance), while the fixed effects explained 9% of variance. Alternative models, where the inversion 

state was replaced with a factor describing genotype (TVEf vs. TVEn) revealed no significant interaction between 

genotype and season (p = 0.85), while there was statistical support for an additive effect of genotype where TVEf 

individuals tended to occupy deeper waters compared to the TVEn individuals (TVEf= 3.67, standard error = 1.40, 

p = 0.012, fixed effects explained 12% of the variance), accounting for effects of body size and sex (Figure 3b). 
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3.3.3.) Diel vertical migration 

As for mean depth, a mixed effects model supported two-way interaction effects between body size and season, 

as well as sex and season, on cod diel vertical migrations (Table 1, Figure 3c). Alternative models including 

inversion states had little support (Table 1). On average, smaller fish had more extensive diel vertical migrations 

compared to larger fish and maintained this movement pattern during both feeding and spawning seasons (Table 

2, Figure 3c). In contrast, larger fish only performed noticeable diel vertical migrations during the feeding season. 

On average, females displayed more extensive diel vertical migrations compared to males, especially during the 

spawning season where males showed signs of a reversed migration pattern (Table 2, Figure 3c). A total of 22% 

of the variation in diel vertical migration was associated with fish ID (among-individual variance), while 18% was 

explained by fixed effects. Alternative models where the inversion state was replaced with a factor describing 

genotype (TVEf vs. TVEn) revealed no significant effects of genotype, either as part of a two-way interaction with 

season or as a simple additive effect on diel vertical migration (p > 0.48). 

 

3.3.4) Survival 

A total of six fish permanently left the fjord for the outer coast during the four-year study period (NNorth Sea = 3, Nfjord 

= 1, Nindermediate = 2). Of those fish that did not leave (Ndead = 32, Nalive = 32), a generalized linear model supported 

effects of the LG12 inversion state and body size on cod survival, although the support for an effect of body size 

was marginal (Table 3, Figure 3d). A total of 17% of the variation in survival was explained by the selected 

model. Alternative models including an effect of the LG02 and LG07 inversion states as well as sex received little 

support (Table 3). Predicted cod survival was lower for cod having the inverted LG12 arrangement and was also 

marginally lower for smaller fish compared to larger fish (Table 4). Alternative models, where the inversion state 

was replaced with a factor describing genotype (TVEf vs. TVEn) predicted survival to be lower for the TVEn 

compared to the TVEf individuals (TVEn = -0.27, standard error = 0.11, p = 0.013, Figure 3d). A total of 15% of 

the variation in survival was explained by the selected genotype model.  

 

4 DISCUSSION 

What are the processes and mechanisms behind hampered gene flow in sympatric populations? Do inversions 

play a role in sympatric adaptation and diversification, and which other barriers may be important to reduce gene 

flow? These questions are central to the understanding of the mechanisms leading to speciation with gene flow. 
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Using a unique dataset combining genomic with behavioral data of highly connected wild Atlantic cod populations 

within a local fjord system, we here show that significant frequency shifts of chromosomal inversions among cod 

types exist, one of which was also correlated with survival within the fjord environment, suggesting the existence 

of adaptive barriers to gene flow (i.e., a fitness effect associated with the environment). However, many weakly 

differentiated loci across the genome possibly under positive selection, as well as behavioral differences of depth 

usage between North Sea and fjord types suggest that further prezygotic barriers to gene flow may also exist. 

 

Temporally stable sympatric occurrence of three genetically differentiated Atlantic cod types 

Based on whole-genome sequencing data (excluding the inversion-carrying LGs), we demonstrated that the 

Atlantic cod community in the southern Norwegian fjord of Tvedestrand consists of three co-occurring genetically 

differentiated cod types, of which two types are associated with the adjacent Atlantic cod populations in the North 

Sea and the western Baltic Sea, while the third forms a distinct unit that was only detected within the fjord (Figure 

1b). Several observations suggest that this community structure is temporally stable. First, all three types were 

sampled from two consecutive years. Moreover, our behavioral data showed that only six out of the 70 tagged 

cod permanently left the fjord during their tracking period (~18 months) within the four-year study period, 

suggesting that the different cod types do not just visit the fjord occasionally during the mobile feeding season -as 

shown for Atlantic cod populations in the North Sea area (Neat et al. 2014)- but they are instead present in the 

fjord for extended periods of time. Furthermore, stable coexistence of juvenile North Sea and fjord-type cod has 

been documented over a timescale of 14 years at several locations along the southern Norwegian coast 

(Knutsen et al. 2018). In addition, sympatric spawning is supported through the shared spawning period for North 

Sea and western Baltic cod from January to April (Hüssy 2011; Neat et al. 2014), the occurrence of North Sea, 

western Baltic, and fjord-type adult cod in spawning condition in other southern Norwegian fjords (Barth et al. 

2017a), and the simultaneous presence of young-stage cod eggs from at least North Sea and fjord-type cod in 

the fjords (Knutsen et al. 2007; Ciannelli et al. 2010, Jorde et al. 2018b). Finally, male cod will typically defend 

territories at specific sites connected to the fjord bottom during the spawning period and thus reduced diel vertical 

migration can be expected for individuals that take part in spawning (Meager et al. 2009; 2012). We detected 

reduced diel vertical migration during the spawning season for the fjord-type cod (TVEf) as well as the North Sea-

type cod (TVEn), indicating that both types are active in spawning. All these observations of previous and the 

current study indicate a stable sympatric cod community within the Tvedestrand fjord. Although we found a very 

low abundance of the western Baltic-type in the fjords, an earlier study where several southern Norwegian fjords 

and a larger number of individuals were sampled detected almost equal numbers of North Sea, western Baltic, 

and fjord-type cod (Barth et al. 2017a).  
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Two questions then arise: Which barriers limit gene flow between sympatric cod types and maintain genetic 

differentiation? How does genetic exchange between North Sea and western Baltic-type cod in the fjords with the 

respective offshore populations occur? Our phylogenetic relationships showed that the fjord (TVEf) and North 

Sea-type (TVEn) appear in two different well-supported clades, with TVEn nested among the North Sea 

populations with large topological uncertainties, underlining that these cod belong to the same genotypic unit 

(Figure 1c). The genetic similarity of TVEf and the western Baltic cod may further indicate an origin from the 

western Baltic population, which could have evolved as a response to random or non-random dispersal, driven, 

for example, by habitat matching due to similar habitats of reduced salinity (Edelaar & Bolnick 2012). These data 

support a scenario of either recent (sympatric) divergence, or of allopatric divergence and secondary contact with 

(i) insufficient time for homogenization or with (ii) reduced gene flow between fjord-type (TVEf) with North Sea 

(TVEn) and western Baltic-type cod. The latter possibly due to the presence of reproductive barriers, while 

genetic exchange among oceanic populations is maintained through, for example, the regular supply of fjords 

with larvae of offshore origin, which has already been documented to occur through oceanic drift of pelagic eggs 

and larvae (Stenseth et al. 2006; Jonsson et al. 2016; André et al. 2016; Barth et al. 2017a). However, in this last 

scenario, it is still uncertain whether the chromosomal inversions or other barriers maintain genetic separation.  

 

Frequency shifts of inversions do not fully explain differentiation of Atlantic cod types 

Chromosomal inversions can promote divergence through the suppression of recombination (Kirkpatrick & Barton 

2006), and ample investigations in several organisms such as insects (Ayala et al. 2014; Lohse et al. 2015), and 

plants (Lowry & Willis 2010; Twyford & Friedman 2015), but also fish (Jones et al. 2012; Fan & Meyer 2014; 

Kirubakaran et al. 2016) have described a central role of inversions in divergence with gene flow. This view is 

also supported by recent simulation studies (Yeaman 2013; Feder et al. 2014b). Genome scans of North Sea 

(TVEn), western Baltic (KIE), and fjord-type (TVEf) cod revealed low genomic differentiation across most of the 

genome with the exception of three previously identified inverted regions on LG02, 07, and 12 (Figure 2a, Berg et 

al. 2016; Sodeland et al. 2016; Kirubakaran et al. 2016). Thus, these three inversions are prime candidates for 

barrier mechanism that might act through either intrinsic (genome incompatibilities) or extrinsic (fitness effect 

associated with the environment) isolation.  

Genetic characterization of the inversions revealed frequency shifts of the ancestral and inverted arrangements 

between TVEf and TVEn and bi-allelic segregation, in which the ancestral arrangement shows less divergence 

among populations than the inverted arrangement (Figure 2b). Such bi-allelic segregation can be attributed to 

diversifying selection acting on the inverted arrangement, or it could indicate that the ancestral, more common 

arrangement is subject to ongoing homogenization by gene flow, while recombination in the less frequent 
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inverted arrangement is reduced. Interestingly, phylogenetic analyses revealed population-specific clustering of 

the ancestral and inverted arrangements of fjord-type cod (TVEf) on LG07 and 12, but not on LG02 (Figure 2c), 

suggesting that the inversions have independent properties, where the ancestral arrangement on LG02 

experiences more exchange among populations than the ancestral arrangement of the other two LGs. Thus, sets 

of co-adaptive alleles may be captured in one or several of the inverted regions and protected from 

recombination, creating an adaptive barrier to gene flow through the fitness advantage of individuals carrying the 

inversion in the local environment (Kirkpatrick & Barton 2006). Indeed, for eastern Baltic cod living in low salinity 

conditions, key genes important for osmoregulation have been described in and around the inversion on LG02 

(Berg et al. 2015), which could also provide adaptive value in fjord environments (Barth et al. 2017a). 

Furthermore, temperature adaptations through physiological adjustments and oxygen consumption (Grenchik et 

al. 2013) may be important properties in the fjord environment, which is characterized by stable and stratified 

temperatures and decreased oxygen concentrations in deeper layers (Saetre 2007; Halvorsen 2013). Notably, 

the inversions on LG02 and LG12 have been shown to contain genes associated with temperature and oxygen 

regulation (Bradbury et al. 2010; Therkildsen et al. 2013; Berg et al. 2015). However, GO enrichment analyses of 

genes within the inverted region on LG12 showed no significant enrichment, while in the inversion on LG02 

genes involved in DNA/chromatin structuring were found to be significantly enriched, and the inversion on LG07 

showed a significant enrichment of genes in signaling and metabolic processes (Barney et al. 2017). Adaptive 

genes residing in inversions have also been described in other species, for example the threespine stickleback 

(Jones et al. 2012) or the willow warbler (Lundberg et al. 2017). Yet, such correlations between inversions and 

the environment may also be caused by intrinsic genetic incompatibilities that merely coincide with ecological 

barriers (Bierne et al. 2011). In conflict with a hypothesized intrinsic postzygotic barrier is the fact that all possible 

27 combinations of the three inverted regions have been observed in wild Atlantic cod (data not shown). In our 

dataset, all but three of these 27 combinations occured. However, due to the low frequency of inverted 

arrangements, the chance of sampling all combinations within ~200 individuals is small. On the other hand, an 

intrinsic postzygotic barrier where problems during meiotic chromosome pairing in heterozygotes may lead to 

sterility or underdominance cannot be ruled out, but seems unlikely given that none of the inversions was found 

to be fixed within a population, all rearrangement haplotypes conform to HWE expectations, and heterozygotes 

are abundant. In addition, extrinsic postzygotic barriers where hybrids are unfit in the local environment seem 

similarly unlikely, since we did not observe decreased fitness (survival) of heterozygotes for any of the inversions. 

However, significantly reduced fitness in the fjord environment of individuals homozygous for the LG12 inversion 

(Fig. 3, Table 4) may indicate immigrant inviability (Nosil et al. 2005) and selection against North Sea migrants, 

which were also shown to have an overrepresentation of the LG12 inverted arrangement (Fig. 2d). 
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Although frequency shifts of the inverted arrangement indicates adaptive properties, and individuals homozygous 

for the LG12 inversion showed lower fitness in the fjord environment, the lack of fixed inverted arrangements 

implies that the inversions are not purely diagnostic for genotype fate. This is in contrast to the high degree of 

fixation of the LG01 inversion in Northeast Arctic cod, which has been linked to migratory behavior (Berg et al. 

2016; Kirubakaran et al. 2016). Behavioral traits, especially traits related to reproductive behavior, have 

previously also been associated with inversions in the white-throated sparrow (Tuttle et al. 2016) and the ruff 

(Küpper et al. 2016). However, in line with the lack of fixed inversions, support for a correlation between the 

inversions and the tested behavioral traits was weak and restricted to a tendency for larger home ranges during 

the spawning season in individuals having the LG07 inverted arrangement.  

The lack of such direct relation between fjord-type cod (TVEf) and the inverted arrangements suggests that 

adaptive alleles may perhaps have manifested elsewhere in the genome. In our genome scans, we did not detect 

other large regions (more than few kb) with tightly linked loci (indicating reduced recombination) that are also 

differentiated between TVEf and TVEn/KIE and thus may be protected from gene flow and have a barrier effect. 

However, it has been shown that chromosomal rearrangements are not always required to maintain a barrier to 

gene flow (Davey et al. 2017), and large-effect alleles that are persisting gene flow could as well be located within 

other genomic regions. We indeed found several smaller differentiation peaks on different LGs, suggesting that 

genomic differentiation between TVEn and TVEf is more widespread across the whole genome than what was 

previously expected due to the sympatric occurrence and connectivity (Barth 2017a). On the other hand, fixed 

alleles were not detected. The processes leading to differentiation peaks are complicated and difficult to interpret, 

and further research including cline analysis, the identification of introgression and the direction and strength of 

gene flow, identification of selection axes, and analysis of the demographic history (Noor & Bennett 2009; 

Cruickshank & Hahn 2014; Ravinet et al. 2017) will be required to fully determine their importance.  

Localization of many weakly differentiated loci across the genome could also be an indication for polygenic 

adaptation (Pritchard & Di Rienzo 2010), which would, however, be expected to be quickly broken up through 

gene flow and recombination if selection is not strong enough, leading to maladapted intermediate genotypes 

(Lenormand 2002; Yeaman &Otto 2011; Yeaman & Whitlock 2011). Nevertheless, our outlier analyses detected 

several candidate loci possibly under positive selection, mostly located within regions that have also been 

identified as differentiation peaks in the genome scans (Figure S4). No significant GO term enrichment was 

found, but predicted gene models underlying the candidate loci included various genes associated with functions 

in salinity, temperature, and oxygen adaptation: A solute carrier gene (SLCO1C1) on LG16 controlling in- and 

efflux of solutes, which may be important for egg buoyancy regulation under different salinities (Berg et al. 2015), 

an ion channel (KCNA10) on LG01, found to be up-regulated under salinity stress in blue mussels (Lockwood & 

Somero, 2011), as well as the phosphatidylethanolamine N-methyl transferase (PEMT) gene located on LG18, 
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which is involved in synthesizing phosphatidylcholine, a major component of membranes shown to occur in 

different compositions related to salinity and temperature (Farkas et al. 2001; Athamena et al. 2011). Two 

additional genes (Abhd15, PDE3A, both on LG16) that have previously been associated with temperature 

adaptation (Scott et al. 2012; Dikmen et al. 2013), were also detected. Lastly, a nitric oxide (NO) binding gene 

(THAP4) located on LG08, possibly acting as NO-dependent sensor and transcriptional regulator (Bianchetti et 

al. 2011), was identified. The conversion of nitrite to NO has been shown to occur in fish under hypoxic 

conditions (Jensen 2009), thus suggesting a function of THAP4 in adaptation to low oxygen levels. Interestingly, 

adaptation to salinity in the Atlantic herring, a marine fish with similarly high levels of connectivity as Atlantic cod, 

seems to be immensely polygenic (Lamichhaney et al. 2012) and associated with 10-200 kb haplotype blocks 

that are unlikely to be inversions, but instead predicted to have evolved through the accumulation of multiple 

causal variants maintained by selection (Martinez-Barrio et al. 2016). Similarly, in a recently diverged ecotype 

pair of resident stream and migratory lake sticklebacks that reproduce in sympatry, 19 differentiated regions 

averaging 267 kb have been suggested to facilitate adaptation (Marques et al. 2016). 

Differentiated haplotype blocks may, along with environmentally adaptive alleles, also contain alleles that are 

associated with prezygotic isolating mechanisms, such as behavioral differences, which are important for the 

reduction of gene flow when postzygotic barriers are incomplete (Kopp et al. 2018). Since different barriers can 

accumulate during the isolation process and/or act sequentially over the entire life cycle of an organism (Coyne & 

Orr 2004; Kulmuni & Westram 2017), multiple sites may manifest as polygenic traits. In addition, behavioral 

barriers do not necessarily need to be established as genomic differences, but can as well be caused by 

epigenetic modifications and the subsequent differential expression of genes (i.e., plastic responses), making 

them more difficult to detect in genome analyses (Ledon-Rettig et al. 2013; Reusch 2014). 

Behavioral differences between Atlantic cod types suggest the existence of additional barriers 

Behavioral differences that may act as barriers to gene flow include spawning habitat preferences (ecological or 

spatial isolation, i.e., allopatric reproduction), temporal isolation (e.g., differences in spawning time), as well as 

assortative mating. In Atlantic cod, spawning site fidelity (Skjæraasen et al. 2011), natal homing (Bonanomi et al. 

2016), and mate choice (Hutchings et al. 1999; Nordeide & Folstad 2000; Rudolfsen et al. 2005) have been 

described and discussed to be involved in fitness, local adaptation and population divergence.  

Our main behavioral findings showed that fjord-type (TVEf) cod utilize generally deeper habitats within the fjord 

as compared to North Sea-type (TVEn) cod (Figure 3). Differences in habitat use may lead to a minimization of 

encounters among the cod types, which could create a prezygotic barrier to gene flow during the spawning 

season through allopatric reproduction. Contrasting use of different habitat depths is also known from the recently 

diverged sympatric species pair of Pundamilia cichlids (Meier et al. 2017; 2018), while in Atlantic cod so far only 
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temporal differences in spawning ground usage among populations have been described (Hüssy 2011; Hüssy et 

al. 2016). Interestingly, tagging experiments of two Icelandic Atlantic cod ecotypes showed shared depth usage 

during the spawning season, but different depth ranges during the feeding period (Pampoulie et al. 2007). 

Furthermore, for juvenile Northeast Arctic cod and coastal cod, which are co-occurring at northern Norwegian 

spawning grounds, different settlement depths have been described (Fevolden et al. 2012). However, the degree 

to which the here detected differences contribute to reproductive isolation and represent a barrier to gene flow 

cannot be unequivocally determined due to overlap in space and habitat use. Moreover, limited spatial resolution 

of acoustic telemetry makes it difficult to locate the individuals at the scale at which reproductive events likely 

occur. Nevertheless, since cod behavior is highly variable, both within a single individual (over time) and among 

individuals (Villegas-Ríos et al. 2017), the observed differences between cod-types are likely grounded on deep 

ecological differences. Behavioral monitoring at a finer scale (e.g., using a VPS system, Freitas et al. 2016) 

during the spawning season will be needed to conclude if the behavioral differences reported in this study 

translate into actual allopatric reproduction.  

Behavioral differences between cod types during the spawning period might also be an indication for assortative 

mating where alike individuals mate with their kind, leading to reduced gene flow between different ecotypes 

(Kopp et al. 2018). Significant differences in size between North Sea-type and fjord-type cod have been found 

(Knutsen et al. 2018), generating an opportunity for size-selective assortative mating (Taggart et al. 2001; Rueger 

et al. 2016). Consistent with this, we found behavioral differences between larger and smaller individuals (Figure 

3); however, since individuals were not aged, age-specific behavior cannot be excluded. Further investigation 

through, for example, network statistics (Jacoby & Freeman 2016) is needed to identify stable interactions 

between individuals to shed more light on the role of assortative mating in maintaining ecotypes.  

Nevertheless, assortative mating is also hypothesized to increase the likelihood of producing fit offspring and has 

been observed in many animals (Jiang et al. 2013). Under captive conditions, mate choice and a resulting 

increase in fitness have also been described for Atlantic cod (Hutchings et al. 1999; Rudolfsen et al. 2005), and 

male reproductive success was shown to be dependent on the magnitude of the size difference between the 

female and the male (Bekkevold et al. 2002). In our study, fjord-type (TVEf) cod showed higher survival, 

indicative for a higher fitness within the fjord environment as compared to North Sea-type (TVEn) cod. Such 

fitness advantage could arise through natural selection as described above, or through fisheries-induced 

selection where Atlantic cod residing at lower depths are more likely to be harvested (Olsen & Moland 2011; 

Olsen et al. 2012). However, since the central part of the study area is a no-take marine reserve where no fishing 

is allowed, harvesting mortality is unlikely. In a recent paper by Jorde et al (2018b), newly spawned eggs of North 

Sea-type cod were found inside two fjords, however, with a variable pattern between the fjords. One of the fjords 

remained structured throughout the season with fjord-type cod dominating inside the fjord, while the other fjord 
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showed fluctuations in cod-type frequency, eventually leading to a dominance of fjord-type cod inside, and North 

Sea-type cod outside. This latter observation suggests that fjord-type cod possibly has a fitness advantage in 

sheltered fjord habitats, which could for example arise through adaptive advantages for oocyte growth and 

survival in warmer water layers (Bradbury et al. 2001; Kjesbu et al. 2010). The Tvedestrand fjord contains several 

deep basins divided by shallow sills and the water column consists of a surface freshwater layer and saline water 

underneath where salinity increases with depth, but oxygen decreases (Ciannelli et al. 2010; Halvorsen 2013). 

The water temperature is generally more stable and stratified in the fjord as compared to outer coastal or oceanic 

areas, with deeper layers inside the fjord being comparatively warm in winter and relatively cold in summer 

(Saetre 2007). In contrast, exposed outer-fjord areas may experience extensive mixing that causes the 

temperature in deeper water to vary more with the seasons (Saetre 2007). Cod individuals would thus experience 

less temperature variation inside the fjords, than outside. The reduced mean depth of fjord-type (TVEf) cod 

indicates residence in water layers with generally lower temperature and oxygen, which could require special 

adaptations of adults and/or eggs and larvae. In line with this assumption, our outlier analyses detected genes 

associated with adaptation to temperature and hypoxic conditions (see above). Furthermore, many of the 

detected genes were also associated with a function in osmoregulation, possibly regulating drift depth of the 

eggs, where eggs neutrally buoyant in less saline upper layers are retained within the fjord (Ciannelli et al. 2010; 

Jung et al. 2012). Alternatively, North Sea-type cod may be better adapted to a life in warmer water layers, while 

the fjord-type cod have to seek more stable layers (Freitas et al. 2016). However, adaptation to such habitat has 

also been discussed in relation to the inversions (see above), indicating that multiple barriers to gene flow may 

exist. 

 

Concluding remarks 

Isolating barriers to gene flow are best studied in differentiated populations that occur in sympatry, where such 

barriers actively prevent admixture. Here, we demonstrate extensive evidence for the temporally stable sympatric 

occurrence of genetically and behaviorally differentiated Atlantic cod types within a confined fjord environment. 

We show that these differences are likely to be maintained through a combination of structural and behavioral 

barriers to gene flow, both of which may reflect a fitness advantage in local environments. Our study thus 

emphasizes the high value of genomic analyses for conservation and fisheries management (Bernatchez et al. 

2017), while simultaneously highlighting the role of prezygotic, behavioral mechanisms in shaping community 

structures in the sea of connectivity. 
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7 DATA ACCESSIBILITY  

The filtered SNP dataset, individual behavioral data, and custom scripts for sliding window analyses are available 

from the Dryad Digital Repository: https://doi.org/10.5061/dryad.d9c48b6. Whole sequencing read data have 

been deposited on the European Nucleotide Archive (ENA) under accession number PRJEB29231. 
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9 FIGURES AND TABLES 

 

Figure 1. Genomic variation and population relationships. (a) Map of the study area with sampling sites 

depicted as colored points: AVE Averøya, LOW Lowestoft, NOR North Sea, TVE Tvedestrand, ORE Öresund, 

KIE Kiel Bight, BOR Bornholm. Colors match sampling sites in all figures. (b) PCA of genotypes excluding linkage 

groups LG01, 02, 07, and 12. Shown are the two main principal component axes (PC1, PC2); main clusters are 

identified as belonging to the North Sea, eastern Baltic Sea, western Baltic Sea, and fjord-type cod. (c) 

Phylogenetic relationships inferred using the multispecies coalescence model. Canadian individuals (CAN) were 

used to root the tree; the Tvedestrand sample was divided into North Sea-type individuals (TVEn), and fjord-type 

individuals (TVEf, see inset). Node support is shown as Bayesian posterior probabilities (PP), estimated 

population sizes are shown by point size (theta), the white line follows the maximum clade credibility summary 

tree, thin colored lines show a subsample of all inferred trees. 

 

Figure 2. Barriers to gene flow in the genomic landscape. (a) Windowed measurements of linkage 

disequilibrium (LD, genotype correlation, r
2
), pairwise population divergence (fixation index, FST), pairwise 

between population sequence divergence (dxy), and nucleotide diversity (π) for linkage groups (LG) 02, 07, and 

12. Gray boxes outline the regions of large inversions. (b) PCA of variants within the inversions. Shown are the 

two main axes (PC1, PC2); main clusters are outlined by gray circles depicting individuals homozygous for the 

ancestral arrangement (anc), heterozygous (het), or homozygous for the inverted arrangement (inv). (c) 

Maximum likelihood trees of homozygous sequences within the inversions. The gray outline indicates placement 

of fjord-type (TVEf) specimens. The gray double bar signifies discontinuation of the branch connecting ancestral 

(left) and inverted (right) arrangements. (d) Frequency of homozygous ancestral (white), homozygous inverted 

(black), and heterozygous (gray) individuals per sampling site, as well as within fjord-type (TVEf) and North Sea-

type (TVEn) fish. Colors match sampling sites in Figure 1. 

 

Figure 3. Survival and behavioral barriers to gene flow. Mean predictions (black lines) from models 

describing cod behavior (a-c) and survival (d), also showing the 95% confidence bands (gray fields) and partial 

residuals (black dots). For each model, the predictions are scaled against a reference level (zero). Survival is 

estimated as relative longevity (days survived/mean days survived). TVEf = fjord-type, TVEn = North Sea-type, F 

= female, M = male, anc = ancestral, het = heterozygous, inv = inverted. 

 

Table 1. Comparison of linear mixed models for predicting Atlantic cod behavior (home range, mean depth, and 

diel vertical migration), showing the structure and Akaike Information Criterion (AIC) of each model. Inversion 

state (LG02, LG07, and LG12), season (S), and genetically determined sex (GS) were included as factors, while 

body length (L) was included as a linear covariate. Fish ID was included as a random effect (not shown). The 

most parsimonious model selected for inference is shown in bold. 
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Home range (HR) model AIC 

HR = S´LG02 + S´LG07 + S´LG12 + S´L + S´GS 1689.3 

HR = S´LG02 + S´LG07 + S´LG12 + S´L + GS 1687.3 

HR = S´LG02 + S´LG07 + S´LG12 + S´L 1685.7 

HR = S´LG02 + S´LG07 + S´LG12 + L 1695.0 

HR = S´LG02 + S´LG07 + LG12 + S´L 1683.4 

HR = S´LG02 + S´LG07 + S´L 1679.9 

HR = S´LG02 + LG07 + S´L 1683.3 

HR = LG02 + S´LG07 + S´L 1677.8 

HR = S´LG07 + S´L 1677.0 

HR = S´L 1677.3 

 
 Mean depth (D) model AIC 

D = S´LG02 + S´LG07 + S´LG12 + S´L + S´GS 5539.4 

D = S´LG02 + S´LG07 + S´LG12 + S´L + GS 5580.1 

D = S´LG02 + S´LG07 + S´LG12 + L + S´GS 5543.3 

D = S´LG02 + S´LG07 + LG12 + S´L + S´GS 5538.1 

D = S´LG02 + S´LG07 + S´L + S´GS 5537.3 

D = S´LG02 + LG07 + S´L + S´GS 5533.6 

D = S´LG02 + S´L + S´GS 5530.3 

D = LG02 + S´L + S´GS 5528.3 

D = S´L + S´GS 5525.5 

 
 Diel vertical migration (DVM) model AIC 

DVM = S´LG02 + S´LG07 + S´LG12 + S´L + S´GS 4507.6 

DVM = S´LG02 + S´LG07 + S´LG12 + S´L + GS 4555.0 

DVM = S´LG02 + S´LG07 + S´LG12 + L + S´GS 4507.7 

DVM = S´LG02 + S´LG07 + LG12 + S´L + S´GS 4507.0 

DVM = S´LG02 + S´LG07 + S´L + S´GS 4505.9 

DVM = S´LG02 + LG07 + S´L + S´GS 4506.8 

DVM = LG02 + S´LG07 + S´L + S´GS 4506.4 

DVM = S´LG07 + S´L + S´GS 4503.3 

DVM = S´L + S´GS 4499.1 
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Table 2. Parameter estimates (Par) with standard errors (SE) for the fixed effects included in the model selected 

for inference about variation in Atlantic cod behavior. Cod having the ancestral chromosomal arrangement, the 

female sex and the feeding season were coded as zero in the model (reference levels). Het = heterozygous, inv 

= inverted.  

 

 

  

Home range model Par SE p-value 

Intercept -3.018 0.221 < 0.001 

LG07het 0.054 0.104 0.606 

LG07inv -0.368 0.238 0.125 

Body length 0.014 0.005 0.006 

Seasonspawning -0.308 0.246 0.212 

LG07het ´ Seasonspawning -0.098 0.112 0.383 

LG07inv ´ Seasonspawning 0.557 0.24 0.02 

Body length ´ Seasonspawning 0.019 0.005 < 0.001 

 
   Mean depth model Par SE p-value 

Intercept 14.759 2.073 < 0.001 

Body length 0.015 0.043 0.735 

Seasonspawning 3.694 2.343 0.115 

Sexmale 1.264 0.893 0.161 

Body length ´ Seasonspawning -0.135 0.047 0.004 

Sexmale ´ Seasonspawning 6.541 0.969 < 0.001 

 
   Diel vertical migration model Par SE p-value 

Intercept 7.18 1.125 < 0.001 

Body length -0.082 0.023 0.001 

Seasonspawning 2.55 1.287 0.048 

Sexmale -0.404 0.485 0.408 

Body length ´ Seasonspawning -0.063 0.026 0.016 

Sexmale ´ Seasonspawning -4.071 0.532 < 0.001 
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Table 3. Comparison of linear models for predicting Atlantic cod survival (S), showing the structure and Akaike 

Information Criterion (AIC) of each model. Inversion state (LG02, LG07 and LG12) and genetically determined 

sex (GS) were included as factors, while body length (L) was included as a linear covariate. The most 

parsimonious model selected for inference is shown in bold. 

 

 

 

 

 

  

Cod survival model AIC 

S = LG02 + LG07 + LG12 + L + GS 51.4 

HR = LG02 + LG07 + LG12 + L 51.9 

HR = LG02 + LG07 + LG12 52.5 

HR = LG02 + LG12 + L 47.9 

HR = LG12 + L 44.5 

HR = LG12 44.8 

HR = L 47.7 
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Table 4. Parameter estimates (Par) with standard errors (SE) from the model selected for inference about 

variation in Atlantic cod survival. Individuals having the ancestral chromosomal arrangement and the female sex 

were coded as zero in the model (reference levels). Het = heterozygous, inv = inverted. 

 

  

  

Cod survival Par SE P-value 

Intercept 0.702 0.211 0.002 

LG12het 0.070 0.087 0.421 

LG12inv -0.372 0.160 0.024 

Body length. 0.007 0.004 0.140 
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10 SUPPORTING INFORMATION  

Supporting Figures 

Figure S1 Hierarchical principal component analysis 

Figure S2 Maximum likelihood model-based ancestry clustering 

Figure S3 Maximum likelihood based phylogenetic inference 

Figure S4 Per chromosome genome scans 

Figure S5 Genome scans of LG16 

Figure S6 Yearly differences in inversion frequencies 

Figure S7 Behavioral traits and fate of individual Atlantic cod 

 

 

Supporting Tables 

Table S1 Detailed information about Atlantic cod (Gadus morhua) specimens 

Table S2 Classification of specimens 

Table S3 Absolut allele counts 

Table S4 Genes underlying SNPs detected to be under divergent selection 

Table S5 GO term enrichment  
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