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Featured Application: The presented damage identification method has potential to be applied
to a wide range of offshore structures supported by jacket foundations.

Abstract: This paper presents a damage identification method for offshore jacket platforms using
partially measured modal results and based on artificial intelligence neural networks. Damage
identification indices are first proposed combining information of six modal results and natural
frequencies. Then, finite element models are established, and damages in structural members are
assumed by reducing the structural elastic modulus. From the finite element analysis for a training
sample, both the damage identification indices and the damages are obtained, and neural networks
are trained. These trained networks are further tested and used for damage prediction of structural
members. The calculation results show that the proposed method is quite accurate. As the considered
measurement points of the jacket platform are near the waterline, the prediction errors keep below
8% when the damaged members are close to the waterline, but may rise to 16.5% when the damaged
members are located in deeper waters.

Keywords: natural frequencies; modal shapes; damage identification index; artificial neural networks;
jacket platform; finite element model

1. Introduction

It is of great importance to utilize ocean space and marine renewable energy, as land-based
resources are increasingly depleted [1]. Offshore steel jacket platforms play an important role in oil
and gas exploration, drilling operations, and transportation in ocean environments [2]. The jacket
platform is a type of bottom-fixed offshore structure with many advantages. A jacket platform is often
composed of slender tubular members, making the structure less exposed to ocean wave loads and
relatively robust in adverse environments [3]. However, some natural phenomena such as earthquakes,
wind, and currents can arise in the working environments [3–6]. A few catastrophic accidents of
offshore jacket platforms occurred in the past years. For example, in 1964, hurricane Hilda, with wave
height of 13 m and wind gusts up to 89 m/s, destroyed 13 platforms. The next year, hurricane
Betsy destroyed three platforms and damaged many others [7]. The degradation of materials due
to fatigue and corrosion may cause serious damage to the structural elements during their useful
life [8], and the damage probability increases under adverse environments. Therefore, effective damage
identification methods are desired by the industry [9], and research has been carried out in this area.
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Kenley et al. [10] presented a method of damage identification for jacket platforms using the frequency
variation approach. Rotiman et al. [11] noted that the change of modal response amplitude can reflect
the structural damage. Besides the damage identification method based on dynamic results, the damage
identification methods based on model updating are focused on by many researchers. For example,
Li et al. [12] presented a method for model updating using the cross-modal method and the Guyan
scheme method. Weber et al. [13] studied a consistent regularization of nonlinear model updating
for damage identification which can avoid unrealistic results due to inherent measurement errors.
Link et al. [14] studied the performance of the two different model updating techniques to localize and
quantify the damage. Reynders et al. [15] solved the identification problem with the OMAX approach.
Xia et al. [16] proposed a substructure approach to extract the substructure dynamic flexibility matrices
from the measured modal properties of the global structure and updated directly using the traditional
model updating method. Fang et al. [17] improved the model updating method using response
surfaces and performed damage identification. Xu et al. [18] proposed a probability-based damage
detection procedure using model updating. Simoen et al. [19] performed damage assessment using
model updating with uncertainty. Waeytens et al. [20] improved the updating method using the
Bayesian approach. Altunışık et al. [21] proposed an automated model updating method considering
multiple crack effects. Pedram et al. [22] introduced the power spectral density to model updating
of damage identification. Nozari et al. [23] studied the effects of variability in ambient vibration
measurements on model updating and performed damage identification. Lu et al. [24] proposed
a sensitivity-based finite element model updating approach to identify the local damages in the
axially functionally graded beams. Behmanesh et al. [25] proposed a process to mitigate the effects
of modeling errors during model updating. Pérez et al. [7] proposed a methodology for damage
identification using the damage submatrices method. In addition, Haeri et al. [26] presented a new
approach for structural health monitoring of offshore jacket platforms using inverse vibration technique.
Generally, damage detection is a type of inverse problem, and one needs to determine structural
parameters based on given structural responses. Because artificial neural networks (ANNs) have a
strong ability to solve inverse problems that cannot be described in terms of explicit mathematical
formulae, they have been used to solve many different kinds of problems. Mangalathu et al. did a lot
of research based on machine learning and found that ANNs can solve those problems effectively and
efficiently [27–30]. Guo et al. [31] used back-propagation network to investigate the model updating
of a suspended dome and proposed a method to increase the prediction precision of backpropagation
(BP) network. Mangalathu et al. [32] proposed a multiparameter fragility methodology, which uses an
artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes.
Wang et al. [33] constructed an ANN to improve the computational efficiency for the calculation of
structural failure. We can also apply ANNs to solving damage identification problems. Adams et al. [34]
first performed damage detection through inputting vibration test data into the back propagation (BP)
neural networks in the 1970s. Then, Tsou et al. [35] input the absolute eigenvalues of a spring proton
system into the BP neural networks and verified the validity of neural networks in solving damage
detection. Sahin [36] input frequency change and curvature mode into neural networks and identified
the damage position in a cantilever beam. Lee [37] studied sensitivity of the difference of the model
components before and after the structural damage to the model parameter errors using the BP neural
networks. Diao et al. [38] regarded the frequency square as a damage index to identify the element
damage using neural networks. Pathirage et al. [39] proposed a structural damage identification
method based on the auto encoder framework, which can support deep neural networks. Tan et al. [40]
presented a vibration-based technique using only the first vibration mode for predicting damage and
its location using ANNs. Ye et al. [41] used ANNs with a large amount of training data (damage cases)
to establish a mutuality between the quantity of training data and the accuracy of damage location.
Padil et al. [42] proposed to use nonprobabilistic ANNs to address the problem of uncertainty in
vibration damage detection. ANNs were also used in others research areas [43–46].
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Although existing damage identification methods can be applied to identify structural damage,
the primary study objectives are often onshore civil structures including bridges and architectures,
and the structural overall modal results are used as damage indices. For offshore structures that
are partially submerged, the modal results are often obtained from a limited number of sensor
measurements, and it is difficult to get the overall modal results in practice. Thus, to predict
structural damage given partial modal results in the form of sporadic sensor measurements is desirable.
To this end, this paper presents a method that can facilitate the damage identification of offshore
steel platforms.

The layout of the paper is as follows. Section 2 presents the proposed damage identification index
and the ANN method for damage identification. Section 3 introduces the general damage identification
process applicable to offshore structures. Section 4 shows the case study of a jacket platform with
damages, and performs damage identification using the proposed method. Finally, Section 5 concludes
the paper.

2. Damage Identification Approach

2.1. Damage Identification Index

Practically, structural modal results can be available from measurements or tests. Thus, modal
results are usually regarded as the structural damage indices for damage identification [47]. The equation
for modal analysis can be described as follows:(

K −ω2
i M

)
ϕi = 0 (1)

where K and M are the structural overall stiffness matrix and mass matrix, respectively. ωi and ϕi
represent the ith order structural frequency and the corresponding normal mode, respectively.

When ϕT
i times both sides of Equation (1), we can get the following expression due to the

orthogonality of mode shape:
ω2

i = ϕT
i Kϕi/ϕT

i Mϕi (2)

Suppose the difference in the structural stiffness between the intact structure and the damaged
structure is ∆K, and the corresponding structural square frequency and mode will change by ∆ω2

i and
∆ϕi, respectively. The equation can be reformulated as:(

K + ∆K − (ω2
i + ∆ω2

i

)
M)(ϕi + ∆ϕi) = 0 (3)

According to Equation (3), the structural damage ∆K will result in a change in the structural
square frequencies and normal modes. Thus, both the frequencies and the modes can be considered in
damage indices.

Ignore the higher order quantity, and Equation (3) can be simplified as:

∆ω2
i = ϕT

i ∆Kϕi/ϕT
i Mϕi (4)

The square frequency of the damaged structure and the intact structure are defined as ω2
d and

ω2
u, respectively. The relative difference of the square frequency between the intact structure and the

damaged structure can be described as follows:

RSFi =
ω2

ui −ω2
di

ω2
ui

=
∆ω2

i
ω2

ui
≈
ϕT

i ∆Kϕi

ϕT
i Kϕi

(5)

where RSFi is the relative difference of the ith order square frequency between the intact and the
damaged structures; it is almost proportional to the difference in the structural stiffness between
the intact and damaged structures. Thus, it will be regarded as a damage index in the following.
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In addition, according to Equation (3), we know that structural damage will result in modal changes.
So the modal differences between the intact and damaged structures can also be utilized in damage
indices. The modal difference can be calculated as follows:

∆ϕi = ϕdi −ϕui (6)

whereϕdi andϕui are the ith order modes for the damaged structure and the intact structure, respectively.
It is easier to identify structural damage in high-order modes than in low-order modes [48], but in

practice, it is often difficult to obtain high-order modal results precisely, and measurement errors may
lead to large output errors after calculation. Thus, this study assumes that the lowest six orders of
the modal results in the x-, y-, and z-directions are available for more convincing calculation results.
For marine structures, sensors can be placed at specified nodal locations below the waterline and
provide measurements. These measurements are incomplete and can only provide part of the modal
results which are called partial modal results in the following. The partial modal results are still
difficult to handle directly because of the large quantity of data. If α sensors are distributed at α
nodal positions of the submerged marine structure, and each sensor can collect β orders of the modal
results in three directions, then there are α× β× 3 damage indices which are too heavy for damage
identification purposes. To reduce the total number of damage indices and to simplify the form of the
artificial neural network, this study suggests using the sum of the first β modal results in the x-, y-,
and z-directions at each measurement point as one single damage index as follows:

∆∅i =
β

∑
j=1

∆ϕxj
i +

β

∑
j=1

∆ϕyj
i +

β

∑
j=1

∆ϕzj
i (7)

where ∆ϕxj
i , ∆ϕyj

i , and ∆ϕzj
i are the ith order modes for the ith measurement point in the x-, y-,

and z-directions, respectively.

2.2. Damage Identification Method

ANNs have an excellent ability to learn and describe highly nonlinear and strongly coupled
relationships between multiple-input and multiple-output parameters [49,50]. The basic structure of a
neuron is shown in Figure 1.
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Figure 1. Schematic of the basic structure of a neuron. Figure 1 is reproduced from reference [50].

In Figure 1,xn is the nth input signal, wnj is the connection weight, bj is the threshold value of the
ith neuron, and yj is the output signal of the ith neuron. The neuron output signal yj is calculated by
the activation function, as follows:

yj = f (
n

∑
i=1

(wijxi)− bj) (8)

For a damage identification process, the input signals can be damage indices, and the output
signals can be damages in structural elements. In this study, we set the damages as the difference of
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the elastic modulus between the damaged and intact structural elements. The output signal can be
described as follows:

∆Ei = Edi/Eui (9)

where Edi and Eui are the elastic modulus of the ith damaged element and intact element, respectively.
We consider a popular activation function f for BP networks, the sigmoidal function, in this work:

f (x) =
1

1 + e−cx (10)

Here, c is selected as 1.
The BP neural network is a multilayer feed-forward network, whose basic structural network

scheme is shown in Figure 2.
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Figure 2. Structure of the BP (backpropagation) network.

The number of input and output neurons (n, m) and the hidden layer (k) are first determined
based on the engineering problem of interest. In our case, the total number of damaged elements and
the total number of damage indices are known. The total number of units in the ith hidden layer (hi) is
determined by the following function:

hi = n − 1 (11)

Then, the connection weights (wij) and thresholds (bj) are initialized to values between −1 and
+1 randomly.

Training networks is a process of repeatedly updating the wij and bj based on the difference
between the network outputs and the desired outputs until the output error is within a certain range.

The most interesting characteristic of ANNs is the capability to familiarize themselves with
problems by training and, after sufficient training, to be able to solve unknown problems of the same
class. Thus, we can utilize the trained network to identify the structural damage according to the
measurement results.

3. Damage Identification Process

A general damage identification procedure is proposed in this paper. As shown in Figure 3,
the procedure includes four main steps including finite element modeling, production of training
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samples, training of neuron networks, and prediction of structural damage. In the first step, detailed
finite element models of offshore structures should be established for individual projects. The sample
number and the prediction precision ε also need to be specified in this step. In the second step, the
training samples are produced using the updated damaged model. As mentioned in Sections 2.1
and 2.2, the difference of the elastic modulus between intact and damaged elements may be used
as a damage indicator (∆E), and the relative difference of the square frequency (RSF) and the modal
difference (∆Ø) can be used as damage indices. To reduce the total number of damage indices, this
paper proposes to use the combined damage index ([RSF, ∆Ø]) and the damage values of elements
(∆E) as the training data for the BP networks. The training data are obtained from modal analysis of
the finite element model. In the third step, neural networks are established using the training data,
and then the networks are trained using the training samples. Note that the trained BP networks
must be validated using a test sample. Steps 2 and 3 involve iterations. If the prediction precision is
less than the given value ε, the process will switch to the second step to enlarge the training sample
numbers ŝ. In the fourth step, prediction of damage is performed using the modal values from
sensor measurements.

Appl. Sci. 2018, 8, x 6 of 15 

paper proposes to use the combined damage index ([RSF, ΔØ]) and the damage values of elements 

(ΔE) as the training data for the BP networks. The training data are obtained from modal analysis of 

the finite element model. In the third step, neural networks are established using the training data, 

and then the networks are trained using the training samples. Note that the trained BP networks must 

be validated using a test sample. Steps 2 and 3 involve iterations. If the prediction precision is less 

than the given value ε, the process will switch to the second step to enlarge the training sample 

numbers �.̂ In the fourth step, prediction of damage is performed using the modal values from sensor 

measurements. 

           

Update the model with damaged element (ΔE)

Get damaged index (RSF, Δ ɸ) according to eqs.(5,7)

Build numerical model and specify sample size 

Establish the BP neural network

Train the BP neural network

S=S+1

Predicate  damage using test sample

MSE < ɛ 

Output element damage ΔE according to measured values

No~    ~ 
S = S + 1000

No

2:Produce training samples

S (Sample number)=1

Modal analysis

          ~                     
S > S (sample size)

Yes

3:Train Yes

1:Finite element model

4:Prediction 

Select the probable damaged element in strucutre

 

Figure 3. Analysis flowchart; (MSE: Mean Squared Error). 

  

Figure 3. Analysis flowchart; (MSE: Mean Squared Error).



Appl. Sci. 2018, 8, 2173 7 of 15

4. Case Study: Damage Identification of a Jacket Platform

4.1. Finite Element Modeling

The paper selects a representative jacket platform as shown in Figure 4. The jacket structure is
composed of four main tubes connected by horizontal and diagonal members. There are two platforms
upon the mean water level, and their sizes are both 30 × 20 m in plane view. The vertical dimension
between the waterline and the top deck is 15 m. The overall height of the structure is 65 m. Detailed
dimensions are shown in Figure 4. During the finite element calculations, the ANSYS software was
used. Deck beams are square steel tubes, and all the other members of the platform are circular steel
tubes. The section parameters and finite element types of the structural members are listed in Table 1.
During the damage identification, 12 sensors are used to measure the local structural deformation.
The sensors are located at important nodal positions close to the water surface; see Figure 4.
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Table 1. Parameters of the structural model.

Element
No. Element Name Elastic

Modulus (Pa)
Poisson’s

Ratio
Density
(kg/m3) Section Type Dimension

(mm)

Finite
Element

Type

E1 Dominant tube above the soil 2.1 × 10−11 0.3 7850 Circular steel tube Φ1200 × 50 PIPE59
E2 Dominant Tube beneath the soil 2.1 × 10−11 0.3 7850 Φ1200 × 50 PIPE20
E3 Main pipe on deck section 2.1 × 10−11 0.3 7850 Φ780 × 38 PIPE59
E4 Horizontal support 2.1 × 10−11 0.3 7850 Φ780 × 38 PIPE59
E5 Diagonal brace 2.1 × 10−11 0.3 7850 Φ508 × 25.5 PIPE59
E6 Deck beam 2.1 × 10−11 0.3 7850 Square steel Φ400 × 400 BEAM4

4.2. Damage Scenario

Supposing that the mass of the structural components is unchanged, damage of the components
is simulated by reducing their elastic modulus. The damage value for each damage component is a
random value between 0.0% and 50.0% (i.e., Edi/Eui = 0.5~1 as shown in Equation (9)).

Four main tubes support the entire platform structure. These main tubes are the most important
components for a jacket structure. The main pipes near the mean water level are vulnerable to damage
because they always suffer serious corrosion together with complex external loading. Therefore,
this paper selects eight members of the platform near the sea level as the damage components which
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are named as E1,2, E2,3, E7,8, E13,14, E19,20, E8,9, E14,15, E20,21. Here, Ei,j refers to the component
between the ith node and the jth node. In this paper, the finite element code ANSYS is used to analyze
the structural natural frequencies and modal shapes. Generally, for marine structures, the effect of the
hydrodynamic added mass on the natural frequencies of the global mode shapes is limited, especially
for the lowest modal shapes [51]. Since the focus of this paper is on a new approach for damage
identification, we do not consider the effect of hydrodynamic added mass in the analysis for simplicity.
During calculation, 12 nodes corresponding to the sensor locations are selected as the test points.
As shown in Figure 4, the test nodes are No. 1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21. After calculation, the
first 6 natural frequencies and the corresponding displacement modal values at the 12 nodes in the x-,
y-, and z-directions are determined for the damaged structure. Then, the frequency indices (i = 1~6)
and the modal indices (l = 1~12) are combined according to Equations (5) and (6), and 20,000 sets of
training sample data are obtained. Selected sample data are shown in Table 2.

Table 2. Selected training sample data.

Sample No. Input Data (RSF and ∆Ø) and Output Data (∆E)

1
RSF = [0.02660, 0.02784, 0.00787, 0.0314, 0.03357, 0.00413]

∆Ø = [−2.1006, −2.5961, −2.7346, −0.1784, −0.9464, −1.4298, −2.9443, −3.3809, −3.4088, −1.0199, −1.7558, −2.0844]
∆E = [0.7266, 0.9215, 0.659, 0.8071, 0.8876, 0.8537, 0.5484, 0.7897]

. . . . . . . . . . . .

10,000
RSF = [0.03650, 0.02784, 0.00598, 0.02147, 0.02812, 0.00375]

∆Ø = [0.014, 0.0355, −0.0049, 1.2194, 1.0664, 0.8378, −1.2095, −1.0162, −0.8293, 0.0041, 0.0189, 0.0062]
∆E = [0.8992, 0.5597, 0.718, 0.6769, 0.9547, 0.8496, 0.9812, 0.7855]

. . . . . . . . . . . .

20,000
RSF = [0.06095, 0.02130, 0.01048, 0.04082, 0.04540, 0.00605]

∆Ø = [0.0062, 0.0168, −0.0519, 1.258, 1.107, 0.8558, −1.2725, −1.0879, −0.9145, −0.0132, 0.0158, −0.0181]
∆E = [0.5501, 0.5125, 0.8262, 0.8889, 0.7276, 0.9428, 0.5593, 0.7297]

4.3. Damage Identification Using Different Training Samples

The structure of the BP neural network is constructed in the form of 18 × 17 × 8 according to
Equation (11), and the training samples are used to train the network. The Levenberg–Marquardt
algorithm is selected as the training function. The maximum number of training is 500 times and the
training accuracy is set as 1 × 10−4. The minimum gradient is 1 × 10−20. The learning rate is 0.01 and
the momentum factor is 0.9.

To study the influence of the training sample size on the accuracy of prediction, this paper selects
random training samples from the 20,000 groups of sample data. The training sample size is increased
from 1000 to 20,000 at an interval of 1000, and 20 groups of training samples are used to train the
networks. In this work, four groups of test samples listed in Table 3 are generated randomly using the
trained networks. The accuracy of the predicted value is analyzed using the mean squared errors (MSE)
which calculates the summed errors between the predicted and original values of the test sample. If N
data are divided into r groups, and the sample variance of group i is s2

i , then the formula of MSE can
be written as follows:

MSE =
∑r

i=1(ni − 1)s2
i

N − r
(12)

where MSE is the sum of the squared errors, and (N − r) is the degrees of freedom.

Table 3. Test samples.

Test Sample
Member Unit and Corresponding Elastic Modulus

E1,2 E2,3 E7,8 E8,9 E13,14 E14,15 E19,20 E20,21

D1 0.9236 0.7286 0.694 0.8462 0.7688 0.809 0.9239 0.5017
D2 0.7345 0.6601 0.8964 0.7911 0.8476 0.535 0.6736 0.5562
D3 0.7649 0.9947 0.8158 0.5754 0.886 0.7773 0.7388 0.9021
D4 0.9182 0.5591 0.8795 0.8568 0.7954 0.5317 0.6839 0.511
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Figure 5 shows the variation of the MSE with the sample size of the training data. As shown, MSE
changes between 0.0005 and 0.0015. Generally, the prediction error tends to decrease with the increase
of the sample size, and the prediction accuracy gets quite stable when the sample size reaches 17,000.
From this sensitivity study, it is revealed that a sample number of 7000 yields minimum error, and the
corresponding MSE value is 0.000542.
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4.4. Effect of Damage Identification for Damaged Elements at Different Locations

Figure 3 shows that most structural components of the jacket platform are located below the sea
level. Practically speaking, it is more demanding to install underwater sensors at deeper locations.
Assuming that the 12 sensor positions are kept fixed, we can study the accuracy of the damage
identification method considering different locations of the damaged components. One can intuitively
expect that the prediction accuracy would be better when the damaged components are closer to the
sensor positions.

In reality, damage can occur to any structural components randomly. However, the components
near the water level are relatively more vulnerable to damage because of higher exposure to corrosion
and wave impact. Still, for the sake of simplicity, we divide the whole underwater structure into four
areas from top to bottom: A, B, C, and D. In each area, eight elements are assumed to be damaged,
and the corresponding element numbers are summarized in Table 4. Note that existing sensors are all
located in area A. It is interesting to test the prediction accuracy when damaged elements are located
in areas B, C, and D.

Table 4. Divided areas and the corresponding damaged elements.

Area No.
Element No.

1 2 3 4 5 6 7 8

A E1,2 E2,3 E7,8 E8,9 E13,14 E14,15 E19,20 E20,21
B E2,3 E3,4 E8,9 E9,10 E14,15 E15,16 E20,21 E21,22
C E3,4 E4,5 E9,10 E10,11 E15,16 E16,17 E21,22 E22,23
D E4,5 E5,6 E10,11 E11,12 E16,17 E17,18 E22,23 E23,24

We use the damaged values listed in Table 2 for the damaged elements in the four areas and use
the training sample size of 7000, which has minimum MSE. Then we employ the proposed damage
identification method to predict the structural damage for each assumed group of damaged elements.
To compare the prediction accuracy, test samples with the same damaged values as those in Table 3 are
considered. For each test sample D1, D2, D3, and D4 and for each damaged element in the assumed
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damaged area, the relative error is calculated as the percentage difference between the predicted
damage by the BP networks and the actual damage. The relative error is deemed an important
indicator of the prediction accuracy.

Figure 6 shows the variation of the prediction errors of the damage identification method when
the damaged areas vary. In general, the trained BP neural networks can effectively identify the damage
of components using the combination indices proposed. As expected, the prediction accuracy of the
damage identification scheme reduces with the increase of distance between the damaged components
and the measurement points. When the damaged components are located in area A and overlapping
with the measurement points, the identification accuracy is high, with an MSE of 0.0005891 and a
relative error of less than 8% among the test samples. When the damaged components are located
in area D and far away from the measurement points, the damage identification accuracy reduces,
with an MSE of 0.00162 and a relative error of less than 13% among the test samples. Note that the
largest relative error of 16.85% is observed for element E4,5 in sample No.4 when damage is located
in area C. Still, this level of relative error can be beneficial to the decision-making of maintenance
activities, because the sensor positions are close to the water line and easy to handle. The damage
level varies across the four test samples, and for one structural member, there exists certain variability
in the prediction. For example, for element E17,18 in area D, the relative error remains below 5% for
sample No. 1 to 3, but exceeds 10% for sample No. 4. Such a variability indicates further room for
improvement of the damage identification method.

To demonstrate the effectiveness of the proposed combination damage index (Equation (7)),

this paper compares the prediction accuracy of the combination
6
∑

j=1
∆ϕxj

i +
6
∑

j=1
∆ϕyj

i +
6
∑

j=1
∆ϕzj

i against

three other classical damage indices (
6
∑

j=1
∆ϕxj

i ,
6
∑

j=1
∆ϕyj

i ,
6
∑

j=1
∆ϕzj

i).

Selected results for Area A are presented in Figure 7. As indicated, the prediction errors are
generally minimum using the combination indices proposed, with the maximum prediction error of 7%
and the average error of 2.83%. When the damage indices are just measurement points in the x-direction

(
6
∑

j=1
∆ϕxj

i ), the damage identification accuracy reduces and the maximum identification error is close

to 9% among the test samples and the average prediction error is close to 3.2%. When the damage

indices are just measurement points in the y-direction (
6
∑

j=1
∆ϕyj

i), the damage identification accuracy

has an MSE of 0.0016 and a maximal relative error of more than 17% among the test samples. When the

damage indices are just measurement points in the z-direction (
6
∑

j=1
∆ϕzj

i), the damage identification

has an MSE of 0.001 and a maximum relative error of more than 9% among the test samples. Thus,
it is a good choice to use the sum of the first β modal results in the x-, y-, and z-directions at each
measurement point as one single damage index during the damage identification process.
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5. Conclusion

In this paper, a damage identification procedure applicable to offshore jacket platforms is
presented. The following conclusions are drawn:

(1) A neural-network-based method for quantitative identification of structural damage is proposed.
Through the case study of an offshore jacket platform, it is proven that this method can effectively
identify the structural damages of different components.

(2) New damage indices are proposed combining the squared frequency and the sum of the first β
partial modal results. These new damage indices use the lowest six modal results of the structure
as inputs, and such combination indices can reduce the difficulty of handling large quantities of
measurement data typical of engineering structures.
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(3) The size of training samples is important during training of the artificial neural networks, and the
sample size should be increased until the prediction accuracy is satisfactory. Generally, the mean
squared error of the test samples tends to decrease with the increase of the training sample size.

(4) When the damaged components are located in an area close to the measurement points and
sensor positions, the accuracy of the damage identification method is high. When the damaged
components are farther away from the measurement points, the identification prediction error
tends to increase and may exceed 16%. Four test samples with different damages are considered,
and there are certain variabilities in the prediction.

6. Future Work

In this paper, it is assumed that there are eight damage elements in the structure. When the
number of damaged components is increased, finding an accurate identification method and sensitive
diagnostic indicators can be interesting research areas. Redistribution of the measurement points,
increase of the order of the modal results, design of new damage identification indices, and improved
structure of the neural networks may lead to better performance of the proposed damage identification
method. In future, either approach can be pursued further, and trials and errors should be involved.
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