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Abstract 
The upgrading of building infrastructure to modern standards represents a key tool for reducing 

global energy demand and emissions from buildings. In Norway, building upgrades have been 

prioritized despite the relatively low carbon intensity of the Norwegian energy mix through various 

incentive programs and continual improvement in building standards. Prioritizing upgrades is 

important as up to 90% of the existing Norwegian building stock is expected to remain standing by 

the year 2050. The overall impact of upgrading buildings is expected to be a net benefit to the 

environment but this is primarily in operation, and many studies on energy do not include the 

materials and resources required for upgrading. The ambitious building upgrade in the Stjernehus 

apartment block in Kristiansand, Norway represented an opportunity to analyse the emissions and 

cumulative energy demand of renovation strategies in a real-world case study. The Stjernehus 

apartment block, once declared the coldest apartment block in Norway, was renovated from 1960s 

standards to nearly passive house standard, leading to considerable improvements in operational 

energy demand. The renovation was evaluated in this study with respect to energy demand and 

overall lifetime environmental emissions using life cycle analysis over a 30-year period, and with 

three different scenarios for the energy supply. The results of this study show that despite the low 

carbon intensity of the Norwegian energy mix, there was a considerable environmental benefit to 

renovation. It is recommended that renovation of existing buildings continue as part of a successful 

climate mitigation strategy in Norway. 

Keywords: Life cycle assessment, apartment building, low-carbon buildings, building energy 

efficiency, renovation, upgrading 

1.1 Introduction 
On 22 April 2016, more than 174 countries and the European Union (EU) signed the Paris Agreement, 

which was the major outcome of the December 2015 United Nations Climate Change Conference 

(COP21). The agreement entered into effect on 4 November 2016, 30 days after it had exceeded the 

thresholds of being ratified by more than 55 countries and including more than 55 % of global 

greenhouse gas emissions. Living up to the expectations of the agreement is a challenging task that 

requires commitment globally and from all industrial sectors. 

The environmental impact of the building sector is significant, both in a Norwegian and a global 

context. Globally, the building sector consumes 40 % of energy produced, 40 % of materials and 25 % 

of water (UNEP-SBCI 2016) which must all be reduced to meet sustainability targets. European 
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efforts to address this sector includes the European Energy Performance of Buildings Directive 

(EPBD) (EU 2010) and the European Energy Efficiency Directive (EED) (EU 2012). The EPBD 

requirement is that all new buildings shall be nearly zero-energy buildings (nZEB) after 2020 and 

increased renovation to nZEB level for buildings undergoing upgrading (termed major refurbishment 

in the EPBD). 

The expectation is that 80-90 % of today's buildings will still be in use in 2050 (Analyse & Strategy and 

Multiconsult 2011; Prognosesenteret AS 2012; Skaar, Elvebakk et al. 2017), thus it is evident that 

upgrading will play an important role in reducing the total environmental impact of the building 

sector. This requires an ambitious strategy for the upgrading of existing buildings. In Norway, the 

dominant building types are single dwellings and apartment buildings,  which account for 49 % and 

23 % of the 2.4 million dwellings in Norway respectively (SSB 2015).  Figure 1 shows that the majority 

of the apartment buildings were constructed before 1980 (Sandberg, Sartori et al. 2017). Knowing 

that the majority of these have not been upgraded (Prognosesenteret AS 2012), there is a large influx 

of apartment buildings with renovation needs expected in the years to come. 

  
Figure 1. Evolution of Norwegian dwelling stock from 
1960 to 2050 from Sandberg et al. (2017) 
[reprinted with permission from Elsevier, doi: 
10.1016/j.enbuild.2017.04.016, license: 
https://creativecommons.org/licenses/by-nc-nd/4.0/] 

Figure 2. Average energy use for Norwegian buildings, 
modified from Figure 12 in 473.003 in Byggforskserien (2016) 

 

The average energy use (kWh/m2 per year) of Norwegian dwellings has been estimated to be around 

200 kWh/m2 per year. Upgrading a dwelling in an apartment building from an average energy use to 

today's standard – using Norwegian building code TEK17 (KMD 2017) – will more than halve the 

energy use, as shown in Figure 2. Additional improvements to attain passive house (Standard Norge 

2013), nZEB (EU 2010), or even plus house or powerhouse standard (Powerhouse 2016) will further 

reduce the energy demand of a building. 

Recent efforts  to upgrade older buildings have been to increase quality and decrease energy use 

(Kjølle, Denizou et al. 2013). The potential for reducing national GHG emissions by upgrading old 

buildings is great with up to a 20% reduction in total energy use possible in Norway (Thunes 2016).  

The highest potential for energy reduction through renovation lies in apartment buildings and single-

family homes (Prognosesenteret AS 2012). With a life cycle perspective, the benefits of upgrading or 

providing improved maintenance are several, as long as basic construction work is done according to 

modern building standards. 

The life cycle environmental impacts of buildings can be evaluated using life cycle assessment (LCA) 

techniques. LCA is useful as a tool for environmental comparison between alternative systems which 

can help to aid decision making. Various studies have focused on materials used (Stephan, Crawford 

et al. 2012; Dodoo and Gustavsson 2013; Kildsgaard, Jarnehammar et al. 2013; Azari 2014; Bansal, 
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Singh et al. 2014), energy demand in operation (Cellura, Guarino et al. 2014; Sandberg, Sartori et al. 

2017), or a combination of these criteria over the lifetime of a building (Dahlstrom, Sornes et al. 

2012; Brattebø, O'Born et al. 2016; Moschetti and Brattebø 2016). Most studies, however, have 

focused on new construction and not renovation of existing buildings. The few studies that have 

focused on renovation have found that there is a positive lifetime environmental benefit from 

renovating an existing building instead of constructing a new one (Juan, Gao et al. 2010; Cellura, Di 

Gangi et al. 2013; Cetiner and Edis 2014; Tettey, Dodoo et al. 2014; Brattebø, O'Born et al. 2016; 

Vilches, Garcia-Martinez et al. 2017). The extent to which this is true in the Norwegian context is of 

interest, especially given the low carbon emissions energy profile of the country and need for 

infrastructure improvement in the coming years (Prognosesenteret AS 2012). 

The goal of this study is to analyse the environmental impact of an ambitious upgrading of an 

apartment building in order evaluate the environmental impact and to identify key parameters for 

the environmental performance. The results of this study show the main life cycle environmental 

impacts from a renovation of an apartment building located in southern Norway. Additional goals of 

the study were to determine how different energy sources for heating the building impact results 

and how these analyses can provide decision making support for planners and designers for future 

building upgrades. 

1.2 Methods 
Life Cycle Assessment (LCA) is used to provide objective and science based information on the 

environmental impact of a system providing a specified function (e.g. a product or a service) (Curran 

2008; Skaar and Fet 2012). Here the system of interest is the apartment building, providing the 

function of housing. There are four stages in an LCA: 1) goal and scope definition, 2) inventory 

analysis, 3) impact assessment, and 4) interpretation. These four stages describe the LCA process in 

general, but multiple iterations between the stages are typically required. 

The first stage defines the goal and scope of the LCA, which includes identifying the purpose for 

conducting the study and to whom the results will be communicated (ISO 2006). This helps define 

the scope of the study, identify the function, determine the functional unit, select impact categories 

and define system boundaries. 

In the second stage the life cycle inventory (LCI) is created. This is a quantification of the energy and 

material flows of the system, related to the functional unit. The data gathering in this case has been 

based on combining data from previous studies of Stjernehus (Husbanken 2013; Holen 2014) with 

specific data gathered from the entrepreneur (Wrålsen 2016). The project manager of the renovation 

of Stjernehus provided lists of procurements, locations of the suppliers and documentation on the 

transportation of the materials to the construction site. Energy characteristics have been gathered 

from (Hasenmüller 2017) and the energy mix for the district heating in Kristiansand has been based 

on public data from Norsk Fjernvarme (Norsk Fjernvarme 2018). These data have been the basis for 

the case study described in Section 1.4. The system boundaries of the life cycle inventory are 

modelled in accordance with European standards for assessing sustainability of construction works 

(CEN 2011) and construction works (CEN 2013). 

The third stage is the life cycle impact assessment (LCIA), where the environmental impact of the 

system is quantified and assessed. The purpose is to identify significant impact categories and 

determine the sources of the contributing emissions.  
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The fourth stage is interpretation of the results. As LCA is an iterative process, interpretation is done 

at every stage. The results may lead to revision of earlier stages of the LCA. This purpose of this stage 

is also to provide information on conclusions, limitations and recommendations of the study. 

To perform the analysis we have used SimaPro version 8.3 (PRé 2018) and ecoinvent 3.1 (ecoinvent 

2018) as the background database, with system model allocation default (APOS). Data for the 

renovation activities in the foreground system have been collected specifically for Stjernehus. The 

impact assessment has been performed with LCIA method ReCiPe (Huijbregts, Steinmann et al. 

2016). 

1.3 Case study 

1.3.1 Functional unit, system and system boundaries 
The functional unit in the case study is the upgrading of one apartment building built in 1965 to a low 

energy class 1 in energy use. The total useable floor area (UFA) in the building 3750 m2 of with a time 

perspective over 30 years. The location and details of the apartment building in the case study are 

described below. Processes that are included in the system are processes related to the upgrading of 

the apartment building, the energy consumption in the use phase, and the end-of-life of the 

materials that enter the system during the upgrading (e.g. the new windows and doors, insulation, 

etc.). 

Table 1. System boundaries according to EN15804 and EN15978. 

System boundaries (X=modules included in the study) according to EN15804 and EN15978 

A1–A3 

Product stage 

A4–A5 

Construction 

stage 

B1–B7 

Use stage 

C1–C4 

End-of-life 

D1–D4 

Benefits and loads beyond 

the system boundary 

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 D1 D2 D3 D4 

R
a

w
 m

a
te

ri
a

l 
e
x

tr
a
c
ti

o
n

  

T
ra

n
sp

o
r
t 

M
a

n
u

fa
c
tu

r
in

g
  

T
ra

n
sp

o
r
t 

C
o

n
st

r
u

c
ti

o
n

 a
n

d
 i

n
st

a
ll

a
ti

o
n

 p
ro

ce
ss

 

U
se

  

M
a

in
te

n
a

n
ce

  

R
e
p

a
ir

 

R
e
p

la
c
em

e
n

t 

R
e
fu

r
b

is
h

m
e
n

t 
 

O
p

e
ra

ti
o

n
a
l 

e
n

e
rg

y
 u

se
 

O
p

e
ra

ti
o

n
a
l 

w
a

te
r
 u

se
 

D
e
m

o
li

ti
o

n
 

T
ra

n
sp

o
r
t 

W
a

st
e 

p
ro

c
e
ss

in
g
 

D
is

p
o

sa
l 

 

R
e
u

se
 

R
e
c
o
v

er
y
 

R
e
c
y
c
li

n
g
 

E
x

p
o

r
te

d
 e

n
er

g
y

 /
p

o
te

n
ti

a
l 

 

X X X X X x   
 

 X   X X X    x 

The system boundaries correspond to the life cycle modules A1-B1, B6, C2-C4 and D4 of the EN15804 

and EN15978 standards, as shown in Table 1 (CEN 2011; CEN 2013). The apartment building itself 

enters the system burden-free and ready for upgrading, which means that the environmental 

impacts of removal and end-of-life of materials from the existing building (e.g. asbestos facade, old 

windows and doors) are considered to belong to the previous life cycle of the building. After 30 years 

the apartment building also leaves the system burden-free for future use, but the end-of-life of all 

materials introduced in the upgrading are included in the system. 

The system boundaries to nature are defined by the choice of background database and life cycle 

impact assessment method, which in this case is the Ecoinvent 3.1 (allocation default) database and 

the ReCiPe Europe 2008 life cycle impact assessment method as calculated in SimaPro v.8.3. 
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1.3.2 Stjernehus apartment building 
This study analyses the upgrading of the apartment building called Stjernehus, which is in the city of 

Kristiansand on the south coast of Norway. The building underwent an upgrading in 2013-2015 as 

part of the research projects BESLUTT (Hauge, Amundsen et al. 2011) and BEVISST (Löfström, Hauge 

et al. 2015), and was a pilot building in Buildings of the Future (Hasenmüller 2017). The upgrade was 

a cooperation between SINTEF Building and Infrastructure, NBBL, BOB in Bergen and Sørlandet 

Boligbyggelag. The life cycle assessment is based on data from the upgrading of Stjernehus. 

Stjernehus is a concrete apartment building constructed in 1960. It consists of 60 units, where 30 are 

2-bedroom units of 42 m2 and 30 are 3-bedroom units of 80 m2 (Husbanken 2013). The building was 

colloquially known as Southern Norway's coldest apartment building (Lavenergiprogrammet 2015) 

and it underwent an upgrading in the period 2013-2015. Key reasons for the upgrade were increasing 

the comfort level for occupants and energy efficiency, as well as reducing the carbon footprint of the 

apartment building (Hasenmüller 2017). 

  

3700 m
2
 Usablel Floor Area 

 
Original net energy demand: 297 

kWh/m
2
 per year 
 

Upgraded building net energy 
demand: 88 kWh/m

2
 per year 

3a) Original building 
[photo: Lars Ørjan Vegusdal] 

3b) Upgraded building 
[photo: Odd Helge Moen] 

Key figures 

Figure 3. Stjernehus, pre- and post-renovation  

Prior to the upgrade, a scoping study was performed to help define the ambition levels for energy 

and carbon footprint. The energy ambition was to reach energy grade B and the carbon footprint 

ambition was to reduce the carbon footprint by 69 % compared to the original building. The energy 

grade is a measure of the maximum allowed annual delivered energy (kWh/m2 per year) and is based 

on two factors: a fixed factor for each energy grade + a correction factor for dwelling size 

(Energimerking.no 2009). The energy grade B requirements for this type of apartment building is a 

maximum annual delivered energy of 120 + 1600/area kWh/m2. This corresponds to annual delivered 

energy of maximum 120 + 1600/42 = 158 kWh/m2 for the smaller apartments and 120 + 1600/80 = 140 

kWh/m2 for the larger apartments. 

The carbon footprint requirement in the upgrading project was based on using the online calculation 

tool Klimagassregnskap.no (Hasenmüller 2017). However, it should be noted that the results from 

Klimagassregnskap.no are not comparable with the LCA-results presented here as the system 

boundaries in this study differ. Building components that were not included in the carbon footprint 

calculated by Klimagassregnskap.no are included here (Wrålsen 2016). 

Key issues identified prior to the upgrade were significant thermal bridges in the concrete 

construction, high heating demand and a general need for maintenance. As there was a need for 

maintenance, a window of opportunity opened for upgrading to a higher quality level instead of 

renovating to the original level (Berg, Denizou et al. 2013; Skaar, Elvebakk et al. 2017). This is 

illustrated in Figure 4. 
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Figure 4. Quality of building construction over time (adapted from Bjørberg 2010 in Evjenth (2011)) 

There were significant issues with the building before the renovation related to high heating 

demands in winter, significant energy losses due to poor thermal bridging and a general maintenance 

backlog. The renovations on the Stjernehus building were focused on reducing energy losses through 

the walls, roof, windows and doors while modernising the heating system and improving the 

aesthetics of the building. 

The renovation measures that were taken were adding insulation to the building envelope, removal 

of thermal bridges, replacement of facades, replacement of doors and windows, new balconies 

(glassed) and new heating and ventilation systems. The ventilation system was upgraded to a 

balanced ventilation system with heat recovery and adapted to accommodate direct connection to 

the district heating system in Kristiansand, which uses waste heat from incineration of municipal 

waste. The new heating system replaced the existing central oil boiler heating system. It is assumed 

that there is no replacement of the ventilation system during the 30 year study period. The expected 

service life of the main components in the ventilation system is 25-30 years. The exterior walls 

received new and modern insulation and the existing asbestos façade was replaced with concrete 

tiles. Modern energy saving doors and windows (triple glazing) were installed while a new roof was 

added while glass-concrete balconies were also added for the occupants. The average U-value for 

doors and windows after the renovation was 0.86. Improving the thermal insulation capacity of the 

building gave significant energy savings in the use phase of the apartment building.  

1.4 Results and discussion 

1.4.1 Life cycle inventory results 
The model uses a 30-year life time for materials to meet the demands until a future renovation is 

expected. The overall material consumption and direct energy used in the rehabilitation process is 

shown in Table 2 below. 

Table 2. Life cycle inventory for the renovation of Stjernehus 

Component Material Quantity Unit 

Balcony 

Bitumen (seal) 273 kg 

Window frame, PVC (U =1,6 W/m2k) 18.0 m2 

Concrete 17.0 m3 

Flat glass 4.70 tons 

Rockwool insulation 702 kg 

Aluminium 3.09 tons 

Steel 2.58 tons 

Wooden materials 1.00 m3 

Exterior wall Bitumen (seal) 1.54 tons 
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Chemicals 176 kg 

Gypsum 2 534 kg 

Fibre cement tile, facade 47.6 tons 

Extruded polystyrene insulation 1 136 kg 

Rockwool insulation 13.9 tons 

Plastics, ventilation 1.32 tons 

Reinforcing steel 300 kg 

Wooden materials, wall 102 m3 

Doors and windows 

Door, inner, glass-wood 129 m2 

Door, outer, wood-aluminium 10.0 m2 

Door, inner, wood 112 m2 

Window frame, PVC (U =1,6 W/m2k) 760 m2 

Flat glass 9 500 kg 

Roof 

Bitumen (seal) 2.34 tons 

Rockwool insulation 2.96 tons 

Aluminium ducts 139 kg 

Wooden materials 2.00 m3 

Ventilation 

Control units 95.0 kg 

Rockwool insulation 2.06 tons 

Metals (aluminium and steel ducts) 1.73 tons 

Plastics (polycarbonates) 303 kg 

Energy used in construction 
Diesel, used in machines 48.8 GJ 

Electricity, site heating and ventilation 163 GJ 

 

The embodied cumulative energy demand of the materials and the consumed energy from building 

operation for Stjernehus are shown in Figure 5 below.  

 

Figure 5. Cumulative energy demand for the Stjernehus renovation, by energy source in MJ 

The overall lifetime cumulative energy demanded for the entire renovation and operation of the 

building is 9116 MJ per m2. The dominant source of energy demand comes from the lifetime heating 

and cooling and electricity demand of the building, which represents 72% of the total cumulative 

energy demand.  The energy used in the building comprises of space heating (191.9 MJ per m2 per 

year), warm water heating (40.7 MJ per m2 per year), and electricity (136.1 MJ per m2 per year). Most 

of the electricity demand comes from renewable energy in the form of Norwegian hydroelectricity 

while the space heating comes from the district heating system that has so far shown to be able to 

meet heating demand. 
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1.4.2 Life cycle impact assessment results 
This study utilizes four cases including a reference scenario that focus on the type of renovation and 

space heating methods. The following table shows the absolute and relative values of the midpoint 

impacts for the reference system (S0) and three scenarios on a per meter squared basis. The S0 

scenario refers to the Stjernehus apartment block prior to renovation, S1 assumes that the boiler 

heating system is replaced by Norwegian electricity with no other upgrades, S2 is the actual 

renovation of the Stjernehus apartment, while S3 is the assumes a renovation while meeting all 

energy requirements with Norwegian electricity instead of district heating. These scenarios were 

chosen to illustrate the theoretical effects of utilizing low-emission Norwegian energy compared to 

other renovation strategies.  The characterized results for each building are shown in Figure 6.  

 

Figure 6. Relative total characterised emissions for each Stjernehus scenario 

The reference scenario is shown to perform worse in all impact categories except marine 

eutrophication and water depletion, where S1 performs worse. S2 and S3, which utilise actual 

renovation parameters, perform better than either of the scenarios that do not have building 

renovation included. The actual renovated Stjernehus shows the lowest emissions of all scenarios 

except with respect to agricultural land occupation compared with S1, which is due to timber 

materials used in the renovation. Total emissions per m2 building relative to the original Stjernehus 

reference scenario are summarized in Table 3 below. 

Table 3. Relative characterized impacts for Stjernehus renovation and space heating scenarios 

  

Reference 

value/m
2
  Relative to reference value 

Midpoint impact category Unit S0  S1  S2  S3 

Climate change kg CO2 eq 3 263 0.07 0.05 0.06  

Ozone depletion kg CFC-11 eq 7.54E-05 0.38 0.17 0.22  

Terrestrial acidification kg SO2 eq 14.3 0.06 0.06 0.06  

Freshwater eutrophication kg P eq 1.10 0.07 0.05 0.05  

Marine eutrophication kg N eq 1.07 1.02 0.34 0.53  

Human toxicity kg 1,4-DB eq 910 0.16 0.10 0.10  

Photochemical oxidant formation kg NMVOC 14.9 0.04 0.04 0.04  
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The reference scenario, S0, has the highest emissions in all impact categories except marine 

eutrophication, water depletion and ecotoxicity impact categories. The use of oil boilers for heating 

depends on heating oil, which is often lower quality and energy density, leads to high combustion 

emissions and is the main contributor for the reference case in all impact categories. Scenario S1 has 

high water depletion relative to the base scenario due to increased use of grid electricity, primarily 

composed of Norwegian hydroelectricity. Material demand for the renovation are the primary 

emissions for scenarios S2 and S3. Both Figure 6 and Table 3 show that renovating the building was 

more beneficial to overall lifetime environmental impacts than only changing the heating system. 

The actual renovation, S2, also shows that the most environmental gains can be made by combining 

renovation strategies with modernized space heating technologies. 

Figure 7 shows the total midpoint environmental impacts for the actual Stjernehus renovation in the 

form of a contribution analysis. The main components are the same as the life cycle inventory 

components in Table 3 with impacts from energy demand for the operation of the building added.   

 

Figure 7. Contribution analysis of building components for the actual Stjernehus renovation (S2) 

Particulate matter formation kg PM10 eq 4.42 0.10 0.07 0.09  

Terrestrial ecotoxicity kg 1,4-DB eq 0.11 0.24 0.21 0.21  

Freshwater ecotoxicity kg 1,4-DB eq 31.2 1.20 0.38 0.44  

Marine ecotoxicity kg 1,4-DB eq 29.0 1.12 0.36 0.42  

Ionising radiation kBq U235 eq 87.2 1.57 0.34 0.59  

Agricultural land occupation m
2
a 242 0.31 0.41 0.46  

Urban land occupation m
2
a 27.5 0.10 0.09 0.11  

Natural land transformation m
2
 0.32 0.43 0.13 0.19  

Water depletion m
3
 101 2.95 0.44 0.92  
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Energy demand from operating the building, production of doors and windows, and construction of 

the exterior walls are the three most significant processes. Summed up, these three processes 

contribute 78-99 % across all impact categories. Energy from building operation is the dominant 

process in ozone depletion (39%), marine eutrophication (34%), human toxicity (38%), freshwater 

and marine ecotoxicity (78% and 77%), ionizing radiation (66%), natural land transformation (53%) 

and water depletion (95%) impacts. The production of doors and windows is the dominant impact in 

climate change (39%), terrestrial acidification (49%), freshwater eutrophication (38%), photochemical 

oxidant formation (47%), particulate matter formation (45%), terrestrial ecotoxicity (36%), urban 

land occupation (41%) and fossil and metal depletion (46% and 50%) impacts. The exterior wall is the 

dominant process in agricultural land occupation (75%). The end of life treatment of materials has 

some positive marginal impacts in seven impact categories due to recycled materials, these are 

shown as negative values in Figure 7. The positive impacts from recycling are shown separately, as 

these occur beyond the system boundaries. This corresponds to module D in EN 15978. Balconies 

have significant impacts in metal depletion due to the large amount of steel and aluminium used. A 

full overview of the emissions according to impact categories and components can be found in 

Appendix A: Life Cycle Impact Assessment results (LCIA results). 

1.4.3 Carbon footprint 
The total calculated lifetime climate change impact was 593.4 tons CO2 equivalents for the renovated 

Stjernehus. The climate change impact was of particular interest for the Stjernehus project 

developers and was one of the main motivating factor for an ambitious renovation.  An additional 

analysis of the materials that contributed most to the climate change impacts is shown in Figure 8. 

 

Figure 8. Climate change contribution for the renovated Stjernehus, by material type, in tons CO2-equivalents 

The main climate change impacts come from the production of polyvinyl chloride (PVC) used in the 

window and door frames, which represents 13.8% of the total lifetime climate change impacts. 

Clinker, primarily used in concrete for exterior walls, was the next highest contributor of climate 

change emissions at 10.2%. Electricity (4.2%) and heat (3.8%) used in operation are together 8% of 

the total climate change impacts, which is quite low due to the energy demand savings from the 

renovation. Climate change impacts from energy used in material production were higher than the 

lifetime operation emissions, as heat (4.8%) and electricity (4.8%) were 9.6% of the total. The 

processes that had a less than 1% impact made up 47.3% of the total emissions, which makes it 

difficult to make decisions that focus on these more diffuse impacts. The overall climate change 

impacts could be further reduced with switching materials, primarily PVC and clinker, to other less 

climate intense alternatives. 
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1.4.4 Discussion  
The renovation of Stjernehus has both positive and negative consequences for the carbon footprint 

of the building. In the renovation process, the carbon footprint will increase due to the construction 

materials used and the emissions from the construction processes (e.g. due to diesel or electricity 

consumption). After the renovation is completed, there are two factors that contribute to a reduced 

carbon footprint. The first is the reduced energy consumption in the use phase, due to reduced heat 

loss. The second is the replacement of the original boiler heating system, which leads to reduced 

carbon footprint per kWh. In total, these lead to an annual decrease in the carbon footprint relative 

to the original building.  

To evaluate if the renovation leads to a total reduction of the carbon footprint in a life cycle 

perspective, the increase in emissions from the renovation process must be compared with the 

decrease in the use phase. This can be achieved by calculating the carbon footprint payback period, 

which is the time it takes for the accumulated decrease in use emissions to be larger than the carbon 

footprint of the renovation itself, also called the carbon footprint break-even. The renovation is a 

carbon footprint reduction measure if the break-even occurs before the next significant renovation, 

which is typically 20-40 years after a major renovation. For Stjernehus, the carbon footprint payback 

period was 1.09 years, and can therefore be classified as an effective carbon footprint reduction 

measure. The main cause of the very short payback period is not actually the renovation of the 

building itself, but the replacement of the boiler heating system with a combination of district 

heating and electricity. This means that changing the energy supply is the most significant action 

taken to reduce the carbon footprint. The renovation itself does lead to reduced carbon footprint 

due to reduced energy consumption, but it could also be argued that these are mainly increasing the 

comfort level for the occupants.  

The main factor that influences the payback period in the modelling is the carbon footprint per kWh 

energy delivered. The Norwegian consumption mix has been used in this study, which includes the 

effects of imports/exports and domestic production. For electricity, there is no scientific consensus 

on which electricity mix to use which makes In a Norwegian context, this is a value choice that has a 

significant impact on the end results when energy reduction is calculated. The Norwegian electricity 

mix is approximately 25 g CO2/kWh and the Nordic electricity mix is approximately 130 g CO2/kWh 

(Skeie, Lien et al. 2018). The choice of Norwegian electricity mix is both in line with common 

approaches in the building industry (e.g. the Norwegian EPD system) and is a conservative choice. If a 

European energy mix was chosen, the payback period will be significantly shorter.  

It is also possible to calculate the energy payback period which requires accumulative energy 

demand (CED) calculation. The CED breakeven in this study was found to be 2.11 years which was 

slightly longer than the carbon footprint payback period. This is not influenced by the choice of 

electricity mix, but the conclusion is similar. The renovation is both a carbon reduction measure and 

an energy reduction measure when evaluating in a life cycle perspective. These results are based on 

assumption of the user behaviour. In practice, differences in user expectations and user behaviour 

can lead to large differences in energy consumption (Sunikka-Blank and Galvin 2012; Thomsen and 

Hauge 2016). This varies from user to user and from building type to building type. It is for example 

easier to accept lower indoor temperatures in an old house with poor insulation than in a new house. 

The discussion above evaluates the sensitivity of the carbon footprint to the choice of electricity mix. 

Skaar et al. (2017) have shown that there is a significant variation in the carbon footprint between 

similar materials, based on existing EPDs. This means that it is necessary to not only specify which 

materials to use, but also to follow up when choosing specific suppliers. The effect of requiring low 

carbon products has not been investigated here.  
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1.4.5 Comparison to other research results  
Comparing the LCA results of this study to those of other renovation and upgrading projects is not 
straightforward. The initial state of the building and the ambition level of the refurbishment project 
will vary from case to case. In addition, the system boundaries and time perspective can also vary 
from case to case. To paraphrase Tolstoy: well-functioning buildings are all alike; every decayed 
building needs refurbishment in its own way. Vilches et al. (2017) performed a literature review of 
LCA of building refurbishment. To compare the results on a general level (apples and pears), the 
payback periods identified in the literature review can be compared. For multi-family buildings, the 
payback period for all impact categories were found to be within a time span of 2 to 7.5 years. For 
carbon footprint, the result of this study was 1.09 years and for cumulative energy demand (CED) it 
was 2.11 years. Although the findings of this study were lower than the literature review, they are in 
the same order of magnitude and confirm that upgrading can be an environmentally beneficial 
choice. 

1.5 Conclusions  
The results for the actual upgrading of Stjernehus in a 30-year perspective (scenario S2) show a 
reduction in all environmental impact categories, with a 56-96 % reduction compared to the original 
building (S0). Payback periods are 1.09 years for carbon footprint and 2.11 years for cumulative 
energy demand (CED). These results show that the actual upgrading (scenario S2) lead to significant 
reductions in the environmental footprint of the apartment building in a 30-year time perspective. 
 
Furthermore, all upgrading scenarios (S1-S3) show significant reduction of the carbon footprint, but 
not with a corresponding reduction in all impact categories. For freshwater ecotoxicity, marine 
ecotoxicity, ionising radiation and water depletion the upgrading will lead to higher impacts. This 
indicates that using carbon footprint as the only indicator leads to a risk of problem shifting. The 
most significant factor influencing these results in the case study is the choice of energy system. 
 
Recommendations to LCA practitioners are to not focus exclusively on carbon footprint, as this may 
lead to problem shifting; this is especially relevant when selecting energy systems. 
Recommendations to inhabitants and decision makers in the building industry is to approach each 
case individually, using a life cycle perspective from the onset of the renovation. Significant building 
components in the Stjernehus renovation were found to be exterior walls, doors and windows, and 
balconies. Here further optimisation is possible, for example by selecting low-carbon products when 
choosing suppliers. 
 
The results show that an ambitious upgrading leads to a significantly lower environmental impact for 
the apartment building case study. However, most apartment buildings renovations do not have high 
environmental ambitions. Further research is needed for reducing the cost of upgrading and 
streamlining the upgrading solutions. This can contribute to a higher number of renovations in 
general and an increased ambition level in individual renovation projects.   
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Appendix A: Life Cycle Impact Assessment results (LCIA results) 
 

 

 

 Impact category  Unit  Total 

 Energy, 

building 

operation 

 Balconies  Exterior wall 
 Doors and 

windows 

 Energy, 

constructio

n site 

 Roof  Ventilation 
 EOL of 

materials 

Climate change kg CO2 eq 5.93E+05 1.54E+05 3.37E+04 1.48E+05 2.33E+05 5.63E+03 6.97E+03 9.01E+03 3.33E+03

Ozone depletion kg CFC-11 eq 4.94E-02 1.95E-02 2.72E-03 1.19E-02 1.17E-02 9.54E-04 1.31E-03 1.29E-03 2.49E-05

Terrestrial acidification kg SO2 eq 3.07E+03 5.79E+02 2.25E+02 6.31E+02 1.52E+03 4.01E+01 4.56E+01 5.45E+01 -1.65E+01

Freshwater eutrophication kg P eq 1.97E+02 6.45E+01 9.69E+00 3.64E+01 7.57E+01 5.33E-01 1.58E+00 1.09E+01 -1.88E+00

Marine eutrophication kg N eq 1.38E+03 4.69E+02 4.10E+01 3.83E+02 4.54E+02 7.38E+00 9.09E+00 8.65E+00 5.49E+00

Human toxicity kg 1,4-DB eq 3.28E+05 1.25E+05 1.94E+04 3.93E+04 1.20E+05 8.87E+02 1.88E+03 1.76E+04 3.04E+03

Photochemical oxidant formation kg NMVOC 2.17E+03 3.76E+02 1.44E+02 5.19E+02 1.02E+03 6.48E+01 2.93E+01 3.55E+01 -1.61E+01

Particulate matter formation kg PM10 eq 1.23E+03 2.73E+02 1.15E+02 2.39E+02 5.70E+02 2.04E+01 1.53E+01 2.22E+01 -1.99E+01

Terrestrial ecotoxicity kg 1,4-DB eq 8.39E+01 2.52E+01 4.73E+00 2.14E+01 3.03E+01 2.77E-01 5.13E-01 1.02E+00 4.39E-01

Freshwater ecotoxicity kg 1,4-DB eq 4.48E+04 3.49E+04 1.36E+03 1.87E+03 3.78E+03 1.74E+02 7.15E+01 4.02E+02 2.21E+03

Marine ecotoxicity kg 1,4-DB eq 3.96E+04 3.04E+04 1.38E+03 1.71E+03 3.69E+03 1.52E+02 6.58E+01 3.80E+02 1.89E+03

Ionising radiation kBq U235 eq 1.13E+05 7.48E+04 3.33E+03 1.26E+04 1.89E+04 9.44E+02 1.47E+03 7.89E+02 -3.18E+00

Agricultural land occupation m2a 3.68E+05 3.88E+04 6.41E+03 2.75E+05 4.62E+04 3.55E+02 1.42E+03 3.77E+02 5.88E+00

Urban land occupation m2a 9.70E+03 1.55E+03 5.70E+02 3.36E+03 3.93E+03 2.17E+01 7.86E+01 1.29E+02 6.09E+01

Natural land transformation m2 1.54E+02 8.41E+01 5.08E+00 2.58E+01 3.61E+01 2.24E+00 3.37E+00 1.73E+00 -4.53E+00

Water depletion m3 1.67E+05 1.58E+05 -9.92E+01 7.97E+01 7.39E+03 1.34E+03 5.55E+01 -9.00E+00 1.34E+01

Metal depletion kg Fe eq 1.73E+05 4.65E+04 3.80E+04 6.79E+03 8.21E+04 4.24E+02 3.92E+02 4.33E+03 -5.50E+03

Fossil depletion kg oil eq 1.68E+05 3.34E+04 9.14E+03 3.49E+04 8.40E+04 1.78E+03 3.61E+03 2.36E+03 -9.54E+02


