The Hierarchical Continuous Pursuit Learning
Automation for Large Numbers of Actions

Anis Yazidi*, XuanZhang™*, Lei Jiad™**, andB. JohnOommen

Abstract. Althoughthe field of LearningAutomata(LA) hasmadesignificant
progressin the last four decadesthe LA-basedmethodsto tackle problemsin-
volving environmentswith alargenumberof actionsis, in reality, relatively un-
resolved.The extensiorof thetraditionalLA (fixed structure variablestructure,
discretized and pursuit)to problemswithin this domaincannotbe easilyestab-
lishedwhenthe numberof actionsis very large. This is becausehe dimension-
ality of the actionprobability vectoris correspondinglyarge,andconsequently,
most componentf the vector will, after a relatively shorttime, have values
thataresmaller thanthe machineaccuracypermits,implying that they will never
be chosen. This paperpioneersa solution that extendsthe continuouspursuit
paradignmto suchlarge-actionedproblemdomains.The beautyof the solutionis
thatit is hierarchicalwhereall the actionsofferedby the environmentresideas
leavesof the hierarchy.Further,at every level, we merely requirea two-action
LA which automaticallyresolvesthe problemof dealingwith arbitrarily small
actionprobabilities.Additionally, sinceall the LA invoke the pursuitparadigm,
the bestactionat everylevel trickles up towardsthe root. Thus,by invoking the
propertyof the “max” operator,n which, the maximumof numerousnaximais
the overall maximum, the hierarchy of LA convergesto the optimal action.
Apart from reportingthe theoreticalpropertiesof the schemethe papercontains
ex-tensiveexperimentatesultswhich demonstratehe powerof the schemeand
its computationaladvantagesAs far as we know, there are no comparable
results in the field of LA.
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LA, LA with large number of actions.
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1 Introduction

This paper deals with the well-trodden field of Learning automata ¥LR)r decades,
this field, initiated by Tsetlin [10], has been studied as a typical model for learning in
random environments, and has served as the precursor for the area of reinforcement
learning. Unlike other fields of Artificial Intelligence (Al), an LA, by definition, op-
erates in random environments, where the “Teacher” can respond differently and ran-
domly, for the same query, at different time instances. More specifically, an LA is an
adaptive decision-making unit that learns the optimal action from among a set of actions
offered by the Environment that it operates in. Without loss of generality, to render the
problem non-trivial, the Environment is stochastic. At each iteration (or time step), the
LA selects one action and communicates it to the Environment. This, indoohasti-
cally triggers either a reward or a penalty as a response from the Environment. Based on
the response and the knowledge acquired in the past iterations, the LA, either determin-
istically or stochastically, adjusts its action selection strategy. This is done so as to make
a “wiser” decision in the next iteration. Thus the LA, even though it lacks a complete
knowledge about the Environment, is able to learn through repeated interactions with
the Environment, and adapts itself, or “converges”, to the optimal decision.

Although LA have been studied extensively [1,13-15,17] and been applied in many
fields [4, 9], designing LA when the number of actions involMgds large is extremely
complex. The solution that we propose in this paper attempts to resolve this problem.

1.1 Contributions of the Paper

The contributions of this paper are the following:

1. We proposea hierarchicalLA strategywhich superimposethe learningprocess
on a tree structure.Unlike the traditionalhierarchicalschemeswe do not resort
to Fixed StructureStochasticAutomata(FSSA) or Variable StructureStochastic
Automata(VSSA) to achievethelearning.

2. We proposea hovellearningprocesghat involves multi-level two action Contin-
uousPursuitAlgorithm (CPA) machinesThe estimationandinteractionwith the
real-worldenvironmentccuronly at the leaf level.

3. We proposethe processof trickling-up the estimatesandaccomplishinghelearn-
ing by only invoking learningbetweera nodeandits sibling.

4. Theschemdhatwe haveproposeds novelin thatit neverinvolvesactionprobabil-
ities thatarebelowmachineaccuracylt alsoinvolvesestimatesvhoseaccuracies
caneasilybeattained.

5. The scheme thate have proposed is e-optimial all random environmen{d 2].

11n the interest of brevity, we assume that the reader is fairly well-versed in the fundamental
conceptf LA andtheir convergenceroperties.The review hereis thus necessarilybrief,
althoughtheintentis thatit shouldalsobe comprehensivadowever,excellentsurveysof the
field canbefoundin [5, 8, 9]. Also, dueto the spacdimitations, the theoreticalresultsabout
our new scheme are omitté@re. They are included [12].
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6. The speed of the proposed schemeniy times faster than that of all the LA
reported in the literature. It is thus the fastest and most accurate reported LA for
environments with a large number of actions. As far as we know, no experiments
have ever been done in the field of LA for environments when the number of ac-
tions was so large, and in that sense, this is truly a pioneering and ground-breaking
venture, clearly proving the power of the scheme!

2 The HCPA LA

2.1 Rationale for Our Solution

The philosophy motivating our new scheme resorts to superimposing the actions onto a
binary tre€, in which, the leaves are the actual actions themselves. Further, each inter-
nal node represents the best action inghigre subtree below that node. By performing
comparisons between the actions in a pairwise manner, i.e., at the leaves of the tree,
only the superior actions are trickled up towards the root. By doing this, one always
deals with 2-action LA. Here, however, unlike the work of previous researchers [2], we
do not resort to FSSA or traditional VSSA, to differentiate between the various pairs
of actions at the leaves. Rather, we shall use the 2-action continuous pursuit LA [16].
SinceR= 2 at every level, the number of iterations required to achieve the estimation is
considerably less. Further, the estimation that is achieved at the leaf level, is all that is
required for the entire tree — no estimation operations are required at the internal nodes.
A notable attempt to devise hierarchical LA is due to Papadimitriou [7]. Before we
comment on this work, we mention that the Pursuit concept can be used in a Continuous
or Discretized paradigm, and that the action probabilities can be changed on Reward-
Penalty RP), Reward-InactionRl) and Inaction-Penaltyt P) scenarios. Consequently,
we would have six Pursuit variant&Prp, DPrp, CPri, DPr, CRp andDPp, and of
these, Agache and Oommen [6] showed thatDRg is the most superior one. The
author of [7] has precisely used this machine, and this is commendable. The differences
between that work and the work that we have done here is, however, significant. First
of all, this lies is in the way that we have modeled the tree along which the actions
have been placed. Secondly, the strategy by which we have trickled up the “maximum”
estimate at every node is quite unique and novel, and it does not require us to probe
(query) the environment at every time instant, implying that these interactions with the
Environment are only at the leaves. All of these lead to the superiority of our scheme
over the recorded ones, demonstrated for experiments done for a much larger set than
what has been reported in the literaftire

2 The tree is assumed to be binary only for the sake of convenience. In a more general setting,
each node may have, for example, three children.

3 The author of [7] tested his scheme for a maximum of 64 actions. It was not possible to do
afair comparisorbetweenour schemeandthe work donein [7]. This is becausehe author
of [7] did not reportthe size of the ensembleof experimentghat he conductedIn our case,
the ensemblewvas of size 400, andwe soughtfor the bestparametethat yielded “absolute”
convergencei.e.,convergencén everysingleexperimentHowever theauthorof [7] should
be givenfair creditbecausef his resultbeingthefirst reportedhierarchicalPursuit-based A
strategy!
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2.2 Construction of the Hierarchy

The search space for the binary tree alluded to above isrcatetl as follows. First of
all, the hierarchy is organized as a balancedfilhary tree with maximal deptk. For
the sake of convenience and in the interest of mathematoaldlism, we will use the
same notation adopted in [3, 11], and index the nodes usitigtheir depth in the tree
and their relative order with respect to the nodes locatatieasame tree depth. The
details of the hierarchy as described as follows.

1. Root node The LA at the root of the hierarchy is the one at depth O.

2. The various LA: At each node, we invoke a 2-action LA, whose actions are
citedasOand 1.

3. LA activations for K levels: from 0 to K-1:

— The different LA at depth k: The LA j € {1,...,2"} at depttk, is referred to
asAyy j, where 0< k <K —1, and it has two actions 1 ;1 ando k. 1 2j-
e Whenever the actiony, 1 »j_1) is chosen, the LAy, 1 »j_1, is activated.
e Whenever the actioai, 1 2j) is chosen, the LA4yy, 1 »j; is activated.
e We can informally say tha1j 1) and Ay, 1) are theLeft Child
andRight Child of the parent LA4y j, respectively.

— The LA atdepth K—1: The LA at depttK — 1 (i.e., at the leveglust above the
leaves) is responsible for choosing the action from thehstsiic environment.

e This LA has two actions(  »j 1y ando 2j;.
o Atthis level, there are2actionsio j; wherej € {1,...,2} at depttK.
e Observe thatiyk j, is attached to (or associated with) its “parent LA’

Afk-1[j/2]}-
4. At level K: Finally, at deptlK, i.e., at the maximal depth of the tree, the nodes do
not have children.

2.3 The Proposed Solution

At the bottom-most level, i.e., the level of the leaves, weke a two-action CPA to
determine which is the superior action between two actibas are siblings at this
level. To do this, we merely maintain running estimates efréward probabilities of
these two actions, and using this two-dimensional estimate vresntol the correspond-
ing two-action probability vector, the updating is achigvEhe larger of these estimates
is trickled to their common parent, and this estimate is nomjgared with the corre-
sponding reward probability estimate ité sibling whose value was obtained frama
children. This process is now recursively repeated, udiegetstimate of the reward
probability at this level and the probability vector at thésel, whence the updates are
performed. The same process continues up the tree to thagelft

4 If the number of actions is less thaff ,2one can always add dummy actions whose reward
probabilities are zero.
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2.4 The Algorithm of the Proposed Solution

Notation and Definitions The notation that we shall use is as follows:

— The X actions that interact with the Environment are elements fite sefayk 13,
., 0y 2ky }. Further, the action$ol (k »j 1}, 0K 2} } are the two only actions that
can be selected by the LA at leuel- 1, namelyAk 1 j;.
— Each LA j € {1,..,2%} at depthk, called 4 j;, where 0< k < K — 1 has two
actions, namelygt (k121 anda{kﬂyzj}.
- Py jy= [p{kﬂzJ 1},p{k+12]}] is the action probability vector of LAy j,, where
0<k<K-1.

Begin Algorithm HCPA

Parameters:

A: The learning parameter, where<O\ < 1, whereA is close to zero.

Urk 2j—1}» Ugk 2j) - The number of timea (i »j_1y, Ok 2} have been rewardedhenit has been
selected.

ViK 2j-1}» V(K 2j) The number of timest k »j_1}, Ok 2j}, has actually been selected.

d{K 2j-1}» d{K 2]} The estimate of the reward probabilitiesdyf »j_1;, dik 253, computed as:

.2j-1} Uik 2j}
dik2j-1) = vigo 1 {Kzl}—v(m,)

D is the vector of the estimatdsi}.

m: The index of the optimal action.

h: The index of the greatest elementdf

R: The response from the Environment, wh&e- 0 corresponds to a Reward, aRd= 1 to a
Penalty.

T: A Threshold, wherd > 1—¢.

Initialization: Traditional Pursuit algorithms requireat we choose each action a few times to
initialize the estimates of the reward probabilities. Téiigp is really not so crucial and so we
have avoided it and assumed that the estimate of the rewalbdlpitities are initialized to 0.5.
Initialization :

t=0

For i= 1 to X Do:
Uiy (0)=1
Vik,i}(0) =2
T Uk in (O
i) (0) = Sy

EndFor

Loop

1. 0<k<K-1:LevelsOtoK -1

— LA A1, selects an action by randomly sampling as per the actiorapilify vector
[P(1,13 (1), P12y ()]

— Let j1(t) be the index of the chosen action wheiét) € {1,2}.

— The next LA is activateddy j,¢); Which in turn chooses an action and activates the
next LA at level ‘2'.

— The procedure continues recursively until LA at leiel 1.

— Let Ay j, )y be the set of activated LA, wheig denotes the activated LA at level k.
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2. k=K:LevelK
- Updatef){KJK(t)} based on the response from the Environment at the leaf lével,
Utk i)} (B = Upc e (T 1) + (1= R(D)

VK, ik} (1) = ViK je ) t—=1) +1

~ Uri i (t (0
dikje () = %

— For all other “leaf actions”, wherg € {1,...,2} andj # jk(t),
Ug j (1) = Uk jy (E=1)
Vik i () =V jy (t=1)

7 Ugk.j3 ()
d{K,i}(t) = vizji(t)'

3. Define the reward estimate for all other actions along the path from the reok, 9@ K — 1
in a recursive mannerwhere the LA at any one level inherits the feedback from the LA at
the next IeveIA: A A
de jy () = max(dpyi 12§13 (1), dg 1253 (1))
4. Perform the probability updating for the corresponding vectors as follows:
— By definition, each LAj € {1,...,2"} at depthk, referred to asdyy jy where 0< k <
K —1, has two actionsl ;1 »j_1} ando i1 o)y Let jh(t) € {2j — 1,2j} be the larger
of the elements betweehy, 1 5; 1, (t) anddyy, 1 ), ().

— Let jh(t) = {2j —1,2j}\ j"(t) be the opposite action, i.e., the one that has the lower
reward estimate.

— Updatepyy jn(t); andpy, ji, Using the estimatesiy 1 oj 1y (t) anddy1 2 (t) @s:
If R(t)=0Then
Py 1) = (1=M Py,
Pt +1) = 1= py g (t+ 1)
Else

Pik,jn
Endlf

— For each4y j, if either of its action probabilitie®x12j_1y and pyk,1,2jy surpasses
athresholdr, whereT is a positive number that is close to unity, the action probabilities
for this LA will stop updating, with its larger action probability jumping to unity.

5. t=t+1

EndLoop
End Algorithm HCPA

The HCPA schemeproposedand describedabovehasbeenshownto be g-optimal in
all randomenvironmentsThe proofsarequite deepandintricate. However,dueto the
space limitationsthese theoreticaksults are omittedere. They are included [12].

5 More specifigally,the LA atIeveJK -2, inherittpefeedbacla‘rom theLA atlevelK —1 as:
di—2,j3 () = max(dik 12513 (1), Ay —1.2j1 (1))
andso on. As a consequencejotice that at every level, the rewardvector estimatesof the
actionsof everyLA, arecomposedf therespectivemaxima of the rewardsof all the actions
of theentire subtreesootedat their children.
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3 Experimental Results

To evaluatethe performancef the LA-basedschemesye carriedout extensivesimu-
lationsfor environmentsvith a “large” numberof actions,wherethe total numberof
actionswassetto variousvalues.Themainaspecthatwe intendedo demonstratevas
thatif thelearningproblemwastackledusingtraditionalVSSA, theconvergenceould
be bothlessaccurateandvery slow. Thereasorfor this, asmentionedearlier,is thatif
thenumberof actionsis large,manyof the actionprobabilitieswould be small,imply-
ing thatthesewould bechoserseldom.Thus,evenif we invokedestimator-basedA, it
would beunreasonablt assuméhateachactionwould be choseria largenumberof
times”. Furthertheestimatesvould becorrespondinglynaccurateTheHCPA resolves
bothof theseissues.

Thesimulationghatwe conductedvereintendedo capturewo importantmetrics,
namely,the accuracyof the convergencef HCPA, andits speedof the convergence.
Our goalwasalsoto compardts convergencavith theexistingLA.

3.1 The Data Setsfor the Environment

Thebenchmarkiatasetseportedn theexistingliteraturehadatmosttenactions.n the
absencef establishedenchmarkgor largernumbersof actions,we havedesigneda
setof Environmentsvhich canbeusedasbenchmark®y otherresearchersirstof all,
we determinedthe numberof actionsinvolvedin the learningproblem.To renderthe
problemnon-trivial, the total numbersof actionswasinitially configuredto be 16, 32
and64. Oncethe numberof actionswasset,the actualrewardprobabilitiesassociated
with the differentactionswere uniformly distributedin the interval betweerzeroand
unity. Understandablythe difficulty the Environmentincreasedwith the the number
of actions.The rewardprobabilitiesassociatedvith the configurationdor 16 and 32
actionsarethefirst 16 and32 elementsn Tablel, respectivelyTherewardprobabilities
of theconfigurationwith 64 actionsconstitutethe entiresetgivenin Tablel.

3.2 Convergenceof the HCPA Algorithm

If A is sufficiently small,the HCPA will convergeo the actionwith the maximumre-
wardprobability. To observeheconvergencef thealgorithmwith aminimumnumber
of iterations,our taskwasto determinethe optimalvaluefor A for differentconfigura-
tions.TheoptimalA valueis themaximumA valuethatwill maketheLA to consistently
convergedo the correctaction.Obviously,for differentconfigurationgor the Environ-
ment,the valuefor optimal A would vary. In this simulation,to find the optimal A, we
decreasethevalueof A until we reachedhe onethatprovidedthe LA for thefirst 200
consecutivedxccurrencesf convergencéo thecorrectaction.

Basedon our simulationsfor the configuratiorwith 64 actions,the optimalA was
0.0000511n otherwords,with this valueof A < 0.000051systemwould consistently
convergeaccuratelySimilarly, the optimal valuesfor A for the configurationgor 32
and16 actionswere0.00085and0.0065respectivelylUnderstandablythe valuesof A
haveanincreasingrendwhentheenvironmenbecomedesschallenging.
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Table 1: This table lists the reward probability of the 64i@ts in our experiments. The reward
probabilities for 16 and 32 actions are the correspondingrib32 entries in the table, respec-
tively.

A A A A A3 A Ar A3 A Ao Al A
0.3934 0.9902 0.4883 0.5768 0.2023 0.2390 0.5887 0.88%88.0.4323 0.6926 0.347
Atz Ais Ais A Az Ais Ae A A A Az Axu
0.6152 0.0900 0.0850 0.5652 0.7362 0.7603 0.5142 0.22780.6.4791 0.9339 0.38(8

As  As Aoz Mg A Ao A Az Az Ass Ags Agg
0.02152 0.2399 0.7509 0.8773 0.4962 0.5649 0.9202 0.1%243.4.0.9777 0.4232 0.027[73

Az7 Axg Azg A Aun Az A3 A Aes A Agr Agg
0.1255 0.5650 0.1660 0.0148 0.0970 0.1319 0.1738 0.89(&11D.3.8945 0.6133 0.4813

Adg Aso Asi A2 Asz Asy Ass Asg Ast Asg Asg Ago
0.2413 0.1714 0.8512 0.9791 0.7443 0.3469 0.8707 0.386%8.@.4446 0.9617 0.0329

A1 As2 As3  Ass
0.5004 0.3784 0.6553 0.9737

S

3.3 Average Convergence Iterations

To illustrate the average number of iterations before cagesce, we present the sim-
ulation results of the experimefits Tables 2. The standard deviation of the iterations
are also included. To compare the HCPA with existing apgrescwe include the sim-
ulation results for thé.g_; and CPA machines in the same environment. Xivalues
utilized in the HCPA are the ones shown in Section 3.2 whiedhes in the CPA are
the optimal values found based on the same approach exgiails=ction 3.2.

For each replication in HCPA, we register the number of tters when all the
LAs along the correct path had converged to the action piittiedwhich are greater
than or equal to 0.99. Similarly, for each trial for the CPAlahelLr_, we record the
number of iterations when the LA had converged to the cometibn with an action
probability greater than or equal to 0.99. All the resultsgented in the table have
been averaged over an ensemble of 400 independent reptisatsing the optimal
determined above.

Table 2: The simulation results obtained for various emnnents with different numbers of
actions.

[Number of Actions] 16 | 32 | 64 |

| Parameters [Mean SD | Mean SD | Mean SD |
HCPA 904.5 103.6| 6,812.3 614.6115,295.5 11,346.2
CPA 1,584.2 62.3|7,260.0 529.1{156,616.3 6,985.0
Lr| 3,920.8 1,629.28,618.2 7,911.3644,234.0 20,0625}4

6 The experiments have been done for various randomly-geeeavironments. In the interest
of brevity, we merely report the results from one such sgttirhis was representative of the
results obtained for other settings.
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FromTable2, we canclearlyseethatHCPA outperformaCPA andLgr_ in general,
especiallywhenthe numberof actionsis large. Thus,for example for the 64-action
environmentthe Lr_| required644,234iterations.The HCPA requiredlessthan18%
of the numberof iterations,namely115,295.Theseresultsaretypical. This confirms
theefficiencyof the hierarchicaktructurewhenthe numberof actionsincreases.

3.4 Environment with 128actions

The HCPA wasalsotestedon environmenwith 128 actions,andasmentionecearlier,
thetestingof LA in environmentsvith sucha largenumberof actionsis pioneering- it
hasbeenunreportedn the literature.Ratherthanlist the rewardprobabilities,we have
plottedthemin Figuresl.

Fig.1: An exampleof an 128-actionEnvironment.

In the caseof the first environmenplottedin Figurel, thelLr_| required734,474
stepsfor absoluteconvergencdor an ensembleof 400 trials. The CPA, on the other
hand,required543,529steps- which represented decreasef about26%. Astonish-
ingly, the HCPA needednly 266,257steps.This implied an advantagef about51%
overthe CPA andof almost64% overthe Lg_|. Onecanclearly seethe advantagef
the HCPA overthestate-of-the-art.

4 Conclusions

In this paper,we have pioneereda new paradigmfor designingand implementing
LearningAutomata(LA) whenthe numberof actionsis large.Learningin environ-
mentsof this typeis particularlyhardbecausehe dimensionalityof the actionproba-
bility vectoris correspondingljyarge,andconsequentlynostcomponentsf the vector
will, aftera relatively shorttime, havevaluesthat aresmaller thanthe machineaccu-
racy,implying that they will never be chosen. This meanghatthetraditionalLA will be
sluggishandinaccurateandit would beunreasonabl® assuméhateachactionwould
be choserfa largenumberof times” if we invokedestimator-basetA. In this paper,
we havepioneered solutionthatextendshe ContinuougPursuitAlgorithm’s (CPA'S)
paradigmto suchlarge-actionedproblemdomains.The salientfeatureof our new so-
lution is thatit is hierarchicalwhereall the actionsofferedby the environmenteside
asleavesof the hierarchy.Further,at everylevel, we merelyrequirea two-actionLA
which automaticallyresolveghe problemof dealingwith arbitrarily smallactionprob-
abilities.Mostimportantly,sinceall theLA invokethepursuitparadigmthebestaction
ateveryleveltricklesup towardstheroot. Thus,by invoking the propertyof the “max”
operator,in which, the maximumof numerousmaximais the overall maximum,the
hierarchyof LA convergeso the optimalaction.The paperalsoreportedexperimental
resultsthatdemonstratethe powerof the schemeandits computationahdvantages.
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