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Abstract—Inference of space-time varying signals on
graphs emerges naturally in a plethora of network science
related applications. A frequently encountered challenge
pertains to reconstructing such dynamic processes, given
their values over a subset of vertices and time instants.
The present paper develops a graph-aware kernel-based
kriged Kalman filter that accounts for the spatio-temporal
variations, and offers efficient online reconstruction, even
for dynamically evolving network topologies. The kernel-
based learning framework bypasses the need for statistical
information by capitalizing on the smoothness that graph
signals exhibit with respect to the underlying graph.
To address the challenge of selecting the appropriate
kernel, the proposed filter is combined with a multi-kernel
selection module. Such a data-driven method selects a
kernel attuned to the signal dynamics on-the-fly within
the linear span of a pre-selected dictionary. The novel
multi-kernel learning algorithm exploits the eigenstructure
of Laplacian kernel matrices to reduce computational
complexity. Numerical tests with synthetic and real data
demonstrate the superior reconstruction performance of
the novel approach relative to state-of-the-art alternatives.

Index Terms—Graph signal reconstruction, dynamic
models on graphs, kriged Kalman filtering, multi-kernel
learning.

I. INTRODUCTION

A number of applications involve data that admit a
natural representation in terms of node attributes over
social, economic, sensor, communication, and biological
networks, to name a few [11], [24]. An inference task
that emerges in this context is to predict or extrapolate
the attributes of all nodes in the network given the
attributes of a subset of them. In a finance network,
where nodes correspond to stocks and edges capture
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dependencies among them, one may be interested in
predicting the price of all stocks in the network knowing
the price of some. This is of paramount importance in
applications where collecting the attributes of all nodes
is prohibitive, as is the case when sampling large-scale
graphs, or, when the attribute of interest is of sensitive
nature, such as the transmission of HIV in a social
network. This task was first formulated as reconstructing
a time-invariant function on a graph [24], [25].

Follow-up reconstruction approaches leverage the no-
tions of graph bandlimitedness [5], sparsity and over-
complete dictionaries [27], smoothness over the graph
[12], [25], all of which can be unified as approximations
of nonparametric graph functions drawn from a repro-
ducing kernel Hilbert space (RKHS) [20]; see also [10]
for semi-parametric alternatives.

In various applications however, the network con-
nectivity and node attributes change over time. Such
is the case in e.g. a finance network, where not only
the stock prices change over time, but also their inter-
dependencies. Hence, maximizing reconstruction perfor-
mance for these time-varying signals necessitates judi-
cious modeling of the space-time dynamics, especially
when samples are scarce.

Inference of time-varying graph functions has been
so far pursued mainly for slow variations [9], [14],
[28]. Temporal dynamics have been modeled in [17]
by assuming that the covariance of the function to be
reconstructed is available. On the other hand, spatio-
temporal reconstruction of generally dynamic graphs
has been approached using an extended graph kernel
matrix model with a block tridiagonal structure that lends
itself to a computationally tractable iterative solver [18].
However, [18] neither relies on a dynamic model of the
function variability, nor it provides a tractable method
to learn the “best” kernel that fits the data. Furthermore,
[17] and [18] do not adapt to changes in the spatio-
temporal dynamics of the graph function.

The present paper fills this gap by introducing online
estimators for time-varying functions on generally dy-
namic graphs. Specifically, the contribution is threefold.
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C1. A deterministic model for time-varying graph func-
tions is proposed, where spatial dynamics are cap-
tured by the network connectivity while tempo-
ral dynamics are described through a graph-aware
state-space model.

C2. Based on this model, an algorithm termed kernel
kriged Kalman filter (KeKriKF) is developed to ob-
tain function estimates by minimizing a kernel ridge
regression (KRR) criterion in an online fashion. The
proposed solver generalizes the traditional network
kriged Kalman filter (KriKF) [16], [17], [29], which
relies on a probabilistic model. The novel estimator
forgoes with assumptions on data distributions and
stationarity, by promoting space-time smoothness
through dynamic kernels on graphs.

C3. To select the most appropriate kernel, a multi-
kernel (M)KriKF is developed based on the multi-
kernel learning (MKL) framework. This algorithm
adaptively selects the kernel that “best” fits the data
dynamics within the linear span of a prespecified
kernel dictionary. The structure of Laplacian kernels
is exploited to reduce complexity down to the
order of KeKriKF. This complexity is linear in the
number of time samples, which renders KeKriKF
and MKriKF appealing for online operation.

The rest of the paper is structured as follows. Sec. II
contains preliminaries and states the problem. Sec. III
introduces the spatio-temporal model and develops the
KeKriKF. Sec. IV endows the KeKriKF with an MKL
module to obtain the MKriKF. Finally, numerical exper-
iments and conclusions are presented in Secs. V and VI,
respectively.

Notation: Scalars are denoted by lowercase, col-
umn vectors by bold lowercase, and matrices by bold
uppercase letters. Superscripts > and † respectively
denote transpose and pseudo-inverse; 1N stands for the
N×1 all-one vector; diag {x} corresponds to a diagonal
matrix with the entries of x on its diagonal, while
diag {X} is a vector holding the diagonal entries of X;
and N (µ, σ2) a Gaussian distribution with mean µ and
variance σ2. Finally, if A is a matrix and x a vector,
then ‖x‖2A := x>A−1x and ‖x‖22 := x>x.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a time-varying graph Gt := (V,At), t =
1, 2, . . ., where V := {v1, . . . , vN} denotes the vertex
set, and At the N ×N adjacency matrix, whose (n, n′)-
th entry An,n′(t) is the nonnegative weight of the edge
connecting vertices vn and vn′ at time t. The edge set
is E t := {(vn, vn′) ∈ V × V : An,n′(t) 6= 0}, and two
vertices v and v′ are connected at time t if (v, v′) ∈ E t.

The graphs {Gt}t in this paper are undirected and have
no self-loops, which means thatAt = A>t and An,n(t) =
0, ∀t, n. The Laplacian matrix is Lt := diag {At1N} −
At, and is positive semidefinite provided that An,n′(t) ≥
0, ∀n, n′, t; see Sec. II-A.

A time-varying graph function is a map f : V ×
T → R, where T := {1, 2, . . .} is the set of time
indices. Specifically, f(vn, t) represents the value of
the attribute of interest at node n and time t, e.g.
the closing price of the n-th stock on the t-th day.
Vector f t := [f(v1, t), . . . , f(vN , t)]

> ∈ RN collects the
function values at time t.

Suppose that St noisy observations y(vns , t) =
f(vns , t) + e(vns , t), s = 1, . . . , St, are available
at time t, where St := {n1, . . . , nSt} contains the
indices 1 ≤ n1 ≤ . . . ≤ nSt ≤ N of the
sampled vertices, and e(vns , t) captures the observa-
tion error. With yt := [y(vn1

, t), . . . , y(vnSt , t)] and
et := [e(vn1

, t), . . . , e(vnSt , t)], the observation model
in vector-matrix form is

yt = Stf t + et, t = 1, 2, . . . (1)

where St ∈ {0, 1}St×N selects the sampled entries of
f t.

Given yτ , Sτ , and Aτ for τ = 1, . . . , t, the goal of
this paper is to reconstruct f t at each t. The estimators
should operate in an online fashion, which means that
the computational complexity per time slot t must not
grow with t. Observe that no statistical information is
assumed available in our formulation.

A. Kernel-based reconstruction

Aiming ultimately at the time-varying f t, it is in-
structive to outline the kernel-based reconstruction of a
time-invariant f := [f1, . . . , fN ] given G := (V,A), and
using samples y = Sf+e ∈ RS , where S ∈ {0, 1}S×N
and S < N .

Relying on regularized least-squares (LS), we obtain

f̂ = arg min
f

||y − Sf ||22 + µg(f) (2)

where µ > 0 and the regularizer g(f) pro-
motes estimates with a certain structure. For exam-
ple, the so-called Laplacian regularizer gLR(f) :=
(1/2)

∑N
n=1

∑N
n′=1An,n′(fn − fn′)

2 promotes smooth
function estimates with similar values at vertices con-
nected by strong links (large An,n′), since gLR(f) is
small when f is smooth. It turns out that gLR(f) =
f>Lf ; see e.g. [11, Ch. 2]. For a scalar function r(L)
a general graph kernel family of regularizers is obtained
as gKR(f) = f>K†f = ‖f‖2K , where
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Kernel name Function Parameters
Diffusion
kernel [12]

r(λ) = exp{σ2λ/2} σ2 ≥ 0

p-step random
walk [25]

r(λ) = (a− λ)−p a ≥ 2, p

Regularized Lapla-
cian [24], [25], [30]

r(λ) = 1 + σ2λ σ2 ≥ 0

Bandlimited [20] r(λn) =

{
1/β 1 ≤ n ≤ B
β otherwise

β > 0, B

Band-rejection r(λn) =

{
β k ≤ n ≤ N − l
1/β otherwise

β > 0, k,
l

TABLE I: Examples of Laplacian kernels and their
associated spectral weight functions.

0 0.5 1 1.5 2
0

20

40

60

λ

r(
λ

)

Diffusion p-step Regularized laplacian

Bandlimited Band-reject

Fig. 1: Laplacian kernels (Diffusion σ = 1.9, p-step
random walk α = 2.55, p = 6, Regularized Laplacian
σ = 4.5, β = 50, Bandwidth B = 20, β = 50, Band-
reject k = 10, l = 10).

K := r†(L) := U> diag{r†(λ)}U (3)

and is termed a Laplacian kernel. Clearly, gKR(f)
subsumes gLR(f) for r(L) = L. Other special cases
of gKR(f) that will be tested in the simulations are
collected in Table I, and the scalar functions are plotted
in Fig 1. Prior knowledge about the properties of f
guides the selection of the appropriate r(·), for data-
adaptive selection techniques see Sec. IV.

Further broadening the scope of the generalized Lapla-
cian kernel regularizers, one may set g(f) = ‖f‖2K
for an arbitrary positive semidefinite matrix K, not
necessarily a Laplacian kernel. These regularizers give
rise to the family of kernel ridge regression (KRR)
estimators

f̂ := arg min
f

1

S
||y − Sf ||22 + µ‖f‖2K (4)

where µ > 0 controls the effect of the regularizer with
respect to the fitting term S−1||y−Sf ||22. KRR estima-
tors have well-documented merits and solid grounds on
statistical learning theory; see e.g. [22].

So far, signal f was assumed deterministic. To present
a probabilistic interpretation of KRR suppose that f is
zero-mean with C := E

[
ff>

]
, and that the entries

of e are uncorrelated with each other and with f , and
σ2
e := S−1E

[
‖e‖22

]
. In this setting, the KRR estima-

tor (4) reduces to the linear minimum mean-square error
(LMMSE) estimator if µS = σ2

e and K = C. Thus,
KRR generalizes LMMSE and can be interpreted as the
LMMSE estimator of a random signal f with covariance
matrix K; see [20, Proposition 2].

III. KERNEL KRIGED KALMAN FILTER

This section presents a space-time varying model
that is capable of accommodating fairly general forms
of spatio-temporal dynamics. Building on this model,
a novel online KRR estimator will be subsequently
developed for graph functions over time-varying graphs.

A. Spatio-temporal model

An immediate approach to reconstructing f t is to ap-
ply (4) separately per slot t. This yields the instantaneous
estimator (IE)

f̂
(ν)
t := arg min

f

1

St
||yt − Stf ||22 + µ‖f‖2Kt

(5)

where Kt > 0 is a per-slot preselected kernel matrix,
and superscript ν will be explained later. Unfortunately,
such an approach does not account for the possible
dynamics relating f t to f t−1. However, leveraging de-
pendencies across slots can benefit the estimator of f t
from observations {yτ}τ 6=t.

To circumvent the aforementioned limitation, consider
modeling the function of interest as

f(vn, t) = f (ν)(vn, t) + f (χ)(vn, t) (6)

where f (ν) captures arbitrary (even fast) temporal dy-
namics across sampling intervals and can be interpreted
as an instantaneous component, while f (χ) represents
a structured (typically slow) varying component. As
an example, consider stock price prediction, where f (ν)

accounts for instantaneous changes caused e.g. by po-
litical statements or company announcements at t rela-
tive to t − 1, while f (χ) captures the steady evolution
of the stock market, where stock prices at slot t are
closely related to prices of (possibly) other stocks at
t − 1. Before delving into how these components are
modeled, let f (ν)

t := [f (ν)(v1, t), . . . , f
(ν)(vN , t)]

> and

3
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f
(χ)
t := [f (χ)(v1, t), . . . , f

(χ)(vN , t)]
>, and note that (6)

can be cast into vector form as

f t = f
(ν)
t + f

(χ)
t . (7)

Vector f (ν)
t can be smooth over its entries (Gt), and cap-

tures instantaneous dependence among {f(vn, t)}Nn=1.
On the other hand, f (χ)

t is smooth not only over
Gt but also over time, and models dependencies be-
tween {f(vn, t)}Nn=1 and their time-lagged versions
{f(vn, t− 1)}Nn=1, The smooth evolution of f (χ)

t over
time slots adheres to the state equation

f
(χ)
t = A(t,t−1)f

(χ)
t−1 + ηt, t = 1, 2, . . . (8)

where A(t,t−1) is a graph transition matrix, and ηt :=

[η(v1, t), . . . , η(vN , t)]
> ∈ RN is termed state noise.

Vector ηt will be assumed smooth over Gt, mean-
ing η(vn, t) is expected to be similar to η(vn′ , t) if
An,n′(t) 6= 0. The recursion in (8) is the graph counter-
part of a vector autoregressive model (VARM) of order
one (see e.g. [15], [23]), and will lead to computationally
efficient online KRR estimators of f t that account for
temporal dynamics [23].

Model (7) can be thought of as the graph counterpart
of the model adopted in [29] to derive the kriged Kalman
filter. In our context here, f (ν)

t describes small-scale
spatial fluctuations within slot t, whereas f (χ)

t captures
the so-called trend across slots. Furthermore, (7) gener-
alizes the model used in [17], where A(t,t−1) = IN ,
for network delay prediction, where f (ν)

t represents
the propagation, transmission, and processing delays and
f

(χ)
t the queuing delay at each router.

Remark 1. The transition matrix A(t,t−1) can be inter-
preted as the N × N adjacency of a generally directed
“transition graph” that relates {f (χ)(vn, t− 1)}Nn=1 to
{f (χ)(vn, t)}Nn=1. Simplicity in estimating A(t,t−1) mo-
tivates the graph version of the random walk model,
where A(t,t−1) = cIN with c > 0. On the other
hand, adherence to the graph, prompts the selection
A(t,t−1) = cA, in which case (8) amounts to a diffusion
process on a time-invariant G.

B. KeKriKF algorithm

This section develops an online algorithm to estimate
f t, given (1) and {yτ ,Sτ ,Aτ ,A(τ,τ−1)}tτ=1 for the
spatio-temporal model of f t in (7) and (8). Unfortu-
nately, {f (ν)

τ and f (χ)
τ } cannot be obtained by solving

the system of equations comprising (1), (7), and (8) over
time even if eτ = 0 and ητ = 0 ∀τ ; simply because
after replacing f τ with f (χ)

τ + f
(ν)
τ ∀τ , the estimation

task involves 2Nt unknowns, namely {f (χ)
τ ,f

(ν)
τ }tτ=1,

and only S̃ + Nt equations, where S̃ :=
∑t

τ=1 Sτ and
S̃ ≤ Nt. To obtain a solution to this underdetermined
problem, one must exploit the model structure. Extend-
ing the KRR estimator in (4) to time-varying functions,
suppose we wish to

minimize
{f (χ)

τ ,f
(ν)
τ }tτ=1

t∑
τ=1

1
Sτ
‖yτ − Sτf (χ)

τ − Sτf (ν)
τ ‖2 (9)

+ µ1

t∑
τ=1

‖f (χ)
τ − A(τ,τ−1)f

(χ)
τ−1‖

2
K

(χ)
τ

+ µ2

t∑
τ=1

‖f (ν)
τ ‖2K(ν)

τ
.

where the scalars µ1, µ2 ≥ 0 control the trade-off
between smoothness and data fit, while the regularizers
‖f (χ)

τ − A(τ,τ−1)f
(χ)
τ−1‖2K(χ)

τ

and ‖f (ν)
τ ‖2

K
(ν)
τ

effect the

smoothness of ητ and f (ν)
τ prescribed by the model.

Uncorrelated (nonsmooth) perturbations ητ can still be
captured by setting K(χ)

t = IN , which is a Laplacian
kernel with r(λn) = 1, ∀n. When available, prior
information about {f (ν)

τ ,ητ}tτ=1 may steer the selection
of suitable kernel matrices; when not available, one can
resort to the algorithm in Sec. IV.

Directly solving (9) per t would not lead to an online
algorithm since the complexity of such an approach
grows with t; see Sec. II. However, we will develop next
an efficient online algorithm to obtain per slot t estimates
f̂

(χ)
t|t , f̂

(ν)
t|t that still account for {yτ ,Sτ ,Aτ}tτ=1.

Given f (χ)
τ , the first-order necessary conditions for

optimality of f (ν)
τ yield [cf. (9)]

f (ν)
τ = K(ν)

τ S>τ (K̄(ν)
τ + µ2SτISτ )−1(yτ − Sτf (χ)

τ )
(10)

where K̄(ν)
τ := SτK

(ν)
τ S>τ . Notice that the overbar

notation indicates Sτ × Sτ matrices or Sτ × 1 vectors,
and recall that without overbar their counterparts have
sizes N ×N and N × 1, respectively. Substituting (10)
into (9), we arrive at an optimization problem that does
not depend on f (ν)

τ for τ = 1, . . . , t. Rewrite next the
per slot τ measurement error in (9) using (10) as

1
Sτ
‖yτ − Sτf (χ)

τ − Sτf (ν)
τ ‖2

= 1
Sτ
‖yτ − Sτf (χ)

τ − K̄(ν)
τ

×(K̄(ν)
τ + µ2SτISτ )−1(yτ − Sτf (χ)

τ )‖2

= 1
Sτ
‖
[
ISτ − K̄(ν)

τ (K̄(ν)
τ + µ2SτISτ )−1

]
×(yτ − Sτf (χ)

τ )‖2. (11a)

The matrix inversion lemma asserts for the matrix in
square brackets of (11a) that[

ISτ − K̄(ν)
τ (K̄(ν)

τ + µ2SτISτ )−1
]

=(ISτ + 1
µ2Sτ

K̄(ν)
τ )−1. (11b)

4
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Plugging (11b) into (11a) yields

= 1
Sτ
‖( 1
µ2Sτ

K̄(ν)
τ + ISτ )−1(yτ − Sτf (χ)

τ )‖2

=(yτ − Sτf (χ)
τ )>( 1

µ2
K̄(ν)

τ + SτISτ )−>

×SτISτ ( 1
µ2
K̄(ν)

τ + SτISτ )−1(yτ − Sτf (χ)
τ ). (11c)

Next, we express the regularizer in (9) using (10) for
each τ as

µ2‖f (ν)
τ ‖2K(ν)

τ

=(yτ − Sτf (χ)
τ )>( 1

µ2
K̄(ν)

τ + SτISτ )−>

× 1
µ2
K̄(ν)

τ ( 1
µ2
K̄(ν)

τ + SτISτ )−1(yτ − Sτf (χ)
τ ) (11d)

where the last equality follows from the definition of
K̄

(ν)
τ . Combining (11c) with (11d) yields

1
Sτ
‖yτ − Sτf (χ)

τ − Sτf (ν)
τ ‖2 + µ2‖f (ν)

τ ‖2K(ν)
τ

=‖yτ − Sτf (χ)
τ ‖2Ǩ(ν)

τ
(12)

where Ǩ(ν)
τ := 1

µ2
K̄

(ν)
τ + SτISτ . Using (12) per slot,

(9) boils down to

{f̂ (χ)
τ |t }

t
τ=1 := arg min

{f (χ)
τ }tτ=1

t∑
τ=1

‖yτ − Sτf (χ)
τ ‖2Ǩ(ν)

τ
(13)

+µ1

t∑
τ=1

‖f (χ)
τ − A(τ,τ−1)f

(χ)
τ−1‖

2
K

(χ)
τ
.

Since (13) is identical to the deterministic formulation
of the Kalman filter (KF) applied to a state-space model
with state noise covariance K(χ)

t and measurement noise
covariance Ǩ(ν)

t , we deduce that the KF algorithm, see
e.g. [26, Ch. 17], applies readily to obtain sequentially
the structured per slot t component {f̂ (χ)

τ |τ}
t
τ=1. After

substituting {f̂ (χ)
τ |τ}

t
τ=1 into (10), we can find also the

per slot instantaneous component {f̂ (ν)
τ |τ}

t
τ=1. The t-th

iteration of our so-termed KeKriKF is listed as Algo-
rithm 1.

Summing up, we have established the following re-
sult.

Theorem 1. If
{
{f̂ (χ)

τ |t , f̂
(ν)
τ |t }

τ=t
τ=1

}t=t1
t=1

solves (9) for
t = 1, . . . , t1, the KeKriKF iterations summarized in
Algorithm 1 for t = 1, . . . , t1 generate the subset of
solutions {f̂ (χ)

t|t , f̂
(ν)
t|t }

t=t1
t=1 .

Clearly, the KeKriKF algorithm comprises two sub-
procedures: Kalman filtering (steps S1 - S6), and kriging
(step S7).

The traditional KriKF has been employed to in-
terpolate stationary processes defined over continuous
spatial domains [16], [29], and its derivation follows
from a probabilistic linear-minimum mean-square error

Algorithm 1: Kernel Kriged Kalman filter
(KeKriKF)

Input: K(χ)
t ,K

(ν)
t ∈ SN+ ; A(t,t−1) ∈ RN×N ; yt ∈ RSt ;

St ∈ {0, 1}St×N ; f̂ (χ)
t−1|t−1 ∈ RN ; M t−1|t−1 ∈ SN+ .

S1. Ǩ(ν)
t = 1

µ2
StK

(ν)
t S>t + StISt

S2. f̂ (χ)
t|t−1 = A(t,t−1)f̂

(χ)
t−1|t−1 (prediction)

S3. M t|t−1 = A(t,t−1)M t−1|t−1A
>
(t,t−1) + 1

µ1
K

(χ)
t

S4. Gt = M t|t−1S
>
t (Ǩ

(ν)
t + StM t|t−1S

>
t )−1 (gain)

S5. M t|t = (I −GtSt)M t|t−1

S6. f̂ (χ)
t|t = f̂

(χ)
t|t−1 +Gt(yt − Stf̂ (χ)

t|t−1) (correction)

S7. f̂ (ν)
t|t = K

(ν)
t S>t Ǩ

(ν)
t

−1
(yt − Stf̂ (χ)

t|t ) (kriging)

Output: f̂ (χ)
t|t ; f̂ (ν)

t|t ; M t|t.

(LMMSE) criterion that relies on knowledge of second-
order statistics [16], [17], [29]. Here, our KeKriKF is de-
rived from a deterministic kernel-based learning frame-
work, which bypasses assumptions on data distributions
and stationarity and replaces knowledge of second-order
(cross-)covariances with knowledge of K(ν)

t and K(χ)
t .

Moreover, different from [7], [14], [17], [28], the novel
KeKriKF can accommodate dynamic graph topologies
provided {K(ν)

t ,K
(χ)
t }t are available.

Remark 2. The complexity of KeKriKF is O(N3) per
slot. When the underlying graph is large (N �), this
complexity can be managed after splitting the graph into
Ng subgraphs each with at most dN/Nge nodes, and
employing consensus-based decentralized KF schemes
along the lines of [21].

IV. ONLINE MULTI-KERNEL LEARNING

This section broadens the scope of the KeKriKF
algorithm by employing a multi-kernel learning scheme,
to bypass the need for selecting an appropriate kernel.

The performance of KRR estimators is well known to
heavily depend on the choice of the kernel matrix [20].
Unfortunately, it is difficult to know which kernel matrix
is most appropriate for a given problem. To address
this issue, an MKL approach is presented that selects
a suitable kernel matrix within the linear span of a
prespecified dictionary using the available data.

In the following, consider for simplicity that K(ν)
t =

K(ν), K(χ)
t = K(χ), and St = S, ∀t. The kernels

in the dictionaries D(ν) := {K(ν)[m] ∈ SN+}Mν

m=1, and
D(χ) := {K(χ)[m] ∈ SN+}

Mχ

m=1 will be combined to
generate K(ν) = K(ν)(θ(ν)) :=

∑Mν

m=1 θ
(ν)[m]K(ν)[m]

5
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and K(χ) = K(χ)(θ(χ)) :=
∑Mχ

m=1 θ
(χ)[m]K(χ)[m],

where θ(ν) := [θ(ν)[1], . . . , θ(ν)[Mν ]]>, θ(χ) :=
[θ(χ)[1], . . . , θ(χ)[Mχ]]> � 0 are coefficients to be
determined.

Next, consider expanding the optimization in (9) to
obtain θ(ν),θ(χ) along with {f (χ)

τ ,f
(ν)
τ }tτ=1, as follows

minimize
{f(χ)
τ ,f

(ν)
τ }t

τ=1
,

θ(χ)�0,θ(ν)�0

1
t

t∑
τ=1

1
S ‖yτ − Sf

(χ)
τ − Sf (ν)

τ ‖2

+ µ1

t

t∑
τ=1

‖f (χ)
τ − A(τ,τ−1)f

(χ)
τ−1‖

2
K(χ)(θ(χ)) (14)

+ µ2

t

t∑
τ=1

‖f (ν)
τ ‖2K(ν)(θ(ν)) + ρν‖θ(ν)‖22 + ρχ‖θ(χ)‖22

where ρν , ρχ ≥ 0 are regularization parameters.
The solution to (14) for each t will be denoted as
{f̂ (χ)

τ |t , f̂
(ν)
τ |t }

τ=t
τ=1∪{θ̂

(χ)
t , θ̂

(ν)
t }. Here, the data-dependent

{θ̂(χ)
t , θ̂

(ν)
t } select the kernel matrices that “best” capture

the data dynamics.
Due to the presence of the weighted norms,

namely {‖f (χ)
τ − A(τ,τ−1)f

(χ)
τ−1‖2K(χ)(θ(χ))}

t
τ=1 and

{‖f (ν)
τ ‖2K(ν)(θ(ν))}

t
τ=1, the problem in (14) is non-

convex. Fortunately, (14) is separately convex in
{f (χ)

τ ,f
(ν)
τ }tτ=1,θ

(ν),θ(χ), which motivates the use of
alternating minimization (AM) strategies. AM algo-
rithms minimize the objective with respect to every block
of variables, while keeping the other variables fixed [8].
Conveniently, if θ(ν),θ(χ) are fixed, then (14) reduces to
(9), which can be solved by Algorithm 1 for f̂ (ν)

t|t , f̂
(χ)
t|t

per slot t; see Theorem 1. Conversely, θ̂(χ)
t , θ̂

(ν)
t can be

obtained for fixed {f (ν)
τ ,f

(χ)
τ }tτ=1 as specified next.

Theorem 2. Consider minimizing (14) with respect to
θ(χ) and θ(ν) for fixed f

(χ)
τ = f̂

(χ)
τ |τ and f

(ν)
τ =

f̂
(ν)
τ |τ , τ = 1, . . . , t, where {f̂ (χ)

τ |τ , f̂
(ν)
τ |τ}

t
τ=1 are given

and not necessarily the global minimizers of (14)
with respect to {f (χ)

τ ,f
(ν)
τ }tτ=1. Let f̃ (χ)

τ |τ := f̂
(χ)
τ |τ −

A(τ,τ−1)f̂
(χ)
τ−1|τ−1, τ = 2, . . . , t, as well as R(ν)

t =

1
t

∑t
τ=1 f̂

(ν)
τ |τ f̂

(ν)
τ |τ
>

and R
(χ)
t = 1

t

∑t
τ=1 f̃

(χ)
τ |τ f̃

(χ)
τ |τ
>

.
Then, the minimizers of (14) with respect to θ(ν) and
θ(χ) are

θ̂
(ν)
t = arg min

θ(ν)�0
Tr{R(ν)

t K(ν)−1
(θ(ν))}+ ρν

µ2
‖θ(ν)‖22

(15a)

θ̂
(χ)
t = arg min

θ(χ)�0
Tr{R(χ)

t K(χ)−1
(θ(χ))}+ ρχ

µ1
‖θ(χ)‖22.

(15b)

Proof: To prove (15a), keep in (14) only those
terms that depend on θ(ν), and replace {f (ν)

τ }tτ=1

with {f̂ (ν)
τ |τ}

t
τ=1. Then, the objective in (14)

reduces to (1/t)
∑t

τ=1 f̂
(ν)
τ |τ
>
K(ν)−1

(θ(ν))f̂
(ν)
τ |τ +

(ρν/µ2)‖θ(ν)‖22. Next, using the linearity and
cyclic invariance of the trace it follows that
Tr
{

(1/t)
∑t

τ=1 f̂
(ν)
τ |τ
>
K(ν)−1

(θ(ν))f̂
(ν)
τ |τ
}

=

Tr
{

(1/t)
∑t

τ=1 f̂
(ν)
τ |τ f̂

(ν)
τ |τ
>
K(ν)−1

(θ(ν))
}

=

Tr
{
R

(ν)
t K(ν)−1

(θ(ν))
}

, which proves (15a). The
proof of (15b) follows along the same lines. �

Thus, Theorem 2 simplifies the objective that has to
be minimized to find θ̂

(χ)
t and θ̂

(ν)
t . With K(θ) =∑M

m=1 θ[m]K[m], problems (15a) and (15b) are of the
form

θ̂ = arg min
θ≥0

Tr{RK−1(θ)}+ ρ‖θ‖22 (16)

for some R ∈ RN×N , ρ ≥ 0, and D = {K[m]}Mm=1.
Due to their resemblance to covariance matching [19],
problem (16), and hence (15a) and (15b) will be referred
to as kernel matching.

Theorem 2 suggests an online AM procedure to
approximate the solution to (14), where Algorithm 1
and a solver for (16) termed online kernel matching
(OKM) are executed alternatingly. This is summarized
as Algorithm 2, and it is termed multi-kernel KriKF
(MKriKF). Algorithm 2 does not generally find a global
optimum of (14); yet, finding such an optimum may not
be critical in practice, since it cannot be computed in
polynomial time.

The rest of this section develops the OKM algorithm
for solving (16) when D comprises Laplacian kernels.
The first step is to exploit the fact that all Laplacian
kernel matrices associated with a given graph have
common eigenvectors.

Proposition 1. Consider the eigenvalue
decompositions {K[m] = U diag {λ[m]}U>}Mm=1

and let T := U>RU. Upon defining
Λ(θ) := diag

{∑M
m=1 θ[m]λ[m]

}
and

φ(θ) := Tr (TΛ−1(θ)) + ρ‖θ‖22, (16) can be
equivalently written as

θ̂ = arg min
θ�0

φ(θ) (17)

Proof: Since K(θ) =
∑M

m θ[m]U diag {λ[m]}U>
= UΛ(θ)U>, (17) follows by noting that
Tr{RK−1(θ)} = Tr{RUΛ−1(θ)U>} =
Tr{U>RUΛ−1(θ)} = Tr{TΛ−1(θ)}. �

6
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Proposition 1 establishes that (16) can be expressed
as (17) when the kernels in D share eigenvectors, as is
the case of Laplacian kernels; cf. Sec. II-A.

Proposition 2. When θ � 0, function φ(θ) is strongly
convex and differentiable with gradient

∇φ(θ) = v(θ) + 2ρθ (18)

where v(θ) := −[Tr
{

diag{λ̃[1]}T
}
, . . . ,

Tr
{

diag{λ̃[M ]}T
}

], with λ̃[m] :=

[λ̃1[m], . . . , λ̃N [m]]> and λ̃n[m] :=
λn[m]/(

∑M
µ=1θ[µ]λn[µ])2.

Proof: Because T is a positive semidefinite matrix and
λ[m] � 0 ∀m, it can be easily seen that Tr

{
TΛ−1(θ)

}
is convex over θ � 0. And since ρ‖θ‖22 is strongly
convex, it follows by its definition that φ(θ) is strongly
convex. To obtain the gradient observe that

∂φ

∂θ[m]
= −Tr

{
Λ−1(θ) diag {λ[m]}Λ−1(θ)T

}
+ 2ρθ[m]

(19)

and Λ−1(θ) diag {λ[m]}Λ−1(θ) = diag{λ̃[m]}. �
As (17) entails a strongly convex and differentiable

objective, and projections on its feasible set are easy to
obtain, we are motivate to solve (17) through projected
gradient descent (PGD) [6]. Besides its simplicity, PGD
converges linearly to the global minimum of (17). The
general PGD iteration is

θk+1 =
[
θk − sk∇φ(θk)

]+
, k = 0, 1, . . . (20)

where sk is the stepsize chosen e.g. by the Armijo
rule [6], θ0 is a feasible initial step, and

[
·
]+ denotes

projection on the non-negative orthant {θ : θ[m] ≥
0, m = 1, . . . ,M}. The overall algorithm is termed
OKM, and it is listed as Algorithm 3.

Observe that θ0 in Algorithm 3 is initialized with the
output of Algorithm 3 in the previous iterate, namely
θ̂t−1. This is a warm start that considerably speeds up
convergence of Algorithm 3 since φ(θ) is expected to
change slowly across the iterations in Algorithm 2. An
interesting byproduct of the OKM algorithm is its ability
to adapt to changes in the spatio-temporal dynamics
of the graph functions by adjusting the coefficients
{θ̂(ν)

t , θ̂
(χ)
t }t, and consequently the kernel matrices.

In view of Proposition 2, finding each entry of ∇φ(θ)
in Algorithm 3 requires O(N) operations. Computing
the gradient through (18) exploits the common eigen-
vectors of {K[m]}Mm=1, and avoids the inversion of the
N × N matrix K(θ) that is required when calculating
the gradient for the general formulation (16), where
{K[m]}Mm=1 need not share eigenvectors. The complex-
ity of evaluating the gradient is therefore reduced from

Algorithm 2: Multi-kernel KriKF (MKriKF)

Input: D(ν); D(χ); L = U> diag {λ}U .

1: Initialize: θ̂(ν)
0 = θ̂

(χ)
0 = [1, 0, . . . , 0], f̂ (χ)

0|0 = 0,
M0|0 = 1

µ1
K(χ)[1],

λ(ν)[m] := diag
{
UK(ν)[m]U>

}
∀m,

λ(χ)[m] := diag
{
UK(χ)[m]U>

}
∀m.

2: for t = 1, 2, . . . do
3: Input: A(t,t−1) ∈ RN×N ; yt ∈ RSt ; St ∈ {0, 1}St×N .

4: K
(ν)
t = K(ν)(θ̂

(ν)
t )

5: K
(χ)
t = K(χ)(θ̂

(χ)
t )

6: {f̂ (ν)
t|t , f̂

(χ)
t|t } = KeKriKF(K

(χ)
t−1,K

(ν)
t−1,A(t,t−1),

yt,St, f̂
(χ)
t−1|t−1,M t−1|t−1)

7: Update R(ν)
t and R(χ)

t

8: T
(ν)
t = U>R

(ν)
t U

9: T
(χ)
t = U>R

(χ)
t U

10: θ̂
(ν)
t = OKM({λ(ν)[m]}Mν

m=1,T
(ν)
t , θ̂

(ν)
t−1)

11: θ̂
(χ)
t = OKM({λ(χ)[m]}Mχ

m=1,T
(χ)
t , θ̂

(χ)
t−1)

12: Output: f̂ (χ)
t|t ; f̂ (ν)

t|t ; M t|t.
13: end for

Algorithm 3: Online kernel matching (OKM)

Input: {λ[m]}Mm=1; T t ∈ SN+ ; θ̂t−1 ∈ RM+ .

1: Initialize: θ0 = θ̂t−1,
2: while stopping criterion not met do
3: θk+1 =

[
θk − sk∇φ(θk)

]+
4: k ← k + 1
5: end while

Output: θk.

a prohibitive O(N3M) for general kernels to an afford-
able O(NM) for Laplacian kernels, which amounts to
considerable computational savings especially for large-
scale networks. With K denoting the number of PGD
iterations for convergence, the overall computational
complexity of OKM is therefore O(NMK). Typically,
N3 ≥ NMK and hence the complexity of Algorithm 2
is O(N3), while learning the appropriate linear com-
bination of kernels through MKL does not increase
the complexity order that can be further reduced as
suggested in Remark 2.

Remark 3. The algorithms in this section adopted a
fixed kernel dictionary over time, namely D = {K[m] ∈
SN+}Mm=1. If the topology changes over time, the Lapla-
cian kernel matrices change as well, cf. (3). To ac-

7
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commodate this scenario, one can restart Algorithm 2
whenever the topology changes, say at time tc, and
initialize f̂

(χ)
0|0 ← f̂

(χ)
tc|tc , M0|0 ← M tc|tc , as well

as replace the Laplacian kernels in D with the ones
corresponding to the new topology.

Remark 4. To accommodate a certain degree of nonsta-
tionarity one may consider using the following matrices

R̃
(ν)
t =

t∑
τ=1

γt−τν f̂
(ν)
τ |τ f̂

(ν)
τ |τ
>

+ γtνI (21a)

R̃
(χ)
t =

t∑
τ=1

γt−τχ f̃
(χ)
τ |τ f̃

(χ)
τ |τ
>

+ γtχI (21b)

instead of R(ν)
t and R(χ)

t , where γχ, γν ∈ (0, 1) are
forgetting factors that weigh exponentially past observa-
tions, and ensure invertibility of matrices R̃(ν)

t and R̃(χ)
t .

Moreover, R̃(ν)
t and R̃(χ)

t can be updated recursively as

R̃
(ν)
t =γνR̃

(ν)
t−1 + f̂

(ν)
t|t f̂

(ν)
t|t
>

(22a)

R̃
(χ)
t =γχR̃

(χ)
t−1 + f̃

(χ)
t|t f̃

(χ)
t|t
>

(22b)

which significantly reduces the required memory for the
computation with respect to (21), since {f̂ (ν)

τ |τ , f̃
(χ)
τ |τ}

t−1
τ=1

need not be stored.

V. SIMULATIONS

This section evaluates the performance of the de-
veloped algorithms by means of numerical tests with
synthetic and real data. The proposed algorithms are
compared with: (i) The least mean-square (LMS) algo-
rithm in [14] with step size µLMS; and (ii) the distributed
least-squares reconstruction (DLSR) algorithm [28] with
step sizes µDLSR and βDLSR. Both LMS and DLSR can
track slowly time-varying B-bandlimited graph signals.

The performance of the aforementioned approaches
is quantified through the normalized mean-square error
(NMSE)

NMSE :=
E
[∑t

τ=1 ‖Scτ (f τ − f̂ τ |τ )‖22
]

E
[∑t

τ=1 ‖Scτf τ‖22
]

where the expectation is taken over the sample locations,
and Scτ is an (N−Sτ )×N matrix comprising the rows
of IN whose indices are not in St. For all tests, St is
chosen uniformly at random without replacement over
V , and kept constant over time; that is, St = S, ∀t. The
parameters of different algorithms were selected using
cross-validation to minimize their NMSE. Notice that
our MKriKF, which learns the kernel that “best” fits the
data, requires minimal parameter tuning.

A. Numerical tests on synthetic data

To construct a graph, consider the dataset in [4],
which contains timestamped messages among students
at the University of California, Irvine, exchanged over a
social network during 90 days. The sampling interval
t is one day. A graph is constructed such that the
edge weight An,n′(t) counts the number of messages
exchanged between student n and n′ in the k-th month,
where k = 1, 2, 3 and 30(k − 1) + 1 ≤ t ≤ 30k. Hence,
At changes across months. A subset of N = 310 users
for which At corresponds to a connected graph ∀t is
selected. At each t, f t was generated by superimposing
a B-bandlimited graph function with B = 5 and a spatio-
temporally correlated signal. Specifically, f t = f

(ν)
t +

f
(χ)
t =

∑5
i=1 γ

i
tu

i
t+f

(χ)
t , where {γit}5i=1 ∼ N (0, 1) for

all t, while {uit}5i=1 denote the eigenvectors associated
with the 5 smallest eigenvalues of Lt, and f (χ)

t is gener-
ated according to (8) with A(t,t−1) = 0.03(At−1 + IN ),
η ∼ N (0,Cη), and Cη is a diffusion kernel with
σ = 0.5. Function f(vn, t) is therefore smooth with
respect to the graph and can be interpreted e.g. as the
time that the n-th student spends on the specific social
network during the t-th day.

The first experiment justifies the proposed decompo-
sition by assessing the impact of dropping either f (ν)

t

or f (χ)
t from the right hand side of (7). The KriKF

algorithm uses diffusion kernels K(ν)
t and K(χ)

t with
parameters σ = 1.5 and σ = 0.5, respectively. Fig. 2
depicts the NMSE with S = 217 for the KeKriKF;
the Kalman filter (KF) estimator, which results from
setting f (ν)

t = 0 for all t in the KeKriKF; as well
as kernel Kriging (KKr), which the KeKriKF reduces
to if f (χ)

t = 0 for all t. As observed, KeKriKF,
which accounts for both summands in (7), outperforms
those algorithms that account for only one of them.
Moreover, the low NMSE of KeKriKF in reconstructing
the N − S = 310 − 217 = 93 unavailable node
values reveals that this algorithm is capable of efficiently
capturing the spatial as well as the temporal dynamics
over time-varying topologies.

Next, the robustness of KeKriKF is evaluated when
the connectivity of Gt, captured by At, exhibits abrupt
changes over t. Synthetic time-varying networks of
size N = 81 were generated using the Kronecker
product model, which effectively captures properties of
real graphs [13]. The prescribed “seed matrix”

D0 :=

 1 0.1 0.7
0.3 0.1 0.5
0 1 0.1


8
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Fig. 2: NMSE of function estimates (µ1 = µ2 = 1).

produces the N × N matrix D := D0 ⊗D0 ⊗D0 ⊗
D0, where ⊗ denotes the Kronecker product. An ini-
tial adjacency matrix A0 was constructed with entries
An,n′(0) ∀n, An,n′(0) ∼ Bernoulli(Dn,n′) for n > n′,
and An,n′(0) = An′,n(0) for n < n′. Next, the following
time-varying graph model was generated: at each tc =
10κ, κ = 1, 2, . . ., each entry ofAtc changes with proba-
bility pn,n′ =

∑
k An,k(tc)

∑
lAl,n′(tc)/

∑
k

∑
lAk,l(tc)

as An,n′(tc + 1) = An,n′(tc) + |ξn,n′(tc)| for n >
n′ where ξn,n′(tc) ∼ N (0, σA) and An′,n(tc + 1) =
An,n′(tc + 1) for n < n′. This choice of pn,n′ is based
on the “rich get richer” attribute of real networks, where
new connections are formed between nodes with high
degree [13]. Moreover, the edge (vn, vn′) is deleted at
each td = 20κ, κ = 1, 2, . . . with probability 0.1; that is,
An′,n(td + 1) = An,n′(td + 1) = 0, as long as the graph
remains connected. By varying σA, we obtain different
time-varying graphs. A graph function was generated for
each time-varying graph as follows

f t = δAtf t−1 +

10∑
i=1

γ
(i)
t u

(i)
t (23)

where δ = 10−2 is a forgetting factor,
∑10

i=1 γ
(i)
t u

(i)
t

is a graph-bandlimited component with γ
(i)
t ∼ N (0, 1),

and {u(i)
t }10

i=1 are the eigenvectors associated with the
10 smallest eigenvalues of Lt. Algorithm 1 employs a
bandlimited kernel with β = 103 and B for K(ν)

t , a
diffusion kernel with σ = 0.5 for K(χ)

t , and A(t,t−1) =
10−3(At−1 + IN ). Fig. 3 plots the NMSE of the
KeKriKF algorithm as a function of σA, which deter-
mines how rapidly the graph changes. As observed, the
KeKriKF algorithm can effectively cope with different
degrees of time variation.

0.4 0.6 0.8

0.026

0.028

0.03

σA

N
M

SE

B=10 B=11 B=12

B=13

Fig. 3: NMSE of KeKriKF for different time-varying
graphs (S = 65, µ1 = µ2 = 1).

B. Temperature prediction

Consider the dataset [1] provided by the National Cli-
matic Data Center, which comprises hourly temperature
measurements at N = 109 measuring stations across
the continental United States in 2010. A time-invariant
graph was constructed as in [18], based on geographical
distances. The value f(vn, t) represents the t-th temper-
ature sample recorded at the n-th station. The sampling
interval is one hour for the first experiment, and one day
for the second. KeKriKF employs diffusion kernels
with parameter σ = 1.8 for K(ν)

t , K
(χ)
t = 10−5IN ,

and a transition matrix A(t,t−1) = 5 · 10−4(At−1 +

IN ). MKriKF is configured as follows: D(ν) contains
Mν = 40 diffusion kernels with parameters {σ[m]}40

m=1

with σ[m] ∼ N (2, 0.5),∀m; D(χ) contains 44 diffusion
kernels with parameters {σ[m]}44

m=1, where σ[m] ∼
N (1, 0.2), ∀m, and an identity kernel K(χ)[45] = IN .

Fig. 4 depicts the true temperature along with its
estimates for a station n that is not sampled, meaning
n /∈ S, with S = 44. Clearly, KeKriKF accurately tracks
the temperature by exploiting spatial and temporal dy-
namics, but MKriKF outperforms KeKriKF by learning
those dynamics from the data. The random sampling
set selection heavily affects performance of the LMS
algorithm; for adaptive selection of S see [14].

Fig. 5 compares the NMSE of all considered ap-
proaches for S = 44. Observe the superior performance
of the proposed reconstruction methods, which in this
scenario exhibit roughly the same NMSE.

C. GDP prediction

The next dataset is provided by the World Bank
Group [2], and comprises gross domestic product (GDP)

9
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Fig. 4: True and estimated temperature values (B = 5,
µDLSR = 1.2, βDLSR = 0.5, µLMS = 1.5, µ1 = µ2 = 1).
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Fig. 5: NMSE of temperature estimates (µDLSR = 1.6,
βDLSR = 0.5, µLMS = 1.5, ρν = 105).

per capita for N = 127 countries for the years 1960-
2016. A time-invariant graph was constructed using the
correlation between the GDP of different countries for
the first 25 years. The graph function f(vn, t) denotes
the GDP reported at the n-th country and t-th year for
t = 1985, . . . , 2016. The graph Fourier transform of
the GDP in the first 25 years defined as f̌n := u>n f ∀n,
where un denotes the n-th eigenvector of the Laplacian
matrix; see [24], shows that the graph frequencies f̌k
take small values for 4 < k < 123, and large values
otherwise. Motivated by the aforementioned observation,
the KeKriKF is configured with a band-reject kernel
K(ν) with k = 6, l = 6, β = 15; see Table I,
K(χ) = 10−3IN , and A(t,t−1) = 10−5(At−1 + IN ).
MKriKF adopts a D(ν) with Mν = 16 band-reject
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G
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Greece GDP DLSR B=25 LMS B=25
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Fig. 6: Greece GDP values along with the estimated ones
(S = 38, µDLSR = 1.6, βDLSR = 0.4, µLMS = 1.2, ρ =
100).
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Fig. 7: NMSE of GDP estimates (S = 38, µDLSR = 1.6,
βDLSR = 0.4, µLMS = 1.6, ρν = 105, ρχ = 105).

kernels with k ∈ [2, 5], l ∈ [1, 4], β = 15, and a D(χ)

with 60 diffusion kernels with parameters {σ[m]}60
m=1,

where σ[m] ∼ N (2, 0.5),∀m, and an identity kernel
K(χ)[61] = IN .

Fig. 6 depicts the actual GDP as well as its estimates
for Greece, which is not contained in the sampled
countries. Clearly, both MKriKF and KeKriKF, track the
GDP evolution over the years with greater accuracy than
the considered alternatives. This is expected because the
graph function does not adhere to the graph bandlimited
model assumed by DLSR and LMS.

Fig. 7 reports NMSE over time, where the proposed
algorithms achieve the smallest NMSE. The data-driven
MKriKF outperforms KeKriKF, which is configured
manually.
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Fig. 8: NMSE of network delay estimates (µLMS = 1.5,
c = 0.0005, ρ = 100, µ1 = µ2 = 1).

D. Network delay prediction

The last dataset records measurements of path delays
on the Internet2 backbone [3]. The network comprises 9
end-nodes and 26 directed links. The delays are available
for N = 70 paths at every minute. The paths connect
origin-destination nodes by a series of links described
by the path-link routing matrix Π ∈ {0, 1}N×26, whose
(n, l) entry is Πn,l = 1 if path n′ traverses link l, and
0 otherwise. A graph is constructed with each vertex
corresponding to one of these paths, and with the time-
invariant adjacency matrix A ∈ RN×N given by

An,n′ =

∑26
l=1 Πn,lΠn′,l∑26

l=1 Πn,l +
∑26

l=1 Πn′,l −
∑26

l=1 Πn,lΠn′,l

(24)

for n, n′ = 1, . . . , N , n 6= n′. Expression (24) was
selected to assign a greater weight to edges connecting
vertices whose associated paths share a large number
of links. This is intuitively reasonable since paths with
common links usually experience similar delays [7].
Function f(vn, t) denotes the delay in milliseconds mea-
sured at the n-th path and t-th minute. The KeKriKF
algorithm employs a diffusion kernel with parameter
σ = 2.5 for K(ν)

t , K
(χ)
t = 0.002IN , and A(t,t−1) =

0.005(At−1 + IN ). The MKriKF is configured as fol-
lows: D(ν) contains Mν = 40 diffusion kernels with
parameters {σ[m]}40

m=1 with σ[m] ∼ N (4, 0.5),∀m;
D(χ) contains 60 diffusion kernels with parameters
{σ[m]}60

m=1 with σ[m] ∼ N (1, 0.1),∀m, and an identity
kernel K(χ)[61] = IN .

Fig. 8 depicts the NMSE when S = 20. KeKriKF and
MKriKF are seen to outperform competing methods.

Finally, the proposed MKriKF will be evaluated in
tracking the delay over the network from S = 56
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Fig. 9: True and estimated network delay map for N =
70 paths (ρχ = 100, µ1 = µ2 = 1).

randomly sampled path delays. To that end, delay maps
are traditionally employed, which depict the network
delay per path over time and enable operators to perform
troubleshooting; see also [17]. The paths for the delay
maps in Fig. 9 are sorted in increasing order of the true
delay at t = 1. Clearly, the delay map recovered by
MKriKF in Fig. 9b visually resembles the true delay
map in Fig. 9a.

VI. CONCLUSIONS

This paper introduced online estimators to reconstruct
dynamic functions over (possibly dynamic) graphs. In
this context, the function to be estimated was decom-
posed in two parts: one capturing the spatial dynamics,
and the other jointly modeling spatio-temporal dynam-
ics by means of a state-space model. A novel kernel
kriged Kalman filter was developed using a determin-
istic RKHS approach. To accommodate scenarios with
limited prior information, an online multi-kernel learning
technique was also developed to allow tracking of the
spatio-temporal dynamics of the graph function. The
structure of Laplacian kernels was exploited to achieve
low computational complexity. Through numerical tests
with synthetic as well as real-data, the novel algorithms
were observed to perform markedly better than existing
alternatives. Future work includes distributed implemen-
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tations of the proposed filtering algorithms, and data-
driven learning of A(t,t−1).
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