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Abstract—A significant number of linear inference problems
in wireless sensor networks can be solved by projecting the
observed signal onto a given subspace. Decentralized approaches
avoid the need for performing such an operation at a central
processor, thus, reducing the congestion and increasing the
robustness of the communication network. Unfortunately, existing
decentralized approaches either confine themselves to a reduced
family of subspace projection tasks or need an infinite number
of iterations to obtain the exact projection. To remedy these
limitations, this paper develops a framework for computing a
wide class of subspace projections in a decentralized fashion
by relying on the notion of graph filtering. To this end, a
methodology to obtain the shift matrix and the corresponding
filter coefficients that provide exact subspace projection in a
nearly minimal number of iterations is proposed. Numerical
experiments corroborate the merits of the proposed approach.

I. INTRODUCTION

Wireless sensor networks (WSNs) perform inference tasks
in applications demanding distributed monitoring and opera-
tion. Many of these tasks, such as least squares estimation,
denoising, weighted consensus, and distributed detection [1],
[2] to name a few, can be cast as projecting the observed signal
onto a subspace known to contain the true signal. Although
subspace projection can be performed in a centralized manner
if all nodes send their measurements to a fusion center,
such scheme is not robust against nodes failures and may
provoke congestion. These limitations motivate the use of
novel methodologies to implement the subspace projection in
a distributed manner.

Distributed subspace projection through information ex-
changes among neighbouring nodes has been addressed in [3].
At every iteration of the proposed method, each node linearly
combines its previous iterate with the ones of its neighbors.
The weights of this linear combination are adjusted to achieve
a fast asymptotic convergence. In a complementary way, the
authors in [1] propose a method to obtain the aforemen-
tioned weights in a distributed manner. Unfortunately, these
approaches only give rise to asymptotic convergence of the it-
erative method to the subspace projection solution. Therefore, a
significant number of transmissions repeated over a long period
of time are needed to reduce the error below a given bound.
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In addition, these approaches can only be applied to a rather
reduced set of topologies, as shown in [4]. These limitations
have been alleviated for consensus, which is a special case of
subspace projection, in the literature of graph signal processing
[5] through graph filters [6], [7], [8]. Graph filters generalize
classical time-invariant filters to accommodate signals defined
on the vertices of a graph. Remarkably, these approaches for
distributed consensus converge in a finite number of iterations.
More general scenarios of subspace projection have been
addressed in [7] and [9], but the proposed schemes require
knowledge of the so-called shift matrix. Unfortunately, a valid
shift matrix to perform a given projection task is seldom
known, which limits the applicability of these approaches. To
the best of our knowledge, there is no complete methodology
in the literature to perform general subspace projection in a
finite number of iterations.

This paper develops a method to obtain not only the graph
filter coefficients that enable distributed subspace projection
through graph filters in a finite number of iterations. In addi-
tion, the order of the resulting filters, which equals the number
of communications needed between each pair of connected
nodes, is minimized.

The remainder of the paper is structured as follows. Sec. II,
reviews some background related to subspace projection and
graph filters before formulating the problem. Sec. III describes
the proposed algorithm. Finally, Sec. IV presents some numer-
ical results and Sec.V concludes the paper.

Notation: Vectors (respectively matrices) are denoted by
bold lowercase (uppercase) letters. 1 represents the vector of
all ones and 0 the vector of all zeros. The spectral radius of a
matrix A is ρ(A) , max{|λ1|, ..., |λn|} where λ1, ..., λn are
the eigenvalues of A. The 2-norm of matrix A is ||A||2 =√
λmax(A∗A) = σmax(A), where λmax (respectively σmax)

denote the largest eigenvalue (singular value). Finally, ⊗
denotes Kronecker product, ||A||? the nuclear norm of a matrix
A, cols(A) the columns of matrix A, R(A) the span of the
columns of A, and evals(A) the set of eigenvalues of A.

II. PROBLEM FORMULATION

After reviewing distributed subspace projection and graph
filters, this section formulates the problem.

A. Distributed Subspace Projection

Consider a network of N sensor nodes represented by a graph
G (V ,E ) with V = {v1, . . . , vN} the set of vertices and



E ⊂ V × V the set of edges. Two vertices are connected by
an edge if and only if the associated nodes can communicate
directly. Let A denote the adjacency matrix of G , where
(A)n,n′ = 1 if (vn, vn′) ∈ E and (A)n,n′ = 0 otherwise.
In this paper, it is assumed that node vn can communicate with
node vn′ if node vn′ can communicate with node vn, that is,
G is undirected. Moreover, it will be assumed that G contains
all self-loops, that is (vn, vn) ∈ E ∀n, since it is implicit that
any node can communicate with itself. Given the observation
vector z = [z1, . . . , zN ]T , where zn denotes the observation of
node vn ∈ V , the goal is to estimate the signal vector ξ ∈ RN

modeling the phenomenon of interest (e.g. temperature), which
is related to z via:

z = ξ + v, (1)

where v ∈ RN stands for additive noise.

In subspace projection tasks, ξ is known to lie in some
subspace of dimension r < N . Let U‖ ∈ RN×r be a matrix
whose columns span a subspace. Hence, vector ξ can be
expressed as ξ = U‖α for some α ∈ Rr. Without loss of
generality, the columns of U‖ are assumed orthonormal. The
orthogonal projection of z onto the subspace spanned by the
columns of U‖ equals the least-squares estimate of ξ and will
be denoted by ξ̂. It follows that:

ξ̂
∆
=[ξ̂1, . . . , ξ̂N ]T = U‖U‖

T z
∆
=Pz (2)

where P ∈ RN×N is the projection matrix. The goal of
this operation is to find ξ, given z and U‖. In practice, the
dimension r of the useful signal subspace is typically much
smaller than the dimension N of the observation space. Hence,
a strong noise reduction may arise from the projection in
(2) [3]. Besides least squares estimation, another particular
example of subspace projection is the average consensus,
where the projection matrix is P = 11T /N .

A distributed scheme for subspace projection is proposed
in [3], where the iterates z[k + 1] = Wz[k] are iteratively
computed for k = 0, 1, . . . with initialization z[0] = z.
Matrix W ∈ RN×N satisfying (W)n,n′ = 0 if (vn, vn′) 6∈
E , is sought to satisfy limk→∞ z[k] = limk→∞Wkz =
Pz, ∀z ∈ RN i.e. limk→∞Wk = P. The number of local
exchanges for convergence is high since this criterion targets
asymptotic convergence and, moreover, the set of feasible
topologies is limited. The present paper considers approaches
that converge to the exact projection in a finite number of
iterations and for a larger set of feasible topologies.

B. Distributed subspace projection via graph filters

To introduce the notion of graph filter, it is necessary to
define the so-called graph shift operator z 7→ Sz, where
the symmetric matrix S ∈ RN×N satisfies (S)n,n′ = 0 if
(vn, vn′) 6∈ E , and is referred to as the shift matrix [7].
Examples of shift matrices include A and the combinatorial
Laplacian diag[A1]−A.

This shift operator can be evaluated distributedly. To see this
observe that the n-th entry of y , Sz can be expressed as

yn =

N∑
n′=1

(S)n,n′zn′ =
∑

n′:(vn,vn′ )∈E

(S)n,n′zn′ (3)

where the second equality follows from the definition of shift
matrix. Thus, to compute yn, node vn only needs the entries
of z corresponding to its neighbors, which can be obtained
through local information exchanges. Therefore y can be
computed in a decentralized fashion. Observe that the operator
z 7→ Slz can also be evaluated in a distributed manner by
iteratively applying the shift operator l times: if z[0] = z and
z[k] = Sz[k − 1], k = 1, . . . , l, it follows that z[l] = Slz.
A graph filter takes this idea one step further by introducing
also linear combinations of {z[k]}lk=0. Specifically, an order-L
graph filter is a polynomial of degree L− 1 of the graph shift
operator S of the form:

H :=

L−1∑
l=0

clS
l, (4)

where {cl}L−1
l=0 are the filter coefficients.

This paper develops an efficient methodology to implement
the subspace projection operation in a distributed fashion using
graph filters, that is, finding {cl}L−1

l=0 and S such that H = P.
By introducing memory, we show that graph filters provide
faster distributed subspace projection than the scheme in [3].
In [6], finite-time distributed consensus was achieved using
graph filters. Also in [7], a general framework to implement
arbitrary linear operators using graph filters is developed and
applied to consensus and network coding. However, both
previous approaches rely on the knowledge of a suitable shift
matrix, but a methodology to obtain a valid shift matrix for
general subspace projection remains an open problem and is
the focus of this paper. Among feasible shift matrices, the one
leading to the smallest order L will be selected. The problem
can thus formulated as: given P and E , find S ∈ RN×N and
{cl}L−1

l=0 such that (S)n,n′ = 0 if (vn, vn′) 6∈ E , n, n′ =

1, ...., N and P =
∑L−1

l=0 clS
l with L as small as possible.

III. SHIFT MATRICES FOR FASTEST DISTRIBUTED
SUBSPACE PROJECTION

This section develops an approach to obtain the shift matrix
and the corresponding filter coefficients that provide exact
subspace projection in a minimal number of iterations. For this
purpose, we first characterize the set of feasible shift matrices
to be used during the filtering process. Then, an approach
to compute the corresponding filter coefficients is presented.
Finally, an optimization methodology is proposed to minimize
the order of the filter (i.e. the number of iterations needed to
perform the projection via the graph filtering process).

A. Computation of the filter coefficients

The set of feasible shift matrices is given by:

S :=
{

S ∈ RN×N such that (S)n,n′ = 0 if (vn, vn′) 6∈ E ,

∃L, c = [c0, ..., cL−1]
T satisfying U‖U

T
‖ =

L−1∑
l=0

clS
l
}

(5)

The next result accomplishes the characterization of the shift
matrices involved in the graph filtering process for subspace
projection.



Proposition 1. Let U‖ ∈ RN×r have orthonormal columns
and let S be given by (5). Then,

S =
{

S : S = U‖EΛ‖E
TUT
‖ + V⊥Λ⊥VT

⊥ for some

E ∈ Rr×r,Λ‖ ∈ Rr×r diagonal ,Λ⊥ ∈ RN−r×N−r diagonal,

V⊥ ∈ RN×N−rsatisfying EET = I, VT
⊥V⊥ = I, UT

‖V⊥ = 0,

(Λ‖)n,n 6= (Λ⊥)n′n′ ,∀n ∈ {1, . . . , r},∀n′ ∈ {1, . . . , N−r}
}

=
{

S : S = S‖ + S⊥ for some S‖ and S⊥ satisfying

S‖ = ST
‖ , cols(S‖) ∈ R(U‖),S⊥ = ST

⊥,

cols(S⊥)⊥U‖, either rank(S‖) = r or rank(S⊥) = N−r,

if λ ∈ evals(S‖) and λ 6= 0 then λ 6∈ evals(S⊥);
}

(6)

The proof is omitted here due to space restrictions.
This proposition essentially establishes that a shift matrix
S satisfies (4) for some {cl}L−1

l=0 if it can be decomposed
as the sum of two matrices S‖ and S⊥ which respectively
span R(U‖) and its orthogonal complement. Moreover, the
non-null eigenvalues of S‖ and S⊥ must be different.

The next step is to determine {cl}L−1
l=0 if a valid S

is given. If S ∈ S, then Proposition 1 establishes that
P = U‖U

T
‖ =

∑L−1
l=0 clS

l amounts to:

U‖U
T
‖ = U‖E

[ L−1∑
l=0

clΛ
l
‖

]
ETUT

‖+V⊥

[ L−1∑
l=0

clΛ
l
⊥

]
VT
⊥. (7)

Multiplying both sides on the left by UT
‖ and on the right by

U‖, it follows that I = E
[∑L−1

l=0 clΛ
l
‖
]
ET or, equivalently,

I =
∑L−1

l=0 clΛ‖
l. On the other hand, multiplying (7) on

the left by VT
⊥ and on the right by V⊥, it follows that

0 =
∑L−1

l=0 clΛ
l
⊥. Therefore, one must have that

[
1r

0N−r

]
=


1 λ1 . . . λL−1

1

1 λ2 . . . λL−1
2

...
...

. . .
...

1 λN . . . λL−1
N



c0
c1
...

cL−1

 (8)

where λ1, . . . , λN are such that Λ‖ , diag{λ1, . . . , λr} and
Λ⊥, diag{λr+1, . . . , λN}. Equation (8) can be expressed in
vector-matrix form as

λp = Ψc (9)

Expression (9) provides a means to obtain the coefficients
{cl}L−1

l=0 for a feasible S.

B. Minimization of the order of the filter

The next goal is to minimize L. To this end, note that Ψ
is Vandermonde and therefore its rank is min(L,N ′), where
N ′ is the number of distinct eigenvalues in {λn}L−1

l=0 . Since
N ′ ≤ N, it follows that (9) is necessarily satisfied for some c
if S ∈ S and L = N . For this reason, the approach adopted
here will be to set L = N and then find c and S such that the
last entries of c are zero.

Since L = N , matrix Ψ is invertible if λn 6= λn′ for
all n 6= n′. In that case c = Ψ−1λp and no entry of c

is necessarily zero. Therefore, the resulting filter
∑N−1

l=0 clS
l

will generally be of order N . On the other hand, if there are
replicated eigenvalues {λn}Nn=1, one can exploit the resulting
degrees of freedom to reduce the order of the filter. Suppose,
for example, that λ1 = λ2 and that λn 6= λn′ ∀n, n′ ∈
{2, . . . , N}, n 6= n′. In that case, one can form matrix Ψ̃ which
is the result of replacing the first row of Ψ with [0, 0, . . . , 0, 1],
and also the vector λ̃p by replacing the first entry of λp with a
zero. Besides (9), the resulting c = Ψ̃−1λ̃p satisfies cN−1 = 0
and the corresponding filter is of order N − 1. Similarly, if
there are multiple repeated eigenvalues in {λn}Nn=1, one can
replace further rows of Ψ with vectors [0, . . . , 0, 1, 0, . . . , 0]
that ensure that the last entries of c are zero. In general, the
order of the fastest filter is N ′. Hence, minimizing the number
of distinct eigenvalues of S minimizes the number of filter
coefficients required and thereby the order of the filter. This
observation motivates the search for shifts which minimize the
number of distinct eigenvalues for fastest convergence. The rest
of the section accomplishes this task.

From Sec. III, any feasible S can be decomposed as
S = S‖ + S⊥. The goal is to find a shift matrix S
whose eigenvalues are as equal as possible, yet the non-zero
eigenvalues of S‖ and S⊥ must differ, cf. (6). A natural
approach would be therefore to minimize the total number
of different eigenvalues of S subject to (i) S must satisfy
(S)n,n′ = 0 if (vn, vn′) 6∈ E , and (ii) the non-zero eigen-
values of S‖ and S⊥ must differ. Unfortunately, this problem is
non-convex due to the objective and due to (ii). The rest of this
section describes a means to alleviate this difficulty. First, one
can replace the aforementioned objective with a convex surro-
gate. To this end, note that if (ii) holds, the number of distinct
non-zero eigenvalues of S equals the number of distinct non-
zero eigenvalues of S‖ plus the number of distinct non-zero
eigenvalues of S⊥. Focusing on S‖, note that the number of
distinct non-zero eigenvalues of S‖ equals the zero norm of the
vector [λ1−λ2, λ1−λ3, . . . , λ1−λr, λ2−λ3, . . . , λr−1−λr]T .
A convex surrogate of such a zero norm is the l1-norm [10].
However, one cannot use such an l1-norm directly as an
objective since λ1, . . . , λr are generally non-convex functions
of S. To remedy this problem, one can adopt the objective
||S‖ ⊗ IN − IN ⊗ S‖||?. The nuclear norm equals the l1-
norm of the singular values of its argument, and the latter
comprise the absolute differences between pairs of eigenvalues
of S‖. Specifically, it is easy to see that if S = U‖EΛ‖E

TUT
‖

(cf. (7), then Λ‖ is the matrix of eigenvalues of S‖ and
||S‖⊗ IN − IN ⊗S‖||? = ||Λ‖⊗ IN − IN ⊗Λ‖||?. Moreover,
observe that

Λ‖ ⊗ I− I⊗Λ‖ =

λ1I
. . .

λrI

−
1Λ‖ . . .

1Λ‖


and therefore

diag(Λ‖⊗I−I⊗Λ‖) = [0, λ1 − λ2, λ1 − λ3, . . . , λr − λr−1, 0]
T
.

Building upon these notions, one can seek S as the solution



to the following convex problem:

minimize
F,S,S‖,S⊥

||F⊗ I− I⊗ F||? + ||S⊥ ⊗ I− I⊗ S⊥||?

s.t: (S)n,n′ = 0 if (vn, vn′) 6∈ E , n, n′ = 1, ...., N

S = S‖ + S⊥

S⊥ = ST
⊥ (10)

S‖ = ST
‖

S‖ = U‖FUT
‖

tr(F) = r, tr(S⊥) ≤ N − r − ε
ST
⊥U‖ = 0

where ε > 0 is a small constant and where ||F⊗ I− I⊗F||?
replaces ||S‖ ⊗ IN − IN ⊗ S‖||? since its value is the same
but the size of F is generally smaller than the size of S‖.
To avoid matrix solutions with all zero elements, the trace
of F is constrained to be equal to the dimension of the
subspace. Moreover, the constraint tr(S⊥) 6= N − r − ε is
introduced to force the non-zero eigenvalues of S‖ to differ
from those of S⊥. If it turns out that introducing this constraint,
the resulting feasible set is empty, one can replace it with
tr(S⊥) ≥ N − r + ε. If both these constraints lead to
empty feasible sets, then the projection P cannot be exactly
implemented by means of a graph filter for the given G . It
is remarkable to note that the set of topologies that allow
implementation of a given P through a graph filter is generally
larger than the set of topologies that allow the implementation
through the method of [3].

In addition to the solution given in (10), which focuses
on fastest convergence, an additional approach to approximate
the fastest shift with a lower level of complexity is proposed
next. This approach obtains shift matrices that yield filters of
a potentially higher order than the previous approach but the
optimization problem has less computational complexity. The
following approximate objective function is used in (10):

minimize
F,S,S‖,S⊥

||F⊗ I− I⊗ F||? + ||S⊥||2

where we have replaced ||S⊥ ⊗ I − I ⊗ S⊥||? with ||S⊥||2
to minimize the largest eigenvalue of S⊥ and thereby, to
reduce the spread of eigenvalues associated with eigenvectors
perpendicular to the subspace spanned by the columns of U‖.
As a consequence of the term ||S⊥||2, the largest eigenvalue of
the optimal S⊥ typically has a higher multiplicity, yet smaller
eigenvalues will typically have unit multiplicity.

IV. SIMULATION RESULTS AND DISCUSSION

This section illustrates the performance of the proposed
approach by averaging the results over 100 different random
networks composed of N = 25 nodes. At each realization of
the experiment, a network was generated by deploying the N
nodes uniformly at random over a square area of side R. An
edge between two nodes was created if the distance between
them was shorter than a predefined maximum transmission
range rmax. Random input signals z were drawn from a
zero mean and unit variance normal distribution. At every
realization U‖ was randomly generated by applying Gram
Schmidt to a N × r matrix whose entries are independent and
uniformly distributed between 0 and 1.
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Fig. 1: Performance of the proposed graph filter approach vs
existing fastest asymptotic approach [3].

The performance of the filter was evaluated by compar-
ing the filtered signal Hz with the desired projected signal
Pz. Fig. 1 compares the error ||y − Pz||2 of the proposed
approach with the one resulted from applying [3] for N =
25 and r = 5, r = 10 respectively. The value for rmax
was chosen to accommodate the set of feasible topologies
in [3]. More specifically, the error is defined as E(k) =

EA,z||
∑k

l=0 c
(k)
l Slz−Pz||2 for the proposed algorithms and

as E(k) = EA,z||Wkz − Pz||2 for the approach in [3].
For graph filter approaches, the filter coefficients c

(k)
l that

provide the fastest convergence were calculated as explained
in Sec. III when k ≥ L, and as the solution to the least
squares problem vec(P) = [vec(I), vec(S), . . . , vec(Sk)]c(k)

for k < L, where c(k) = [c
(k)
o , . . . , c

(k)
k ]T . According to

Fig. 1a and Fig. 1b, the fastest shift converges to the desired
projection result in the smallest number of local exchanges.
The fastest approximation approach follows closely while the
fastest asymptotic approach [3] does not converge within
the considered iteration limit. These observations reaffirm the
expected merits of the proposed graph filter based approach,
which minimizes the number of communication steps.

V. CONCLUSIONS

This paper presents a decentralized method to compute
subspace projections in a minimal number of iterations. The
approach relies on the notion of graph filtering and solves
convex programs involving nuclear norm minimization over
a judiciously designed feasible set. Simulation tests showcase
the benefits of the proposed schemes. Future research will deal
with improved optimization algorithms to solve (10) as well
as a more exhaustive simulation study.
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