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Abstract— High-precision motion control systems, for in-
stance deployed for micro- and nano-positioning, often use
the smart-material based actuators such as piezoelectric and
magnetostrictive stages. Those exhibit inherent hysteresis non-
linearities which are challenging to compensate without precise
hysteresis modeling. Even if a suitable hysteresis modeling
approach is available, its parameter identification, correspond-
ingly adaptation, at normal operating conditions constitute
an essential task for the overall control design. This paper
uses the direct recursive identification method for the Preisach
hysteresis model and describes the fast parallel-computing
discrete-time algorithm for an adaptive hysteresis filter. The
exponential convergence of errors is ensured up to a residual
level proportional to the power of the measurement noise. We
provide an explicit discrete-time formulation of the hysteresis
filter and its online parameter adaptation. In addition to the
theoretical analysis, we demonstrate the expected convergence
of the estimation errors by using experimental data from a
standard open-loop controlled piezoelectric actuator stage.

I. INTRODUCTION

Hysteresis, as a quasi-static nonlinearity, appears in var-
ious piezoelectric, magnetostrictive, and other smart-actoric
technologies as a factor aggravating their accurate control,
for instance in micro- and nano-positioning [1]. Identification
of parameters of the hysteresis at normal operating conditions
is a challenging task for a model-based, or model-supported,
control synthesis and tuning. The Preisach hysteresis model
[2], [3] is one of the most powerful approaches to rate-
independent hysteresis modeling, which has proved its worth
in various engineering fields. An accurate identification of
the Preisach hysteresis loops with the associated measure
distribution on the Preisach plane, and a finite number
of optimally chosen input-output experiments, have been
proposed in [4]. In [5], the problem of hysteresis param-
eter identification with limited experimental data has been
addressed by establishing links to regularization methods for
the ill-posed problems. Similar developments can be found
later in [6]. More recent attempts [7] develop a compressive
sensing-based approach, while using a dedicated ‘damped
oscillation’ input sequence in accord with the discretized
Preisach model. Surprisingly, only a few recursive methods
suitable for online Preisach model identification have been
analyzed theoretically and proved with experiments, from
which two different approaches [8] and [9] can be mentioned.

In this paper, we provide the fast parallel computing
discrete-time algorithm for adaptive hysteresis filter using
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the direct recursive identification method proposed in [9].
The straightforward discrete-time formulation, including the
adaptive scheme, is augmented by the convergence analysis
in the presence of output noise – the case most significant
for engineering practice. We demonstrate an example of
the application involving measurements from a piezoelectric
stage. Further, we analyze the residual errors, and show the
proportionality between the output noise power and residual
error norm of the Preisach measure distribution, which is in
agreement with our analysis.

II. DISCRETE-TIME ADAPTIVE HYSTERESIS FILTER

A. Hysteresis primitive (hysteron)

The Preisach hysteresis model [2], [3] is based on a
weighted superposition of spatially distributed hysteresis
primitives – hysterons, each one modeled by a non-ideal
(delayed) two-points relay, see Fig. 1. The hysteron assumes
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Fig. 1. Hysteresis primitive (hysteron).

either of two binary states {−1,+1}, while a discrete switch-
ing occurs at exceeding of the threshold values β and α,
which are parameterizing the hysteron within the so-called
Preisach half-plane α ≥ β. As long as an external input
of the hysteron operator lies between the thresholds, i.e.
x ∈ (β, α), the hysteron keeps its previous states, thus
providing a local memory effect for the output value y.
Recall that the local memory manifests itself through the
map

(
x(k), y(k− 1)

) �→ y(k), where k ≥ 0 are the discrete
(integer) time instants.

Following [10], the hysteresis primitive can be written
in a closed analytic form which is particularly suitable for
fast parallel computing of multiple hysterons building the
Preisach model. Given the initial state

y(0) =

{
χ(x(0)), if x(0) ∈ (−∞, β) ∨ (α,∞),

[−1,+1] , otherwise,
(1)

the hysteron state, correspondingly output, equation is

y(k) = min
[
χ(x(k)−β),max

[
y(k−1), χ(x(k)−α)]]. (2)
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Further we define the signum operator as

χ
(
σ(k)

)
=

{
1, if σ(k) ≥ 0,

−1, otherwise,
(3)

for
(
σ(k)− σ(k − 1)

)
> 0, and as

χ
(
σ(k)

)
=

{
1, if σ(k) > 0,

−1, otherwise,
(4)

for
(
σ(k)−σ(k−1)

)
< 0. Note that the direction-dependent

case differences (3) and (4) are necessary in order to ensure
that the hysteron is always switching at the thresholds, even
if a time-varying input remains exactly at the threshold value.

B. Recursive identification of Preisach hysteresis

The discretized Preisach hysteresis model can be seen as
a weighted superposition of a finite number L of hysteron
operators yi = hi(p)[x], with the input x and output y
according to (2). Recall that L = (N2 + N)/2 when N is
the discretization level of the Preisach plane. Each hysteron
is weighted by Ri > 0 and assigned to the pair pi =
(αi, βi) which determines the hysteron’s location within the
Preisach half-plane P = {p = (α, β) : α ≥ β}. Recall
that the overall weight distribution R(pi), ∀ i = 1, . . . , L
over the Preisach half-plane determines the shape of input-
output hysteresis loops, and is to be identified for the given
hysteresis system. Given the above notations, the discrete-
time output of the Preisach hysteresis model is

z(k) =

L∑
i=1

Rihi(p)
[
x(k)

]
. (5)

Furthermore, one can show that if P+ ⊆ P is a subset of
those hysterons whose instantaneous state is +1, then the
hysteresis model output can be also written as

z =
∑
P+

Ri(p). (6)

The direct recursive identification algorithm, proposed in
[9] and analyzed in detail in [11], aims to determine the
Preisach distribution R(p), using the estimate R̂(p) that con-
verges monotonically to R(p) with the progressing discrete
time k. We denote those subset of hysterons which switch
on, i.e. change their state from −1 to +1 at the time step
k, by S+(k) = P+(k)\P+(k − 1). Similarly, the subset
of hysterons which switch off, i.e. change their state from
+1 to −1, is denoted by S−(k) = P+(k − 1)\P+(k).
The corresponding number of switching hysterons is A =
dim(S). The identification algorithm uses the differential
output error e(k) = z(k)−z(k−1)− ẑ(k)+ ẑ(k−1), where
z represents the hysteresis system output and ẑ is its model-
based estimate, i.e. the output of the adaptive hysteresis
filter under identification. Based on the introduced subsets
of switching hysterons and (6), one can show that

e(k) =
∑

S+(k)

(
Ri − R̂i

)− ∑
S−(k)

(
Ri − R̂i

)
. (7)

The direct recursive identification algorithm updates the
weight of those hysterons that have pi = (αi, βi) in the
switching region

S(k) = S+(k) ∪ S−(k).

The update rate is determined according to, cf. [9], by

R̂i(k) = R̂i(k − 1) + r(k), pi ∈ S(k)

with

r(k) =

{
e(k)A−1(k) if p ∈ S+(k),

−e(k)A−1(k) if p ∈ S−(k),
, (8)

where A(k) is the number of nodes in the switching region.
At the same time, R̂i(k) = R̂i(k − 1) for pi ∈ P \ S(k).
Note that the update rate is evaluated once at each discrete
time step, and applies to all the hysterons belonging to the
switching subset, cf. further with sections II-C, II-D.

The Euclidian norm of the Preisach distribution estimation
error can be written as

∥∥R̂(k)−R
∥∥ =

( L∑
i=1

(
R̂i(k)−Ri

)2)1/2

. (9)

In [11] it has been shown that (9) is monotonically decreasing
for stochastic input processes and almost surely converges to
zero exponentially, i.e.

∥∥R̂(k)−R
∥∥ ≤ C exp(−λk) for some

positive constants C and λ, in absence of the measurement
noise. In presence of the measurement noise

∥∥R̂(k)−R
∥∥→

const, and that also exponentially with k, while the residual
constant depends on the noise power as will be analyzed
further in section III.

C. Adaptation of hysteron weights

Assuming the recursive identification algorithm given
above in section II-B, the single hysteron weight is adapted
at the fractional time instant k+0.5, i.e. between the current
and next state of the discrete-time filter. This is required
due to implementation-related synchronization between two
successive discrete time steps, i.e. k and k + 1, since at the
next time step the already updated hysteresis model output
has to be compared with that from the system. Further we
note that this requires either an auxiliary (internal) triggering
clock, i.e. impulse generator, or the double sampling rate
compared to the rate initially assumed for the hysteresis filter
without weight adaptation. Such implementation issues have,
however, no impact on the proposed algorithm and, as less
relevant, will not be discussed in detail here.

It is evident that for the given hysteron states, the differ-
ential quantity

s(k) = 0.5
∣∣y(k)− y(k − 1)

∣∣ (10)

provides the binary variable s(k) ∈ {0, 1} that indicates
whether the hysteron has been switching or not. Therefore,
the normalized area of switching region is given by

A(k) =

L∑
i=1

si(k). (11)
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This is fed into the update law (8). Finally, the corresponding
hysteron weight is adapted by

R̂i(k + 0.5) = R̂i(k) + r(k)s(k). (12)

D. Structure of adaptive filter

The block diagram of the adaptive hysteresis filter is
shown in Fig. 2. The unknown static hysteresis plant is
driven by an exogenous input x(k), which is assumed to
be available and used for hysteresis identification. Recall
that the static, i.e. rate-independent, hysteresis is invariant
to affine time transformations. That means the system re-
sponse is independent of the spectral characteristics of the
input signal, and solely the sequence of local input extrema
determines the memory state of hysteresis. Here it is worth
to emphasize that the rate-independent hysteresis remains
a widely accepted and reasonable approach for describing
the hysteresis phenomena in functional materials, even if
various attempts of merging the hysteresis with residual, not
necessarily nonlinear, system dynamics have been made.

x k

z k

z k

e k

r kis k

Fig. 2. Block diagram of the adaptive hysteresis filter.

The available hysteresis output is subject to the measure-
ment noise for which only assumptions about the power can
be made, as will be addressed in section III. Both the output
of hysteresis system and the output of the adaptive filter
we design are feed through the discrete-time backward shift
operator d−1, also denoted as single time delay, so that the
differential output error e(k) is obtained. The error is used
for computing the update rate of the switching hysterons,
while their parallel computation provides the output of the
adaptive hysteresis filter ẑ(k).

III. CONVERGENCE IN PRESENCE OF NOISE

In the presence of measurement, i.e. sensor, noise n(k)
the hysteresis system output, cf. Fig. 2, results in

z(k) =
∑

P+(k)

Ri(p) + n(k). (13)

As a standard sensor assumption, each sample of n(k) has a
normal distribution with zero mean and variance W , and the
samples are i.i.d. (independent and identically distributed)

that is a Gaussian white noise. W can be directly estimated
as the standard average power of the measurement noise

W =
1

K

K∑
k=1

n2(k), with K →∞. (14)

With each point pi = (αi, βi) on the Preisach half-plane
P , we associate the collection of other points

Δi = {pj = (αj , βj) ∈ P : βi ≤ βj ≤ αj ≤ αi},
which can be called a (discretized) “triangle”. We will say
that the input series creates all the possible triangles over a
time interval k = k�, k� + 1, k� + 2, ..., k�+1 if
• for each node pi ∈ P , there is a time instant k with

k� ≤ k ≤ k�+1 such that the switching region S(k) is
the triangle Δi;

• all relays are switched off at the moments k�, k�+1

(the 2nd condition is technical and included for convenience).
Let us denote the error of the estimate of the weight

distribution at the k-th time step by E(k) = R̂(k)−R. With
this notation, from the update rule one obtains the relation

‖E(k + 1)‖2 = ‖E(k)‖2 − 1

A(k)

( ∑
S(k)

Ei(k)
)2

+
ν2(k)

A(k)

(15)
for every k, where

ν(k) = n(k + 1)− n(k).

A further analysis shows that if the input creates all the pos-
sible triangles over the time interval between two moments
k� and k�+1, then there is at least one moment k within this
time interval, such that

( ∑
S(k)

Ei(k)
)2

≥ C(T�, N)‖E(k�)‖2−D(T�, N)

T�

k�+1∑
k=k�+1

ν2(k),

(16)
where

T� = k�+1 − k�

and the coefficients C(T�, N), D(T�, N) satisfy

0 < C(T�, N) < 1, D(T�, N) > 0.

The coefficient C(T�, N) decreases with T� and N , while
the coefficient D(T�, N) increases with T� and N . These
coefficients can be estimated explicitly as shown below.

Relations (15) and (16) imply that

‖E(k�+1)‖2 ≤ q(T�)‖E(k�)‖2 + B(T�, N)

T�

k�+1∑
k=k�+1

ν2(k)

(17)
with

q(T�, N) = 1− C(T�, N), B(T�, N) ≤ D(T�, N) + T�.
(18)

Denoting by 〈·〉 the expected value of a random variable, and
taking into account that 〈ν2(k)〉 = 2W , from (17) we obtain〈‖E(k�+1)‖2

〉 ≤ q(T�, N)
〈‖E(k�)‖2

〉
+ 2B(T�, N)W.

(19)
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Now, assume that there is an infinite increasing sequence
of time moments 0 = k0 < k1 < · · · < k� < · · · such that
an input x(k) creates all the possible triangles over each time
interval k� ≤ k ≤ k�+1. (17) and (19) can be used to estimate
E(k) for various classes of such inputs. In particular, assume
that the sequence T� = k�+1 − k� is bounded:

T� ≤ T, � = 0, 1, 2, . . .

Since both q(T,N), B(T,N) increase with T , (19) implies〈‖E(k�+1)‖2
〉 ≤ q(T,N)

〈‖E(k�)‖2
〉
+ 2B(T,N)W

for each �. This leads to the estimate〈‖E(k�)‖2
〉 ≤ q�(T,N)‖E(0)‖2 + 2B(T,N)

1− q(T,N)
W. (20)

Here q(T,N) = 1−C(T,N) < 1, cf. with (18). Hence, the
effect of initial error E(0) on the error E(k�) exponentially
decays with time. In particular, for large k� one obtains

lim sup
�→∞

〈‖E(k�)‖2
〉 ≤ 2

B(T,N)

C(T,N)
W. (21)

That is, an upper bound of the variance of the residual error
(after a sufficient number of iterations) is proportional to the
the measurement noise power.

We note that the iterations of the mean
〈
E(k)

〉
follow

the update rule with zero (averaged out) noise, and hence〈
E(k)

〉
exponentially converges to zero as shown in [11].

Next, assume that the input is a random process. For
simplicity, assume that the times T� that it generates are
i.i.d. (possibly unbounded) random variables, which are
also independent of the measurement noise. Considering the
average over the realizations of the input, from (19) one
obtains the estimates〈‖E(k�)‖2

〉 ≤ (
1−〈C(T�, N)〉)�‖E(0)‖2+2〈B(T�, N)〉

〈C(T�, N)〉 W,

(22)

lim sup
�→∞

〈‖E(k�)‖2
〉 ≤ 2

〈B(T�, N)〉
〈C(T�, N)〉 W, (23)

which are similar to (20), (21) but now contain the expected
values of the random variables B(T�, N), C(T�, N). Hence,
again, the effect of the initial error exponentially vanishes,
and an upper bound of the variance of the residual error is
proportional to the measurement noise power.

Relations (21), (23) suggest that the variance of the
residual error 〈‖Eres‖2〉 is proportional to the measurement
noise power W . Indeed, in the next section we show this
proportionality for a set of experimental data (Fig. 8) and
evaluate the coefficient of proportionality numerically. This
coefficient can also be estimated analytically. In particular,
for C(T,N), D(T,N) in (16), we obtained the estimates

C(T,N) ≥ 1

16N(NT + 2)2
, D(T,N) ≤ T 2N2 (24)

which, when combined with (18), (21), lead to the estimate

〈‖Eres‖2〉
W

≤ 2
〈B(T,N)〉
C(T,N)

≤ 32NT (NT + 2)2(TN2 + 1)

(25)

for the ratio of 〈‖Eres‖2〉 and W . A similar estimate
follows from (20), (21). However, these estimates are too
conservative for practical use. Deriving more accurate prac-
tical estimates for the coefficient of proportionality between
〈‖Eres‖2〉 and W will be the subject of future work.

IV. PRACTICAL EXAMPLE

A. Piezoelectric setup

The implemented adaptive discrete-time hysteresis filter
(cf. Fig. 2) has been evaluated on the experimental data
collected from a standard piezoelectric stage with one trans-
lational degree of freedom. For more details on the system
hardware configuration we refer to [12], [13].

zu k
F

x k v

Fig. 3. Principal structure of experimental setup.

The principal structure of the experimental setup is
schematically shown in Fig. 3. The power-amplified input
voltage v drives the piezoelectric stage, from which the
relative displacement, i.e. stroke, is measured by means of
the linear encoder with a high-resolution of 1.22 nm/pulse.
In order to eliminate the high-frequent resonant dynamics of
the piezoelectric stage, the control input signal u(k) is fed
through the 4th-order notch filter. The latter is designed so
as to suppress two most pronounced resonance peaks, and is
based on the accurate measurement of the frequency response
function. The determined discrete-time transfer function of
the notch filter, in terms of the discrete shift operator d, is

F (d) =
0.430d4 − 1.409d3 + 1.987d2 − 1.385d + 0.416

d4 − 2.174d3 + 1.752d2 − 0.620d + 0.081
.

(26)
The system sampling rate is 5 kHz. The frequency char-
acteristics of the designed notch filter are shown in Fig.
4, together with the measured frequency response function
(FRF) and the identified transfer function of a linear system
approximation; an accurate match is clearly visible.
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Fig. 4. Bode diagram of the measured system frequency response function,
identified linear model, and designed notch filter.

A long-term input sequence has been generated as a
standard Bernoulli process for the input voltage range be-
tween 0 V and 75 V. The carrier frequency of the input
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process has been selected at 10 Hz, that is quite below
the resonant dynamics of the piezoelectric stage, cf. with
Fig. 4. Further, we note that the sharp corners at the input
reversals are equally smoothed by the notch filter so that
no transient oscillating disturbances occur in the measured
stroke z(k). Under such conditions, the residual input-output
system behavior can be seen as quasi-static and, therefore,
justifies the system approximation by a rate-independent
hysteresis. An example of the measured input-output data
is shown in Fig. 5. Note that the Bernoulli input sequence

μ

Fig. 5. Measured input-output hysteresis of the piezoelectric stage.

creates a large number of the closed (minor) hysteresis loops,
so that a sufficiently large k can be faithfully assumed, cf.
section III.

B. Recursive identification

The designed discrete-time adaptive hysteresis filter, cf.
section II, has been evaluated on the input-output hysteresis
data recorded from experiments. First, the total number of
the hysterons has been set to L = 703 that corresponds to
N = 37. Further, we note that a slightly reduced sampling
rate of 2 kHz has been assumed. This was conditional by the

0 1 2 3 4 5

x 10
4

10
−5

10
0

10
5

k

e2

 

 
convergence of output error

Fig. 6. Squared hysteresis output error of recursive identification.

implementation constraints of the available hardware. The
Preisach distribution under evaluation has been uniformly
initialized as R̂(k=0) = 1e–9. Since the true Preisach distribu-
tion of the system is not available, only the output estimation
error can be assessed. The squared hysteresis output error
e2(k) is shown logarithmically in Fig. 6 as a function of k.
Two linear asymptotes (in red) indicate that the output error
is (roughly exponentially) decreasing first, before starting to
fluctuate at a residual level for larger k. Despite a highly
irregular oscillating pattern of e2, between 10−5 and 101,
it can be recognized that the residual error of the recursive
hysteresis identification remains close to constant on average.

Neither convergence nor divergence occurs with a further
increasing k, cf. Fig. 6 for k > 104.

C. Residual error analysis

While the sensor noise associated with the high-resolution
(1.22 nm/pulse) encoder is relatively low, compared to the
operation stroke range (cf. Fig. 5), and can be neglected
therefore, the output measurement noise due to the discretiza-
tion and quantization should be closer investigated and taken
into account. It is also worth noting that the piezoelectric
stage is subject to the process noise as well. However,
this remains unconsidered as evident from (13). The most
obvious sources of the process noise are the inherent creeping
effects in the piezoelectric structures, see e.g. [14], [15],
mechanical micro-shifts and misalignments of the stage and
sensor, thermal and temporal relaxations, and others.

For the Preisach hysteresis system, the discretization and
quantization noise appear due to an input quantization into
N levels, with the corresponding quantization step

δx =
(
max(x)−min(x)

)
/N.

That means the output z is switching, correspondingly sam-
pled, only upon reaching quantization levels of the input.
Obviously the maximal increment

I = max
∂z

∂x
, (27)

over the entire hysteresis data is crucial for the output
sampling. Given the hysteresis measurements, the I-value
can be easily identified on either of both vertices of the
major loop – due to the congruence property of the hysteresis
[3] and convex and concave curvature of the increasing,
correspondingly decreasing, hysteresis branches, cf. Fig. 5.
From the measured hysteresis loops, I = 2.53 has been
determined. Consequently, the upper bound of the output
quantization step is estimated as

Zq = I δx(N). (28)

The effect of discretization and quantization is demon-
strated in Fig. 7 on the measured and model-computed
hysteresis output, from the same recursive identification
experiment as shown in section IV-B. It is evident that

4.48 4.52 4.56 4.6

x 10
4

20

60

100

k

z 
(μ

m
)

 

 
measurement
model response

Fig. 7. Time frame of the recursive identification, measurement versus
model with N = 37, with the visible discretization and quantization effect.

the output quantization levels can occur reciprocal to the
measured output, since the sampling of both (measurement
and model) is governed by the N -quantization of the input
and is, therefore, of a rather stochastic nature.
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Using the standard measure for the quantization noise
power [16], i.e. δ2/12 where δ is the quantization step, we
can assume an upper bound for the average power of the
measurement noise as

W ≈ I2(δx)2

12
. (29)

Since only the output error quantity is available from the
identification experiment, we are to derive an auxiliary error
norm that should be equivalent to the error norm ‖E‖2 of the
estimated Preisach distribution. The averaged residual output
error is obtained from the identification experiments by

〈e〉 =
( 1

M −m

M∑
k=m

e2(k)
)1/2

. (30)

Note that the residual error interval [m = 1e4, . . . ,M = 5e4]
has been assigned according to the observed convergence of
the hysteresis output error, cf. Fig. 6. Due to the fact that all
hysterons contribute simultaneously to e, and assuming R̂i

converges to its true value (up to the impact of the noise)
∀ i = 1, . . . , L and k > m, one can write

〈‖Eres‖2〉 ≈ 〈‖E(k > m)‖〉 =
(
(〈e〉/L)2L

)1/2

. (31)

In order to evaluate the above assumptions on the error
norm, and assess the convergence bound in presence of
noise, cf. section III, we consider the adaptive hysteresis
filter with different discretizations of the Preisach plane N =
{75, 37, 19, 13, 9}. The identification experiments executed
for all five hysteresis models are similar to the case N = 37
described in section IV-B. The average norm of the residual
estimation error and the average power of the measurement
(quantization) noise, computed by (31) and (29) correspond-
ingly, are plotted against each other in Fig. 8. An auxiliary

0 10 20 30
0

0,5

1

W

〈 |
|E

|| re
s

2
 〉

 

 

from identified models
(for varying N)

Fig. 8. Average norm of the residual estimation error as function of the
average power quantization noise for N = {75, 37, 19, 13, 9}.

linear asymptote is also depicted (by red line), for a better
comparison. One can see that the evaluated average error
norm and the noise power are clearly proportional, which
argues in favor of the analysis provided in section III.

V. CONCLUSIONS

The discrete-time adaptive hysteresis filter has been pro-
posed for a fast parallel-computing and recursive identifi-
cation of the rate-independent hysteresis. The algorithm is
applicable to the smart-material-based actuators, for instance

deployed for micro- and nano-positioning, where the hystere-
sis nonlinearity in the input channel should be compensated
for linearizing system far as possible. We showed that the
fast parallel computation and adaptation of the hysteresis
primitives – hysterons – is possible in the real-time setting.
We also analyzed the convergence of the direct recursive
algorithm [9], [11] in the presence of inherent measurement
noise. We showed that the variance of the Preisach weight
distribution error decreases until it becomes proportional to
the measurement noise power after a sufficient number of
iterations. An experimental example, with input-output data
from a standard piezoelectric stage, was shown in favor of the
developed adaptive hysteresis filter and associated analysis.
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