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Abstract—Traditional pattern classification works with the
moments of the distributions of the features and involves
the estimation of the means and variances etc. As opposed
to this, more recently, research has indicated the power of
using the Quantiles of the distributions because they are
more robust and applicable for non-parametric methods. The
estimation of the quantiles is even more pertinent when one
is mining data streams. However, the complexity of quantile
estimation is much higher than the corresponding estimation
of the mean and variance, and this increased complexity is
more relevant as the size of the data increases. Clearly, in
the context of “infinite” data streams, a computational and
space complexity that is linear in the size of the data is
definitely not affordable. In order to alleviate the problem
complexity, recently, a very limited number of studies have
devised incremental quantile estimators [1], [2]. Estimators
within this class resort to updating the quantile estimates
based on the most recent observation(s), and this yields
updating schemes with a very small computational footprint
– a constant-time (i.e., O(1)) complexity. In this article, we
pursue this research direction and present an estimator that
we refer to as a Higher-Fidelity Frugal [1] quantile estimator.
Firstly, it guarantees a substantial advancement of the family
of Frugal estimators introduced in [1]. The highlight of the
present scheme is that it works in the discretized space,
and it is thus a pioneering algorithm within the theory of
discretized algorithms1. The convergence results that we have
proven are based on the theory of Stochastic Point Location
(SPL) [3], which we advocate as a new tool for solving a large
class of online estimation problems. Extensive simulation
results show that our estimator outperforms the original
Frugal algorithm in terms of both speed and accuracy.

Index Terms—Quantile estimation, Stochastic Point Loca-
tion, Discetized Estimation.
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1The fact that discretized Learning Automata schemes are superior
to their continuous counterparts has been clearly demonstrated in the
literature. This is the first paper, to our knowledge, that proves the
advantages of discretization within the domain of quantile estimation.

I. INTRODUCTION

Estimation is probably the most fundamental and cen-
tral problem in many areas of engineering and computer
science. The entire training phase of classification deals
with estimation in one way or the other. While solu-
tions to estimating the mean (and central or non-central
moments) of a distribution have been well established
for centuries, we consider the problem of estimating the
quantiles of a distribution with minimal time and space
requirements.

Apart from the phenomenon of estimation, there are
three rather distinct computational paradigms that have
emerged within the general area of computational intel-
ligence listed below:

1) The first of these involves the Stochastic Point Lo-
cation SPL problem [3] where the Learning Mech-
anism (LM) attempts to learn a point on the “line”
when all that it receives are signals from a random
environment, i.e., whether it is to the “Left” or
“Right” of the unknown point. This point that
the LM attempts to learn may be, for example, a
parameter of a control system. This problem has
been briefly addressed in Section I-A.

2) The second of these involves the concept of dis-
cretization. Unlike learning in a continuous prob-
ability space, it has been shown that in the field
of Learning Automata (LA), it is advantageous to
discretize the probability space. Discretized LA are,
generally speaking, both faster and more accurate
than their corresponding continuous counterparts.
A brief overview of discretization has been in-
cluded in Section I-B.

3) The third of these are the unique issues encoun-
tered when one seeks to estimate the quantiles of a
distribution rather than the mean or central/non-
central moments of a distribution in an incremental
manner. A survey of estimation methods for the
estimation of quantiles is given in Section I-C.

Conceptually, the fundamental contribution of this pa-
per is to present a single solution that represents the
confluence of these three distinct paradigms. By first
presenting these three paradigms in the next three sub-
sections, we will also be surveying the state-of-the-art in
the respective fields.
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A. The SPL and its Solutions

To place our contributions in the right perspective,
we briefly review2 the state of the art of the SPL prob-
lem, whose formulation and solution is central to our
approach. The SPL problem, in its most elementary for-
mulation, assumes that there is a Learning Mechanism
(LM) whose task is to determine the optimal value of
some variable (or parameter), x. We assume that there is
an optimal choice for x – an unknown value, say x∗ ∈
[0, 1). The SPL involves inferring the value x∗. Although
the mechanism does not know the value of x∗, the SPL
assumes that it has responses from an intelligent “En-
vironment” (synonymously, referred to as the “Oracle”),
Ξ, that is capable of informing it whether any value of
x is too small or too big. To render the problem both
meaningful and distinct from its deterministic version,
we would like to emphasize that the response from this
Environment is assumed “faulty.” Thus, Ξ may tell us
to increase x when it should be decreased, and vice
versa. However, to render the problem tangible, in [3]
the probability of receiving an intelligent response was
assumed to be p > 0.5, in which case Ξ was said to
be Informative. Note that the quantity “p” reflects on the
“effectiveness” of the Environment. Thus, whenever the
current x < x∗, the Environment correctly suggests that
we increase x with probability p. It simultaneously could
have incorrectly recommended that we decrease x with
probability (1− p). The converse is true for x ≥ x∗.

The first known solution to the problem is due to
Oommen [3], who pioneered the study of the SPL when
he proposed and analyzed an algorithm that operates
on a discretized search space while interacting with
an informative Environment (i.e., p > 0.5). The search
space was first sliced into N sub-intervals at the posi-
tions {0, 1

N , 2
N , . . . , N−1

N , 1}, where a larger value of N
ultimately implied a more accurate convergence to x∗.
The algorithm then did a controlled random walk on
this space by “obediently” following the Environment’s
advice in the discretized space. In spite of the Oracle’s
erroneous feedback, this discretized solution was proven
to be ǫ-optimal.

An novel alternate parallel strategy that combined LA
and pruning was used in [4] to solve the SPL. By
utilizing the response from the environment, the authors
of [4] partitioned the interval of search into three disjoint
subintervals, eliminating at least one of the subintervals
from further search, and by recursively searching the
remaining interval(s) until the search interval was at
least as small as the required resolution. In a subsequent
work [5], Oommen et al. introduced the Continuous
Point Location with Adaptive d-ARY Search (CPL-AdS),
which was a generalization of the work in [4].

An extension of the latter work to the case of dynamic
environments was reported in [6]. Recently Yazidi et al.
[7] proposed a hierarchical searching scheme for solving

2This review can be abridged or even deleted if requested by the
Referees.

the SPL problem. This solution involved partitioning the
line in a hierarchical tree-like manner, and then moving
to relatively distant points, as characterized by those
along the paths of the tree.

B. The Phenomenon of Discretization

We now present a very brief overview of the sec-
ond phenomenon alluded to above, namely that of
discretization. Historically, the concept of discretizing
the probability space was pioneered by Thathachar and
Oommen in their study on Reward-Inaction LA [8],
and since then, it has catalyzed a significant research
in the design of discretized LA [9]–[13]. In these algo-
rithms, the probability changes are made in jumps and
not continuously, and thus, the speed of the learning
process is increased, especially as one approaches the
optimal solution. Discretization is also beneficial when
it concerns issues related to implementation and repre-
sentation. Since such algorithms use integer (as opposed
to real number) representations, they permit addition
(as opposed to multiplication) operations. Some of the
existing results about discretized automata are found in
[8], [9], [12]–[16]. Indeed, the fastest reported LAs are
the discretized pursuit and estimator algorithms [9], [15],
[16]. Recently, there has been an upsurge of research
interest in solving resource allocation problems based
on novel discretized LA [10], [11], in which the authors
proposed a solution to the class of Stochastic Nonlinear
Fractional Knapsack problems where resources had to be
allocated based on incomplete and noisy information.
The latter solution was thereafter applied to resolve the
web-polling problem, and to the problem of determining
the optimal size required for training a classifier. By
virtue of discretization, the estimator that we propose
realizes fast adjustments of the running estimates by
performing “jumps”, and it is thus able to robustly and
quickly track changes in the parameters of the distribu-
tion after a switch has occurred in the environment.

C. Quantile Estimation

The estimation of the quantiles of a distribution is
far more complex than the estimation of its mean or
central/non-central moments. Indeed, unlike the mean
or central/non-central moments, the occurrence of a few
samples can drastically change the location of many (if
not all) the quantiles.

Historically, it is worth mentioning that the seminal
paper of Robbins and Monro [17] which established
the field of research called “stochastic approximation”
[18], had already, decades ago, included an incremental
quantile estimator as a proof-of-concept application for
the vast arena for the theory of stochastic approximation.
An extension of the latter quantile estimator, which first
appeared as an example in [17], was further developed
in [19] in order to handle the case of “extreme quantiles”.
It should be mentioned that the estimator provided by
Tierney in [20] falls under the same umbrella of the



3

example provided in [17]; it can thus be seen as an
extension of it.

The application domains for the use of quantiles,
especially in the recently-introduced “Anti”-Bayesian
methods of classification, require the robust computation
of the quantiles of the distributions encountered. Further,
in many network monitoring applications, quantiles are
key indicators for monitoring the performance of the
system. For instance, system administrators are inter-
ested in monitoring the 95% response time of a web-
server so that they can constrain it to be under a certain
threshold. Quantile tracking is also useful for detecting
abnormal events, and in intrusion detection systems, in
general. However, the immense traffic volume of high
speed networks impose some computational challenges,
namely, that the storage is limited, and the requirement
on the computation done on the data is that it needs to
be achieved in a “one pass” manner.

A body of research has been focused on quantile esti-
mation from data streams without making any specific
assumption on the distribution of the data samples. But
since we are working on data streams, it is prudent
to review some of the related work that concentrates
on estimating quantiles from data streams3. The most
representative work of this type of “streaming” quantile
estimator is due to the seminal work of Munro and
Paterson [21]. In [21], these authors described a p-pass
algorithm for selection using O(n1/(2p)) space for any
p ≥ 2. Cormode and Muthukrishnan [22] proposed a
more space-efficient data structure, called the Count-
Min sketch, which was inspired by Bloom filters, where
one estimates the quantiles of a stream as the quantiles
of a random sample of the input. The key idea here
was to maintain a random sample of an appropriate
size to estimate the quantile, where the premise was to
select a subset of elements whose quantile approximated
the true quantile. From this perspective, the latter body
of research required a certain amount of memory that
increased as the required accuracy of the estimator in-
creases [23]. Examples of these works are [21], [23]–[26].
Guha and McGregor [26] advocated the use of random-
order data models in contrast to adversarial-order mod-
els. They showed that computing the median requires an
exponential number of passes in an adversarial model,
while it required O(log logn) in a random-order model.

In [27], the authors proposed a modification of the
stochastic approximation algorithm [20] in order to allow
an update similar to the well-known “Exponentially
Weighted Moving Averages” form for updates. This
modification is particularly helpful in the case of non-
stationary environments in order to cope with non-
stationary data. Thus, the quantile estimate is a weighted
combination of the new data that has arrived and the
previously-computed estimate. Indeed, a “weighted”

3As we will explain later, these related works require some memory
restrictions which renders our work to be radically distinct from them.
Our approach requires storing only a single sample value in order to
update the estimate.

update scheme is applied to incrementally build local
approximations of the distribution function in the neigh-
borhood of the quantiles.

D. Contributions

As mentioned in the introductory section, this paper
brings together the principles recorded in Sections I-A,
I-B and I-C. It introduces a novel discretized quantile
estimator based on the principles of SPL. Although
we had earlier solved the binomial estimation problem
using disretized estimators [28]–[30], this is the first
solution to quantile estimation that involves the SPL-
based solution. Our estimator, the Higher-Fidelity Frugal
(H-FF), outperforms the Original Frugal (OF) [1], that
is also discretized. From the above survey, the reader
will observe that the entire field of utilizing the concepts
of disretization in quantile estimation has been under-
investigated, which is, precisely, our primary contribu-
tions. Thus, apart from the above. we can catalogue the
contributions of the paper as follows:

• While the OF algorithm [1] fails to generalize the
estimation rules for the median case, our H-FF
design, which is based on the SPL, accommodates
the case of the median as a simple instantiation.

• The experimental results that we report, demon-
strate that our H-FF algorithm outperforms the
state-of-the-art discretized OF algorithm in terms of
both speed and accuracy. This is especially true in
the case of estimating quantiles close to the median.

• Our H-FF follows the principles of SPL introduced
in [31]. The main difference between our estimator
and the original SPL is that there is a non zero
probability that, in our present updating scheme,
the estimate remains unchanged at the next time
instant. This will be explained in greater detail in
Section II-B.

II. ON ENHANCING THE FRUGAL ESTIMATOR

Since our contribution falls into the family of Incremen-
tal Quantile Estimators, we now present an overview of
this class of estimators.

A. Incremental Quantile Estimators

An incremental estimator, by definition, resorts to the
last observation(s) in order to update its estimate. The
research on developing incremental quantile estimators
is sparse. Probably, one of the outstanding early and
unique examples of incremental quantile estimators is
due to Tierney, proposed in 1983 [20], and which resorted
to the theory of stochastic approximation. Applications
of Tierney’s algorithm to network monitoring can be
found in [32]. The shortcoming of Tierney estimator
[20] is that it requires the incremental constructions of
local approximations of the distribution function in the
neighborhood of the quantiles, and this increases the
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complexity of the algorithm. Our goal is to present an al-
gorithm that does not involve any local approximations
of the distribution function. Recently, a generalization of
the Tierney’s [20] algorithm was proposed by the authors
of [27], where the authors proposed a batch update of
the quantile, where the quantile is updated every M ≥ 1
observations.

In the same context of incremental estimators, Ma,
Muthukrishnan and Sandler [1] recently devised an in-
novative incremental quantile estimator4 called the Fru-
gal scheme, that follows randomized rules of updates.
The first algorithm presented in the manuscript of Ma,
Muthukrishnan and Sandler [1] is a Frugal approach for
estimating the median. The procedure for estimating the
median is simple but also “surprising”: One increments
the estimate of the median by a fixed amount ∆ (∆ > 0)
whenever the observation from the data stream is larger
than the median, and decrements the estimate of the me-
dian by ∆ whenever the observation is smaller than the
corresponding estimate. Nevertheless, the Frugal algo-
rithm presented later in the same manuscript in order to
tackle any quantile estimate (apart from the median), is
not a generalization of the median case. In fact, according
to the general update equations, if we are attempting to
find the 50% quantile (median) of the data stream, we
need to increment up randomly with 50% probability
(for observations larger than the median estimate) and
decrement down randomly with 50% probability (for
observations smaller than the median estimate). Thus,
intuitively, the Frugal [1] algorithm fails to generalize
the median case as we observe that the randomization
is unnecessary for estimating the median. Moreover, we
can intuitively infer that the Frugal algorithm will suffer
also from the “unnecessary” randomization for quantile
estimates that fall in neighborhood of 50%.

In [2], Yazidi and Hammer devised a truly multiplica-
tive incremental quantile estimation algorithm. The main
difference between that and the current work is that the
latter algorithm operates on a continuous space, while
this present work is in a discretized space.

When it comes to memory efficient methods that re-
quire a small storage footprint, histogram based methods
form an important class. Viewed from this perspective,
a representative work is due to Schmeiser and Deutsch
[34] who proposed the use of equidistant bins, where the
boundaries are adjusted online. Arandjelovic et al. [35]
used a different idea than equidistant bins by attempting
to maintain bins in a manner that maximizes the entropy
of the corresponding estimate of the historical data dis-
tribution, and where the bin boundaries were adjusted
in an online manner.

In [36], Jain et al. resorted to five markers so as to track
the quantile, where the markers corresponded to differ-
ent quantiles and the min and max of the observations.
Their concept was similar to the notion of histograms,

4With some insight, one sees that this elegant median estimation pro-
cedure is similar to the Boyer and Moore algorithm [33] for computing
the majority item in a stream, using only a single pass.

where each marker had two measurements, its height
and its position. By definition, each marker had some
ideal position, and some adjustments were made so as
to keep it in its ideal position by counting the number
of samples that exceeded the marker. Thus, for example,
if the marker corresponded to the 80% quantile, its ideal
position would be around the point corresponding to the
80% of the data points below the marker. Subsequently,
based on the positions of the markers, the quantiles were
computed by modeling it such that the curve passing
through three adjacent markers was parabolic, and by
using piecewise parabolic prediction functions5.

In [37], the authors proposed a memory-efficient
method, based on the algorithm from [36], for the simul-
taneous estimation of several quantiles using interpola-
tion methods and a grid structure, where each internal
grid point was updated upon receiving an observation.
Their approximation relied on using linear and parabolic
interpolations, while the tails of the distribution were
approximated using exponential curves.

A notable work dealing with the simultaneous esti-
mation of the quantiles using elements from the theory
of stochastic approximation is due to Cao et al. [38].
Here, the authors resorted to interpolation by defining a
distance measure between the interpolated quantiles so
as to ensure that there were no “crossings” between the
monotonic quantile estimates. Nevertheless, the interpo-
lation used estimates of the “ density” as in [27] and [20],
which is an operation that increases the complexity.

Finally, it is worth mentioning that an important
research direction that has received little attention in
the literature revolves around updating the quantile
estimates under the assumption that portions of the data
are deleted. Such an assumption is realistic in many real-
life settings where data needs to be deleted due to the
occurrence of errors, or because they are out-of-date and
thus should be replaced. The deletion triggered a re-
computation of the quantile [38], which is considered
a complex operation. The case of deleted data is more
challenging than the case of insertion of new data,
because data insertion can be handled easily using either
sequential or batch updates, while quantile update upon
deletion requires more complex update operations.

B. The Higher-Fidelity Frugal Estimator

To motivate our work, we concur with Arandjelovic
et al. [35] who remark that most quantile estimation
algorithms are not single-pass algorithms and are, thus,
not applicable for streaming data. On the other hand,
the single pass algorithms are concerned with the exact
computation of the quantile and thus require a storage
space of the order of the size of the data which is clearly
an unfeasible condition in the context of “Big Data”
streams. Thus, the work on quantile estimation using

5Clearly, though, such an approach would not be able to handle
the case of non-stationary quantile estimation as the positions of the
markers would be affected by stale data points.



5

more than one pass, or storage of the same order of the
size of the observations seen so far, is not relevant in
the context of this paper. We also affirm the need for
storage-constrained and single-pass algorithms.

In this article, we extend the results from Frugal [1]
and present a Higher-Fidelity Frugal (H-FF) scheme
where the median can be seen as an instantiation of our
algorithm and not as exceptional case that requires a
different set of rules. In addition, our H-FF scheme is
shown to be faster and more accurate than the original
Frugal scheme [1]. For the rest of the paper, in order
to avoid confusion, we will refer to the original Frugal
algorithm due to Ma, Muthukrishnan and Sandler [1], as
the Original Frugal (OF). As mentioned earlier, our H-
FF algorithm is based on the theory of Stochastic Point
Location [3], and although the latter theory has found
applications within discretized binomial and multino-
mial estimation in [29], as we shall see, its application
here is unique. In addition, one can observe that the
binomial/multinomial discretized estimators proposed
by Yazidi et al. in [28], [30] and Frugal [1] are similar. In
fact, if we use the same update equations as in [28], [30]
with the “binary” observation being whether the current
estimate sample is larger than the current estimate, then,
interestingly, we obtain the OF scheme [1]!

Let Qi = a+i. (b−a)
N and suppose that we are estimating

the quantile in the interval6 [a, b]. Note Q0 = a and QN =

b. Let ∆ be (b−a)
N . Further, we suppose that the estimate

at each time instant Q̂(n) takes values from the N + 1
possible values, i.e., Qi = a+ i.∆, where 0 ≤ i ≤ N .

For the sake of completeness, we will give the update
equations for the OF algorithm introduced in [1]. Let
x(n) denote the observation at time instant n. Please note
that the equations are slightly modified so as to obtain
estimates within [a, b]. In addition, the step size ∆ has a
general form and is not limited to unity as done in [1].

Q̂(n+ 1) ← Min(Q̂(n) + ∆, b),

If Q̂(n) ≤ x(n) and rand() ≤ q, (1)

Q̂(n+ 1) ← Max(Q̂(n)−∆, a),

If Q̂(n) > x(n) and rand() ≤ 1− q, (2)

Q̂(n+ 1) ← Q̂(n),

Otherwise, (3)

where Max(., .) and Min(., .) denote the max and min
operator of two real numbers while rand() is a random
number generated uniformly in [0, 1].

Our H-FF algorithm has two different update equa-
tions depending on whether the quantile we are esti-
mating is larger or smaller than the median.

Update equation for q ≤ 0.5:

6Throughout this paper, there is an implicit assumption that the
true quantile lies in [a, b]. However, this is not a limitation of our
scheme; the proof is valid for any bounded and probably non-bounded
function.

Q̂(n+ 1) ← Min(Q̂(n) + ∆, b),

If Q̂(n) ≤ x(n) and rand() ≤
q

1− q
,(4)

Q̂(n+ 1) ← Max(Q̂(n)−∆, a),

If Q̂(n) > x(n), (5)

Q̂(n+ 1) ← Q̂(n),

Otherwise. (6)

Update equations for q > 0.5:

Q̂(n+ 1) ← Min(Q̂(n) + ∆, b),

If Q̂(n) ≤ x(n), (7)

Q̂(n+ 1) ← Max(Q̂(n)−∆, a),

If Q̂(n) > x(n) and rand() ≤
1− q

q
,(8)

Q̂(n+ 1) ← Q̂(n),

Otherwise. (9)

The proof of the properties of the updating scheme
follows.

Theorem 1. Let us assume that we are estimating the q-
th quantile of the distribution, i.e., Q∗ = FX

−1(q). Then,
applying the updating rules given by Equations (4) - (6) for
the case when q ≤ 0.5, and Equations (7) - (9) when q > 0.5

yields: limN→∞ limn→∞ E(Q̂(n)) = Q∗.

Proof. We shall prove the above by analyzing the prop-
erties of the underlying Markov chain, which is spec-
ified by the rules given by Equations (4) - (6) for the
case where q ≤ 0.5 and Equations (7) - (9) in case
where q > 0.5. The states of the chain are the inte-
gers {0, 1, 2, . . . , N}, and these correspond to the values
{Q0, Q1, Q2, . . . , QN}, respectively.

By considering Equations (4) - (6), we deduce the state
transition probabilities for q ≤ 0.5 as:

hi,i+1 =
q

1− q
(1 − FX(Qi)), 0 ≤ i ≤ N − 1, (10)

hi,i−1 = FX(Qi), 1 ≤ i ≤ N, (11)

hi,i = 1− hi,i−1 − hi,i+1, 0 < i < N. (12)

This is due to the fact that the probability that Q̂(n) ≤
x(n) can be expressed in terms of the CDF function FX(.)

namely, that Prob(Q̂(n) ≤ x(n)) = 1− FX(Q̂(n)).

The transitions for the boundary states (when q ≤ 0.5)
are self-loops, and obey:

h0,0 = 1−
q

1− q
(1− FX(Q0)), (13)

hN,N =
q

1− q
(1− FX(QN )). (14)

Similarly, by observing Equations (7) - (9), the state
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transition probabilities for q > 0.5 are:

hi,i+1 = 1− FX(Qi), 0 ≤ i ≤ N − 1, (15)

hi,i−1 =
1− q

q
FX(Qi), 1 ≤ i ≤ N, (16)

hi,i = 1− hi,i−1 − hi,i+1, 0 < i < N, (17)

and the transitions for the boundary states (when q >
0.5) are self-loops, and obey:

h0,0 =
1− q

q
FX(Q0), (18)

hN,N = 1−
1− q

q
(1− FX(QN )). (19)

We shall now compute πi the stationary (or equilib-
rium) probability of the chain being in state i. Clearly
H represents a single closed communicating class whose
periodicity is unity. The chain is ergodic, and the limiting
probability vector is given by the eigenvector of HT

corresponding to the eigenvalue unity. The vector of
steady state probabilities Π = [π0, π1, . . . , πN ]T can be
computed using HTΠ = Π.

Whether we are applying the updating Equations (4)
- (6) when q ≤ 0.5, or Equations (7) - (9) when q > 0.5,
the rules obey the Markov chain with transition matrix
H = [hij ], where:

Consider first the stationary probability of being in
state 0, π0. Expanding the first row of Equation (20)
yields:

π0h0,0 + π1h1,0 = π0 =⇒ π1 =
(1− h0,0)

h1,0
=

h0,1

h1,0
π0. (21)

Expanding the second row of Equation (20) and sub-
stituting (21) yields:

π0h0,1 + π2h2,1 = π1 =⇒ π2 =
h1,2

h2,1
π1. (22)

Arguing in the same manner, and after some algebraic
simplifications, we obtain the recurrence relation for 0 <
k ≤ N :

πk−1 =
hk,k−1

hk−1,k
πk, (23)

which, on reversing the recursion, yields for 0 ≤ k < N

πk+1 =
hk,k+1

hk+1,k
πk. (24)

Let z be the index for which z∆ ≤ Q∗ < (z+1)∆, where
Q∗ the true quantile to be estimated.

The crucial part of our proof is to reformulate Π in
terms of πz and πz+1, using Equations (23) and (24).
More specifically, for j ∈ {0, 1, . . . , z − 1} we have:

πj = πz

j+1∏

k=z

hk,k−1

hk−1,k
. (25)

Correspondingly, and arguing in an analogous manner,
for j ∈ {z + 2, . . . , N} we have:

πj = πz+1

j−1∏

k=z+1

hk,k+1

hk+1,k
. (26)

In other words, we represent Π in terms of two of its
components, namely, πz and πz+1. We are now ready to
define the upper bound U for Π:

U [i, z] =

{
πzM

z−i if i ≤ z

πz+1M
i−(z+1) if i ≥ z + 1,

where: M = max

[
max
i≤z

hi,i−1

hi−1,i
, max
i≥z+1

hi,i+1

hi+1,i

]
As seen, the

definition of M clearly makes U an upper bound for
Π almost everywhere, except for i = z + 1. Our final
goal is to show that as the resolution N goes to infinity,
U goes to zero outside the small interval [z∆, (z + 1)∆],
implying that:

lim
N→∞

U [i, z] = 0, if i /∈ {z, z + 1}

We shall argue that the latter is guaranteed to happen

if we have 0 <
hi,i−1

hi−1,i
< 1 for i ∈ {1, . . . , z}, and 0 <

hi,i+1

hi+1,i
< 1 for i ∈ {z+1, . . . , N−1}. This is because when

these conditions are met, we obtain 0 < M < 1. We
argue this by considering the equilibrium (asymptotic)
value of E(Π(n)) for any finite N . This argument can be
separated into three different cases as in [3]:

1) The first case is when z∆ is close to a. In this
case, the maximum is quickly reached and then
geometrically falls away.

2) When z∆ is close to b, the value of πi geometri-
cally increases but when the maximum is reached,
it quickly falls away. For both these cases when
N → ∞, most of the probability mass will be
centered in the small interval [z∆, (z + 1)∆].

3) The third case is slightly more complex because it
involves z∆ being away from either end. This case
must be broken down into two distinct geometric
series, one representing the geometric series from
π0 to πz and the other from πz+1 to πN . The first
series increases until it reaches the maximum at πz .
The increase is geometric (or rather, exponential as
N →∞), and the geometric ratio is bounded by the
bound given by the quantity M above. The second
series starts at the maximum at the value πz+1

and then decreases until πN is reached. Again, the
decrease is geometric (i.e., exponential as N →∞),
and the geometric ratio is bounded by the quantity
M above. In this case, the probability mass will be
centered within the small interval [z∆, (z + 1)∆]
as N → ∞ because of the law of the sum of
the elements of a geometric series possessing a
common ratio which is greater than unity.

We shall now demonstrate that
hi−1,i

hi,i−1
< 1 for i ∈

{1, . . . , z} and that
hi,i+1

hi+1,i
< 1 for i ∈ {z + 1, . . . , N − 1}.

This reduces to demonstrating that
hi−1,i

hi,i−1
< 1 for i ∈

{1, . . . , z} and that
hi−1,i

hi,i−1
> 1 for i ∈ {z + 2, . . . , N},

implying that:

hi−1,i

hi,i−1
=

q(1− FX(Qi−1))

(1 − q)FX(Qi)
.
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(20)

Let us consider the difference between the numerator
and the denominator as:

q(1− FX(Qi−1)) − (1− q)FX(Qi) >

q(1− FX(Qi)) − (1− q)FX(Qi) (27)

= q − FX(Qi).

where, in Equation (27), we have resorted to the fact that
FX(Qi−1) < FX(Qi).

Similarly, we obtain the following inequality by using
fact that FX(Qi−1) < FX(Qi):

q(1− FX(Qi−1))− (1 − q)FX(Qi) <

q(1− FX(Qi−1))− (1 − q)FX(Qi−1), (28)

= q − FX(Qi−1).

Using the two above inequalities, i.e., Equations (27) and
(28), we conclude that

q−FX(Qi) < q(1−FX(Qi−1))−(1−q)FX(Qi) < q−FX(Qi−1).
(29)

We know that for i ∈ {1, . . . , z}, Qi < Q∗ is true, and
consequently FX(Qi) < FX(Q∗) = q by virtue of the
monotonicity of the CDF function. Using the inequality

(29), we can thus conclude that
hi,i−1

hi−1,i
< 1 for i ∈

{1, . . . , z}.
Similarly, we can prove the second case. Indeed, we

know that for i ∈ {z + 2, . . . , N}, the inequality Qi−1 >
Q∗ is true, and consequently FX(Qi−1) > FX(Q∗) = q by
virtue of the monotonicity of the CDF function. There-
fore, in this case, q − FX(Qi−1) < 0, and consequently,
hi,i−1

hi−1,i
> 1 for i ∈ {z+2, . . . , N}. Hence the theorem.

C. Salient Differences between the H-FF, SPL and OF

It is pertinent to mention that there are some funda-
mental differences between the H-FF and the SPL, both
with regard to their computational paradigms and with
regard to their respective analyses. There are also some
fundamental differences between the H-FF and the OF
schemes. We state them briefly below.

1) Differences between the Paradigms of the H-FF and
SPL: The following are the differences between the
paradigms of the H-FF and SPL:

• Although the rationale for updating in the H-FF
is apparently similar to that of the SPL algorithm
[3], there are some fundamental differences. First,

we emphasize that the SPL has a significant advan-
tage. Indeed, the SPL assumes the existence of an
“Oracle”, the presence of which is, unarguably, a
“bonus”. In our case, since there is no “Oracle”, the
H-FF scheme has to simulate such an entity. Or more
precisely, it has to infer the behavior of a fictitious
“Oracle” from the incoming samples.

• Further, unlike the SPL, the H-FF has no specific LM
either. The learning properties of the LM must now
be encapsulated into the estimation procedure.

2) Differences between the Analyses of the H-FF and SPL:
The following are the differences between the analyses of
the H-FF and SPL:

• From a cursory perspective, it could appear as if
the Markov Chain that we have presented, and its
analysis, are rather identical to those presented in
[3]. However, although the similarities are few, the
differences are more vital. The main differences are
the following:

1) First of all, unlike the original SPL, there is a
non zero probability that in our present updat-
ing scheme, the estimate remains unchanged at
the next time instant.

2) As opposed to original SPL, in our case, the
scheme never stays at the same state at the next
time instant, except at the end states. Rather,
the environment (our simulated “Oracle”) di-
rects the simulated LM to move to the right or
to the left, or to stay at the same position.

• Unlike the work of [3], the probability that the
“Oracle” suggests the move in the correct direction,
is not constant over the states of the estimator’s state
space. This is quite a significant difference, since it
renders our model to be characterized by a Markov
Chain with state-dependent transition probabilities.

• A major advantage of this estimator and SPL-based
estimators, in general, is that they are, by design,
adequate to dynamic environments. In fact, the es-
timator is memory-less, and this is a consequence of
the Markovian property. Thus, whenever a change
takes place in the unknown underlying value of the
target quantile to be tracked, our H-FF will instantly
change its search direction since the properties of
transition probabilities of the underlying random
walk, change too.

3) Other Salient Differences between the H-FF and OF:
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• Our H-FF is “semi-randomized” in the sense that
only one direction of the updates is randomized and
not both directions as in the case of the OF algo-
rithm. In fact, whenever q ≤ 0.5, we observe that
the randomization is only applied for moving to the
left (decrementing the estimate with probability q

1−q
which is less than unity). Similarly, when estimating
a quantile q such that q > 0.5, the randomization is
only applied for moving to the right (incrementing
the estimate with probability 1−q

q , which is again
strictly less than unity).

• A fundamental observation is that for the median
case, i.e., when q = 0.5, we obtain the Frugal update
proposed as an exceptional case that deviates from
the main scheme in [1] since q

1−q = 1. Formally, the
median is estimated as follows:

Q̂(n+ 1) ← Min(Q̂(n) + ∆, b)

if Q̂(n) ≤ x(n), (30)

Q̂(n+ 1) ← Max(Q̂(n)−∆, a)

if Q̂(n) > x(n). (31)

III. EXPERIMENTAL RESULTS

In order to demonstrate the strength of our scheme
(denoted as H-FF), we have rigorously tested it and
compared it to the OF estimator proposed in [1] for
different distributions, under different resolution param-
eters, and in both dynamic and stationary environments.
The results we have obtained are conclusive and demon-
strate that the convergence of the algorithms conforms to
the theoretical results, and proves the superiority of our
design to the OF algorithm [1]. To do this, we have used
data originating from different distributions, namely:

• Uniform in [0, 1],
• Normal N(0, 1),
• Exponential distribution with mean 1 and variance

1, and
• Chi-square distribution with mean 1 and variance 2.

In all the experiments, we chose a to be −8 and b to be 8.
Note that whenever the resolution was N , the estimate
was moving with either an additive or subtractive step
size equal to b−a

N . Thus, a larger value of the resolution
parameter, N , implied a smaller step size, while a lower
value of the resolution parameter, N , led to a larger step
size. Initially, at time 0, the estimates were set to the
value Q⌊N2 ⌋

. The reader should also note that an addi-

tional aim of the experiments was to demonstrate the
H-FF’s salient properties as a novel quantile estimator
using only finite memory.

A. Comparison in Stationary Environments for Different
Distributions

In this set of experiments, we examined various sta-
tionary environments. We used different resolutions, and
as mentioned previously, we set [a, b] = [−8, 8]. In each

case, we ran an ensemble of 1,000 experiments, each
consisting of 500 iterations.

In Tables I, II, III and IV, we report the estimation
error for the OF and H-FF for different values of the
resolutions, N , for the Uniform, Normal, Exponential
and Chi-squared distributions respectively. We catalogue
the results for different values of the quantile being esti-
mated, namely, q: 0.1, 0.3 0.499, 0.7 and 0.9. From these
tables we observe that the H-FF outperformed the OF in
almost all the cases, i.e., for different distributions and
for different resolutions. A general observation is that
the error for both schemes diminished as we increased
the resolution. For example, from Table I, we see that
the error for q = 0.1 decreased from 0.144 to 0.044 as the
resolution increased from 50 to 500.

A very intriguing characteristic of our estimator is
that as the resolution increased, the estimation error
diminished (asymptotically). In fact, the limited memory
of the estimator did not permit us to achieve zero error,
i.e., 100% accuracy. As noted in the theoretical results,
the convergence centred around the smallest interval
[z∆, (z + 1)∆] containing the true quantile. Informally
speaking, a higher resolution increased the accuracy
while a low resolution decreased the accuracy.

Another interesting remark is that both the OF and H-
FF seemed to perform almost equally well for extreme
quantiles, i.e., quantiles that are close to 0 or close to
1. However, as the true value of the quantile to be
estimated became closer to 0.5, i.e, median, the H-FF
had a markedly clearer superiority when compared to
the OF.

The reader should note that the choice of 0.499 instead
of 0.5 was deliberate in order to “avoid” using the
exceptional rules presented with regard to the OF in
[1], and that coincide with the rules of H-FF for the
median. Thus, the estimation of the quantile for the value
0.499 was performed using the OF rules as per Equations
(1) - (3) to avoid the unnecessary randomization of the
OF around the median that could lead to higher errors,
which was the earlier-mentioned shortcoming of the OF
scheme.

Please note too that for the target values of the quan-
tiles that were close to the initial point 0, the error was
smaller than for those that are far away from initial point.
Thus, for example, in Table I, the error was lowest for
the 10% quantile which is 0.1, which in this case, is closer
to 0 than any other quantile in the the table, namely, 0.3
0.499, 0.7 and 0.9.

Figure 1 depicts the case of estimating the 30% quan-
tile for the four different distributions: the Uniform,
Normal, Exponential and Chi-square. Similarly Figure 2,
3, 4 and 5 depict the case of estimating the 46%, 53%,
85% and 97% quantile respectively for the four different
distributions: the Uniform, Normal, Exponential and
Chi-square. In all case, the resolution set as 150.

From our experiments, we observed that our H-FF
algorithm approached the true value for all the four
distributions asymptotically over time. However, when
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TABLE I: The estimation error for the OF and H-FF algorithms for the Uniform distribution and for different values
of the resolutions N and target quantiles.

q 0.1 0.3 0.499 0.7 0.9

N H-FF OF H-FF OF H-FF F H-FF OF H-FF OF

50 0,144 0,144 0,197 0,198 0,245 0,246 0,220 0,220 0,176 0,175
100 0,104 0,103 0,146 0,146 0,160 0,161 0,157 0,159 0,122 0,122
150 0,074 0,075 0,121 0,122 0,135 0,137 0,128 0,131 0,100 0,101
200 0,069 0,068 0,106 0,107 0,117 0,120 0,113 0,115 0,088 0,089
250 0,063 0,063 0,096 0,097 0,106 0,109 0,102 0,106 0,081 0,083
300 0,055 0,056 0,089 0,090 0,098 0,104 0,096 0,102 0,080 0,082
350 0,051 0,052 0,083 0,085 0,091 0,097 0,094 0,099 0,081 0,084
400 0,050 0,050 0,078 0,081 0,088 0,095 0,091 0,098 0,082 0,086
450 0,046 0,047 0,075 0,077 0,083 0,091 0,089 0,098 0,083 0,087
500 0,044 0,044 0,072 0,075 0,082 0,091 0,088 0,097 0,084 0,089

TABLE II: The estimation error for the OF and H-FF algorithms for the Normal distribution and for different values
of the resolutions N and target quantiles.

q 0.1 0.3 0.499 0.7 0.9

N H-FF OF H-FF OF H-FF F H-FF OF H-FF OF

50 0,341 0,339 0,376 0,377 0,361 0,358 0,377 0,376 0,956 0,956
100 0,259 0,259 0,258 0,260 0,251 0,250 0,259 0,258 1,030 1,042
150 0,235 0,239 0,210 0,213 0,205 0,203 0,212 0,212 1,082 1,096
200 0,229 0,236 0,188 0,192 0,176 0,175 0,190 0,191 1,122 1,133
250 0,233 0,244 0,171 0,175 0,157 0,156 0,170 0,175 1,154 1,170
300 0,242 0,258 0,161 0,165 0,144 0,142 0,160 0,168 1,187 1,204
350 0,254 0,272 0,152 0,162 0,133 0,129 0,152 0,159 1,216 1,237
400 0,273 0,293 0,148 0,155 0,124 0,120 0,148 0,158 1,245 1,273
450 0,290 0,310 0,143 0,155 0,116 0,113 0,144 0,154 1,277 1,302
500 0,305 0,329 0,142 0,154 0,112 0,109 0,142 0,152 1,303 1,332

TABLE III: The estimation error for the OF and H-FF algorithms for the Exponential distribution and for different
values of the resolutions N and target quantiles.

q 0.1 0.3 0.499 0.7 0.9

N H-FF OF H-FF OF H-FF F H-FF OF H-FF OF

50 0,159 0,158 0,253 0,254 0,335 0,332 0,399 0,401 0,473 0,464
100 0,109 0,109 0,181 0,182 0,235 0,237 0,285 0,290 0,378 0,385
150 0,078 0,078 0,149 0,148 0,193 0,198 0,237 0,247 0,370 0,381
200 0,074 0,073 0,129 0,130 0,169 0,174 0,215 0,227 0,386 0,404
250 0,066 0,066 0,116 0,117 0,153 0,160 0,204 0,219 0,416 0,442
300 0,057 0,058 0,107 0,109 0,141 0,152 0,200 0,218 0,459 0,489
350 0,056 0,056 0,099 0,102 0,134 0,147 0,195 0,219 0,501 0,540
400 0,053 0,053 0,095 0,097 0,130 0,144 0,197 0,223 0,544 0,587
450 0,048 0,048 0,090 0,094 0,125 0,142 0,199 0,228 0,598 0,639
500 0,047 0,048 0,088 0,091 0,122 0,142 0,203 0,237 0,638 0,687

TABLE IV: The estimation error for the OF and H-FF algorithms for the Chi-squared distribution and for different
values of the resolutions N and target quantiles.

q 0.1 0.3 0.499 0.7 0.9

N H-FF OF H-FF OF H-FF F H-FF OF H-FF OF

50 0,088 0,088 0,254 0,254 0,348 0,345 0,453 0,454 0,600 0,606
100 0,063 0,063 0,149 0,149 0,234 0,231 0,322 0,326 0,519 0,525
150 0,051 0,052 0,126 0,125 0,192 0,192 0,270 0,272 0,535 0,567
200 0,045 0,045 0,105 0,104 0,167 0,170 0,245 0,253 0,597 0,638
250 0,040 0,040 0,094 0,095 0,150 0,153 0,227 0,243 0,686 0,731
300 0,037 0,036 0,085 0,085 0,139 0,142 0,220 0,238 0,765 0,822
350 0,033 0,033 0,079 0,079 0,129 0,136 0,218 0,239 0,842 0,915
400 0,031 0,031 0,074 0,075 0,122 0,128 0,220 0,244 0,933 0,987
450 0,029 0,029 0,070 0,070 0,118 0,125 0,218 0,254 1,003 1,062
500 0,027 0,027 0,067 0,068 0,113 0,121 0,222 0,258 1,073 1,134
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Fig. 1: This figure depicts the variation of the estimation
error for the Original Frugal algorithm (OF) and our
Higher-Fidelity Frugal (H-FF) with time n for the quan-
tile of 30% and for N = 150 for (a) the Uniform distri-
bution, (b) the Normal distribution, (c) the Exponential
distribution, and (d) the Chi− Square distribution.

it came to the convergence, the H-FF was faster than the
OF in all settings. For instance, in Figure 1a, it took the
H-FF around 20 iterations to reduce the error to a value
under 0.02 while it took around 34 iterations for the OF
to reach the same result – which is almost double the
number of iterations.
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Fig. 2: This figure depicts the variation of the estimation
error for the Original Frugal algorithm (OF) and our
Higher-Fidelity Frugal (H-FF) with time n for the quan-
tile of 46% and for N = 150 for (a) the Uniform distri-
bution, (b) the Normal distribution, (c) the Exponential
distribution, and (d) the Chi− Square distribution.

B. Dynamic Environment

In this section, we report the simulation results for
the case of dynamic environments for different values
of the quantiles and for different values of the resolution
parameter, N . In all the cases, we used the same values,
namely N = 400, N = 800 and N = 2, 000.

In order to model a dynamic environment, we mod-
ified the true quantile value after a fixed number of
iterations. In the first set of experiments, the quantile
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Fig. 3: This figure depicts the variation of the estimation
error for the Original Frugal algorithm (OF) and our
Higher-Fidelity Frugal (H-FF) with time n for the quan-
tile of 53% and for N = 150 for (a) the Uniform distri-
bution, (b) the Normal distribution, (c) the Exponential
distribution, and (d) the Chi − Square distribution.
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Fig. 4: This figure depicts the variation of the estimation
error for the Original Frugal algorithm (OF) and our
Higher-Fidelity Frugal (H-FF) with time n for the quan-
tile of 85% and for N = 150 for (a) the Uniform distri-
bution, (b) the Normal distribution, (c) the Exponential
distribution, and (d) the Chi − Square distribution.

to be estimated cycled between the values 60%, 75%,
97%, 10%, and 80% after every 400th iterations. Figure
6 reports the evolution of the estimate for a resolution
of N = 400 for the four distributions in question.

We also increased N to 800 and 2, 000 in Figure 7 and
Figure 8 while maintaining the same periodicity.

We observed that our scheme tracked the changing
quantile for all the four distributions but that the rate
of convergence after a change of the quantile value
depended strongly on the choice of the resolution, N . We
observed that for N = 2, 000 in Figure 8, both estimators
were not able to converge before the quantile changed
its value, leading to a higher estimation error.

However, it is worth mentioning that even for a low
resolution as low as N = 400, both estimators (OF and H-
FF) encountered problems when there was a “large hop”.
For example, in Figure 6a, we observed that between
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Fig. 5: This figure depicts the variation of the estimation
error for the Original Frugal algorithm (OF) and our
Higher-Fidelity Frugal (H-FF) with time n for the quan-
tile of 97% and for N = 150 for (a) the Uniform distri-
bution, (b) the Normal distribution, (c) the Exponential
distribution, and (d) the Chi− Square distribution.
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Fig. 6: This figure depicts the variations of the estimates
for the Original Frugal algorithm (OF) and our Higher-
Fidelity Frugal (H-FF) with time n in a dynamically
changing environment where the value changed every
400th time instant, and where the resolution parameter
was N = 400 for (a) the Uniform distribution, (b) the
Normal distribution, (c) the Exponential distribution,
and (d) the Chi− Square distribution.

time instants 1, 200 and 1, 600, the quantile changed
significantly from 97% to 10% and thus, the H-FF was
impaired just as in the case of the OF.

We also observed that the estimator converged the
slowest for the Chi-Square distribution. The main rea-
son for this is that the quantiles corresponding to the
60%, 75%, 97%, 10%, 80% quantiles for the Chi-square
distribution are relatively distant form each other when
compared to the other distributions. For the Chi-square
distribution, the “dynamic” quantile values were 0.708,
1.323, 4.709, 0.0157 and 1.642 which are more distant
from each other than, for example, the uniform distribu-
tion which in this case was 0.6, 0.75, 0.97, 0.1 and 0.8.

To display the results for other settings, we also dou-
bled the pace by which the true quantile changed from
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Fig. 7: This figure depicts the variations of the estimates
for the Original Frugal algorithm (OF) and our Higher-
Fidelity Frugal (H-FF) with time n in a dynamically
changing environment where the value changed every
400th time instant, and where the resolution parameter
was N = 800 for (a) the Uniform distribution, (b) the
Normal distribution, (c) the Exponential distribution,
and (d) the Chi− Square distribution.
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Fig. 8: This figure depicts the variations of the estimates
for the Original Frugal algorithm (OF) and our Higher-
Fidelity Frugal (H-FF) with time n in a dynamically
changing environment where the value changed every
400th time instant, and where the resolution parameter
was N = 2, 000 for (a) the Uniform distribution, (b) the
Normal distribution, (c) the Exponential distribution,
and (d) the Chi− Square distribution.

every 400th iteration to every 200th iteration. Figure 9
depicts the dynamic of the estimates for the case when
the change occurred at 400 and N = 400. We increased N
while maintaining the same periodicity to 800 and 2, 000
in Figure 7 and 8 respectively.

As expected both estimators faced more challenges in
tracking than for the case where the periodicity was 400.
However, the most important remark is that in all the
experiments the H-FF outperformed the OF and was also
faster to adapt to changes in the dynamic environments.
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Fig. 9: This figure depicts the variations of the estimates
for the Original Frugal algorithm (OF) and our Higher-
Fidelity Frugal (H-FF) with time n in a dynamically
changing environment where the value changed every
200th time instant, and where the resolution parameter
was N = 400 for (a) the Uniform distribution, (b) the
Normal distribution, (c) the Exponential distribution,
and (d) the Chi− Square distribution.
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Fig. 10: This figure depicts the variations of the estimates
for the Original Frugal algorithm (OF) and our Higher-
Fidelity Frugal (H-FF) with time n in a dynamically
changing environment where the value changed every
200th time instant, and where the resolution parameter
was N = 800 for (a) the Uniform distribution, (b) the
Normal distribution, (c) the Exponential distribution,
and (d) the Chi− Square distribution.

IV. CONCLUSION

In this paper, we have dealt with the problem of
estimating the quantiles of a distribution, which is a
problem that is significantly more difficult than that of
estimating the mean or a central/non-central moment.
The use of these quantiles in pattern classification has
become more widespread because they are more robust
and applicable for non-parametric methods. The esti-
mation of the quantiles is even more pertinent when
one is mining (“infinite”) data streams, and is far more
complex than the estimation of the moments because
the increased complexity is more relevant as the size
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Fig. 11: This figure depicts the variations of the estimates
for the Original Frugal algorithm (OF) and our Higher-
Fidelity Frugal (H-FF) with time n in a dynamically
changing environment where the value changed every
200th time instant, and where the resolution parameter
was N = 2, 000 for (a) the Uniform distribution, (b) the
Normal distribution, (c) the Exponential distribution,
and (d) the Chi− Square distribution.

of the data increases. We have focused on developing
incremental quantile estimators [1], [2], which resort to
updating the quantile estimates based on the most recent
observation(s), leading to a very small computational
and memory footprint.

This paper describes a scheme which is a confluence of
three paradigms, namely, working with the foundations
of Stochastic Point Location (SPL), the discretized world,
and estimation of the quantiles in an incremental man-
ner. We present a new quantile estimator which merges
all these three concepts, and which we refer to as a
Higher-Fidelity Frugal [1] (H-FF) quantile estimator. We
have shown that the H-FF represents a substantial ad-
vancement of the family of Frugal estimators introduced
in [1], and in particular to the so-called Original Frugal
(OF) estimator.

Extensive simulation results show that our estimator
outperforms the OF algorithm in terms of both speed
and accuracy, and for both static and dynamic environ-
ments.

There are different extensions that can be envisaged
for future work:

• In this paper, we worked within the domain of finite
Markov chains, and have assumed that the true
quantile was in the interval [a, b]. As a future work,
we plan to extend the proof to infinite state Markov
chains, which will, by no means, be trivial.

• The existing algorithm for quantile estimation was
designed for data elements that were added one
by one. A possible extension is to generalize our
algorithm to handle not only data insertions, but
also dynamic data operations such as deletions and
updates, as proposed in [39].

• An interesting research direction is to attempt to
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simultaneously estimate multiple quantile values.
To achieve this, our present scheme will have to
be modified so as to guarantee the monotonicity
property of the quantiles, i.e., to maintain multiple
quantile estimates while simultaneously ensuring
that the estimates do not violate the monotonicity
property. Although some preliminary results are
currently available, they have yet to be perfected
before they can be considered for publication.
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