
On Using “Stochastic Learning on the Line” to

Design Novel Distance Estimation Methods

Jessica Havelock1, B. John Oommen1,2, and Ole-Christoffer Granmo2

1 School of Computer Science, Carleton University, Ottawa, Canada
2 Centre for Artificial Intelligence Research, University of Agder, Grimstad, Norway

Abstract. In this paper3, we consider the problem of Distance Estima-
tion (DE) when the inputs are the x and y coordinates of the points under
consideration. The aim of the problem is to yield an accurate value for
the real (road) distance between the points specified by the latter coordi-
nates. This problem has, typically, been tackled by utilizing parametric
functions called Distance Estimation Functions (DEFs). The parameters
are learned from the training data (i.e., the true road distances) between
a subset of the points under consideration. We propose to use Learn-
ing Automata (LA)-based strategies to solve the problem. In particular,
we resort to the Adaptive Tertiary Search (ATS) strategy, proposed by
Oommen et al., to affect the learning. By utilizing the information pro-
vided in the coordinates of the nodes and the true distances from this
subset, we propose a scheme to estimate the inter-nodal distances. In this
regard, we use the ATS strategy to calculate the best parameters for the
DEF. Traditionally, the parameters of the DEF are determined by min-
imizing an appropriate “Goodness-of-Fit” (GoF) function. As opposed
to this, the ATS uses the current estimate of the distances, the feedback
from the Environment, and the set of known distances, to determine the
unknown parameters of the DEF. While the GoF functions can be used
to show that the results are competitive, our research shows that they are
rather not necessary to compute the parameters themselves. The results
that we have obtained using artificial and real-life datasets demonstrate
the power of the scheme, and also validate our hypothesis that we can
completely move away from the GoF-based paradigm that has been used
for four decades, demonstrating that our scheme is novel and pioneering.

Keywords: Road Distance Estimation, Estimating Real-life Distances, Learn-
ing Automata, Adaptive Tertiary Search, Stochastic Point Location.

1 Introduction

There are many well-studied problems whose solutions depend upon the dis-
tances between points in the Cartesian plain or in a geographic region. The

3 The second author gratefully acknowledges the partial support of NSERC, the Nat-
ural Sciences and Engineering Council of Canada.

traveling salesman problem, and vehicle scheduling problems are common ex-
amples of real-life scenarios that rely on distance information. The input to
these Distance Estimation (DE) problems are, typically, the start and end loca-
tions in the form of x and y co-ordinates of the locations in the Cartesian plain,
or the latitude and longitude in the geographic region. To determine the direct
distance (i.e., as the bird flies), that must be traveled between a pair of known
locations, is trivial. However, determining the actual “road distances”, which are
the physical distances to be traveled on the “roads” built in the community, is
much more challenging, and far from trivial. These road distances (also synony-
mously known as traveling distances, or “true” distances) can depend on the
network, the terrain, the geographical impediments like rivers or canyons, and
of course, the direct distance between the respective points – which serves as a
lower bound for the “true” distances. The problem of DE involves finding the
best estimator for the true distances. This problem has been studied for over
four decades, and its solutions have been put to use in many practical applica-
tions, such as in developing vehicle scheduling software, vehicle routing, and in
the partitioning of districts for firefighters [1, 5]. Indeed, as alluded to earlier,
this is a central issue in designing GISs and GPSs.

Legacy Methods: Distance Estimation Functions. Any system that
consists of inter-connected points, like a road network, can utilize DE to model
and estimate the inter-point distances. To achieve this, historically, one typically
resorts to Distance Estimating Functions (DEFs). These functions can take on
any form, but the ideal ones are those that are simultaneously good estimators,
and that are also characterized by low computational requirements. Love and
Morris first introduced the concept of using simple parametric functions that
employ the x and y co-ordinates for approximating distances [3]. The first DEFs
were based on common norms, most of which are still used. All these DEFs
involved parameters whose values are obtained by a “training” phase in order
for them to best fit the data of the system being characterized. Consequently,
some “true” road distances in the system must be known a priori, and they are
used to “learn” the parameters associated with the DEFs. The accuracy of the
estimations depends on the DEF, the system and the available data.

Our Proposed Approach. In this paper, we will contribute to the field of
DE by applying a new method for determining the DEF. This method is called
the Adaptive Tertiary Search (ATS) which was derived by Oommen and Raghu-
nath [4]. To date, it has been central to two related problems (and their respec-
tive applications), namely, the continuous Stochastic Point Location problem,
and the problem of parameter learning from a stochastic teacher or a stochastic
compulsive liar. Both of these problems work within a stochastic domain anal-
ogous to that of DE. The ability of the ATS to perform ǫ-optimally in these
stochastic domains renders it an ideal search strategy which can be used in DE.
The ATS is a search method that uses Learning Automata (LA) to perform a
stochastic search “on a line” to determine the parameter sought for. The most
“daring” step that we have taken in DE is that we have completely moved away
from invoking Goodness-of-Fit (GoF) criteria for the DEFs, thus proposing a

marked departure from the methods that have been used for more than four
decades. These concepts will be explained presently.

2 Distance Estimation: Core Concepts

The prediction or DE, is typically done by determining or discovering the appro-
priate DEF. A DEF is a mapping from Rd ×Rd to R, and returns the estimate
of the true distance. The inputs to the DEF are the locations of the two points,
and it produces an estimate of the distance between them by incorporating the
set of parameters into the DEF. Clearly, the set of parameters alluded to must
be learnt in order for the DEF to best represent the space.

Definition 1 A Distance Estimation Function (DEF) is defined as a func-
tion π(P1, P2|Λ) : Rd × Rd −→ R, in which P1 = 〈x1, x2, ..., xd〉 and P2 =
〈y1, y2, ..., yd〉 are points in Rd, and Λ is a set of parameters whose values char-
acterize π, and which must be learnt using a set of training points with known
true inter-point distances.

The set of parameters, Λ, is typically learnt by minimizing a GoF function,
which, in turn, is used to measure how well a network or region is represented by
the DEF. Central to the legacy methods of DE is the above-mentioned concept
of GoF functions. GoF functions are measures of how good a DEF estimates
the true (but unknown) distances. Several GoF functions have been consistently
utilized in the literature pertaining to the field of DE. The most commonly-used
GoF function is the sum of Square Deviation (SD).

2.1 Distance Estimation Functions (DEFs)

The most common types of DEFs are those based on the family4 of Lp norms,
traditionally used for computing distances:

Lp(X) =

(

n
∑

i=1

(|xi|
p

)1/p

. (1)

The various Lp norms have been used as stepping stones to design DEFs,
and some of the most common DEFs have, indeed, been derived from the Lp

norms [3]. The input to these functions are the co-ordinates of the input vectors,
X1 and X2. In practice, these DEFs are first trained on the subset of the co-
ordinates of the cities and their known inter-point distances for the specific
region under consideration. This training is done so as to obtain the “best”
parameters for the DEF given the training data. Once these parameters have
been determined, the DEF can thereafter be invoked for estimating distances for
other cities whose inter-city distances are unknown.

4 The cases for p = 1, p = 2 and p =∞ represent the Taxi-Cab, Euclidean and Largest
Absolute Value norms respectively. The Lp norms for other values of p (p ∈ R) also
have significance in DE.

3 The Adaptive Tertiary Search and its use in DE

The solution that we propose for DE is based on a scheme relevant to the Stochas-
tic Point Location (SPL) problem. To formulate the SPL, we assume that there
is a Learning Mechanism (LM) whose task is to determine the optimal value of
some variable (or parameter), λ. We assume that there is an optimal choice for
λ - an unknown value, say λ∗ ∈ [0, 1]. In this paper, we shall use the ATS [4] to
solve the DE problem, although any of the other reported solutions could have
been used just as well. The advantage of the ATS is that it is not a hill climbing
search, and therefore overcomes the problems of being dependent on a starting
point and a step size.

To determine λ∗ within the resolution of accuracy, the original search in-
terval is divided into three equal and disjoint subintervals, ∆i, where i = 1...3.
The subintervals are searched using a two-action LA. The LA returns the λ(n),
the estimated position of λ∗ from that subinterval, Oi ∈ {Left, Right, Inside}.
From these outputs, a new search interval is obtained which is based on the de-
cision table given in Table 1. This is repeated until the search interval is smaller
than the resolution of accuracy. The search interval will be reduced to yield
the required resolution within a finite number of epochs because the size of the
search interval is decreasing [4]. After the search interval has been sufficiently
reduced, the midpoint of the final interval is returned as the estimate for λ∗.

O1 O2 O3 New Sub-Interval

Inside Left Left ∆1

Left Left Left ∆1

Right Inside Left ∆2

Right Left Left ∆1
∪∆2

Right Right Inside ∆3

Right Right Left ∆2
∪∆3

Right Right Right ∆3

Table 1. The Decision Table for the ATS scheme.

The ATS proposed by Oommen and Raghunath [4] was initially used to solve
the SPL problem, and subsequently for parameter learning when interacting with
a stochastic teacher or a stochastic compulsive liar. For both of these problems,
one had to determine only a single unknown parameter. Our aim is to utilize
these core concepts in DE where one has to learn/estimate many parameters
simultaneously. In order to adapt the ATS to find more than a single parameter,
we must specify the corresponding “Environment”, and also both the process of
updating multiple search intervals and the issue of how the set of LA interact
with it.

3.1 Updating Search Intervals

Let us first consider the case where the DEF has two parameters, say k and
p. The strategy for our search will be to use the ATS to determine the best
value for k and p, say k∗ and p∗, respectively. However, it is crucial that the
order of updating the search intervals in the k and p spaces is considered when
determining these multiple unknown parameters. If this is not done correctly, it
may result in the premature reduction of a search interval. In the SPL problem,
the subintervals were first searched using the LA, after which the search interval
was updated. This order of executing the searching, and the pruning of the
intervals must also be maintained while searching for the two parameters, k and
p, simultaneously. In other words, all the subintervals must be searched before
any interval is updated. Each search interval must undergo the same search
process as in the case of the single-parameter ATS. The only difference is that
the search intervals must be updated simultaneously. The order (or sequence)
for achieving this is shown in Algorithm 1.

Algorithm 1 TwoDimensionalATS

Input: The Resolutions ρk and ρp

Output: Estimates of k∗and p∗

Method:

1: repeat

2: for j ← 1 to 3 do

3: Execute LAj for k
4: Execute LAj for p
5: end for

6: GetNewInterval for k - From Table 1
7: GetNewInterval for p - From Table 1
8: until (Size of Interval(k) < ρk) ∧ (Size of Interval(p) < ρp)
9: k∗

← Midpoint(FinalInterval(k))
10: p∗ ← Midpoint(FinalInterval(p))

End Algorithm

The set of LA operate in the same manner as in [4], except for how it deals
with the additional parameters. When the LA is learning information about how
it should update the value for k, it uses values of p from within its current search
interval and vice versa. As a result, each LA operates with the knowledge of the
current search interval of all the other parameters.

This process of searching for multiple parameters can be done in parallel by
assuming that for each learning loop, the other parameter’s value is either the
maximum or the minimum of its current search interval. This is a consequence
of the monotonicity of the DEFs, as discussed in Section 3.3.

3.2 The Corresponding LA

Each LA is provided with two inputs, namely the parameter that it is searching
for, and all the search intervals. Each LA is required to yield as its output
the relative location of the parameter in question. It does this by producing a
decision (Left, Right or Inside) based on its final belief after communicating with
its specific Environment.

The LA starts out with a uniform belief, 50% for both “Left” and “Right”. It
then makes a decision based on its current belief. If the decision is “Left”, then
the LA picks a point in the left half of the interval at random; otherwise (i.e.,
the decision is “Right”) the point is chosen from the right half of the interval.
Once the decision is made, the LA asks the Environment for a response. The LA
uses a Linear Reward Inaction (LRI) update scheme, and so the current belief
is only updated if the Environment’s response is positive.

The LA and the Environment repeat this loop for a large number, say N∞,
iterations. After they are done communicating, the LA produces its output as
per the LA algorithm briefly described below. This is omitted here in the interest
of space but found in [2]. If the LA’s belief of “Right” is greater than 1− ǫ, the
parameter in question is to the right side of the current search interval, and so
its output is “Right”. Conversely, if the belief of “Left” is greater than 1− ǫ, the
LA’s final decision is “Left”. If neither of these cases emerge, the LA does not
have a belief greater than 1 − ǫ that the parameter is to the “Right” or “Left”,
and in this case, the LA decides that the parameter’s optimal value is “Inside”
the present interval. The entire algorithm is formally given in [2] (omitted here
in the interest of space),

3.3 The Corresponding Environment

Each LA requires feedback from a specific Environment. This feedback informs
the LA if it has made the correct decision, i.e., choosing the right or left half of
the subinterval. It is easy to obtain this answer because it only involves a single
parameter at a time. To further explain this, consider the DEFs below:

F (k, p) = k · F1(X1, X2, p), and where, (2)

F1(X1, X2, p) =

(

d
∑

i=1

|x1i − x2i|
p

)1/p

. (3)

Although nothing specific can be said about the monotonicity characteristics
of F (k, p), we see from Eq. (2) that by virtue of the fact that it is always positive
and that it can be factored, it is monotonically increasing with k for any fixed
value, p. Similarly, from Eq. (3), since F1(X1, X2, p) is not a function of k, it is
monotonically decreasing with p for any fixed value of k. These properties allow
the Oracle to respond accordingly when finding k, and for the corresponding LA
to move in the desired direction (i.e., “Left” or “Right”) in the space that only

involves the single parameter k. The contrary monotonicity properties allow the
Oracle to respond according to a corresponding algorithm (EnvironmentRespon-
seP, found in [2]) when determining p, and for the corresponding LA to move in
the desired direction (i.e., “Left” or “Right”) in the space that involves only p.

4 Testing and Results: 2-dimensional Environments

In this section5, we present the results for the 2-dimensional DE using the ATS.
We show that this method of estimation works for three different DEFs where,
the first two DEFs each contained only a single parameter that had to be be
determined, k or p respectively. The last DEF contained two parameters, k and
p. To compare the results we used four typical GoF measures.

Experimental Setup: Our test for the ATS was done on real-world data sets, since
the “proof of the pudding is, indeed, in the eating”. This data consisted of three
sets, which in turn involved 29, 97, and 561 cities each. The data sets involving 29
and 561 cities were obtained from the MP-TESTDATA (the TSPLIB Symmetric
Traveling Salesman Problem Instances) [6]. Observe that for data of this type,
there are no “Known” values of k and p. This is because the data was not created
and therefore did not depend on any “Known” values. “Benchmark” values were
therefore used for comparison, determined using a hill-climbing search.

Weighted Lp DEF: When the ATS was used in conjunction with the Weighted
Lp DEF, the ATS out-performed the hill-climbing search, as shown in results in
Table 2. While the ATS and the hill-climbing search performed very similarly,
the ATS had a slight improvement over the hill-climbing search. Both the data
set with 29 points and the data set with 97 points had a p value that was close
to 2.0. As a result, the Weighted Lp DEF had a similar performance to the
Weighted Euclidean DEF. For the data set with 561 points, the ATS produced
an average p value of about 1.2, whereas the hill-climbing search’s p value was
1.74. This change in p value resulted in a larger difference in the accuracy of the
estimation of the distances between the ATS using the Weighted Lp DEF and
the Weighted Euclidean DEF. Finally, the ATS using the Weighted Lp DEF,
out-performed the previous two DEFs. The most significant contribution of this
work was that the ATS did not require the use of GoF functions, which we
believe is pioneering and novel.

5 Conclusions

In this paper, we considered the Distance Estimation (DE) problem that has
been studied for almost four decades. It involves estimating the real-life dis-
tances between points in the Cartesian plain or in a geographic region. Our

5 The experimental results that we have obtained are extensive and involve two arti-
ficial and two real-life data sets. The results presented here constitute only a small
subset; additional details of the experimental results are found in [2].

Data Set Size N=29 N=97 N=561

Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation

Estimated Estimated Estimated

K Value 0.2220 9.4600x10−4 1.3517 0.0164 0.1410 0.0022
P Value 1.9935 0.0353 1.8022 0.0932 1.1517 0.0437

SD 22.93 0.28 20118.81 226.04 17756.97 364.02
NAD 1.79 0.01 83.28 0.22 2227.20 19.61
RAD 0.0402 0.0003 0.1253 0.0004 0.1423 0.0016
EP 0.0496 0.0004 0.2051 0.0005 0.1569 0.0014

Benchmark Benchmark Benchmark

K Value 0.2203 8.1873x10−8 1.2326 0.0053 0.1550 4.9035x10−8

P Value 1.9200 9.0190x10−8 1.5071 0.0221 1.7400 6.0445x10−8

SD 23.71 0.00 19922.21 62.01 20522.75 0.05
NAD 1.83 0.00 86.27 0.16 2418.51 0.00
RAD 0.0412 0.0000 0.1381 0.0005 0.1598 0.0000
EP 0.0508 0.0000 0.2125 0.0004 0.1704 0.0000

Table 2. Results for 100 runs of the ATS with the Weighted Lp DEF on the real-world
data sets.

solution differs significantly from the legacy methods in that we depart from the
use of so-called “Goodness-of-Fit” (GoF) functions. Rather, we have used the
field of Learning Automata (LA) and in particular, the Adaptive Teriary Search
(ATS) to solve the Stochastic Point Location (SPL) problem. This paper has
made some major contributions. Firstly, it extended the ATS application to the
DE problem. In this regard, we defined both the new environments and the corre-
sponding LA for this problem for three simple DEFs. Using these newly-defined
Environments and LA, the ATS was shown to produce parameters competitive
to those obtained by the hill-climbing search for all of these DEFs – without
utilizing GoFs. The other contribution that we made (with regards to the ATS)
was to successfully search for multiple parameters simultaneously.

References

1. Erkut, H., Polat, S.: A simulation model for an urban fire fighting system. OMEGA
- The International Journal of Management Science 20(4), 535–542 (1992)

2. Havelock, J., Oommen, B. J. and Granmo, O.-C.. Novel Distance Estimation
Methods Using “Stochastic Learning on the Line” Strategies. Unabridged version.

3. Love, R.F., Morris, J.G.: Modelling inter-city road distances by mathematical func-
tions. Operational Reach Quarterly 23(1), 61–71 (1972)

4. Oommen, B.J., Raghunath, G.: Automata learning and intelligent tertiary search-
ing for stochastic point location. IEEE SMC 28(6), 947 – 954 (1998)

5. Oommen, J., Altnel, I.K., Aras, N.: Discrete vector quantization for arbitrary dis-
tance function estimation. IEEE SMC 28(4), 496 – 510 (1998)

6. Skorobohatyj, G.: MP-TESTDATA - The TSPLIB symmetric traveling sales-
man problem instances (2011), available as of September 12, 2011 at
http://elib.zib.de/pub/mptestdata/tsp/tsplib/tsp/index.html

