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Abstract. The aim of this note is to present two results that make the task of finding
equivalent polyhedral norms on certain Banach spaces, having either a Schauder basis or
an uncountable unconditional basis, easier and more transparent. The hypotheses of both
results are based on decomposing the unit sphere of a Banach space into countably many
pieces, such that each one satisfies certain properties. Some examples of spaces having
equivalent polyhedral norms are given.

1. Introduction

The concepts of upper and lower p-estimates, where 1 < p <∞, play an important role
when studying the geometry of Banach spaces. More precisely, using their relationship
with p-convexity and concavity, it is possible to find asymptotically sharp estimates at
0 of the moduli of convexity and smoothness, and the cotype and type of the Banach
lattice (see e.g. [13, Chapter 1]). We introduce an analogue of upper p-estimate in the case
p =∞, and in doing so we find sufficient conditions for isomorphic polyhedral renorming.
In our opinion, these conditions are easier to verify in many concrete cases. Let us recall
that, following V. Klee [10], a Banach space is said to be polyhedral when the unit balls
of all of its finite-dimensional subspaces are polytopes. A Banach space X is said to be
isomorphically polyhedral if it is isomorphic to a polyhedral space or, equivalently, if X
admits an equivalent polyhedral norm.

We denote by BX and SX the (closed) unit ball and unit sphere of X, respectively. Let X
have an unconditional basis (eγ)γ∈Γ, with corresponding biorthogonal functionals (e∗γ)γ∈Γ.
Given a subset A ⊆ Γ, we define the projections

PAx =
∑
γ∈A

e∗γ(x)eγ and RAx = x− PAx.

If (ej)
∞
j=1 is a Schauder basis (with corresponding biorthogonals (e∗j)

∞
j=1), define Pn =

P{1,...,n} and Rn = R{1,...,n}. From time to time we will require the support of an element
in X or its dual, with respect to the given basis: define

supp(x) =
{
γ ∈ Γ : e∗γ(x) 6= 0

}
,
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for all x ∈ X and, given f ∈ X∗, set

supp(f) = {γ ∈ Γ : f(eγ) 6= 0} .
We will also require a type of function known in approximation theory as a modulus, namely
a non-decreasing continuous function ω : [0,∞)→ [0,∞) such that ω(0) = 0. We present
our chief definition.

Definition 1.1. We say that the Banach space X has decomposition (∗) (with respect to
the unconditional basis (eγ)γ∈Γ and modulus ω) if, for every x ∈ X there exist positive
numbers c(x) and d(x), such that the inequality

‖x‖ 6 ‖PAx‖+ c(x)ω(d(x) ‖RAx‖∞), (∗)
holds for every subset A ⊆ Γ. Here, ‖·‖∞ denotes the supremum norm on X, i.e.

‖x‖∞ = max
{
|e∗γ(x)| : γ ∈ Γ

}
.

Remark 1.2. It is enough that (∗) holds only for all x ∈ SX . Given x 6= 0, we can set

c(x) = ‖x‖ · c
(

x

‖x‖

)
and d(x) =

1

‖x‖
· d
(

x

‖x‖

)
.

Clearly (∗) holds for x if it holds for x/ ‖x‖.

Now we present our two main results.

Theorem 1.3. Let a Banach space X have (∗) with respect to a symmetric basis (eγ)γ∈Γ.
Then X admits an equivalent polyhedral norm.

The proof of this theorem follows from the next result.

Theorem 1.4. Let X be a Banach space having an unconditional basis (eγ)γ∈Γ. Let (an)∞n=1

be a sequence of positive numbers tending to 0, such that

lim inf
n→∞

a−1
n

(
‖x‖ − sup

|A|6n
‖PAx‖

)
< ∞ for every x ∈ X. (1)

Then X admits an equivalent polyhedral norm.
Alternatively, if X admits a Schauder basis (en)∞n=1, we can reach the same conclusion

if we replace condition (1) by

lim inf
n→∞

a−1
n (‖x‖ − ‖Pnx‖) < ∞ for every x ∈ X. (2)

We prove the two main results above in Section 2. Theorem 1.4 will follow from Propo-
sition 2.3, which is a special case of the theorem restricted to monotone bases. Section 3 is
devoted to examples. We will present a series of examples of Banach spaces having (∗), an
example that exposes the difference between conditions (1) and (2) in Theorem 1.4, and
an example of a non-symmetric equivalent norm on c0 that does not satisfy condition (1)
with respect to the usual basis.

We finish this section by making some observations about condition (2) above. Let us
recall that B ⊆ SX∗ is called a boundary of X (with respect to the norm ‖·‖) if, given
x ∈ X, there exists f ∈ B such that f(x) = ‖x‖. In [2] and [9], it was proved that every
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Banach space that has a σ-compact boundary (with respect to the norm topology) admits
an equivalent polyhedral norm. We show that, in this case, condition (2) is necessary,
provided that (ej)

∞
j=1 is shrinking.

Proposition 1.5. Assume that X has a shrinking Schauder basis and a σ-compact bound-
ary. Then there exists a sequence (an)∞n=1 of positive numbers tending to 0, such that (2)
holds.

We have need of the following fact, which will be used also in Corollary 2.4.

Fact 1.6. For every m ∈ N, let (am,n)∞n=1 be a sequence of positive numbers such that
limn→∞ am,n = 0. Then the sequence

an :=
∞∑
m=1

2−m
am,n

1 + am,n
, n ∈ N, (3)

tends to 0, and

am,n 6 2man max
k∈N

(am,k + 1),

for all m,n ∈ N.

Proof of Proposition 1.5. Let (Km)∞m=1 be a sequence of norm compact subsets of SX∗ ,
such that B :=

⋃∞
m=1Km is a boundary. Since (ej)

∞
j=1 is shrinking, it is well known that

limn→∞ ‖R∗nf‖ = 0 for all f ∈ X∗ [12, Proposition 1.b.1]. Using the norm compactness of
the Km, m ∈ N, we see that

am,n := sup
f∈Km

‖R∗nf‖ ,

tends to 0 as n → ∞. Let x ∈ X. As B is a boundary, there exists m ∈ N such that
f(x) = ‖x‖ for some f ∈ Km. Given n ∈ N, we have

‖x‖ = f(x) = f(Pnx) +R∗nf(x) 6 ‖Pnx‖+ ‖R∗nf‖ ‖x‖ 6 ‖Pnx‖+ am,n ‖x‖ ,

hence
‖x‖ − ‖Pnx‖

am,n
6 ‖x‖ ,

for all n ∈ N. Defining an as in (3) yields

‖x‖ − ‖Pnx‖
an

6 2m max
k∈N

(am,k + 1) ‖x‖ ,

for all n ∈ N. �

The requirement that the basis in Proposition 1.5 be shrinking is necessary for the
conclusion to hold.

Example 1.7. The space c0 with its natural norm has a countable boundary, but with
respect to the summing basis of c0, there is no sequence (an)∞n=1 tending to 0, such that
(2) holds.
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Proof. Let (ej)
∞
j=1 and (e∗j)

∞
j=1 be the standard bases of c0 and `1, respectively. The set{

±e∗j : j ∈ N
}

is a countable boundary of c0 with respect to its natural norm. If xj :=∑j
i=1 ei denotes the jth element of the summing basis of c0, then x∗j = e∗j − e∗j+1, and with

respect to this basis we see that

Pnx =
n∑
j=1

(x(j)− x(j + 1))

(
j∑
i=1

ei

)
=

n∑
i=1

(
x(i)− x(n+ 1)

)
ei.

Suppose that x(1) = ‖x‖∞ > |x(n)| + 1 whenever n > 2. Then, whenever |x(n + 1)| 6 1
2
,

we have ‖Pnx‖∞ = x(1) − x(n + 1) = ‖x‖∞ − x(n + 1). Given a sequence (an)∞n=1 of
positive numbers tending to 0, define x ∈ c0 by x(1) = maxn>1

√
an + 1 and x(n) =

√
an−1

for n > 2. Fix m ∈ N such that an 6 1
4

whenever n > m. Then |x(n + 1)| 6 1
2

for such n
and

a−1
n (‖x‖∞ − ‖Pnx‖∞) = a−1

n x(n+ 1) = a
− 1

2
n → ∞. �

2. Decompositions of the unit sphere and applications

In this section we prove Theorems 1.3 and 1.4. In a previous version of the paper,
we did this by appealing to [5, Corollary 14], which is a tool for building polyhedral
norms on certain Banach spaces in possession of a Markushevich basis. In accordance with
the referee’s suggestion, this has been replaced by Proposition 2.2, which presents two
sufficient conditions for polyhedral renorming expressed in terms of decompositions of the
unit sphere, and which applies to certain Banach spaces having a monotone unconditional
basis or monotone Schauder basis. In addition, we provide a direct proof of this result, to
benefit readers who are newcomers to this sort of work and who would otherwise have to
digest quite a lot of background material. The proof is an amalgamation and reworking of
those of [5, Theorem 4] and [4, Theorem 24]. For the purposes of proving the main results
of this paper, we lose nothing by moving from Markushevich bases to working with the
less general hypotheses of Proposition 2.2.

In order to prove Proposition 2.2, we will require the following result from [8], which we
state in a modified form.

Theorem 2.1 ([8, Theorem 1]). Let X be a Banach space and let D ⊆ X∗ be such that
‖x‖ = sup {f(x) : f ∈ D} for all x ∈ X. If there does not exist a w∗-accumulation point
d of D and x ∈ X satisfying d(x) = ‖x‖ = 1, then ‖·‖ is polyhedral.

In their original statement D was the set of extreme points of BX∗ , but the result applies
equally well in the more general case above (see e.g. [3, Proposition 6.11]).

Proposition 2.2.

(1) Let X have a monotone unconditional basis (eγ)γ∈Γ and suppose we can write

SX =
∞⋃
k=1

Sk,
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where each Sk is non-empty, and find a sequence of positive integers (nk)
∞
k=1 in such

a way that the sequence

bk := inf
x∈Sk

sup
|A|=nk

‖PAx‖ ,

is strictly positive and converges to 1. Then X admits an equivalent polyhedral
norm.

(2) If (en)∞n=1 is a monotone Schauder basis of X, with Sk and nk as above, and the
sequence

b′k := inf
x∈Sk
‖Pnkx‖ ,

behaves likewise, then we reach the same conclusion.

Proof. We prove the first statement. Let (eγ)γ∈Γ be a monotone unconditional basis of
X. As the basis is monotone we can, without loss of generality, assume that (nk)

∞
k=1 is

increasing. For convenience, set n0 = 0. Set ck = inf {b` : ` > k}, k ∈ N. Given n ∈ N,
define an = c−1

k (1 + 2−n), where k ∈ N is chosen in such a way that nk−1 < n 6 nk. It
is clear that (an)∞n=1 is strictly decreasing and converges to 1. Given n ∈ N and a subset
A ⊆ Γ having cardinality n, define WA = spanγ∈A(e∗γ) and let DA be a symmetric finite

2−(n+2)-net of SWA
. By the monotonicity of the basis, given x ∈ X, there exists f ∈ DA

satisfying

(1− 2−(n+2)) ‖PAx‖ 6 f(x). (4)

Define sets

Dn =
⋃
{DA : A ⊆ Γ and |A| = n} , n ∈ N,

and a norm ||| · ||| by |||x||| = sup {f(x) : f ∈ anDn, n ∈ N}, x ∈ X. First, we show that

‖x‖ < |||x||| 6 a1 ‖x‖ ,
whenever x 6= 0. It is evident that |||x||| 6 a1 ‖x‖ for all x. Let x ∈ SX . Then x ∈ Sk for
some k. We observe that

1 6 c−1
k sup
|A|=nk

‖PAx‖ ,

so there exists A ⊆ Γ, |A| = nk, such that

(1 + 2−(nk+1))−1 < c−1
k ‖PAx‖ .

Using (4), we can choose f ∈ DA such that

(1− 2−(nk+2)) ‖PAx‖ 6 f(x).

It follows that

|||x||| > ankf(x) > ank(1− 2−(nk+2)) ‖PAx‖

>
ankck(1− 2−(nk+2))

1 + 2−(nk+1)
=

(1 + 2−nk)(1− 2−(nk+2))

1 + 2−(nk+1)
> 1 = ‖x‖ ,

as required.
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Now we claim that d(x) < 1 whenever |||x||| = 1 and d is a w∗-accumulation point of⋃∞
n=1 anDn. From Theorem 2.1 it will follow that ||| · ||| is polyhedral. Let |||x||| = 1 and let

d be such an accumulation point. The first case is that

d ∈
∞⋂
k=1

( ∞⋃
k=n

anDn

)w∗

.

If this is so, then ‖d‖ 6 ak for all k, because (an)∞n=1 is decreasing. As an → 1, we have
‖d‖ 6 1. Therefore, using the strict inequality proved above, d(x) 6 ‖x‖ < |||x||| = 1.

The second case is that d is a w∗-accumulation point of anDn for some n. Let (fλ) be
a net in Dn such that anfλ 6= d for all λ and anfλ converges to d in the w∗-topology.
Given λ, let Aλ ⊆ Γ such that |Aλ| = n and fλ ∈ DAλ . Set A = supp(d). We claim that
m := |A| < n. Indeed, by w∗-convergence, whenever γ ∈ A, we have γ ∈ supp(fλ) ⊆ Aλ
for all large enough λ. Therefore m 6 n. Moreover, if m = n, then Aλ must take constant
value A for all large enough λ. However, this cannot happen because DA is finite and
anfλ 6= d for all λ. Thus m < n as claimed. We see further that d ∈ anBWA

. Thus, by (4)
again, there exists f ∈ DA such that

(1− 2−(m+2))a−1
n d(x) 6 (1− 2−(m+2)) ‖PAx‖ 6 f(x) 6 a−1

m |||x||| = a−1
m . (5)

Pick k ∈ N such that nk−1 < m 6 nk. From (5) it follows that

d(x) 6
an

am(1− 2−(m+2))
6

1 + 2−n

(1 + 2−m)(1− 2−(m+2))
<

1 + 2−n

1 + 2−(m+1)
6 1,

as required (in fact it is not hard to show moreover that |||d||| < 1, but this fact is not
required for our purposes). Our claim is proved and thus ||| · ||| is polyhedral.

The second statement, concerning Schauder bases, follows from the implication (a)⇒ (d)
of [6, Theorem 1]. It also follows from the above by defining ck = inf {b′` : ` > k}, k ∈ N,
letting Dn be a symmetric finite 2−(n+2)-net of SP ∗

nX
∗ , and making attendant simplifications

thereafter. �

We use Proposition 2.2 to prove the next result, which is Theorem 1.4 restricted to the
case of monotone bases. We prove Theorem 1.4 straight afterwards.

Proposition 2.3.

(1) Let X be a Banach space with a monotone unconditional basis (eγ)γ∈Γ. Let (an)∞n=1

be a sequence of positive numbers tending to 0, such that

lim inf
n→∞

a−1
n

(
‖x‖ − sup

|A|=n
‖PAx‖

)
< ∞, (6)

for all x ∈ X. Then X admits an equivalent polyhedral norm.
(2) If (en)∞n=1 is a monotone Schauder basis of X and (an)∞n=1 is a sequence of positive

numbers tending to 0, such that

lim inf
n→∞

a−1
n

(
‖x‖ − ‖Pnx‖

)
< ∞, (7)

then we reach the same conclusion.
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Proof. We consider the first statement. Without loss of generality, we may assume that
the sequence (an)∞n=1 is non-increasing (if necessary, we can replace an by a′n := maxj>n aj
– clearly (6) holds with respect to the a′n). There exists an increasing sequence of positive
integers (nk)

∞
k=1, such that the sequence (kank)

∞
k=1 tends to 0 and maxk>1 kank < 1. From

(6) it follows that, for every x ∈ SX , there exist positive integers m(x) and `(x) > nm(x)

such that

1 6 sup
|A|=n`(x)

‖PAx‖+m(x)a`(x). (8)

Given k ∈ N, set

Sk = {x ∈ SX : nk 6 `(x) < nk+1} ,
and let K = {k ∈ N : Sk is non-empty}. Clearly, SX =

⋃
k∈K Sk.

Let k ∈ K and x ∈ Sk. We have nk, nm(x) 6 `(x) < nk+1. Since (nk)
∞
k=1 is increasing and

(ak)
∞
k=1 is non-increasing, we get m(x) 6 k and a`(x) 6 ank . Using (8) and the monotonicity

of the basis we get

1 6 sup
|A|=nk

‖PAx‖+ kank .

Given k ∈ K, define

bk = inf
x∈Sk

sup
|A|=nk

‖PAx‖ .

We obtain 0 < 1 − kank 6 bk 6 1. Enumerate K as an increasing sequence of positive
integers (kj)

∞
j=1. Clearly (Skj)

∞
j=1 and (bkj)

∞
j=1 satisfy the hypotheses of Proposition 2.2 (1).

To prove the second statement, we repeat the proof above using (7), replacing instances
of sup|A|=n ‖PAx‖ by ‖Pnx‖ as we go, and using Proposition 2.2 (2). �

Proof of Theorem 1.4. First let us show how to treat the case when the basis (eγ)γ∈Γ is
unconditional. Given x ∈ X and α ∈ [−1, 1]Γ, we set

ψ(x, α) =

∥∥∥∥∥∑
γ∈Γ

α(γ)e∗γ(x)eγ

∥∥∥∥∥ .
Introduce on X an equivalent norm by the formula

|||x||| = sup
{
ψ(x, α) : α ∈ [−1, 1]Γ

}
.

Let (1) hold. We show that, for every x ∈ X, (6) holds with respect to ||| · |||.
Let x ∈ X. Since the function ψ is a continuous with respect to its second argument,

and as [−1, 1]Γ is compact, we find that ψ(x, ·) attains its maximum at some β ∈ [−1, 1]Γ,
i.e. |||x||| = ψ(x, β). Set y =

∑
γ∈Γ β(γ)e∗γ(x)eγ. From the definition of ||| · |||, we know that

‖PAy‖ 6 |||PAy||| = |||PAx|||,

for every A ⊆ Γ. Hence by the monotonicity of the basis with respect to ||| · |||

sup
|A|6n

‖PAy‖ 6 sup
|A|6n

|||PAx||| = sup
|A|=n

|||PAx|||.
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Since |||x||| = ‖y‖, we get

|||x||| − sup
|A|=n

|||PAx||| 6 ‖y‖ − sup
|A|6n

‖PAy‖ .

Bearing in mind that (1) holds for y, we have

lim inf
n→∞

a−1
n

(
|||x||| − sup

|A|=n
|||PAx|||

)
< ∞,

thus we can apply Proposition 2.3.
In the Schauder basis case, we proceed much as above, using the equivalent norm |||x||| =

supn ‖Pnx‖. We show that (2) (equivalently (7)) holds with respect to ||| · |||. Let x ∈ X.
If |||x||| should happen to equal ‖x‖, we have

|||x||| − |||Pnx||| 6 ‖x‖ − ‖Pnx‖ , (9)

for all n ∈ N. Assume now that |||x||| > ‖x‖. Since ‖x‖ = limn→∞ ‖Pnx‖, we have
|||x||| = ‖Pmx‖ for some m ∈ N. Since the basis (ej)

∞
j=1 is monotone with respect to ||| · |||

we have |||Pnx||| = |||Pmx||| whenever n > m. Thus in this case

|||x||| − |||Pnx||| = 0.

Since (2) holds with respect to ‖·‖, this, together with (9), imply that (2) (and (7)) holds
with respect to ||| · |||, and so we are in a position to apply the second part of Proposition
2.3. �

Now we turn our attention to the proof of Theorem 1.3. First, using Fact 1.6, the
hypotheses of Theorem 1.4 (1) can be relaxed a little.

Corollary 2.4. Let X be a Banach space having an unconditional basis (eγ)γ∈Γ. Given
m ∈ N, let (am,n)∞n=1 be a sequence of positive numbers such that limn→∞ am,n = 0 and, for
every x ∈ X,

inf
m∈N

(
lim inf

n→∞
a−1
m,n

(
‖x‖ − sup

|A|6n
‖PAx‖

))
< ∞.

Then X admits a polyhedral renorming.

The following remark will be used a few times in proofs and examples to come, including
that of Proposition 2.6, from which we deduce Theorem 1.3. It also allows us to simplify
the expression sup|A|6n ‖PAx‖ in Theorem 1.4 (1), in the event that the basis of X is
1-symmetric.

Remark 2.5. Given non-zero x ∈ X, where X has an unconditional basis (eγ)γ∈Γ, we
can enumerate supp(x) as a (finite or infinite) sequence (γk)k>1 of distinct points in Γ,
in such a way that |e∗γ1(x)| > |e∗γ2(x)| > |e∗γ3(x)| . . . . Set An(x) = {γ1, . . . , γn} (or set
An(x) = supp(x) if | supp(x)| < n). If the basis of X is 1-symmetric then sup|A|6n ‖PAx‖
in condition (1) is equal to

∥∥PAn(x)x
∥∥. The choice of the γk, and thus the sets An(x), may

not be unique, however, said choice will not matter whenever we make use of these sets.
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Let (eγ)γ∈Γ be a normalized unconditional basis of a Banach space X. Set

λn = inf

{∥∥∥∥∥∑
γ∈A

eγ

∥∥∥∥∥ : A ⊆ Γ, |A| > n

}
.

Assume that (eγ)γ∈Γ is a symmetric basis. Then X is isomorphic to c0(Γ) if and only
if the sequence (λn)∞n=1 is bounded (this follows immediately from the fact that, given a
normalized basis (eγ)γ∈Γ of a Banach space having unconditional basis constant K, we have

K−1 max
γ∈A
|aγ| 6

∥∥∥∥∥∑
γ∈A

aγeγ

∥∥∥∥∥ 6 K max
γ∈A
|aγ|

∥∥∥∥∥∑
γ∈A

eγ

∥∥∥∥∥ .
for every finite set A ⊆ Γ and reals aγ, γ ∈ A). Since c0(Γ) is polyhedral, Theorem 1.3
follows immediately from the next and final result of the section.

Proposition 2.6. Let X have (∗) with respect to an unconditional basis (eγ)γ∈Γ and some
modulus ω. If

lim
n→∞

λn = ∞, (10)

then X admits a polyhedral renorming.

Proof. Pick x ∈ X and define the sets An(x) as in Remark 2.5. Given n ∈ N, we have∥∥RAn(x)x
∥∥
∞ = sup

{
|e∗γ(x)| : γ ∈ Γ \ An(x)

}
6 |e∗γn(x)|

6 λ−1
n

∥∥∥∥∥∥
∑

γ∈An(x)

eγ

∥∥∥∥∥∥ · |e∗γn(x)|

= λ−1
n

∥∥∥∥∥∥
∑

γ∈An(x)

e∗γn(x)eγ

∥∥∥∥∥∥
6 λ−1

n K

∥∥∥∥∥∑
k>1

e∗γk(x)eγk

∥∥∥∥∥ = K ‖x‖λ−1
n ,

where K is the unconditional basis constant of (eγ)γ∈Γ. Since X is assumed to have (∗), it
follows that

‖x‖ 6
∥∥PAn(x)x

∥∥+ c(x)ω(d(x)
∥∥RAn(x)x

∥∥
∞)

6
∥∥PAn(x)x

∥∥+ c(x)ω(Kd(x) ‖x‖λ−1
n )

6 sup
|A|6n

‖PAx‖+ c(x)ω(Kd(x) ‖x‖λ−1
n ). (11)

Set am,n = mω(mλ−1
n ). Given (10), we see that limn→∞ am,n = 0 for all m ∈ N. From (11),

it follows that
‖x‖ 6 sup

|A|6n
‖PAx‖+ am,n,
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for all n ∈ N, provided m > max{c(x), Kd(x) ‖x‖}. Now we are in a position to apply
Corollary 2.4. The proof is complete. �

3. Examples

In our first example, we present two wide classes of Banach spaces that are quite different
in character, yet share the property of having (∗).

Example 3.1.

(1) Let X have a normalized unconditional basis (eγ)γ∈Γ and suppose that the set of
all summable elements of the unit sphere{

f ∈ SX∗ :
∑
γ∈Γ

|f(eγ)| <∞

}
,

with respect to the basis, is a boundary. Then X has (∗).
(2) Let M be a non-degenerate normalized Orlicz function, i.e. M(t) > 0 for all t > 0

and M(1) = 1. Let Γ be a set and let hM(Γ) be the space of all real functions x
defined on Γ, such that ∑

γ∈Γ

M

(
|x(γ)|
ρ

)
< ∞,

for all ρ > 0. We equip hM(Γ) with the Luxemburg norm

‖x‖ := inf

{
ρ > 0 : M

(
|x(γ)|
ρ

)
6 1

}
.

The space hM(Γ) has (∗) with respect to the unit vector basis (eγ)γ∈Γ, provided

lim
t→0

M(Kt)

M(t)
= ∞, (12)

for some constant K > 1.

Proof.

(1) Set ω(t) = t. Given x ∈ X, take f ∈ B such that f(x) = ‖x‖. Set c(x) =∑
γ∈Γ |f(eγ)| and d(x) = 1. Given A ⊆ Γ,

‖x‖ = f(x) = f(PAx) + f(RAx)

= f(PAx) +
∑
γ∈Γ\A

f(eγ)e
∗
γ(x)

6 ‖PAx‖+

( ∑
γ∈Γ\A

|f(eγ)|
)
‖RAx‖∞

6 ‖PAx‖+ c(x) ‖RAx‖∞ .
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(2) Given t > 0, set

ω(t) = sup

{
M(τ)

M(Kτ)
: 0 < τ 6 t

}
.

Evidently, ω is a continuous non-decreasing function and limt→0 ω(t) = 0. Given
x =

∑
γ∈Γ x(γ)eγ ∈ hM(Γ), ‖x‖ = 1, we let

c(x) =
∑
γ∈Γ

M(K|x(γ)|),

and d(x) = 1. From the definition of hM(Γ), we see that c(x) is finite. Let A ⊆ Γ.
Since M is a convex function satisfying M(0) = 0, we have∑

γ∈Γ

M(λ|x(γ)|) 6 λ
∑
γ∈Γ

M(|x(γ)|),

whenever 0 6 λ 6 1. In particular, as ‖PAx‖ 6 1,∑
γ∈A

M(|x(γ)|) 6 ‖PAx‖
∑
γ∈A

M

(
|x(γ)|
‖PAx‖

)
= ‖PAx‖ .

Therefore,

‖x‖ = 1 =
∑
γ∈Γ

M(|x(γ)|)

=
∑
γ∈A

M(|x(γ)|) +
∑
γ∈Γ\A

M(|x(γ)|)

6 ‖PAx‖+

(
sup
γ∈Γ\A

M(|x(γ)|)
M(K|x(γ)|)

) ∑
γ∈Γ\A

M(K|x(γ)|)

6 ‖PAx‖+ ω(‖RAx‖∞)
∑
γ∈Γ

M(K|x(γ)|)

= ‖PAx‖+ c(x)ω(‖RAx‖∞). �

Remark 3.2.

(1) For the use of summable boundaries in polyhedral renorming, see [1, 7, 14].
(2) D. Leung proved that hM(N) admits an equivalent polyhedral norm provided M

satisfies (12) [11]. For the case when Γ is an arbitrary set, see [4, 5].

Example 3.3. We consider a symmetric version of the Nakano space. Let Γ be a set and
let (pn)∞n=1 be a non-decreasing sequence, with p1 > 1. By hS(pn)(Γ) we denote the space of
all real functions x defined on Γ, such that

φ

(
x

ρ

)
< ∞,
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for all ρ > 0, where

φ(x) := sup

{
∞∑
k=1

|x(γk)|pk : (γk)
∞
k=1 is a sequence of distinct points in Γ

}
.

Given x ∈ hS(pn)(Γ), we set

‖x‖ = inf

{
ρ > 0 : φ

(
x

ρ

)
6 1

}
.

It is easy to see that the standard unit vectors (eγ)γ∈Γ form an unconditional symmetric
basis in hS(pn)(Γ). We show that hS(pn)(Γ) satisfies equation (1) from Theorem 1.4, provided
pn →∞.

Proof. Pick θ ∈ (0, 1). We show that for every x ∈ hS(pn)(Γ) satisfying ‖x‖ = 1, there exists

m(x) ∈ N such that

1−
∥∥PAn(x)x

∥∥ 6 θpn , (13)

whenever n > m(x), where An(x) is any set {γ1, . . . , γn} of the form described in Remark
2.5. Setting an = θpn in (13) yields (1).

As in the proof of Example 3.1 (2), as φ is a convex function and φ(0) = 0, and∥∥PAn(x)x
∥∥ 6 ‖x‖ = 1, we have

φ(PAn(x)x) 6
∥∥PAn(x)x

∥∥φ( PAn(x)x∥∥PAn(x)

∥∥
)

=
∥∥PAn(x)x

∥∥ . (14)

Given γ ∈ Γ \ An(x), and bearing in mind that ‖·‖ is a lattice norm, we have

|x(γ)| 6
∥∥RAn(x)x

∥∥ 6 ‖x‖ = 1,

and therefore

1 = φ

(
RAn(x)x

‖RAn(x)x‖

)
=

∞∑
k=1

(
|x(γn+k)|
‖RAn(x)x‖

)pk
>

∞∑
k=1

(
|x(γn+k)|
‖RAn(x)x‖

)pk+n−1

=
∞∑

j=n+1

(
|x(γj)|
‖RAn(x)x‖

)pj−1

>
∞∑

j=n+1

|x(γj)|pj∥∥RAn(x)x
∥∥pn ,

which implies

∞∑
j=n+1

|x(γj)|pj 6
∥∥RAn(x)x

∥∥pn . (15)
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There exists m(x) ∈ N such that
∥∥RAn(x)x

∥∥ 6 θ whenever n > m(x). Together with (14)
and (15), this implies

1 = φ(x) = φ(PAn(x)x) +
∞∑

j=n+1

|x(γj)|pj

6
∥∥PAn(x)x

∥∥+
∥∥RAn(x)x

∥∥pn 6 ∥∥PAn(x)x
∥∥+ θpn ,

whenever n > m(x). �

The following examples are based on the next simple and well known fact.

Fact 3.4. Let (ck)
n
k=1 and (dk)

n
k=1 be non-increasing sequences of non-negative numbers.

Then
n∑
k=1

ckdπ(k) 6
n∑
k=1

ckdk, (16)

whenever π is a permutation of {1, . . . , n}.

In the next example, we expose the difference between conditions (1) and (2) of Theorem
1.4.

Example 3.5. There exists an equivalent norm ‖·‖ on c0 that is symmetric with respect
to the usual basis, such that

(1) given x ∈ c0,

2n
(
‖x‖ − sup

|A|6n
‖PAx‖

)
6 4 ‖x‖ , (17)

(2) but given a sequence (an)∞n=1 of positive numbers tending to 0, there exists y ∈ c0

such that
lim
n→∞

a−1
n

(
‖y‖ − ‖Pny‖

)
= ∞. (18)

Proof. Consider Day’s norm, defined on c0 by

‖x‖ = sup

{( ∞∑
k=1

2−kx(jk)
2

) 1
2

: (jk)
∞
k=1 is a sequence of distinct points in N

}
. (19)

(1) Pick x ∈ c0 such that ‖x‖ = 1. We define An(x) as in Remark 2.5. From (16), it
follows that

sup
|A|6n

‖PAx‖ =
∥∥PAn(x)x

∥∥ =

( n∑
k=1

2−kx(jk)
2

) 1
2

. (20)

Since |x(γ)| 6 2 ‖x‖ = 2, we have

1−
∥∥PAn(x)x

∥∥ 6 1−
∥∥PAn(x)

∥∥2
=

∞∑
k=n+1

2−kx(jk)
2 6 4

∞∑
k=n+1

2−k = 22−n.

Together with (20), this implies (17).
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(2) Let (an)∞n=1 be a sequence of positive numbers tending to 0. Let (nk)
∞
k=1 be a strictly

increasing sequence of positive integers such that

an 6 8−k, (21)

for all n > nk. Define x ∈ c0 by

x(n) =

{
3

1
2 · 2− k2 if n = nk,

0 otherwise.

From (19) we get ‖x‖ = 1 and

1− ‖Pnx‖2 = 3
∞∑

i=k+1

4−i = 4−k,

whenever nk 6 n < nk+1. Hence,

1− ‖Pnx‖ > 1
2
(1− ‖Pnx‖2) = 1

2
4−k.

Using (21), we obtain a−1
n (1 − ‖Pnx‖) > 2k−1 whenever n > nk, which yields

(18). �

The final example shows that condition (1) of Theorem 1.4 can fail even on c0, if the
norm fails to be symmetric.

Example 3.6. There exists on c0 an equivalent (non-symmetric) norm ‖·‖, with respect
to which the standard basis is normalized and 1-unconditional, and having the property
that given a sequence (an)∞n=1 of positive numbers tending to 0, there exists x ∈ c0 such
that

lim
n→∞

a−1
n

(
‖x‖ − sup

|A|6n
‖PAx‖

)
= ∞. (22)

Proof. Let

D =
{
m−12−k : m, k ∈ N

}
,

and let q : N→ D have the property that q−1(d) is infinite for all d ∈ D. Write qn = q(n),
n ∈ N. Let S be the set of all infinite subsets L ⊆ N, such that qj > qn whenever j, n ∈ L,
j 6 n, and

∑
n∈L qn = 1. Set

E = {±e∗n : n ∈ N} ∪

{
2
∑
n∈L

snqne
∗
n : L ∈ S and sn ∈ {−1, 1} for all n ∈ N

}
,

and define the norm

‖x‖ = sup {f(x) : f ∈ E} .
Then ‖x‖∞ 6 ‖x‖ 6 2 ‖x‖∞ and ‖en‖ = 1, as qn 6 1

2
for all n, and the signs sn in the

definition of E ensure that the standard basis is 1-unconditional with respect to ‖·‖.
Given x ∈ c0, we shall say that |x| is non-increasing on its support if |x(j)| > |x(n)|

whenever j, n ∈ supp(x) and j 6 n. Next, we prove the following fact. Let x ∈ c0 such



POLYHEDRALITY AND DECOMPOSITION 15

that |x| is non-increasing on its support, and suppose that there exists L ∈ S such that
supp(x) ⊆ L and

‖x‖∞ < 2
∑
j∈L

qj|x(j)|.

Furthermore, let Ln be the set of the first n elements of L, and let n0 be large enough so
that

‖x‖∞ < 2
∑
j∈Ln0

qj|x(j)|.

Then the conclusion is that

‖x‖ − sup
|A|6n

‖PAx‖ = 2
∑

j∈L\Ln

qj|x(j)|, (23)

whenever n > n0.
To prove this fact, first we show that

2
∑
j∈L

qj|x(j)| = ‖x‖ . (24)

One inequality is obvious. To see the other, since ‖x‖∞ < 2
∑

j∈L qj|x(j)|, all we need to
do is check that ∑

j∈M

qj|x(j)| 6
∑
j∈L

qj|x(j)|,

whenever M ∈ S, and indeed this holds, because supp(x) ⊆ L. Next, since |x| is non-
increasing on its support, as is (qj)j∈L, given n > n0 and A ⊆ N, |A| 6 n, we have

‖PAx‖ 6 2
∑
j∈Ln

qj|x(j)| = ‖PLnx‖ .

The equality in the line above follows because (24) holds with PLnx and Ln in place of x
and L, respectively. Note that

‖PLnx‖∞ < 2
∑
j∈Ln

qj|x(j)|,

whenever n > n0. Since |Ln| = n, this completes the proof of the fact.
Now let (an)∞n=1 be a sequence of positive numbers tending to 0. Choose integers 0 =

n0 < n1 < n2 < . . . , such that

(a) an 6 8−k whenever n > nk, and
(b) nk − nk−1 6 nk+1 − nk for all k ∈ N.

Since q−1(d) is infinite for all d ∈ D, it is possible to find finite sets Hk ⊆ N such that

(c) maxHk < minHk+1,
(d) |Hk| = nk − nk−1 and
(e) qj = 2−k/|Hk| for all j ∈ Hk.
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Define L =
⋃∞
k=1Hk. We have∑

j∈L

qj =
∞∑
k=1

∑
j∈Hk

2−k

|Hk|
=

∞∑
k=1

2−k = 1.

Together with (b) – (e) above, this ensures that L ∈ S. Now define x ∈ c0 by

x(j) =

{
3
2
· 2−k whenever j ∈ Hk,

0 otherwise.

Then |x| = x is non-increasing on its support, which equals L, and

2
∑
j∈L

qj|x(j)| = 2
∞∑
k=1

∑
j∈Kk

2−k

|Hk|
· 3

2
· 2−k = 3

∞∑
k=1

4−k = 1 > 3
4

= |x(1)| = ‖x‖∞ .

We make the simple observation that

2
∑
j∈Ln2

qj|x(j)| = 3

(∑
j∈H1

4−1

|H1|
+
∑
j∈H2

4−2

|H2|

)
= 3(1

4
+ 1

16
) > ‖x‖∞ .

Therefore, using equation (23), given n > n2, we have

‖x‖ − sup
|A|6n

‖PAx‖ = 2
∑

j∈L\Ln

qjx(j).

Given n > n2, let k > 2 such that nk 6 n < nk+1. Then

‖x‖ − sup
|A|6n

‖PAx‖ = 2
∑

j∈L\Ln

qjx(j) > 2
∑

j∈L\Lnk+1

qjx(j)

= 2
∞∑

`=k+2

∑
j∈H`

qjx(j) = 2
∞∑

`=k+2

3
2
· 4−` = 4−k−2.

Combining this with (a) above yields

a−1
n

(
‖x‖ − sup

|A|6n
‖PAx‖

)
> 8k · 4−k−2 = 4k−2 → ∞,

as n→∞. �

We do not know if the norm in Example 3.6 can be replaced by one that is symmetric.

Problem 3.7. Let X = (c0, ‖·‖), where ‖·‖ is a symmetric equivalent norm. Does there
exist a sequence (an)∞n=1 of positive numbers tending to 0, such that Theorem 1.4 (1) holds?

Acknowledgement. We thank the referee for his or her suggestions, which we think have
improved the readablilty of the paper.
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