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Abstract—This paper deals with the modelling of non-wide-
sense stationary uncorrelated scattering (non-WSSUS) channels
in which the angles of arrival (AOAs), Doppler frequencies, and
propagation delays vary with time. Starting from a geometrical
model in which the mobile station (MS) travels along a predefined
path with time-variant velocity, it is shown how the parameters
of the non-WSSUS model can be computed analytically assuming
that the scatterers are fixed. One of the key results of our analysis
is that the time-variant Doppler frequencies and the time-variant
propagation delays of WSSUS and non-WSSUS channels are
connected by a fundamental relationship. Furthermore, the time-
variant channel transfer function of the non-WSSUS channel
model is derived. In addition, general expressions are presented
for the correlation functions in the time and frequency domains.
Moreover, it is shown that the proposed non-WSSUS channel
model is consistent w.r.t. the mean Doppler shift, Doppler spread,
mean propagation delay, and delay spread. The proposed concept
is of fundamental importance for the design of physically sound
wideband channel models under non-stationary propagation
conditions.

I. INTRODUCTION

The mobile radio channel is a highly dispersive transmission
medium that induces severe distortions on the signals propa-
gating through it [1]–[3]. One kind of distortion is caused
by the dispersion that the received signal experiences in the
frequency domain due to the Doppler effect arising from the
motion of the transmitter and/or receiver. Another kind of
distortion is caused by the dispersion that the received signal
experiences in the time domain due to the different propagation
delays of the received multipath components.

Significant efforts have been devoted since the early days
of the mobile communication systems to characterize the
Doppler frequencies and propagation delays of multipath
fading channels. Initially, the research work was undertaken
assuming that the Doppler frequencies and propagation delays
were time-invariant quantities, leading to the development of
statistical channel models that fulfill the wide-sense stationary
uncorrelated scattering (WSSUS) condition [4]. Such models
were proven suitable for the analysis of first, second, and third
generation mobile cellular communication systems. However,
the emergence of novel highly mobile wireless communi-
cation systems, such as railway [5] and vehicular [6], [7]
communication systems, calls for the development of new
channel models having time-varying parameters, which does

not comply with the WSSUS assumption [8]. Moreover, the
assumption of time-invariant Doppler frequencies implies that
the angles of arrival (AOAs) and angles of departure (AODs)
of the received multipath components are themselves time-
invariant quantities. This condition can be justified if the
multipath components are modeled as electromagnetic plane
waves [9]. Nevertheless, for some relevant communication
systems (such as those having a very short communication
range [10]), a spherical wave propagation model is preferred
to account for the temporal variability of the AOAs and AODs
of the multipath components.

Recently, several statistical models for non-WSSUS mobile
radio channels have been proposed which account for the
time-varying nature of the Doppler frequencies, propagation
delays, and AOAs/AODs (see, e.g., [11], [12]). However,
further research work is needed to thoroughly characterize the
temporal dynamics of the aforementioned parameters, and to
properly understand the interrelations among them.

To close these gaps, we present in this paper a novel frame-
work for the modelling of non-WSSUS channels in which the
AOAs, Doppler frequencies, and propagation delays vary with
time. By assuming that the scatterers are fixed and that the MS
travels along a predefined path with time-variant velocity, we
propose a novel geometrical model for non-WSSUS channels
from which general analytical expressions of the time-varying
Doppler frequencies and propagation delays can be derived.
One of the key results of our analysis is that the time-varying
Doppler frequencies and propagation delays are connected
by a fundamental relationship. General expressions are also
presented for the time-frequency-dependent correlation func-
tion (CF), the time-dependent autocorrelation function (ACF),
and the time-dependent frequency correlation function (FCF)
of the proposed non-WSSUS channel model. In addition,
the consistency of the model w.r.t. the mean Doppler shift,
Doppler spread, mean propagation delay, and delay spread is
demonstrated. The modeling framework presented here is of
fundamental importance for the design of physically sound
non-stationary wideband channel models.

The organisation of the paper is as follows. Section II de-
scribes the non-stationary propagation scenario, which forms
the basic for the derivation of the proposed non-WSSUS
channel model. Section III delineates how the AOAs, Doppler



frequencies, and propagation delays can be modelled under
non-stationary propagation conditions. Section IV establishes
the relationship between Doppler frequencies and propagation
delays. Section V presents the time-variant impulse response
and the corresponding transfer function of the non-WSSUS
channel model. The most important statistical properties of the
proposed channel model are analysed in Section VI. Finally,
Section VII draws the conclusion.

II. THE NON-STATIONARY PROPAGATION SCENARIO

In this paper, we consider the non-stationary multipath
propagation scenario depicted in Fig. 1. In this scenario, a
base station (BS) with fixed position is supposed to be the
transmitter, while the MS acts as the receiver, which moves
with time-variant velocity ~v(t) along a predefined route. It
is assumed that the BS and MS are equipped with single
omnidirectional antennas and that the line-of-sight component
is blocked. The BS antenna is supposed to be unobstructed
by objects, whereas the MS antenna is surrounded by N
fixed scatterers Sn located at (xn, yn) for n = 1, 2, . . . , N .
Furthermore, we assume single-bounce scattering. The origin
of the coordinate system coincides with the position of the
MS at time t = 0. With reference to Fig. 1, the initial distance
from the scatterer Sn to the MS at t = 0 is denoted by rn. The
associated initial AOA αn is defined as the angle between the
propagation direction of the nth incident wave and the x-axis
at t = 0. If the MS moves from the origin (0, 0) to the point
(x(t), y(t)), then the distance between the nth scatterer Sn
and the position of the MS changes, which implies that both
the distance rn(t) and the AOA αn(t) are varying over time.
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Fig. 1. A non-stationary multipath propagation scenario in which the MS
travels along a predefined route (- - -) with time-variant velocity ~v(t).

In the area of channel modelling, one can classify multipath
propagation scenarios into random and deterministic scenarios.
In random propagation scenarios, the scatterers Sn are ran-
domly distributed and/or the MS moves with random velocity.
For randomly distributed scatterers Sn, the initial parameters
rn and αn are random variables, and their corresponding time-
variant quantities rn(t) and αn(t) are stochastic processes
for all n = 1, 2, . . . , N . This contrasts with deterministic
propagation scenarios, in which the scatterers Sn are fixed
at known positions (xn, yn), and the MS moves with known
velocity ~v(t). In this case, the initial parameters rn and αn are
constants, and the corresponding time-variant quantities rn(t)

and αn(t) are deterministic processes for all n = 1, 2, . . . , N .
Unless mentioned otherwise, we will focus in the following
on deterministic propagation scenarios with fixed scatterers Sn
located at known positions (xn, yn).

III. MODELLING THE TIME-VARIANT CHANNEL
PARAMETERS

A. Modelling the Time-Variant AOAs

We consider a non-stationary multipath propagation sce-
nario in which the MS travels with velocity

~v(t) = v(t)e jαv(t) (1)

where the magnitude v(t) = |~v(t)| is called the speed, and
the phase αv(t) is referred to as the angle of motion (AOM).
By setting the time t to zero, we obtain the initial velocity
~v0 = v0 exp{jαv}, where v0 = v(0) denotes the initial speed,
and αv = αv(0) is the initial AOM. Notice that a change of the
velocity ~v(t) can be caused by either an increase (or decrease)
of the speed v(t), a change of the AOM αv(t), or a change
in both speed v(t) and AOM αv(t). If the speed v(t) and the
AOM αv(t) are known, then the position (x(t), y(t)) of the
MS at time t can be computed by means of

x(t) =

t∫
0

v(z) cos(αv(z)) dz (2)

and

y(t) =

t∫
0

v(z) sin(αv(z)) dz . (3)

Recall that the time-variant AOA αn(t) is defined as the
angle between the propagation direction of the nth incident
wave and the x-axis. If the location (xn, yn) of the nth
scatterer Sn is known, then the corresponding time-variant
AOA αn(t), seen at the position (x(t), y(t)) of the MS at
time t, can be obtained from

αn(t) = atan2(yn − y(t), xn − x(t)) (4)

for n = 1, 2, . . . , N , where the function atan2(y, x) desig-
nates the four-quadrant inverse tangent function, which returns
the angle of the vector (x, y) with the positive x-axis in the
range from −π to +π.

B. Modelling the Time-Variant Doppler Frequencies

In the general case of time-variant velocities ~v(t) and time-
variant AOAs αn(t), it is obvious that the Doppler frequency
fn(t) of the nth path also varies with time according to

fn(t) = fmax(t) cos(αn(t)− αv(t)) (5)

where fmax(t) denotes the maximum Doppler shift. Regarding
its computation, we have to distinguish between the following
three cases: single-carrier transmission, multi-carrier transmis-
sion, and wideband transmission of signals.



1) Single-Carrier Transmission: Let x(t) be an unmodu-
lated carrier signal of the form x(t) = A exp{j2πf0t}, where
A denotes a complex-valued constant, and f0 is the carrier
frequency. If we transmit such a signal over a non-stationary
multipath fading channel with time-variant speed v(t), then
the maximum Doppler frequency fmax(t) in (5) is given by

fmax(t) =
v(t)

c0
f0 (6)

where c0 designates the speed of light.
2) Multi-Carrier Transmission: Multi-Carrier transmission

systems, such as orthogonal frequency-division multiplexing,
have K > 1 sub-carrier frequencies f (k)0 (k = 1, 2, . . . ,K)

that are spaced apart by ∆f according to f (k)0 = f0 +∆f [k−
(K+1)/2]. The maximum Doppler frequency f (k)max(t), which
the kth sub-carrier frequency experiences, can be computed as

f (k)max(t) =
v(t)

c0

[
f0 + ∆f

(
k − K + 1

2

)]
(7)

for k = 1, 2, . . . ,K. This means that the sub-carrier fre-
quencies f

(k)
0 of multi-carrier systems experience different

(maximum) Doppler shifts.
3) Wideband Transmission: Let x(t) be a complex base-

band signal with bandwidth B such that the spectrum X(f ′)
of x(t) is confined to the frequency range [−B/2, B/2]. If we
transmit the signal x(t) at the carrier frequency f0 over a non-
stationary multipath fading channel with time-variant speed
v(t), then the spectral component of x(t) at f ′ ∈ [−B/2, B/2]
experiences a maximum Doppler shift of

fmax(f ′, t) =
v(t)

c0
(f0 + f ′) . (8)

This result shows that the maximum Doppler frequency
depends generally on both frequency f ′ and time t. The
frequency dependence of fmax(f ′, t) can be neglected for
narrowband signals characterised by B/f0 � 1. However, for
wideband signals, where the factor B/f0 cannot be neglected,
the f ′-dependence of the maximum Doppler frequency should
be an integral part of the designed channel model.

The path gain cn of the nth propagation path is supposed
to be a constant real-valued parameter. If the path gains
cn and the Doppler frequencies fn(f ′, t) are known, then
the instantaneous mean Doppler shift B

(1)
f (f ′, t) and the

instantaneous Doppler spread B(2)
f (f ′, t) can be computed as

follows:

B
(1)
f (f ′, t) =

N∑
n=1

c2nfn(f ′, t)

N∑
n=1

c2n

(9)

B
(2)
f (f ′, t) =

√√√√√√√√
N∑
n=1

c2nf
2
n(f ′, t)

N∑
n=1

c2n

−
(
B

(1)
f (f ′, t)

)2
. (10)

The two preceding expressions reveal that the characteristic
quantities B(1)

f (f ′, t) and B(2)
f (f ′, t) are in general functions

of both frequency f ′ and time t.

C. Modelling the Time-Variant Propagation Delays

With reference to Fig. 1 and by using the speed-time-
distance relationship, the time-variant propagation delays τ ′n(t)
of the nth path can be expressed as

τ ′n(t) =
DT
n + rn(t)

c0

=
1

c0

[√
D2 + r2n + 2Drn cos(αn)

+
√

(rn cos(αn)− x(t))2 +(rn sin(αn)− y(t))2
]
(11)

for n = 1, 2, . . . , N . Note that (11) represents the exact result,
which has been obtained without imposing any boundary
conditions such as D � rn(t). Note also that the time-variant
propagation delay τ ′n(t) in (11) captures the effect caused by
an MS that moves along a given route with velocity ~v(t).

In analogy to (9) and (10), the instantaneous mean delay
B

(1)
τ ′ (t) and the instantaneous delay spread B

(2)
τ ′ (t) can be

obtained by

B
(1)
τ ′ (t) =

N∑
n=1

c2nτ
′
n(t)

N∑
n=1

c2n

(12)

and

B
(2)
τ ′ (t) =

√√√√√√√√
N∑
n=1

c2n(τ ′n(t))2

N∑
n=1

c2n

−
(
B

(1)
τ ′ (t)

)2
(13)

respectively.

IV. RELATIONSHIP BETWEEN DOPPLER FREQUENCIES
AND PROPAGATION DELAYS

A comparison of the Doppler frequencies fn(f ′, t) in (5)
and the propagation delays τ ′n(t) in (11) show that these two
quantities are seemingly independent of each other, but this is
not true. In fact, it is shown in the Appendix that there exists
a fundamental relationship between fn(f ′, t) and τ ′n(t), which
can be expressed as

fn(f ′, t) = −(f0 + f ′) τ̇ ′n(t) (14)

where the overdot denotes the differentiation with respect to
time t. This result indicates that the Doppler frequencies are
negatively proportional to the slope of the propagation delays.
We can also say that the faster the reduction (extension) of
the propagation delays is, the larger are the positive (negative)
Doppler shifts. A practical implication of (14) is that the
estimation of the Doppler frequencies can be reduced to the
estimation of the trend of the propagation delays.



Another fundamental relationship is obtained by substituting
(14) in (9) and (10), which leads to

B
(i)
f (f ′, t) = −(1)i(f0 + f ′)B

(i)
τ̇ ′ (t) (15)

for i = 1, 2. In other words, the instantaneous mean Dopp-
ler shift B(1)

f (f ′, t) and the instantaneous Doppler spread
B

(2)
f (f ′, t) are determined by the mean and spread of the

slope τ̇ ′n(t) of the propagation delays τ ′n(t). Notice that
B

(1)
τ̇ ′ (t) = Ḃ

(1)
τ ′ (t), and thus B(1)

f (f ′, t) = −(f0 + f ′)Ḃ
(1)
τ ′ (t),

i.e., the mean Doppler shift is determined by the temporal
derivative of the mean propagation delay.

In the following, we will briefly discuss some special cases.
In the first case, we assume that the distance between BS and
MS is small compared to the distance from the scatterer Sn
to the origin, i.e., D � rn. Furthermore, we assume that the
MS travels only a short distance along a straight path. Under
these assumptions, the propagation delays τ ′n(t) in (11) can
be approximated as

τ ′n(t) ≈ τ ′n(0)− v0t

c0
cos(αn − αv) (16)

where τ ′n(0) = {D + rn[1 + cos(αn)]}c−10 . Substituting (16)
in (14) gives

fn(f ′) ≈ (f0 + f ′)
v0

c0
cos(αn − αv) . (17)

Hence, if D � rn and the MS travels only a short distance,
it turns out that the Doppler frequency is independent of
time. Finally, for the cases of single carrier transmission and
narrowband transmission (f ′ � f0), the result in (17) reduces
further to the well-known standard expression of the Doppler
shift

fn ≈ f0
v0

c0
cos(αn − αv)

= fmax cos(αn − αv) (18)

which can be found in many textbooks [1], [3], [13].

V. THE NON-WSSUS CHANNEL MODEL

It has been shown in [3, Eq. (3.4)] that the time-variant im-
pulse response h(τ ′, t) of a non-stationary multipath channel
can be written in the following general form

h(τ, t) =

N(t)∑
n=1

cn(t)e j[θn(t)−2πf0τ
′
n(t)]δ(τ ′ − τ ′n(t)) . (19)

In the equation above, N(t) denotes the number of propagation
paths at time t, cn(t) represents the time-variant path gain, and
θn(t) is the corresponding phase shift, which is caused by
the interaction of the transmitted signal and the nth scatterer
Sn. Next, we simplify the channel model described by (19)
by restricting its validity to sufficiently short observation time
intervals T0, i.e., t ∈ [0, T0]. Then, we can consider the number
of propagation paths N(t), the path gains cn(t), and the phases
θn(t) as independent of time t, i.e. N(t) = N, cn(t) = cn, and

θn(t) = θn. Hence, the time-variant impulse response h(τ ′, t)
in (19) can be written as

h(τ, t) =

N∑
n=1

cne
j[θn−2πf0τ ′n(t)]δ(τ ′ − τ ′n(t)) . (20)

In the proposed channel model, the number of propagation
paths N is equal to the number of scatterers; the path gains
cn are constant; the phases θn are modelled as independent and
identically distributed (i.i.d.) random variables, each has a uni-
form distribution over the interval (0, 2π], i.e., θn ∼ U(0, 2π];
and the time-variant propagation delays τ ′n(t) are given by
(11).

By taking the Fourier transform of h(τ ′, t) w.r.t. τ ′, we
obtain the time-variant channel transfer function

H(f ′, t) =

N∑
n=1

cne
j[θn−2π(f0+f ′)τ ′n(t)] . (21)

From the phase φn(f ′, t) = θn−2π(f0+f ′)τ ′n(t) of H(f ′, t),
we can compute the instantaneous Doppler frequency fn(f ′, t)
by invoking the phase-frequency relationship [14, Eq. (1.3.40)]

fn(f ′, t) =
1

2π

dφn(f ′, t)

dt
(22)

This results in the instantaneous Doppler frequency in the form
of fn(f ′, t) = −(f0 + f ′)τ̇ ′n(t), which is already known to us
from (14).

VI. ANALYSIS OF THE NON-WSSUS CHANNEL MODEL

A. Time-Frequency-Dependent CF

The time-frequency-dependent CF RH(υ′, τ ; f ′, t) of the
time-variant channel transfer function H(f ′, t) is defined as

RH(υ′, τ ; f ′, t) =E

{
H

(
f ′ +

υ′

2
, t+

τ

2

)
·H∗

(
f ′ − υ′

2
, t− τ

2

)}
(23)

where E{·} and (·)∗ represent the expectation operator and
the complex conjugate operator, respectively. By substituting
(21) in (23) and using (14), it can be shown that the time-
frequency-dependent CF RH(υ′, τ ; f ′, t) can be brought into
the form

RH(υ′, τ ; f ′, t) =

N∑
n=1

c2ne
j2π

t+τ/2∫
t−τ/2

fn(f
′,x)dx

· e−jπυ
′[τ ′n(t+ τ

2 )+τ ′n(t− τ2 )] . (24)

B. Time-Dependent ACF

The time-dependent ACF RH(τ, t) of H(f ′, t) is obtained
from RH(υ′, τ ; f ′, t) by setting υ′ = 0, i.e.,

RH(τ, t) = RH(0, τ ; f ′, t)

=

N∑
n=1

c2ne
j2π

t+τ/2∫
t−τ/2

fn(f
′,x)dx

. (25)



For the special case that fn(f ′, t) varies linear with time t,
i.e., fn(t) = fn + knt, where kn is a real-valued constant, we
obtain [15]

RH(τ, t) =

N∑
n=1

c2ne
j2πfn(t)τ . (26)

Furthermore, if fn(f ′, t) is independent of frequency f ′ and
time t, i.e., fn(f ′, t) = fn, then (25) reduces to the expression

RH(τ) = RH(τ, t) =

N∑
n=1

c2ne
j2πfnτ (27)

which describes the ACF of sum-of-cisoids channel models
[16]. Finally, if αn ∼ U(0, 2π], then the expression above
reduces to the ACF RH(τ) = 2σ2

0J0(2πfmaxτ), where
2σ2

0 =
∑N
n=1 c

2
n and J0(·) designates the zeroth-order Bessel

function of the first kind [17, Eq. (9.1.18)]. Thus, the temporal
characteristics of the proposed non-WSSUS channel model
include those of the classical Jakes/Clarke model [1], [18] as
a special case.

C. Time-Dependent FCF

The time-dependent FCF RH(υ′, t) of H(f ′, t) is obtained
from RH(υ′, τ ; f ′, t) by setting τ = 0, i.e.,

RH(υ′, t) = RH(υ′, 0; f ′, t) =

N∑
n=1

c2ne
−j2πτ ′n(t)υ

′
. (28)

D. Consistency

From the time-dependent ACF RH(τ, t) in (25), we can
obtain the instantaneous mean Doppler shift

B
(1)
Hf

(t) =
1

2πj

ṘH(τ, t)

RH(τ, t)

∣∣∣∣
τ=0

(29)

and the instantaneous Doppler spread

B
(2)
Hf

(t) =
1

2π

√√√√(ṘH(τ, t)

RH(τ, t)

)2

− R̈H(τ, t)

RH(τ, t)

∣∣∣∣∣
τ=0

(30)

where ṘH(τ, t) (R̈H(τ, t)) denotes the first (second) order
derivative of RH(τ, t) w.r.t. the time-lag variable τ .

Analogously, from the time-dependent FCF RH(υ′, t) in
(28), we can compute the instantaneous mean delay

B
(1)
Hτ′

(t) =
1

2πj

ṘH(υ′, t)

RH(υ′, t)

∣∣∣∣
υ′=0

(31)

and the instantaneous delay spread

B
(2)
Hτ′

(t) =
1

2π

√√√√(ṘH(υ′, t)

RH(υ′, t)

)2

− R̈H(υ′, t)

RH(υ′, t)

∣∣∣∣∣
υ′=0

(32)

where ṘH(υ′, t) (R̈H(υ′, t)) denotes the first (second) order
derivative of RH(υ′, t) w.r.t. the frequency-lag variable υ′.

After substituting (25) in (29) and (30), it can be shown
(without proof) that B(i)

Hf
(t) = B

(i)
f (t) holds for i = 1, 2.

Similarly, it can be shown after substituting (28) in (31) and

(32) that B(i)
Hτ′

(t) = B
(i)
τ ′ (t) holds for i = 1, 2. This means

that the proposed non-WSSUS model is consistent w.r.t. the
mean Doppler shift (mean propagation delay) and the Doppler
spread (delay spread).

VII. CONCLUSION

In this paper, we have presented a procedure for the
modelling of non-WSSUS channels with time-variant model
parameters (AOAs, Doppler frequencies, and propagation de-
lays). Our starting point was a generic geometrical model for
non-stationary multipath propagation scenarios comprising a
fixed transmitter (BS), M stationary scatterers, and a mobile
receiver (MS) that moves along a predefined route with time-
variant velocity. From the geometrical model, we have derived
general expressions for the AOAs, Doppler frequencies, and
propagation delays. Our analysis has revealed the existence of
a fundamental relationship between the Doppler frequencies
and the propagation delays. More precisely, it turned out that
the Doppler frequencies are negatively proportional to the
slope of the propagation delays. Moreover, we have analysed
the temporal and frequency correlation properties of the time-
variant transfer function of the derived non-WSSUS model.
Finally, we have shown that the model is consistent w.r.t.
the mean Doppler shift, Doppler spread, mean delay, and
delay spread. The main conclusion of the paper is that the
Doppler characteristics are completely determined by the delay
characteristics. The secondary conclusion is that the proposed
modelling approach leads to a physically sound and consistent
non-WSSUS model.

APPENDIX

Proof of Equation (14). By using xn = rn cos(αn) and yn =
rn sin(αn), the time-variant propagation delay τ ′n(t) in (11)
can be written as

τ ′n(t) =
1

c0

[√
D2 + r2n + 2Dxn

+
√

(xn − x(t))2 + (yn − y(t))2
]
. (A.1)

The derivative of τ ′n(t) w.r.t. time t results in

τ̇ ′n(t) = − (xn − x(t))ẋ(t) + (yn − y(t))ẏ(t)

c0
√

(xn − x(t))2 + (yn − y(t))2
. (A.2)

From (2) and (3), it follows ẋ(t) = v(t) cos(αv(t)) and ẏ(t) =
v(t) sin(αv(t)), respectively, which allows us to express (A.2)
as

τ̇ ′n(t) = −v(t)

c0

· (xn − x(t)) cos(αv(t)) + (yn − y(t)) sin(αv(t))√
(xn − x(t))2 + (yn − y(t))2

.

(A.3)

From Fig. 1, we know that the relation

tan(αn(t)) =
yn − y(t)

xn − x(t)
=

sin(αn(t))

cos(αn(t))
(A.4)



holds. By means of (A.4) and by using [17, Eqs. (4.3.10) and
(4.3.17)], we can express τ̇n(t) as

τ̇n(t) = −v(t)

c0
cos(αn(t)− αv(t)) . (A.5)

Finally, after inserting (8) in (5) and using (A.5), we obtain

fn(f ′, t) = −(f0 + f ′) τ̇ ′n(t) . (A.6)
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