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Abstract—Wireless sensor networks (WSNs) are often char-
acterized by random and asymmetric packet losses due to the
wireless medium, leading to network topologies that can be
modeled as random, time-varying and directed graphs. Most
of existing works related to graph filtering in the context of
WSNs assume that the probability of delivering an information
from one node to a neighbor node is the same as in the reverse
direction. This assumption is not realistic due to the typical link
asymmetry in WSNs caused by interferences and background
noise. In this work, we analyze the problem of applying stochastic
graph filtering over random time-varying asymmetric network
topologies. We show that it is possible to perform stochastic
graph filtering under asymmetric links with node-variant graph
filters, while optimizing a trade-off between the expected error
(bias) and the variance of the error, with respect to performing
graph filtering over a fixed static topology given by a certain
connectivity radius of the nodes.

Index Terms—Wireless sensor networks; asymmetric links;
Graph signal processing; Graph filters.

I. INTRODUCTION

Over the past few years, significant efforts have been
performed to extend classical signal processing concepts to
the graph setting, allowing the emergence of Graph Signal
Processing field [1, 2]. In this area, of special interest is the
analysis of graph signals in the graph frequency domain. In
this field, graph filters (GFs) have been considered as the
building tools for processing the content of graph signals.
These tools have also been shown useful to analyze network
data, learn data dependencies, process several tasks and solve
a wide range of problems [3–7], such as distributed estimation,
denoising, smoothing, classification and regression.

The design of graph filters and its distributed implementa-
tion [5, 8–11] have recently enabled their widespread use in
many applications in the context of Wireless Sensor Networks
(WSNs). It is important to notice that such networks are often
characterized by random and asymmetric packet losses leading
to model the network topologies as random, time-varying and
directed graphs [12]. Very few works have focused on the
problem of randomness and time-variability of the graph when
applying graph filtering [9, 13]. However, none of these works
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consider the problem of link asymmetry when applying graph
filtering since they typically assume that the probability of
delivering a packet from node i to its neighboring node j is
the same as in the reverse direction, from j to i. In addition
to that, this probability is typically assumed to be the same
for all the nodes in the network. Both assumptions are not
realistic and can not be implemented under real conditions in
a WSN due to interferences and background noise [12, 14].

In this work, we first analyze stochastic graph filtering with
node-invariant GFs in WSNs and show that the requirement of
having equal probabilities for all the links is needed in order
to have an unbiased filtering, which as mentioned before, is
not practical. Then, we show that it is possible to perform
stochastic graph filtering under asymmetric links in WSNs
with node-variant GFs while optimizing a trade-off between
the expected error (bias) and the variance of the error, showing
that it is possible to obtain an accurate filtering over time-
varying graphs. To the best of our knowledge, this is the
first work that proposes a solution to perform stochastic graph
filtering in the context of WSNs under asymmetric links, while
ensuring control over the resulting accuracy of filtering, in
terms of bias and variance of the error.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the main background on graph theory and graph
filters. Section 3 analyzes the problem of stochastic graph
filtering when allowing asymmetric links in WSNs and section
4 proposes a solution to cope with this problem. Section 5
presents the numerical results. Section 6 concludes the paper.

Notation: Vectors (respectively matrices) are denoted by
bold lowercase (uppercase) letters. The entries of a matrix B
are denoted by bij . We denote by ‖v‖2 the 2-norm of a vector
v. Similarly, ‖B‖2 and ‖B‖F denote respectively the spectral
norm and the Frobenius norm of a matrix B. We indicate
by tr(.) and diag(.), respectively, the trace operator and the
diagonal matrix. The Hadamard product is indicated by ◦.

II. BACKGROUND

Let G(V, E) denote a directed graph where V is a set of N
vertices and E is a set of links or edges such that if there is a
link from node i to node j, then (i, j) ∈ E . For any given graph
G, we define the N×N adjacency matrix A, where aij = 1
if and only if (i, j) ∈ E . The set of neighbors of node i is
defined by Ωi = {j ∈ V : (i, j) ∈ E}. The degree of node i
is di =

∑
j∈Ωi

aij and D is the diagonal degree matrix.



A. Graph signal, graph shift operator and graph filters

A graph signal, defined on the set of nodes of the graph,
is a mapping x : V → R, and can be represented as a vector
x = [x1, ..., xN ]> ∈ RN . The i-th component xi represents
the signal value at the i-th vertex in V . Any graph G can
be endowed with a graph-shift operator S, which can be
represented as a matrix S ∈ RN×N satisfying sij 6= 0 if
(i, j) ∈ E . There are several possible choices for the shift S,
such as the adjacency matrix A, Laplacian matrix L = D−A
and other generalizations defined on L [15].

A graph filter (GF) is a system H that takes a graph signal x
as an input and produces another graph signal y as an output.
A graph filter H : RN → RN can be represented by an N×N
matrix. GFs can be classified into two types [2, 8, 16]: Infinite
Impulse Reponse (IIR) GFs and Finite Impulse Response (FIR)
GFs. Contrary to IIR GFs, FIR GFs are designed such that
their impulse responses are finite in the vertex domain. In
this paper, we focus on the signal denoising application using
FIR GFs, more specifically, we focus on Tikhonov denoising,
by exploiting an equivalence with the ARMA filtering [9].
However, our work can be easily extended to other types
of filters implemented through FIR GFs over time-varying
graphs. Next, we revise the concept of FIR GFs and connect
it to ARMA graph filtering for Tikhonov denoising.

1) FIR graph filters: FIR GFs can be classified as being
either node-invariant or node-variant [8]:

Node-invariant FIR GF: It is a polynomial in S of degree
L, with coefficients h = [h0, ..., hL]>. The graph signal output
y that is generated when the node-invariant graph filter Hinv

is applied, is given by:

y = Hinvx =

L∑
l=0

hl Slx =

L∑
l=0

hl x(l) (1)

where x(l) = Sl x = S x(l−1).

Node-variant FIR GF: In this case, each node applies differ-
ent weights, collected in N×1 vector h(l) = [h

(l)
1 , ..., h

(l)
N ]>,

to the shifted signals Sl x. In general, node-variant GFs offer a
larger number of degrees of freedom to choose the coefficients.
Thus, they can be viewed as a generalization of node-invariant
GFs. The graph signal output y that is generated when the
node-variant graph filter Hnv is applied, is given by [8]:

y = Hnvx =

L∑
l=0

diag(h(l)) Sl x (2)

2) ARMA1 graph filters: The ARMA1 [9] is an IIR GF
with filter coefficients ϕ and ψ, and computed as:

yt = ψS yt−1 + ϕ x = (ψS)ty0 + ϕ

t−1∑
τ=0

(ψS)τ x (3)

If y0 = x, ARMA1 is equivalent to the node-invariant GF of
order t = T by using the coefficients [ϕ,ϕψ, .., ϕψT−1, ψT ]>.
It has been shown that ARMA1 can solve the Tikhonov
denoising problem [3], which can be formulated as [9]:

v∗ = argminv∈RN ‖x− v‖22 + w v>Sv (4)

where x = v + n is a noisy graph signal, v the true signal
assumed to be smooth with respect to the underlying graph, n

is the noise and w the weighting factor trading smoothness and
noise removal. Let {λn}Nn=1 and {ϑn}Nn=1 be respectively the
eigenvalues and eigenvectors of S, and ρ is the upper bound
of the spectral norm of S i.e., ‖S‖2 ≤ ρ (needed to ensure the
filtering stability of ARMA1 [10]). The frequency response of
ARMA1 is h(λn) = ϕ

1−ψλn
subject to |ψ| < ρ. For ψ= − w

and ϕ=1, filtering x with ARMA1 allows to obtain the optimal
solution of the Tikhonov denoising, which is given by [9]:

v∗ =

N∑
n=1

(
1

1 + wλn
ϑ>nx

)
ϑn (5)

Due to the filter equivalence between FIR GFs and ARMA1,
FIR GFs can be used to solve the Tikhonov denoising.

III. ANALYSIS OF STOCHASTIC GRAPH FILTERING WITH
NODE-INVARIANT GF

We assume that each of the N vertices included in a
random graph G(V, E) models a sensor node with an omni-
directional antenna, which is deployed uniformly at random
over a certain area of interest. Each sensor i can communicate
with its neighbors within its maximum transmission range
R. We denote each graph realization as Gt(V, Et), which
corresponds to different possible links connections with certain
probabilities for each connection. We denote by G0(V, E0) the
particular graph realization where all the possible links within
the transmission range R are active. We consider the graph
filtering performed on the time-varying graphs Gt(V, Et),
which are random realizations at time t of the graph G, where
the probability of establishing a link (i, j) from node i to
node j at time t is pij (0 < pij ≤ 1). Then, we assume that,
for each graph realization Gt(V, Et), the set of links Et ⊆ E0
are activated independently across the time and generated via
an i.i.d. Bernoulli process with the associated probabilities pij .
We allow the links to be asymmetric in order to reflect a more
realistic environment in the context of WSNs. Let P ∈ RN×N
denotes the connection probability matrix with entries pij .
Let S, St and S̄ denote the shift operator corresponding,
respectively, to the graph G0, the graph Gt at time t and the
expected graph Ḡ. We also assume that the spectral norm of
the shift used is upper bounded, i.e., ‖St‖2≤‖S‖2≤ρ for all
t [17].

The output of a node-invariant FIR GF with coefficients φl,
performed on the stochastic time-varying graph Gt with links
established based on P, is given by [9]:

yt =

L∑
l=0

φl Θ(t, t− l + 1) x (6)

where L is the order of the filter and:

Θ(t′, t) =

{ ∏t′

τ=t Sτ if t′ ≥ t
I if t′ < t

(7)

The expected output of the node-invariant FIR GF per-
formed on the expected graph Ḡ for t ≥ L is given by [9]:

ȳt = E
[
yt
]

= E
[ L∑
l=0

φl

( t−l+1∏
τ=t

Sτ

)
x
]

=

L∑
l=0

φl S̄l x (8)



Notice that the coefficients φl are intentionally used instead
of hl in order to highlight our interest in finding the coeffi-
cients φl that will provide on average the same filter output
as we apply a filter with coefficients hl over the graph G0.

If S = A then S̄ = E[At] = P ◦A

=


p11a11 p12a12 .. p1Na1N

p21a21 p22a22 .. ..
.. .. .. ..

pN1aN1 pN2aN2 .. pNNaNN


The expected error (bias) is expressed as:

ē = E
[
yt − y

]
= ȳt − y (9)

To have ē = 0 (unbiased filtering), we should have:
L∑
l=0

φl S̄l x =

L∑
l=0

hl Sl x (10)

The previous equality is also equivalent to enforcing:

φ0 = h0 and
L∑
l=1

(
φl

1
l S̄
)l

x =

L∑
l=1

(
h

1
l

l S
)l

x (11)

It can be easily seen that if φ0 = h0 and φl
1
l S̄ = h

1
l

l S for
l ≥ 1, then the expected error ē = 0. These conditions can be
written as follows:

φl
1
l S̄ =


φl

1
l p11a11 φl

1
l p12a12 .. φl

1
l p1Na1N

φl
1
l p21a21 φl

1
l p22a22 .. φl

1
l p2Na2N

.. .. .. ..

φl
1
l pN1aN1 φl

1
l pN2aN2 .. φl

1
l pNNaNN



= h
1
l

l S =


hl

1
l a11 hl

1
l a12 ... hl

1
l a1N

hl
1
l a21 hl

1
l a22 ... hl

1
l a2N

.. .. .. ..

hl
1
l aN1 hl

1
l aN2 ... hl

1
l aNN


(12)

This means also that for l ≥ 1 and ∀i, j, we must have:

φl
1
l piiaii = hl

1
l aii

φl
1
l pijaij = hl

1
l aij

φl
1
l pjiaji = hl

1
l aji

This means that in order to have ē = 0, it requires to have
all the links with the same probability p and the coefficients
must satisfy:

φl = p−lij hl = p−lji hl = p−lii hl = p−l hl ∀i, j, l (13)

Similarly with node-variant GFs, equal probabilities enable
unbiased filtering. However, it is not possible to enforce equal
(or even similar) probabilities for all the links in WSNs,
because interferences and background noise generate always
link asymmetry. Therefore, it is not possible in practice to
achieve unbiased stochastic graph filtering. Moreover, as our
results show in Section V, in general, it is not possible to
ensure small bias and variance with node-invariant GF. In the
next section, we focus on how to implement stochastic graph
filtering in WSNs under asymmetric links using node-variant
GF, while controlling the bias and the variance of the error.

IV. STOCHASTIC GRAPH FILTERING IN WSN UNDER
ASYMMETRIC LINKS

In this section, we show how to perform stochastic graph
filtering under asymmetric links in WSNs by using node-
variant GFs, so that we can minimize a trade-off between the
bias and the variance. In this paper, we assume, that each
node is using broadcast communications to send data to its
neighbors. Thus, every node i uses a probability qi to establish
a link towards its neighbors. The value qi reflects in WSNs
the Packet Delivery Ratio (PDR) of a given node i. The PDR
can be estimated from the network environment and enforced
by an appropriate cross-layer MAC protocol. The design of
this protocol is out of the scope of this paper. The connection
probability matrix, when nodes use broadcasting, is given by
Q as follows:

Q =


q1 q1 ... q1

q2 q2 ... q2

... ... ... ...
qN qN ... qN


The output of the node-variant FIR GF perfomed over the
stochastic time-varying graph Gt with links established based
on Q and using the N×1 vector φ(l) = [φ

(l)
1 , ..., φ

(l)
N ]> as

filter coefficients is given by:

yt =

L∑
l=0

diag(φ(l)) Θ(t, t− l + 1) x (14)

The expected output of the FIR GF, performed over the
average graph Ḡ for t ≥ L, is given by:

ȳt = E
[
yt
]

= E
[ L∑
l=0

diag(φ(l))

( t−l+1∏
τ=t

Sτ

)
x

]

=

L∑
l=0

diag(φ(l)) S̄l x

(15)

The shift operator S̄ corresponding to the expected graph Ḡ
is selected such as it satisfies S̄=E[St]=Q ◦ S as follows:

If S = A then S̄ = E[At] = Q ◦A

If S = L then S̄=E[Lt] = E[Dt −At]=E[Dt]− E[At]

=Q ◦D−Q ◦A=Q ◦ (D−A)=Q ◦ L

If St=
1

λmax
Lt − 0.5 (Q ◦ I) and S=

1

λmax
L− 0.5 I then

S̄=E[St]=E[
1

λmax
Lt − 0.5 (Q ◦ I)]=

1

λmax
E[Lt]−0.5(Q ◦ I)

=
1

λmax
(Q ◦ L)−0.5(Q ◦ I)=Q ◦

(
1

λmax
L−0.5 I

)
=Q ◦ S

In order to have expected error ē ≈ 0, when applying
stochastic graph filtering with node-variant GF under asym-
metric links established based on Q, we should have:

ȳt =

L∑
l=0

diag(φ(l)) (Q ◦ S)
l
x ≈

L∑
l=0

diag(h(l)) Sl x = y

This means that in order to reduce the expected error and
have the expected output of the stochastic time-varying filter



close to the original one, one can minimize a Frobenius norm
of the difference:

‖B‖F =
∥∥ L∑
l=0

(diag(φ(l)) (Q ◦ S)
l − diag(h(l)) Sl)

∥∥
F

(16)

In order to control the total Mean Square Error (MSE) of
the filtering, we need to control both the bias and the variance.
Next, we analyze the variance of the filtering.

A. Variance

The average of the variance across the nodes is given by:

var[yt] = tr
(
E[ytyt

H ]− E[yt]E[yt]
H
)
/N (17)

Proposition 1: The average variance across the nodes of
the node-variant FIR GF performed on time-varying graphs,
with links established based on Q, is upper bounded by:

var[yt] ≤
‖x‖2

N

(
β0 + β1 + ...+ βL

)2 (18)

where βl = ρl ‖diag(φ(l))‖2.
Proof: See Appendix I.

B. Pareto minimization of the expected error and variance

Our goal is to determine the optimal coefficients that
minimize a pareto weighted sum of the expected error and the
upper bound variance given by (18). This allows to control
the overall MSE. Thus, our optimization problem can be
formulated as follows:

minimize{φ(0),..,φ(L)}

(
‖B‖F

)2

+ γ

( L∑
l=0

βl

)2

(19)

where γ is a weighting factor between the expected error
and the variance. This optimization problem can be solved
efficiently since it is convex. Notice that the term ‖x‖2/N
has been omitted because it has not an impact on the choice
of the coefficients and our goal is to optimize the coefficients
without the knowledge of the input graph signal.

V. NUMERICAL RESULTS

We evaluate in MATLAB the performance of the proposed
solution. A deployment of N=100 sensor nodes, randomly
and uniformly distributed over a square area of side 150 m, is
considered in our simulations. The transmission range of each
node is fixed by default to R=70 m. We consider a Tikhonov
denoising application, where the noisy smooth graph signals
x=v +n are acquired by the WSN, with zero mean Gaussian
noise n and 0.1 standard deviation. The shift operators used
are S= 1

λmax
L − 0.5 I in order to provide a smaller spectral

norm that can further reduce the variance. The coefficients
used for filtering over time-varying graphs are obtained by
our proposed solution in Section IV-B with γ = 0.05. The
results are averaged over 1000 realizations.

To compare the output of graph filtering over the graph G0

and the time-varying graph Gt under asymmetric links, we
use the error e=yt− y and the empirical average variance of
the error among all nodes and realizations σ2

e=tr(E[eeH ])/N ,
which approaches the average variance var[yt] for a suffi-
ciently high number of realizations. In Fig. 1, the expected

error ē and the empirical average variance σ2
e are analyzed

with different average probabilities of link connectivities qi.
Fig.1 (a) and (d) show that the node-variant GF significantly
outperforms the node-invariant GF, when for both filters the
coefficients are optimized to reduce the expected error and
the variance. This can be explained by the fact that the
node-variant GF has higher degrees of freedom to select the
coefficients compared to the node-invariant GF, where all
nodes have to use the same coefficients. Our results show
also that by optimizing the coefficients of node-variant GFs,
the output of graph filtering over the original graph G0 is
very close to the one obtained for the time-varying graph Gt.
Indeed, the expected error is small and it is in the order of
10−2 for qi ≥ 0.55. The proposed solution also provides a
low empirical average variance with a value of order 10−3

for qi ≥ 0.55. We can notice also that both the expected
error and empirical average variance decrease for a higher
value of qi and a lower filter order L. When the average
probability of link connectivity is low, the expected error as
well as the empirical average variance are slightly affected by
the transmission range R of the nodes. However, both have
small values with the same previous order if qi ≥ 0.55. In
conclusion, for an average PDR of the nodes higher than 0.55,
we observe a very low expected error as well as a very small
empirical average variance by using our proposed solution.
This average PDR can be considered as a realistic value in
WSNs [12].

VI. CONCLUSION

In this work, we first show that stochastic graph filtering
with node-invariant GFs requires equal probabilities for all
the links to have an unbiased filtering, which it is not realistic
in the context of WSNs. Then, we show how to enable the
stochastic graph filtering under asymmetric links in WSNs by
using node-variant GFs to provide accuracy that is, making the
expected error and variance very small through optimizing the
filter coefficients. As demonstrated in the numerical results, a
very low expected error as well as a very small empirical aver-
age variance are obtained, when using our proposed solution.

VII. APPENDIX I
Given the definition of var[yt] in (17) and using the

linearity of expectation and trace, we begin by computing the
first term on the right side of (17) [13]:

tr(E
[
ytyt

H ]) =

L∑
k=0,l=0

Υ(k, l) (20)

where:
Υ(k, l) =tr

(
E
[

diag(φ(k))Θ(t, t− k + 1) xxH

×Θ(t, t− l + 1)Hdiag(φ(l))
H
]) (21)

By using the commutativity property of the trace with respect
to the expectation and also the cyclic property of the trace
tr(ABC) = tr(CAB) = tr(BCA), we have:

Υ(k, l) = E
[

tr
(

diag(φ(k)) Θ(t, t− k + 1) xxHΘ(t, t− l + 1)H

× diag(φ(l))
H)]

=tr
(
E
[
Θ(t, t− l + 1)Hdiag(φ(l))

H
diag(φ(k)) Θ(t, t− k + 1)

]
xxH

)
(22)
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Fig. 1: The expected error ē and the empirical average variance σ2
e between graph filtering realizations perfomed on the graph

G0 and the time-varying graph Gt under asymmetric links, for different GFs (node-variant and node-invariant), orders L of the
filter and values of radio range R of the sensor nodes. For Figures (b) and (e) R = 70 and for (c) and (f) L = 10.

For a positive semi-definite matrix B, B � 0 and any square
matrix A with appropriate dimensions [18], we have:

tr(AB) ≤ 0.5‖A + AH‖2 tr(B) ≤ ‖A‖2 tr(B) (23)

By applying the previous inequality to (22), we obtain:

Υ(k, l)≤
∥∥E[Θ(t, t− l + 1)Hdiag(φ(l))

H
diag(φ(k))

×Θ(t, t− k + 1)
]∥∥

2
tr
(
xxH

) (24)

Using the Jensen’s inequality of the spectral norm ‖E[A]‖2 ≤
E[‖A‖2] and the sub-multiplicativity property of the spectral
norm of a square matrix, ‖AB‖2 ≤ ‖A‖2‖B‖2, we have:

Υ(k, l)≤E
[∥∥ Θ(t, t− l + 1)Hdiag(φ(l))

H
diag(φ(k)) Θ(t, t− k + 1)

∥∥
2

]
× tr
(
x xH

)
≤E
[∥∥( t−l+1∏

τ=t

Sτ
)∥∥

2
‖diag(φ(l))

H‖2‖diag(φ(k))‖2
∥∥( t−k+1∏

τ=t

Sτ
)∥∥

2

]
‖x‖2

≤ρl+k ‖diag(φ(l))‖2 ‖diag(φ(k))‖2 ‖x‖2
(25)

where ρ is the spectral radius bound i.e, ‖S‖2 ≤ ρ.
This implies that:

tr(E
[
ytyt

H ]) ≤
L∑

k=0,l=0

ρl+k ‖diag(φ(l))‖2 ‖diag(φ(k))‖2 ‖x‖2

≤ ‖x‖2
(
ρ0‖diag(φ(0))‖2 + ρ1‖diag(φ(1))‖2 + ..

+ ρL‖diag(φ(L))‖2
)2

(26)
The second term in (17) is positive i.e. tr(E[yt]E[yt]

H)≥0.
By dividing both sides by N in (26) and operating, var[yt]
can be bounded by expression (18).
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