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Proof by mathematical induction is a conceptually difficult, but important form of
proof. The proof contains three steps and this study focuses the first one, the
induction basis. The aim of the study is to explore how university students treat the
induction basis in a proving task. Data were collected from 38 students’ solutions
to a task in a written exam and were analysed using content analysis. The results
reveal that the students used different cases as the induction basis, the majority
chose n = 1 although n = 0 was the preferred choice for the given task. A majority
of the students used one case in their verification of the induction basis, but it was
also common to use more than one case, which is superfluous for this task. Among
the students who chose n = 1 as the initial number, a majority included more than
one case in the basis step. We discuss how students’ choices were influenced by
the course literature and the formulation of the current task.

Introduction

Mathematical induction is an important form of mathematical proof that university
students meet in the beginning of their studies. However, proof by mathematical
induction (PMI) is conceptually difficult and there are different kinds of
misconceptions that may cause problems for the students (e.g. Ernest, 1984; Ron
& Dreyfus, 2004; Stylianides, Stylianides, & Philippou, 2007). In this study we
focus on university students and how they treated PMI in a first course at
university. Before presenting the study, we focus the structure of PMI and what
previous research has taught us according to students’ ways of treating such proofs.

Proof by mathematical induction
Mathematical induction is useful when you want to prove a statement that can be
connected to the set of natural numbers. We exemplify this by the task used for
our data collection. The task comes from a written exam:
The number sequence a, is defined through the recursive formula a, = na,-1—n + 1 for
n>1;a =2.

a) Compute ai, a2, a3, as and as.
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b) Find an explicit formula for a, and prove by induction that it is correct. (Compare
with n!.)

In this task, one first has to solve problems not directly connected to PMI, namely
the whole a)-task and the problem to find an explicit formula in the first part of the
b)-task. Here this formula is a, = n! + 1. In the second part of the b)-task, PMI shall
be used to prove that formula. A proof by mathematical induction can be said to
contain three steps:

i) The induction basis aims to show that the statement is true for (in the
example above) n =0.

i1) The induction step starts with the induction hypothesis, which here can be
expressed as “suppose k is a number for which the statement is true”. Then we aim
to show that this implies that £ + 1 is a number for which the statement also is true.

iii) If step 1) and step ii) hold, the induction principle claims the statement is
true for every n > 0 (where # is an integer).

That the proof in itself contains three steps does not mean that every task can be
solved with these three steps only. In the example above, one had to first find a
closed formula that seemed to give the same result as the given recursive formula,
before using PMI to prove that this closed formula actually gives the correct result
for every n. There are also variations in how the three steps are applied. In the most
common tasks the basis step deals with » =0 or » = 1, but depending on what to
prove you have to adapt the starting point to an adequate number or include more
than one number in the induction basis.

Previous research

Ernest (1984) pronounces a number of conceptual difficulties experienced by
students, and we will here focus on two of those; difficulties related to the
induction basis and to the induction step respectively, and also how these two are
connected in the structure of the proof.

There are different kinds of misconceptions regarding students’ understanding
of the induction basis. One finding is that students fail to include or do not
understand the role of the induction basis. Getting the induction started, i.e.
verifying the first step, is often treated as a formality without any meaning and not
seen as really essential for the proof (Dubinsky, 1986; Ernest, 1984; Palla, Potari,
& Spyrou, 2012), or as a preliminary activity just checking the validity of the initial
case to give confidence that the statement to prove is true (Ron & Dreyfus, 2004).
However, there are many examples where the induction step can be proved, but
the proof fails in the induction basis, e.g. to prove that 2»n + 1 is even. There also
exist uncertainties about where to start the basis step, as the misconception that the
induction basis must always contain the case »=1 (Stylianides et al., 2007).
Connected to this is a lack of understanding regarding how many cases you need
to include in the basis step and the consequences caused by the choice of starting
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point. Ron and Dreyfus (2004) have shown that it is not clear for all students that
one has to check only for the very first case and that other checking activities are
not necessary parts of the proof — except for more complicated examples where
the induction basis needs to include more than one case.

A second issue is the induction step. Students often construe PMI as a method
where you assume what you have to prove and then you prove it (Ernest, 1984).
However, in the induction step you neither prove the statement is true for #» = k nor
for n =k + 1; in fact, the truth-values of these cases are irrelevant since it is the
implication “true for n = k implies true for n = k£ + 1 you need to prove.

The final step of the proof is setting the results from the induction basis and
the induction step together, which connects the understandings and
misunderstandings due to the induction basis and induction step. Previous studies
indicate that some students appear to conduct proofs without really understanding
the steps involved, and that a proof has to follow a very strict scheme. In a study,
some students admitted they view the basis step as nonessential, and something
they did just because it was a rule stated by the teacher (Harel, 2002). Other studies
showed that some students believed the induction basis had to be verified before
the induction step for the proof to be valid (Pang & Dindyal, 2012), or that the
basis step is always verifiable and thus one only needs to worry about the inductive
step (Stylianides et al., 2007).

This paper is an initial report from a study aiming to explore students’
understandings of PMI, and in forthcoming papers we intend to present results
according to all steps of the proof. However, several researchers have identified
the induction basis as one of the difficulties (e.g. Dubinsky, 1986; Ernest, 1984;
Palla et al., 2012; Ron & Dreyfus, 2004; Stylianides et al., 2007), hence we here
choose to focus exclusively on this initial part of the proof. Thus, this paper aims
to explore how university students treat the induction basis in tasks where PMI is
employed. This limitation made it possible in depth to uncover details in a crucial
part of PMI and through that produce a richer description of students’ different
ways of handling the first step in PMI.

The context of the study

In the syllabus for compulsory school in Sweden, the word proof is not mentioned.
However, the students shall develop their ability to apply and follow mathematical
reasoning, which also is a preparation for conducting proofs. In Sweden, almost
all students (98 % year 2014) continue to upper secondary school and about a
fourth of the students follows the natural science or technological programme,
which contain up to five courses in mathematics. In the first and third course,
proofs are mentioned related to other parts of the core content, e.g. to prove and
use the sine theorem. In the fourth course different methods of proof in
mathematics is also an explicit part of the core content, mentioning proofs with
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examples from arithmetic, geometry or algebra. Although course 4 has
mathematical proofs as a core content, PMI is usually not a part of the topic.
However, in the fifth course one part of the core content is “Mathematical
induction with concrete examples from e.g. the area of number theory”
(Skolverket, 2012, p. 39). Thus, PMI is explicitly treated during course 5.

To apply for Mathematics I, the first mathematics course at the current
university for this study, a student needs a passing grade in at least course 4 from
upper secondary school. Hence, not all students have met PMI before they start
Mathematics I, although they repeatedly have met proofs in general.

Mathematics I is a full time one-semester course, given at the department of
mathematics at a university in Sweden. The students are aiming for a general exam
in mathematics or physics, or for a teacher exam. The course has two parallel
halves; algebra and calculus. PMI is included in the algebra part, which is
examined mainly by a written exam at the end of the semester. PMI is introduced
in one lecture (number 17), followed up by tutoring and task solving on PMI. In
addition, one or two written hand in tasks deal with PMI. However, PMI is rarely
used for proving theorems in other parts of the course. Thus, in Mathematics I, the
introduction of PMI is limited to learning the method for its own sake or for future
use. The current semester, the task presented in the introduction of this paper was
the only task dealing with PMI in the written exam.

Regarding what number to choose as starting point in the induction basis, the
course literature (Bogvad, 2014, p. 143) uses » = 1 when the induction principle is
established. » = 1 is also the most common starting point in the examples, but there
are also examples with other starting points, e.g. » =0 and » = 4. However, in 10
out of 13 exercises, the induction basis should be at » = 1 (including one task where
both » =1 and n = 2 are needed as basis), implying this is the usual case.

Method

In order to explore how students treat the induction basis, we chose to use data
collected from students’ solutions to a task of the written exam in the course
Mathematics I (the task was presented above in the introduction of this paper). In
total, 109 students took part in this exam, of whom eight students did not solve the
current task at all, and ten students’ solutions were marked with 0 points. We got
permission from 38 students to use their solutions in our analyses. Of these 38
students, one gave a partly correct proof, where however the induction basis was
missing; one student just presented an induction hypothesis and nothing more;
while three students did not start the b)-part of the task at all. Since the focus of
this paper is how students treated the induction basis, these five students will be
excluded from the following analyses, which then will contain solutions from 33
students.
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A content analysis (Cohen, Manion, & Morrison, 2011) of the students’ solutions
was undertaken. Aware of findings in previous research (e.g. Ernest, 1984; Ron &
Dreyfus, 2004; Stylianides et al., 2007), we read and re-read the students’
solutions, striving to identify similarities and differences in their treating of the
induction basis. This content analysis generated three themes, in which each of the
33 student solutions was categorised. The first theme was whether or not the
student presented a statement to be proved — recall the first part of task b) was to
find a closed formula, which validity then should be proved. The second theme
was what number the students chose as starting point in the induction basis (e.g.
n = 0), and the third theme dealt with how many cases the students included in the
basis step.

Results

In this section, we elaborate on the three themes mentioned above. We exemplify
the different categories by including parts of the solutions from some of the 33
students included in the analysis. The given excerpts were chosen as representative
examples of solutions in the respective category.

Did students clarify what they aimed to prove?

The first part of task b) was to find a closed formula, which was likely to give the
same result as the recursive formula given in the task. Remember that the students
had computed the values of a1 to as in part a), which was an obvious support when
they should find the closed formula. The correct formula is, as presented above,
a, = n! + 1. This formula was stated by 31 of the students, e.g. one student wrote

Student A: It seems like we get the following formula for a,, a, = n! + 1.

However, one student (C) started his/her proof without giving the closed formula.
That is, there was no statement to be proved, when s/he started the ‘proof’ by
writing:
Student C: ~ We first show the statement holds for a basis case. =0 — ap =
2.
A few lines down the same student however gave the explicit formula referring to
part a), and then used this formula as induction hypothesis and in the induction
step. Another student (B) just began to show the (obvious) validity of the recursive
formula. The first two steps presented were:
Student B: 1. ap,=na,1—n+ 1 forne[l, 5] as shown above.
2. apr1 = (n+1)a,— (n+ 1) + 1 is supposed to be valid for the
following n.
That is just repeating what was already given and student B also continued the
‘proof” by reasoning about what came out from the recursive formula.
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Starting point for the induction basis

As mentioned above, 31 students gave the correct formula (a, = »n! + 1), which is
essential before starting the proof. However, since student B and C anyway started
their proofs (see above), they have been included in the following two
categorisations.

Even though it is not explicitly said in the task for which » the formula for a,
should be valid, it is implicitly given that it should be for » > 0 since the given
sequence in the task starts with ao. In the solutions analysed, 14 students included
n =0 in the initial step, while 17 students started at » = 1. We here give two
examples starting at » = 0 and two examples starting at n = 1.

Student D:  Check whether P is true for n=10. P(0)=ao=0! + 1 =2. P is true

for n=0.

Student J: Basis step: Valid for n € [0, 5]. (see above) [the student wrote “see

above”]

Student F: Basis case: We check forn=1: 1+ 1=2=aj so yes, it is true.

Student A: 1. The formula is proved for the cases 1-5. [referring to the first

part of the task]
Two students started at » = 2. One of them did not give any motivation of his/her
choice of starting point. The other student starting at n = 2 wrote

Student G:  As basis we can use any number from task a). For example, a; =

3=2+1=21+1
Student G did neither motivate his/her choice of n = 2 as starting point, nor include
that the formula anyway is valid for all #» > 0 since s/he already had shown the
equality for ao and a1, which in fact is necessary for his/her proof to be complete.
Despite this deficiency, the proof could be seen as valid.

The number of cases included in the basis step
As induction basis, 20 of the 33 students showed the validity of the formula for
one specific case (=0, n=1 or n=2). Two examples were student D and F
above, and two other examples are:
Student H:  Basis case: We show the formula is valid forn=1. 1! +1=2=
a
Student I: 1) Basis step: the formula is true forn=0.0!+1=1+1=2
Twelve students showed the validity for all elements from part a). Several students
showed that by simply computing ao (or a1) to as. We have above seen other forms
of examples by student A and J, and yet another example is:
Student L:  Basis assumption: The formula is valid for ao—as (even for ao,
since 0! = 1, which means 0! + 1 = 2. [referring to computations
in part a) for a1—as]

Finally, one student showed the validity for two cases.
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Student K:  k=0gives0!'+1=2=aqg,forn=0.k=1gives 1! +1=2=gq,
forn=1.

Summing up the results, focussing on the second and third theme, there are some
differences in the students’ choices in their solutions. Almost all students used
either n=0 or n=1 as the first case in the induction basis. A majority of the
students verified the basis for one specific case, but it was also common to use
more than one case as basis. In Table 1, we combine the results from these two
themes. This is a cross-table where e.g. the first column shows that of the 14
students choosing # =0 as induction basis, 10 included just that case, while 4
included at least one more case.

n=0 n=1 Sum

1 case 10 8 18
>1 case 4 9 13
Sum 14 17 31

Table 1: Starting point and number of cases included in the induction basis (number of
students)

Here, we can notice that students who gave n =1 as the first number in the
induction basis also to a greater extent included more than one case in the basis
step. In fact, a majority of the students starting at » = 1 included more than one
case, while less than one third of the students starting at » = 0 did the same.

Discussion
The study presented in this paper is the initial part of a project about teaching and learning
of PMI. Since the induction basis is the initial step of a proof by induction and this step
has been identified as a difficulty (Ernest, 1984; Ron & Dreyfus, 2004; Stylianides et al.,
2007), we chose in this paper to focus on the induction basis only. This narrow focus
offered opportunities to a deeper exploration on students’ understanding of an essential
part of PMI, which is known as problematic for students.

One important finding was the variation in the students’ solutions, whether
n =0 or n = 1 should be the case to verify in the induction basis. Since the recursive
formula had ao =2 as its initial value, n =0 is to prefer as starting point for the
proof, rather than » = 1. There can be various explanations for why a majority of
the students anyway started with » = 1. Due to the course literature (Bogvad, 2014,
p. 143), the basis in the definition of PMI is conducted for » = 1 and most exercises
start at n = 1 too. Hence the students are used to proofs starting at » = 1 and some
might have the misconception that the proof always starts at checking for n =1 (cf.
Stylianides et al., 2007). This misconception can also depend on that students have
memorised the structure of PMI and hence conduct their proof mechanically (Pang
& Dindyal, 2012; Ron & Dreyfus, 2004). The task formulation may also contribute
to this misconception, or at least not prevent it, since ap = 2 is already given. In
addition, the task did not explicitly tell from what » to verify the formula, it just
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said verify for a,. Thus, it may not be obvious that ao is also computable by the
closed formula and hence should be verified in the proof. The misconception that
0! =0 could be another possible reason to skip the case n =0, since the closed
formula then would not give the result ap = 2. However, we did not identify any
signs of this misconception, although it cannot be ruled out.

A second finding is that over one third of the 33 students involved more than one
case in their basis step, although in the current task just one case (n = 0) is needed
as induction basis. This can possibly be explained by the conclusion that they are
not aware of the role of the induction basis. Including more than one case, when
not necessary, can be a matter of seeing the basis step as a formality (Ernest, 1984),
and not understanding that ...

checking the validity of the initial case is an integral part of the proof — not a
preliminary activity that is intended to shed light on the statement or to give
confidence that the statement to be proved is true. (Ron & Dreyfus, 2004, p. 114)

However, the current task might encourage the adoption of including more than
one case in the basis step. Before even starting the proof in the b)-part of the task,
the students had to find a (closed) formula which was likely to give the correct
result. Hence it is necessary to first be convinced that the formula found actually
seems to coincide with the given recursive formula, i.e. “to give confidence that
the statement to be proved is true” (Ron & Dreyfus, 2014, p. 114). In addition, the
a)-part of the task was to, by the recursive formula, compute a1 to as, which
automatically gave the student five cases where the closed formula a,=n!+ 1
easily could be verified. Thus, that students gave more than one case as induction
basis could just be a matter of that the cases were already verified. Moreover, it is
not incorrect to include more than one case, though it is superfluous in the current
task. It would be interesting to give almost the same task, but exclude the a)-part,
give the closed formula a, = n! + 1, and just ask the students to by mathematical
induction prove it is correct. Possibly more students would then just verify one
case in the basis step, since the initial computations of a1 to as are then not
requested.

Even though the design of the task possibly had an impact on the students’
tendency to include more than one case in the basis step, the results arising from
combining theme two and three indicate a lack of understanding of the role of the
induction basis. These results show that students who chose n =1 as the (first)
number in the induction basis, to a greater extent also included more than one case
in the basis step. Recall that # = 0 was to prefer as basis. Hence, students who made
one less appropriate decision were also more likely to make a second less
appropriate decision. The tendency to include more than one case in the basis step
indicates that the students connect the verification of the basis rather to the
computations in the a)-task than to the formula to be proved. This shows a lack of
understanding of the essential role of the induction basis (cf. Ernest, 1984).

Through this study, it has been possible to identify some issues about PMI.
What we found most interesting was that a majority of the students chose n =1
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rather than » = 0 as induction basis and that those students also to a larger extent
included more than one case in the basis step. However, when analysing written
solutions to a task, it is not possible to draw deeper conclusions about how the
students have reasoned when solving the task. Anyway, this study has illuminated
some issues to be immersed in further research, e.g. through interviews get a
clearer picture of why students include more than one case in the induction basis.
Another view of the same issue is in what way the task design affects the students’
solutions regarding the number of cases included in the induction basis. Hence this
study has provided valuable information for the research to come.
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