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ABSTRACT
Consensus algorithms are iterative methods that represent

a basic building block to achieve superior functionalities in
increasingly complex sensor networks by facilitating the im-
plementation of many signal-processing tasks in a distributed
manner. Due to the heterogeneity of the devices, which may
present very different capabilities (e.g. energy supply, trans-
mission range), the energy often becomes a scarce resource
and the communications turn into directed. To maximize the
network lifetime, a magnitude that in this work measures the
number of consensus processes that can be executed before
the first node in the network runs out of battery, we propose
a topology optimization methodology for directed networks.
Numerical results corroborate the merits of this work.

Index Terms— Energy efficiency, consensus algorithm,
directed graph, wireless sensor networks

1. INTRODUCTION

The recent evolution of Wireless Sensor Networks (WSNs)
towards The Internet of Things (IoT) [1] is resulting in the
appearance of heterogeneous sensor networks whose nodes
generally present very different capabilities. In this context,
the collaboration between nodes is crucial to accomplish in-
creasingly complex tasks, since most of these nodes present
very limited energy and computational resources. Distributed
and cooperative techniques avoid the need of performing all
the computations at a central entity, thus, reducing congestion
and increasing the robustness and scalability of the network.

One of the most important algorithms that allows to
implement in a distributed manner a significant number of
signal-processing tasks (e.g. signal detection [2] and esti-
mation [3]), is the average consensus algorithm [4]. The
goal of an average consensus algorithm is to obtain, in a dis-
tributed manner, the average of the sensor data by iteratively
processing the measurements collected by sensor nodes. This
iterative philosophy implies that a local exchange of data with
an associated power consumption is repeated along the itera-
tions, which may result in a prohibitive energy consumption if
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the process is not properly optimized. Another important lim-
itation, which is present in most of the existing schemes for
consensus, is the implicit assumption of homogeneous net-
works. In such schemes, nodes are always assumed to be able
to bidirectionally communicate and to have the same energy
capabilities. Oppositely, one typically encounters heteroge-
neous networks, as the ones considered in this work, where
it may happen that some nodes are able to directly commu-
nicate with other nodes that cannot communicate back. In
addition, since the energy available vary significantly among
nodes, their lifetime may be very different. Nodes stopping
their operation due to battery depletion is always an unde-
sired situation, which may compromise the task performance
(e.g. accuracy, time-response). Regardless of the task being
solved, the concept of network lifetime is associated to the
time until one or several nodes run out of battery [5][6][7].
Thus, it is not only important the energy consumed by the
whole network, but also the energy consumed by individual
nodes. In an average consensus process, every node must
participate to obtain the global average, which is no longer
possible as soon as the first node runs out of battery. In this
case, a single node may determine the network lifetime.

While abundant methodologies can be found in the related
literature [8][9] to reduce the convergence time of consensus
algorithms, only a few works [10][11][12] have addressed the
minimization of its energy consumption. Existing approaches
either confine themselves to undirected networks or do not
consider the power consumption of each node and its energy
capabilities at all. This motivates the design of new methods
to improve the energy consumption of consensus algorithms
in heterogeneous networks. In this work, we propose a new
topology optimization methodology to maximize the lifetime
of directed networks that are executing consensus-based tasks
and are composed of nodes with different energy capabilities.

The remainder of this paper is structured as follows: some
background on consensus algorithms is presented in Section
2. The formulation of the problem of network lifetime maxi-
mization is given in Section 3. In Section 4, we present an op-
timization procedure to find the topology with maximal net-
work lifetime. Finally Section 5 presents some numerical re-
sults and Section 6 concludes the paper.



2. CONSENSUS IN DIRECTED GRAPHS

The communication between nodes in an heterogeneous net-
work can be modelled as a directed graph G = (V, E), con-
sisting of a set V of N nodes and a set E ⊂ V ×V of directed
links. A directed link eij denotes a data flow from node i to
node j.
Definition 1. A directed graph is called strongly connected if
and only if any two distinct nodes of the graph can be con-
nected via a path that respects the orientation of the edges of
the digraph.

The set of neighbors of a node i can be defined as
Ni = {j ∈ V : eij ∈ E}. Furthermore, let A be the N × N
adjacency matrix of the graph G, with entries [A]ij equal to
1 if link eij is established and 0 otherwise. Then, the in-
degree and out-degree of node i can be, respectively, defined
as dini =

∑N
j=1[A]ji and douti =

∑N
j=1[A]ij . The degree

matrix D is the diagonal matrix, whose non-zero entries are
given by the out-degree [D]ii = douti of each node i.
Definiton 2. A node i of a directed graph G = (V, E) is
balanced if and only if its in-degree and out-degree are equal,
i.e. dini = douti . A graph G = (V, E) is called balanced if and
only if all of its nodes are balanced.

We denote by L theN×N Laplacian matrix of the graph,
given by L = D−A, whose entries are given by:

[L]ij =

{
[D]ii if i = j
−[A]ij otherwise (1)

Fiedler defined in [13] the algebraic connectivity a(G) of
an undirected graph as the second smallest eigenvalue λ2(L)
of its Laplacian matrix. In this work, we use its generalization
to directed graphs proposed in [14] and [15], such that

a(G) = min
x∈P

xTLx = min
x∈RN ,x6=0,x⊥e

xTLx

xTx
, (2)

where P is the set P = {x ∈ RN ,x ⊥ e, ||x|| = 1}, i.e.
the set of real vectors of unit norm that are orthogonal to
e = [1, . . . , 1] ∈ RN . For an undirected graph, the following
well-known property holds [14]:

a(G) = min
x∈RN ,x6=0,x⊥e

xTLx

xTx
= λ2(L).

An interesting operation that we will use later to formulate
our problem is the mirror graph operation.
Definition 3. The mirror graph operation M(G) transforms
any directed graph G into an undirected graph Ĝ, such that

[Â]ij = [Â]ji =
[A]ij + [A]ji

2
,

where Â is the adjacency matrix corresponding to the mirror
graph Ĝ. The Laplacian matrix associated to the mirror graph
is then given by L̂ = D̂− Â.

Let us define an additional operationM−1(A1,A2) that
takes a reference adjacency matrix A1 corresponding to a
graph G1 = (V, E1) and a second adjacency matrix A2 cor-
responding to a subgraph G2 = (V, E2 ⊆ E1) and obtains the
following matrix (A2 � A2) � A1, where � and � stands
for the Hadamard division and product respectively. Clearly,
M−1(A1,A2) reverses the mirror operation by taking A1 =

A and A2 = Â.
Finally, let us assume that nodes have some initial data

at time instant t = 0. We collect them in an initial vector
x(0), whose average is xavg = 11Tx(0)

N , where 1 denotes the
all ones column vector. The linear update of the state of all
sensors at time instant t, given by:

ẋ(t) = −Lx(t) (3)

solves the average consensus problem if and only if the un-
derlying digraph is strongly connected and balanced [4][15].
Moreover, the work in [15] shows that the dynamics in (3)
globally asymptotically vanishes with a speed that is equal to
λ2(L̂). Accordingly, the convergence time can be defined as:

t(L) =
K

λ2(L̂)
, (4)

where K groups all the irrelevant constants involved, such as
the duration of a time slot and the error reduction factor.

3. ENERGY CONSUMPTION AND LIFETIME IN
DIRECTED GRAPHS

When considering wireless networks, maintaining the un-
derlying topology implies a cost on communications, which
usually depends on the physical distance between the nodes.
Thus, to maintain a particular topology, each node of the net-
work needs to spend some power consumption for this. Such
powers can be stored in a vector as follows:

p = [p1, p2, . . . , pN ], (5)

where [p]i = pi denotes the power consumption per commu-
nication step of node i. Let us assume a generic path loss
model with path loss exponent γ, then the power that node
i requires to successfully communicate with node j is given
by pij = p

(j)
min · rγij , where p(j)min is the minimum power re-

quired at the receiver j to successfully decode the incoming
information and rij is the distance between nodes i and j. Ac-
cordingly, the power consumption per communication step of
node i is given by:

pi =
∑
j∈Ni

pij =
∑
j∈V

pij · [A]ij =
∑
j∈V

pij · [Â]ij (6)

Notice that there exists a one-to-one mapping between pi and
the network topology.



Besides having to ensure a minimum power p(j)min at the
receiver j, there exists another inherent limitation on radio
communications, consisting of a maximum power transmis-
sion p(i)max at each transmitter i. Both constraints determine the
maximum distance r(i,j)max for which a transmitter i can cor-
rectly transmit a message in absence of interference to a re-
ceiver j, which is given by:

r(i,j)max =

(
p
(i)
max

p
(j)
min

)1/γ

(7)

The total energy consumption of a node i, after a sin-
gle consensus process, is the product between the consumed
power pi at each time step and the convergence time t(L).
Formally, we have the following:

Ei(Â) = pi · t(L̂) = K

∑
j∈V

pij · [Â]ij

λ2(L̂(Â))

In this work, we focus on the optimization of the network
topology, given by the matrix A, which is our main optimiza-
tion variable. As a cost function, we consider the lifetime of
the network, defined in this paper as:

L(Â) = max
i

{
Ci
Ei(Â)

}
(8)

where Ci denotes the energy budget of node i. Then, expres-
sion in (8) gives the total number of consensus processes that
can be executed before the first node runs out of battery.

Let us denote Amax the adjacency matrix associated to the
maximally connected topology, where all nodes are using the
maximum transmission range given by (7). Accordingly, our
problem (P0) can be cast as follows:

max.{Â} L(Â)

s. t. ξ ≤ λ2(L̂(Â))

[Â]ij = [Â]ji ∀i, j ∈ V
(M−1(Amax, Â))1 = (M−1(Amax, Â)T )1

[Â]ij ∈ {0, 12} if [Amax]ij 6= [Amax]ji
[Â]ij ∈ {0, 1} if [Amax]ij = [Amax]ji = 1

[Â]ij = 0 if [Amax]ij = [Amax]ji = 0

where ξ is an arbitrary small positive constant to ensure that
the resulting value of λ2(L̂(Â)) is greater than zero, i.e. the
resulting graph is connected. The second and the third con-
straints ensure that the mirror solution graph and its corre-
sponding reconstruction are symmetric and balanced respec-
tively. Finally, the number of entries of Â that can be different
from zero is limited by (7), reducing considerably the number
of variables of the problem.

Unfortunately, P0 is clearly a combinatorial problem be-
cause of the binary variables constraint. In the next section,
we will show how to alleviate this difficulty.

4. OPTIMIZATION PROCEDURE

In order to obtain a tractable problem, we introduce in P0 a
convex relaxation to allow the entries of the matrix Â to be
real values, leading to a relaxed problem that we call P1. Due
to this relaxation procedure, the matrix coefficients do not de-
termine directly the presence or absence of a specific link. A
procedure to project the relaxed solution to the original feasi-
ble set is proposed later.

In order to solve the resulting relaxed problem P1, we in-
troduce the following function [16]:

h(µ, Â) = max
Â

{
max
i

{
λ2(L̂(Â))− µpi(Â)

Ci

}}
,

where µ is a real positive parameter that controls the trade-off
between the power consumption pi of node i and the conver-
gence time t(L̂). The values of Â that maximize h(µ, Â) are
the same ones that maximize our objective function [16]. Fur-
thermore, the value of µ that makes h(µ, Â) = 0 is also the
maximum of our cost function. Then, by applying standard
optimization tools [17] and introducing the function h(µ, Â)
to P1, we obtain (P2):

max.{s,Â} s

s. t. λ2(L̂(Â))− µ p1(Â)
C1 ≥ s

...

λ2(L̂(Â))− µ pN (Â)
CN ≥ s

ξ ≤ λ2(L̂(Â))

[Â]ij = [Â]ji ∀i, j ∈ V
(M−1(Amax, Â))1 = (M−1(Amax, Â)T )1

0 ≤ [Â]ij ≤ 1
2 if [Amax]ij 6= [Amax]ji

0 ≤ [Â]ij ≤ 1 [Amax]ij = [Amax]ji = 1

[Â]ij = 0 if [Amax]ij = [Amax]ji = 0

which is a convex parametric problem, whose solution is a
function of the parameter µ.

Algorithm 1 solves the problem P1 by applying P2 iter-
atively, where ε controls the accuracy of the solution (a re-
laxed topology matrix Ârelax corresponding to some mirror
graph). Then, before projecting Ârelax to the original feasible
set, we need to undo the mirror graph operation by applying
M−1(Amax, Ârelax). We denote by Arelax the result of this
operation, which is finally projected to the original feasible
set, leading to the projected solution Aint, see Fig. 1.

Amax P1 Ârelax Arelax

cycle 1

cycle 2

cycle M

Aint
M−1(Amax, Ârelax) [18]Algorithm1 Algorithm2

Fig. 1. Steps followed by our optimization procedure to ob-
tain Aint from Amax.



Algorithm 1 Solves P1, obtaining Ârelax

Require: ε

Ensure: max
i

{
λ2(L̂(Â))− µpi(Â)

Ci

}
≤ ε

Set matrix Â as a feasible solution

while max
i

{
λ2(L̂(Â))− µpi(Â)

Ci

}
> ε do

Set µ as max
i

{
λ2(L̂(Â))Ci

pi(Â)

}
Solve P2 with the current µ, obtaining Â∗

Set Â = Â∗

end while

A common projection procedure in this context is to com-
pare the entries of Arelax with a given threshold so that the en-
tries that are larger than it are set to one and the rest are set to
zero. Although this simple procedure has given good results
in the past [11] [12], it can be shown to produce unbalanced
graphs in heterogeneous networks. A suitable matrix Aint
should satisfy the following three conditions: i) a(G(Aint)) >
0 ii) Aint1 = AT

int1 and iii) Aint = maxA{L(A)}. In other
words, it should correspond to a connected and balanced di-
graph that maximizes the network lifetime.

Our projection procedure, summarized in Algorithm 2,
accepts N lists of simple (binary) cycles LCycles(1, . . . , N)
and builds Aint from them. A particular list LCycles(i) in-
cludes all cycles containing node i. In order to obtain such
lists, we use the algorithm proposed in [18] with two impor-
tant variations: 1) its input is Arelax, so that the simple cycles
with higher coefficients are found and returned first1 and 2)
cycles containing links with a small coefficient in Arelax are
discarded2. A list of N integers is used to control the number
of components in the graph, so we can ensure that the result-
ing graph is strongly connected. Moreover, note that as Aint
is built from the union of cycles. the graph is ensured to be
balanced. Thus, both i) and ii) are satisfied. In the following
we present some numerical results to illustrate how close our
solution falls from the true optimal.

5. NUMERICAL RESULTS

Our setting includes N = 100 nodes randomly deployed in a
square area of side L = 200m. A path loss exponent γ = 3
is used and a minimum power pmin = 10−8 mW. is required
at the nodes to decode the signal, such that pij = pminr

γ
ij ,

expressed in mW. Finally, Ci follows a normal distribution of
mean 1000 and variance 250, expressed in Joules. Lets denote

1This can be implemented by choosing the next node in the path according
to the adjacency coefficient instead of using any other random criteria.

2This stops the recursion before exploring all the branches, which reduces
considerably the computational cost of the algorithm.

Algorithm 2 Projects Arelax, obtaining Aint

Require: LCycles(1, . . . , N)
Ensure: a(G(Aint)) > 0 and Aint1 = AT

int1
Every node v ∈ V is tagged with its id= 1, . . . , N
Every cycle C ∈ LCycles is marked as unclassified
while ∃C ∈ LCycles(1, . . . , N) unclassified do

Choose v ∈ V : tag(v) = max
i
{tag(i)}

if ∃C ∈ LCycles(v) marked as unclassified then
Choose C ∈ LCycles(v) with best coefficient
Mark C as active and any other cycle
C ′ : v ∈ C ′, C ′ unclassified as inhibited

else
Choose randomly C ∈ LCycles(v), C inhibited
Mark C as active and C ′ : v ∈ C ′ with C ′ being
unclassified or active as inhibited

end if
Update all tags and Aint accordingly

end while

by Aopt the combinatorial optimal topology matrix that gives
the maximum network lifetime L(Aopt), then the convex re-
laxation provides a matrix Arelax with an associated network
lifetime L(Arelax) at least as large as L(Aopt) (since the in-
teger solution is also a feasible solution to the relaxed prob-
lem). The projection procedure then uses the solution of the
convex relaxation to generate an integer solution Aint with
(possibly suboptimal) value L(Aint). The analysis of the al-
gorithm leads to a comparison of these three quantities which
satisfy L(Arelax) ≥ L(Aopt) ≥ Lint(Aint), see Fig. 2.

6. CONCLUSIONS

This paper presents a topology optimization methodology to
maximize the network lifetime. The approach relies on the
notion of mirror graph and solves iteratively convex programs
to obtain an optimal relaxed solution. A novel projection pro-
cedure is proposed to recover integer solutions. Numerical
results showcase the benefits of the proposed scheme.
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