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ABSTRACT
A great number of applications in wireless sensor networks
involve projecting a vector of observations onto a subspace
dictated by prior information. Accomplishing such a task in
a centralized fashion entails great power consumption, con-
gestion at certain nodes, and suffers from robustness issues.
A sensible alternative is to compute such projections in a
decentralized fashion. To this end, recent works proposed
schemes based on graph filters, which compute projections
exactly with a finite number of local exchanges among sensor
nodes. However, existing methods to obtain these filters are
confined to reduced families of projection matrices or small
networks. This paper proposes a method that can accommo-
date large networks and find suitable shift matrices in a much
wider range of scenarios. Numerical experiments support the
performance of the proposed algorithm.

Index Terms— Graph filter, subspace projection, wire-
less sensor networks.

1. INTRODUCTION

A number of central inference tasks in wireless sensor net-
works, such as estimation and denoising, can be formulated
as projecting the observed signal onto a known subspace [1].
A straightforward approach would involve gathering all the
sensor observations at a central processor which would subse-
quently compute the desired projections. Unfortunately, such
centralized solutions suffer from robustness, scalability, and
congestion issues. In particular, a large number of transmis-
sions are required to relay sensor data to the central proces-
sor, thereby incurring high energy consumption and hence in-
creasing the cost of sensor hardware since they are typically
powered by batteries. Furthermore, sensors close to the cen-
tral processor spend more energy due to the large number of
packages they must relay, which shortens their lifetime, after
which the central processor becomes disconnected from the
rest of sensors. For these reasons, decentralized alternatives,
where there is no central processor and all sensors share a
similar communication and computational load, are preferred.
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A method for decentralized subspace projection is pro-
posed in [1], where each iterate of every node results from lin-
early combining its previous iterate with the previous iterates
of its neighbors. The coefficients of these linear combinations
optimize a criterion that quantifies asymptotic convergence.
Similarly, the work in [2] proposes a related method that can
be applied on a wider family of topologies. However, since
the convergence of these methods is only asymptotic, a large
number of iterations, and therefore local transmissions, may
be required. This limitation is alleviated for average consen-
sus, which constitutes a special case of subspace projection,
first in [3] and later in the literature of graph signal process-
ing through graph filters [4], [5], [6]. These approaches are
capable of converging in a finite number of iterations by intro-
ducing memory in the sensor computations. Beyond average
consensus, [5] designs graph filters to compute more general
subspace projections, but this scheme is confined to either ar-
bitrary rank-1 projections or to projections that share eigen-
vectors with the so-called shift matrix, which must be given.
To circumvent these limitations, [7] proposes an optimization
criterion to obtain shift matrices that allow the computation
of a given projection with a graph filter. Furthermore, the
obtained shift matrix yields convergence in a nearly minimal
number of iterations. Unfortunately, directly optimizing such
a criterion involves a complexity of O(N6) arithmetic opera-
tions, where N is the number of sensor nodes, and therefore
is not suitable for large networks.

To alleviate this limitation, the present paper reformulates
the aforementioned criterion and develops an optimization al-
gorithm whose complexity is only O((N − r)3), where r is
the dimension of the subspace onto which the signal is pro-
jected. As a result, the shift matrices from [7], which provide
subspace projection in a nearly minimal number of iterations,
can now be found for much larger networks with the same
computational resources. To this end, the proposed method is
based on a judicious exploitation of the problem structure.

The remainder of the paper is structured as follows. Sec. 2
introduces notation and reviews some existing results on de-
centralized subspace projection with graph filters. Sec. 3
presents the proposed algorithm. Finally, Sec. 4 validates
its performance through numerical experiments and Sec. 5
concludes the paper.



2. PRELIMINARIES

Consider a graph G (V ,E ) in which the vertices V =
{v1, . . . , vN} represent each of the N sensor nodes and
an edge (vn, vn′) is in E ⊂ V × V if nodes vn and vn′ can
bidirectionally communicate. Thus, the graph is undirected
((vn, vn′) ∈ E implies (vn′ , vn) ∈ E ) and includes all self
loops ((vn, vn) ∈ E , n = 1, . . . , N ).

The goal is to estimate a certain signal vector x ∈ RN

from the observation vector z , [z1, . . . , zN ]T = x + ζ,
where zn ∈ R denotes the observation of node vn ∈ V and
ζ ∈ RN stands for additive noise. The vector x lies in some
known subspace of dimension r, where it is assumed that r ≤
N/2 without loss of generality (w.l.o.g.). Let U‖ ∈ RN×r be
a matrix whose columns, assumed orthonormal w.l.o.g., span
that subspace. Then, x can be expressed as x = U‖α for
some α ∈ Rr. The most conventional estimator of x is the
least squares estimator, which corresponds to the orthogonal
projection of z onto the subspace spanned by the columns of
U‖, that is, x̂ , [x̂1, . . . , x̂N ]> , Pz , where P , U‖U

T
‖ ∈

RN×N is the orthogonal projection matrix on that subspace.
To describe how subspace projections can be obtained as

graph filters, define an order-L graph filter as a linear op-
erator Hz 7→ z associated with the matrix H of the form
H :=

∑L−1
l=0 clS

l, where1 {cl}L−1l=0 are the filter coefficients
and S ∈ RN×N is a graph shift matrix. A shift matrix is any
symmetric matrix that satisfies (S)n,n′ = 0 if (vn, vn′) 6∈ E .
It can be easily seen that a shift z 7→ Sz can be computed in a
decentralized fashion and that a graph filter is a linear combi-
nation of successively shifted signals. Therefore a graph filter
can be computed in a decentralized fashion.

It is readily seen that the subspace projection can be com-
puted through a graph filter operator whenever Hz = Pz, ∀z,
or, equivalently, when H = P. Given a suitable shift S, the
coefficients {cl}L−1l=0 for which this condition is satisfied, i.e.
P :=

∑L−1
l=0 clS

l, can be clearly found by solving a linear
system of equations [5]. Therefore, the challenge is to find
such a valid shift matrix. To this end, [7] proposes the fol-
lowing optimization criterion, which, among those valid shift
matrices, it finds the one that approximately minimizes the
required L and, consequently, the number of data exchanges
among sensors and, ultimately, the energy consumption. The
desired S is the solution to:

min.
S,F‖,S⊥,S‖

∥∥F‖ ⊗ Ir − Ir ⊗ F‖
∥∥
∗ + ‖S⊥ ⊗ IN − IN ⊗ S⊥‖∗

s. t. (S)n,n′ = 0 if (vn, vn′) 6∈ E , n, n′ = 1, ...., N

S = S‖ + S⊥, S⊥ = S>⊥, S‖ = S>‖ (1a)

S‖ = U‖F‖U
>
‖ , S>⊥U‖ = 0 (1b)

tr(F‖) = r, tr(S⊥) ≤ N − r − ε̃, (1c)

1For notational simplicity, it is assumed that S0 = I even if S is not
invertible.

where ε̃ > 0 is a small constant. The intuition behind this
problem is described next. First, the feasible set of (1) con-
tains all valid shift matrices S if the constraints in (1c) are re-
moved. Their presence is motivated to avoid trivial solutions.
The objective acts as a proxy of the required L for a given
S, which equals the number of distinct eigenvalues of S‖ plus
the number of distinct eigenvalues of S⊥ [7]. Each term in the
objective corresponds to each of these quantities. This can be
understood by noting that the eigenvalues of F equals those of
S‖ and that f(A) , ‖A⊗ IN − IN ⊗A‖∗ =

∑
n,n′ |λn −

λn′ | equals the `1 norm of λ , [0, λ1−λ2, λ1−λ3, . . . , λ1−
λN , λ2 − λ1, . . . , λN−1 − λN ]T , where λn is the n-th eigen-
value of A. Minimizing such an `1 norm promotes sparsity
in λ and therefore repeated eigenvalues.

Unfortunately, solving (1) in its present form involves a
complexity of O(N6) since evaluating the objective, its sub-
gradient, or its proximal operator requires a singular value de-
composition (SVD) of matrices of the form A⊗IN−IN⊗A,
which are of sizeN2×N2. The next section reformulates (1)
in an alternative form and develops an algorithm whose com-
plexity is just that of an SVD of an (N −r)× (N −r) matrix.

3. SHIFT MATRICES FOR LARGE NETWORKS

This section develops an iterative method to find an optimum
shift with O((N − r)3) operations. First, Sec. 3.1 manip-
ulates problem (1) to reduce its dimensionality and simplify
the structure of the feasible set. Second, Sec. 3.2 proposes an
iterative algorithm to solve the resulting problem.

3.1. Problem reformulation

Given the nature of the objective and the presence of an in-
equality constraint, one would initially think of solving (1)
with an off-the-shelf interior-point method such as those in-
voked by CVX [8]. Unfortunately, such an approach incurs
prohibitive complexity. This section demonstrates that certain
manipulations of (1) results in an easier problem amenable to
much simpler iterative solvers.

First, from the second constraint in (1b) and S⊥ = S>⊥,
it follows that S⊥ = U⊥F⊥U>⊥ for some symmetric F⊥ ∈
R(N−r)×(N−r), where U⊥ ∈ RN×(N−r) is any matrix with
orthonormal columns such that U , [U‖,U⊥] is orthogo-
nal, i.e., the columns of U⊥ form an orthonormal basis for
the orthogonal complement of the signal subspace. Similarly,
in presence of S‖ = U‖F‖U

>
‖ , the constraint S‖ = S>‖ is

equivalent to F‖ = F>‖ .
Second, since the non-zero eigenvalues of F⊥ equal the

non-zero eigenvalues of S⊥, one can expects a similar result
if f(S⊥) = ‖S⊥ ⊗ IN − IN ⊗ S⊥‖∗ in the objective of (1)
is replaced with f(F⊥), which is furthermore easier to mini-
mize or evaluate since the size of F⊥ is smaller than the size
of S⊥.



Third, imposing the second constraint in (1c) is equivalent
to imposing tr(S⊥) ≤ (1 − ε)(N − r) for a suitable chosen
ε. In the sequel, the second form will be preferred since it
facilitates parameter tuning. The reason is that, for largerN−
r, a larger ε̃ needs to be selected for (1) so that the effect of
the second constraint in (1c) remains the same. In turn, this
is not generally the case with ε. Furthermore, since tr(S⊥) =
tr(F⊥), this constraint can be rewritten as tr(F⊥) ≤ (1 −
ε)(N − r). Note as well that if this constraint is removed,
then the optimum of (1) becomes (F‖,F⊥) = (Ir, IN−r),
which would not satisfy the removed constraint. Since (1) is
a convex problem, it follows that tr(F⊥) ≤ (1− ε)(N − r) is
an active constraint at the optimum of (1) [9], and therefore it
can be replaced with tr(F⊥) = (1− ε)(N − r).

From these considerations and eliminating S, the problem
in (1) becomes:

min.
F‖,F⊥

f(F‖) + f(F⊥)

s.t. (U‖F‖U
>
‖ + U⊥F⊥U>⊥)n,n′ = 0 . . .

. . . if (vn, vn′) 6∈ E , n, n′ = 1, ...., N (2a)

F⊥ = F>⊥, F‖ = F>‖ (2b)

tr(F‖) = r, tr(F⊥) = (1− ε)(N − r). (2c)

Observe that (2) involves only r2 +(N −r)2 scalar variables,
a considerably smaller number than the r2 + 3N2 scalar vari-
ables in (1).

3.2. Iterative algorithm

A natural iterative algorithm to solve (2) is the projected sub-
gradient method [10] given its simplicity and well understood
convergence performance. This method involves a subgradi-
ent descent step and a projection step, which are derived in
the next subsections.

3.2.1. Projection step

Let f ,
[
vec>(F‖), vec>(F⊥)

]>
collect all optimization

variables. If the constraints in (2) can be expressed as a linear
system of equations Cf = b, then the orthogonal projection
of an arbitrary vector f0 onto the feasible set is given by

Π(f0) , arg min
f :Cf=b

||f0 − f ||2

= f0 −C>(CC>)−1(Cf0 − b) (3)

The rest of this section sketches how to find such a C and
b. To this end, start by vectorizing (2a) and applying the
property vec(ABC) = (C> ⊗A)vec(B) to obtain ((U‖ ⊗
U‖)vec(F‖) + (U⊥ ⊗U⊥)vec(F⊥))n′+N(n−1) = 0 for all
n, n′ such that (vn, vn′) 6∈ E , n, n′ = 1, ...., N . Actually,
since F‖ and F⊥ are symmetric and the graph is undirected,
it suffices to consider those pairs n, n′ for which n < n′. It
is easy to see that this equality can be expressed alternatively

as W((U‖ ⊗ U‖)vec(F‖) + (U⊥ ⊗ U⊥)vec(F⊥)) = 0,
where W has a row (en ⊗ en′)> for each pair (n, n′) such
that n < n′ and (vn, vn′) 6∈ E . Throughout, en represents the
n-th column of the identity matrix of appropriate size, in this
case IN .

To rewrite (2b), note that the first equality in (2b) holds iff
f‖,ij = f‖,ji for all i < j, where f‖,ij = e>i F‖ej is the (i, j)-
th entry of F‖. Then, the first equality in (2b) can be rewritten
as e>i F‖ej − e>j F‖ei = (e>j ⊗ e>i − e>i ⊗ e>j )vec(F‖) =
0, for all i < j or, more compactly, as G‖vec(F‖) = 0,

where G‖ ∈ R((r2−r)/2×r2) has the vectors (e>j ⊗e>i −e>i ⊗
e>j ) as rows for all i < j. Similarly, the second constraint
in (2b) can be rewritten as G⊥vec(F⊥) = 0 where G⊥ ∈
R(((N−r)2−(N−r))/2×(N−r)2).

Regarding (2c), by applying the property tr(BA) =
vec>(B>)vec(A), one can express tr(F‖) = r and tr(F⊥) =

(1 − ε)(N − r) respectively as vec>(Ir)vec(F‖) = r

and vec>(IN−r)vec(F⊥) = (1 − ε)(N − r). To summa-
rize, the constraints in (2) can be collectively expressed
as Cf = b, where C = [C1,C2], C>1 = [W(U‖ ⊗
U‖),G‖,0, vec>(Ir),0], C>2 = [W(U⊥ ⊗U⊥), 0,G⊥,0,

vec>(IN−r)], and b> = [0,0,0, r, (1− ε)(N − r)].

3.2.2. Subgradient step

The subgradient step is based on the following result:

Theorem 1. Let f(A) = ‖A⊗ IN − IN ⊗A‖∗ and let
A0 ∈ RM×M be a symmetric matrix with eigenvalue decom-
position A0 = VΛV>. Then, a subgradient of f(A) at A0

is given by Ã0 = [ã1, ã2, . . . , ãN ], where

ãj , [ã1j , ã2j , . . . , ãNj ]
>, j = 1, . . . , N

ãij ,
N∑

k=1

(V)ik(V)kjdk −
N∑
l=1

(V)il(V)lj d̃l

dk ,
N∑
l=1

(DA)N(k−1)+l,N(k−1)+l

d̃l ,
N∑

k=1

(DA)N(k−1)+l,N(k−1)+l

with DA = s̃ign(Λ⊗ I− I⊗Λ) the result of applying

s̃ign(x) ,

{
1 if x ≥ 0

−1, otherwise

to the diagonal entries of Λ⊗ I− I⊗Λ.

Proof. (Sketch) Express f(A) as f(A) = ‖vec−1(Qvec(A))‖∗
where Q , [q11,q21, . . . ,qNN ] and qij , vec(eie

>
j ⊗ I−

I⊗ eie
>
j ). For obtaining a subgradient of f(A), one can rely

on the subdifferential of the nuclear norm ‖Z‖∗ [11], given
by {ΥΩ> + Γ : Υ>Γ = 0,ΩΓ = 0, ‖Γ‖2 ≤ 1} where



Z = ΥDZΩ> is an SVD of Z. Finally, applying the chain
rule of subgradients, expressing Υ and Ω in terms of V and
Λ, and performing various algebraic manipulations yields the
desired result.

After combining both steps, the resulting algorithm is tab-
ulated as Algorithm 1. The for loop can be replaced with any
reasonable stopping criterion.

Algorithm 1 Proposed solver

Require: U‖, U⊥, IMAX, η, E .
1: initialize (F‖1,F⊥1) = Π(0,0)
2: for i = 1 to IMAX do
3: obtain subgradient (F̃‖i , F̃⊥i ) of objective at

(F‖i , F⊥i ) using Theorem 1.
4: (F‖i+1

,F⊥i+1
) = Π(F‖i−(η/i)F̃‖i ,F⊥i

−(η/i)F̃⊥i
)

5: end for
6: return F‖IMAX+1

,F⊥IMAX+1
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Fig. 1: Normalized mean square error as a function of the
number of communications performed per node (η = 0.1,
Imax = 500, probability of missing edge 0.25).

4. NUMERICAL EXPERIMENTS

This section describes numerical experiments that validate the
performance of the proposed algorithm. The data generation
process is as follows. The subspace matrix U‖ is obtained by
orthonormalizing an N × N − r matrix with i.i.d. standard
Gaussian entries. The graph is generated through the Erdos-
Renyi model [12], where the presence of each undirected edge
is an i.i.d. Bernoulli random variable.

The performance metric is the normalized mean square
error averaged over signals z with zero mean and covariance
matrix IN , that is, for a filter H it is given by

NMSE(H) ,
E
[
||Pz−Hz||22

]
E [||Pz||22]

=
E
[
||(P−H)z||22

]
E [||Pz||22]

(4)

=
tr
[
(P−H)>(P−H)E[zz>]

]
tr [P>PE[zz>]]

=
E
[
||P−H||2F

]
E [||P||2F ]
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Fig. 2: Order of the filter as a function of the number of the
nodes (η = 0.1, Imax = 500, εmax = 10−3, probability of
missing edge 0.25).

where E denotes expectation. To alleviate problems associ-
ated with finite-precision arithmetic, each node uses a differ-
ent set of filter coefficients [13].

Fig. 1 shows the evolution of the NMSE error as a func-
tion of the number of iterations per node, which in the pro-
posed scheme equals the filter order. Each pair of curves cor-
responds to a pair of values of (N, r). A single shift matrix S
is generated for each pair of curves, and the error NMSE(Hl)
is plotted as a function of l. For the proposed scheme, Hl is
the filter of order l with shift matrix S that best approximates
P in the Frobenius norm sense. For the scheme in Barbarossa
et al. [1], Hl = Sl, where S is a shift matrix that provides
fastest convergence of Sl to P as l→∞ according to a crite-
rion in [1]. As seen in Fig. 1, the proposed method obtains the
exact projection after a finite number of local exchanges. This
is at the expense of introducing memory in the computations,
which the method in [1] does not need.

The second experiment in Fig. 2 depicts the filter order vs.
the number of nodes for different subspace dimensions. Due
to finite-precision arithmetic issues, the order of the filter is
set as the smallest L such that ||P−H||2F /||P||2F < εmax. As
expected, it is observed that the order of the nearly-optimum
filter increases with the number of nodes.

Admittedly, the values ofN used in these experiments are
not very large. The reason is not a limitation in the proposed
algorithm, which can handle much larger values of N . The
reason is the poor conditioning of the system of equations that
provides the filter coefficients [5]. This fundamental issue on
graph filters will be addressed in future research.

5. CONCLUSIONS

This paper proposes an algorithm to obtain shift matrices for
decentralized subspace projection in a nearly optimal number
of local exchanges. This number is of critical interest since it
determines the energy consumption of sensor nodes. Future
directions include decentralized algorithms to solve (2).
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