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Summary

Rotating machinery is common in industry, and the reliability is critical for continued op-

eration and safety, as undetected component faults may force emergency shutdowns. With

the increased complexity of machines, spare parts and maintenance crew are often not

immediately available for a quick overhaul, which increases downtime. This is especially

true when repairing an off-shore wind mill because suitable weather condition is required

to board it. Rolling element bearings carry the shaft load using elements that rotate with

shaft between two raceways. Despite being a mature technology, bearings are the most

common component in rotating machinery to fail because of highly dynamic loading. The

expected bearing lifetime is challenging to determine due to the statistical nature of man-

ufacturing quality, and difficulties in modeling the actual operating conditions. Condition

monitoring is therefore vital to increase reliability on critical machines. Vibration mea-

surements have been used for several decades to estimate the bearing health state, and

the currently available methods can solve most condition monitoring problems. However,

low and variable speed conditions can present a problem for these existing techniques,

because of low impact energy and non-stationary vibration signals. Such conditions are

typical in wind mills which operate with low rotor speed and are subjected to variable

wind speeds. A bearing is normally fully functional for a limited amount of time after the

initial fault. Estimating this time frame is challenging as the degradation trend must be

accurately predicted. However, an estimate of the remaining useful life is beneficial for

maintenance planning. Despite being a mature research field, most of the up-to-date tech-

niques require historic failure data to set parameters of prediction models. Such failure

data is often not available when installing a condition monitoring system, which render a

challenge for estimating the remaining useful life on new machines.

In this project, new techniques are proposed to alleviate the aforementioned challenges

in fault diagnosis and prognosis. Two new algorithms are developed for fault detection of

bearings operating under low and variable speed conditions. Additionally, a new algorithm

is proposed for estimating the remaining useful life on new machines with no historic

failure data. The developed methods are described in this thesis, while details are provided

in the appended papers.
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Chapter 1

Introduction

1.1 Background

Rotating machines have bearings which keep the shaft in place while providing as little

friction and noise as possible. Various types of bearings are available, each with their own

strengths and weaknesses. Rolling element bearings, plain bearings, magnetic bearings,

and fluid film bearings are some commercially available types. Rolling element bearings

are frequently used in gearboxes, motors and pumps, because of their ability to withstand

high loads at high speeds. There are four main parts in a rolling element bearing. An

inner race is fastened to the rotating shaft, while an outer race sits stationary inside a

housing. Rolling elements move around the shaft between the raceways, and a cage keeps

the elements at a near-fixed distance from each other to better distribute the shaft load

and hinder them from crashing into each other.

Different rolling element types are available, and the optimal choice depends on the

application. Roller elements are cylinder-shaped and provide a long surface line to dis-

tribute the load. Therefore, they can withstand high radial loads, but are not suitable for

axial loads due to the regular cylindrical design. Tapered and spherical rollers are more

suited for axial loads and misaligned systems but have a more complicated design and are

therefore more expensive to manufacture. Additionally, more specialized designs, such

as gear bearings and needle bearings, can be found in industry. In this thesis, the focus

is on ball element bearings which can commonly be found in electrical machines. These

bearings can be used at a high rotational speed, and the ball design permits both axial

and radial loads. In addition, ball bearings are one of the cheapest to manufacture given

the simplicity of a round element shape.

Oil or grease lubricant must be provided in the bearing to prevent metal-to-metal

contact and fill gaps made by imperfections on the surface of rollers and raceways. With-

out adding a lubricant, the metal-to-metal friction is significant, which results in early

1



         


failure. The oil pressure between roller and raceway causes small elastic deformation of

the elements. This cyclic deformation will eventually lead to fatigue, and the bearing

may fail even if it is perfectly lubricated. The bearing life can be estimated by using

the load, speed, temperature, lubricant viscosity, and load capacity of the bearing. The

estimated life of a bearing is generally known as L10, which denotes how many million

revolutions 10 out of 100 bearings should last if installed correctly and operated under

the specified conditions. If a higher confidence is desired, e.g. L5, the estimated life is

drastically reduced Similarly, L50 can be almost a magnitude greater than L10. For these

reasons, it is difficult to know accurately when a certain bearing will fail. It is similar

to throwing a dice, as the outcome of a single throw is improbable to guess, while it is

easier to estimate the probability distribution of each outcome if the dice is thrown thou-

sands of times. This statistical nature of bearing life may arise from small differences in

material and production quality between batches. If the actual load, temperature, and

speed characteristics is dissimilar to the modeled conditions, the life estimation may get

quite inaccurate. Lifetime calculators are often available via the bearing manufacturers

web portal, and can be used to calculate L10.

Without knowing the health indication of a machine, two maintenance practices can

be employed. With a reactive maintenance strategy, the components are replaced after

failure, which is ideal for non-critical appliances. A preventive maintenance strategy

aims to replace components after a certain amount of time in use. Such a strategy brings

increased maintenance cost, and high probabilities of early failure due to frequent machine

overhaul and run-in of new components.

A condition-based maintenance (CBM) strategy aims at identifying the health of com-

ponents, and replacing the ones that are worn out. This gives an economical advantage

as fewer maintenance stops are necessary, and fewer parts are replaced before the end

of their useful life. Additionally, knowledge of component health also improves system

reliability. Although visual inspection at regular intervals is a normal procedure to as-

sess the component health, this is difficult to perform on a rolling element bearing for

a couple of reasons. First, the machine must be stopped and disassembled, and second,

microscopic cracks have to be assessed on all rollers and raceways. Detecting tiny cracks

can be difficult even in a laboratory setting, which makes this procedure infeasible. In-

stead, the bearing health can be estimated by measuring the machine states while it is

running. Sensors are used to acquire physical states of the system, and signal processing

algorithms can be used to detect faults or estimate the level of wear. Different types of

sensors and algorithms can be used for this purpose, and the next section elaborates on

the state-of-the-art within condition monitoring (CM) systems for bearings.





 

1.2 State of the Art

1.2.1 Fault diagnosis

Initial bearing faults are typically small surface defects on either the raceway or roller.

When a roller passes the defect, an impulse of vibration is produced. This impulse excites

the resonance modes of the bearing and supporting structure. To detect this phenomenon,

a piezo-electric vibration accelerometer is fastened to the bearing housing, and the output

voltage is digitized with an analog-to-digital converter (ADC). The measured voltage

signal is proportional to the acceleration, e.g. with a rate of 100 mV/g. A bearing with

an outer race fault is shown in Fig. 1.1, and a CM system monitors the vibration signal.

The bearing has a surface fault on the outer race that generates vibration when rollers

pass, and an accelerometer responds to this vibration. The signal is afterwards processed

with a computer to generate results which an operator can analyze to determine the health

state.

Figure 1.1: Simplified schematic of a bearing condition monitoring system.

The bearing resonance frequency is typically in the thousands of Hz, while the cyclic

impact frequency is lower. Analyzing the kinematics of a bearing under the assumption

of no slip reveals the cyclic impact frequency. Four characteristic fault frequencies are

important for diagnosing a bearing:

Fundamental train frequency, FTF =
fr
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)
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where fr is the shaft frequency, d is the roller diameter, D is the pitch diameter, Zb is the

number of rollers, and φ is the radial plane load angle. Cyclic impacts at either of these

frequencies indicate a damaged bearing. The bearing dimensions are shown in Fig. 1.2.

Figure 1.2: Bearing dimensions.

The radial load is spread un-evenly to the bottom half of the rollers, while the top

half gets larger clearance in the raceway. Due to the radial load zone, the load angle for

the rolling elements may differ, as the bottom half gets an angular contact point, while

the top half may slide on the edges due to axial load. In a ball bearing, the roller speed

(BSF) is dependent on the load angle, and thus the speed differs between rollers. While

the cage is moving at the mean speed of all rollers, some of them must slip on the raceway

if moving too fast or too slow. Therefore, there is slight variation in cyclic impact period,

and the bearing impact vibration can be modeled as second order cyclostationary (CS2)

[1]. On the other hand, deterministic vibration components originating from shafts and

gearboxes are phase-locked to the shaft. The bearing vibration can be separated from the

deterministic components by using a discrete/random separator (DRS). Time synchronous

average (TSA) [2], linear prediction filter [3], and self-adaptive noise cancellation [4] are

examples of DRSs. After separating the random components, the signal is denoted as

whitened.

The vibration amplitude is often demodulated to extract the cyclic frequencies, and

envelope analysis is one of the most successful methods for this purpose [5]. In the

early days of bearing vibration analysis, analog rectifiers and low-pass filters were used to

achieve the vibration envelope before digitizing the signal [6]. With faster digital technol-

ogy, the Hilbert envelope has emerged as a new alternative with several advantages over

analog rectification [4, 7]. To achieve the Hilbert envelope, the positive-sided frequency

spectrum is first inversely transformed to the time domain, yielding the analytic signal.

The analytic signal is the original signal plus an imaginary part, which is the Hilbert





 

transform of the signal. Then, the absolute value of the analytic signal is denoted the

Hilbert envelope. Finally, the envelope spectrum is analyzed to detect prominent peaks

at integer multiples of the bearing characteristic frequencies, i.e. harmonics.

The vibration signal should be band-pass filtered at the bearing resonance frequency

before enveloping to separate the signal of interest from other sources. An inherit advan-

tage of the Hilbert envelope is that the signal can be bandpass filtered in the positive-side

of the spectrum, which gives the analytic signal directly. There are several ways of identi-

fying the bearing resonance region. One approach is to track changes in the raw vibration

spectrum over time and place the filter over emerging resonance modes [4], but that re-

quires historic data of the system. More recent methods are based on the fourth statistical

moment, kurtosis, which has a high value for impulsive signals such as bearing vibration.

Spectral kurtosis is a tool for identifying frequency bands with high values of kurtosis

[8, 9, 10], which is assumed the optimal frequency band for Hilbert envelope analysis.

However, in case of non-Gaussian noise and large single impulses, spectral kurtosis may

fail to identify the optimal frequency region. Hence, other methods such as Protrugram

[11] and harmonic-to-noise ratio [12] have been proposed to mitigate those issues.

As stated in [4], the aforementioned methods are largely enough to solve most bearing

diagnostics cases. However, there are two operating conditions that can pose difficulties

when diagnosing a bearing, namely variable and low speed conditions. During variable

speed conditions (VSCs), fault impacts no longer occur at a fixed time interval, therefore

the cyclic frequencies are spread in the envelope spectrum. Computed order tracking [13]

largely resolves the problem by transforming the vibration signal from the time domain to

the shaft angle domain. This, however, requires knowledge of the shaft position acquired

either by a tachometer or an encoder. Alternatively, the vibration signal can be used to

estimate the shaft position by tracking frequency ridges in the time-frequency spectrum

[14, 15, 16, 17]. Cepstrum pre-whitening (CPW) is proposed in [18] to whiten the vibration

signal during VSC. Deterministic vibration components from shafts and gearboxes are

periodic, but not sinusoidal, and therefore form multiple harmonics in the frequency

spectrum. In the cepstrum, these harmonics form a single peak at the quefrency of the

deterministic component, while cyclostationary signals form no significant peaks at all.

By performing a series of liftering operations, the deterministic components are removed

by setting the whole real cepstrum to zero, except for at the zeroth quefrency. Afterwards,

the envelope spectrum of the order tracked whitened signal should reveal the bearing fault.

However, CPW causes spectrum normalization that increases the noise floor, which could

mask fault related harmonics. Methods for diagnosing bearings operating under VSC

should be further investigated.

Low speed conditions (LSC) pose a second challenge for bearing diagnosis. The impact





         


energy is depending on the fault size, bearing load, and shaft frequency. With a slower

shaft frequency, the impact energy is lower, which makes the impacts harder to detect

when the signal is contaminated by noise. To obtain a high-resolution envelope spectrum,

the signal must be measured for the duration of several shaft revolutions. At low speed,

the data collection time increases drastically, which makes a high impact on memory

footprint and required computational power. Some types of signal processing algorithms

are not feasible to use if the signal contains too many samples, such as iterative algorithms.

To overcome the issues of low impact energy, several studies have successfully applied

acoustic emission (AE) sensors, which are sensitive in the frequency range between 100

kHz and 1 MHz [19]. Such sensors require a high sampling rate ADC to properly sample

the signal, which increases the price of the CM system. Multiple studies have shown

that signal features such as AE energy [20], AE amplitude [21], AE counts [22], linear

prediction filter coefficient values [23], root mean square (RMS) and kurtosis [24] are

sensitive to the bearing fault at low rotational speed. Classification of faults using such

features is demonstrated in [25] with support vector machine (SVM) and relevance vector

machine (RVM). To reduce the amount of data required for fault diagnosis using envelope

spectrum, a peak-hold down-sampling technique is proposed in [26], and heterodyne signal

enveloping is demonstrated in [27]. A few studies are dedicated to using the vibration

signal for diagnosing faults at low speed as well [28, 29]. Most of the referred papers

conclude that AE is more suited to detect incipient bearing faults during LSC, compared

to regular accelerometers. However, high cost and complexity make AE infeasible for some

machines. Therefore, new methods for diagnosing a bearing under LSC with vibration

signal should be developed.

Detecting initial faults in a bearing is an important first step towards predictive main-

tenance. However, in many cases the machine should not stop immediately after detection

due to safety reasons or maintenance planning. Bearings can be in operation after the

initial fault, and the time until a complete failure is commonly referred to as the remain-

ing useful life (RUL). Prognostic techniques have been developed to estimate the RUL,

and the state-of-the-art within prognostics is elaborated on in the next section.

1.2.2 Prognostics

The bearing prognostics procedure can be divided into four major steps: Health indicator

(HI) estimation, initial fault detection, model prediction, and failure threshold (FT). A

simplified example of this procedure is shown in Fig. 1.3, and the steps are detailed

hereafter.
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Figure 1.3: Simplified description of bearing prognostics procedure.

Health indicator estimation

The actual health state of a bearing can be assessed by quantifying the level of wear

in the bearing. This would require disassembly of the machine and examination of the

dismantled bearing, typically by a microscope. This is not feasible for most machines,

therefore the actual state is estimated by an HI calculated from sensor data, such as

vibration or AE. Generally, HIs can be categorized into physical HIs (PHIs) and virtual

HIs (VHIs) [30]. PHIs are generated from signals closely related to the physics of failure,

for example the vibration or AE signal. One of the most common PHIs is the RMS

[31, 32, 33], as it is very closely linked to the vibration energy. Other PHIs are the

kurtosis [34], and the energy ratio between the original signal and the linear prediction

residual [35].

VHIs, on the other hand, have no direct correlation with physics of failure. For exam-

ple, the combination of multiple PHIs using statistical methods or principle component

analysis (PCA) is a VHI. In [36], the Mahalanobis distance is used to fuse 14 PHIs into

a VHI, and in [37] a self-organizing map (SOM) is used to combine multiple PHIs. More

examples of HIs are given in [38].

Initial fault detection

Estimating the bearing RUL can be done after the first fault has developed, and the

HI starts to increase. In [31], a threshold on the kurtosis value is used to detect initial

degradation. A statistical alarm threshold on the HI itself is also used in some research.

For example, the mean and standard deviation (STD) of the HI is obtained with baseline





         


data, and the initial degradation starts when the HI passes its mean plus 3 times the

standard deviation [36, 39].

Model prediction

After passing initial degradation, the future trend of the HI can be predicted to estimate

the time until the FT is reached. Such algorithms can be divided into physics-based and

data-based methods [40]. Physics-based methods use models that are closely linked to the

failure mechanics of the component. Bearing vibration energy is often exponential as an

increasing number of cracks results in a greater amount of impacts. Therefore, variants

of the Paris-Erdogan crack law [37, 41, 42] have been used to track bearing degradation.

Data-based or statistical methods predict the future trend based on historic data alone,

without relying on physics of the fault. Some examples are the linear prediction model

[43] and the wiener process model [36].

Failure threshold

The prognosis objective is to estimate the time until the chosen HI reaches the FT, and

therefore the accuracy depends greatly on the FT value. Depending on the choice of HI,

it may be difficult to determine a suitable FT, especially for the more abstract VHIs.

In [40] it is stated that a challenge for rotating machinery prognosis is to define FTs for

newly designed HIs. Two ISO standards can be used for two PHIs, RMS and peak-to-

peak [40, 44], but are not applicable to other HIs. Consequently, most of the recently

developed algorithms require historic failure data to determine a suitable FT. This is often

not possible to achieve in practice due to lack of proper historic data when installing CM

equipment on a new machine. Therefore, new methods for RUL estimation that does not

involve historic failure data should be developed.

1.3 Motivation and Problem Statement

This project focuses on three topics under active research. The first topic is LSC bearing

fault diagnosis. Most of the identified works have focused on using AE to detect low-

energy impacts in the bearing. However, AE equipment is expensive, and accordingly

used mostly on large, critical machines. Developing new methods using vibration signal

to detect incipient faults in a bearing is desirable for LSC bearing diagnosis.

The second topic is bearing fault diagnosis under VSC in modern drive trains. While

computed order tracking and cepstrum pre-whitening have proven to be effective for

diagnosing bearings operating under VSC, there is considerable noise floor in the envelope





 

spectrum due to normalization of the entire vibration signal. Therefore, other methods

that can isolate the bearing vibration better should to be investigated.

Finally, the last topic is remaining useful life (RUL) estimation of bearings. The need

for historic failure data is common in all the referred literature. Once a CM system is

installed on a new machine, it is impractical to require historical failure data before RUL

can be estimated. Therefore, the last part of the thesis focuses on developing prognosis

algorithms that do not require historic failure data.

1.4 Contributions

This thesis is based on 6 papers that have been published or submitted for publication

during the project period.

1.4.1 Paper A: Accelerated Bearing Life-time Test Rig Devel-

opment for Low Speed Data Acquisition

Summary: Experimental data is required to verify the performance of new diagnostics

and prognostics algorithms. Some online repositories have vibration data captured during

VSC or constant speed operation. However, vibration data captured during LSC was not

available at the time of project initiation. Therefore, we designed and built an in-house

test rig to generate our own vibration data. The test rig can apply both axial and radial

loads to a small 40 mm bore-diameter 6008-type ball element bearing. The rig is struc-

turally designed to handle long periods of operation to wear out the bearing from healthy

to faulty stage. A permanent magnet synchronous motor with a planetary gearbox can

run the bearing at low speed down to 20 rounds per minute (rpm) and variable speed up

to 500 rpm. The test rig controller manages the entire test during the bearing life, and

handles regular sensor data logging, motor control, and bearing health check. In other

words, the operator does not have to be present and the accelerated life tests can run 24/7.

Contributions: The new test rig design allows for both axial and radial loads at the

same time, while being able to gather sensor data at low and variable speed settings. The

acquired data is used in all the appended papers in this thesis.

This paper has been published as:

A. Klausen, R. W. Folgerø, K. G. Robbersmyr and H. R. Karimi. Accelerated Bearing

Life-time Test Rig Development for Low Speed Data Acquisition. Journal of Modeling,

Identification and Control, 38(3):143-156, 2017. doi: 10.4173/mic.2017.3.4.
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1.4.2 Paper B: Autonomous Bearing Fault Diagnosis Method

based on Envelope Spectrum

Summary: Analyzing vibration spectra for resonance regions and characteristic fault

harmonics is time consuming, and false alarms or erroneous conclusions may be drawn.

This paper presents an automatic method for bearing fault diagnosis. First, the vibration

spectrum is split into all resonance regions by use of bandpass filters. For each resonance

region, an automatic peak detection algorithm searches for harmonics of characteristic

fault frequencies in the envelope spectrum. For every identified harmonic, a fault score

level increases, and a higher score signifies greater confidence in fault detection. Experi-

mental results show how all three major fault types are detected during a single accelerated

lifetime test.

Contributions: In the direction of autonomous fault detection, the paper presents a

method for automatic detection of faults in a bearing.

This paper has been published as:

A. Klausen, K. G. Robbersmyr and H. R. Karimi. Autonomous Bearing Fault Diagno-

sis Method based on Envelope Spectrum. IFAC-PapersOnLine, 50(1):13378-13383, 2017.

doi: 10.1016/j.ifacol.2017.08.2262.

1.4.3 Paper C: Cross-correlation of Whitened Vibration Signals

for Low-Speed Bearing Diagnostics

Summary: Bearing fault diagnosis using vibration signal during LSC is a challenge due to

low impact energy. This paper presents a new method for extracting more useful informa-

tion of the vibration signal. First, the bearing vibration is isolated with a discrete/random

separator. Afterwards, the envelope spectrum is correlated with the whitened vibration

spectrum to combine useful information in both spectra. The reasoning is that fault

related harmonics may be identifiable directly in the raw vibration spectrum, and the

cross-correlation may improve strength of fault related harmonics. Experimental results

at 20 rpm verifies that the presented method significantly improves the diagnosis capa-

bilities compared to other methods reported in the literature.

Contributions: A new computationally efficient method for extracting more fault re-

lated harmonics of a vibration signal.

This paper has been published as:



http://dx.doi.org/10.1016/j.ifacol.2017.08.2262


 

A. Klausen and K. G. Robbersmyr. Cross-correlation of Whitened Vibration Signals for

Low-Speed Bearing Diagnostics. Mechanical Systems and Signal Processing, 118:226-244,

2019. doi: 10.1016/j.ymssp.2018.08.048.

1.4.4 Paper D: Multi-band Identification for Enhancing Bearing

Fault Detection in Variable Speed Conditions

Summary: This paper presents a new method for identifying bearing resonance regions

for bearings operating in VSC. It is known that order tracking makes shaft-speed de-

pendent vibration components de-spread in the frequency spectrum. At the same time,

bearing resonance is time dependent, and order tracking therefore causes a spread of res-

onance energy. The presented method exploits these phenomena by first normalizing the

vibration spectrum after order tracking by means of CPW. Afterwards, the inverse order

tracking is applied to de-spread and highlight resonance regions. Experimental results

from three test rigs show that the proposed method can highlight multiple resonance

bands, and that the envelope spectra contain numerous harmonics related to the fault.

Compared to two other methods reported in literature, the fault diagnosis score is higher.

Contributions: A new method to identify all resonance regions in a vibration signal

when operating under VSC.

This paper has been submitted as:

A. Klausen, H. V. Khang and K. G. Robbersmyr. Multi-band Identification for Enhanc-

ing Bearing Fault Detection in Variable Speed Conditions. Under review at Mechanical

Systems and Signal Processing.

1.4.5 Paper E: Novel Threshold Calculations for Remaining Use-

ful Lifetime Estimation of Rolling Element Bearings

Summary: ISO standard 10816-3 defines allowable RMS vibration levels in the position

and velocity domains which may be used as an FT for RUL estimation. However, initial

bearing faults cause high-frequency resonance vibration, and integration from acceleration

to velocity reduces the effect of this component. Therefore, an early degradation trend

is difficult to predict using the velocity- or position-based RMS. This paper presents a

method for transforming the RMS threshold to the acceleration domain. Experimental

results show that the acceleration-based RMS allows for longer prediction time, and that

the transformed failure threshold is valid compared to final values.
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Contributions: Two new failure thresholds for vibration signals that does not require

any historic failure data.

This paper has been published as:

A. Klausen, H. V. Khang and K. G. Robbersmyr. Novel Threshold Calculations for

Remaining Useful Lifetime Estimation of Rolling Element Bearings. IEEE International

Conference on Electrical Machines (ICEM), Greece, 1912-1918, 2018. doi: 10.1109/ICEL-

MACH.2018.8507056

1.4.6 Paper F: Novel RMS Based Health Indicator used for Re-

maining Useful Lifetime Estimation of Bearings

Summary: The vibration RMS is a good health indicator due to its connection to the

signal energy. However, the trend is often non-stationary, which makes it difficult to pre-

dict future values. This paper presents a novel method for splitting the vibration signal

into multiple frequency bands for RMS calculations. Without using digital filters, the

proposed method splits the signal energy into multiple frequency bands using a single dis-

crete Fourier transform. The RMS is calculated for each band, and suitable RMS trends

for RUL estimation are identified online. Failure thresholds are calculated by extending

the method presented in Paper E. A particle filter combined with the Paris-Erdogan law

is applied to predict the RUL using suitable RMS trends. The method is verified with

experimental results from two test rigs.

Contributions: A novel method for subdividing the vibration signal into multiple fre-

quency bands for RMS calculations. A method for predicting remaining useful life without

using historic failure data.

This paper has been submitted as:

A. Klausen, H. V. Khang and K. G. Robbersmyr. Novel RMS Based Health Indicator

used for Remaining Useful Lifetime Estimation of Bearings. Under review at Mechanical

Systems and Signal Processing.

1.5 Outline

The rest of this thesis is divided into four main chapters. Chapter 2 contains brief de-

scriptions of the datasets used in this thesis, which includes the in-house test rig and

downloaded datasets from open repositories. Next, Chapter 3 is devoted to the contri-
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butions within fault diagnosis during LSC and VSC. The chapter starts with a short

background on existing techniques before elaborating on the contributions made from

three papers written during the project. Chapter 4 involve the estimation of remaining

useful life for bearings. In particular, contributions from the two last papers are pre-

sented. Finally, Chapter 5 concludes the thesis and presents the reader with limitations

and possibilities for further work.







Chapter 2

Experimental test data

This chapter briefly describes the bearing vibration datasets used to generate experimental

results. Section 2.1 presents an in-house test rig that was built during the project period,

and the section is based on Paper A. Datasets from other sources have also been used

to verify the performance of the developed methods, and these datasets are described in

Section 2.2.

2.1 In-house test rig - Paper A

The test rig was designed and built at the University of Agder during the project period

to conduct accelerated lifetime tests of bearings from healthy to faulty conditions. A brief

description of the test rig is presented here, and more details are given in Paper A. Fig.

2.1 shows a schematic of the test rig, and Fig. 2.2 shows a picture of the finished test rig

in the laboratory.

A permanent magnet motor drives the shaft with 4 bearings. The shaft can be op-

erated with stable speeds between 20 and 500 rpm using a variable frequency drive and

a planetary gearbox. Continuous variable speed operation is also permitted using this

setup. A sealed 6008 type test bearing is installed in a custom housing on the left end of

the shaft. Two electric linear actuators apply axial and radial loads to the test bearing,

and Each actuator is connected to a lever arm to amplify the load, and load cells are used

as rotational points to measure the applied loads. To the right in Fig. 2.1, the red lever

arm is pushing on an axial bearing to generate up to 12 kN axial load. To the left, the

second red lever pushes the test bearing housing upwards, producing up to 12 kN radial

load. The two larger bearings are installed in the center to stabilize the shaft and bear

the radial loads. A piezo-electric accelerometer is mounted on the test bearing housing to

measure the vibrations. In addition, shaft movement is measured with an eddy current

proximity sensor, and the bearing temperature is determined with a PT100 element. The
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Figure 2.1: Schematic of the accelerated bearing life-time test rig.

proximity sensor data is acquired to verify the vibration analysis, as both sensors are

recorded at the same time. In this project, datasets from three run to failure tests have

been used. Table 2.1 shows the test conditions and which papers the datasets have been

used in.

Table 2.1: Run to failure experiments using the in-house test rig.

Paper Speed [rpm] Radial load [kN] Axial load [kN] Lifetime [106 rounds]

B 250 9 4 42.7

A 50 9 7 6

C 20 9 7 6

E 100 9 7 6

D 50±35 9 5 35.7

F 100 9 5 35.7

Experimental results used in Paper B originates from the first successful attempt to

damage the bearing, and this particular test was conducted before the planetary gearbox

was installed. It was, however, observed that the measurements acquired during LSC

below 100 rpm suffered from too large speed deviations due to variable friction and speed

controller overshoots. Therefore, the planetary gearbox was installed for the remaining

experiments to stabilize low speed operation. The second dataset used in Papers A, C

and E included low speed measurements down to 20 rpm. Variable speed operation was

also included in the last test, and datasets from this experiment were primarily used in





   

Figure 2.2: The finished test rig in the laboratory at the University of Agder.

Papers D and F. The surface faults on two of the disassembled bearings are shown in Fig.

2.3.

Figure 2.3: Damaged bearings after two accelerated life time tests. (a) Rollers; (b) Outer

race; (c) Inner race.





         


2.2 Downloaded datasets

The datasets from three other sources have been used extensively in this project as a

second comparison with in-house datasets.

2.2.1 Variable speed datasets

The datasets collected by Mishra et al. [45] have been applied for variable speed fault

diagnosis. The test rig features a variable speed motor, bearings with artificially created

faults, and a small radial load of 5 kg. A laser vibrometer measured the vibration at

a sample rate of 50 kHz for ≈ 20 seconds for each dataset. The shaft encoder provided

readings of the shaft position during the measurements. Three types of faults were tested,

namely inner race, outer race and roller fault. During the measurements, the shaft speed

was adjusted manually between 600 and 900 rpm. These datasets are extensively used in

Paper D.

2.2.2 Accelerated lifetime datasets

The datasets generated by NSF I/UCR Center for Intelligent Maintenance Systems (IMS)

have been used for testing prognostics algorithms. These datasets were first used in [46]

and consists of three run-to-failure tests. The test rig has an induction motor running a

shaft with 4 bearings at a constant speed of 2000 rpm. Radial load of ≈ 26700 N is applied

to wear out the test bearings. For each test, the vibration at each bearing housing was

recorded for 1 second at a rate of 20480 Hz, every 10 minutes. An oil circulation system

lubricates the bearings, and a magnetic plug triggers a stop signal when enough metal

debris is accumulated. These datasets are used extensively in Paper E and F.

2.2.3 Constant speed datasets

Case Western Reserve (CWR) University has an open database with bearing fault test

data [47]. The test rig has an induction motor connected to a dynamometer as a load

torque. Bearings with pre-seeded faults are installed on either the drive-end (DE) or

fan-end (FE) for each test. For each fault and location combination, the vibration signal

was measured at DE, FE and the motor base (BA). Vibration was sampled at a rate of

12 kHz for FE faults, while measured at both 12 and 48 kHz for DE faults. There was

no radial load, but the torque load varied between 0, 1, 2 and 3 horse power (hp). While

unloaded, the shaft speed was 1797 rpm, and 3 hp load caused the induction motor to

run at a lower speed of 1730 rpm. These datasets are used extensively in Papers C and

E.





Chapter 3

Fault diagnostics

This chapter presents three new methods for fault diagnosis developed during the project

period. First, some relevant background used in the developed methods is given in Section

3.1. Afterwards, the three developed methods with results are described. Section 3.2 is

based on Paper B and introduce a method for automatic bearing fault detection. A

new method is developed in Paper C for extracting more fault-related information from

the vibration signal during LSC, and the method is described in Section 3.3. Paper D

demonstrates a new method for identifying resonance frequencies in the vibration signal

while operating under VSC, and Section 3.4 covers this method briefly. The papers are

appended to provide more detailed information about the proposed methods.

3.1 Theoretical background

The developed methods take advantage of background theory that is given in this section.

Section 3.1.1 explain order tracking which is used to transform the vibration signal from

time domain to shaft angle domain. In Section 3.1.2, three methods for separating random

components from the vibration signal are disclosed. Next, Section 3.1.3 shows how the

envelope spectrum is calculated. Finally, Section 3.1.4 explains how the envelope spectrum

can be analyzed to detect and classify bearing faults.

3.1.1 Order tracking

The vibration signal is normally sampled at a constant rate, for example 51200 samples

per second (Hz). A fixed number of samples between bearing fault impacts is recorded if

the shaft is rotating at a constant speed. However, if there are changes in the shaft speed

during the measurement, the impact frequency is no longer constant. Fourier techniques

assume stationary frequency components in the signal, and this assumption fails under

VSC. Therefore, the energy of cyclic components is spread over a larger frequency area,
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which makes diagnosis difficult. Order tracking transforms the vibration signal from the

time domain to the shaft angle domain [13], which results in a fixed number of samples

between impacts. The shaft position or speed must be recorded along with the vibration

measurements to perform order tracking. An encoder or tachometer is normally used to

acquire the shaft position.

Let x(t) be the vibration signal sampled in the time domain, and xn is the same signal

discretized at time index n. The shaft position signal is given by θ(t) and assumed to be

sampled at the same rate as the vibration signal. A cubic spline is used to describe the

vibration signal between the discrete samples. This is given as

fot(θ) = interpolate(θ(t), x(t)) , (3.1)

where interpolate(θ(t), x(t)) is the desired interpolation function (cubic spline) that is used

to approximate the function fot(θ) = x(t). To order track the signal, vibration samples at

a fixed ∆θ period are calculated from fot(θ). The resulting order-tracked vibration signal

is xot(θ). The x-axis of an order tracked vibration spectrum is given in orders, where the

1st order is the same as the shaft frequency. More details on this method are given in the

appended Paper C, Section C.2.2.

3.1.2 Signal whitening

Bearing vibration is slightly random and is therefore modeled like a second order cy-

clostationary (CS2) signal as described in Section 1.2.1. Shaft and gearbox vibration

components are phase-locked to the shaft and are therefore deterministic. Random and

deterministic components can be separated using a DRS. For bearing fault diagnosis,

the random signal is retained for further analysis. A whitened vibration signal contains

mostly random, uncorrelated components such as white noise. Therefore, the random

signal output of a DRS is a whitened signal. In this project, three types of whitening

approaches are utilized.

The time synchronous average (TSA) is used to remove vibration components

that are phase-locked to the shaft. The vibration signal is split into segments of equal

lengths, each containing the vibration of one shaft rotation. Then, the mean of these

segments is the average vibration occurring per shaft revolution, i.e. the TSA. By sub-

tracting this average from of each shaft revolution of the original signal, the result is a

slightly whitened vibration signal xw(t). If the signal is order tracked, the angle syn-

chronous average is determined instead. More details are given in the appended Paper C,

Section C.2.3.

An autoregressive model is trained to predict the next sample based on a linear





  

combination of p previous samples. This model is formulated as

xn+1 = xw,n+1 −
p∑
j=1

qjxn−j−1 , (3.2)

where xw,n is the n’th sample of the whitened vibration signal (model residual), and qj

is the j’th model parameter. Deterministic signal components can be predicted based

on previous samples, while random components are left in the residual. The model pa-

rameters are identified using the Yule-Walker equations which is a least-squares approach

involving the autocorrelation of the vibration signal [48, 49]. The model parameters

are determined for each signal, and the whitened vibration signal is extracted using the

trained model. More details are given in the appended Paper C, Section C.2.4.

Cepstrum pre-whitening [18] is an effective method that utilizes the cepstral do-

main to whiten the signal. Vibration components from shafts and gearboxes are periodic,

but not sinusoidal. Therefore, the components make up multiple harmonics in the fre-

quency spectrum. In the cepstral domain, these harmonics form a single peak at the

quefrency equal to the period of the deterministic component. By performing a series of

liftering operations, the deterministic components are mitigated by setting the whole real

cepstrum to zero, except for the zeroth quefrency [50, 51]. This is simplified by [18]

xw = F−1

(
F (x(t))

|F (x(t))|

)
, (3.3)

where F and F−1 are the forward and inverse discrete Fourier transform, respectively.

Detailed information are given in the appended Paper D, Section D.6.2 and [18, 50, 51].

3.1.3 Envelope spectrum

The cyclic frequencies are extracted by demodulating the whitened vibration signal with

the Hilbert envelope. The analytic signal is acquired by taking the inverse Fourier trans-

form of the positive-sided frequency spectrum. If Fp(x(t)) is the positive-sided frequency

spectrum, then the analytic signal is

xa(t) = x(t) + ixi(t) = F−1(Fp(x(t))) , (3.4)

where xi(t) is the Hilbert transform of x(t). Afterwards, the envelope xenv(t) is calculated

with the absolute value as

xenv(t) = |xa(t)| . (3.5)

If, however, the signal is order-tracked, xenv(θ) is determined instead. Taking the Fourier

transform of xenv returns the envelope spectrum.





         


3.1.4 Fault detection

The envelope spectrum can be analyzed to detect faults in the bearing as a faulty bearing

will produce amplitude-modulated vibration signal. Fig. 3.1 shows the envelope in the

time and frequency domain for three different fault types. The envelope of resonance

Figure 3.1: Envelope in time and frequency domain for the three fault types.

vibration impulses is periodic, but not sinusoidal, resulting in several harmonics in the

spectrum. The side-bands appear due to amplitude modulation when the fault moves in

and out of the radial load zone. The envelope spectrum is examined for the frequency

domain characteristics in Fig. 3.1 to diagnose the bearing. If the spectrum does not

contain any prominent harmonics or side-bands related to the fault, the bearing is either

healthy, or the vibration signal contains too much noise.

3.2 Automatic fault detection - Paper B

Each fault impact causes resonance vibration in the bearing itself and the surrounding

structure. It is beneficial to isolate the resonance frequency vibration before making

the envelope spectrum to improve fault detection. However, identifying the resonance

frequency requires a detailed model of the system, which is not suitable to make for

all systems. Paper B presents a method for isolating resonance modes in the vibration





  

signal and make an envelope spectrum for each of them. Manual analysis of several

envelope spectra is time consuming, therefore an automatic fault detection algorithm is

also presented in this paper.

A dataset from the in-house test rig is used to demonstrate the automatic fault de-

tection algorithm. During recording of this dataset, the bearing had an inner race fault,

and the motor ran at 250 rpm. The vibration signal is first order-tracked, and the TSA

is removed. The next step is to divide the vibration spectrum into resonance modes. A

low-pass filter is applied to the vibration spectrum amplitude, and the local minima define

points for dividing the spectrum into resonance bands. The vibration spectrum is shown

in Fig. 3.2, where the y-axis is the vibration amplitude, and the x-axis is the frequency

in Hz. In this example, 9 identified bands are investigated further.
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Figure 3.2: The vibration spectrum shown with the nine identified resonance mode bands.

The vibration signal is bandpass filtered at each identified band, and the envelope

spectrum is afterwards calculated. For each envelope spectrum, a harmonic search al-

gorithm is applied to identify prominent harmonics and side-bands related to bearing

faults.

The search algorithm focuses a single fault case at a time, for example an inner race

fault. Side-bands appear with 1 order spacing from the harmonic due to radial load

modulation. Fig. 3.3 shows the search for the first harmonic and side-bands in the third

frequency band.

The load angle φ normally makes up to 2 % difference in characteristic fault frequen-

cies. Therefore, prominent harmonics are searched for within a band of ±2 % width of the

investigated characteristic fault frequency. The maximum values within these bands are

chosen, and if the harmonic and one of the side-bands are greater than the threshold of

three times the noise floor (3N), the harmonic is prominent. A score value is increasing for

each prominent harmonic. The score is the ratio between the prominent harmonic and the
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Figure 3.3: The first harmonic and its side-bands, and the prominence threshold given by

3 times the noise floor. The search width is given by the stapled lines.

threshold, multiplied with the harmonic number squared. The squaring causes the score

to increase quickly if multiple harmonics are identified. This value can be interpreted as

the probability of fault detection. In the third frequency band, the algorithm can identify

three prominent harmonics as shown in Fig. 3.4. This procedure is continued with the 8
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Figure 3.4: The three prominent harmonics and side-bands identified in the third fre-

quency band.

other frequency bands shown in Fig. 3.2, and the score is summed to a single value for

this dataset.

The scores for each fault type can be monitored over time for easier visualization of

fault propagation. Fig. 3.5 shows the normalized fault scores (divided by their respective

maximum value) for the last 100 datasets captured at 250 rpm using the in-house test rig.

The normalized scores are small for the first 70 datasets, but the green trend increases to

its maximum value at dataset 71. A fault score of less than 10 is typically observed for
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Figure 3.5: The fault scores over time for the last 100 datasets. The root mean square

(RMS) is displayed to compare the fault score with the vibration energy.

noise, therefore 126.40 indicates a high probability of a roller fault. The outer ring is also

damaged afterwards as seen by the increase of the blue trend during the next 20 datasets.

Finally, the inner race was also damaged near the end of the lifetime.

The fault scores are compared with the RMS of the vibration signal, which is a measure

of the mean vibration energy in the signal, given by

RMS =

√
1

T

∫ T

0

x(t)2dt (3.6)

At dataset 71, the RMS value is unchanged from previous values, while the roller fault

score increased to 126. Therefore, the proposed method can give earlier fault detection

compared to the RMS, and the fault is automatically classified.

3.3 Whitened cross-correlation spectrum - Paper C

The automatic fault score method presented in the previous section can be used for fault

diagnosis in many cases. During LSC, however, the bandpass filtered envelope spectrum

may not provide correct diagnosis information. For this reason, AE sensors have been used

in many applications to improve signal sensitivity and catch the low energy vibration.

Paper C presents a new method for extracting more information from the vibration

signal for fault diagnosis during LSC. First, the vibration signal is order-tracked, and

the TSA is removed. Afterwards, an autoregressive model with a limited number of

coefficients is trained to further whiten the signal. The result is a vibration signal that is

partially whitened as some deterministic components are still left in the signal. Bearing

faults can in some cases be detected in the vibration spectrum directly, without using





         


the envelope. Before the envelope spectrum was invented, this was the common method

for fault diagnosis. However, the bearing must be significantly damaged for prominent

harmonics to appear in the vibration spectrum. Additionally, the resonance frequency

needs to be low enough for identifying deterministic components [1].

The proposed whitened cross-correlation spectrum (WCCS) aims to combine the ad-

vantages of the vibration and envelope spectrum by correlating the useful information.

The envelope spectrum is more likely to contain fault related information but may contain

a high noise floor during low speed operation. The vibration spectrum may also show

small signs of the bearing fault, only slightly higher than the noise floor. When combining

these two signals, the information of both are fused in a single spectrum. To perform the

fusing, the cross-correlation of the vibration and envelope signal is calculated and used

for diagnosis analysis.

Vibration datasets from the in-house test rig captured during shaft speed of 20 rpm

are used to verify the proposed method. The first fault to develop during the accelerated

lifetime test is a roller fault, and Fig. 3.6 shows the result diagnosing the bearing using

the proposed method.

Fig. 3.6 (a) shows the spectrum of the partially whitened vibration signal. The yellow

lines show harmonic locations of 2 times BSF, and green stapled lines show the FTF

side-bands. The first 5 harmonics are not prominent compared to the noise floor, but

multiple harmonics of the side-bands are visible. On the contrary, the envelope spectrum

in Fig. 3.6 (b) has a low noise floor and a few prominent harmonic amplitude values.

The fault-related harmonics are only slightly higher than the noise floor, and therefore it

is difficult to diagnose the bearing based on this spectrum alone. The proposed method

combines these two spectra into the WCCS which is shown in Fig. 3.6 (c). The perceived

noise floor is reduced compared to the spectrum of the whitened vibration signal, and

the first five harmonics are now prominent compared to the noise floor. In addition, a

prominent peak at FTF is showing, which further indicates a roller fault.

A limitation with the WCCS is that the deterministic bearing fault components are

the result of a low-pass filter applied to the high-frequency resonance signal [1]. If the

resonance frequency is too high, the whitened vibration spectrum may not show signs of

the bearing fault at all. In this case, the envelope spectrum will be correlated with mostly

white noise, which should neither improve or decrease the diagnosis capability of WCCS.

Therefore, this method can be used even if the resonance frequency is high.
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Figure 3.6: The WCCS used to diagnose a roller fault. Harmonics and side-bands linked to

the roller fault are marked in all three subfigures. (a) Spectrum of the whitened vibration

signal xw; (b) Spectrum of the envelope xenv. (c) Proposed WCCS.

3.4 Resonance frequency identification - Paper D

Whitening methods can significantly improve the bearing diagnosis by isolating random

signal components. However, white measurement noise is also random, and is therefore not

removed in a whitening process. CPW is a whitening method proposed in [18] for bearing

diagnosis under VSC. A brief description of CPW is given in Section 3.1.2. This method

normalizes the vibration spectrum to reduce the power of deterministic components. The

negative side effect is an increase in white noise energy, which could mask fault-related
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Figure 3.7: Resonance band identification using the proposed method on a simulated

signal—Part 1. (a) shaft vibration; (b) bearing vibration; (c) shaft speed; (d) measured

vibration signal; (e) frequency spectrum of raw signal; (f) order spectrum.

components. Although this whitening procedure is convenient, the diagnosis can be more

accurate by isolating the resonance frequency instead.

Paper D presents a new method for identifying bearing resonance frequency when

operating under VSC. The method utilizes CPW and order tracking to highlight shaft-

speed invariant signal components. The procedure is shown as an example in Figs. 3.7

and 3.8 and explained hereafter. Deterministic shaft vibration harmonics are modeled as

27 sine wave components, and an underdamped second order model represents the bearing

resonance vibration. The shaft and bearing vibration are shown in Figs. 3.7 (a) and (b),

respectively. The shaft frequency ranges between 10 and 16 Hz as shown in Fig. 3.7 (c).

The complete vibration signal is given in Fig. 3.7 (d), where two extra random impacts
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Figure 3.8: Resonance band identification using the proposed method on a simulated

signal—Part 2. (a) order spectrum after CPW; (b) frequency spectrum after inverse

order tracking with a red line showing the amplitude-filtered signal; (c) amplitude-filtered

frequency spectrum raised to power of 5, with a suitable band-pass filter region marked

in red; (d) envelope order spectrum after band-pass filtration of original signal.

are added to verify the proposed methods ability to ignore noise. First, the signal is order-

tracked, which transforms the frequency spectrum as shown in Fig. 3.7 (e), into the order

spectrum in Fig. 3.7 (f). The maximum value of the low-frequency peaks is amplified

due to de-spreading of deterministic shaft-dependent components, and spreading of time-

dependent vibration components. Afterwards, CPW is applied to normalize the signal

as shown in Fig. 3.8 (a). Time-dependent signal components, such as bearing resonance

vibration, are afterwards de-spread when inverse order tracking is applied, as shown in

Fig. 3.8 (b).

A low-pass filter is applied on the spectrum amplitude to cluster single peaks into

resonance bands. By raising the low-pass filter output to a power of 5, the resonance

mode at 6000 Hz is isolated as shown in Fig 3.8 (c). The original signal is afterwards

band-pass filtered at this frequency, given by the red-stapled square, and the envelope

spectrum is shown in Fig 3.8 (d). In this spectrum, there are multiple harmonics related

to the fault, which shows that the proposed method can be used to identify prominent

resonance modes.
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Figure 3.9: Results from diagnosing an outer race fault on a variable speed dataset. (a)

shaft speed during measurement; (b) frequency spectrum of the raw vibration signal; (c)

frequency spectrum after using the proposed method, where three suitable band-pass filter

areas are marked; (d)–(f) envelope order spectra after band-pass filtration at the three

marked areas, respectively. Red triangles show identified harmonics related to the fault.

As an example, a variable speed dataset is used to detect an outer race fault using

the proposed method. A description of the dataset is given in Section 2.2.1. Fig. 3.9 (a)

shows the shaft frequency, which ranges between 10 and 15 Hz. The vibration spectrum

is shown in Fig. 3.9 (b), and it is dominated by low-frequency deterministic components.

By applying the proposed method, resonance modes are highlighted as seen in Fig. 3.9

(c). Three suitable frequency bands are chosen manually to diagnose the bearing. The

envelope spectrum is calculated for each band, and shown in Figs. 3.9 (d)–(f). In all





  

three envelope spectra, the automatic diagnosis method described in Paper B is used to

detect prominent harmonics. The results make it easy to diagnose the bearing correctly,

as there are multiple harmonics in each envelope spectrum. Selection of resonance bands

can be automated using the automatic diagnosis algorithm presented in Section 3.2.







Chapter 4

Prognostics

This chapter describes a new method for estimating the RUL of a bearing without utilizing

historical failure data. Section 4.1 is based on Paper E and briefly explains how the RMS

vibration FT can be chosen based on ISO standard 10816-3 [44]. Next, Section 4.2,

based on Paper F, describes how the vibration signal can be split into multiple frequency

bands for RMS calculation to achieve more suitable trends for RUL estimation. Finally,

the results of estimating RUL using a particle filter (PF) and the Paris-Erdogan law are

shown in Section 4.3.

4.1 RMS health indicator - Paper E

Estimating the bearing RUL is challenging as the degradation trend must be predicted.

More so, without historical failure data of the machine, it is difficult to determine a

suitable HI and corresponding FT that correlates well with the actual degradation. To

tackle this problem, the proposed methodology is to rely on industrial standards that can

be generalized for many applications. The RMS is closely related to the vibration energy

and can be used to assess the degradation of bearings because a larger number of defects

results in higher vibration energy. ISO standard 10816-3 [44], “Mechanical vibration—

Evaluation of machine vibration by measurements on non-rotating parts—Part 3”, defines

allowable vibration RMS values in the velocity domain, which can be used to set the FT.

The RMS of a signal x can be calculated with

RMS(x) =

√√√√ 1

N

N∑
k=1

x2
k , (4.1)

where N is the number of samples in the signal and xk is the discrete value at time index

k. Four classes are defined in ISO 10816-3: A–“new machine condition”, B–“Unlimited

long-term operation allowed”, C–“Short-term operation allowed” and D–“vibration causes

33



         


damage”. Vibration level D can be used as an FT because the vibration from continued

operation can damage other components such as pump seals and gears. Vibration is

commonly measured in the acceleration domain using accelerometers, because the piezo-

electric crystal responds directly to pressure changes, and generates a voltage signal. To

get velocity-based vibration, the signal must be integrated, either digitally or using analog

circuits. The latter is preferred for accurate integration in standalone devices that checks

only for high velocity-based RMS values. However, integrating the acceleration-based vi-

bration signal to velocity domain presents drawbacks for bearing RUL estimation: high-

frequency components are attenuated such that the effective bandwidth is reduced. Initial

bearing wear generate high-frequency vibration above 1000 Hz, and therefore contribute

insignificantly to the velocity-based RMS. The accelerated lifetime dataset introduced in

Section 2.2.2 is used to show the difference between velocity- and acceleration based RMS.

Let Ra = RMS(x) be the acceleration-based RMS and Rv = RMS(xv) be the velocity-

based RMS, where xv is the vibration signal in the velocity domain. Fig. 4.1 (a) shows

Rv and the mean initial value R̄v.

An initial degradation alarm is set as the mean value R̄v plus 5 times the STD σv to

achieve a low probability of false alarm. In Fig. 4.1 (a), the alarm is triggered when there

is only a few hours left of the useful life, which gives little time to plan maintenance. Ra

shown in Fig. 4.1 (b), is different, and the initial degradation alarm is triggered much

sooner compared to Rv. In this case, there is approximately 70 hours left of the actual

life. However, the FT must be defined for Ra to make it useful for estimating the RUL.

Paper E presents a new method for making an FT for Ra using ISO 10816-3 [44].

An analytic transformation that applies for any machine was not feasible to determine,

because a detailed model of the vibration signal is required for that E. The transformation

can instead be determined experimentally for each machine using baseline data. The ratio

between Ra and Rv is determined to transform the velocity-based threshold R̂v to the

acceleration-based threshold R̂a. The ratio is given by

Rr = R̄a/R̄v , (4.2)

where the mean RMS values during baseline measurements are used to determine the

ratio. Afterwards, the ratio is used to transform the threshold from velocity-domain to

acceleration-domain using

R̂a = RrR̂v . (4.3)

This transformation basically dictates that Ra must increase by a scale of R̄v/Rv to reach

the FT.

ISO standard 10816-3 [44] defines the vibration levels for machines that are 15 kW

or larger. For 15 kW, the standard defines that vibration causes damage when Rv = 4.5
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Figure 4.1: Difference between RMS values calculated using velocity and acceleration

units. (a) RMS of the velocity signal; (b) RMS of the acceleration signal. The mean R̄

and standard deviation σ are estimated using the first 50 hours of data files.

mm/s. As the motor used in the test rig may not be as powerful, the threshold is slightly

reduced to R̂v = 4 mm/s. Using the baseline data in Fig. 4.1, the threshold is determined

using (4.3) as R̂a = 4.34 m/s2. The RMS trends are re-drawn in Fig. 4.2 together with

the respective thresholds. R̂v is reached by the velocity-based RMS as seen in Fig. 4.2

(a), showing that the ISO standard threshold is useful for stopping the machine. The

acceleration-based threshold R̂a shown in Fig. 4.2 (b) is also reached near the end of the

useful life, which validates the transformation for this dataset. Paper E gives more details

on the method and also more practical examples using other datasets.

While Ra can be used as an HI for RUL estimation, the trend is not ideal for predicting

the future degradation level. The main reason is the oscillating behavior, which makes Ra

a non-monotonic trend. Ra is cropped in Fig. 4.3 to better show the oscillations. The red-

stapled line shows the mean degradation path, which is ideal to extract. Non-monotonic

trends render a challenge for determining optimal model parameters to predict future





         


0 20 40 60 80 100 120 140 160

Time [hours]

0

2

4

R
M

S
[m

m
/s

]

σv = 0.147
R̄v = 0.720

R̄v + 5σv crossed
0.7 hours left

(a)

Rv R̂v = 4.0 mm/s

0 20 40 60 80 100 120 140 160

Time [hours]

0

2

4

6

8

R
M

S
[m

/s
2
]

σa = 0.014
R̄a = 0.756

R̄a + 5σa crossed
73.5 hours left

(b)

Ra R̂a = 4.34 m/s2

Figure 4.2: Comparison of the RMS threshold using velocity and acceleration units. (a)

Velocity-based RMS; (b) Acceleration-based RMS.
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Figure 4.3: Ra compared with the mean degradation trend to highlight oscillations.

values. Therefore, the mean degradation path should be extracted from the vibration

signal. The next section describes a new method for extracting more useful information





 

from the vibration signal by splitting the signal into multiple frequency bands.

4.2 Filter bank RMS - Paper F

The non-stationary oscillations of Ra can be mitigated by considering the RMS of the

components within a certain frequency band rather than the entire signal. The vibration

signal can be split into multiple components using a filter bank, where each component

contains a frequency sub-band of the input signal. This is achieved by iteratively passing

the signal through low- and high-pass finite impulse response (FIR) filters and decimating

each output signal with a factor of 2. The number of levels in the filter bank decides how

narrow each frequency sub band is. The frequency content for each band can afterwards

be used to calculate RMS. Digital FIR filters use convolution to filter the signal, and only

the overlapping part between the filter kernel and the input signal should be preserved

to avoid adding artifacts. Therefore, there is information loss in the filtering. A larger

filter kernel yields sharper frequency cutoff, but the information loss is greater per level

of filtering compared to a shorter filter.

However, the time domain filter bank not necessary to acquire to calculate the RMS

within different frequency bands. Paper F presents a novel method for splitting the

frequency spectrum into suitable bands for RMS calculations, without losing signal infor-

mation/energy in the process. This is achieved with a single discrete Fourier transform

(DFT), and the method is described in the following.

The RMS can be calculated based on the energy E of the signal, such as

RMS(x) =

√
E(x)

T
. (4.4)

The signal energy can be calculated in both time and frequency domain with

E(x) =
n∑
i=1

|xi|2∆t =
n∑
i=1

|Xi|2∆f , (4.5)

where ∆t is the time step between samples, Xi is the i’th DFT bin, and ∆f is the

frequency step. Let XL be the frequency bins between negative and positive 50% Nyquist

frequency, with the rest set to zero. Similarly, let XH contain the other high-frequency

bins, and the rest are zero. This arrangement represents a single level filter bank where

the frequency content is split in half. It is demonstrated in Section F.3.1 of Paper F that

the energy of the entire signal can afterwards be calculated as

E(X) = E(XL) + E(XH) . (4.6)

Eq. (4.6) shows that the total signal energy can be calculated from the spectrum bins

directly. Further, if the spectrum is split evenly into Nb bands, the signal energy and





         


RMS are calculated with

E(X) =

Nb∑
i=1

E(X(i−1)nb+1:inb
) (4.7)

RMS(X) =

√√√√ Nb∑
i=1

RMS(X(i−1)nb+1:inb
)2 , (4.8)

where nb = n/Nb is the number of samples in the frequency band. For brevity, the RMS

of a frequency band i is calculated with

Ri = RMS(X(i−1)nb+1:inb
) . (4.9)

To acquire an FT for each Ri, the conservation of RMS must be conserved as indicated

in (4.8). By substituting the RMS values for the respective thresholds, (4.8) becomes

R̂a =

√√√√ Nb∑
i=1

R̂2
i , (4.10)

where R̂i is the FT for Ri. A simple approach for solving (4.10) is to let R̂i ∀ i ∈ [1, Nb]

be equal. However, some energy bands may have larger mean values than others, and

therefore this FT may not serve the purpose very well for estimating RUL. Instead, the

assumption for solving (4.10) is that white noise is spread across the entire DFT, and that

the final value of each Ri is proportional to the noise standard deviation. In this case,

the FT is set as

R̂i = µi +mσi , (4.11)

where µi and σi are the mean and standard deviation of Ri during baseline measurements.

After combining (4.10) and (4.11), and squaring the equation, m can be determined by

solving the quadratic formula

R̂2
a = m2

Nb∑
i=0

(σi)
2 +m

Nb∑
i=0

2µiσi +

Nb∑
i=0

(µi)
2 , (4.12)

for the maximum valued m. With m and baseline vibration measurements, the thresholds

for all Ri can be determined with (4.11)

Fig. 4.4 shows four RMS trends generated by frequency sub-bands of the previously

described dataset. R15 in Fig. 4.4 (a) is based on frequency content within [4480, 4800] Hz.

The trend is not monotonously increasing and is therefore not suitable for RUL estimation.

On the other hand, R3 in Fig. 4.4 (d), is very suitable for RUL estimation since the trend

is monotonic. Another difference between R15 and R3 is the time of triggering the initial

alarm, as R15 triggers it almost 25 hours before R3. These observations suggest that
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Figure 4.4: A collection of RMS trends with failure FTs for the vibration dataset. (a)

R15; (b) R11; (c) R6; (d) R3.

the energy of high-frequency components increase first, but are more volatile, while the

energy in low-frequency components changes last but rises more steadily. R11 and R6 in

Figs. 4.4 (b) and (c) are calculated from frequency bands between the two others. As is

observed here, R6 is more monotonic compared to R11. In addition to these observations,

the FT is reached for all the trends in this dataset. The next section shows how suitable

RMS trends can be identified and used to estimate the bearing RUL.

4.3 Remaining useful life estimation - Paper F

Since it is unknown which of the RMS trends are suitable for RUL estimation, the most

monotonously increasing ones needs to be identified online. The Spearman rank correla-

tion coefficient ρ [52] assesses how well two signals are correlated in terms of their rank.

Here, the RMS trend and time are used as input, which returns a measure of how mono-

tonic the RMS signal is. By iteratively calculating the Spearman coefficient for all trends





         


with each new measurement, the most suitable trends for RUL estimation are determined

online. Bearing degradation is estimated using the modified Paris-Erdogan law [41] given

by [37]
da

dnc
= αaβ , (4.13)

where a is the crack size, nc is the number of cycles, and α and β are the model parameters.

This model is utilized to replicate the exponential degradation of a bearing [53].

A particle filter (PF) is applied to filter noise and predict the future Ri trend using the

modified Paris-Erdogan law. The model is re-formulated to a state-space representation

given by 
ak = ak−1 + αk−1a

β
k−1∆nc

αk = αk−1

hk = ak + νh ,

(4.14)

where αk−1 ∼ N (µα, σ
2
α) is a random variable given by a normal distribution N , β is

constant, νh ∼ N (0, σ2
h) is measurement noise, and ∆nc is the number of cycles since last

update. Initial states of Np particles zjk ∀ j ∈ [1, Np] at time index k are given with

zjk ∼ N
([

Ri,k

µα

]
,

[
σ2
h 0

0 σ2
α

])
, (4.15)

where Ri,k is the measured Ri value at time index k, and the weight of each particle is set

to wjk = 1/Np. Afterwards, the PF predicts new values for its states using the state-space

model, and particles with high probabilities of matching new measurements are given

a high weight. The weights describe a probability density function (PDF) that dictate

which parameter values make the state-space model match the measured samples best.

The RUL estimation of each particle is achieved by iteratively running the state-space

model in (4.14) until the FT is reached. Combining the particle RUL with their weight

creates the PDF of the RUL estimation from trend Ri.

When initiating a new PF, the parameters are first initialized to suitable values. Non-

linear least squares (NLS) is applied to determine the initial mean and constant param-

eters, i.e. Θ1 = (a1, µα, β), where a1 is the initial crack size. The cost function is the

squared error between simulated values using (4.14) and Ri measurement samples. This

cost function is minimized by optimizing values in Θ1. The measurement noise variance

is afterwards determined by calculating the variance of the baseline data, i.e. σ2
h = σ2

i .

There is also a process noise on α given by να ∼ N (0, σ2
α), which is the uncertainty of

the model. α is a function of the cyclic load on the bearing, which may change during

the degradation period, and therefore this process noise is added when predicting new

particle states. Therefore, the performance of the PF is dependent on the process and





 

measurement noise. The process noise is set to σ2
α = µ2

α to give the PF some margins

when filtering the RMS trend.

A new PF (PFi) is initiated for all Ri trends that achieve a Spearman coefficient

greater than ρ̂. In theory, all Nb RMS trends can therefore be utilized to estimate the

RUL, and the available information is weighed to make a single RUL decision. The weights

are based on the current Spearman coefficient value for the trend, and a higher value gives

a higher weight. The weight for PFi at time index k is given by

Wi,k =
(
ρ3
i,k − ρ3

L

) /(
1− ρ3

L

)
, (4.16)

where ρi,k is the Spearman coefficient for trend Ri at time index k, and ρL is the lower

Spearman threshold. Non-monotonic trends get a zero weight as they cannot be predicted

by the Paris-Erdogan law. These weights are multiplied to the corresponding PFs particle

weights, and afterwards, the RUL PDF of all PFs are combined to a weighted PDF. The

weighted mean and 95% CI of this PDF is the estimate of the bearing RUL. More details

on this implementation is given in Section F.4 in Paper F.

The IMS dataset introduced in Section 2.2.2 is used to validate the performance of

this proposed method. The dataset is split into Nb = 32 bands, giving a bandwidth of

400 Hz. In addition, 30 measurement samples are used to optimize the initial PF values,

and the Spearman coefficient must be greater than ρ̂ = 0.9 to initiate a new PF. The

lower Spearman threshold is set to ρL = 0.7 to neglect non-monotonic trends. Fig. 4.5

shows the identified trends and predicted output of the initialized PFs. Each subplot row

is allocated for a single RMS trend number, given by the index i in the upper left corner.

The columns of subplots contain the following. Column 1 shows the identified Ri with

its FT R̂i, in addition to the median and 95% confidence interval (CI) prediction of the

initialized PF. Column 2 shows the median and 95% CI of the µα parameter in the model.

In addition, the median and 95 % CI of the predicted PF output are given in Fig. 4.6

when t = 130 to show convergence of PFs.

At t = 101 hours, the first monotonic RMS trend is identified, which is R15 shown

in Fig. 4.5 (a). The trend starts to increase linearly at the beginning, but at t ≈ 115

hours, the value increases quickly before gradually decreasing. The Spearman coefficient

ρ15 gets below 0.7 when t ≈ 130 hours due to the fluctuations in R15, and PF15 will not

contribute to the weighted RUL after this point. µα is shown in Fig. 4.5 (b), and the

parameter eventually converges to the median value, signifying that the predicted trend

is not updated on new samples. The predicted trend is shown in Fig. 4.6 (a) for t = 130

hours. The 95% CI is much smaller compared to the initial PF prediction due to the

convergence of µα.

R14 and R12 are later identified as monotonic trends at t ≈ 108 hours, and the initial

PF outputs are shown in Figs. 4.5 (c) and (e) for the two trends, respectively. R14 and R12
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Figure 4.5: Identified RMS trends with high Spearman coefficient, and output of the

corresponding PFs. Rows 1-5 indicate i = [15, 14, 12, 6, 3]. (column 1) Ri, FT R̂i, and

median and 95% CI of initial PF output; (column 2) µα over time for the initiated PF.
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Figure 4.6: PF prediction of each identified RMS trend at t = 130 hours.

are similar to R15, due to the RMS fluctuations. Additionally, the Spearman coefficient

for these trends go below 0.7 at the points shown by the vertical stapled lines. The future

PF predictions at t = 130 hours are shown in Figs. 4.6 (b), (c) for these two trends.

The median of both PFs pass the FT near end of life due to good parameter estimation

at the start. However, since the Spearman coefficient is lowered towards 0.7, the RUL

estimation won’t count in the weighted RUL decision.

A more promising trend R6 is later identified at t = 113 hours, as shown in Fig. 4.5

(g). The trend is more monotonic compared to the previous three ones, and the Spearman

coefficient never gets below 0.7. However, the trend is not increasing at a similar rate all

the time. When µα converges, as seen in Fig. 4.6 (h), the predicted trend increases faster,

as µα has increased from initial median value. The predicted PF output at t = 130 hours

shown in Fig. 4.6 (d) increases faster than the new measured samples. Therefore, the
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Figure 4.7: Weighted RUL decision. (a) weighted mean, 95% CI and true RUL of the

dataset; (b) weights for each PF output.

RUL is underestimated by this trend.

The last identified RMS trend is R3 shown in Fig. 4.6 (i). This trend is monotonic

and is very useful for RUL estimation. The initial PF prediction matches the future

samples well, which signifies a good RUL estimation by this trend. µα slowly converges

to a median value in Fig. 4.5 (j) which imply that the initial value was chosen close to

the final converged value. The predicted PF output at t = 130 is directed towards the

true RUL, and therefore the RUL estimation is accurate at this point.

The weighted mean and true RUL are shown in Fig. 4.7 (a), while the weights for





 

each PF are shown in Fig. 4.7 (b). The weighted RUL is fluctuating around the true

RUL throughout the estimation period, and changes for each new PF that is initialized.

At t = 130 hours, the estimated RUL is the most accurate compared to the true RUL.

Here, only W12,W6 and W3 have significant weights. In Fig. 4.6, the predictions of

PF12 overestimates the RUL, PF6 underestimates the RUL, and PF3 matches the RUL.

Therefore, the weighted mean value falls between these three predictions, i.e. matching

the true RUL.

Afterwards, R12 get a low Spearman coefficient within the next 5 hours. Therefore, the

weights W15, W14 and W12 are all turned to zero as seen in Fig. 4.7 (b) by t = 135 hours.

After that, the RUL is estimated by PF6 and PF3 only, and the estimation matches the

true RUL well.

A 3D plot in Fig. 4.8 shows how the weighed RUL PDF is changing over time. This

plot makes it easier to visualize how the weighted mean is determined. At the beginning,

the weighted mean RUL fluctuates due to several PFs being active, each with a high

variance in µα. After t = 135 hours, only PF6 and PF3 are left, and the weighted mean

RUL stabilizes between two peaks.

Figure 4.8: Weighted RUL PDF over time shown with the weighted mean RUL and true

RUL.







Chapter 5

Concluding Remarks

5.1 Conclusions

The focus area of this project is fault detection and remaining useful lifetime (RUL)

estimation of rolling element bearings. Several fault diagnosis and prognosis algorithms

are proposed in this thesis to tackle different challenges in bearing health monitoring:

automatic fault classification, low speed fault detection, variable speed fault detection,

and remaining useful lifetime estimation on new machines. A test rig was first designed

and built to make bearing failure sensor data at different operating conditions, such as

low and variable speed. With the in-house datasets and downloaded datasets from open

repositories, five algorithms have been proposed to tackle the aforementioned challenges.

With many machines in a plant to monitor, manual data analysis is cumbersome

due to a large amount of data. As a solution, an automatic diagnosis algorithm has been

developed to detect the most common bearing faults using the vibration signal. Vibration

data captured at 250 rpm was successfully diagnosed for three common fault types, namely

the rollers and two raceways.

During low speed conditions, a more robust algorithm is necessary compared to the

envelope spectrum. A new algorithm has been developed for extracting more useful

information from the vibration signal, by utilizing the deterministic components as well

as the envelope. This made it possible to detect bearing faults during low-speed operation

using a vibration accelerometer. With dataset from the in-house test rig, a roller fault

was diagnosed at 20 rpm using this new method. Compared to three other methods

reported in the literature, the proposed method resulted in stronger harmonics and more

side-bands related to the fault.

For variable speed conditions, a new method was developed for estimating the bearing

resonance frequency regions. The signal is bandpass filtered around each region, so the

envelope spectrum is easier to analyze for faults as there is less noise in the signal. In
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most of the investigated vibration datasets, several resonance modes were identified using

this method. The envelope spectrum of each bandpass filtered resonance mode contained

multiple harmonics and side-bands related to the fault. Compared to two other methods

reported in the literature, the proposed method yielded the highest fault score using the

automatic diagnosis algorithm.

Estimating the remaining useful lifetime of a bearing on new machines without his-

toric failure data is the last challenge tackled in this thesis. Most prognosis algorithms

reported in the literature require historic failure data for parameter tuning and setting

the failure threshold. Such data may not be available in the industry, and therefore new

algorithms needs to be developed for these situations. A new method has been developed

for producing a general failure threshold for vibration root mean square (RMS) based

on ISO 10816-3. This method only requires knowledge of the nominal machine power

output, which is normally available in most plants. Experimental results from three test

rigs show that the proposed method generated failure thresholds that are surpassed close

to the actual time of failure.

The vibration RMS is, however, mostly non-stationary, and therefore fluctuates around

a mean trend. These fluctuations make it difficult to predict the RUL using a mathe-

matical model. A new approach for splitting the vibration signal into multiple frequency

bands is proposed to remove signal non-stationarity. The RMS is calculated for each

band, and monotonic RMS trends are identified using the Spearman coefficient. A par-

ticle filter algorithm is applied on each trend to predict future states by assuming the

degradation follows the Paris-Erdogan law. Experimental results from the in-house setup

and an online repository validate the performance of the proposed method.

In addition to the results presented in Chapters 3 and 4, several other datasets are

tested with the proposed methods in the appended papers. In particular, Papers D, E

and F include results using datasets acquired on the in-house test rig during low speed

operation. The presented results show that the proposed methods are also applicable

during low speed conditions.

5.2 Limitations

The automatic failure diagnosis algorithm proposed in Paper B requires a minimum vi-

bration signal length to acquire a fine frequency resolution. If the resolution is poor,

the algorithm has a trouble in distinguishing fault related peaks from surrounding noise.

Measuring the vibration signal for at least 30 rounds should be enough for the algorithm

to function properly.

The whitened cross-correlation spectrum (WCCS) proposed in paper C for low speed





  

bearing diagnosis is limited by machine resonance frequencies. An analytic derivation of

the vibration spectrum shows that the deterministic components related to bearing faults

are the result of a low-pass filter applied to the resonance vibration. If the resonance

frequency is too high, the deterministic components may not be distinguishable from

noise, and the proposed method may not improve the fault diagnosis.

In Paper D, a new approach for identifying resonance frequency bands is proposed. A

clear requirement is the vibration signal must be recorded during variable speed operation,

and that the shaft position must be acquired using an encoder. In addition, some of

the resonance bands may contain components from other sources than the bearing, and

therefore, several bands should be analyzed for bearing faults.

The failure threshold created in Paper E is based on the vibration energy, and therefore

other failure criteria, such as maximum vibration, will require a different failure thresh-

old. Further, the transformation from velocity-based to acceleration-based RMS failure

threshold is based on experimental data acquired on each machine and may therefore not

be optimal in all cases.

The particle filter implementation for remaining useful lifetime estimation in Paper F

is computationally heavy, and may not be usable on small, embedded computers.

5.3 Further Work

Vibration data from real machines in the industry should be used to verify the perfor-

mance of the proposed methods. In this thesis, vibration data has been acquired from

either accelerated life-time tests or bearings with artificial faults. Bearing damages in real

machines may have different characteristics compared to laboratory tests. Accelerated

lifetime tests make somewhat comparable vibration data, but the high load may make

the bearing break in different way than through normal fatigue over several years.

A vibration sensor has been used in this thesis as a cheaper alternative compared to

acoustic emission sensors. To further reduce the cost of the diagnosis system, the shaft

frequency may be estimated based on the vibration signal directly rather than using an

encoder. Algorithms for estimating this has been reported in the literature, but more

tests should be performed to verify the performance at low speed operation.

The method developed for low speed fault diagnosis should be validated on low speed

vibration data from another test rig, as a single source of vibration data is not enough

to validate the algorithm. In addition, it would be interesting to see if there is a limit to

how low the shaft speed can be before the fault is indistinguishable from noise.

The methods developed in Paper F for splitting the vibration signal into frequency

bands for RMS calculations can be used for estimating the RUL on new machines. How-





         


ever, the presented RUL estimation algorithm is computationally heavy, and more efficient

methods for utilizing the RMS bands should be investigated.
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Abstract – Condition monitoring plays an important role in rotating ma-

chinery to ensure reliability of the equipment, and to detect fault conditions

at an early stage. Although health monitoring methodologies have been thor-

oughly developed for rotating machinery, low-speed conditions often pose a

challenge due to the low signal-to-noise ratio. To this aim, sophisticated al-

gorithms that reduce noise and highlight the bearing faults are necessary to

accurately diagnose machines undergoing this condition. In the development

phase, sensor data from a healthy and damaged bearing rotating at low-speed

is required to verify the performance of such algorithms. A test rig for per-

forming accelerated life-time testing of small rolling element bearings is de-

signed to collect necessary sensor data. Heavy loads at high-speed conditions

are applied to the test bearing to wear it out fast. Sensor data is collected

in intervals during the test to capture the degeneration features. The main

objective of this paper is to provide a detailed overview for the development

and analysis of this test rig. A case study with experimental vibration data is

also presented to illustrate the efficacy of the developed test rig.

A.1 Introduction

Rolling element bearings, or bearings for short, are necessary in rotating machinery to

reduce the degree of freedom of moving parts. A typical bearing is made of an inner-race

fastened to the shaft, a stationary outer-race, and rollers in between that transfers the

shaft load. The relative distance between each roller is kept constant by a cage. Bearings
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are precisely manufactured to withstand the dynamic loads acting on the shaft. Metal-to-

metal contact is reduced to a minimum by lubricating the bearing with either oil or grease.

However, wear will always be present, even in perfectly lubricated bearings. As a roller

moves in and out of the radial load zone, the local lubrication is pressurized and causes

stress to the rollers and the raceways. After millions of rotations, this cyclic load wears

out the bearing components, and cause single or multiple faults which can occur in four

different locations: the rollers, the inner-race, the outer-race, and the cage; although cage

failures are uncommon. A worn bearing has increased friction, which in turn increases

the machine temperature, noise, and vibration levels. A completely worn bearing could

cause total system breakdown, injuries, and costly downtime.

It is important to monitor the condition of critical components, such as bearings, to

schedule maintenance when necessary and avoid breakdowns. This is especially important

for machines operating offshore, like windmill farms [1], as they are difficult to access and

typically has a low profit margin. For bearing condition monitoring, the vibration signal

is broadly accepted as a reliable data source. When a roller hits a fault, the impact energy

causes the bearing to vibrate at its resonance frequency. This vibration is measured using

an accelerometer, and is analyzed to determine the bearing condition. However, bearings

faults of low-speed machines are difficult to diagnose as the fault impact energy is lowered,

resulting in a low signal-to-noise ratio (SNR). Algorithms that reduce noise and highlight

low-energy impacts are important to correctly diagnose a machine operating at low speed.

Noise reduction examples in literature are autoregressive model filters [2], adaptive filters

[3], and neural networks filters [4], for instance. Highlighting low-energy impacts can

also be accomplished with a bandpass filter at the estimated bearing resonance frequency

using the fast Kurtogram [5], or blindly deconvolve the raw signal to preserve parts with

high kurtosis [6]. Analyzing proximity data to diagnose a faulty bearing has also been

explored in [7] where the authors state that a proximity sensor is more sensitive than

accelerometers during low-speed conditions. Acoustic emission sensors have also gained

prominence in the past decade, promising better sensitivity compared to accelerometers

during low-speed conditions. Apart from the sensor type selection, low-speed bearing

sensor data is necessary to assess the diagnostic accuracy of a newly developed algorithm.

Sensors can be used to acquire test data, and they can be mounted on industrial machinery

in use, or on specialized test rigs in research facilities. The latter setup type is the most

ideal for research as it grants full control of the test and the environment of the bearings.

However, for verification purposes, it may be advantageous to test algorithms on industrial

machinery as well.

In the literature, different bearing test rigs have been used to generate signal data.

Some designs [8, 9, 10, 11, 12] combine a torque source and a test bearing that is monitored





          


for faults. These rigs are unable to apply heavy loads to the bearing, and are thus unable

to naturally wear out the bearing within a feasible amount of time. Other test benches

also include heavy load capabilities [13, 14], but due to a low rotating speed, the bearing

did not wear out naturally. In these cases, the test bearing is installed with an artificially

introduced, pre-seed fault, often shaped like a hole or a line. Comparing sensor data from

a healthy and a damaged bearing is a typical scenario for testing a diagnostic algorithm.

One missing feature is the ability to follow the development of faults as it would happen

in a real scenario. Remaining useful life prognostics of a machine is often dependent on

the changes in sensor data as the amount of wear increases. To capture this trend, the

bearing may be run to failure on an accelerated life-time test rig. Their designs include

equipment for applying loads targeting the test bearing to accelerate its lifetime. The

test rigs in [15, 16, 17, 18, 19, 20, 21, 22] combine high speed and heavy load to achieve

faults in a reasonable amount of time. Unfortunately, their equipment does not handle

low-speed scenarios for logging data. Some other designs have the loading capacity to

wear out the bearing even during low-speed scenarios [23, 24], using only axial load.

The presented research gives a detailed overview of the development of a new test rig

used to acquire low-speed sensor data. From the literature review, the adopted method-

ology for this rig is to accelerate the bearing life-time using heavy axial and radial loads

at medium-to-high shaft speed. Sensor data is acquired in intervals during the test at

lower speeds, reaching down to 20 revolutions per minute (rpm). Required hardware and

software design for performing the test is also presented.

The rest of this paper is organized as follows. Section A.2 describes all specifications

for the test rig, and the different solutions that fulfill these requirements. A combination

of solutions are chosen and merged into a final design in Section A.3. Additionally, a case

study from an accelerated life-time test is also presented. Finally, conclusions are drawn

in Section A.4.

A.2 Methods

In this section, a short description of accelerated life-time testing is first given. Then,

specifications for the test rig are provided, and possible solutions to fulfill them are dis-

cussed.

A.2.1 Accelerated life-time testing

Accelerated life-time testing (ALT) is the process of speeding up the degradation of a

component by overloading it to uncover faults in a short amount of time. The test rig

described in this paper is designed to drastically reduce the lifetime of a bearing from





         


several years to a few weeks. Subjecting the test bearing with large forces reduces the

number of revolutions a bearing will hold. This comes from the following:

L10 =

(
C

P

)3

, (A.1)

where L10 denotes the bearing life-time in million revolutions with a 90% confidence (hence

the lower case 10), C is the dynamic capacity of the bearing, and P is the weighted sum

of radial and axial loads in Newtons. By running the bearing with a heavy load at a

high speed, the life-time is accelerated to uncover faults relatively fast.

A.2.2 Specifications

Before designing the test rig, it is important to set up specifications describing the main

features. Further development of concepts is based on these specifications:

1. The driving motor must be able to rotate the shaft at medium-to-high speed to

accelerate the life-time of the bearing, and at a low speed (about 20 rpm).

2. The accessible radial and axial loads must be at least 10 kN. The load magnitude

must also be easy to change.

3. It must be possible to mount sensors measuring bearing data including: tempera-

ture, vibration, shock pulses, acoustic emission, and shaft radial movement.

4. The test bearing housing must be big enough to house a 6008 size rolling element

bearing with a 68mm outer diameter size.

5. The test rig equipment, software, and controller hardware must be designed for

unsupervised 24/7 accelerated life-time testing.

The reason for designing a test rig around a small 6008 size bearing is to minimize the

cost, space and complexity, as a larger bearing require heavier loads in addition to stronger

support structure. In the next subsection, solutions that fulfill the specifications are

presented.

A.2.3 Concept Development

Based on the specifications there are various solutions capable of achieving the desired

functions. A function tree, illustrated in Figure A.1, visualizes feasible options to achieve

the main function which is to accelerate the life-time of a bearing. The main function

is split into four sub functions that must be achieved, and for each there are several





          


Figure A.1: Test rig pre-design function tree. *An Open-Loop force feedback is a feed-

forward calculation of the assumed forces based on a particular input.

feasible solutions. The viability of each are discussed, with respect to the specifications,

to determine which should be kept in the design phase:

Torque source: It is important that the torque source can control the test bear-

ing shaft at low speed. If the shaft experiences too much unintentional speed fluctua-

tions around the setpoint, the sensor measurements may be hard to analyze. A high-

performance motor and frequency drive combination is necessary to fulfill this require-

ment. In addition, variable speed must also be realizable to simulate some machines

undergoing variable conditions, such as winches or windmills. Most motor types have the

possibility to be driven at both high and low speed. A hydraulic motor requires an exter-

nal pressure source to be operational during the entire accelerated life-time test. Using a

centralized hydraulic power unit (HPU) in a laboratory for 24/7 operation is not ideal due

to power consumption and equipment safety. Installing an HPU for the test rig increase

the complexity and cost of parts. Using an electric motor is more ideal since electricity

is almost always readily available. The different electric motor types are: brushed DC

motor, brush-less DC motor, induction motor, and permanent magnet motor. Brushed

DC motors may require more maintenance due to wear of the brushes, and therefore

these are not the most suitable. Brush-less DC motors and permanent magnet motors

are quite similar in function, as they are synchronous machines. Low-speed operation is

necessary, which require an encoder or resolver in the motor. Most induction motors are

controlled using sensor-less speed control to reduce cost, but a position-feedback is im-

portant for low-speed scenarios to properly control the motor, and log the shaft position

during measurements.

Transmit Rotation: The lowest speed requirement is 20 rpm, and it is improbable





         


that a motor coupled to the shaft directly will be able to rotate steadily at that low speed.

This is because the shaft may be slightly unbalanced or bent, resulting in a variable load

torque. Without a reasonably high inertia, the motor controller will most likely not react

fast enough to the changes in the load torque. Therefore, a gearing ratio of at least 5

is probably necessary to increase the load inertia, and allow the motor to operate at a

higher speed. This can be achieved with a belt drive, but a planetary gearbox is more

compact to install.

Apply Loads: Using a hydraulic linear actuator (Act.) to load the bearing allows for

a high amount of variable force, but require an HPU stationed nearby. Pneumatic linear

actuators have some of the same disadvantages, but cannot subject the bearing with high

forces due to low permissible air pressure. Hydraulic and pneumatic valves often leak over

time, which require the control system to reapply pressure consistently. A scissor jack may

create a high force, but varying the load requires manual operation and is not convenient.

Electric linear actuators have the advantage that they can self-lock after the desired force

is applied, therefore power is only necessary when the load is changing. However, they are

often limited by their maximum force. Considering this, a mechanical lever can be used

to amplify the load if necessary. It is important to allow for 24/7 operation, and as such

it is inconvenient to keep a hydraulic or pneumatic power unit continuously powered on.

Measure Loads: Actuators have losses from friction and power conversions, and

these losses may be non-linear, which makes them hard to estimate. Therefore open-loop

force calculations will include errors and are thus not ideal to use. Strain gauges can be

added to the structure to measure loads with good accuracy. However, such measurements

require high-resolution analog-to-digital converters, a model of the system, and a way to

calibrate the strain gauge signal based on a known reference. In addition, it may be

difficult to suppress unwanted noise due to temperature changes, or to decouple load

sources. Off the shelf load cells are pre-calibrated and temperature compensated by the

manufacturer, and are thus much easier to use and less error prone.

A.3 Results and discussion

In this section, solutions for the sub functions are chosen and designed. Later, all parts

are assembled on a suitable steel rig. The software and electronic hardware designs for

performing the accelerated life-time test are elaborated afterwards. Finally, a case-study

from an accelerated life-time test using the assembled test rig is presented.





          


A.3.1 The chosen solution

Based on the discussion of available components in Section A.2.3, the following choices

are made:

The available electric motor types should all be capable of controlling the shaft at

low-speed, assuming that some gearbox is installed, and the controller utilizes a motor

position feedback sensor. A permanent magnet motor (PMM) with a high resolution

built-in encoder, and a variable frequency drive with a high-performance controller was

chosen to drive the shaft. This combination can drive the motor up to 4000 rpm, and due

to the high efficiency of PMM, it is simples to keep cool during low-speed conditions as

squirrel cage induction motor fans typically produce little airflow during this condition.

A planetary gearbox is installed to transmit the rotation torque from the motor to the

shaft. It has a gearing ratio of 1:7, and is designed to be attached directly to the chosen

PMM.

Two electric linear actuators were chosen to produce the radial and axial loads. Each

have a loading capacity of 2.5 kN, which is too low considering the specifications. To

amplify the low force, two levers are designed to amplify them.

Pre-calibrated load cells are used to measure the loads due to difficulties of applying

strain-gauges. The chosen cells are shaped as bolts, and can measure the reaction force

in a rotational joint up to 20 kN. These will be used as hinges for the two levers, and

measure the reaction forces at the same time.

A.3.2 Test rig design

The design of the test rig starts with the shaft. The test bearing is installed on one end

of the shaft, and the gearbox is connected via a coupling on the other end. Radial and

axial loads are applied using linear actuators and levers. Aside from the test bearing, a

minimum of two support bearings are also needed to counteract the added radial forces.

To avoid wearing out the support bearings, durable ones with higher dynamic capacities

compared to the test bearing are necessary. Also, it is important that the support bearings

ignore the axial load on the shaft since it must propagate to the test bearing. Radial

bearings within split plummer block housings are suitable for these specifications, as this

combination give no axial support without installing extra equipment. The axial load

must originate from a stationary source, hence a thrust (axial) bearing is installed on the

shaft that allow for this load transfer. Four bearings are therefore installed on the shaft:

a test bearing, two radial support bearings, and a thrust bearing. Figure A.2 (a) shows

the acting forces on the shaft, and Figure A.2 (b) shows the bearing positions.

Stationary houses are required to transfer load to the rig structure, and to mount





         


Figure A.2: Chosen shaft design and bearing placements. (a) Counteracting forces on all

the bearings. (b) Position of the required bearings.

Figure A.3: Bearing housings as placed on the shaft.

sensors. Two suitable split plummer bearing housings are chosen to accommodate the two

larger radial bearings. Inside these housings, the two bearings are free to slide in the axial

direction. This is critical to transfer the axial load to the test bearing. The test bearing

housing is processed in a CNC machine from a steel block. Figure A.3 shows the bearing

houses on the shaft. The outer area of the test bearing housing can accommodate up to

three vibration accelerometers, or shock pulse sensors, via stud mounts. A temperature

sensor reaches the outer ring of the bearing via a hole in the housing. An eddy current

proximity sensor is stud mounted in a drilled hole in the split plummer bearing housing

close to the test bearing. Acoustic emission sensors can be placed using glue on any flat

surface on the housing. Figure A.4 shows the possible sensor layout on the test bearing

housing.

The axial load is added to the shaft via a concentric unit that is placed on the thrust





          


Figure A.4: The sensor layout on the test bearing housing: (a) Front of the housing with

the bearing in the middle and sensors around it. (b) Side of the test bearing housing with

the proximity sensor location.

bearing. Its curved area makes the load transfer from the lever easier. Figure A.5 shows

the concentric unit combined with the thrust bearing. The concentric unit is stationary

and acts as a bridge between the lever and the shaft.

From the specifications, at least 10 kN radial and axial loads must be available. Two

electric linear actuators, each with a maximum force output of 2.5 kN, are used to apply

the loads. Additionally, two levers are designed to amplify each linear actuator force to 17

kN. The high amplification was chosen to avoid loading each actuator 100% to achieve the

required force, and to establish some flexibility for testing stronger bearings in the future.

Figure A.6 shows the lever used to transfer axial load to the shaft. The two lengths L1

and L2 are determined in such a way that L1/L2 = 17/2.5 = 6.8. The concentric unit

is located at the upper end of the lever, and the linear actuator at the bottom. The

lever features a curved surface that ensures proper transfer of the force to the concentric

unit. The revolution point A is a load cell bolt that can measure the reaction force in the

hinge. The axial force is calculated based on the geometry of the lever and the reaction

force feedback from the load cell. Section A.3.3 includes more details. The load cell is





         


Figure A.5: Concentric unit housing the thrust bearing.

Figure A.6: Axial load setup.

supported by brackets bolted to the main steel structure. Figure A.7 shows the load cell

connected to the lever on the axial load setup.

A similar setup is used to produce the radial load which is applied to the test bear-

ing housing from underneath. A second linear actuator is connected to a lever which

amplifies the radial load. Figure A.8 shows the radial load setup. The lever follows the

aforementioned geometry ratio to amplify the linear actuator force to 17 kN by making

L3/L4 = 6.8. A load cell bolt is used as the revolute joint to measure the reaction force

in the hinge. Point B on Figure A.8 pushes the bottom of the test bearing housing when

the actuator is retracting. The load cell is supported by two brackets as shown in Figure

A.9. As shown, the lever pushes directly on the bottom of the housing, and the force

propagates through the test bearing, to the shaft.

The added axial force propagates through the test bearing, to the test rig structure.

The radial force is transferred through the test bearing, to the support bearing housings.





          


Figure A.7: Closeup details of the axial load setup.

Figure A.8: Radial load setup.

Considering this, the test bearing housing require structural support in the axial direction,

without interfering in the radial direction. Linear rolling element bearings on rails take

care of this behavior. Using four suitable linear bearings between the housing and a

support bracket, it is free to move in the vertical direction while supported in the axial

direction. Figure A.10 shows the housing connected to the linear bearings.

A.3.3 Axial and Radial Loads

In the previous subsection, the linear actuator and lever combinations producing axial

and radial loads were presented. Load cell bolts are used as lever hinges, and they

measure the reaction force in a single direction, as indicated by an arrow on the bolt. The

optimal measurement direction must be determined to measure the complete reaction

force. During installation, it is important that the load cell orientations are correct.

To this aim, the force equilibrium equations are established from a Free Body Diagram





         


Figure A.9: Closeup details of the radial load setup.

Figure A.10: Bracket with linear rolling element bearings connected to the test bearing

housing.

(FBD). The FBD of the axial load setup is shown in Figure A.11. Here, three forces are

acting on the lever, disregarding gravity: FA is the axial force, R1 is the load cell reaction

force, and F1 is the linear actuator force. θ3 is the angular orientation of the load cell

necessary to measure the entire reaction force R1, i.e. the direction of this force vector.

The force and moment equilibrium are given in (A.2) and (A.3) respectively.

∑
F = F1


cos θ1

sin θ1

0

+R1


cos θ3

sin θ3

0

+


FA

0

0

 =


0

0

0

 . (A.2)

∑
M = L1


− cos θ2

− sin θ2

0

× F1


cos θ1

sin θ1

0



+ L2


cos θ2

sin θ2

0

×

FA

0

0

 =


0

0

0

 . (A.3)

where × represent the cross product in a right-hand coordinate system,
∑
M is the sum

of moments, and
∑
F is the sum of forces, and the three dimensions are x, y, and z





          


Figure A.11: Free Body Diagram of the axial load setup.

respectively. Evaluating (A.3) yields the following equilibrium in the z-direction

F1L1(sin θ2 cos θ1 − cos θ2 sin θ1)− L2FA sin θ2 = 0 . (A.4)

Afterwards, (A.4) is rearranged to isolate the axial force

FA =
F1L1

L2

(
cos θ1 −

sin θ1

tan θ2

)
. (A.5)

The linear actuator force is isolated from the y-dimension of (A.2)

F1 = −R1
sin θ3

sin θ1

. (A.6)

Inserting (A.6) into (A.5) yields

FA =
R1L1 sin θ3

L2

(
1

tan θ2

− 1

tan θ1

)
. (A.7)

The x-dimension in (A.2) is used to determine the hinge reaction force angle

F1 cos θ1 +R1 cos θ3 + FA = 0 . (A.8)

Inserting (A.6) and (A.7) into (A.8) yields

−R1 sin θ3
cos θ1

sin θ1

+R1 cos θ3

+R1 sin θ3
L1

L2

(
1

tan θ2

− 1

tan θ1

)
= 0 . (A.9)





         


Figure A.12: Free Body Diagram of radial load setup.

Afterwards, (A.9) is rearranged by dividing all terms by R1 cos θ3, and isolating θ3

θ3 = arctan

 1

1
tan θ1

+ L1

L2

(
1

tan θ1
− 1

tan θ2

)
 . (A.10)

θ3 is a constant angle independent of the axial load magnitude, as it is only dependent

on the geometry and orientation of the lever. During installation on the test rig, it is

important that the rotational orientation of the load cell matches the angle θ3, otherwise

the measured reaction force is smaller than in reality. With the load cell in place, R1 can

be measured and recalculated into FA using (A.7).

The FBD of the radial load setup is shown in Figure A.12. Here, FR is the radial load,

R2 is the load cell reaction force, F2 is the linear actuator force, and θ6 is the angular

orientation of the load cell. The force and moment equilibrium for the FBD are given in

(A.11) and (A.12) respectively.

∑
F = F2


cos θ5

sin θ5

0

+R2


cos θ6

sin θ6

0

+


0

−FR
0

 =


0

0

0

 . (A.11)

∑
M = L3
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− sin θ4

0
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0



+


L4

0

0

×


0

−FR
0

 =


0

0

0

 . (A.12)





          


Evaluating (A.12) yields the following equilibrium in the z-direction,

L3F2(sin θ4 cos θ5 − cos θ4 sin θ5)− L4FR = 0 . (A.13)

Afterwards, (A.13) is rearranged to isolate FR:

FR =
F2L3

L4

(sin θ4 cos θ5 − cos θ4 sin θ5) . (A.14)

The linear actuator force is isolated from the x-dimension in (A.11) as

F2 = −R2
cos θ6

cos θ5

. (A.15)

Inserting (A.15) into (A.14) yields

FR =
R2 cos θ6L3

L4

(cos θ4 tan θ5 − sin θ4) . (A.16)

The y-dimension in (A.11),

F2 sin θ5 +R2 sin θ6 − FR = 0 , (A.17)

is used to determine the hinge reaction force angle. Inserting (A.15) and (A.16) into

(A.17) yields

− R2 cos θ6

cos θ5

sin θ5 +R2 sin θ6

+
R2 cos θ6L3

L4

(sin θ4 − cos θ4 tan θ5) = 0 . (A.18)

θ6 is isolated in (A.18) by dividing all terms by R2 cos(θ6), and rearranging the result as

θ6 = arctan

(
L3

L4

(cos θ4 tan θ5 − sin θ4)− tan θ5

)
. (A.19)

Here, θ6 is a constant angle independent of the radial load, and is only dependent on

the geometry and orientation of the lever. After installing the load cell bolt with the

orientation given by θ6, the radial force FR is calculated using the measured hinge reaction

force in (A.16).

A.3.4 Complete test rig

Based on the sub function solutions in the previous sections, a complete design of the

test rig is created. The chosen solutions achieve the different sub functions; however,

the final design shows how the components are placed on a suitable steel structure. The

complete test rig is shown in Figure A.13. Details of all numbered components are given

in the following: To drive the shaft, a permanent magnet synchronous AC motor (1) is





         


Figure A.13: Complete 3D model with numbered components. The width of the test rig

is 350 mm.

chosen. It is powered by a variable frequency drive to realize variable-speed conditions. A

1:7 ratio planetary gearbox (2) is installed to aid the motor during low-speed conditions.

This combination enables the shaft to reach speeds up to 500 rpm and down to 20 rpm.

A flexible claw coupling (3) that does not transfer axial load is installed to provide

shaft rotation. A thrust bearing (4) is installed to transfer axial load to the shaft.

Two bearings (5) are used to counteract the radial load subjected to the test bearing,

and they are free to slide in the axial direction inside their housings. On the left end of

the shaft at position (6), a proximity sensor is mounted to measure the radial movement

of the shaft close to the test bearing.

The test bearing housing (7) is made of steel and is currently manufactured to house

a 6008-type ball bearing. Other similarly sized bearings with the same bore diameter

may be used, provided that a new housing is created if the outer diameter is different.

An accelerometer is placed on the side of the test bearing housing, and the outer ring

temperature is measured with a tip sensitive PT100 resistance temperature detector.

Other sensors are also available for installation as illustrated in Figure A.4.

The support bracket (8) is attached to the test bearing housing via linear ball element

bearings (9). These bearings allow for vertical load transfer to the test bearing, while





          


Figure A.14: Electronic hardware connections.

they support the shaft in the axial direction. The bracket itself is bolted to the structure.

(10) and (11) are electric linear actuators. They can produce loads up to 2.5 kN in

their axial direction. Coupled with the levers (12) and (13), the system can theoretically

subject the bearing with 17 kN of load in both axial and radial direction.

Two load cells, (14) and (15), act as hinges for the levers while measuring the respective

reaction force up to 20 kN.

Machine damping feet (16) are used to reduce the vibration coming from external

sources, and their height can also be adjusted to level out the rig on slightly uneven

surfaces.

A.3.5 Controller hardware

Electronic hardware is used to control the active components, convert between analog

and digital signals, and store sensor data for further processing. A detailed overview of

the hardware is shown in Figure A.14. A computer with internet access is connected to

a dedicated controller with a built-in ARM CPU and Field Programmable Gate Array

(FPGA). The main task of the computer is to provide a local and remote interface to

the test setup software, and to store data during measurement intervals. A program on

the ARM CPU controls all the active components based on the feedback signals and test





         


configuration. The FPGA is responsible for acquiring and sending the analog signals

provided by the various IO via a databus.

The permanent magnet motor (PMM) is controlled by a motor drive with a built-in

regulator, and requires only a speed reference from the controller via a real-time EtherCat

connection. The shaft angular position is acquired from a quadrature encoder in the

motor. The electric linear actuators are powered by a 12 V DC motor drive, and the

reference signal to the drive is between 0-5 V. An input of 0 V corresponds to full retraction

force, 5 V to full push force, and 2.5 V for no force. The test-bearing temperature and

load cell reaction forces are acquired via an analog-in module. A 24-bit, high-frequency

±30 V IEPE-compatible analog input module measures the vibration in the accelerometer

attached to the test-bearing housing. The accelerometer produces a signal of 100 mV/g

in the linear range up to 10 kHz. In addition, a proximity sensor measures the radial

shaft movement in one direction. It has a measurement range of 1.1 mm and a resolution

of 18.5 nm, which makes it capable of detecting small changes in shaft position when the

bearing is damaged.

A.3.6 Load controller design

The electric linear actuators are controlled to apply the correct radial and axial loads to

the test bearing. The choice of control system is not trivial due to several factors: 1) The

linear actuator consists of a DC motor connected to a screw joint which moves in and out

when the motor rotates. The friction between the screw and DC motor is considerable,

and the actuator will therefore self-lock when not active. 2) The recommended duty

cycle is less than 10% to avoid overheating. Specifically, the manufacturer recommends a

maximum of 2 minute operation per 20 minutes. 3) Experimental testing on the finished

test rig revealed that the measured axial and radial loads varies with the shaft angular

position. The variation resembles a sine wave with a certain amplitude if the shaft speed

is constant. This variation is most likely caused by asymmetries on the shaft. It may be

slightly bent from the manufacturing process, or perhaps not perfectly circular. Due to

this disturbance, the actuators are difficult to control in a closed loop.

In any case, care must be taken not to overload the bearing or overheat the actuators.

A PID controller would attempt to cancel out the cyclic disturbance from the shaft, risking

overshoots and overheating. Using small gains would be a possibility, however that will

result in a poor bandwidth.

The self-locking ability is instead exploited to create a simple control system similar

to Sliding Mode Control. For each actuator setup, the error e between the reference load

F (ref) and the actual load F is continuously checked. If this error is outside a threshold

T , the actuator is activated with maximum power (u = ±1) to reduce the error. Once





          


Figure A.15: Control scheme for both linear actuators.

the error is within the threshold, the actuator is deactivated (u = 0). By configuring

this threshold slightly larger than the amplitude of the shaft disturbance, the actuator

is only powered in a short period after load reference change. The control scheme for

each actuator load setup is shown in Figure A.15. Here, R1 and R2 denotes the measured

reaction force in the axial and radial load cell, respectively. The block “To F” determines

the axial or radial load using Equation (A.7) or (A.16), respectively.

It should be noted that this control scheme is not suitable for following a continuously

changing reference signal, i.e. a sine wave. For such an input, the controller will actuate

the system in steps when the error exceeds the threshold, resulting in a step-wise load

change.

A.3.7 Accelerated life-time test software design

An accelerated bearing life-time test may last for several weeks, or even months. There-

fore, it is impractical to manually make measurements at a defined interval, or to monitor

the test in person. To overcome this, an automated lab test program is developed. This

program controls all the active components such as the motor and the linear actuators,

and initiates sensor data logging at pre-defined intervals. The flowchart of the test pro-

gram is shown in Figure A.16. Initially, the operator starts by preparing nc configurations

(configs for short) that the program runs through. Each config contains specifications for:

the shaft speed, bearing load, and the duration. The duration is specified in either num-

ber of revolutions (revs) if sensor data is logged, or number of minutes if not. Afterwards,

the test may start from the first config, and after it is finished, the next config is loaded

and performed. Once all configs are finished, the program resets to the first one.

The test is stopped automatically if the vibration root mean square (RMS) exceeds a





         


Figure A.16: Control scheme for the accelerated life-test.

preset threshold TRMS. The RMS is calculated using

VRMS =

√√√√ 1

n

n∑
i=1

V 2
i , (A.20)

where n is the number of samples in the dataset, and Vi denotes the i ’th sample in the

dataset V . Once the RMS reaches the threshold, the bearing is considered completely

worn out, and the test is automatically stopped. It is also possible to use different sources

for stopping the test such as motor torque or bearing temperature. Additionally, trends

of the RMS, motor torque, and bearing temperature is automatically uploaded to a secure

folder on the internet, and may be observed remotely by the operator. Further, the test

computer may also be accessed via a secure remote desktop connection in case the test

must be stopped/changed outside of working hours. Using this setup, the test rig is safe

to operate 24/7 without supervision.

A.3.8 Case study

As described in Section A.2.1 the test rig is used to perform accelerated life-time tests on

bearings. In addition to being able to run at high-speed to degenerate the bearing faster,

it also operates at slower speeds to obtain low-speed vibration data. For this accelerated

life-time test, the following options are set:

• The shaft is set to run at 500 rpm to wear out the test bearing.
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Figure A.17: Resulting kurtogram.

• The radial load is set to 9 kN, and the axial load to 7 kN. This results in a nominal

lifetime of L10 = 6 million revolutions according to the bearing manufacturer’s

online calculator [25].

• The bearing vibration is recorded at a sample rate of 51.2 kHz, while the bearing

temperature, motor torque, and shaft angular position are recorded at a sample rate

of 512 Hz.

• Sensor datasets are obtained every 10 minutes at 500, 250, 100, 50, and 20 rpm,

successively. The measurement duration is set to 100 revolutions.

• The automatic stop was set to an RMS threshold of 3 g (1 g = 9.81 m/s2).

A summary of the configuration loaded into the test software is given in Table A.1.

Two weeks and approximately 6 million revolutions later, the bearing is sufficiently

damaged that the RMS threshold is triggered. To diagnose the bearing for faults, the

datasets acquired at 50 rpm are used on this occasion. To determine the fault condition

in the bearing, a state-of-the-art method named the Fast Kurtogram [5] is employed. The

method decomposes the vibration data into frequency narrow-bands at different central

frequencies and widths. The kurtosis of each decomposed signal is calculated using

Kurt{x} =
µ4

σ4
, (A.21)
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Figure A.19: Shaft rotational speed at a reference speed of 20 rpm.

where µ4 is the fourth central moment, and σ is the standard deviation. A high kurtosis

value imply an impulsive signal which resembles bearing fault impact vibration. The

frequency narrow-band with the highest kurtosis is therefore chosen as the optimal filter,

and this band should contain the bearing fault impact vibration. Using this method,

the kurtogram is employed at every dataset acquired at 50 rpm shaft speed from the

accelerated life-time test. After the signal is filtered using the optimal filter, it should

contain the high-frequency resonance vibration from the bearing. To identify the cyclic

frequencies in the signal, the signal is demodulated. Using the Hilbert transform, the

complex-valued analytic signal is obtained. By computing the absolute value of this

analytic signal, the envelope is obtained. The envelope spectrum (ES) is the Fourier

transform of this envelope, which contain all cyclic impact frequencies. It has been shown

that the envelope should be squared to remove extra peaks in the spectrum [26], hence

resulting in the squared ES (SES). The resulting SES after bandpass filtration is manually

analyzed to identify prominent peaks at the characteristic fault frequencies for the present

bearing, which are given in Table A.2. In this table, BPFI is the ball pass frequency inner





          


Table A.1: Operator settings for the test (nc = 6).

Conf. Speed FA FR Rec.? Duration

1 500 rpm 7 kN 9 kN No 10 min

2 500 rpm 7 kN 9 kN Yes 100 revs

3 250 rpm 7 kN 9 kN Yes 100 revs

4 100 rpm 7 kN 9 kN Yes 100 revs

5 50 rpm 7 kN 9 kN Yes 100 revs

6 20 rpm 7 kN 9 kN Yes 100 revs

Table A.2: Characteristic bearing fault frequencies in shaft orders.

BPFI BPFO FTF BSF

6.88 5.12 0.43 3.33

race, BPFO is the ball pass frequency outer race, FTF is the fundamental train frequency,

and BSF is the ball spin frequency. One shaft order is defined as the shaft speed, and ball

faults are shown at 2xBSF as there is an impact at the inner and outer race successively

during one spin. Equations for calculating these characteristic frequencies are given in

[27]. These characteristic bearing frequencies are of interest because they describe how

many times an incipient fault on a certain location is passed on each shaft revolution. The

earliest sign of bearing fault is identified after 5.37 million revolutions, and in this case, a

ball fault is progressing. The kurtogram is shown in Figure A.17, where the width of each

frequency band is given as levels in the y-axis, and the central frequency is given on the

x-axis. The kurtosis values are displayed as colors, and the maximum kurtosis of 40.6 is

identified at the central frequency 25,100 Hz with a bandwidth of 200 Hz (level 7). The

resulting SES after band-pass filtering is shown in Figure A.18. Here, integer multiples of

2xBSF (harmonics) are marked as yellow lines together with side-bands marked as green

stapled lines. The side-bands spaced apart by the FTF are shown due to the amplitude

modulation from the non-homogeneous radial load [27]. As there are multiple harmonics

with accompanying side-bands close to the theoretical 2xBSF, it is likely that the vibration

is caused by a ball fault.

The fast Kurtogram filtered SES from a dataset recorded at 20 rom was also analyzed,

however it did not show prominent peaks at this low speed. More advanced processing

methods are required for diagnosing the bearing during this low-speed working condition.

To check if the problem of diagnosing the bearing at 20 rpm is due to speed fluctuations,

the shaft speed for the 10 first revolutions is derived from encoder data, and shown in

Figure A.19. Accordingly, the speed fluctuations are within ±10%, which may deteriorate





         


the diagnostic capabilities of the fast Kurtogram slightly. Angular re-sampling should be

applied to reduce the blurring effect of the speed fluctuation [27].

A.3.9 Future work

In the case study in Section A.3.8, it was shown that early fault detection is possible

using the fast Kurtogram [5] at 50 rpm, however not at 20 rpm. The main purpose of

this case study, however, is to demonstrate that the test rig is capable of accelerating the

life-time of the bearing, and that the acquired signals may be used for fault diagnosis.

Future research will focus on new methods and algorithms for fault detection at the low

speed of 20 rpm.

After determining the initial fault, it is advisable to predict the remaining useful

life-time (RUL) using prognostics methods. These models are important to help schedule

maintenance and avoid unexpected breakdowns. Typically, extracted features from sensor

data is used to create a prognostic model, and a variety of models and methods have

already been suggested in the literature [28, 29]. However, there are still challenges to

overcome in designing a standardized scheme that can be applied on any machine [30].

Additionally, one apparent challenge in rotating machinery prognostics is to make accurate

estimations during variable speed or load conditions [31].

On the presented test rig, the bearing temperature and vibration, motor torque, and

shaft movement is measured for the whole life-span of the bearing during the accelerated

life-time test. Further, the working speed of the bearing is also changed between each

measurement, and may even be variable during the measurement period. In comparison to

bearing test rigs relying on pre-seeded faults, accelerated life-time tests allows for tracking

the changes in sensor data features as time/wear progresses, making RUL estimation

possible. The acquired sensor data will be used in future research to develop algorithms

which estimate RUL for machines operating under variable conditions.

A.4 Conclusion

An accelerated life-time test rig for rolling element bearings have been developed in this

paper. Using electric actuators and levers, the test bearing can be subjected with heavy

radial and axial loads. Additionally, utilizing a variable frequency drive, a motor, and a

planetary gearbox, both high and low speed working conditions are realizable. Sensors

are installed to measure physical data on the test bearing including vibration, shaft radial

movement, and temperature. Tests show that the test rig can be used to generate low-

speed vibration data during all bearing states ranging from healthy to completely worn.

Therefore, all the design criteria from Section A.2.2 are fulfilled. The list below shows





          


conclusive remarks of the design specifications, where (
√

) means fulfilled, (≈ √) means

partially fulfilled, and (×) means not fulfilled:

1. (
√

) - Results show that the low speed of 20 rpm is achievable using a permanent

magnet motor and a planetary gearbox. There is a small fluctuation of ±2 rpm,

which may be corrected using digital angular re-sampling.

2. (
√

) - Theoretically, the load setups can apply up to 17 kN of load in the radial and

axial direction.

3. (
√

) - The flat edges of the test bearing housing allow for using all the requested

sensor types.

4. (
√

) - The test bearing housing can house the 6008-type bearing with 68mm outer

diameter.

5. (
√

) - Using suitable hardware and software, the test rig may be operated safely

24/7 without supervision.
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Abstract – Rolling element bearings are one of the fundamental compo-

nents of a machine, and their failure is the most frequent cause of machine

breakdown. Monitoring the bearing condition is vital to preventing unex-

pected shutdowns and improving their maintenance planning. Specifically, the

bearing vibration can be measured and analyzed to diagnose bearing faults.

Accurate fault diagnosis can be achieved by analyzing the envelope spectrum

of a narrow-band filtered vibration signal. The optimal narrow-band is cen-

tered at the resonance frequency of the bearing. However, how to determine

the optimal narrow-band is a challenge. Several methods aim to identify the

optimal narrow-band, but they are not always precise. The bearing fault vi-

bration components are lost if the narrow-band is incorrectly chosen, thus

leading to an incorrect fault diagnosis. For on-line systems, it is critical that

bearing faults are diagnosed with a high degree of confidence. In this ar-

ticle, a method for analyzing multiple narrow bands is presented. Bearing

faults are detected autonomously by a narrow-band envelope spectrum-based

algorithm. This algorithm removes the need for manual spectrum analysis,

allowing operators to focus on more important tasks. Bearing fault vibra-

tion data from an accelerated life-test is used to verify the performance of

the proposed method. The proposed method accurately diagnoses the worn-

out bearing for three characteristic defect types and shows when one fault

propagates to a second one.
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B.1 Introduction

Rolling Element Bearings (REBs, or bearings for short) are used in all kinds of rotating

machinery. They are designed to restrict the shaft rotational motion for transferring

loads to stationary housings. Bearings are worn out after exceeding a certain life-time

based on the rotational speed, the combined loads, and the bearing design. When a

bearing suddenly fails, the rapidly increasing vibration may damage other components,

causing a complete breakdown of the machine. Replacing a bearing before it fails is of

great importance to avoid breakdowns and expensive overhauls. The exact life-time of a

bearing cannot be perfectly predicted because the failure rate of a particular bearing is

based on statistics. In addition, changes in bearing vibration is only detectable during the

final stage of the life-time. Therefore it is useful to continually monitor the condition of

critical components such as bearings to prevent sudden machine breakdowns. Sensors can

be placed on the bearing housing to measure a physical quantity containing information

about the condition. The bearing vibration signal is strongly linked to the amount of

wear and is a suitable signal to use for bearing condition monitoring.

Roller impacts in a damaged bearing produce amplitude modulated ringing with the

carrier frequency equal to the resonance frequency of the bearing. The frequency of the

modulation waveform reveals the fault location in the bearing. As such, the vibration

signal must be demodulated to diagnose the fault location and severity. After demodu-

lation, the frequency spectrum can be analyzed to diagnose bearing faults. [1] used the

Hilbert-Huang transform to demodulate the vibration signal and diagnosed bearing faults

using the frequency spectrum. The bearing characteristic frequencies are derived from

the bearing design and kinematics under the no-slip assumption. [2] calculated these

characteristic frequencies and diagnosed the damaged bearing by observing the envelope

spectrum for peaks at these frequencies. The vibration signal contains components that

are not linked to impacts in the bearing, but from other sources such as mass unbalance,

misalignment, and others. These noisy components can be removed by applying a band-

pass filter on a narrow-band around the resonance frequency of the bearing. The result

is a much clearer frequency diagram to analyze. However, it is difficult to determine the

optimal narrow-band analytically, but several attempts in the literature have been made

to determine it experimentally. [3] introduced the Fast Kurtogram which uses the kurto-

sis to determine the optimal narrow-band. The vibration signal is band-pass filtered at

various narrow-bands, and the kurtosis value determines the extent of impulsiveness in

the filtered data. The filter specification returning the highest kurtosis can be selected

as the optimal narrow-band for further envelope spectrum analysis. However, while there

are cases when the kurtogram detects the optimal narrow-band, there are also cases when

it fails. [4] presented a new method inspired by the kurtogram that attempts to overcome





         

some of the drawbacks of the fast kurtogram. It is named the Protrugram and it calcu-

lates the kurtosis of the envelope spectrum of the band-pass filtered signal rather than the

time-signal. The advantage is the ability to detect transients with a small signal-to-noise

ratio. [5] presented a new feature named envelope harmonic-to-noise ratio (EHNR) that

can replace the kurtosis calculation in the fast kurtogram. Its advantage over the kurtosis

is that it is not sensitive to random single impulses and is therefore more robust.

The methods existing in literature aim at identifying the optimal narrow-band. How-

ever, incorrect selection leads to filtering out components related to the bearing fault.

Also, the bearing fault impacts may excite more than one resonance frequency in the

system, and thus multiple narrow-bands should be investigated on a single vibration

dataset. In this article, we present a new method for diagnosing faults in a bearing, based

on narrow-band envelope spectrum analysis. Initially, the entire vibration frequency spec-

trum is divided into multiple narrow-bands and band-pass filtered. Next, the envelope

spectrum of each filtered signal is realized by applying the Hilbert-Huang transform and

the Fast Fourier transform. Each spectrum is afterwards analyzed to diagnose the bear-

ing for faults. Since there are multiple spectra to analyze, the task becomes impractical

to perform manually. Therefore, a method for autonomous bearing fault diagnosis is

presented in this article. The method is based on automatic envelope spectrum analy-

sis to diagnose the bearing for faults. Only the shaft speed and the four characteristic

bearing fault frequencies derived from the bearing design, are required prior knowledge.

An algorithm searches the envelope spectra for harmonics linked to a characteristic fault

frequency and scores the dataset based on the number of harmonics identified and their

prominence compared to surrounding noise. This score is monitored over time to detect

condition changes in the bearing and determine the fault location. In this article, the

proposed method is presented along with results from diagnosing faults in a damaged

bearing. The test bearing is worn naturally over time during an accelerated life-test,

and three characteristic faults are identified in the de-assembled bearing. The presented

method accurately identifies all three fault types, and score trends also show when one

fault progresses to a second one.

B.2 Methods

B.2.1 Experimental Test Setup

The vibration signal is collected on a bearing test bench. The test bearing is a 6008

type with a dynamic and static load rating of 17.8kN and 11kN , respectively. The test

bearing is naturally worn over time during an accelerated life-time test. To reduce the





         


bearing life-time, radial and axial loads of, respectively, 9kN and 4kN are applied to the

test bearing. During the test, the vibration signal V (t) and encoder position signal θ(t)

is measured every 30 minutes at a reference speed of θ̇(ref) = 250 revolutions per minute

(rpm). The sampling frequency is set to 51.2kHz and the measurement duration is 24s

(100 revolutions). The test bearing was worn out after surpassing 42 million revolutions.

B.2.2 Pre-process Vibration Signal

The measured vibration signal contains frequency components that are smeared across

the frequency spectrum due to small variations in motor speed. The vibration signal

is re-sampled to obtain an equal number of samples per round and spaced at a fixed

angle interval to reduce frequency smearing. The number of samples retained per round

is calculated using the reference shaft speed θ̇(ref) and the sampling rate. The encoder

signal θ(t) is used as the reference angular shaft position, and the vibration signal is

re-sampled using linear interpolation. This method is named Order-Tracking.

After applying the order-tracking algorithm, the re-sampled vibration signal Vot(t) is

obtained. The next step is to filter the stationary vibration components not linked to

bearing fault impacts. Most of these components are synchronous with the shaft position

and are generated by e.g. misalignments or mass unbalance. A Time Synchronous Average

(TSA) algorithm is used to remove these components. The vibration signal is first split

up into multiple parts each with a time length of 1 round. The average of these parts is

the synchronous vibration signal Vs(t). Vs(t) is afterwards subtracted from the vibration

signal Vot(t) to remove the synchronous components. This subtraction results in the

asynchronous vibration signal Vas(t). More information on order tracking and TSA can

be found in [6].

B.2.3 Narrow-band Identifier Algorithm

The narrow-bands are identified in the vibration signal frequency spectrum. A Fast

Fourier Transform (FFT) algorithm is used to obtain the frequency spectrum. It re-

turns the absolute amplitude Y and the frequency f of each sine wave component. The

frequency spectrum is obtained using (B.1).

[Y, f ] = FFT(V (t)) (B.1)

Y (i) denotes the amplitude at the i’th frequency bin, and similarly f(i) denotes the

frequency at the i’th bin. After obtaining the spectrum, an envelope is determined and

placed on top of it. The envelope is obtained by modifying the amplitude of the spectrum

to the maximum value within ±15Hz from each frequency bin. Afterwards, a low-pass





         

filter is applied to smoothen the transitions. The resulting envelope is seen on top of the

spectrum in Fig. B.1.
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Figure B.1: The frequency spectrum of the vibration signal in addition to its envelope.

To determine each narrow-band in the spectrum, each local minimum of the envelope

determines the separation frequency. These separation frequencies are shown in Fig. B.2

and each narrow-band is given a number ranging from 1 to 9 in this example.
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Figure B.2: The frequency spectrum of the vibration signal combined with the nine

narrow-bands that are identified for this dataset.

The first three narrow-bands contain the most energy and should be analyzed for bearing

fault impacts. However, the remaining six are also investigated in case the bearing natural

frequency is within these narrow-bands.

B.2.4 Envelope Spectrum

Impacts in the bearing cause it to ring (vibrate) at its resonance frequency. The narrow-

band may contain frequency components related to this ringing in the bearing. The





         


resonance frequency of the bearing is not directly linked to any characteristic bearing

fault frequencies, but acts as an information carrier in an amplitude modulated signal.

The information we seek lies in the frequency of the modulation waveform. Therefore it is

necessary to de-modulate the signal to diagnose faults in the bearing. Each narrow-band

is analyzed by performing three tasks. First, the vibration signal is band-pass filtered

around the narrow-band frequency. Second, a Hilbert-Huang transform is applied to the

bandpass-filtered signal to demodulate the signal. The result is the envelope of the sig-

nal, i.e. the modulation waveform. Finally, the envelope is transformed to the frequency

domain via the FFT algorithm in (B.1). The resulting spectrum is named the Envelope

Spectrum. It can be analyzed directly to find prominent peaks at the characteristic fault

frequencies derived from the bearing kinematics. However, recall that the vibration sig-

nal is split up into multiple narrow-bands that should be analyzed using the Envelope

Spectrum method. Analyzing multiple spectra manually is impractical due to time lim-

itations. Therefore, there is a need for an autonomous bearing fault diagnostic system

that can analyze the spectra. The next subsection presents such an autonomous bearing

fault diagnosis system.

B.2.5 Autonomous Fault Diagnosis

The following method aims to mimic the way a diagnostician would analyze an envelope

spectrum. Typically, one can observe the spectrum for prominent peaks corresponding to

the characteristic bearing fault frequencies. Also, there may be several harmonics and also

sub-bands if roller or inner-ring faults are present. Due to slip or a non-zero contact angle

in the bearing, the spectrum peaks may not coincide perfectly with the characteristic fault

frequencies. The diagnostician also has to account for this possible error. These tasks are

built into the autonomous bearing fault diagnosis algorithm.

To illustrate the method, the envelope spectrum of the third narrow-band (M = 3)

shown in Figure B.2 is used as an example. The test bearing has an inner-race fault

that will be characterized by harmonics at the inner-race ball pass frequency, and sub-

bands equal to the shaft frequency. The characteristic fault frequency for the inner race

is fc = 6.88 orders, and the expected sub-band frequency is fsb = 1 order. One order is

the same as the shaft speed as shown in (B.2)

1 order ≡ fs (B.2)

where fs is the shaft speed. Converting the envelope spectrum frequency to orders

removes the need for scaling the fault frequencies based on the shaft speed. The steps

in the autonomous fault diagnosis algorithm are detailed in the following. Suppose the





         

envelope spectrum is given by the amplitude Y and the frequency f . Let the harmonic

number H = 1.

Step 1: Identify the maximum amplitude within a small frequency band around a

characteristic fault frequency. This maximum value is the harmonic value and is calculated

as follows:

Mh, I = max(Y (i)) : fh1 ≤ f(i) ≤ fh2 (B.3)

where fh1 = cαfc · (H −w), fh2 = cαfc · (H +w), and I is the index i where Y (i) is maxi-

mum. The frequency band is determined by the slip tolerance w and the fault frequency

correction factor cα. These values are calculated using (B.4) and (B.5) respectively.

w =

{
0.02, for H = 1

0.01, else
(B.4)

cα =

{
1, for H = 1

α, else
(B.5)

The correction factor α is calculated in (B.6) to adjust the characteristic fault fre-

quency to account for roller slip and contact angle.

α = f(I)/(fc ·H) (B.6)

where f(I) is the frequency where the most prominent harmonic peak is observed.

Step 2: A “noise level” within a small band around the corrected fault frequency is

calculated using (B.7) to determine whether the maximum peak is prominent enough.

N =
1

n− 1

([∑
Y (i) : fn1 ≤ f(i) ≤ fn2

]
− Y (I)

)
(B.7)

where fn1 = αfc · (H − 0.02), fn2 = αfc · (H + 0.02), and n is the number of elements in

the summation. N is the mean of all spectrum values within the frequency band, except

for the value of the harmonic. The frequency bands used to determine the maximum

harmonic value and the noise are shown as an example for H = 1 in Fig. B.3.

Step 3: If the fault frequency is amplitude modulated by a sub-band frequency fsb,

there should be at least one prominent peak ±fsb away from αfc. If it is not amplitude

modulated, skip this step. Two prominent sub-bands are searched for: one negative

sub-band and one positive sub-band. The negative sub-band is calculated using (B.8).

Mns = max(Y (i)) : fns1 ≤ f(i) ≤ fns2 (B.8)
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Figure B.3: For H = 1, the frequency bands for identifying the harmonic value and the

noise are shown. In addition, the harmonic is marked as a green dot and the noise level

is the red-stapled line.

where fns1 = Hαfc − fsb − 0.05fs, and fns2 = Hαfc − fsb + 0.05fs. Here a 5% tolerance

away from the shaft speed is used to generate the frequency band where the negative

sub-band should be. The positive sub-band is calculated in a similar manner in (B.9).

Mps = max(Y (i)) : fps1 ≤ f(i) ≤ fps2 (B.9)

where fps1 = Hαfc + fsb − 0.05fs, and fps2 = Hαfc + fsb + 0.05fs. The frequency bands

are shown together with the maximum sub-band values for H = 1 in Fig. B.4.
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Figure B.4: For H = 1, the frequency bands for identifying the sub-bands are shown. In

addition the identified sub-bands are marked with a red and blue dot.

Step 4: If the harmonic and possible sub-bands are prominent enough, a score is cal-

culated based on the harmonic value. However, the harmonic value must pass a threshold

if a score should be computed. The threshold is calculated using (B.10).





         

T = 3N (B.10)

If there should be sub-bands present around the fault frequency, the following relation

must be true to calculate a score:

Mh > T and (Mns > T or Mps > T ) (B.11)

Similarly if fsb = 0, the following relation must be true to calculate a score:

Mh > T (B.12)

If the relation above is true, the harmonic score is calculated in Step 5. Otherwise,

skip to Step 6.

Step 5: A scoring system is developed to quantify the prominence of the harmonic

peaks. The score for each identified harmonic is calculated using (B.13).

S(H) = (Mh/3N) ·H2 (B.13)

where S(H) is the score for the H’th harmonic. The score is unit-less and rewards

narrow-bands with multiple harmonics. A large score implies a high probability of damage

being present. Afterward, more harmonics are searched for by increasing the harmonic

number H = H + 1 and returning to Step 1. Figure B.5 shows an example where the

second harmonic and sub-bands are identified in mode 3. In this example, the negative

sub-band and the harmonic is greater than the threshold, and therefore the score of 10.21

is calculated using (B.13).
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Figure B.5: For H = 2, the harmonic and two sub-bands are identified.

Step 6: Once all the prominent harmonics are identified, a combined score for the

narrow-band can be calculated using (B.14).





         


Sm(M) =

nH∑
i=1

S(i) (B.14)

where nH is the number of harmonics identified, and M is the narrow-band number.

The score summation can be extended by also summing over all the narrow-bands in the

vibration dataset. This combined score is calculated using (B.15).

Str =

nM∑
i=1

Sm(i) (B.15)

where nM is the number of narrow-bands in the vibration dataset. Since Str is a single

scalar value for a given dataset and a given fault type, it can be monitored over time like

RMS and Kurtosis. This provides an excellent opportunity to visualize the changes in

the bearing condition and to set up automatic warnings or alarms for the operator. The

complete flow diagram for the algorithm described in this section is shown in Fig. B.6.

Figure B.6: Complete algorithm flowchart.

B.3 Results and Discussion

B.3.1 Vibration Mode Score

The vibration dataset whose frequency spectrum is shown in Fig. B.2, contains at least

two narrow-bands that include the characteristic fault components for an inner-ring fault.

The first one is narrow-band three, M = 3. The harmonics observed in the envelope

spectrum of this narrow-band are shown in Fig. B.7.
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Figure B.7: For the third narrow-band, M = 3, a total of 3 harmonics related to the

inner-race fault are identified.

The score calculated using (B.14) for the third narrow-band is Sm(3) = 39.33. Whether

this value is large or small is difficult to determine. But normally, analyzing an undamaged

bearing should return a score quite close to zero. In addition, analysis of the sixth narrow-

band (M = 6) also reveals signs of a fault on the inner-ring. The harmonics observed in

the analysis of this narrow-band are shown in Fig. B.8.
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Figure B.8: For the sixth narrow-band, M = 6, a total of 3 harmonics related to the

inner-race fault is identified.

The score calculated using (B.14) for the sixth narrow-band is Sm(6) = 36.14, which

is almost as much as the third narrow-band score. Therefore, there are reasons to ana-

lyze more than one narrow-band on the vibration signal. For reference and comparison

purposes, the score for the nine narrow-bands are given in Table B.1.





         


Table B.1: Inner ring diagnostic score for the nine narrow-bands in the example data.

M 1 2 3 4 5 6 7 8 9

Sm(M) 3.35 0 39.33 0 0 36.14 1.36 1.75 0

B.3.2 Vibration Trend Score

A great usage scenario for the proposed method is to monitor the score for the three

characteristic bearing fault types over time. The algorithm in Fig B.6 is repeated for

each characteristic fault by altering fc and fsb to the combinations given in Table B.2.

The combined vibration dataset score is calculated using (B.15) for the three character-

istic bearing faults and plotted in a graph. The proposed method will be compared to

monitoring the RMS value of the vibration data. The RMS is calculated using (B.16).

VRMS =

√√√√ 1

nt

nt∑
i=1

V (i)2 (B.16)

where nt is the number of samples in the vibration dataset. The last 100 datasets

acquired from the accelerated life test detailed in Section B.2.1 are used to monitor the

progressing bearing faults. The scores calculated using (B.15) for the three fault types

are shown in Fig. B.9 a), and, for comparison, the RMS value as calculated using (B.16)

is shown in Fig. B.9 b).

Table B.2: Characteristic fault frequencies for the test bearing in orders.

Inner Race Outer Race Roller

fc 6.88 5.12 6.66

fsb 1 0 0.43

In Fig. B.9 a) the scores are normalized to fit all three graphs in a single figure, but the

respective maximum values are given in the legend. Analyzing Fig. B.9 a) it is seen that

until the 71st dataset the condition of the bearing is unchanged and in a healthy state.

At this point, however, the proposed algorithm returns a high score for the roller fault,

while it has previously been close to zero. This finding corresponds well with the increase

in RMS value as shown in Fig. B.9 b). However, the roller fault does not appear in the

vibration datasets for long. Instead, an outer-ring damage propagates during the next 20

datasets. Finally, the inner-ring is also damaged, as is seen during the final 10 datasets in

Fig. B.9 a). The score values calculated using the proposed method correspond well with

the findings in the de-assembled bearing. The internal damage in the bearing is shown in

Fig. B.10.
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Figure B.9: For the last 100 datasets, the characteristic fault scores are calculated using

(B.15) and shown in a). The RMS trend calculated using (B.16) is shown in b) for

comparison.





         


Figure B.10: The de-assembled test bearing after the accelerated life test. a) shows two

damaged balls, b) shows a small pit in the outer-ring, and c) shows a large area of pitting

on the inner-ring.

Fig. B.10 shows signs of damage in two rollers, the outer-ring, and the inner-ring. The

locations of the faults correspond very well with the results from the proposed method.

This comparison shows that the proposed algorithm is very efficient in diagnosing the

bearing for the characteristic faults.

B.4 Conclusion

Raw vibration data is often bandpass-filtered around the bearing fundamental frequency

only to preserve frequency components related to fault impacts. However, determining the

resonance frequency of the bearing is a challenging task. Instead of identifying the optimal

narrow-band using Kurtogram, the vibration data is divided into multiple narrow-bands

and each band is analyzed to diagnose the bearing. However, this is a tremendous task to

perform manually and thus an automatic bearing fault diagnosis algorithm is proposed in

this article. It is capable of identifying the three most common faults in a bearing with

good accuracy. The proposed algorithm has been explained in detail and validated using

experimental data.
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Abstract – Rolling-element bearings are crucial components in all rotating

machinery, and their failure will initially degrade the machine performance,

and later cause complete shutdown. The period between an initial crack and

complete failure is short due to crack propagation. Therefore, early fault

detection is important to avoid unexpected machine shutdown and to aid in

maintenance scheduling. Bearing condition monitoring has been applied for

several decades to detect incipient faults at an early stage. However, low-

speed conditions pose a challenge for bearing fault diagnosis due to low fault

impact energy. To reliably detect bearing faults at an early stage, a new

method termed Whitened Cross-correlation Spectrum (WCCS) is proposed.

The method computes the cross-correlation between the whitened vibration

signal and its envelope. In this paper, it is detailed how this correlation

can improve the fault diagnosis compared to analyzing the envelope spectrum

alone. Compared to other methods reported in the literature, the WCCS pro-

vides accurate fault detection without involving experimentally tuned settings

or bandpass-filtering. Vibration data at 20 revolutions per minute rotational

speed from an accelerated life-time test of a 40 mm bore size bearing is used

to verify the performance of the proposed method. An additional case study

using the WCCS on a difficult dataset from the Case Western Reserve Uni-

versity database is also presented to verify the performance.

C.1 Introduction

Rolling-element bearings, or bearings for short, are crucial components in all rotating

machinery. Their failure is one of the most common cause of machine breakdown. A

worn bearing is characterized by increased vibration levels, internal looseness, and higher

friction. The increase of vibration can damage nearby components, and lead to a full

stop of the machine. If worn bearings are not replaced in time, costly downtime or

personnel injuries may occur. Condition monitoring techniques can be applied to estimate
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the bearing health and remaining useful life-time. Data from sensors that measure a

physical quantity, like the vibration, are used as input to such a system. The data is

further analyzed using signal processing algorithms, before the results are presented to an

operator. Based on the results, the operator can decide whether the bearing is in a healthy

state, or if it is worn and should be replaced. Such condition monitoring systems have

been used for several decades to monitor the health of all kinds of rotating machinery

components. The most common sensor type to use is vibration accelerometers, as the

bearing vibration is closely linked to the amount of internal wear. An incipient fault, on

either bearing race-way or a roller, causes an impulse of vibration every time it is struck.

The spectral frequency of the resulting vibration is based on the resonance frequency of

the system and is normally in the thousands of Hertz. Further, the resonance frequency

of a bearing system is normally not known as it is difficult to determine analytically or

experimentally. However, the spectral frequency is not directly of interest when diagnosing

a bearing. The cyclic frequency between each impact impulse may reveal its fault. By

analyzing the kinematics of a bearing under no-slip conditions, the characteristic cyclic

frequencies for the different fault types are determined. If the cyclic vibration frequency

match any of the characteristic frequencies, the bearing is likely to be damaged at that

certain location. To determine the cyclic impact frequencies of the measured vibration

signal, the Fourier transform of its demodulated envelope may be analyzed to identify

the bearing cyclic vibration. During low-speed conditions, there may be some challenges

in diagnosing bearing faults using a vibration accelerometer. The fault impact energy is

dependent on the shaft speed and is decreased if the shaft speed decreases [1]. Background

noise, however, is the same no matter what the shaft speed is, and therefore the signal-

to-noise-ratio (SNR) decreases with decreasing shaft speed. The envelope spectrum may

not reveal the fault if the characteristic cyclic frequencies are masked in background noise

during low-speed conditions. In this case, more advanced signal processing methods are

necessary to highlight the low energy impacts during low-speed conditions.

A new method was proposed in [2] for diagnosing a low-speed bearing using extracted

discrete wavelet packets that contains the bearing fault vibrations. The results show that

the multiple band-pass filtered autoregressive envelope spectrum provided clear indication

of faults at 60 revolutions per minute (rpm) rotational speed. However, one disadvantage

is that the Adaptive Network-based Fuzzy Inference System trained to choose the bands,

requires pre-labeled training data, and such historic data may not be available for every

system. In recent years, research on acoustic emission (AE) technology has shown that

it is sensitive to early sub-surface cracks in the bearing. While vibration sensors are only

sensitive to impacts on the bearing surface, AE sensors may detect changes in the bearing

sub-surface, which should aid in early fault diagnosis. The biggest disadvantage is the cost





        


of the equipment, and the high required sample rate, as the signal of interest is typically

in the range of 100 kHz and 1 MHz [3]. The disadvantages of the high sampling rate

is however reduced significantly by an efficient down-sampling technique that does not

affect signal quality [4]. The results indicate that even when down-sampling by a ratio

of 500, the bearing fault signature could be captured by the AE sensor. In [5], a thrust

bearing is run to failure at 72 rpm, and the resulting AE was measured at four locations

on the outer ring. The results indicate that the AE energy increased with increasing

fault size, and that the fault type is detectable in certain pre-processed spectra. In [6],

a bearing with a pre-seeded fault at an extremely low speed of 1.12 rpm is diagnosed

using AE. It was concluded that parameters such as AE amplitude and energy provided

valuable information on the condition of a low-speed rotating bearing. In addition, a

method for detecting a fault in the bearing using AE signal was also presented. The

method consists of grouping multiple stress-wave signals by the centroid of autoregressive

model coefficients. If two distinct groups are formed, the bearing is considered faulty.

If no distinct groups were formed, the stress wave signals are considered to only contain

noise, and the bearing is assumed healthy. In [7], a low-speed bearing rotating at 10 rpm

was diagnosed using Support Vector Machine and Relevance Vector Machine. The input

features were generated from both vibration and AE sources, and it was concluded that

the classifier trained on AE data had the best accuracy. In [8], the performance of AE

and vibration was compared on a large slew bearing rotating at 8 rpm. Both signals

were pre-processed using a combination of multivariate Principal Component Analysis

and Ensemble Empirical Mode Decomposition, which adaptively decomposed the signal

into different time scales. It was shown that both the vibration and AE signal contained

enough information to diagnose the bearing for a seeded inner ring fault after proper

pre-processing. Other research has also shown success in using AE for low-speed bearing

fault diagnosis [9, 10, 11, 12].

Most of the referenced works state that AE is superior to vibration signals for bearing

fault diagnosis under low-speed conditions. While a vibration sensor can capture the fault

impact vibration, the signal is often masked by vibration from other machine components,

and background noise. In addition, the bearing fault impact energy gets lower as the

shaft speed is reduced. Therefore, a solid algorithm is necessary to extract the weak

impulses generated in the bearing during low-speed conditions to properly diagnose its

condition. In this article, vibration signals are used to diagnose a 6008 ball-type bearing

for faults. The bearing is run to failure on an accelerated life-time test bench at 500

rpm. The vibration signal is measured every 10 minutes at 20 rpm for the duration of

50 revolutions to acquire low-speed vibration signals. Initially, the vibration signal is re-

sampled using encoder data to achieve a constant angle increment rather than time. Next,





         


shaft-synchronous vibration components are removed by subtracting the average vibration

per revolution. To highlight the slightly random vibration impulses in the bearing, an

Autoregressive Model (ARM) is afterwards trained to predict deterministic components

that are not related to the bearing fault. The components predicted by the ARM are

removed to retain random components such as the bearing vibration. After this process,

the vibration signal is whitened as it contains mostly random components. Finally, the

cross-correlation between the whitened vibration signal and its envelope is computed.

This cross-correlation results in an element-wise multiplication of the frequency spectrum

of the whitened vibration signal and its envelope. The justification of computing the cross-

correlation is that the bearing characteristic fault vibration may be visible directly in the

spectrum of the raw vibration signal [13], as well in the spectrum of the demodulated

high-frequency vibration signal. Therefore, to exploit both signals, the cross-correlation

is calculated to fuse the information in both spectra. Frequency amplitude peaks that are

present in both spectra will be amplified, while peaks that are only present in either of

the two are attenuated. Using the Fourier transform, the resulting spectrum of the cross-

correlation signal, termed the Whitened Cross-correlation Spectrum (WCCS), is analyzed

for faults related to the bearing. The results indicate that, even at the low-speed of 20 rpm,

early identification of fault is possible. For verification purposes, a difficult dataset from

the Case Western Reserve University bearing fault database is also successfully diagnosed

using the WCCS. The rest of the paper is organized as follows: the experimental setup

and the algorithms used in the proposed method and comparison methods are presented

in Section C.2. Afterwards, results of using the proposed method are presented, and the

performance is compared to other methods reported in the literature, like the Envelope

Spectrum, in Section C.3. Finally, conclusions are drawn in Section C.4.

C.2 Methods

C.2.1 Experimental test setup

The vibration data is collected on an accelerated bearing life-time test rig that is shown

in Figure C.1. A permanent magnet motor combined with a 1:7 reduction planetary

gearbox is used to drive the test bearing shaft, and a variable-frequency drive allows for

variable speed conditions. The test bearing at the left end of the shaft is a 6008 type

bearing with 40 mm bore size, and its characteristic fault orders are given in Table C.1.

These frequencies are given in magnitudes of shaft orders, where the shaft speed equals

1 order, i.e. OS = 1. The rated dynamic load of the bearing is C = 17.8 kN, and the

static load rating is C0 = 11.6 kN. Radial and axial loads are applied by two electric





        


Figure C.1: Simplified view of the accelerated bearing life-time test bench.

linear actuators geared with mechanical levers. The two support bearings at the middle

of the shaft aid to counteract the radial force on the test bearing. The axial bearing

is installed to transfer the stationary axial load to the rotating shaft. A unidirectional

vibration accelerometer is stud-mounted to the side of the test bearing housing with the

direction and placement as shown in Figure C.1. Its linear range is between 2 Hz and

10 kHz, and the nominal sensitivity is 100 mV/g with a maximum peak acceleration

of 60 g. The vibration is sampled at 51.2 kHz using a 24-bit ±30 V A/D converter. A

quadrature incremental encoder is located inside the motor. With 1024 pulses per channel,

a total of 4096 pulse edges can be identified per motor shaft revolution. Additionally, the

motor rotates 7 times faster than the test bearing shaft due to the gearbox, resulting in

a resolution of 28,672 pulse edges per revolution on the test bearing shaft. To record the

shaft position, the number of pulse edges passed is sampled at a frequency of 512 Hz.

The test bearing is subjected to a radial and axial load of 9 kN and 7 kN respectively

to reduce the rotational life-time. The test procedure is as follows: The test bearing is

generally driven at a speed of 500 rpm. Every 10 minutes, a measurement cycle is initiated.

During this cycle, the bearing vibration and motor encoder position is measured for the

duration of 50 revolutions at shaft speeds of 500, 250, 100, 50, and 20 rpm successively.

After each cycle, the shaft speed returns to 500 rpm. In this article, the vibration data

collected at 20 rpm will be used since low-speed bearing fault diagnostics is the primary

objective. The bearing life-time was roughly 6 million revolutions (14 days of continuous

operation) before complete stop. The bearing was afterwards disassembled to identify

what components were damaged. Faults were identified on three of the rollers, the outer-

race, and the inner-race. Pictures of the disassembled bearing are shown in Figure C.2.





         


Figure C.2: The damaged components in the disassembled bearing. (a) Three damaged

rollers. (b) Damaged area on the outer-race. (c) Large damaged area on the inner-race.

Table C.1: Characteristic fault orders for the test bearing given in shaft orders assuming

zero contact angle and no roller slip. The expected harmonic order and the accompanying

side-band order (due to non-homogeneous radial load) for the given fault type are given.

Characteristic fault orders Acronym Value Side-band

Fundamental train OFT 0.43 -

Ball pass outer race OBPO 5.12 -

Ball pass inner race OBPI 6.88 OS

2x Ball spin O2BS 6.66 OFT





        


C.2.2 Order tracking

The motor speed controller is incapable of rotating the shaft at a completely constant

speed. Consequently, the time period between impacts in a bearing will vary based on

the instantaneous speed. The A/D converter that measures the vibration signal is storing

data at a fixed time interval given by the sampling rate. Because of the instantaneous

speed changes, this will result in a blurred frequency spectrum as the Fourier transform

assumes a stationary process. To mitigate the symptoms, the vibration signal is digitally

re-sampled with respect to the shaft encoder pulses. The re-sampled signal has a fixed

shaft angle interval rather than a time interval. This makes sure that there is, theoretically,

a fixed number of samples between each bearing fault impact. The following algorithm is

inspired by the work done by Fyfe and Munck in [14].

On the presented test rig, the rotor angular position is measured at a sampling fre-

quency of 512 Hz. Due to the fast sampling, it is assumed that the motor speed is constant

between each measurement. Under this assumption, the shaft angle at any time t can

be obtained using linear interpolation techniques. The shaft position is initially interpo-

lated to match the digital sampling times of the vibration signal V (t). This results in a

vibration signal that is given with respect to the shaft angle, but the shaft angle interval

is not fixed. To fix the interval, the vibration signal is interpolated to achieve a fixed

angle interval. Here, a second-order cubic spline interpolation is chosen as it provides

good interpolation performance at a low computational cost. The spline interpolation is

initialized as:

fot(θ) = interp{θ, V } (C.1)

where interp{·} is the cubic spline interpolation function, and fot(θ) is a continuous ap-

proximation of V describing points between the discrete samples of V using cubic spline

interpolation. Using fot(θ), the vibration data is re-sampled to achieve a fixed shaft angle

interval. The size of this angular interval can be arbitrarily chosen, but some guideline

should be followed to avoid over- or under-sampling. Here, the angular interval is chosen

to preserve the original sampling rate and total number of samples as close as possible

using:

∆θd =

(
round

{
Fs

θ̇(ref)

})−1

, (C.2)

where θ̇(ref) is the reference shaft speed in Hz, Fs is the vibration data sampling rate in Hz,

and round{·} rounds the number to the nearest integer. The reason for using the round{·}
function and inverse, is to make sure that an integer number of samples contain a complete

shaft revolution. This is crucial when performing Angle Synchronous Averaging to avoid

overlap between revolutions. Finally, the vibration signal is re-sampled to achieve the





         


constant shaft angle interval using:

Vot(j ·∆θd) = fot(j ·∆θd). (C.3)

where Vot is the order tracked vibration signal, and j is a positive integer. In the next

Subsection, the average vibration per shaft revolution is calculated to remove the shaft-

synchronous vibration components.

C.2.3 Angle synchronous average

The vibration signal includes components from sources that are synchronous to the shaft

rotation. Typical components include vibration from shaft misalignment, shaft unbal-

ance, and motor vibration. In addition, the meshing vibration from fixed-axis gearboxes

are also integer multiples of the shaft speed. It should be noted, however, that the test

rig in Section C.2.1 does not include a fixed-axis gearbox. These shaft-synchronous vi-

bration components may mask the bearing fault and should therefore be removed before

further processing of the signal. The bearing characteristic fault orders in Table C.1 are

non-integer orders, and are therefore not shaft-synchronous. Therefore, by estimating the

shaft-synchronous vibration components and removing that from the vibration signal, the

bearing fault vibration is not affected. Using a deterministic/random separator (DRS)

such as the time synchronous average in [15], the shaft-synchronous components are esti-

mated and removed from the signal. In this research, the signal was first order-tracked by

means of computed order tracking, and therefore a modified Angle Synchronous Average

(ASA) is performed instead. An estimation of the shaft-synchronous components is found

by calculating the mean value of the vibration signal per revolution using:

Vs =
1

nr

nr−1∑
j=0

Vot [j ·Nr : (j + 1) ·Nr] , (C.4)

where nr is the number of revolutions the shaft has turned during the measurement,

Nr = 1/∆θd is the number of samples measured per revolution, Vot[a : b] imply all discrete

samples of Vot including Vot[a] up to and including Vot[b − 1], and the first sample is at

index 0. This results in the ASA, which should contain the shaft-synchronous vibration

components. The ASA is afterwards removed from each revolution in the order tracked

vibration signal using:

Vas [j ·Nr : (j + 1) ·Nr] = Vot [j ·Nr : (j + 1) ·Nr]− Vs : j ∈ [0, nr − 1], (C.5)

where Vas is the asynchronous vibration data containing the bearing fault. More infor-

mation on the general time synchronous average is found in [15]. In the next subsection,

other deterministic signal components are separated and removed using an autoregressive

whitening filter.





        


C.2.4 Autoregressive whitening filter

The ASA algorithm attenuated most of the shaft-synchronous vibration originating from

the shaft and the motor. However, there are still deterministic vibration components

not related to the bearing fault present in the dataset. One such source is the planetary

gearbox used in the test rig. Planetary gearboxes emit a complex vibration pattern due

to multiple moving components and non-integer orders forcing frequencies [16]. These

components are, however, deterministic and therefore predictable. The characteristic

bearing orders from Table C.1 assumes a zero contact angle and no slip. However, as the

local radial and axial load relationship for each roller may be different from one another,

each roller moves at slightly different speeds. The bearing cage moves at the mean speed of

all rollers, forcing some of them to slip on the raceway. Consequently, angular deviations

of up to 2% between impacts may occur [15], and the bearing vibration can therefore be

modeled as a cyclostationary process. This allows the bearing vibration to be separated

from the planetary gearbox vibration using a DRS. A linear prediction model as described

in [15] is used in this research to model the deterministic components. To this end, an

Autoregressive Model (ARM) is estimated to predict the future values of the vibration

signal based on the p previous values. The ARM acts as a model of the deterministic part

of the signal. The ARM is afterwards subtracted from the original signal, separating the

random components. Separating the deterministic components whitens the signal, and

hence this process is described as a whitening filter. The ARM is given by:

Vas[k] = −
p−1∑
j=0

a[j] · Vas[k − j − 1] + Vw[k], (C.6)

where a[j] is the j’th parameter of the model, Vw is the whitened vibration signal (or ARM

residual), and p is the ARM order. Random signal components, including the bearing

vibration, are not perfectly predictable and will therefore be a part of the residual Vw. The

unknown parameters are identified by solving the Yule-Walker equations [17, 18] for ARM

training. Wang and Wong [19] describes a method for efficiently training the ARM using

Levinson-Durbin Recursion (LDR). This training method allows for the identification of

all ARM up to an order of pmax. Theoretically, the ARM can have as many parameters

as the input signal length. C.7red However, to avoid overfitting, i.e. the ARM starts

to predict random data, the maximum order must be less than the number of samples

between bearing fault impulses [20]. This limit also imposes a selective whitening as the

deterministic components related to the bearing fault are preserved in the residual. The

maximum number of samples is calculated using:

pmax = floor

{
1

max{Obcf}∆θd

}
, (C.7)





         


where Obcf is a list containing the characteristic bearing fault orders for the present

bearing, floor{·} returns the nearest integer rounding in the negative direction, and max{·}
returns the maximum number of a list. Since the type of fault is unknown during analysis,

the maximum characteristic fault order is used.

The training method in [19] uses the Akaike Information Criterion (AIC) to determine

the optimal model order up to pmax. One modification is however implemented in this

research by using the Corrected Akaike Information Criterion (AICC) [21] rather than the

standard AIC. This change is made for its advantage on finite size datasets. The optimal

ARM order popt is identified by the minimal value of AICC. Using the optimal ARM, the

residual of the ARM is calculated using:

Vw[k − popt] = Vas[k] +

popt−1∑
j=0

aopt[j] · Vas[k − j − 1], (C.8)

where aopt is the optimal ARM. The rest of the subsection is devoted to an example using

the autoregressive whitening filter. Let y be a simulated signal containing a sum of sines,

impulses, and white Gaussian noise given by:

y = It +W +
10∑
j=1

sin {j · 0.5 · 2π · t+ φ[j]} , (C.9)

where It is an impulse train of strength 1.5 with frequency 1 Hz, W is white Gaussian

noise with a standard deviation σ = 1/5, and φ[j] is a random phase ∈ [0, 2π]. The

signal is simulated at a sample rate of 100Hz for 10 seconds, and is shown in Figure C.3

(a). Here, it is difficult to spot the impulses occurring every second. An ARM is trained

to predict the deterministic components to separate the random components. Since the

impulses occur at a rate of 1 Hz, the maximum ARM order is set to pmax = 99 to avoid

prediction of the impulses. After model training, the residual is given by (C.8) and shown

in Figure C.3 (b). The residual only contains the impulses and Gaussian noise and is

therefore suitable for further processing. In addition, the AICC for each ARM order up

to pmax is shown in Figure C.3 (c), and the residual power σ2 is shown in Figure C.3

(d). The residual power decreases continuously with increasing filter order, but the AICC

prevents overfitting the model. The optimal filter order is popt = 19 for this example.

C.2.5 Hilbert transform

The ARM residual retains the high-frequency amplitude-modulated bearing fault vibra-

tion impacts as well as low-frequency deterministic components related to the fault. The

bearing characteristic frequency for a specific fault is the frequency of the modulation

waveform. This modulation waveform is obtained by determining the envelope of the
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Figure C.3: Example scenario where an impulse train is revealed after applying the autore-

gressive whitening filter. (a) The example input signal. (b) The residual after applying

the whitening filter. (c) The AICC criteria as a function of the filter order together with

the optimal value. (d) The residual power as a function of the filter order.

signal. The envelope is obtained by computing the absolute value of the analytic signal.

The analytic signal is acquired using:

Va(θ) = Vas +H{Vas} = Vas + iVi, (C.10)

where H{·} is the Hilbert transform, i is the imaginary unit, and Vi is the complex part of

the analytic signal. The zero-mean envelope is obtained by computing the Pythagorean

distance in the complex plane and removing the mean value using:

Venv = |Va| =
√
V 2
as + V 2

i −mean{
√
V 2
as + V 2

i }. (C.11)

where mean{·} returns the mean value of an array. In the next subsection, bearing

fault vibration components are amplified by computing the cross-correlation between the

whitened vibration signal and its envelope.

C.2.6 Cross-correlation

The enveloped vibration signal contains the demodulated cyclic frequency of the bear-

ing fault impacts. In addition, the selectively whitened vibration signal also contains

deterministic components at the bearing cyclic frequency. Instead of analyzing either of

the two signals, the signals are fused by means of the cross-correlation operation. The

resulting signal contain amplified frequency components related to the fault. A more





         


in-depth discussion on the effects of this cross-correlation is given in Section C.2.8. The

cross-correlation is calculated using:

Vcc(α) = Vw(θ) ? Venv(θ) = V ∗
w(−θ) ∗ Venv(θ), (C.12)

where α is the angular lag, ? is the notation for cross-correlation, superscript ∗ indicates

the complex conjugate, and ∗ is convolution. V ∗
w is reversed to match the definition

of cross-correlation, hence noting the input with (−θ). The cross-correlated signal is

transformed to the order domain in the next subsection to be analyzed for bearing faults.

C.2.7 Order spectrum

The cross-correlated signal Vcc contains frequency components directly related to the

bearing fault. Harmonics and side-bands of the bearing characteristic frequencies can be

observed in the order spectrum of Vcc. To avoid spectral leakage, a Hann window is used

in the Fourier transform. The amplitude of the windowed Fourier transform is calculated

using:

Y = |F{w · Vcc}| , (C.13)

where w is the Hann-window, and w·Vcc must be treated as an element-wise multiplication.

The absolute value of the spectrum is used because the phase of each component is not

of interest, only the amplitude. The frequency bins of the resulting spectrum are given

in orders using:

O[j] =
j

nw ·∆θd
, (C.14)

where nw is the size of the Hann window. The final order spectrum Y (O) is termed

the Whitened Cross-correlation Spectrum (WCCS) and represents the last step in the

proposed algorithm.

C.2.8 Theoretical Discussion on WCCS

The effects of the cross-correlation in (C.12) on the WCCS is not readily apparent in the

time domain. The reason for why this cross-correlation amplifies the bearing vibration is

difficult to visualize in the time domain. Advantageously, the time domain convolution

may be represented by an element-wise multiplication in the frequency domain thanks

to the convolution theorem. Considering this, a different way of calculating the cross-

correlated vibration is

Vcc(θ) = F−1{F{V ∗
w(−θ)} · F{Venv(θ)}}, (C.15)

where F−1 is the inverse Fourier transform, and V ∗
w and Venv must be padded with zeros

to match the length of the original Vcc in (C.12). Inserting (C.15) into (C.13) shows that





        


the WCCS can be calculated with

Y = |F{w · F−1{F{V ∗
w(−θ)} · F{Venv(θ)}}}|, (C.16)

which contain numerous Fourier transforms. However, if the Hann window w is replaced

by a rectangular window (i.e. no window), (C.16) may be written as

Y = |F{V ∗
w(−θ)} · F{Venv(θ)}|. (C.17)

(C.17) shows that the WCCS is actually a similarity measure between the spectrum of

the whitened vibration signal, and the spectrum of the envelope. If both spectra have

high values at certain frequency bins, the WCCS results in a magnified amplitude at

these bins. At bins with a high amplitude on only one of the spectra, its amplitude is

attenuated. The bearing characteristic fault frequency can be observed directly in the

raw/deterministic vibration spectrum [13]. Additionally, it is determined in [22] that

the demodulated vibration signal (envelope) also contains components at the bearing

characteristic frequencies. As the characteristic bearing fault vibration may be observed in

both the selectively whitened vibration signal and its envelope, the cross-correlation may

therefore amplify the bearing vibration and attenuate unwanted noise and uncorrelated

peaks. This also shows that it is only the low-frequency part of the two signals that

are used. Therefore to rapidly calculate the cross-correlation in (C.12), the two signals

should be low-pass filtered and decimated to reach a suitable sampling frequency. For

example, as most harmonics of a bearing fault are visible up to 50 orders, the signals

should be decimated to this amount before applying the cross-correlation to reduce the

computational load.

However, there are some possible limitations to the presented WCCS that must be

addressed. The presented method performs best when low-frequency bearing fault compo-

nents are discernible from background noise in both the selectively whitened deterministic

signal and its envelope. A theoretical model of the bearing vibration signal is thoroughly

analyzed in [23]. In this reference, it is shown that the deterministic bearing signal com-

ponents are the result of a low-pass filter applied to the high-frequency bearing resonance

vibration signal. Consequently, the deterministic components related to the bearing fault

are only discernible from background noise if the bearing resonance frequency overlaps

this low-pass filter. Typically, small bearings have a high resonance frequency, and there-

fore this condition may not be met in all scenarios. A recent publication [24] demonstrate

the limitation of using the deterministic torque vibration signal for bearing fault diagno-

sis. It is also shown that the demodulated high-frequency vibration signal is more suited

for bearing fault diagnosis. However, it should be noted that even if the low-frequency

bearing fault components in the deterministic signal are only marginally stronger than





         


Figure C.4: Flowchart of WCCS used to diagnose the low-speed bearing for faults.

the background noise, the high-frequency signal envelope will still be amplified by the

cross-correlation step in (C.12), although not by much. In the case that the deterministic

signal peaks are completely drowned in noise, the amplification will be almost unity, i.e.

no improvement. Such a scenario is shown and discussed in Section C.3.2.

C.2.9 Complete algorithms

In this subsection, the proposed method is summarized with an accompanying flowchart

illustrating the implementation. In addition, other established methods in literature are

presented to establish a comparison with the proposed method.

C.2.9.1 Whitened Cross-correlation Spectrum

The flowchart for producing the WCCS is shown in Figure C.4. Initially, experimen-

tal data consisting of the speed reference θ̇(ref), vibration signal V (t), and encoder data

θ(t), are obtained in an accelerated life-test as described in Section C.2.1. This data

is used as input to the Order Track algorithm elaborated in Section C.2.2. After this

re-sampling process, a constant angle increment between each sample is realized. Next,

the synchronous components are estimated with the Angle Synchronous Average (ASA)

algorithm from Section C.2.3 and subtracted from the order tracked signal Vot to re-

tain asynchronous components, Vas. Afterwards, a linear Autoregressive Model (ARM)





        


is used as a DRS in Section C.2.4 to separate the bearing fault vibration from other de-

terministic components. This process acts as a whitening filter and returns the whitened

vibration signal. The envelope is obtained by using the Hilbert transform and calculat-

ing the absolute value of the analytic signal in Section C.2.5. This envelope contains

the demodulated high-frequency bearing fault vibration, random peaks, and white noise.

The cross-correlation between the whitened vibration signal and its envelope is calculated

in Section C.2.6 to amplify the bearing fault vibration, and attenuate white noise and

random peaks. Vcc is finally processed through a Hann-windowed Fourier transform as

elaborated in Section C.2.7, which results in the WCCS that is plotted for analysis. The

performance of the proposed method is compared against three other methods reported

in the literature, and they are explained in the next Subsection.

C.2.9.2 Comparison methods

To showcase the performance of the WCCS, the method is compared to three other

methods reported in the literature. These three are the Envelope Spectrum [22], Fast

Kurtogram [25], and the Fast Spectral Correlation [26]. These methods are similarly

computationally heavy, and do not involve experimentally tuned settings. To generate a

fair comparison, the whitened vibration signal Vw(θ) is used as input to all three methods.

Method A: Envelope Spectrum

The Envelope Spectrum [22] is a well-known method used for bearing fault diagnosis, and

its flowchart is shown in Figure C.5 (a). The method involves demodulating the vibration

signal via an envelope function to identify the characteristic bearing fault frequencies in

the frequency spectrum. In this application, the absolute valued analytic signal is applied

to get the envelope.

Method B: Kurtogram

To further improve the envelope spectrum, a narrow-band filter centered on the resonance

frequency of the bearing vibration can be applied beforehand to increase the signal-to-

noise ratio. However, the resonance frequency is normally unknown, and is difficult to

obtain analytically. To estimate this resonance frequency, the Fast Kurtogram [25] is

employed. The flow chart of this method is shown in Figure C.5 b). In summary, the

Fast Kurtogram passes the whitened vibration signal through a complex, narrow-band

filter-bank with varying central frequencies and spectral width. The kurtosis is calculated

for each filtered signal, and the narrow-band that maximizes the kurtosis is assumed to





         


Figure C.5: Three additional methods used to compare performance with the WCCS. (a)

Method A involves diagnosing the bearing using the Envelope Spectrum. (b) Method B

improves on the Envelope Spectrum by bandpass filtering the whitened vibration signal

around the narrow-band yielding maximum kurtosis. (c) Method C involves the fast

calculation of the Spectral Correlation which is a tool for analyzing cyclostationary signals.

contain the bearing resonance frequency. The squared envelope spectrum of the narrow-

band filtered signal Vbp(θ) is analyzed for the bearing characteristic fault frequencies. In

obtaining the Kurtogram, the excess kurtosis is calculated using:

Kurt{x} − E =
µ4

σ4
− E, (C.18)

where µ4 is the fourth central moment, σ is the standard deviation, and E is the kurtosis

value for Gaussian white noise. For a real signal E = 3, and for a complex signal E =

2. Henceforth, the excessive kurtosis is named kurtosis to avoid repeating the word

“excessive”.

Method C: Fast Spectral Correlation

The Spectral Correlation (SC) is a tool for analyzing cyclostationary signals (signals

with hidden periodicities or repetitive patterns), like the high-frequency vibration signal





        


exhibited from bearing fault impacts. The resonance vibration is amplitude-modulated

with a comparably lower-frequency modulation waveform, making it ideal to analyze

using such cyclostationary tools. The SC is a two-dimensional spectrum showing the

cyclic-spectral frequency relationship. The usage of the SC has been limited in condition

monitoring applications due to its high computational cost. A fast version of the SC, Fast

SC, was developed in [26] which computes an estimate of the SC several magnitudes faster

than the original algorithm. From the estimated SC, the Enhanced Envelope Spectrum

[26] is identified by calculating the mean, absolute value of the SC in the direction of the

spectral frequency. The Enhanced Envelope Spectrum is used in this method, and the

flowchart is shown in Figure C.5 (c).

C.2.9.3 Performance metrics

Two performance metrics are created to quantify the performance of the WCCS and

the three other methods. The first metric evaluates the method’s ability to discern the

bearing characteristic fault frequency harmonics from the noise floor (mean value of the

spectrum), and is calculated using:

P1 =

(
1

nh

nh∑
j=1

Yh,j

)
/mean{Y } , (C.19)

where nh is the number of harmonics in the spectrum, and Yh,j is the amplitude of

harmonic j. P1 represents the mean ratio of the harmonic values to the noise floor. This

dimensionless ratio is comparable between each method, as the amplitude-scale of each

spectrum is widely different from each other.

The second metric evaluates the method’s ability to discern the side-bands from the

noise floor, and is calculated using:

P2 =
1

nh

nh∑
j=1

ns,j, (C.20)

where ns,j is the number of side-bands linked to harmonic j in the spectrum. Visible

side-bands are marked in the spectra and are expected to be prominent compared to the

noise floor. P2 represents the mean number of visible side-bands per harmonic in the

spectrum.

C.3 Results

Vibration data is collected from an accelerated life-time test as described in Section C.2.1.

In this section, the measurements recorded at 20 rpm will be used to show the performance

of the WCCS, and how it compares to the three other methods.
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Figure C.6: Kurtosis of the vibration datasets measured at 20 rpm shaft speed. (a) The

kurtosis at an early stage of damage. (b) The kurtosis at an advanced stage of damage.

C.3.1 Kurtosis trend

The kurtosis is a time domain feature that can be used to indicate damage in the bearing.

This is because a high kurtosis value implies an impulsive signal containing shocks from,

i.e., bearing fault impacts. To show the damage propagation of the bearing during the

accelerated life-time test, the kurtosis is calculated using (C.18) for the 20 rpm datasets,

and shown in Figure C.6. In this figure, there are two graphs. (a) and (b) both shows the

kurtosis of the vibration data, but at different y- and x-axis scales. The x-axis indicates

how many million revolutions the bearing has rotated before the data is recorded. Initially,

the kurtosis value is low, but it rises to very high values when the bearing is sufficiently

damaged. In Figure C.6 (a) there are three points that are marked. These will be referred

to as kurtosis points in the following, and they indicate changes in the bearing health.

Specifications for the datasets linked to these points are given in Table C.2. In the next

Subsection, the WCCS is used to diagnose the bearing for faults at these three points.

C.3.2 Whitened Cross-correlation Spectrum

The proposed method from Section C.2.9.1 generates the WCCS which is used to ana-

lyze the vibration data at the various kurtosis points. At kurtosis point 1, there is no

notable change in the kurtosis value. However, the WCCS generated from the proposed

method shows a significant change compared to earlier measurements. The spectrum

of the whitened vibration signal, the envelope spectrum, and the WCCS are shown in

Figures C.7 (a)-(c), respectively. Here, the order spectra up to 50 orders are displayed.

In addition, lines that indicate harmonics of O2BS and side-bands are also shown. From

Table C.1, the characteristic fault frequency for a roller fault is 6.66 orders, and the side-

bands are spaced apart by the fundamental train at 0.43 orders (OFT ). Due to roller slip

and non-zero contact angle, the actual frequency is observed at 6.71 orders (deviation





        


Table C.2: Specifications of the datasets at the three kurtosis points.

Kurtosis point → Point 1 Point 2 Point 3

Sampling frequency Fs (kHz) 51.2 51.2 51.2

Duration (s) 153 153 153

Million revolutions passed 5.37 5.46 5.76

Number of samples 7,833,600 7,833,600 7,833,600

Kurtosis of raw data kurt{V } 1.14 1.10 1.41

Shaft speed θ̇(ref) (Hz) 0.33 0.33 0.33

Fault type Roller Outer-race Inner-race

Max ARM order pmax 22,391 22,391 22,391

Optimal ARM order popt 22,325 22,160 22,094

Kurtosis of whitened data kurt{Vw} 0.69 0.65 0.61

of +0.75%). Examining Figure C.7 (a) reveals that the low-frequency vibration signal

contains multiple side-bands around harmonics of the characteristic frequency. However,

the first five harmonics are not readily visible. On the contrary, the envelope spectrum

in Figure C.7 (b) shows small signs of the harmonics, and a few side-bands. Incorporat-

ing the cross-correlation fuses these two spectra, and amplifies the vibration components

that are visible in both. Figure C.7 (c) show the WCCS. Here, the perceived noise-floor

is smaller than in Figure C.7 (a), and the harmonics from Figure C.7 (b) are shown as

discrete peaks. In addition, a prominent peak at the OFT is also visible due to the strong

vibration occurring when the damaged roller is in the radial load zone. From these re-

sults, it is shown that even if a characteristic peak is only readily visible on one of the two

spectra, it is preserved after the cross-correlation step. This phenomenon is best observed

at the second harmonic (2x 6.71 orders), where the envelope spectrum in Figure C.7 (b)

shows a small peak, while the whitened vibration spectrum in Figure C.7 (a) does not

indicate a significant peak. Even with these signals, the WCCS in Figure C.7 (c) still

preserves the second harmonic peak from the envelope spectrum. Therefore, it should be

unproblematic to use the proposed method even if the deterministic signal shows small

to no signs of the bearing fault.

By visual inspection between the three spectra in Figure C.7, it is evident that the

WCCS is easier to analyze than either of the two other spectra. From these results, it is

clear that the bearing suffers from a roller fault at this stage. For comparison purposes, the

WCCS from a dataset captured ≈10,000 revolutions earlier is obtained, and the spectrum
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Figure C.7: The WCCS used to diagnose a roller fault at kurtosis point 1 in Figure C.6.

Harmonics and side-bands linked to the roller fault are marked in all three subfigures.

(a) The spectrum of the whitened vibration signal Vw. (b) The spectrum of the envelope

Venv. (c) The proposed WCCS and a red stapled line which corresponds to the mean

spectrum value.

is shown in Figure C.8. Here, there are no prominent amplitudes related to a roller fault,

and the bearing seems undamaged. There are, however, four other prominent peaks in

the spectrum, and these are marked. 14OS is equal to two times the motor speed due

to the gearbox. This vibration component was not attenuated in the whitening process

and is hence noise in the spectrum. The second peak is marked as OBPO which is the

characteristic frequency for an outer race fault at roughly 5.12 orders. It should normally
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Figure C.8: The WCCS computed 10,000 revolutions prior to kurtosis point 1 in Figure

C.6. The roller damage is not visible.
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Figure C.9: Baseline WCCS at the start of the accelerated life-test. A peak at the char-

acteristic frequency for an outer-race fault is visible, however the bearing is undamaged

at this stage.

be visible if there is an outer-race fault. However, the authors believe that the outer race

is undamaged at this point. That is because vibration at this cyclic frequency can also

be spotted at the beginning of the accelerated life-time test. A baseline WCCS after the

initial run-in of the healthy bearing is shown in Figure C.9. In this spectrum, a peak at

the characteristic frequency for an outer-race fault is still visible. As the bearing isn’t

damaged at this point, the authors conclude that there is vibration at the OBPO frequency

regardless of the bearing condition. The authors suspect that rollers passing the radial

load zone may cause the vibration at the OBPO frequency. This passing may cause the

shaft to move slightly up and down, which would explain the vibration. It could also be

from stressing and de-stressing a roller once it passes the radial load zone. Additionally,

the 1 order side-bands in Figures C.8 and C.9 are effects of amplitude-modulation of the

OBPO vibration. This could be caused by shaft mass-unbalance, or if the shaft is slightly

bent. Nevertheless, to accurately diagnose an outer-race fault using the proposed method,

there must be several stronger harmonics in the spectrum, as a single peak appears to
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Figure C.10: The WCCS used to diagnose an outer-race fault at kurtosis point 2 in Figure

C.6. Harmonics linked to the outer-race fault are marked in all three subfigures. (a) The

spectrum of the whitened vibration signal Vw. (b) The spectrum of the envelope Venv.

(c) The proposed WCCS.

always be visible.

Moving on, kurtosis point 2 from Figure C.6 marks a new health state for the bearing.

The spectrum of the whitened vibration signal, the envelope spectrum, and the WCCS

are shown in Figures C.10 (a)-(c), respectively. The roller fault is no longer visible in

the WCCS in Figure C.10 (c). Instead, harmonics linked to an outer race fault are very

prominent in the spectrum. The characteristic fault frequency for outer-race faults is

5.12 orders with no side-bands according to Table C.1. The actual observed harmonic





        


frequency is 5.18 orders (deviation of +1.17%). Compared to a healthy state, there are

now multiple strong harmonics in the spectrum, which strengthen the probability that

there is an outer-race fault. Examining Figure C.10 (a) and (b) reveals that the outer-race

vibration peaks in the WCCS mostly arrive from the spectrum of the whitened vibration

signal. This is a second case showing that even if only one of the two input spectra shows

significant signs of bearing vibration, the resulting WCCS does not suffer significantly

from this. The envelope spectrum in Figure C.10 doesn’t show any prominent harmonics

at the outer-race characteristic frequency. The outer-race fault stays visible for quite

some time until kurtosis point 3 which marks yet a change of state in the bearing. The

spectrum of the whitened vibration signal, the envelope spectrum, and the WCCS are

shown in Figures C.11 (a)-(c), respectively. The WCCS in Figure C.11 (c) shows multiple

harmonics and side-bands linked to an inner-race fault. The fault is characterized by

strong harmonics at multiples of 6.88 orders accompanied by side-bands spaced 1 order

away from the harmonic according to Table C.1. In the observed spectrum, the actual

harmonic frequency is 6.82 (deviation of -0.87%). The peaks are very prominent, and there

are multiple side-bands, making it easy to conclude the type of fault. Harmonics from the

outer-race fault may also be observed in the spectrum, however they are not marked to

avoid clutter in the plot. Examining the whitened vibration spectrum in Figure C.11 (a)

shows prominent peaks at the third and higher harmonics. Meanwhile the first and second

harmonic are visible in the envelope spectrum in Figure C.11 (b). The cross-correlation of

the two signals make a clearer spectrum as shown in Figure C.11. Shortly after kurtosis

point 3, the kurtosis value increases drastically as seen on the chart in Figure C.6 (b), and

the bearing is approaching the end of its useful life. Luckily, the WCCS highlighted roller

faults nearly 500,000 rounds prior to kurtosis increasing drastically. With an expected

life-time of ≈ 6 million revolutions, this corresponds to 0.5/6 = 8.33% of remaining useful

life after the first fault was diagnosed. In the next subsection, the performance of the

WCCS is compared to the three other methods.

C.3.3 Comparison to other methods

For the comparisons shown in this subsection, the dataset resulting in kurtosis point 1

from Figure C.6 is used, because early fault detection is the most critical. The WCCS

shown in Figure C.7 (c) indicates that there is a roller fault in the bearing. This spectrum

is compared to the three other processing methods (A, B, and C), whose algorithms are

elaborated in Section C.2.9.2.
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Figure C.11: The WCCS used to diagnose an inner-race fault at kurtosis point 3 in Figure

C.6. Harmonics and side-bands linked to an inner-race fault are marked in all three

subfigures. (a) The spectrum of the whitened vibration signal Vw. (b) The spectrum of

the envelope Venv. (c) The proposed WCCS.

Method A: Envelope Spectrum

The resulting envelope spectrum from method A is shown in Figure C.12. The spectrum

barely highlights the roller fault harmonics and its side-bands. They could easily be

ignored due to the first harmonic’s low amplitude. Shaft and motor vibrations, marked

as OS and 14OS, are the most prominent peaks in the spectrum. Therefore, method A is

not suitable for diagnosing faults on the presented dataset.
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Figure C.12: The resulting Envelope Spectrum from using method A. The roller fault

harmonics are barely visible, while shaft and motor vibration dominate the spectrum.

The mean value of the spectrum is marked for comparison purposes.

Method B: Kurtogram

The resulting Kurtogram from method B is shown in Figure C.13. From this result, the

chosen narrow-band is centered at 24,800 Hz with a bandwidth of 1600 Hz, because it

represents the highest kurtosis. The squared envelope spectrum of the band-pass filtered

signal is returned from this method and shown in Figure C.14. In this spectrum, it is

possible to discern seven harmonics related to a roller fault. However, motor-synchronous

vibration at 14OS and 35OS dominates the spectrum. The harmonics and side-bands of

the roller fault frequency are more prominent compared to the non-filtered envelope spec-

trum. However, compared to the WCCS shown in Figure C.7 (c), this squared envelope

spectrum has a higher noise-floor.

Method C: Fast Spectral Correlation

The resulting Enhanced Envelope Spectrum (EES) from method C is shown in Figure

C.15. In the EES, the harmonics linked to the roller fault are small compared to the

vibration from the shaft and motor. The spectrum is dominated by peaks at 1OS, 14OS,

and 35OS. The harmonics linked to the roller fault are partially visible, however they are

hard to discern from the noise-floor. Compared to the WCCS, it is harder to detect the

harmonic peaks, and there are fewer side-bands.

C.3.3.1 Performance metrics

The performance of each method is quantified using the performance metrics from Section

C.2.9.3. The spectra indicating a roller fault at kurtosis point 1 in Figure C.6 is used to

evaluate the performance, and the values are given in Table C.3. The metrics show that

the WCCS scores the best among the four different spectra. The Fast Kurtogram (B) is
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Figure C.13: Resulting Kurtogram in method B indicating a maximum of kurtosis at a

central frequency of 24,800 Hz and a bandwidth of 1600 Hz. The kurtosis value at that

narrow-band is 18.2.
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Figure C.14: Squared envelope spectrum of the band-pass filtered vibration signal in

Method B. The roller fault harmonics and side-bands are visible, and the mean value of

the spectrum is marked for comparison purposes.

second best, and the Envelope Spectrum (A) and the Fast Spectral Correlation (C) are

tied for the third place. Further, the resulting spectrum from methods A, B, and C also

contained strong peaks from the shaft and motor vibration, which reduces the visibility

of the peaks linked to bearing faults. Therefore, based on these criteria, the WCCS is

the best spectrum to perform fault diagnosis on among the four. It should be noted

that the minimum value of the Enhanced Envelope spectrum was subtracted before the

criteria was calculated, as the spectrum shown in Figure C.15 appears to have an offset

in amplitude.
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Figure C.15: Resulting Enhanced Envelope Spectrum from the Fast Spectral Correlation

(Method C). The roller fault harmonics and side-bands are barely visible, and the mean

value of the spectrum is marked for comparison purposes.

Table C.3: Performance metric for each method. The WCCS scores the highest in both

categories.

Method P1 P2

WCCS 5.49 6.57

A 2.95 1.42

B 4.42 3.85

C 2.65 2.00

C.3.4 Supplementary benchmark case study

The bearing fault database from the Case Western Reserve University (CWRU) [27] is

a standard benchmark for diagnostics algorithm performance. Smith and Randall [28]

published an extensive benchmark study where the performance of three established di-

agnostic techniques were evaluated on all available datasets. The three methods involved

the squared envelope spectrum (SES); pre-whitening before SES; and pre-whitened Spec-

tral kurtosis [25] and SES.

A dataset recorded during healthy conditions is examined first. This is to investigate

the phenomenon of a visible vibration at the frequency of the outer-race OBPO. The

dataset used is named 100DE in which the vibration is measured at the drive-end, and

there is no damage on either fan-end or drive-end bearing. Relevant specifications are

given in Table C.4. The WCCS of this dataset is shown in Figure C.16.

The resulting WCCS show multiple peaks at integer multiples of the shaft speed, in

addition to other non-integer peaks. The most interesting part is the inclusion of a peak

at OBPO and two side-bands spaced 1 order away from it. This is the same phenomenon





         


Table C.4: Specifications for the tested CWRU datasets. DE=Drive-end, FE=Fan-end

Dataset number → 100DE 275DE

Sampling frequency Fs (kHz) 48 12

Duration (s) 10.11 10.11

Accelerometer location DE DE

Number of samples N 485,335 121,351

Kurtosis of raw data -0.0428 1.25

Shaft speed θ̇(ref) (Hz) 28.83 29.58

Fault type Healthy FE Inner-race

DE ball pass order outer-race OBPO 3.5961 -

FE ball pass order inner-race OBPI - 4.974

Max ARM order pmax 308 82

Optimal ARM order popt 308 82

Kurtosis of whitened data 0.0708 1.22
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Figure C.16: The WCCS on the CWRU healthy dataset 100DE recorded on the drive-end.

shown in the healthy case of the first database in Figure C.8. It was suggested that the

vibration at OBPO comes from the passing of rollers over the radial load zone. A bent

shaft would cause this OBPO vibration to be modulated by the shaft frequency, which

would result in the side-bands spaced apart by 1 order.

The performance of the WCCS is also tested on a dataset recorded with a known

fault. A particular dataset (275DE) with an inner-race fault located at the fan-end (FE),

and the vibration recorded at the drive-end (DE), proved to be difficult to diagnose using

the aforementioned benchmark methods ([28], Table B4). The results are indicated as

“partially successful” for the first two methods, and “not successful” for the last one as





        


0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Orders

0

2

4

6

8

A
m

p
li

tu
d

e
×10−3

(a)
Harmonics of BPI Side-bands

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Orders

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
li

tu
d

e

×10−2

(b)
Harmonics of BPI Side-bands

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Orders

0

1

2

3

4

5

6

7

A
m

p
li

tu
d

e

×10−1

(c)
Harmonics of BPI Side-bands

Figure C.17: The WCCS used to diagnose an inner-race fault located at the fan-end of the

CWRU dataset. The vibration was measured at the drive-end. Harmonics and side-bands

linked to an inner-race fault are marked in all three subfigures. (a) The spectrum of the

whitened vibration signal Vw. (b) The spectrum of the envelope Venv. (c) The proposed

WCCS.

shown in Table B4 in [28]. Performing diagnosis on this dataset is difficult as the bearing

vibration must pass through the noisy induction motor. Relevant specifications for this

dataset are given in Table C.4. Note that the ball-pass inner race order is very close to 5

shaft orders, which may cause problems during spectrum analysis.

The spectrum of the whitened vibration signal, the spectrum of the envelope, and the

WCCS are shown in Figures C.17 (a)-(c), respectively. The vibration spectrum in Figure





         


C.17 (a) shows 10 harmonics of the OBPI , and multiple side-bands spaced one order away

from the harmonic. However, there also multiple other peaks present which makes the

analysis more difficult. The envelope spectrum in Figure C.17 (b) doesn’t contain as many

peaks, but most are related to the bearing fault. However, from the third harmonic, the

amplitude of the OBPI harmonics diminish in value. The WCCS in Figure C.17 (c) is

capable of combining the harmonics and side-bands of the whitened vibration spectrum

and the envelope spectrum. This spectrum has a lower perceived noise-floor, and fewer

peaks that are not related to the bearing fault. From these results it is clear that the

WCCS is useful to successfully diagnose the fan-end bearing, and that it is easier to

analyze than either the whitened vibration spectrum or the envelope spectrum.

C.4 Conclusions

The Whitened Cross-correlation Spectrum (WCCS) is proposed in this paper for di-

agnosing bearing faults. The method consists of whitening the vibration signal using

synchronous average and an autoregressive model. The key feature of the method is

the cross-correlation between the selectively whitened vibration signal and its envelope.

This correlation results in an element-wise multiplication of the frequency spectra of the

two signals. It has been shown in the literature that both the raw deterministic vibra-

tion signal and the envelope may contain low-frequency signal components related to the

bearing fault. Therefore, this correlation causes frequency components that are visible

in both to be amplified, while components that do not share correlation are attenuated.

The computational complexity of the time-domain convolution can also be minimized

by down-sampling the whitened vibration signal and the envelope prior to computing the

cross-correlation. Vibration data from a bearing accelerated life-time test has been used to

verify the diagnostic performance of WCCS. The method aids to accurately diagnose the

bearing for all three fault types before the bearing is seriously worn out. The early fault

was identified at ≈ 8.33% of remaining useful life, which should be long enough to sched-

ule a machine overhaul. Compared to other methods in the literature that are similarly

computationally heavy, the WCCS provided more prominent harmonics and side-bands

compared to the other methods. Additionally, a difficult dataset from the Case Western

Reserve University (CWRU) has been successfully diagnosed using the WCCS.
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Abstract – Rolling element bearings are crucial components in rotating ma-

chinery, and avoiding unexpected breakdowns using fault detection methods

is an increased demand in industry today. Variable speed conditions render a

challenge for vibration-based fault diagnosis due to the non-stationary impact

frequency. Computed order tracking transforms the vibration signal from

time domain to the shaft-angle domain, allowing order analysis with the enve-

lope spectrum. To enhance fault detection, the bearing resonance frequency

region is isolated in the raw signal prior to order tracking. Identification of

this region is not trivial but may be estimated using kurtosis-based methods

reported in the literature. However, such methods may fail in the presence of

relatively strong non-Gaussian noise. Cepstrum pre-whitening has also been

proposed for this diagnosis challenge, however the noise floor may increase

significantly from the normalization of the entire spectrum. In this paper,

a new approach for identifying multiple resonance regions is proposed. The

proposed method highlights all resonance frequencies in the signal by com-

bining computed order tracking and cepstrum pre-whitening in a new way.

Simulations and experimental results prove the validity of the method, and

comparisons with two existing methods show the increase in effectiveness of

the proposed method.

D.1 Introduction

Rolling-element bearings, or bearings for short, are critical components in rotating ma-

chinery. Unexpected bearing failure may cause machine breakdown and unplanned stops,

followed by human safety risks and economic loss [1, 2, 3]. To avoid this scenario, crit-

ical machine components, such as bearings, should be monitored to detect irregularities

early. Condition monitoring systems with sensor data input have been used for decades

to diagnose rotating machinery for various faults. Commonly, the vibration measured
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with an accelerometer is analyzed to detect bearing faults [4, 5, 6]. Electric motor stator

current [7, 8, 9] and acoustic emission [10, 11] are also reported as viable sensor sources

for bearing fault diagnosis. However, in this research, vibration signals are used towards

drive-train applications, where accelerometers are always in place.

Bearing fault diagnosis methods based on the theory of cyclostationary (CS) signals

have received substantial attention in both industry and academia [12].

Bearing vibration signals are weakly categorized as second order CS (CS2) signals due

to internal slip and varying radial/axial load ratios for each roller [13].

The envelope spectrum (ES) [14] is a high-frequency demodulation technique that is

often used for bearing diagnosis owing to its simplicity for identifying the cyclic frequency

of CS2 signals.

Such existing techniques are commonly used in industrial production, in which the

machinery mainly operates in a steady state, i.e. the motor shaft rotates at a near-fixed

speed. This is not the case for electric drive-trains that often operate under variable speed

conditions (VSC) based on driver’s command.

Under VSC, bearing fault impacts no longer occur at a fixed time interval as the rela-

tion between time and shaft angle is not linear. The time domain vibration signal can be

transformed to the shaft-angle domain by applying computed order tracking [15]. This

transformation requires knowledge of the shaft position acquired from a tachometer or

an encoder. Alternatively, the shaft phase can be extracted from high-energy harmonics

in the vibration signal [16], or the electric motor current [17]. The bearing resonance

vibration should be isolated using a band-pass filter prior to order tracking to detect

bearing faults effectively. Determining the resonance frequency may be achieved by a

hammer tap test [18], or from a thin-shell vibration computer program [19]. However,

these operations are complex and hard to generalize for multiple different bearings and

machines. An alternative is to estimate an optimal band for band-pass filtration using

the vibration signal itself. Kurtosis-based methods, such as spectral kurtosis [20], may be

used to identify optimal frequency regions. A high kurtosis value implies that the signal is

impulsive, such as the quickly damped impact vibration from bearing fault impacts. Con-

sequently, a frequency band with a high kurtosis value should contain bearing vibration.

Methods such as the fast Kurtogram [21] and the Protrugram [22] both use the kurtosis

to determine optimal frequency bands for filtering. Applications of these methods [23, 24]

show their applicability in determining the optimal filter band. However, in the case of

strong non-Gaussian noise or single impacts, kurtosis-based methods may fail to identify

the optimal frequency band. Cepstrum pre-whitening (CPW) has also been proposed for

fault diagnosis during VSC [25].

However, the spectrum normalization of CPW increases the noise floor which makes





         


it more difficult to detect fault-related peaks in the ES.

To address the mentioned challenges, a new method for identifying multiple resonance

frequency regions is proposed in this paper. Instead of relying on kurtosis, the proposed

method exploits the effect of resonance frequency spread due to order tracking, and the

spectrum normalization effect of CPW [26, 27]. Advantageously, the method is robust

against non-Gaussian noise and random impacts, and the noise floor is kept to a minimum

compared to CPW as the signal is band-pass filtered at the bearing resonance region(s).

After applying order tracking and CPW, the normalized spectrum is transformed back

to the time domain, and time variant resonance modes rises from normalized spectrum.

Raising this spectrum to a higher power allows separation resonance frequency modes,

which can be chosen for bandpass filtration. Simulations and experimental results from

three test rigs validate the proposed method. The rest of the paper is organized as follows.

An introduction to bearing fault diagnosis using a vibration accelerometer is given in

Section D.2. The algorithms used in the proposed method are elaborated in Section D.3.

Methods used for comparison purposes are detailed in Section D.4. Experimental results

from simulations and vibration datasets from three test rigs are shown in Section D.5.

Comparisons between the proposed method versus spectral kurtosis and CPW are given

in Sections D.6. Finally, conclusions are drawn in Section D.7.

D.2 Bearing fault diagnosis

A roller element bearing is made of four main components: an inner race fastened to the

rotating shaft; an outer race stationary inside a housing; rollers/balls rotating in between

the raceways; and a cage which keeps the distance between rollers constant. An exemplary

bearing with an outer race fault is shown to the left in Fig. D.1. Fault impacts of passing

rollers cause quickly damped vibration pulses at the resonance frequency of the bearing

as seen in Fig. D.1. The impact frequency, referred as a characteristic bearing frequency,

is determined by the kinematics of the bearing. The expected characteristic frequencies

associated with each fault type (inner race, outer race and roller) can be determined

with bearing dimensions, such as the number of rollers, the roller diameter, and the pitch

diameter [18]. A resonance frequency mode should be isolated using a band-pass filter

to remove frequency components, which are not related to the bearing impacts. Usually,

multiple frequency bands contain bearing resonance vibration as indicated in [19, 28].

The proposed method allows for identifying several resonance frequency bands that can

be used for band-pass filtration. To perform diagnosis, the Hilbert ES is analyzed for

prominent peaks at the characteristic frequencies of the bearing.





         


Figure D.1: Simplified bearing condition monitoring setup.

D.3 Proposed method

D.3.1 Complete algorithm

The flow diagram of the proposed method is shown in Fig. D.2. At first, the vibration

signal x(t) is acquired using an accelerometer, and the shaft position signal θ(t) is captured

using an encoder.

A suitable frequency band [fc, fbw] is first identified using the proposed method before

computing a band-pass filtered Hilbert envelope order spectrum [14].

D.3.2 Order tracking

The vibration signal is usually measured at a fixed sample rate in the time domain.

During constant speed operation, this corresponds to a near-fixed number of vibration

samples between bearing fault impacts. Under VSC, however, this correspondence is no

longer true. To acquire a fixed number of samples between impacts, the vibration signal

is re-sampled from the time domain to the shaft-angle domain (also known as the order

domain). The vibration signal is re-sampled using any interpolation-method of choice

with

fot(θ) = Interpolate{x = θ(t), y = x(t)} , (D.1)

where fot(θ) is a continuous description of the vibration signal in the order domain, where

values between the discrete samples are described using the desired interpolation method.

In this research, cubic spline interpolation is chosen to compromise between compu-

tational burden and accuracy [15]. Using fot(θ), the vibration signal is re-sampled at





         


Figure D.2: Flow diagram of the proposed method. x(t) and θ(t) are the vibration signal

and encoder signal, respectively. fc and fbw are the central frequency and bandwidth of

the identified resonance mode.

intervals of ∆θ with

xot[j] = fot(j ·∆θ) , (D.2)

where j ≥ 0 is an integer, xot[j] is the j’th sample of the order tracked vibration signal,

and (j ·∆θ) must be within limits of the measured θ(t).

It should be noted that the frequency spectrum of an order tracked signal is shown as

a function of orders, where the 1st order is equal the shaft speed. In addition to order

tracking, it is also possible to perform the inverse, i.e. time tracking, which transforms

the signal back to the time domain. Deterministic vibration components from shafts are

de-spread in the order spectrum, while the bearing resonance vibration is spread across a

larger area as the resonance vibration is a function of time. Numerical examples of order

tracking shaft and bearing vibration are shown in Fig. D.3. Figs. D.3 (a) and (b) show

the simulated shaft vibration and bearing resonance vibration, respectively. The shaft

vibration is the sum of 27 sine waves described in the shaft angle domain. A bearing with

an outer race fault is included in the simulation. Each roller impact causes a response

given by an underdamped second order system with a resonance frequency of 6000 Hz.

Each signal is simulated for 20 seconds with a shaft speed that ranges between 10 and

16 Hz. The frequency spectra of the shaft and bearing vibration are shown in Figs. D.3
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Figure D.3: Simulation showing the resonance frequency spreading effect, and determinis-

tic component de-spreading. (a) shaft vibration; (b) bearing vibration; (c) shaft vibration

frequency spectrum; (d) bearing vibration frequency spectrum; (e) shaft vibration order

spectrum; (f) bearing vibration order spectrum. One order is equal 10 Hz in this example.

(c) and (d), respectively. As seen in Fig. D.3 (c) shaft vibration components are spread

across the low-frequency region, while the bearing resonance is centered at 6000 Hz in

Fig. D.3 (d). After applying order tracking, the order spectrum of the shaft and bearing

vibration are shown in Figs. D.3 (e) and (f), respectively. In D.3 (e), the shaft vibration

components are sharpened, while the bearing vibration order spectrum in Fig. D.3 (f)

shows that the resonance vibration energy is spread across a larger frequency area. The

proposed method exploits this phenomenon to identify the bearing resonance frequency

region.

D.3.3 Cepstrum pre-whitening

As elaborated in [25], deterministic vibration components originating from shafts and gear-

boxes are periodic, but not sinusoidal, and thus form multiple harmonics in the frequency

domain. In the cepstral domain, these harmonics form a single peak at the quefrency

equal to the period of the deterministic signal component. However, bearing vibration

CS2 components do not form significant peaks in the cepstrum, as they are not exactly

periodic. Therefore, it is possible to eliminate deterministic components by performing a

series of liftering operations around the quefrencies of deterministic components [26, 27].

By setting the whole real cepstrum to a zero value, except at zero quefrency, all deter-

ministic components are attenuated. This method is referred as cepstrum pre-whitening





         


(CPW) and is simplified using the following [25]:

xcpw = F−1

{
F{V }
|F{V }|

}
, (D.3)

where F and F−1 are the forward and inverse Fourier transform, respectively.

Inspecting (D.3) reveals that CPW normalizes the frequency spectrum amplitude, i.e.

turns the spectrum flat.

D.3.4 Order tracking and cepstrum pre-whitening

As previously elaborated, resonance vibration is spread in the order domain, while deter-

ministic components are de-spread, and CPW normalizes the amplitude of all frequency

components. By combining CPW and order tracking, it is possible to highlight resonance

frequency modes in the frequency spectrum. This is visualized in Fig. D.4 and explained

hereafter: First, the resonance-to-other ratio (ROR) is defined as the ratio between res-

onance mode amplitude and the most prominent amplitude of other components in the

frequency spectrum.

The raw vibration spectrum is mostly dominated by deterministic low-frequency com-

ponents from shaft and gearbox vibration, therefore the ROR is lower than 1. By im-

plementing the order tracking algorithm, the ROR is even more reduced because of the

spread of resonance frequency and de-spread of deterministic components. Using CPW

afterwards causes all frequency components to get the same amplitude, and thus the ROR

is equal to 1. The inverse order tracking is used to spread deterministic components and

de-spread resonance frequency modes, thus achieving a ROR greater than 1. As the ROR

is greater than 1, raising the amplitude to a power increases the ROR even further. To

avoid singular dominant peaks in the spectrum, the amplitude is filtered using a forward-

backward first order IIR low pass filter, and afterwards raised to a power of 5. The final

spectrum is analyzed to identify the most prominent resonance frequency mode, and the

original signal is band-pass filtered around this mode to enhance bearing fault diagnosis.

While prominent resonance modes are manually chosen in this paper, it is possible to

automate the mode splitting using an automatic diagnosis system described in [28].

D.4 Comparison methods

D.4.1 Spectral kurtosis

Spectral kurtosis is a well-known method for identifying a suitable frequency band as a

high kurtosis value signifies impulsive signal components such as bearing impact vibration.

The fast Kurtogram [21] makes a good estimate of the spectral kurtosis at a fraction of





         


Figure D.4: Visualization of the ratio between resonance mode amplitude versus the most

prominent amplitude of other components in the frequency spectrum (ROR) after each

step in the proposed method.

the computational cost by calculating the kurtosis at multiple levels of low- and high-pass

filtration in an iterative manner. The frequency band with the highest kurtosis should

be the most suitable frequency band. The Kurtogram shows kurtosis values at different

central frequencies (x-axis) and bandwidth (y-axis), where an increase in level signifies a

decrease in bandwidth. Spectral kurtosis may fail if the signal is contaminated by strong

non-Gaussian noise or random impacts [22]. The vibration signal is filtered with the band

that has the highest kurtosis value, and the envelope order spectrum is calculated.

D.4.2 Cepstrum pre-whitening

The proposed method is also compared to the CPW algorithm in [25]. In that algorithm,

the signal is first order tracked, and discrete components are removed by means of CPW.

Afterwards, the envelope order spectrum of the resulting signal is computed.

D.4.3 Diagnosis score

When diagnosing a fault with an ES, there are two factors that determine the confidence

of the diagnosis: the number of characteristic bearing frequency harmonics, and their

prominence compared to the noise floor. With several harmonics it is easier to verify

the actual fundamental harmonic frequency, and prominence compared to the noise floor

decreases the chance of giving a false diagnosis. To compare the quality of the envelope

spectra obtained with the proposed method and the comparison methods, an automatic

bearing diagnosis system [28] is applied. This system can identify faults in the bearing

using an envelope order spectrum, and a diagnosis score is calculated based on the number





         


of harmonics and their prominence compared to the noise floor. In a simple form, the

score is calculated with

S =

Nh∑
i=1

Yh,i
3µn,i

i2 , (D.4)

where Nh is the number of prominent harmonics identified, Yh,i is the amplitude of the

i’th harmonic, and µn,i is the mean value of the noise floor around harmonic i. A high

number of harmonics is rewarded with a high score due to i2, and prominence to the noise

floor increases the score gained per identified harmonic. Typically, a score lower than 10

can be caused by noise, while a score larger than 100 gives a high confidence of the fault

[28]. For a harmonic i to be identified as prominent,

Yh,i > 3µn,i and (Yns,i > 3µn,i or Yps,i > 3µn,i) , (D.5)

where Yns,i and Yps,i are the negative and positive side-bands associated with a fault

type, respectively. The diagnosis score for each algorithm is directly compared with

experimental results to verify the performance of the proposed method.

D.5 Experimental Results

Simulations and experimental datasets from three test rigs are used to validate the effec-

tiveness of the proposed method. The first source [29] features a variable-speed capable

test rig installed with bearings that are pre-seeded with three different faults. The second

test rig is located at the Case Western Reserve University [30], and the chosen dataset is

recorded during VSC with an inner race fault. The final experimental dataset is from an

in-house test rig [31] where the bearing has been naturally worn through an accelerated

life-time test.

D.5.1 Simulation

A simulation of a bearing fault vibration signal is used to verify the applicability of the

proposed method to identify resonance frequency regions. A simulated signal consisting

of bearing and shaft vibration, two random impacts, and white Gaussian noise is given

by

xsim(t) = w(t) +
n∑
i=1

Ab(θ̇)g ∗ δ(i/OO − θ(t))

+
m∑
j=1

Aj(θ̇) sin(2πjθ(t) + φj) + I(t), (D.6)

where w(t) is white Gaussian noise, n is the number of outer race fault impulses during the

simulation, Ab is the bearing impact vibration amplitude as a function of shaft speed, g is





         


the impulse response of an underdamped second order system with a resonance frequency

of 6000 Hz, δ is the dirac-delta function, OO is the characteristic fault order for an outer

race fault, θ is the shaft position in rounds, m = 27 is the number of shaft vibration

harmonics, Aj is the amplitude of the j’th harmonic as a function of shaft speed, φj is

a random phase for the j’th harmonic, and I(t) is the vibration from two impacts with

high amplitude and a response following an underdamped second order system with a

resonance frequency of 3500 Hz.

The bearing and shaft vibration amplitudes are linearly dependent on the instanta-

neous shaft speed, and the random impacts are added to validate the proposed methods’

effectiveness to avoid highlighting frequency regions containing random impacts. Fig. D.5

shows results from using the proposed method on the simulated signal. Figs. D.5 (a) and

(b) show a 100 ms long snapshot of the shaft vibration and bearing vibration, respec-

tively, and Fig. D.5 (c) shows the shaft speed during the simulation. The full simulated

vibration xsim is shown in Fig. D.5 (d), and its raw frequency spectrum is shown in Fig.

D.5 (e). As observed, most of the energy is stored in the low-frequency deterministic shaft

components. After order tracking the signal, all shaft deterministic peaks are amplified

and sharpened as shown in Fig. D.5 (f). CPW is applied to normalize the spectrum as

shown in Fig. D.5 (g). The inverse order tracking causes the resonance frequency region

at 6000 Hz to de-spread, and the ROR is therefore increased above unity as shown in Fig.

D.5 (h). This allows raising the spectrum to a power to further separate the resonance

regions from the rest as shown in Fig. D.5 (i). Here, the amplitude-filtered spectrum

is raised to a power of 5 to increase ROR. As observed, there are no high peaks around

3500 Hz, indicating that the proposed method is robust against random impacts. Finally,

the most visible area in this spectrum (marked as a red square) is chosen for band-pass

filtration of the original vibration signal. A filter bandwidth of 50 orders (500 Hz in this

example) is used to retain several harmonics in the final ES. After applying the ES algo-

rithm shown in Fig. D.2, multiple harmonics of the outer race fault order OO = 3.54 are

detected using the automatic bearing diagnosis system, as shown in Fig. D.5 (j).

D.5.2 Test rig 1

The first test rig is installed with bearings that are pre-seeded with different faults, and

the motor is operated under VSC. The datasets used are provided as supplementary

materials in [29], and a simplified schematic of the test setup is shown in Fig. D.6.

Both the vibration signal and the shaft angular velocity is available in the repository.

The characteristic fault frequencies for the test bearing are: ball-pass inner race order

OI = 5.41, ball-pass outer race order OO = 3.59, two times ball (roller) spin order

OB = 4.75, and the fundamental cage order OC = 0.40.
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Figure D.5: Resonance band identification using the proposed method on a simulated

signal. (a) shaft vibration; (b) bearing vibration; (c) shaft speed; (d) measured vibration

signal; (e) frequency spectrum of raw signal; (f) order spectrum; (g) order spectrum after

CPW; (h) frequency spectrum after inverse order tracking with a red line showing the

amplitude-filtered signal; (i) amplitude-filtered frequency spectrum raised to power of 5,

with a suitable band-pass filter region marked in red; (j) envelope order spectrum after

band-pass filtration of original signal.

Figure D.6: Simplified schematic of the test setup in

Two times ball order spin is utilized as the roller hits the inner and outer race succes-

sively during one spin.
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Figure D.7: Results from diagnosing an outer race fault on test rig 1. (a) shaft speed

during measurement; (b) frequency spectrum of the raw vibration signal; (c) frequency

spectrum after using the proposed method, where three suitable band-pass filter areas

are marked; (d)–(f) envelope order spectra after band-pass filtration at the three marked

areas, respectively. Red triangles show identified harmonics related to the fault.

Dataset 1—outer race fault

The first dataset in the repository is recorded while a bearing with an outer race fault is

installed on the test rig, and the results are shown in Fig. D.7. Fig. D.7 (a) shows the shaft

speed during the measurement and Fig. D.7 (b) shows the frequency spectrum of the raw

vibration signal. As shown in Fig. D.7 (b), the low frequency deterministic components

dominate the spectrum. After applying the proposed method, the resulting spectrum is

shown in Fig. D.7 (c), in which several resonance frequency regions can be chosen due

to multiple peaks with high value. Therefore, three marked frequency regions are used

for obtaining the ES. Band-pass filtered envelope spectra of the three marked areas are

shown in Figs. D.7 (d), (e), and (f), respectively. In these spectra, harmonics of the

outer race fault order OO are shown as red triangles, and multiple prominent harmonics

are identified in all three spectra. The diagnosis score for each band is shown in Table

D.1, under “DS 1.1”. With the high scores on all three bands, the fault diagnosis of an

outer race fault is confirmed. These results demonstrate that multiple bearing resonance

frequencies may be captured in the vibration signal.

Dataset 2—roller fault

The second dataset from test rig 1 is recorded when the test bearing has a roller fault,

and the results are shown in Fig. D.8. The shaft speed varies between 10 and 15 Hz





         


Table D.1: Diagnosis score per band for each dataset using the proposed method. The

best mode for each dataset is written in bold. “DS X.Y” means “Test rig X - dataset Y”.

Band \ Dataset DS 1.1 DS 1.2 DS 1.3 DS 2 DS 3

Band 1 1615 1733 448 41 0

Band 2 1581 287 202 49 0

Band 3 895 328 212 154 166

Band 4 - - - 73 -

Band 5 - - - 26 -

as seen in Fig. D.8 (a), and the deterministic low-frequency components dominate the

raw vibration spectrum as indicated in Fig. D.8 (b). Applying the proposed method

reveals three suitable band-pass filter areas, which are marked in Fig. D.8 (c). With a

roller fault, the characteristic vibration patterns are harmonics of two-times roller spin OB

with side-bands given by the fundamental cage OC . Due to the radial load on bearings,

there may be little vibrations when the damaged roller is outside the radial load zone.

Therefore, the most visible vibration can be from impacts in the radial load zone, which

the damaged roller is passing once per fundamental cage revolution [18]. In case of

this dataset, only harmonics of OC are identified when analyzing the band-pass filtered

envelope order spectra in Figs. D.8 (d), (e), and (f). All of the envelope spectra show

multiple prominent harmonics at the cage frequency, which strongly verifies the diagnosis.

The high diagnosis score given in Table. D.1 under “DS 1.2” also verifies the effectiveness

of the proposed method to detect bearing faults.

Dataset 3—inner race fault

The final test is performed with an inner race fault in the bearing, and the results are

shown in Fig. D.9. Figs. D.9 (a) and (b) show the shaft speed and the frequency spec-

trum of the raw vibration signal, respectively. After applying the proposed method, the

highlighted resonance modes are shown in Fig. D.9 (c). The three areas marked with

red-stapled lines are chosen for band-pass filtered ES analysis due to their prominence.

The envelope order spectra for these three areas are shown in Figs. D.9 (d)–(f), respec-

tively. An inner race fault is characterized by harmonics at the inner race frequency OI

with side-bands located 1 order away due to the damaged part rotating in and out of the

radial load zone [18]. Therefore, the automatic diagnosis method searches for prominent

harmonics and side-bands. With this method, multiple harmonics and side-bands are

identified, which can be seen in the envelope spectra. The score for each band is given

in Table D.1 under “DS 1.3”. Due to low prominence of the higher order harmonics, the
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Figure D.8: Results from diagnosing a roller fault on test rig 1. (a) shaft speed during

measurement; (b) frequency spectrum of the raw vibration signal; (c) frequency spectrum

after using the proposed method, where three suitable band-pass filter areas are marked;

(d)–(f) envelope order spectra after band-pass filtration at the three marked areas, re-

spectively. Red triangles show identified harmonics related to the fault.

maximum score is not as great when compared to the two first datasets. However, with

a score greater than 100, the diagnosis confidence is high.

D.5.3 Test rig 2

Data from a second test rig is utilized to further quantify the performance of the proposed

method. This test rig is located at the Case Western Reserve University (CWRU), and

multiple datasets are available for download [30]. A simplified schematic of the test rig

is shown in Fig. D.10. Both fan-end (FE) and drive-end (DE) bearing faults at different

severity levels are available in the database, with accelerometer measurements taken at

the FE, DE and base (BA).

A study [32] thoroughly analyzed all datasets in the repository and benchmarked

multiple fault diagnosis techniques to determine their performance in detection of faults

using data from three accelerometers. Dataset 174 proved difficult to diagnose due to

speed variation, and consequently the three methods utilized resulted in a mis-diagnosis

as reported in Table B3 [32]. A bearing with an inner race fault (OI = 5.401) is installed

at the DE when dataset 174 is recorded, and in this research, the DE accelerometer data

is used to diagnose the machine.

The time-frequency spectrum of the enveloped vibration signal, shown in Fig. D.11,

reveals that the machine is operated under VSC during recording of this dataset. That
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Figure D.9: Results from diagnosing an inner race fault on test rig 1. (a) shaft speed

during measurement; (b) frequency spectrum of the raw vibration signal; (c) frequency

spectrum after using the proposed method, where three suitable band-pass filter areas are

marked; (d f) envelope order spectra after band-pass filtration at the three marked areas,

respectively. Red and blue triangles show identified harmonics and side-bands related to

the fault.

Figure D.10: Simplified schematic of the test rig used at CWRU.

is because visible amplitude ridges show a reduction in frequency over time. The red-

stapled line has been identified as the third shaft order harmonic vibration. Integrating

this frequency ridge over time and dividing by three gives the relative position of the

shaft. Order tracking the raw vibration signal using this position gave high peaks at

the assumed shaft order and its second and third harmonics. Additionally, the identified

shaft speed is slightly below the supposed fixed-speed of 1797 rpm (29.95 Hz) [30], further

indicating that the identified shaft speed is correct.

Results from using the proposed method are shown in Fig. D.12. Fig. D.12 (a) shows

the identified shaft speed over time, and the initial speed of about 28.2 Hz is just below

the specified shaft speed at 29.95 Hz. Fig. D.12 (b) shows the frequency spectrum of





         


Figure D.11: Time-frequency diagram of the enveloped vibration data. An identified

ridge is marked as a red-stapled line. This ridge is identified as the third order of shaft

vibration.

the raw vibration signal. After using the proposed method, multiple resonance modes

are identified as shown in Fig. D.12 (c). Five bands are chosen for bandpass filtration to

properly investigate most of the resonance bands. The band-pass filtered envelope spectra

are shown in Fig. D.12 (d)-(h). As there is an inner race on the bearing, side-bands of 1

order should be visible together with the harmonics. However, no such side-bands were

identifiable on either of the envelope spectra. This may be the cause of improper order

tracking or speed estimation. Therefore, the diagnosis score is based on the harmonics of

OI alone. All the envelope spectra show harmonics of the fault, and one of the bands have

a higher score than 100 as indicated in Table D.1 under “DS 2.1”. These results show

that order tracking is necessary to diagnose the fault in this dataset, and the proposed

method aids in identifying suitable band-pass filter specifications.

D.5.4 Test rig 3

Data from an in-house test rig is also used to demonstrate the performance of the proposed

method. A 6008 type, 40 mm bore diameter roller element bearing is worn naturally

through an accelerated life-time test by applying radial and axial load. Details of the test

rig are given in [31], and a schematic is shown in Fig. D.14. The bearing has a dynamic

loading capacity of C = 17.8 kN and a static load capacity C = 11 kN. It was loaded with

a radial load of 9 kN and an axial load of 5 kN constantly during the test. The bearing

vibration was measured with an accelerometer, the radial shaft movement was measured

with an eddy current proximity sensor, and the shaft angular position is acquired using

an encoder. The position data from the proximity sensor is used for verification purposes,
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Figure D.12: Results from diagnosing an inner race fault on test rig 2. (a) shaft speed

during measurement; (b) frequency spectrum of the raw vibration signal; (c) frequency

spectrum after using the proposed method, where 5 suitable band-pass filter areas are

marked; (d)–(h) envelope order spectra after band-pass filtration at each identified mode.

Red triangles show identified harmonics elated to the fault.

while the vibration signal is used in this research. During the test, the bearing is run at 500

rpm to accelerate the lifetime. However, every 10 minutes the test rig controller enters

a measurement cycle. Within this cycle, vibration and proximity data was measured

during various configurations of constant speed and variable speed. After approximately

34.6 million revolutions, an outer-race fault is detected after analyzing data from the

eddy current proximity sensor. The characteristic outer race frequency for this bearing is

OO = 5.12 orders. In this research, a vibration measurement file captured during variable

speed operation right after detecting the outer race fault is used. The shaft speed reference

was set to mimic a wave generated using a Pierson–Moskowitz wave spectrum with a mean

speed at 50 rpm, significant wave height of 67 rpm, and a significant wave period of 10 s.

Using the proposed method yields the results shown in Fig. D.13. The recorded shaft

speed is shown in Fig. D.13 (a), and the raw vibration spectrum is shown in Fig. D.13 (b).

The raw spectrum contains peaks mostly at lower frequencies, but there are two single

peaks at about 10 kHz and 13 kHz. Using the proposed method yields the spectrum

shown in Fig. D.13 (c). In this spectrum, there are three areas of interest for bandpass

filtration. The envelope spectra are shown in Figs. D.13 (d)-(f). The spectrum from the





         


0 5 10 15 20 25
Time [s]

0

1

2

S
h
a
ft

S
p

e
e
d

[H
z
]

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frequency [kHz]

0.0

0.5

1.0

A
m

p
li

tu
d
e

×104

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frequency [kHz]

0

1

2

A
m

p
li

tu
d
e 1 2 3

(c)

0 5 10 15 20 25 30 35 40
Orders

0

2

A
m

p
li

tu
d
e

×101

(d)

0 5 10 15 20 25 30 35 40
Orders

0.0

0.5

A
m

p
li

tu
d
e

×101

(e)

0 5 10 15 20 25 30 35 40
Orders

0

1

2

A
m

p
li

tu
d
e

(f)

Harmonic

Figure D.13: Results from diagnosing an outer race fault on test rig 3. (a) shaft speed

during measurement; (b) frequency spectrum of the raw vibration signal; (c) frequency

spectrum after using the proposed method, where 3 suitable band-pass filter areas are

marked; (d)–(f) envelope order spectra after band-pass filtration. Red triangles show

identified harmonics related to the fault.

Figure D.14: Simplified schematic of the in-house accelerated life-time test rig

first mode shows no sign of any bearing fault, and this mode may just contain shaft speed

invariant noise. There are no signs of bearing fault in the second ES shown in Fig. D.13

(e) either. The only prominent peak is at 35 orders, which most likely sources from the

electric motor driving the test rig. The final mode at a high frequency beyond 16 kHz

contain some bearing fault related vibrations. The ES in Fig. D.13 (f) shows multiple

harmonics of OO, which verifies the diagnosed fault. Table D.1 shows the diagnosis score,

and only the third band has a score greater than 0. However, with a value larger than
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Figure D.15: Results from using the fast Kurtogram detailed in Section D.4.1 on all the

experimental datasets. Pairs consisting of a Kurtogram and the resulting ES are given

for each dataset. (a)–(b) test rig 1, dataset 1; (c)–(d) test rig 1, dataset 2; (e)–(f) test rig

1, dataset 3; (g)–(h) test rig 2, dataset 1; (i)–(j) test rig 3, dataset 1. In a Kurtogram,

red lines indicate central frequencies identified using the proposed method. In envelope

spectra, red and blue triangles indicate prominent harmonics and side-bands related to

the fault, respectively.





         


100, there is high confidence with the diagnosis.

D.6 Comparisons

D.6.1 Spectral kurtosis

The fast Kurtogram detailed in Section D.4.1 is tested for all the experimental datasets to

check the performance of the proposed method. Results from applying this algorithm are

shown in Fig. D.15. Here, a pair consisting of a Kurtogram and an ES is shown for each

dataset. Starting with dataset 1 from test rig 1, the Kurtogram is shown in Fig. D.15

(a), while the resulting ES is shown in Fig. D.15 (b). In the Kurtogram, kurtosis values

for many combinations of frequency bands are displayed, and the band with the highest

kurtosis is deemed the most optimal band for band-pass filtration. Additionally, red lines

show central frequencies identified using the proposed method. As seen in Fig. D.15 (a),

the highest kurtosis value is found in a high frequency band with a central frequency of

12500 Hz and bandwidth of 8333 Hz. In comparison to the proposed method, this is a

much higher frequency band. The corresponding ES is shown in Fig. D.15 (b). Due to

the un-optimal filter specifications, there are only two prominent outer race harmonics

visible in the spectrum.

For the second dataset with test rig 1, the Kurtogram is shown in Fig. D.15 (c). Here,

the highest kurtosis value is identified at the same central frequency as the second mode

from the proposed method. The ES in Fig. D.15 (d) hence shows multiple harmonics of

the fundamental cage frequency.

Similarly, for dataset 3, the Kurtogram is shown in Fig. D.15 (e). Again, the optimal

frequency band with the highest kurtosis value is very close to the ones given by the

proposed methods. Therefore, the ES in Fig. D.15 (f) show multiple prominent harmonics

and side-bands.

For test rig 2, the Kurtogram is shown in Fig. D.15 (g). Here, a large band centered

at 6000 Hz with bandwidth of 12000 Hz is chosen for filtration. In comparison with the

red lines, this band encompasses several of the modes given by the proposed method.

Therefore, the resulting ES in Fig. D.15 (h) should contain multiple harmonics of the

characteristic fault. However, only two prominent harmonics were identified, which is less

than the spectra attained with the proposed method.

The final dataset with test rig 3 is also tested, and the Kurtogram is shown in Fig.

D.15 (i). An optimal band is identified at a central frequency around 15000 Hz, which

is different than the ones given by the proposed method. In this case, the Kurtogram

performs better than the proposed method, as the ES in Fig. D.15 (j) indicate multiple
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Figure D.16: Results from using the cepstrum pre-whitening method detailed in Section

D.4.2 on all the experimental datasets. Envelope spectra with identified harmonics and

side-bands are shown for each dataset. (a)–(c) test rig 1, dataset 1 through 3, respectively;

(d) test rig 2, dataset 1; (e) test rig 3, dataset 1.

Table D.2: Diagnosis score per dataset for each method. For the proposed method, the

best scoring ES is the basis. The best method for each dataset is written in bold.

Proposed Kurtogram CPW

Test rig 1 - outer race 1615 26 692

Test rig 1 - roller 1733 245 268

Test rig 1 - inner race 448 38 49

Test rig 2 - inner race 154 41 116

Test rig 3 - outer race 166 240 76

harmonics of the outer race fault.

D.6.2 Cepstrum pre-whitening

The cepstrum pre-whitening method elaborated on in Section D.4.2 is also used compare

performance with the proposed method. Fig. D.16 shows the resulting envelope spectra

from this method. The first ES in Fig. D.16 is from test rig 1, dataset 1 with an outer

race fault. With this method, multiple harmonics of the fault are identified, however

the harmonics are almost buried in the noise floor. Compared to band-pass filtration,

the cepstrum pre-whitening approach is bound to return an increased noise floor, as the

white noise covering the entire spectrum is brought to the same amplitude level as other





         


signals due to spectrum normalization.

The second ES in Fig. D.16 (b) is acquired from the second dataset using test rig

1. Here, multiple harmonics of the cage frequency is detected. Similarly, the ES from

dataset 3 in Fig. D.16 (c) also presents multiple prominent harmonics, but not as many

when compared to the proposed method.

For test rig 2, the ES in Fig. D.16 (d) shows up to four prominent harmonics, which

is about the same as the proposed method. Finally, the ES from test rig 3 is shown in

Fig. D.16 (e), and there up to four harmonics are displayed.

D.6.3 Diagnosis score

To quantify the performance of each method, the diagnosis score for all experimental

datasets are shown in Table D.2 for the three methods. For the proposed method, the

frequency mode resulting in the highest diagnosis score is used. The method with the

highest diagnosis score is highlighted with a bold font. As seen, the proposed method

scores the highest on the first four experimental dataset, while the Kurtogram method

is better for the final dataset. This shows that the proposed method shows an excellent

ability to discern resonance frequency vibration from the vibration signal.

D.7 Conclusions

In this paper, a new method for identifying bearing resonance frequency modes in a vibra-

tion signal is proposed. The method exploits the resonance vibration distortion caused by

order tracking and the spectrum normalization feature of cepstrum pre-whitening (CPW).

The algorithm first transforms the signal to the order domain before applying CPW and

returning to the time-domain via inverse order tracking. The inverse order tracking causes

a de-spread in resonance frequency modes, and since the spectrum is already normalized

by means of CPW, resonance mode amplitudes rise above the normalized noise floor. Fre-

quency areas containing prominent peaks in this spectrum are chosen as band-pass filter

regions, and the envelope order spectrum of each band-pass filtered signal is analyzed to

identify the bearing fault. Simulations and experimental results from three test rigs oper-

ating under variable speed conditions validate the proposed method. Comparisons with

the fast Kurtogram and CPW with the same datasets show that the proposed method per-

forms better or similarly well on all cases. In the experimental cases, multiple resonance

frequency modes were identified using the proposed method, and most of the obtained

envelope spectra contained multiple harmonics and side-band related to the fault. The

proposed method may also be extended to facilitate automatic resonance mode detection

and fault diagnosis.
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Abstract – The prognostics objective is to avoid sudden machinery break-

downs and to estimate the remaining useful life after initial degradation. Typ-

ically, physical health indicators are derived from available sensor data, and

a mathematical model is tuned to fit them. The time it takes for the model

to reach a failure threshold is the estimated remaining useful life. The fail-

ure threshold may be determined from historical failure data, but that is not

always readily available. ISO standard 10816-3 defines permissible velocity vi-

bration levels for machines that may be used as a failure threshold. However,

velocity vibration is not suitable for bearing prognostics due to the effect of in-

tegration from acceleration. In this paper, the drawbacks of velocity vibration

are explained, and two new failure thresholds using acceleration vibration data

are proposed. Results from three run-to-failure tests are provided to show the

performance of the proposed failure thresholds.

E.1 Introduction

Rolling element bearings are used in most rotating machinery. Their purpose is to transfer

the shaft load to a stationary housing, and make sure that the shaft rotates smoothly.

However, bearing damage is the most common cause of breakdown in rotating machinery,

and an unexpected breakdown may result in costly downtime and/or personal harm[1, 2].

It is therefore wise to monitor the machine health using sensor data from i.e. a vibra-

tion accelerometer and condition monitoring (CM) techniques. Using signal processing

methods, incipient faults in a bearing can be detected before complete breakdown[3].

However, it is not always feasible to perform maintenance as soon as a fault is detected.

For remote locations, such as offshore wind farms, weather conditions and pre-planned

maintenance trips contribute significantly to feasibility of performing a machine overhaul.

It is common that a faulted bearing can be in operation for a certain amount of time after

the initial fault. This amount of time is referred to as the remaining useful life (RUL).
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For maintenance planning, it is beneficial to estimate the RUL based on the sensor data

acquired by the CM system, i.e. make a prediction on how long the machine may operate

before an emergency stop is necessary. The general approach is to acquire one or sev-

eral physical health indicators (PHIs) from available sensor data. A virtual health index

(VHI) can be generated from fusion or dimension reduction methods of the chosen PHIs.

Most approaches reported in literature use a certain data-driven model[4] to estimate the

RUL, where the future trend of a PHI or VHI is estimated using a certain model, and

the time/cycles it takes for this model to reach a failure threshold (FT), is the RUL.

Some examples of mathematical models are the exponential model, linear model, and the

Paris-Erdogan crack-law model. Often, bearing degradation is unstable, and therefore an

exponential model may fit best. One common PHI for rotating machinery is the root-

mean-square (RMS) of the vibration signal, as it is closely related to the total vibration

energy. RMS is also robust against random impacts, as short-lived events contribute lit-

tle to the mean of squared vibration. References[5, 6, 7] used the RMS for predicting

the RUL with different mathematical models, such as the improved exponential model,

a stochastic process model, and a Skew-Wiener process. In[8], 14 PHIs are fused into a

VHI using the logarithmic Mahalanobis distance (MD), and the RUL is estimated using a

Brownian motion (BM) statistical model. While the methods presented in the four papers

show excellent performance to predict the RUL, one important issue is not thoroughly

discussed: The FT setting. It appears that the FT used to predict the RUL is just set

to whatever the PHI/VHI is at the end of the vibration dataset that is utilized, i.e. the

FT is reverse-engineered to prove the performance of the model and parameter tuning.

In a real CM case where a new machine with no historical failure data is monitored, it is

impossible to use the methods described in[5, 6, 7, 8] without setting the FT in advance.

One attempt of defining the FT is given in[9], where the FT is said to be set dynamically

based on each machine. However, the procedure requires historical failure data sets that

must be used for training, which is not always readily available for every machine. There-

fore, there is a need for a general procedure to set the FT without relying on historical

failure data.

To deal with this unknown FT, this paper proposes methods for defining new FTs for

the RMS and the logarithmic MD. These FTs are based on the ISO 10816-3 standard[10]

that proposes viable vibration levels for machines operating at speeds faster than 120

rpm. The proposed FTs can be used on any machine given the availability of some

vibration data captured during a known healthy state. The rest of the paper is organized

as follows. In Section E.2 the ISO 10816-3 standard is explained, and a reason for why

the velocity RMS (VRMS) is not optimal to be used directly for RUL estimation is given.

Next, Section E.3 provides a method for transforming the VRMS threshold to acceleration





         
 

unit. Section E.4 gives an example of this transformation on an experimental dataset. In

Section E.5, a method for determining a threshold for the logarithmic MS is presented.

Section E.6 provides experimental results for three different datasets, and shows how well

the proposed FTs compare to the actual RUL. Finally, Section E.7 concludes the paper.

E.2 ISO standard threshold

ISO standard 10816-3[10] lists acceptable VRMS and displacement RMS (DRMS) levels

for rotating machines within the power range between 15 kW and 50 MW. The standard

divides vibration levels in four groups: A, B, C and D, where vibration levels in group A

belong to new machines, and group D contain vibration levels that cause damage to the

machine itself and/or connected components. The RMS value of a signal x is calculated

using

RMS{x} =

√∫ T
0
x(t)2dt

T
, (E.1)

where T is the period of the signal.

For machinery prognostics purposes, it is of interest to estimate the RUL after the

initial damage, and vibration group D in the ISO standard may be used as an FT for the

end of serviceable life. However, the vibration level thresholds in the ISO standard are

only given for VRMS and DRMS signals for vibration signal components between 10 and

1000 Hz. Common accelerometers typically measure the vibration in acceleration units,

and therefore the signal must be integrated to achieve the vibration in a velocity unit.

The main issue with using the VRMS FT is the effect of integration itself, as damaged

bearings tend to give increased vibration levels at high frequencies, typically higher than

1000 Hz. Integration causes these high-frequency components to be mitigated as it acts

like a low-pass filter. Low-frequency vibration components only rise in value once the

bearing is critically damaged, and therefore changes in the bearing health may not be

detected early if the vibration is monitored in velocity units. An example of this can

be seen in Fig. E.1 where the VRMS and ARMS are compared in a real case. The

vibration measurements used in this example are collected by the NSF I/UCR Center for

Intelligent Maintenance Systems (IMS)[11]. The second run-to-failure test consisting of

982 data files of vibration measurements is utilized. Fig. E.1 (a) shows the VRMS, the

initial mean value µVRMS, and the initial standard deviation (STD) σVRMS. Initial mean

and STD are calculated based on mt = 300 (50 hours) data files in the healthy state as

µVRMS = 0.147, σVRMS = 0.720, µARMS = 0.014, and σARMS = 0.756. For the purpose of

detecting initial degradation, a statistical alarm is set at a window of 5 times STD, i.e.

5σ. As can be seen, the VRMS value does not surpass this alarm limit before reaching the
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Figure E.1: Difference between RMS values calculated using vibration in velocity and

acceleration units. (a) The RMS of the velocity signal. (b) The RMS of the acceleration

signal. Both plots show a red-stapled line which is the mean RMS value of the first 300

data files.

last few hours of RUL, and, at this stage, the value increases quickly. From a prognostics

point of view, it may be too late to schedule maintenance as there is limited time left

before a complete failure. Fig. E.1 (b) shows the ARMS trend. After approximately 90

hours, the ARMS value surpasses the alarm limit, which signifies a trend of degradation

in the bearing. The alarm is triggered much sooner when using the ARMS compared to

when using the VRMS, and permits a much larger window for scheduling maintenance.

Therefore, it is advantageous to transform the VRMS ISO threshold value to acceleration

unit to estimate the RUL. The proposed threshold transformation is given in the next

subsection.





         
 

E.3 Proposed threshold transformation

Using a vibration accelerometer and an analog/digital converter, the signal is acquired in

m/s2 at a sample rate Fs, for a period T , and saved as xraw. The raw vibration signal

is first filtered using a 2nd order IIR high-pass filter with a cutoff-frequency at 10 Hz to

remove signal drift and comply with the ISO 10816-3 standard[10]. The transfer function

of this filter is

Gacc(s) =
Xacc(s)

Xraw(s)
=

s2

s2 + as+ b
, (E.2)

where Xraw and Xacc are the frequency transformed raw vibration and filtered vibration,

respectively, s = iω is the complex variable, ω is the frequency in rad/s, and a and b are

the filter constants. The integral of the vibration acceleration is the vibration velocity

xvel, and the transfer function is given by

Gvel(ω) =
Xvel(s)

Xraw(s)
=

1

s
Gacc(s) =

s

s2 + as+ b
, (E.3)

where Xvel is the frequency transformed velocity vibration. From ISO 10816-3, the VRMS

values are only valid for vibration components up to 1000 Hz, and therefore an extra

low-pass filter should be applied at 1000 Hz. However, the authors argue that it is

unnecessary to apply a low-pass filter at 1000 Hz because 1/s reduces the signal power

by approximately 38 dB at 1000 Hz, and therefore an extra low-pass filter should be

unnecessary. The RMS is the square root of the mean energy of a signal which can be

calculated in the time-domain or in the frequency domain using

E{x} =

T∫
0

|x(t)|2dt =

Fs/2∫
−Fs/2

|X(s = iω)|2dω, (E.4)

where T is the time signal period, and Fs is the sampling frequency in rad/s. Using the

energy definition, the RMS of a signal x is calculated using

RMS{x} =

√
E{x}
T

. (E.5)

To transform the VRMS threshold to an acceleration unit, the RMS ratio (RMSr) between

the ARMS and the VRMS is calculated using

RMSr =
RMS{xacc}
RMS{xvel}

=

√
E{xacc}
E{xvel}

. (E.6)

To calculate this ratio analytically, the energies of the two signals are needed. For conve-

nience, the energies are resolved in the frequency domain. One assumption for calculating

the energy is that xraw(t) is real-valued only, and therefore the negative frequency com-

ponents are the complex conjugates of the positive frequency components. The energy





         


can therefore be calculated by integrating over the positive frequencies and multiply by

2. The energy of the vibration acceleration signal is calculated using

E{xacc} = 2

ω2∫
ω1

|Xacc(iω)|2dω (E.7)

= 2

ω2∫
ω1

∣∣∣∣ −ω2Xraw(iω)

−ω2 + aiω + b

∣∣∣∣2 dω (E.8)

where the integration bounds ω1 and ω2 are given by

ω1 = 0 rad/s, ω2 = Fs/2. (E.9)

Similarly, the energy of the velocity vibration is calculated using

E{xvel} = 2

ω2∫
ω1

|Xvel(iω)|2dω (E.10)

= 2

ω2∫
ω1

∣∣∣∣ iωXraw(iω)

−ω2 + aiω + b

∣∣∣∣2 dω. (E.11)

Ideally, the RMSr would be calculated analytically for all cases using the acceleration

and velocity energy given in (E.7) and (E.10), respectively. However, the raw vibration

signal, Xraw(s), is an unavoidable term in the integration of both energy quantities. Xraw

is the true vibration signal passing through the dynamic system of the machine itself, the

dynamics of the accelerometer, and the characteristics of the analog/digital converter.

Therefore, Xraw can be significantly different between two machines, even during similar

shaft speeds and power outputs. It is not feasible to accurately model Xraw for each

case, hence RMSr should be determined experimentally on every machine and after every

maintenance overhaul. This is done by calculating the mean VRMS and ARMS values

for a machine during a known healthy state, and get the ratio using (E.6). Once the ratio

is determined, the acceleration threshold is finally calculated using

ARMSt = RMSr · VRMSt, (E.12)

where ARMSt is the ARMS threshold and VRMSt is the VRMS threshold. In the next

section, experimental vibration signal is used to determine the ARMSt using the methods

described in this section.

E.4 Practical test of threshold setting

To test the proposed ARMSt, the same IMS dataset presented in Section E.2 is used.

ISO standard 10816-3 suggests a VRMSt = 4.5 mm/s for machines larger than 15 kW.
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Figure E.2: Comparison of the RMS threshold using velocity and acceleration units for

dataset 1. (a) The RMS of the velocity signal. (b) The RMS of the acceleration signal.

Since the machine used in[11] is probably not powerful, the VRMSt is lowered to 4.0

mm/s. Using the mean and STD values presented in Section E.2, RMSr is determined

as 1085.22 1/s using (E.6). The new threshold is computed by (E.12) as ARMSt =

1085.22 1/s · 4 mm/s = 4.34 m/s2. Fig. E.2 shows a comparison of the thresholds where

(a) shows the VRMS, and (b) shows the ARMS. As seen on the two graphs, the VRMS and

the ARMS reaches their respective thresholds at approximately the same time (163 hours).

This result show that the proposed transformation can be used to get a proper threshold

for the ARMS with a physical meaning. The alarm-triggered point (5σ) shows how long

time is left before the threshold is reached. As can be seen, the maintenance window is

much larger using the ARMS when compared to the VRMS: 73.5 hours compared to 0.7

hours.

The presented ARMS threshold may be used directly for RUL estimation using algo-

rithms in[5, 6, 7]. However, some prognostic algorithms combine multiple PHIs to create

a VHI for the system. The advantage is that each PHI responds differently to different





         


degradation trends. Therefore, by fusing multiple PHIs, the initial degradation trend may

be easier to detect. In the next section, multiple PHIs are fused using the Mahalanobis

distance (MD), and a proposed threshold equation for the MD is outlined.

E.5 Threshold setting for multiple physical health in-

dicators

Some prognostics models use multiple PHIs including the ARMS to determine the RUL.

Such a prognostics model using multiple PHIs is proposed in[8], where 14 time-domain

PHIs are calculated from the vibration signal. The PHIs are fused using the MD to

create a single VHI that represent the data file. According to[8], the MD is linearized by

calculating the logarithm of the MD. For brevity, a health index (HI) is defined here as

the logarithmic MD. Parameters for a Brownian motion (BM) model are estimated in an

on-line fashion using a Kalman filter (KF) to best fit the HI. Since the HI is assumed to

be linearly increasing with time once the initial degradation of the bearing has started,

this is a valid model to use. The RUL is calculated by using the estimated BM model

and predict how long time it would take for the model to reach a certain failure threshold

(FT) value. However, in[8], the FT used for estimating the RUL is not discussed. It is

impossible to calculate the RUL in a real situation if the FT is not known. Therefore,

the rest of this section is dedicated to a method for making a suitable threshold for the

HI proposed in[8].

First, the MD is calculated using

MD =
√

(x− µ)TS−1(x− µ), (E.13)

where x = [x1, x2, . . . , xn] is a vector of the n chosen PHIs, S is the covariance matrix of

a set of observations, and µ = [µ1, µ2, . . . , µn] is the mean value of these observations. To

determine S and µ, a set of mt observations during healthy machine condition are used.

Finally, the HI is determined using

HI = log{MD}. (E.14)

The FT for the HI is determined using the ARMS and a single-dimension MD (MD1)

MD1 =
x− µ
σ

, (E.15)

where σ is the standard deviation of the first mt observations of x, and µ is the mean value

of these observations. Each PHI result in different MD1 trends, however the assumption

for the proposed threshold is that the average MD1 characteristics for all vibration based





         
 

PHIs are similar to the MD1 of the ARMS. Specifically, that the average maximum value

for all MD1’s is the same as the maximum value of the MD1 of the ARMS. Following this

assumption, it should be possible to upscale the ARMSt to account for multiple PHIs in

the MD. To this end, the MD can be estimated by using the ARMS alone, as in

MD ≈

√√√√ n∑
i=1

(ARMS− µARMS)2

σ2
ARMS

, (E.16)

≈ √n · ARMS− µARMS

σARMS

, (E.17)

where S is replaced with σ2
ARMS because, as a covariance matrix, it is diagonal for PHIs

that are equal. Given this estimated MD, it is possible to create a threshold for the MD

and the HI using the ARMSt as

MDt =
√
n · ARMSt − µARMS

σARMS

+ µMD, and (E.18)

HIt = log{MDt}+ µHI, (E.19)

where MDt and HIt are the proposed MD and HI thresholds, respectively, and µMD and

µHI are the mean value of the MD and HI for the first mt samples, respectively. The mean

value is added to the threshold to account for the initial value of the MD and HI. Note

that (E.13) and (E.14) are used for computing the MD and HI, respectively, while (E.18)

and (E.19) are only used to determine their respective thresholds. In the next section,

the proposed HIt is calculated for multiple test cases.

E.6 Practical test of MD threshold

E.6.1 IMS dataset

The proposed HIt threshold is here calculated for the IMS bearing dataset introduced

in Section E.4. From Section E.4, the ARMSt = 4.34 m/s2, µARMS = 0.756 m/s2, and

σARMS = 0.0141 m/s2. A total of n = 14 PHIs from[8] are utilized to make the HI using

(E.14) where the covariance and mean values are calculated from the mt = 300 (50 hours)

first data files. The mean value of HI is µHI = 0.905 for this dataset. Given these values,

the threshold is calculated using (E.19) as

HIt = log{
√

14 · 4.34− 0.756

0.0141
}+ 0.905 = 7.7655.

Table E.1 shows these calculated values under column “Dataset 1”. The HI and the HIt

are both shown in Fig. E.3 for the IMS dataset, and as shown, the HIt is reached by the HI

close to the final data file. This finding is consistent with the ARMS and ARMSt shown





         


Table E.1: Threshold value calculations.

Value ↓ \ Dataset → 1 2 3

VRMSt [m/s] 4.0 3.0 4.0

mt [files] 300 300 125

RMSr [1/s] 1085 2803 368

ARMSt [m/s2] 4.34 8.41 1.47

σARMS [m/s2] 0.0141 0.0235 0.0049

µARMS [m/s2] 0.756 0.378 0.447

µHI [-] 0.905 1.053 2.404

HIt [-] 7.7655 8.208 9.068

in Fig. E.2 (b) in that the computed threshold is reached near the end. The possible

advantage of the HI compared to the ARMS in terms of prognostics, is that the general

trend of the HI appears to increase linearly over time from first degradation point, while

the ARMS exhibits a more exponentially increasing trend near the end. The linear HI

trend has an advantage of allowing simpler models for estimating the RUL, such as the

BM used in[8]. The choice of RUL estimation model depends on which trend should be

used, as the ARMS and HI shows different characteristics.

E.6.2 PHM Challenge dataset

The second dataset used for testing the ARMSt and HIt is a part of the Pronostia

database[12]. This database was part of the IEEE PHM 2012 Prognostics Challenge that

encouraged scientists and engineers to make accurate RUL estimations based on vibration

and temperature data. The database consists of 17 accelerated life-time tests conducted

during three different operating conditions. The ARMSt and HIt are determined using

the vibration data in dataset “Bearing1 3”, i.e. the third accelerated life-time test during

operating condition 1. A total of 2375 vibration data files was collected during this test,

and the time interval between two files is 10 seconds. The vibration data in each file was

collected for a duration of 0.1 s at a rate of Fs = 25.6 kHz.

The VRMSt = 3m/s due to the small 250 W motor used on the Pronostia test rig.

The first mt = 300 data files (50 minutes) are assumed to be from a healthy machine state.

Important values and calculated thresholds are given in Table E.1 under column “Dataset

2”. The VRMS and ARMS are shown in Figs. E.4 (a) and (b), respectively, together with

their respective thresholds. The VRMS reaches and surpasses the proposed threshold of

3 mm/s at the end of the accelerated life-time test, indicating that the bearing is severely

damaged. The ARMS in Fig. E.4 (b) shows very similar characteristics as the VRMS,
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Figure E.3: The HI plotted with the HIt threshold for dataset 1.

and the alarm at 5σ is triggered almost at the same time for both signals. The main

difference is that the ARMS value is less noisy than the VRMS, which should make it

easier to predict RUL using the ARMS. In addition, the threshold ARMSt is reached at the

end of the test. The HI is also computed for this dataset using the methods elaborated

in Section E.5 and its threshold is given in Table E.1 under column “2”. The HI and

the HIt are both shown in Fig. E.5 for this test. As seen, there is a clear advantage of

calculating the logarithm of the MD, as the HI is increasing almost linearly after the initial

degradation in this test. The HIt threshold is also very close to the actual final value of

the HI at the end of the test, which shows the performance of the proposed threshold

calculations. A filtered HI (HIf ) is overlaid in Fig. E.5 to make the degradation trend

easier to identify. The HI and HIt can be used in conjunction with the BM algorithm

in[8] to estimate the bearing RUL.

E.6.3 Low-speed test rig

The final database used originate from an in-house low-speed bearing test rig. A detailed

description of the test rig and the procedures for acquiring vibration sensor data are given

in[13]. The dataset is acquired during an accelerated life-time test of a 6008 type bearing,

and the vibration signal is measured while the shaft speed is as low as 100 rpm. Each

vibration data file was recorded every 18 minutes at a sample rate of 51.2 kHz for a

duration of 10 seconds. The test in total lasted 14 full days, i.e. 14 · 24 = 336 hours,

before a torque limit alarm was triggered and forced a stop of the test. The last 507 data

files (152 hours) of the accelerated life-time test is used to make the proposed thresholds.

In ISO 10816-3, the VRMS threshold is set for components between 10 and 1000 Hz for
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Figure E.4: Comparison of the RMS threshold using velocity and acceleration units for

dataset 2. (a) The RMS of the velocity signal. (b) The RMS of the acceleration signal.

machines operating at speeds higher than 600 rpm. For slower machines, between 120

and 600 rpm, the frequency band is set from 2 to 1000 Hz. As the shaft speed in this test

is 100 rpm, the 2nd order IIR high-pass filter in (E.2) is configured to a cutoff frequency

at 80% · 100/60 = 1.33 Hz to preserve the vibration energy at the shaft frequency and

higher. The motor power is 1.1 kW, and the VRMSt is therefore set to 4 mm/s as a

conservative value. The mt = 125 (40 hours) first data files are considered to be recorded

during a healthy state, and are therefore used for calculating the thresholds. Table E.1

column “Dataset 3” shows calculated values and thresholds for this dataset. The VRMS,

ARMS, and their respective thresholds are shown in Fig. E.6. The VRMS exceeds its

threshold near the end of the test, and the 5σ alarm is triggered only 2.1 hours before

the threshold is reached. In a real application, this will translate to a very short time

for RUL estimation and maintenance planning. The ARMS also exceed its threshold

at the end, and the initial 5σ alarm is triggered much sooner, at 31.5 hours left before

reaching the threshold. It should be noted, however, that the ARMS shows an extremely
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Figure E.5: The HI plotted with the HIt threshold for dataset 2.

sudden change in degradation ratio near the end, and therefore it might be difficult to fit

a degradation model to this signal.

Using the 14 PHIs in[8] the HI for this dataset is calculated using (E.14). The HI

is shown in Fig. E.7. As shown, the HI does not indicate a linear trend, but rather

an exponentially increasing trend. However, the increase near the end (140 hours) is

less sudden when compared to the ARMS in Fig. E.6 (b). Therefore, it may be easier

to make a model that follows the trend of the HI compared to the ARMS. In addition,

the threshold value is reached near the end, which suggests the validity of the proposed

threshold.

E.7 Conclusions

Two failure thresholds (FTs) are proposed in this paper for remaining useful life-time

(RUL) estimation of rotating machinery. The FTs are based on the ISO 10816-3 stan-

dard for acceptable vibration levels, and historic failure data for each specific machine

is not required. The ISO standard provides acceptable levels for velocity RMS (VRMS)

vibration which are not suitable for RUL estimation. That is because the initial bear-

ing wear induce increased vibration levels at high frequencies, typically higher than 1000

Hz. Velocity is the integral of acceleration, and this integration causes high-frequency

vibration components to be attenuated. The vibration energy at low frequencies only

rises significantly once the bearing is critically damaged, and therefore it may be too late

to schedule maintenance. To improve the RUL estimation capability of the ISO VRMS

threshold, the first presented FT transforms it to acceleration unit. Experimental results

show that: 1) the transformed acceleration based RMS (ARMS) threshold is reached by
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Figure E.6: Comparison of the RMS threshold using velocity and acceleration units for

dataset 3. (a) The RMS of the velocity signal. (b) The RMS of the acceleration signal.

the ARMS at approximately the same time as the VRMS reaches its threshold, and 2)

that the ARMS show signs of early degradation earlier when compared to the VRMS. The

second FT presented is for a health index (HI) based on multiple vibration physical health

indicators (PHIs) fused into a single virtual health indicator (VHI) using the Mahalanobis

distance (MD). Experimental results show that the HI threshold is suitable, and that the

HI presents a different degradation trend than the ARMS. In practice, these FTs can be

employed for RUL estimation on any rotating machine in which a tolerable VRMS level is

given either by the ISO 10816-3 standard, or from experience by an operator. For future

work it may be beneficial to replace some PHIs in the MD, and also to scale up the ARMS

threshold for other VHIs than the MD.
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Abstract – Estimating the remaining useful life (RUL) of bearings from

healthy to faulty is important for predictive maintenance. The bearing fault

severity can be estimated based on the energy or root mean square (RMS) of

vibration signals. However, the vibration RMS is often not monotonic, which

renders a challenge for predicting the RUL. To tackle the problem, a new

method is proposed for splitting the vibration signal into multiple frequency

bands for RMS calculations. Compared to a digital filter bank, the proposed

method is lossless, and the computational burden is much smaller. Some of

the resulting RMS trends are more relevant for RUL estimation due to their

monotonicity. Suitable RMS trends are identified using the Spearman coeffi-

cient, and the RUL is afterwards estimated with the Paris-Erdogan law and

particle filters. Historical failure data is not required to set any parameters,

which is a clear advantage of the proposed method. Experimental results from

two test rigs validate the performance of the proposed method.

F.1 Introduction

Bearings are common in rotating machines, and bearing defects result in increased vibra-

tion, temperature, and friction. Up to 44% failures in the most common motors, namely

induction motors, are due to bearing faults [1]. The vibration from severe bearing faults

may cause damage to other machine components, such as gears, stators and pump seals,

and should therefore be detected. Unscheduled stops can cause long downtime and huge

expenses due to maintenance and productivity losses. Therefore, monitoring the bearing

health condition is important to avoid emergency shutdowns and plan maintenance.

A condition monitoring (CM) system allows for detecting faults, and therefore en-

hances machine reliability. On rotating machines, bearing CM systems can be used to

detect faults using vibration signals, typically with the envelope spectrum [2]. Continued

operation of a machine after detecting the initial bearing fault is beneficial for planning
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maintenance, or even necessary if the machine should be shut down in a regulated man-

ner rather than immediately. As such, an estimation of the bearing remaining useful life

(RUL) is important to select between regulated or emergency stop.

A bearing health indicator (HI) can be compared to a failure threshold (FT) to es-

timate the RUL by assuming that a machine should stop if the HI reaches the FT. The

future HI trend can be predicted using a mathematical model, and the time until FT is

reached is the estimated RUL. The bearing HI can be assessed by examining the level of

wear on the bearing rollers and raceways. However, the actual bearing HI is impractical

to determine, as it would require an offline inspection after dissembling the bearing [3],

resulting in productivity loss. Instead, the HI can be estimated using sensor signals that

are related to the amount of bearing wear. Vibration signals [4] can be used for this pur-

pose, as defects in the raceways or rollers increases the vibration energy. The vibration

signal is often reduced to features which can afterwards be used as the estimated HI.

HIs can be categorized into physical HIs (PHIs) and virtual HIs (VHIs) [5]. PHIs

are generated from primarily physical signals and are directly related to the physics of

failure. Examples are the root mean square (RMS) [6], kurtosis [7], and characteristic

bearing fault frequency amplitudes [8]. VHIs do not correlate directly with the physics of

failure [5] and can be calculated by combining multiple PHIs. The Mahalanobis distance

was applied in [9] to combine 14 PHIs into a single VHI, and principal component analysis

(PCA) was used in [10] to estimate the principal component of multiple PHIs.

The bearing degradation can be divided into two or multiple health stages (HSs) [3].

During the first HS, there is no apparent degradation, while the second HS often show

linear increase, and the third could be unstable growth. The RUL is normally estimated

after transitioning from the first to the second HS. This transition can be detected using

baseline measurements of the kurtosis value [6] and the RMS signal [11].

After transitioning to the second HS, the future degradation trend can be estimated

by a mathematical model which closely resembles the physics of failure. The exponential

model [6, 12], Brownian Motion [9], and Paris-Erdogan law [13] have been used to predict

the future bearing degradation trend. The Kalman filter [14] and particle filter [15] have

been used to update parameters for mathematical models and predict the future degra-

dation trend. Alternatively, data-driven methods allow for tracking the trend without

knowing the physics of failure. A Gaussian process model [16] and least squares support

vector machine (LSSVM) [10] are examples of data-driven models.

Setting a proper FT is the final prerequisite for predicting RUL using the aforemen-

tioned methods. For complex VHIs, historical failure data from a similar setup is often

necessary to create a suitable FT [17, 18, 13]. However, for machines with no histor-

ical failure data, many of the methods reported in the literature may not work. The





          
 

implemented solutions in the referred papers require use of historic failure data to set

parameters, rendering a challenge for estimating RUL on new machines. In [19], the FT

is set based on the vibration RMS as guided by the ISO standard 10816-3 [20], without

involving historic failure data. However, estimating the RUL using RMS is difficult as

vibration energy is often not monotonic.

To address the existing challenges, a new approach for extracting the mean degradation

trend of the vibration RMS signal is proposed. The vibration signal is split into multiple

frequency bands to separate monotonic components from non-monotonic ones. Instead of

using a digital filter bank, the new approach utilizes only the discrete Fourier transform of

the vibration signal. Compared to digital filters, the new approach yields no information

loss, and is less computationally expensive. The RMS is calculated for each frequency

band components, and the Spearman coefficient is used to determine monotonic RMS

trends suitable for RUL estimation. FTs of the generated RMS trends are determined by

extending the FT calculations in [19]. The degradation trend is predicted by updating

parameters of the Paris-Erdogan law using a particle filter (PF). Historic failure data is

not required, because the FTs are based on general guidelines provided by ISO 10816-

3 [20]. The performance of the proposed method is demonstrated on two experimental

datasets.

The rest of the paper is organized as follows. Practical differences between velocity-

and acceleration-based RMS are discussed in Section F.2. Next, the proposed approach

for subdividing the vibration signal into multiple RMS trends is detailed in Section F.3.

Afterwards, the algorithms used for RUL estimation are elaborated in Section F.4, and

the experimental results are given in Section F.5. Finally, suggestions for further work

are given in Section F.6, and conclusions are drawn in Section F.7.

F.2 Velocity vs acceleration RMS

ISO Standard 10816-3 [20] defines levels of velocity-based vibration RMS values for ro-

tating machines with over 15 kW power output. Four levels are given, ranging between

A - D: A=“standard acceptance for new machines”; B=“unlimited operation is possible”;

C=“short term operation allowed”; D=“vibration causes damage”. A machine should

stop before reaching level D, and therefore the boundary between level C and D can be

used as an FT. The RMS of a vibration signal x(t) can be calculated with

RMS(x(t)) =

√∫ T
0
x(t)2dt

T
, (F.1)

where T is the measurement period. The vibration signal x(t) is in this study measured

with an accelerometer, which gives the vibration in acceleration units. Through integra-





         


tion, the velocity signal xv(t) is acquired, which is used for checking vibration severity

according to ISO 10816-3 [20]. For brevity, Ra = RMS(x(t)) and Rv = RMS(xv(t)). How-

ever, Rv is not suitable for RUL estimation, because early defects generate high frequency

resonance vibration, and integration reduces the effect of high frequency components as

verified in [19]. To alleviate this limitation, the FT is transformed to the acceleration do-

main before estimating bearing RUL. This procedure was proposed in [19] and is briefly

described in the following.

To experimentally transform the FT from velocity to acceleration units, the mean

Ra and Rv values at a known steady state of the machine (baseline) are calculated.

Afterwards, the ratio between these is determined with [19]

Rr =
R̄a

R̄v

, (F.2)

where R̄a and R̄v are the mean Ra and Rv during baseline measurements, respectively.

Using this ratio, the acceleration-based FT R̂a is calculated using [19]

R̂a = RrR̂v , (F.3)

where R̂v is the velocity-based FT from the ISO standard.

Vibration data collected by the NSF I/UCR Center for Intelligent Maintenance Sys-

tems (IMS) [21] is used to validate this transformation. Accelerometer data from the

second run-to-failure test, consisting of 982 vibration measurements, are utilized. Every

10 minutes, 1 second of vibration data was measured at a sample rate of 20480 Hz. At the

end of this test, an outer race fault was observed in the dismantled bearing. The motor

size is assumed smaller than 15 kW, and therefore the FT is set slightly lower than level

D in the ISO standard, at R̂v = 4 mm/s.

The first 30 hours of vibration data (180 datasets with 10 minutes interval) is set as

a baseline, and the mean RMS values are R̄a = 0.757 m/s2 and R̄v = 0.755 mm/s. Using

(F.2) and (F.3) results in R̂a = 4.01 m/s2. Fig. F.1 (a) shows Rv and R̂v, while Fig. F.1

(b) shows Ra and the resulting FT R̂a. As observed in Fig. F.1 (a), Rv starts increasing

from the mean value near the end of useful life (after 150 hours), giving a very short

time to shut the machine down and plan maintenance. However, Ra starts increasing

much sooner (t ≈ 80 hours), which allows for predicting RUL and plan maintenance in

advance. The two trends reach their respective FTs near the end of life, which shows that

the transformation can be used for this purpose.

Ra in Fig. F.1 (b) is, however, not suitable for RUL estimation due to oscillations

around the mean degradation. Fig. F.2 shows Ra and an artificially created mean trend

to highlight the cyclic behavior. For example, the sudden increase of Ra at t ≈ 115 hours,

and the subsequent decrease, render a challenge for determining the actual degradation
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Figure F.1: Comparison between velocity- and acceleration-based RMS for the IMS

dataset. (a) velocity-based RMS and its FT; (b) acceleration-based RMS and its FT.
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Figure F.2: Ra compared to an artificially created mean trend to highlight oscillations.

trend. A more stable trend should be extracted from the vibration signal to achieve better

RUL estimation. In the next subsection, a new approach for extracting more useful RMS

data from the vibration signal is proposed.

F.3 Proposed RMS health indicator

F.3.1 Filter bank RMS

A digital filter bank can be used to subdivide a signal into multiple components, where

each component contains a frequency sub-band of the signal. This can be achieved by

iteratively passing the signal through a low- and high-pass finite impulse response (FIR)

filter and decimating each output signal to half the frequency. Such a procedure has

some limitations: Digital FIR filters use convolution to filter the signal, and only the

overlapping part between the filter kernel and the signal should be preserved to avoid

adding artifacts. This means that a high order FIR filter kernel with a sharp frequency





         


response will remove much of the signal energy. In addition, the energy loss is exponential

for each level of filtering. If, however, the FIR filter kernel is small, there can be large

frequency overlap between the signal components. Computing a digital filter bank can also

be computationally taxing if the input signal is long, and if multiple frequency levels are

required. Alternatively, the vibration signal can be split into sub-bands using the discrete

wavelet transform (DWT) [22]. A time-domain filter bank is, however, not necessary to

acquire the RMS in different frequency bands. The following explains how the spectrum

bins from a single discrete Fourier transform (DFT) can be used to directly calculate the

vibration RMS in a certain frequency band.

An alternative representation of RMS is given by the energy E of the signal, such as

RMS(x) =

√
E(x)

T
. (F.4)

The signal energy can be calculated in both time and frequency domain with

E(x) =
n∑
i=1

|xi|2∆t =
n∑
i=1

|Xi|2∆f , (F.5)

where n is the length of the sampled signal, x = (x1, . . . , xn) is the vibration signal given

in discrete time samples, X = (X1, . . . , Xn) is the frequency spectrum, ∆t is the time

interval between samples, and ∆f is the frequency step between each spectrum bin.

To explain the procedure, the frequency spectrum is assumed ordered from 0 Hz to

Nyquist frequency, and from negative Nyquist up to 0 Hz. Let XL = (XLP , Zn/2, XLN),

where XLP contains the spectrum bins of the lower positive frequencies (i.e. 0 Hz to half

the Nyquist frequency), Zn/2 is n/2 zeros, and XLN contains the spectrum bins of the

lower negative frequencies. Similarly, let XH = (Zn/4, XHP , XHN , Zn/4), where XHP and

XHN are the spectrum bins of higher positive and negative frequencies, respectively. This

arrangement represents a single level filter bank that splits X at half Nyquist frequency

completely. The total energy of the signal can afterwards be calculated as

E(X) = E(XL +XH)

=
n∑
i=1

|XL,i +XH,i|2∆f (F.6)

where XL,i and XH,i are the i’th bin of XL and XH , respectively. Let the spectrum bins

be given by their complex values, i.e. XL,i = aL,i + jbL,i, XH,i = aH,i + jbH,i, then (F.6)

becomes

=
n∑
i=1

(√
(aL,i + aH,i)2 + (bL,i + bH,i)2

)2

∆f

=
n∑
i=1

(
a2
L,i + 2aL,iaH,i + a2

H,i + b2
L,i + 2bL,ibH,i + b2

H,i

)
∆f . (F.7)





          
 

Given that XL and XH represent a complete signal separation at half Nyquist fre-

quency, the overlap between XL and XH is zero. Therefore, 2aL,iaH,i = 2bL,ibH,i = 0, and

(F.7) is reduced to

E(X) =
n∑
i=1

(a2
L,i + a2

H,i + b2
L,i + b2

H,i)∆f

=
n∑
i=1

(|aL,i + jbL,i|2)∆f +
n∑
i=1

(|aH,i + jbH,i|2)∆f

= E(XL) + E(XH) . (F.8)

Eq. (F.8) shows that the energy of the entire signal can be calculated by the energy of

separate spectrum bins. It can also be shown as an extension of (F.4) that

RMS(X) =

√
E(XL) + E(XH)

T

=
√

RMS(XL)2 + RMS(XH)2 . (F.9)

Eq. (F.8) also indicates that the signal can be split into multiple equally-sized frequency

bands such that

E(X) =

Nb∑
i=1

E(X(i−1)nb+1:inb
) (F.10)

RMS(X) =

√√√√ Nb∑
i=1

RMS(X(i−1)nb+1:inb
)2 , (F.11)

where Nb is the number of frequency bands the spectrum is split into, and nb = n/Nb.

For brevity, the RMS of a frequency band i is defined as

Ri = RMS(X(i−1)nb+1:inb
) , (F.12)

and the RMS value for band i at time index k is given by Ri,k. In summary, the spectrum

X is first obtained for the entire vibration signal x, and afterwards the energy of bins

belonging to frequency band i is used to calculate Ri using (F.4). The next step is to

obtain FTs for all Ri.

F.3.2 Filterbank RMS failure thresholds

To get an FT for each Ri, (F.11) is reconsidered such that

R̂a =

√√√√ Nb∑
i=1

R̂2
i , (F.13)





         


where R̂i is the FT for Ri. To solve (F.13) for any number of bands Nb, it is necessary

to make some assumptions about the signal x. It is assumed that the vibration signal

is corrupted with normally distributed noise. Such noise is evenly distributed in the

frequency domain, and therefore the energy in all frequency bands should be affected by

this noise. It is also assumed that the energy increase from bearing wear is proportional

to the baseline noise variance in each frequency band. With these assumptions, the FTs

are defined as

R̂i = µi +mσi , (F.14)

where µi and σi are the mean and standard deviation (STD) of Ri during baseline measure-

ments, respectively, and m is a constant scaling factor. To determine m, the conservation

of energy given by (F.13) is considered, such that

R̂a =

√√√√ Nb∑
i=0

(µi +mσi)2 (F.15)

R̂2
a =

Nb∑
i=0

(µi +mσi)
2 (F.16)

= m2

Nb∑
i=0

σ2
i +m

Nb∑
i=0

2µiσi +

Nb∑
i=0

(µi)
2 . (F.17)

Solving (F.17) for m using the quadratic formula yields two possible solutions, m1 and

m2. Due to squaring of the equation in (F.16), both a positive and negative solution for

m are possible. The highest valued solution should be chosen so that the FT is above the

mean value, i.e.

m = max(m1,m2) . (F.18)

The rest of this section contains an example of the proposed RMS filter bank. The

IMS dataset introduced in Section F.2 is subdivided into Nb = 32 frequency bands (320

Hz bandwidth), and Ri is calculated for each band using (F.12). The mean µi and STD

σi of each Ri are determined with the baseline measurements. With these values, the

FTs for each Ri are calculated using (F.14) after solving (F.17) for m. Additionally, a

degradation alarm is triggered at time index kai when Ri,kai > µi + 5σi.

Fig. F.3 shows four RMS trends at different frequency ranges. Fig. F.3 (a) shows

R15 from frequency band [4480, 4800] Hz, and the oscillations in the trend are similar

to Ra shown in Fig. F.1 (b). On the other hand, R3 ([640, 920] Hz) in Fig. F.3 (d) is

monotonic after the initial alarm is triggered, and is very suitable for RUL estimation.

The two other RMS trends in Figs. F.3 (b) and (c) are calculated from frequency bands

between the two others, and it is seen that RMS trends from lower frequency bands are

more monotonic. The initial degradation alarm is also triggered at different times, and
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Figure F.3: Collection of RMS trends with FTs for the IMS dataset. (a) R15; (b) R11; (c)

R6; (d) R3.

RMS trends from high frequency bands appear to trigger it first. In addition, the FTs

R̂i are also shown as blue lines in Fig. F.3. The FTs are reached near the end of useful

life and are therefore considered useful for RUL estimation. The next section details how

suitable RMS trends can be selected online and used to estimate the RUL.

F.4 Remaining useful life estimation

F.4.1 Overview

Suitable RMS trends for RUL estimation are identified by using the Spearman coefficient

[23] in an online manner, which determines the monotonicity of each Ri. A particle

filter (PF) is initialized for each Ri trend with a high Spearman coefficient, and the

Paris-Erdogan law [24] is used to predict the degradation trend. The model parameters

are initialized using a non-linear least squares (NLS) algorithm. For each new sample,

the PFs are updated, and the RUL probability density function (PDF) for each PF is

estimated. Finally, a weighted PDF combining the RUL estimation of all PFs is used to

estimate bearing RUL. A flowchart of the proposed method is shown in Fig. F.4.

F.4.2 Spearman coefficient

The Spearman coefficient [23] is a rank-based correlation between two signals. It can be

used to describe how monotonic a signal is, even when the signal is not linearly increasing.

The Spearman coefficient between a signal x and time t is calculated as

Spearman(x, t) =
cov(rank(x), rank(t))

STD(rank(x))STD(rank(t))
, (F.19)

where cov(·, ·) is the covariance of two trends, and rank(·) is the rank of a signal. Recall

that Ri,k is a sample at index k of Ri, and kai is the index for when Ri,kai ≥ µi + 5σi for





         


Figure F.4: Flowchart of the proposed method.

the first time. Then, the running Spearman coefficient for Ri is defined as

ρi,k =

Spearman(Ri,kai:k, t) if k ≥ kai

0 else.
(F.20)

Eq. (F.20) is used to continually check whether Ri increases monotonously over time.

F.4.3 RMS trend selection

The Spearman coefficient is used to numerically describe how monotonic the RMS trends

are. Three criteria must be met by a certain Ri at time index k for it to be used for RUL

estimation:

1. k ≥ kai + ks, where ks is the minimum number of samples used to calculate Spear-

man coefficient.

2. ρi,k ≥ ρ̂, where ρ̂ is the Spearman threshold.

3. i ≤ min(Ip), where Ip is a set of indices i belonging to R trends previously accepted

for RUL estimation.

The reasons of the criteria are as follows. 1) To calculate a stable Spearman coefficient, it

is necessary with several samples. Therefore, ks is set as a minimum number of samples.

2) The Spearman coefficient must be higher than the threshold to avoid non-monotonic

trends. 3) It is expected that RMS trends of low-frequency bands have less oscillations

compared to higher frequency ones. Therefore, the index i of new trends must be smaller

than all the other selected ones to avoid estimating RUL on unnecessary many trends. The

degradation model chosen to predict each RMS trend is detailed in the next subsection.





          
 

F.4.4 Degradation model

The bearing degradation level is assumed to be monotonously increasing and never self-

healing. In addition, as an increasing number of defects develop in the bearing, the

vibration level increases, which results in an exponential degradation rate. A study [25]

shows that bearing crack propagation may be modeled with the Paris-Erdogan law [24]

This model describes the crack propagation rate in materials under cyclic load, and is

given by
da

dnc
= c(∆k)m , ∆k = ∆σγ

√
πa , (F.21)

where a is the crack size, nc is the cycle number, c, m and γ are material constants, and

∆σ is the cyclic load amplitude. The material constants can be estimated via experimen-

tal testing with a known cyclic load, while measuring the crack length. However, it is

impractical to measure the crack length within a bearing during operation. Therefore, a

is instead estimated with an HI based on the vibration measurements [26].

Let α = γc∆σ
√
π and β = m/2, then the modified Paris-Erdogan law is [13]

da

dnc
= αaβ . (F.22)

Eq. F.22 is afterwards re-written in the form of a state-space model as [13]
ak = ak−1 + αk−1a

β
k−1∆nc

αk = αk−1

hk = ak + νh ,

(F.23)

where αk−1 ∼ N (µα, σ
2
α) is a random variable given by a normal distribution N , β is a

constant, νh ∼ N (0, σ2
h) is measurement noise, and ∆nc is the number of cycles since last

update.

A PF is applied to update the model parameters based on new samples, but reasonable

initial values should be set first. The modified Paris-Erdogan law in (F.23) has five

unknown parameters (a1, µα, β, σ
2
α, σ

2
h) which must be identified. The mean values Θ1 =

(a1, µα, β) are estimated using a non-linear least squares (NLS) algorithm, and afterwards

the variances Θ2 = (σ2
α, σ

2
h) are set based on other criteria

F.4.5 Initial parameter setting

Three model parameters Θ1 = (a1, µα, β) are identified by minimizing an objective func-

tion using NLS. The objective function is the mean square error between measurements

and model prediction. Let the measurement HI be h = (Ri,k−ko:k)T , where ko is the num-

ber of samples used in the optimization. To obtain the objective function, the ordinary





         


differential equation in (F.22) is solved for a as

a(nc,Θ1) = (C1(1− β) + αnc(1− β))1/(1−β) , β 6= 1 , (F.24)

where C1 is based on initial conditions. The process noise and measurement noise are

assumed zero in the minimization algorithm. C1 is determined by solving (F.24) with

initial values a = a1 and nc = 0. After substitution of C1, (F.24) becomes

a(nc,Θ1) =
(
αnc (1− β) + a1−β

1

)1/(1−β)

. (F.25)

The unknown parameters Θ1 are identified using an NLS minimization routine described

as

arg min
Θ1

F (h,Θ1) , (F.26)

subject to


min(h) ≤ a1 ≤ max(h)

0 < µα <∞
0.5 < β < 1.25 ,

(F.27)

where F = 0.5
ko∑
i=1

(hi − a(nc = i− 1,Θ1))2 . (F.28)

A trust region reflective algorithm [27] is used in this research to minimize (F.26). The

constraints for β are set so that the exponential rate does not get unstable.

The variances in Θ2 = (σ2
α, σ

2
h) are set based on baseline data and optimized values in

Θ1. The measurement noise variance σ2
h is simply identified as the variance of Ri during

the baseline measurements, i.e. σ2
h = σ2

i . A particle filter is quite dependent on the choice

of process noise, i.e. σ2
α, and a larger variance gives more headroom for the filter in case

the chosen model does not fit very well with measured data. To give enough headroom

for the filter, the mean value µα is used as the standard deviation, such that σ2
α = µ2

α.

F.4.6 Particle filter

After initializing the model parameters, a sequential importance sampling (SIS) PF is

applied to further update the parameters in the degradation model. General PF theory

is given in [13, 26, 28] for interested readers. A set of initial particles zjk ∀ j ∈ [1, Np] are

initialized at time index k with

zjk ∼ N
([

Ri,k

µα

]
,

[
σ2
h 0

0 σ2
α

])
, (F.29)





          
 

where Np is the number of particles. The particle weights are initialized as wjk = 1/Np.

The next model state is predicted using the particles with

zjk =

[
ajk

µjα

]
=

[
ajk−1 + (µjα + να,k)

j(ajk−1)β∆t

µjα

]
, (F.30)

where νjα,k ∼ N (0, σ2
α) is the process noise which is added due to the uncertainty of bearing

load, and ∆t is the time between cycles. When a new measurement Ri,k is available, the

particle weights are updated and normalized with

w̃jk = wjk−1p(Ri,k | zjk) (F.31)

wjk = w̃jk

/
Np∑
j=1

w̃jk , (F.32)

where w̃jk is the un-normalized particle weight and

p(Ri,k | zjk) =
1√

2πσ2
h

exp

[
−(Ri,k − ak)2

2σ2
h

]
. (F.33)

To deal with particle degeneracy, a re-sampling step is utilized if necessary. When

Neff = 1.0

/
Np∑
i=1

wjk < Np/2 , (F.34)

particles are re-sampled according to a systematic re-sampling [29] approach, and particle

weights are re-initialized as wjk = 1/Np.

The RUL estimated by particle j at time index k is given by

ljk = inf{ljk : aj(lk + tk) ≥ R̂i | aj1:k} , (F.35)

where aj(lk + tk) is the state value for particle j at time tk + lk, a
j
1:k is the estimated state

value at 1, . . . , k and R̂i is the FT for Ri. To solve (F.35), the state of each particle j are

simulated using the state transition function given by (F.30) up to the time aj(lk + tk) ≥
R̂i. With the estimated RUL and weight for each particle, the probability density function

(PDF) for RUL lk is approximated by

p(lk | Ri,1:k) =

Np∑
j=1

wjkδ(lk − ljk) , (F.36)

where δ() is the delta-dirac function.

F.4.7 Weighted RUL

The vibration signal is split into Nb frequency bands, where each band is used to calculate

RMS Ri. The running Spearman coefficient is used to detect monotonously increasing





         


RMS trends, and whenever a new trend has a high Spearman coefficient, a new PF is

initialized and updated for that trend. In theory, up to Nb PFs can be initialized, and the

RUL estimated from all are used in a weighted RUL decision. Let PFi denote the PF for

Ri, and let wji,k and lji,k denote the weight and RUL, respectively, for particle j at time

index k in PFi. When Ri stops being monotonic, the PF output associated with it should

count less in a weighted RUL estimation. Additionally, once the Spearman coefficient of

a trend is less than ρL, that trend is neglected in the weighted RUL estimation. Then,

let the weight of each PFi be

Wi,k =
(
ρ3
i,k − ρ3

L

) /(
1− ρ3

L

)
, (F.37)

where the Spearman coefficient is cubed to prioritize monotonic trends. Afterwards, the

weighted RUL PDF at time index k is defined as

p(l̄k | R1:Nb,1:k) =

Nb∑
i=1

Wi,k

Np∑
j=1

wji,kδ(l̄k − lji,k) . (F.38)

Instead of using the median of the PDF in (F.38) as the estimated RUL, the weighted

mean is instead chosen. The reason is that the median of an even number of PFs will

most likely fall under either one of them, even if the medians are far from each other.

Instead, the weighted mean of the PDF is chosen as the estimated RUL. This weighted

mean is calculated with

Weighted mean(k) =

∑Nb

i=1Wi,k

∑Np

j=1 w
j
i,kl

j
i,k∑Nb

i=1Wi,k

∑Np

j=1w
j
i,k

. (F.39)

The weighted mean and 95% confidence interval (CI) of the weighted RUL PDF are

determined after each measurement update to track the estimated RUL over time.

F.5 Experimental results

F.5.1 Test rig 1

To validate the proposed method, the IMS bearing dataset [21] is utilized. ks = 30 is

the minimum number of samples for Spearman calculation, ko = 30 samples are used to

initialize PFs, and ρ̂ = 0.9 is the Spearman threshold. In addition, Np = 1000 particles are

used in each PF, and ρL = 0.7 is the lower Spearman threshold in (4.16). Figs. F.5 and

F.6 shows the results of using the proposed method on this dataset. Subplots in the first

column show the identified RMS trends with high Spearman coefficients, and the output

of the initialized PF. Ri’s are shown by black lines, and the median and 95% confidence

interval of the initialized PF output are shown as red and red-stapled lines, respectively.
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Figure F.5: Identified RMS trends with high Spearman coefficient, and output of the

corresponding PFs—Part 1. Rows 1-3 indicate i = [15, 14, 12]. (column 1) Ri, FT R̂i,

and median and 95% CI of initial PF output; (column 2) µα over time for the initiated

PF; (column 3) predicted PF trend at t = 130 hours.

In addition, blue lines indicate the FT. Each row in Figs. F.5 and F.6 corresponds to a

single index i, which is given in the upper left corner of the leftmost subplot. The second

column show the median and 95% confidence interval (CI) of the µα parameter. The

predicted PF output at t = 130 hours is given in column 3 to show how the particle filters

are converging over time.

At t = 101 hours (k = 608), a new PF is initialized for R15, indicating a change

in bearing health. This RMS trend, shown in Fig. F.5 (a), is from a high-frequency
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Figure F.6: Identified RMS trends with high Spearman coefficient, and output of the

corresponding PFs—Part 2. Rows 1-2 indicate i = [6, 3]. (column 1) Ri, FT R̂i, and

median and 95% CI of initial PF output; (column 2) µα over time for the initiated PF;

(column 3) predicted PF trend at t = 130 hours.

band within [4480, 4800] Hz. Initially, R15 increases monotonously, but at t = 117 hours

the trend starts to oscillate around a mean value. This behavior is similar to the cyclic

behavior observed in the full RMS Ra. µα has converged before t = 110 hours as seen in

Fig. F.5 (b), and therefore the estimated trend will continue until the end of RUL. Fig.

F.5 (c) shows the median and 95% CI output of PF15 at t = 130 hours. A vertical black

line in Fig. F.5 (a) shows when the running Spearman value is less than the requirement

of 0.7. At this time, the trend is determined not suitable for RUL estimation after all,

and its weight W15 is 0 as given by (F.37).

R14 and R12 passes the criteria for RUL estimation at t ≈ 108 hours, and the initial

output of the PFs are shown in Figs. F.5 (d) and (g), respectively. R14 and R12 are

both similar to R15, and gets a low Spearman coefficient eventually as indicated by black-

stapled vertical lines due to the non-monotonic behavior of the trend. The parameter

µα in PF14 and PF12 also converge as indicated in Figs. F.5 (b) and (e), respectively.

Therefore, the converged PF output trends will continue until the Spearman coefficient





          
 

values go below 0.7. The converged output of PF14 and PF12 at t = 130 hours are shown

in Fig. F.5 (f) and (i), respectively.

At t = 113 hours, PF6 is initialized, and the initial PF output is shown in Fig. F.6

(a). R6 has less oscillations compared to the three previously identified RMS trends,

and therefore the Spearman coefficient never gets below 0.7. The parameter µα quickly

converges as shown in Fig. F.6 (b). This is because the sudden increase in value of R6 at

t ≈ 117 hours gives particles with high µα value a large weight. The predicted output is

shown in Fig. F.6 (c) at t = 130 hours. The converged output should reach the FT early

at t ≈ 150, but the PF is continually updated on new samples. Given the uncertainty of

bearing load, the PF may follow the future measurement samples.

When t = 124 hours, PF3 is initialized, and R3 together with the PF output are shown

in Fig. F.6 (d). R3 is the most monotonic trend of the five, and the initial PF output

median matches the future samples well. At t = 130 hours, µα starts to converge as seen

in Fig. F.6 (e), and the PF output is shown in Fig. F.6 (f). The model prediction at this

point is directed at the end of lifetime, and therefore the RUL is accurately estimated at

this point.

The weighed RUL mean and 95% CI for this dataset are shown in Fig. F.7 (a). Here,

the true RUL is shown as a black solid line, while the weighted mean and 95% CI are the

red and red-stapled lines, respectively. The weighted mean oscillates around the true RUL

until the end of life. At t = 125 hours, all five PFs have a weight as shown in Fig. F.7 (b).

From t = 130 hours, the estimated RUL is close to the true RUL. The reason for this is as

follows. The median PF12 estimate in Fig. F.5 (i) over-estimates the RUL. In addition,

the median of PF6 underestimates the RUL while PF3 matches the RUL, as indicated

in Figs. F.6 (c) and (f). The weighted mean will therefore fall somewhere between these

three outcomes. Afterwards, the weights W15, W14 and W12 decreases towards 0 due to a

low Spearman coefficient, and R6 and R3 are the only two trends left near the end of life.

During this time, the estimated RUL is very close to the true RUL.

To visualize how the weighted RUL PDF changes over time, Fig. F.8 shows a 3D

plot where the z-axis is the smoothened PDF. This plot shows why the weighted mean is

calculated in comparison to the median. The true RUL is mainly situated between large

peaks, while the discretely calculated median would have been situated under either peak

with the highest weight. Therefore, it is more natural to estimate the RUL as the center

between PFs.

F.5.2 Test rig 2 — in-house setup

Data from the second test rig is used to further validate the performance of the proposed

method. A 6008-type roller element bearing is worn naturally in an accelerated life test
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Figure F.7: Weighted RUL of the IMS dataset. (a) weighted mean, 95% CI and true RUL

of the IMS dataset; (b) weights for each PF output.

by applying radial and axial loads. The dynamic capacity of the bearing is 17.8 kN, and

the static capacity is 11 kN. With constant radial and axial loads of 9 kN and 5 kN,

respectively, the bearing lasted approximately 34.6 million revolutions before failing due

to an outer race fault. At a shaft speed of 100 rpm, vibration data was sampled every 15

minutes at a rate of 51200 Hz for 6 seconds. The 154 last hours of operation are used to

verify the performance of the proposed method. More details of the test rig are given in

[30].

The velocity- and acceleration-based RMS are shown in Figs. F.9 (a) and (b), respec-

tively. A 1.1 kW motor is used, and therefore the velocity-based FT is set to R̂v = 4.0

mm/s. The FT R̂v is not reached entirely at the end of useful life, as shown in Fig. F.9

(a). On the other hand, the transformed acceleration-based FT R̂a is far from reached in

Fig. F.9 (b). The transformation from R̂v to R̂a is not analytic and may therefore not be

accurate. The test was stopped due to a high rate of change in Ra, and the machine could

possibly have been run for more cycles. If the test was run for a few more measurement





          
 

Figure F.8: Weighted RUL PDF of the IMS dataset over time. The weighted mean and

true RUL are shown for reference.

cycles, R̂a might have been reached.

The proposed method is used to split the vibration signal into Nb = 64 frequency

bands, resulting in a frequency bandwidth of 400 Hz. A few of the RMS trends are

shown in Fig. F.10. R40 in Fig. F.10 (a) is oscillating, and hence not suitable for RUL

estimation. R19 and R11 in Figs. F.10 (b) and (c) have less oscillations, but do not

increase steadily. R1 in Fig. F.10 (d) on the other hand, increases almost linearly after

the alarm is triggered, which makes the trend suitable for RUL estimation.

Using the proposed RUL estimation algorithm, the first and only identified RMS band

is R1 at t = 120 hours. The initial PF output and R1 are shown in Fig. F.11 (a), and

µα is shown in Fig. F.11 (b). The trend is re-drawn in Fig. F.11 (c) to show the PF

output at t = 130 hours, which follows the future samples well. Since the predicted trend

is similar to new samples, the estimated RUL is accurate. The weighted RUL is shown

in Fig. F.12, and it follows the true RUL well. In this case, the estimated FT is reached

very close to the actual end of life, and therefore the RUL estimation is accurate. The

3D plot in Fig. F.13 also shows how the weighted RUL PDF changes over time.
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Figure F.9: Comparison of velocity- and acceleration-based RMS of the in-house test rig

dataset. (a) velocity-based RMS; (b) acceleration-based RMS.
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Figure F.10: Collection of RMS trends with FTs for the in-house test rig dataset. (a)

R40; (b) R19; (c) R11; (d) R1.
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Figure F.11: R1 and initial median and 95% CI output of the corresponding PF. (a) R1

with marked part as optimization input, blue line for FT, and red lines for median and

95% CI of PF; (b) α over time for the initiated PF.
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Figure F.12: Weighed RUL of the in-house test rig dataset. The weighted mean, 95% CI

and true RUL are shown.

Figure F.13: Weighted RUL PDF of the in-house test rig dataset over time. The weighted

mean and true RUL are shown for reference.

F.5.3 Comparisons

In this section, other research using the same IMS dataset are compared with the proposed

method. In [31], the RUL was estimated using a feedforward artificial neural network

(FFNN). However, training such an FFNN requires historic failure data, and therefore





         


the results cannot be compared to the proposed method. In [32], the proportional hazard

model and logistic regression model were used, but historic failure data of the machine

was required as well. Relevance vector machine (RVM) was used in [33], and the results

show good estimation of the RUL. But, historical failure data was required to train the

RVM. An enhanced phase space warping (PSW) method is proposed in [34] to combine

the advantages of physics-based and data-driven techniques. The estimated RUL is close

to the actual RUL, but historical failure data from a different test on the same machine

was used to determine a few parameters. Soualhi et al. [35] proposed a method using

an artificial ant clustering (AAC) technique for classifying faults, a hidden Markov model

(HMM) to detect changes in degradation stage, and an adaptive neuro-fuzzy inference

system (ANFIS) for RUL estimation. However, historical failure data was necessary to

train the AAC. Ahmad et al. [36] presented a hybrid technique for RUL estimation that

rectifies RMS fluctuations, and uses least squares minimization to fit a quadratic model

to the rectified RMS. The gradient of the quadratic model is used as FT, and it was set

based on available historical failure data. The resulting RUL estimation is quite accurate.

However, due to usage of historic failure data to set the FT, the results cannot be compared

to the proposed method. The authors could not identify publications showcasing RUL

estimation on the IMS dataset without use of historic failure data. Therefore, direct RUL

estimation comparison is not performed.

F.6 Further work

This section presents opportunities for further work to improve the proposed method.

High-frequency RMS bands over 2 kHz may be used for health stage (HS) division. Energy

is required to form cracks in materials, and that energy is dissipated during fracture, i.e.

strain energy release. It has been observed that the RMS of a high frequency band seem

to mimic this physical phenomenon. This information may be used to divide the life of the

bearing into multiple health stages (HSs). In the IMS dataset, R15 is a high-frequency

RMS band that shows signs of energy oscillations, seemingly due to crack formation.

Fig. F.14 (a) shows the result of HS division due to strain energy release. The initial

degradation alarm is first triggered for R15, which marks the transition to HS 2. The RMS

is increasing slowly over time, until R15 jumps to a high value ≈ 1 m/s2. Now the RMS is

seemingly high enough for more damage to occur, and during the fracture, R15 starts to

decrease, which marks the change to a new HS. With the increased amount of damage,

bearing impacts also increase vibration energy at lower frequency RMS bands. R3 in Fig.

F.14 (b) is a low-frequency band, and the RMS starts to increase linearly during HS 3.

At t = 130 hours, R15 has reached a local minimum before it starts to increase again and
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Figure F.14: Health stage division from energy cycles of a high-frequency band on the

IMS dataset. (a) High-frequency bandR15 and identified HS transitions; (b) low-frequency

band R3.

reaches another maximum at t = 143 hours. The rate of R3 increases again afterwards,

as there are seemingly more bearing impacts. In HS 4, R15 decreases and increases within

10 hours, and the bearing enters yet another HS. From HS 5+, the energy cycles are very

short, just a few hours, indicating that critical failure is imminent.

For the second test rig, the RMS in a high-frequency band could indicate HS changes.

Fig. F.15 (a) shows R40 and the identified peaks at the vertical stapled lines. At first, R40

increases until it reaches a top value, after which point it decreases again. This signifies

an HS change, and the low-frequency R1 in Fig. F.15 (b) increases linearly from that

point. When then next RMS top point is reached at t = 135 hours, the rate of change in

R1 does not increase. Instead, the linear trend stops to increase for 7 hours, until it starts

again at t = 142 hours. At this point, R40 reaches a small peak point. This phenomenon

may be investigated in future work, as this information could be used to make a better

RUL estimation. For example, the energy oscillation in a high-frequency band can be

predicted to assume a higher rate of lower-frequency RMS trends ahead of time.

The RMS filter bank has been used to estimate RUL by identifying monotonic RMS

trends, and updating model parameters using a particle filter. However, the presented
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Figure F.15: Health stage division from energy cycles of a high-frequency band on the

in-house test rig dataset. (a) High-frequency band R40 and identified HS transitions; (b)

low-frequency band R1.

method may be improved in future work. The frequency bands were evenly split with

equal frequency bandwidth, and it should be investigated if there are more optimal ways

to subdivide the energy bands. Secondly, it should be checked if the presented filter bank

could be used for other purposes than calculating the RMS. Finally, there may be better

ways to use all the RMS bands for RUL estimation rather than filtering each trend with

a PF.

F.7 Conclusions

In this paper, a new method for subdividing the vibration signal into multiple frequency

bands for root mean square (RMS) calculations is proposed. The method utilizes a single

discrete Fourier transform (DFT) per signal, and individual bins are used to acquire

the signal energy within a frequency band. The Spearman coefficient is used to identify

monotonic RMS trends that are suitable for remaining useful life (RUL) estimation. It

is observed that low-frequency RMS bands are most monotonic, while higher frequency

RMS bands show earlier sign of degradation. The failure threshold (FT) for vibration





          
 

RMS, developed in earlier research, has been extended for the RMS frequency bands. A

particle filter (PF) is applied to estimate parameters for the Paris-Erdogan law, and a

single instance is used for every monotonic RMS trend. The RUL is afterwards estimated

by weighing the output RUL of all initiated PFs. Experimental results show that the

proposed method produces good RUL estimations without the use of historic failure data.

The resulting RUL estimation in this research is, however, less accurate compared to

referenced work that uses historical failure data for model training. Therefore, more

investigation on the RUL estimation algorithm is necessary to improve performance.
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