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Abstract—As the size of the chip is scaling down the density
of Intellectual Property (IP) cores integrated on a chip has been
increased rapidly. The communication between these IP cores on
a chip is highly challenging. To overcome this issue, Network-
on-Chip (NoC) has been proposed to provide an efficient and
a scalable communication architecture. In the deep sub-micron
level NoCs are prone to faults which can occur in any component
of NoC. To build a reliable and robust systems, it is necessary to
apply efficient fault-tolerant techniques. In this paper, we present
a flexible spare core placement in Mesh-of-Tree (MoT) topology
using Particle Swarm Optimization (PSO) by considering IP core
failures in NoC. We have experimented by considering several
application benchmarks reported in the literature. Comparisons
have been carried out, (i) by varying the percentage of faults in
the MoT network with fixed network size and (ii) by taking the
failed core as an input from the user. The results show limited
overhead in communication cost while providing fault-tolerance.

Index Terms—Network-on-Chip, Mesh-of-Tree Topology,
Fault-Tolerance, Communication cost, Spare core.

I. INTRODUCTION

The recent developments in the field of VLSI gave rise to
drastic reduction in the size of the components being fabricated
on a chip, which in turn leads to an increase in the integration
density of the components on a chip. The traditional bus based
communication architecture on a chip is not scalable and can
no longer efficiently handle the high inter-core data rates. To
overcome these limitations, Network-on-Chip (NoC) has been
proposed in [1]. In NoC the communication among different
IP cores is achieved through packet based switching technique.
The major components of an NoC are Network Interfaces
(NIs), Switches or Routers and Interconnection links. As the
size of the chip is being reduced, the NoCs are prone to
faults which degrades the system performance and makes
the chip unreliable. According to [2], faults in VLSI can
be classified into Transient, Intermittent and Permanent. The
temporary interference like cross talk, voltage noises can lead
to transient faults. Due to marginal hardware the faults can
occur repeatedly at one location or often in bursts are called as
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intermittent faults. The faults occurred due to incorrect logic,
setup time or hold time violations are considered as permanent
faults.

In this paper, permanent faults occurred in application
cores have been considered while providing fault-tolerance
using spare cores. Application mapping in NoC is a NP-Hard
problem [3]. The NoC network consumes 30-40% of the total
power consumed by the chip which is quite significant [4].
This necessitates for the deployment of proper application
mapping and routing algorithms to reduce the power consump-
tion. This has motivated us to provide the flexibility in placing
a spare core in the Mesh-of-Tree (MoT) topology to take care
of failed ones using Particle Swarm Optimization (PSO). Since
there are no approaches reported in the literature focusing on
the core faults in MoT network, therefore we have compared
our technique with native fault free approach reported in [5]
and communication cost is calculated. In our approach we
have considered only core faults, whereas router and link faults
are beyond the scope of our work. The paper is organised as
follows. Section II deals with the literature survey. Section III
gives brief overview of MoT topology. Section IV explains
about the problem definition Section V describes the PSO
formulation. Section VI recites experimental results followed
by the conclusion.

II. RELATED WORKS

There have been various strategies proposed for mapping of
application core graphs onto NoC based architectures. NMAP
mapping technique has been proposed in [6] to minimize the
communication delay in a NoC. This technique uses split
traffic routing technique to satisfy the bandwidth constraints
of the links. A branch and bound algorithm has been proposed
in [7] to map the application core graphs onto tile based NoC
architectures to minimize the energy consumption while satis-
fying the bandwidth constraint of the links. An application for
automatic topology selection and mapping namely SUNMAP
has been proposed in [8]. The final mapped solution can be
generated subject to different criteria like minimizing area,
average communication delay and power dissipation.



Specific to the MoT topology, a mapping technique based
on Kernighan-Lin (KL) partitioning has been proposed in [9].
The KL partitioning identifies the closely related cores and a
heuristic which tries to map these cores onto the given MoT
topology subject to minimizing the communication cost. One
of the shortcomings of the KL partitioning is the solution
may get stuck at a local minima instead of the global best
solution. To overcome this shortcoming, a KL._GA mapping
technique has been proposed in [9] for MoT topology which
is based on KL partitioning and a Genetic Algorithm (GA). A
MoT mapping technique based on Discrete Particle Swarm
Optimization (DPSO) has been proposed in [5]. Most of
the works reported in the literature have not considered the
core failures in the MoT topology based NoC design. In our
proposed work, we have addressed core failures in MoT using
DPSO based technique [5] to map the application cores along
with a spare core to make the system reliable and robust.

III. OVERVIEW OF MESH-OF-TREE STRUCTURE

The basic design of a M x N MoT structure has M number
of row trees and N number of column trees. A M x N
MoT has 3 % (M % N) — (M + N) nodes with a diameter
of 2logoM + 2logaN. The bisection width of a MoT is
min(M, N). The Fig. 1 shows a 4x4 MoT structure where
there are 4 row trees and 4 column trees. There are three
different type of routers namely leaf routers (L), stem routers
(S) and root routers (R). Leaf routers are connected to both
row tree and column tree. Each leaf router can accommodate
two cores. These leaf routers are connected to stem routers
and stem routers are connected to root routers.

For an M x N MoT structure, the number of routers will be
as follows:

e Number of leaf routers = M * N.
e Number of stem routers = 2 * (M + N).
e Number of root routers = M + N.

Therefore for 4x4 MoT structure the number of leaf routers,
stem routers, root routers are 16, 16, 8 respectively.

Fig. 1: 4x4 MoT structure

IV. PROBLEM DEFINITION

An application constitutes processing elements or cores
which can implement set of tasks with required communi-
cation bandwidths. These can be represented in the form of
core graphs and it is defined as follows.

Definition 1: The directed graph G(C,E) corresponds to
communication cores (C) and edges (E) of an input appli-
cation.

Let us consider the core graph of MPEG application shown
in Fig. 2. It contains 12 cores represented as CO - C11 with
the communication bandwidth represented on their edges (E).
Core CO is communicating with core C4 with a bandwidth
of 190 mega bits per second. Similarly other cores in the
application core graph communicate with the bandwidth men-
tioned on their edges. As we can observe core C4 is the
most communicating core and has high probability of failure
[10]. Hence, we consider C4 as the failed core. However,
we have also considered different core failures and computed
communication cost, defined next.

Fig. 2: MPEG application

Definition 2: The MoT network size of M x N with
available number of routers to place the cores of an application
core graph.

In the application core graph we have considered core
failures due to permanent faults and a spare core is included
which can take care of communications associated with failed
core. By considering the definitions 1 and 2, the problem state-
ment can be minimizing the communication cost by efficient
placement of the cores (including spare core) in the MoT
network. The communication cost is calculated as the product
of hop distance between source core (C;) and destination core
(C;) and the respective bandwidth (BW) between them.

Communication cost = Z (Hop distance x Bandwidth)
VEdges
)

To address this problem we have proposed a methodology
based on Particle Swarm Optimization.



V. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) [11] is a population
based stochastic technique designed and developed by Eber-
hart and Kennedy in 1995, inspired by social behaviour of
bird flocking or fish schooling in search of food. In a swarm
of birds, each bird is referred to as particle which is known as
solution. Each individual particle adjust its flying according
to its own experience and experience of its neighbouring
particles. The quality of individual particle is defined by its
fitness value. Several researchers were successful in using PSO
for continuous domain. This has motivated us to apply it for
discrete domain as well. We have used the same formulation
for Discrete PSO proposed in [12], and applied it to our
problem. The detailed explanation is given below.

A. PFarticle Structure

A particle structure is an array of size n, where n represents
the numbers of cores (including spare core) present in the core
graph. The index of an array represents the routers present in
the MoT network. If the number of cores in the core graph is
less than the number of routers present in the MoT network,
then dummy cores are added with zero communication cost. In
a MoT topology each leaf level router can accommodate two
cores present in the core graph. Hence two consecutive entries
in the particle structure constitutes to one router. Further the
particle structure is explained in detailed with an example.

Consider an example of a core graph having 6 cores which
have to be placed in a 2x2 MoT topology. The number of
available router positions are 8. The particle structure for the
core graph having 6 cores numbered from 0-5 is shown in Fig.
3.

The particle P:

Core number [ C4 [C3[CS5[CIJCT[C2[C6]CO |
Router number 0
Core position 0 1 0 1 0 1 0 1

Fig. 3: Particle structure

In the particle P, C7 represents the spare core which takes
the communication associated with failed core C4. The index
number represents the leaf router to which the cores are
attached. Since, two cores can be attached to one leaf router,
therefore core position can be differentiated between two cores
by either O or 1. It can be noted from the particle P, core 3
and 4 have been mapped to the same leaf router i.e router O
but they can be distinguished by the core position which is 0
& 1 respectively.

B. Fitness function

The quality of the particle is defined by its fitness function.
Fitness of a particle is equal to the communication cost
due to association of cores (which includes spare core) of
an application on to leaf routers in MoT structure. As we
have already mention in section IV, the spare core placement
is performed by considering core failures. In an event of
core failure, spare core takes care of failed core without

compromising on communication cost while providing fault
tolerance.

C. Local best

In a problem of search space every particle will have one set
of core positions that leads to minimum fitness value which is
known as local best or pbest. During the evolution process the
pbest value can be updated if the particle encounters minimum
fitness value than the previous one.

D. Global best

In the process of evolution of generations, each generation
will have minimum communication cost. For a particular
generation, the particle resulting in minimum communication
cost is known as global best or gbest. It controls the evolution
of particles and it is modified if the value in the current
iteration is less than the previous iteration.

E. Evolution of Generation

New particles are created over the generations which give
results closer to the optimum value. Initially particles are
created randomly and fitness for each particle is evaluated.
For the initial particle local best and global best will be the
same. Further generations are created by exchanging entries
of the particle using a swap operator. The sequence of swap
operators is known as swap sequence.

1) Swap Operator: Swap operator will swaps the entries
inside the particle to create a new particle. It is given by
SO(a,b) where a and b are the entries inside a particle that
are to be swapped.

For the particle P shown in Fig. 3, if we apply swap operator
SO(2p, 31) then cores at position 2y and 3; will be swapped.
A new particle Py is created which is shown in Fig. 4.

New particle Py:

Core number [ C4 [C3[C5[CI[CO[C2]C6]CT |
Router number 0
Core position 0 1 0 1 0 1 0 1

Fig. 4: Swap operator

2) Swap sequence: The series of swap operations applied
on a particle is known as swap sequence. It is denoted by SS =
[SO(a,b), SO(c,d)] where a, b, c and d are the different entries
in a particle. During the swap sequence SO(a,b) will create an
intermediate particle Py on which SO(c,d) has to be applied.

For example a swap sequence SS = [SO(20,31), SO(1¢,21)]

has been applied on the above defined particle P shown in Fig.
3. It creates new particle Py in two steps.
In step 1, the swap operator SO(2y, 3;) is applied. The
intermediate particle P; is same as shown in Fig. 4. In the
second step a swap operator SO(lyp, 2;) is applied on a
intermediate particle P;. Fig. 5 shows the new particle Py
obtained after applying swap sequence.

Each particle tries to move towards the local best and the
global best. After all particles have undergone the evolution, a
new generation gets created. The best fitness of this generation
gives the global best for the population.



Core number [ C4 [C3[C2[CI[CO[C5]Cé6 | CT |
Router number 0 0 1 1 2 2 3 3
Core position 0 1 0 1 0 1 0

Fig. 5: New particle

VI. EXPERIMENTAL RESULTS

In this section we present the results obtained by performing
spare core placement using DPSO technique for several bench-
mark applications reported in the literature and the applications
generated using TGFF tool [13] by

o Considering no core has been failed.

o Considering most communicating core has been failed.

e Varying the percentage of faults while considering most
communicating core failure.

« Taking failed core as an input from the user.

o Scaling the MoT network size

A. Communication cost results for zero core failures:

In this experiment we have considered different application
benchmarks reported in the literature. In all the applications
we have assumed no core has been failed and calculated
the communication cost using eq. 1. Table. I, shows the
communication cost [14] for each application.

TABLE I: Communication cost for zero core failures

Application | No.of cores | Communication Cost
MPEG 12 5752
MWD 12 2048
263Enc 12 33.19
Mp3Enc 13 22.02
263Dec 14 25.33
VOPD 16 6318

The results reported in the Table. I will act as a reference to
compare with our approach for different core failures.

B. Communication cost results for most communicating core
failure:

In this experiment we have assumed most communicating
core has the highest probability of failure [15]. However,
we have also experimented with other core failures in the
application. Since most communicating core has the highest
communication bandwidth compared to all other cores in the
application. Hence the communication cost overhead is more
compared to other core failures. In the event of core failure,
the spare core will take the communications associated with
the failed core. In-spite of being fixed position of spare core,
our approach provides the flexibility in placing the spare
core in 4x4 MoT. This will leads to minimum overhead in
communication cost.

As we can observe from the Table. II, on comparison with
fault free communication cost reported in Table. I the average
percentage of overhead in communication cost is 4.48%. This
shows the efficiency of our approach in placing the spare core
in best suitable position in the network.

TABLE II: Communication cost for most communicating core
failed

Application No. of cores | Failed core | Communication cost | % Overhead
MPEG 12 4 6380 10.91%
MWD 12 4 2240 0.93%

263Encoder 12 0 36.99 11.44%

MP3Encoder 13 0 2232 1.31%

263Decoder 14 2 25.39 0.23%
VOPD 16 7 6505 2.87%

Average % overhead 4.48%

C. Varying percentage of faults in 4X4 MoT network with most

communicating core failure
Fault percentage in the M x N MoT network can be

termed as the number of leaf routers are not available for
mapping the cores of an application. By considering the
most communicating core failure, we have increased the fault-
percentage to 15%, 30% and 45% and the results are reported
in the Table. III. While increasing the fault-percentage in the
network, the number of positions available for placement of
a spare core decreases. Within the limited search space our
approach will find the best position in the MxN network to
reduce the communication cost.

TABLE III: Communication cost while varying percentage of
faults in the 4x4 MoT network.

Application Communication Cost
15% faults | 30% faults | 45% faults
MPEG 6132 6980 7540
MWD 2240 2272 2496
263Enc 37.01 41.93 41.96
Mp3Enc 22.34 24.502 24.47
263Dec 25.41 26.61 26.85
VOPD 6404 6721 6909

From Fig. 6 we can observe that percentage overhead
in communication cost increases with increase in fault-
percentage. It may be noted that the communication cost
overhead is independent for each application and it varies
different applications. For example if we observe Fig. 6, the
overhead of communication cost for MPEG application for
15%, 30% and 45% are 5.2%, 20.3% and 30.1% respectively.
Whereas the communication cost overhead for 263Decoder
for 15%, 30% and 45% are 0.02%, 5.01% and 6.12% respec-
tively. The overhead in communication cost for MPEG and
MWD applications are different. This is due to the different
communication behavior of an application.

This shows that with respect to each application and fault
percentage in the MoT network, our approach tries to find the
best position for the spare core in the network. On an average
for all application benchmarks reported in Table. III, we could
achieve 4.68%, 13.33%, 16.5% overhead in communication
cost for 15%, 30% and 45% faults in the 4x4 MoT network
respectively.

D. Communication cost results by taking failed core as user
input

This section presents a spare core placement for different
core failures in several application benchmark reported in the
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Fig. 6: Percentage of faults

literature. For a MPEG application, the spare core placement
has been performed by considering different core failures
and results are shown in Fig. 7. The X-axis represents the
failed core of an application while Y-axis represents the
communication cost obtained for corresponding core failure.
The cores on the X-axis are arranged in a decreasing order of
the communication bandwidth. The general trend of the graph
indicates that the communication overhead by introducing
a spare core decreases along the x-axis reaching fault-free
communication cost. As we can observe from the Fig. 7, the
communication cost decreases from most communicating core
failure to least communicating core. Similarly we can observe
the same trend in decrease of communication cost for MWD,
263Encoder, Mp3Encoder, 263Decoder, VOPD applications
and the results are shown in Fig. 8 to Fig. 12 respectively. This
decrease in the communication cost is due to the decrease in
communication bandwidth associated with failed core.
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Fig. 7: Communication cost for core failure in MPEG appli-
cation

From Fig. 13 we can observe that the average overhead
in the communication cost for MPEG, MWD, 263Encoder,
Mp3Encoder, 263Decoder, VOPD applications are 4.4%,
3.3%, 2.1%, 0.7%, 0.2% and 2.2% respectively. This shows
that our approach is providing best position for the spare core
in the MoT network for any one of the core has been failed
in the application.
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Fig. 8: Communication cost for core failure in MWD appli-
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VII. SCALING THE MOT NETWORK SIZE

In this experiment we scale the MoT network size from
4x4 to 8x8 to check the scalability of our approach. The
applications reported in the literature have less number of cores
i.e., 16 in case of VOPD.

Therefore we have used TGFF tool [13] to generate ap-
plication core graphs up to 96 cores. Table IV shows the
communication cost for spare core having more than 32 cores
in an application. On an average we have achieved an optimal
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overhead of 5.32% in communication cost for greater number
of cores. This is due to the efficient placement of spare core
in the given MoT network. This shows the scalability of our
approach by providing best position for the spare core in 8x8
MoT network.

VIII. CONCLUSION

In this paper we have presented a PSO based meta-heuristic
technique to determine the flexible placement of spare core in
a Mesh-of-Tree based NoC architecture. It has been shown
that the flexible placement of the spare core has resulted in
a less communication overhead while providing a degree of
fault tolerance in the network. Our proposed algorithm works
efficiently in case of varying fault percentage in the network,
by varying different core failures in the application and also
by scaling the MoT network size. The future work includes

TABLE IV: Communication
higher number of cores

cost for applications having

Application | Cores | Fault-free Our approach % Overhead
Gl 32 136519.51 143080 4.80
G2 48 182852.40 196369 7.39
G3 64 166032.73 174078.1 4.84
G4 80 189388.01 204172.17 7.81
G5 96 349265 355466.43 1.77
Average % overhead 5.32

multiple spare core placement in MoT network and proposing
exact methods like Integer Linear Programming.
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