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Abstract

The difference between the financial advice and mean-variance analysis is evident in terms of

the investor’s risk aversion and investment horizon. While the optimal mean-variance port-

folio proportions are identical across different configurations of risk aversion and investment

horizon, the financial advisers recommend a higher proportion of risky assets as the investor’s

risk tolerance and investment horizon increases. Consequently, mean-variance analysis is

incompatible with the realities of investing.

In this thesis, we take on a behaviourist approach and attempt to explain the financial

advice. Our model of choice is the mean-expected shortfall risk model (mean-LPM1) which

incorporates elements of behavioural finance such as the investor’s target return and loss

aversion. Previous research indicate that investors perceive risk as falling below a target

return, and it is well known that investors are loss averse. That is, losses looms larger than

corresponding gains to paraphrase Kahneman and Tversky (1979).

The mean-LPM1 model is applied on two datasets that differ in terms of complexity. On

both datasets, and in the presence and absence of the assumption of normally distributed re-

turns, the model produces qualitatively similar results with the financial advise. Specifically,

hypothetical mean-LPM1 investors prefer riskier portfolios with lower loss aversions, and a

longer investment horizon persuade them to hold more aggressive portfolios. Furthermore,

the investors seek riskier portfolios when faced with higher target returns to have a reasonable

shot at achieving those returns.

Keywords— Loss Aversion, Target Return, Expected Shortfall, Lower Partial Moments, Downside

Risk, Asset Allocation Puzzle, Time Diversification Puzzle, Static Investment Horizon
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1 Introduction

1.1 Background

Canner, Mankiw, and Weil (1994) observe that the financial advisers violate the two-fund theorem by

Tobin (1958). In mean-variance analysis, the two-fund theorem state that the optimal proportions are

identical across efficient portfolios. However, the financial analysts recommend a higher proportion of

risky assets for investors more tolerant to risk. This is the "Asset Allocation Puzzle". A notable solution

to the puzzle is by De Giorgi (2011) who combines the behavioural reward risk model of De Giorgi,

Hens, and Mayer (2008) with Statman’s (1999) behavioural portfolio theory. De Giorgi (2011) shows

that with decreasing loss aversions the portfolios become riskier, consistent with the financial advice.

In terms of a fixed investment horizon, the optimal mean variance portfolios are unaffected by the

length of the horizon1. The financial advisers, however, advocate for a higher allocation of risky assets

to younger investors who typically have longer horizons, and it is believed that the advisers subscribe to

the time diversification effect, the notion that stocks become less risky over longer horizons (Bennyhoff,

2009). In its essence, the idea that stocks are less risky in the long run depends entirely on how

risk is framed (Kritzman, 2002; Fisher and Statman, 1999). As a consequence, Fisher and Statman

(1999) argue that it is more productive to examine how investors perceive risk and the other factors that

influence their investment decision.

Motivated by the failures of mean-variance analysis, and the insights of Fisher and Statman (1999),

this thesis opt to provide a behaviour explanation to the financial advise. As such, we concern ourselves

with how advisers and practitioners view risk. Our model of choice is the mean-shortfall expectation

model (mean-LPM1), a special case of Fishburn’s (1977) general mean-lower partial moments model

(mean-LPMn). The mean-LPM1 model incorporates the concept of loss aversion (Kahneman and

Tversky, 1979; Tversky and Kahneman, 1991), the notion that investors have different sensitivities to

gains and losses of equal magnitude. Schmidt and Zank (2005) argue that loss aversion is synonymous

with risk aversion. In this thesis, we adopt this view. The empirical observation that investors equate

risk with falling below some target outcome (Kahneman & Tversky, 1979) is captured in the LPM1

risk measure which measures the magnitude and frequency of downside deviations from a subjective

1The mean and variance is scaled up by the length of the investment horizon and the scaling does not affect
the optimal composition.
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reference point.

To test the model, we use two datasets: a classical dataset on the principal assets of stocks, bond and

cash, and a more "advanced dataset" of several stock and bond funds of varying characteristics. The

advanced dataset allows for a more realistic analysis. In brief, the mean-LPM1 model applied on these

datasets, both in the presence and absence of the assumption of normally distributed returns, produce

portfolios consistent with the financial advise. Moreover, we identify the drivers that affect portfolio

composition: lower loss aversions correspond to riskier portfolios; similarly, longer investment horizons

are associated with riskier portfolios, while higher target returns reflects the need for riskier portfolios

to achieve those targets.

1.2 Research Objective

The research objective is to qualitatively determine whether the mean-LPM1 model can explain the

financial advice and subsequently provide a behavioural solution to the puzzles.

1.3 Research Question

In addition to the research objective, we want to examine how the components of the mean-LPM1 model

affect the portfolio allocation. That is, how the portfolios change with longer investment horizon, loss

aversion, and target return. Moreover, we want to determine if there are any portfolio differences when

we assume normally distributed returns. The research questions can therefore be formulated as:

1. What is the relationship between the portfolio allocation and the loss aversion?

2. What is the relationship between the portfolio allocation and the investment horizon?

3. What is the relationship between the portfolio allocation and the target return?

4. Are there any difference in terms of portfolio composition under the assumption of normally

distributed returns?

1.4 Organization of the Thesis

The literature review examines the puzzles in greater detail. Then commences a short review of the

mean-variance model followed by the deficiencies of mean-variance analysis. First in terms of the
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expected utility theory, and then in terms of behavioural finance. The next section introduces the

lower partial moments risk measures (LPM) followed by the derivation of the mean-LPMn model. The

subsection is succeeded by a presentation on the algorithm used to derive the optimal mean-LPMn

weights for n = 1,2. In the end of the section we provide the rationale for studying the mean-LPM1

model.

In the empirical section, we begin by stating the underlying assumptions that govern our research,

and we provide our motivation for the specific choices we take. The analysis begins on the classical

dataset under the assumption of normally distributed returns before we relax that assumption. Then we

proceed to the advanced dataset, where we study a more realistic scenario involving more assets. The

empirical section ends with the empirical conclusion that summarizes our findings.

In the discussion section, we reflect back on the research assumptions and explain the limitations

of the study, and we discuss possible research paths for the future.

2 Literature Review

2.1 Time Diversification Puzzle

The concept that stocks are less risky over longer investment horizons is referred to as the time

diversification effect (Bennyhoff, 2009). The theorists are unable to decide whether the concept is

a fact or fallacy, so the debate is also known as the time diversification puzzle. But the puzzle also

pertains to differences between theory and practice over longer investment horizons (Fisher & Statman,

1999). Indeed, the practitioners’ portfolio recommendations is in sharp contrast to Samuelson’s (1969)

mathematical argument that, under certain assumptions, the portfolio decision is independent of the

investment horizon. Particularly, the practical advise subscribe to the idea that younger investors with

longer investment horizons should hold a larger proportion of equities than older investors with shorter

horizons (Bennyhoff, 2009). Referring to Siegel’s (1998) research on the historical returns on U.S.

securities from 1802 to 1997, the advisers’ recommendations seem appropriate if the stock performance

of the past will prevail in the future. Siegel (1998) finds that equities have been historically stable over

the long-term with annual compounded real returns on equities of 7 %, and approximately 7 % annual

compounded real return for most major sub-periods over the sample period. Although Siegel (1998)
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reports that stocks are more volatile than bonds over short-term horizons, he finds that stocks never

underperformed the worst performance of long-term government bonds and T-bills for periods longer or

equal than 15 years. Moreover, in comparison to long-term bonds and T-bills, Siegel (1998) discovers

that stocks never underperformed the inflation rate for periods longer than 15 years.

Siegel (1998) attributes the long-term stability effect of stocks to mean reversion—the idea that

fluctuations in returns cancels out over time. Bikker and Spierdijk (2017) show that if mean reversion

is present in stock returns, then successive stocks returns are negatively correlated which results in the

full-period variance being less than proportional to the one-period variance (similarly to the concept of

cross-asset diversification). Consequently, if mean reversion is present in stock returns, then the financial

advice seems plausible if investors equate risk over the horizon in terms of the full-period variance. But

the concept of mean reversion, like that of time diversification, is contested report Bianchi, Drew, and

Walka (2016). After reviewing the empirical research on mean reversion, Bianchi et al. (2016) find that

old research typically find evidence for mean reversion, while newer research find evidence against it.

Besides mean reversion, other return processes could entice investors to pursue aggressive stock

portfolios. For instance, Kritzman (2002) assumes a random process of continuous returns. In doing

so, he finds that the annualized variance, as well as the probability of incurring a loss, diminishes with

longer horizons. If investors view risk as either the annualized variance or the probability of incurring

a loss, then stocks become less risky over longer horizons. On the other hand, if investors equate risk

with the magnitude of a disastrous loss, then risk increases with the longer horizon (Kritzman, 2002).

The financial literature on the relationship between risk and time is extensive, as scholars examine

the puzzle in different set-ups and employ different measures of risk. In the option pricing theory,

Bodie (1995) defines risk as the dollar cost of insuring against stock returns below the risk-free rate. He

discovers, both in the presence and absence of mean reversion, that the insurance cost increases with

the longer horizon. Accordingly, as the insurance cost increases with longer horizons, the implication is

that risk must increase as well—a result that contradicts time diversification but not the independence of

time and risk itself. The research byMerrill and Thorley (1996)—also in the option framework—arrives

at the opposite conclusion of Bodie (1995). For protected equity notes and self funding market collars,

they notice that the cost of insuring these securities against some minimum return decreases with time.

Thus, the implication is that risk decreases too.

Panyagometh (2011) applies the downside risk measures Value at Risk (VaR) and relative VaR to
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the puzzle. By investigating the end value of a defined retirement portfolio, Panyagometh (2011) finds

that the risk of incurring losses decreases with the longer investment horizon.

A notable contribution to debate in the expected utility paradigm is by Samuelson (1969). Under

the assumptions of constant relative risk aversion, random return process, and future wealth is a function

of returns only, Samuelson (1969) proves that the optimal allocation to equities is independent of the

length of the investment horizon but determined only by the investor’s risk aversion. Thorley (1995)

arrives at the opposite conclusion of Samuelson (1969); by relaxing the assumption of constant relative

risk aversion and employing a power utility function that incorporates investors with decreasing relative

risk aversion, Thorley (1995) finds that the optimal allocation to equities grows with the longer horizon.

A notable difference between Thorley (1995) and Samuelson (1969) relates to the statics versus dynamic

approach. Thorley (1995) examines the puzzle in the single-period setting, while Samuelson (1969)

examines the problem in a multi-period setting. As such, it can be argued that they are studying two

conceptually different problems. Kritzman and Rich (1998) examine the time-risk relationship for

different types of utility functions under different return processes and risk aversions. In summary,

Kritzman and Rich (1998) discover that any conclusion on the validity of time diversification is highly

sensitive to the set of assumptions imposed.

Fisher and Statman’s (1999) comment that "The debate about the relationship between risk and

investment horizon takes us to a dead end", captures the essence of the controversy because risk cannot

be objectively defined. Alternatively, the puzzle can be viewed solely in terms of behavioural finance,

an approach Fisher and Statman (1999) advocate for. In terms of behavioural finance, the assumption

of constant risk aversion, for example, is empirically questionable. Kahneman and Tversky (1979)

observe instead that people are risk seeking in face of losses and risk averse in face of gains. Aside

from risk, Fisher and Statman (1999) also believe that factors such as self-control, cognitive errors and

social responsibility can influence the investor’s portfolio composition over longer horizons. Bennyhoff

(2009) reasons that human capital can provide incentives for young investors to pursue stocks more

aggressively than older investors with limited or depleted human capital.

2.2 Asset Allocation Puzzle

Canner et al. (1994) discovers a puzzling irregularity between the classical theory of Markowitz (1952)

and the financial advisers’ portfolio recommendations. The advisers violate Tobin’s two-fund theorem
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(Tobin, 1958) which states that every optimal mean-variance investor choose the same risky portfolio

independently of their risk aversion. Thus, the proportion of bonds to stocks is necessarily identical

for each investor. The financial advisers’ portfolio recommendations in Canner et al. (1994), however,

exhibit decreasing bond-to-stocks ratios for increasing proportions of assets in stocks. Equivalently

viewed, the bond-to-stocks ratios decrease with lower aversions to risk because the financial advisers

recommend a higher proportion of stocks to investors more tolerant to risk. In the financial literature,

this divergence between mean-variance theory and practice is referred to as the asset allocation puzzle

(Canner et al., 1994).

Figure 1 depicts the recommended Vanguard and Fidelity portfolios’ bond-to-stocks ratios as of

2018. The advisers today, like the advisers in (Canner et al., 1994), violate the two-fund theorem. The

blue curve in Figure 1 corresponds to the optimal mean-variance portfolios’ bond-to-stocks ratios in

the absence of a risk-free asset. As the risk aversion increases, the mean-variance investors prefer a

higher proportion of bonds to stocks, or equivalently, a higher proportion of stocks to bonds with lower

aversions to risk—the exact opposite result of the financial advise.

Figure 1: The Vanguard and Fidelity recommended portfolios’ bond-to-stocks ratios as of
2018 and the optimal mean-variance bond-to-stocks ratios. In the absence of the risk-free
asset, the mean-variance portfolios were computed by the mean-variance function derived by
Pulley (1981) for risk aversion ranging from 1 to 200. Themean-variance bond-to-stocks ratios
in Figure 1 are increasing with higher proportions of stocks, or equivalently, with decreasing
aversions to risk—a perplexing result. The dataset used to derive the mean-variance portfolios
can be found in Section 5.1
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The descriptive failures of the mean-variance prompted Canner et al. (1994) to relax the mean-

variance assumptions one by one, but in the end, they were not able to provide a explanation to

the advisers’ recommended portfolios in the mean-variance framework. Wang (2003) discovers an

additional puzzle as he finds that investors with lower risk aversions are advised to hold a higher

proportion of risky stocks to low-risk stocks. This violates the two fund theorem on similar grounds as

before. Wang (2003) attempts to solve the main and sub-puzzle with a modified mean-variance utility

function that incorporates elements of behavioural finance U = µ − λ
∑n

i=1 wiσ
2
i . The utility function

incorporates the concept of loss aversion, λ, proposed in Kahneman and Tversky’s (1979) prospect

theory. The application of loss aversion to portfolio theory suggests that investors with lower aversions

to losses will allocate more aggressively than investors with greater aversions to losses. Risk in Wang’s

(2003) model equates to the portfolio variance excluding covariances between assets. In behavioural

finance, this approach is valid because most investors overlook the correlation between assets when

constructing portfolios (Weber and Camerer, 1998; Kroll, Levy, and Rapoport, 1988). In the end,

Wang’s model (2003) produce qualitatively similar results as the financial advice.

Although Wang’s (2003) solution incorporate elements of behavioural finance, De Giorgi’s (2011)

solution departs entirely from the mean-variance framework. De Giorgi (2011) applies the behavioural

reward risk model of De Giorgi et al. (2008)—a model based on Kahneman and Tversky’s prospect

theory. The behaviouralmodel separates unfavourable outcomes from favourable outcomes by outcomes

that fall below or above some target outcome, respectively; the separation motivates the risk and reward

of the portfolio. De Giorgi (2011) derives optimal portfolios for low to high target outcomes. In

the context of Fisher and Statman’s (1999) behavioural portfolio theory, these portfolios correspond

to the investor’s mental accounts, and portfolios associated with higher target outcomes represent the

investor’s need for upside potential, while portfolios associated with lower target returns represent the

need for security or downside protection. Ignoring the correlation between the portfolios, De Giorgi

(2011) assumes that the investor’s global portfolio problem is to allocate wealth among these portfolios

by maximizing the reward for a given risk constraint implied by the investor’s loss aversion.

In the end, the behavioural model produces qualitatively similar results with the financial advise.

That is, the bond-to-stocks ratio decreases with decreasing loss aversions, and in terms ofWang’s (2003)

sub puzzle, the ratio of large-cap to small-and-mid cap stocks decreases with decreasing loss aversions.
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3 Mean-Variance Model

Drawing on the works of Merton (1972) and Markowitz (1959), this section begins with a short review

on the mathematical idea behind the mean-variance model.

Markowitz (1952) seminal idea was to evaluate portfolios on a two parameter risk-reward rule with

reward defined as the portfolio’s expected return and risk as the portfolio’s variance. According to the

mean-variance rule, risk averse investors choose portfolios with the lowest variance for a given mean,

or equivalently, portfolios with the highest mean for a given variance. In addition to the decision rule,

Markowitz’ (1952) original model assumes that investors have static probability beliefs, invest for a

fixed horizon and short assets freely. Taxes, transaction costs and other indirect costs are ignored. A

security’s performance over a time interval [t −1, t] is measured as the arithmetic return in equation (1),

where Pt is the security’s price on date t.

rt =
Pt − Pt−1

Pt−1
(1)

It follows from equation (1) that the arithmetic portfolio return of n securities, in equation (2), is a

linearly weighted sum of the individual arithmetic returns. The portfolio’s expected return and variance

is given by equation (3) and (4), respectively.

rp,t =
N∑
i=1

wiri,t = wT r (2)

µp =

N∑
i=1

wiui = wT u (3)

σ2
p =

N∑
i=1

w2
i σ

2
i +

N∑
i=1

N∑
j,i

w2
i w

2
jCov[ri,rj] = wTΣw (4)

In matrix notation, wT = (w1,w2,w3, ...,wn) is the vector of asset weights with wi denoting the

proportion of funds allocated to asset i. rT = (r1,r2,r3, ...,rn) and µT = (µ1, µ2, µ3, ..., µn) denote the

vectors of the asset returns and mean returns, respectively. Σ denotes the n by n co-variance matrix

which is assumed to be positive definite. wT1 = 1 denotes that the portfolio weights sum up to 1.

Mean-variance investors are assumed to be risk averse, so an optimal mean-variance portfolio satisfies
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the constrained optimisation problem (5), or equivalently, its duality.

Minimize
w

1
2
wTΣw, subject to wT1 = 1 and wT µ = µ (5)

If the asset universe includes a risk-free asset, rf , the portfolio return and mean return is given by

equations (6) and (7), while the variance remains the same as in (4). The optimisation problem in (8)

reduces to problem (5) for a zero allocation to the risk-free asset, w0 = 0.

rp = rfw0 +

N∑
i=1

wiri = rf +
N∑
i=1

wi(ri − rf ) = rp = wT (r − 1rf ) (6)

µp =

N∑
i=1

wi(µi − rf ) = wT (µ − 1rf ) (7)

Minimize
w

1
2
wTΣw, subject to wT1 = 1 and wT (µ − 1rf ) = µ (8)

Merton (1972) shows that the constrained optimisation problems (5) and (8) lead to analytical

solutions. The solutions—referred to as the efficient set of portfolios—offer the best balance of reward

to risk. Expanding on the analytical solutions, the two-fund theorem by Tobin (1958) states that every

linear combination of two efficient portfolios spans the efficient set of risky portfolios. Mathematically,

rp = (1 − a)rp,1 + arp,2, where a ∈ R (9)

where (1 − a) and a denote the proportions invested in the efficient portfolio distributions rp,1

and rp,2, respectively. In the presence of the risk-free asset, the two fund theorem states that a linear

combination of the risk-free asset and the efficient risky portfolio rm spans the efficient.

rp = (1 − a)rf + arm, where a ∈ R (10)

In a hypothetical world of mean-variance investors, rm corresponds to the market portfolio of risky

assets since every investor holds the same proportions of risky assets. Figure 2 depicts the risk-reward

trade for the efficient set in the presence and absence of the risk-free asset.
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Figure 2: (σ, µ)-points on the red part of the hyperbola corresponds to the efficient set of risky
portfolios in the absence of the risk-free asset. (σ, µ)-points on the Capital Market Line (CML)
correspond to the efficient set of portfolios in the presence of the risk-free asset. The portfolios
on the CML have the highest possible Sharpe Ratio, that is, the highest expected excess return
over the risk-free asset per unit of standard deviation. The point of tangency corresponds to the
standard deviation and mean return of the market portfolio. Figure 2 is taken from Manganelli
(2017).

The optimisation problems (5) and (8) allow for short-sales and theoretically unbounded short

positions. Canner et al. (1994) report that this assumption is likely not to hold in practise; and more

interestingly, the financial advisers in their study do not even recommend short positions. Accordingly,

there is a need to solve the mean-variance optimisation problem in face of short constraints, that is, for

0 ≤ w. The solution to the short constrained optimization problem cannot be derived analytically. But

it can be solved efficiently, since the objective function 1
2w

TΣw is quadratic, and it is convex since Σ is

positive definite; hence, a local minimum corresponds to the global minimum. Quadratic programming

methods are therefore feasible. In the programming language R, the "quadprog" package by Turlach and

Weingessel (2007) implements the efficient and numerically stable dual method algorithm by Goldfarb

and Idnani (1983). Instead of forming the Lagrangian for the original problem, the algorithm forms the

Lagrangian for the equivalent dual problem, in terms of equivalent solutions set, and solve it instead

(van de Panne & Whinston, 1964).
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3.1 Deficiencies of Mean-Variance Analysis

Mean-variance preference described by the preference function V(µ,σ2) with the standard assumptions

(Eichner & Wagener, 2009)

∂V(µ,σ2)

∂µ
> 0,

∂V(µ,σ2)

∂σ2 < 0 (11)

is not congruent with Neumann and Mogenstern’s (1944) expected utility theory unless (1) the

investor’s utility function is quadratic, or (2) the portfolio distribution is normal. If the investor’s utility

function is quadratic, Danthine and Donaldson (2015) show that the congruency holds exactly for all

return distributions.

U(rp) = a + brp + cr2
p with b > 0 and c < 0.2 (12)

The inequalities on the parameters guarantees that the classical assumptions of positive marginal

utility and diminishing marginal utility holds. To ensure positive marginal utility u′(rp) > 0, it is

necessary to assume that rp < −b2c . Although the upper limit can be set arbitrarily high for all practical

purposes, the specification implicitly determines the investor’s relative and absolute risk aversion

coefficients and limits the function’s practicality. Moreover, the absolute risk aversion coefficient is

increasing. Thismeans that the investor prefers to reduce his proportion of risky assets as he accumulates

wealth (Danthine & Donaldson, 2015). Regarding the realities of investing, it is paradoxical that

investors become more risk averse with increasing wealth. In the end, it is hard to justify the assumption

of quadratic utility in the expected utility paradigm.

If returns are normally distributed returns alongwith the classical assumptions of investor’smarginal

and diminishing utility, then mean-variance analysis is congruent with expected utility theory (Nelson,

Ndjeunga, & Niamey, 1997). Grootveld and Hallerbach (1999) and Bawa (1975) argue, however,

that the normality assumption is unrealistic since it rules out skewed distributions and returns are

not unbounded below. According to Xiong and Idzorek (2011), the assumption of normality is not

empirically supported because most asset classes and portfolios exhibit nonnormal return distributions;

moreover, they find that extreme events occur with far greater frequency than predicted by the normal

distribution. On a similar note, Levy and Duchin (2004) test the goodness of fit for 11 theoretical return

2U(W) = U(W0(1 + rp)) is written as U(rp) since W is completely determined by rp .

11



distributions for horizons up to 4 year and report that there’s at least one distribution that fits the data

better than the normal distribution at every horizon.

Although Pulley (1981) shows that the congruency with expected utility theory is approximately

justified in terms of small returns3, Kahneman and Tversky (1979) finds that the axioms of expected

utility theory is violated in practice. As a consequence, the behavioural validity of mean-variance

preferences must be investigated on its own right. Fishburn (1977) report contention among scholars

who argue that practitioners more frequently view risk as falling below some outcome or return. In

comparison, the variance does not make a distinction between favourable and unfavourable deviations

from the mean target. Referring to the empirical research by Kahneman and Tversky (1979), the idea

of a reference or target outcome is empirically supported; people perceive losses as falling bellow a

reference point. Moreover, Adams and Montesi (1995) find evidence that most corporate managers

view risk this way.

According to (Fishburn, 1977), the mean portfolio return is an impractical target return because it

varies from distribution to distribution. If investors do not want to be worse off than they initially were,

a possibly research assumption is that investors want at least a portfolio return greater or equal to the

return on some alternative perceived risk-free investment.

Mean-variance analysis also ignores the distribution’s higher moments and in particular the distri-

bution’s skewness. For a non-normal distribution, consider a reflection about it’s mean; it results in a

distribution with the same mean and variance as the original but with different skewness (Markowitz,

1959). This result implies that mean-variance investors are indifferent to positive and negative distri-

bution skewness. But are investors indifferent to skewness? Cumova (2004) argue on the contrary that

positively skewed distributions, in comparison to negatively skewed distributions, are favoured among

investors due to the potential of achieving great returns. Wen and Yang (2009) report that the skew-

ness is an important feature of the asset price based on empirical evidence from 33 composite market

indices around the world. In markets with positively skewed return distributions, Wen and Yang (2009)

discovers that the risk compensation is virtually zero implying that positively skewed distributions are

valuable to investors. Patton (2004) considers the impact of skewness on out-of-sample portfolio choices

for investors with constant relative risk aversion and finds that the model who accounts for skewness

3U(µ,σ2) = µ − Aσ2. A is the investor’s constant coefficient of risk aversion. This approximation was used
to compute the mean-variance portfolios in Figure 1
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performs better than the model based on normally distributed returns, given no short constraints. In the

end, the validity of the mean-variance model as a descriptive model of portfolio choices fails to capture

essential behavioural characteristics and important information in the return distributions.

4 The Mean-LPMn Model

4.1 The Lower Partial Moments Measure (LPMn)

The failures of the variance to capture risk in the ordinary sense have prompted researchers to focus on

downside risk instead—the risk associated with losses. The shortfall probability and the Value at Risk

at a % probability (VaRa) are among the simplest downside measures. VaRa is the outcome that is

only exceeded by a worse outcome a % of the times, that is, VaRa is equal to the return distribution’s

a-percentile. The two riskmeasures are related—the shortfall risk is the a %probability of not obtaining

a worse outcome than VaRa (Cumova, 2004). These measures are simple, but simplicity comes at a

cost of ignoring the distribution’s higher moments. Consequently, a more comprehensive measure in

these regards is Markowitz’ semivariance below the mean, SE .

SE =
∫ µ

−∞

(µ − r)2dF(r) (13)

Markowitz (1959) shows that mean-SE investors prefer positively skewed portfolios to the contrary,

and under the assumption of normally distributed returns, analysis in terms of the mean and SE is

equivalent with mean-variance analysis (Markowitz, 1959).

The Lower Partial Moments (LPM) introduced by Bawa (1975) and Fishburn (1977) in equation

(14)

LPMn(κ; r) =
∫ κ

−∞

(κ − r)ndF(r) (14)

encompasses a variety of downside risk measure—of which the variance, semivariance and the

shortfall probability are but special cases—for different degrees n and target returns κ. A greater value

n punishes downside deviations more harshly. As a result, n can be viewed as the parameter of risk

aversion (Fishburn, 1977). For n > 0, Cumova (2004) shows that the LPM measures accounts for

skewness and kurtosis. The LPMmeasures for n = 1 and n = 2 can be derived directly from the normal
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probability density function (Fortin & Hlouskova, 2011). Equations (15) and (16) gives the functional

forms of LPM1 and LPM1 when normality is assumed.

LPM1(κ; r) = (κ − µ)TΦ(d) + σ
√

Tϕ(d) (15)

LPM2(κ; r) = ((κ − µ)2T2 + σ2T)Φ(d) + σ(κ − d)T
√

Tϕ(d) (16)

ϕ(.) andΦ(.) denote the probability density function and the cumulative distribution function of the

standard normal variable. µ and σ2 denote the mean and variance at the unit investment period. T is

the length of the investment horizon d = κT−µ
σ .

4.2 The Mean-LPMn Model

In this section and throughout the rest of the thesis, we restrict our attention to hypothetical investors

characterized by the utility function in equation (17).

u(r) =


r, r ≥ κ

r − λ(κ − r)n, r < κ

(17)

The function in equation (17) can be written compactly as in equation (18). For n < 1, the utility

function is convex in the loss region which corresponds to risk seeking behaviour; a result that is in

accordance with the empirical research of Kahneman and Tversky (1979).

u(r) = r − λmax[(κ − r,0)n] (18)

From the utility function in (18), Fishburn (1977) shows that

λ + 1 =
u(κ) − u(κ − 1)
u(κ + 1) − u(κ)

(19)

In absolute terms, the difference in utils for a below target return of κ−1 is greater than the difference

in utils for an above target return of κ + 1 if we assume that λ > 0 which implies λ + 1 > 1. Hence,

the parameter can be interpreted as the investor’s sensitivity to losses (Tversky & Kahneman, 1991). A

greater loss aversion value λ corresponds to a steeper utility function in equation (18). Schmidt and
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Zank (2005) argue that observed risk aversion is driven by loss aversion state and the two are essentially

the same. The expected utility of equation (18) transforms into equation (20).

E[r − λmax(κ − r,0)n] = µ − λ
∫ ∞

−∞

max[(0, κ − r)]ndF(r) =

µ − λ

∫ κ

−∞

(κ − r)ndF(r) = µ − λLPMn(κ; r) =

U(µ, LPMn) = µ − λLPMn(κ; r) (20)

The expected utility function in equation (20) can be viewed as consisting of two components:

a reward and a risk component that corresponds to the portfolio’s mean and the portfolio’s LPMn,

respectively. By taking the partial derivatives of equation (20), the expected utility is increasing in µ

and decreasing in LPMn. Consequently, in terms of possible investment opportunities (portfolio return

distributions), the optimal mean-LPM solutions are necessarily portfolios that offer the highest mean

for the lowest LPMn, or conversely, the lowest LPMn for a given mean return. In comparison to the

mean-variance model, the mean-LPMn model incorporates key elements of behavioural finance: the

concept of loss aversion, the clear separation of risk from reward, and the LPM measure’s ability to

account for skewness and kurtosis (n > 0).

4.3 Mean-LPMn Optimisation Problem and Algorithm

Foellmer and Schied (2002) prove that LPMn is a convex risk measure for n ≥ 1. It follows that

µ − λLPMn(k; r) is concave4. Thus, the optimisation Problem (21) belongs to the class of convex

optimisation problems. A convex function on a bounded set has a local minimum that corresponds

to the global minimum; as a result, bounded convex optimisation problems can be solved efficiently

(Boyd, Vandenberghe, & Grant, 1994).

min − (µ − λLPMn(k; r))

s.t.

wT1 − 1 = 0

0 ≤ w

(21)

4The portfolio mean is both convex and concave since it is a linear function of the vector of portfolio weights.
The negative of a convex function is concave, and the sum of two concave functions is concave.
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The minus sign ensures that the objective function is convex. The equality constraint reflects the

fact that portfolio weights sum up to 1. Mathematically, it restricts the domain of the objective function

to a bounded set. A global minimum must exist on this set, because a subset of a convex set is convex.

The short constraint further restricts the domain of the objective function to nonnegative solutions.

In this thesis, we compute optimal mean-LPMn weights in the programming language R by solving

Problem (21). Since the mean-LPMn solutions cannot be derived analytically. In R’s CTRAN, we

load the Rsonlp package by Ghalanos and Theussl (2012), and in particular, we use the package’s solnp

function to solve the constrained optimisation problem. The sonlp function is based on the algorithm by

Ye (1989). In short, Ye’s (1989) algorithm solves the general nonlinear Problem (22), of which Problem

(21) is but a special case, by sequential quadratic programming.

min f (x)

s.t.

g(x) = 0

Ih ≤ h(x) ≤ Ih

Iu ≤ x ≤ Ix

(22)

The algorithm by Ye, 1989 involves several steps that needs to be addressed because every mean-

LPM1 portfolio in this thesis are derived from the solnp program. Consequently, the following serves

a restatement of Ye’s (1989) algorithm. First, the solnp add slacks to the inequality constraints and

transforms Problem (22) into Problem (23).

min f (x)

s.t.

g(x) = 0

Iu ≤ x ≤ Ix

(23)

At major iteration K, the solnp algorithm solves the linearly constrained Problem (24) with an

augmented objective Lagrangian, a clever way to approximate a solution to Problem (23).
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min f (x) − ykg(x) + (ρ/2)| |g(x)| |2

s.t.

Jk(x − xk) = −g(xk)

Iu ≤ x ≤ Ix

(24)

Here Jk is the numerical approximation to the Jacobian evaluated at xk , and yk is the initial

Lagrangian multipliers at step 0 where y0 = 0. At each major iteration K, solnp first checks whether

xk satisfy the equality constraint in Problem (24). If it is not feasible, then solnp finds a feasible vector

xk . To solve Problem (24), Ye (1989) solves Problem (25) by sequential quadratic programming.

min (1/2)(x − xk)T H((x − xk) + gT (x − xk)

s.t.

Jk(x − xk) = −g(xk)

Iu ≤ x ≤ Ix

(25)

Here g is the gradient and H the Hessian matrix. A solution to Problem (25) is then checked against

Problem (24). If it a solution, then solnp starts major iteration K + 1 with xK+1 as the solution and with

optimal Lagrange multipliers yK+1. Otherwise, a minor iteration starts that updates Problem (25) with

a new Hessian and gradient. In the end, the process repeats until both Problem (24) and (25) are solved,

or until a maximum number of iterations are reached (Ye, 1989).

If the objective is to solve for mean-LPM0≤n<1 in Problem (21), the solnp algorithm cannot be

applied because the objective function is then non-convex. To search over rough surfaces for the global

minimum, genetic algorithms can be applied. The idea behind the genetic approach is inspired by

the natural evolution process (Mullen, Ardia, Gil, Windover, & Cline, 2009). The general genetic

algorithm usually starts off with a random set of candidate solutions and evolve new solutions through

selection and recombination operators Whitley (1994). In R, the Deoptim program by Mullen et al.

(2009) implements differential evolution and can be used to solve the problem.

4.4 A Rationale for the Mean-LPM1 Model

In the empirical section we choose to study the mean-LPM1 model. It is not immediate clear why

chose this mean-LPM model instead of the mean-LPM2 for example. In the face of losses mean-LPM1
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investors are risk-neutral, while mean-LPM2 investors are risk-averse, as it follows from the utility

function in equation (18). Referring to Kahneman and Tversky (1979), people exhibit risk-seeking

behaviour in the relative loss domain. As a consequence, neither models are able to capture this aspect

of investing. However, the mean-LPM1 model fails less in this regard. On the other hand, mean-

LPM0<n<1 models satisfy risk-seeking behaviour, but these models comes at a price of uncertainty.

Referring back to Section 4.3, mean-LPM0<n<1 functions are not convex. Hence, the optimal solution

to Optimization Problem 21 is most likely the best local minimum among local minima with genetic

programming. Furthermore, for n > 0, LPM1 is the onlymeasure that satisfies the coherency of Artzner,

Delbaen, Eber, and Heath (1999) finds Cumova (2004). Accordingly, the trade-off motivates us to study

the mean-LPM1 model.

5 Empirical Application

In the empirical section, we impose a specific set of assumptions that aims to restrict the investors’

behaviours and the market they operate in. Assumptions 1, 2, and 3 directly relates to the research

objective and the questions we want to answer. The other assumptions are imposed to limit the scope

of the analysis, so we can focus on the essential questions. The validity of the assumptions will not be

discussed here, but in Section 6 we will examine them closely.

1. The investors evaluate and choose portfolios that corresponds to the highest expected utility

according to the mean-LPM1 model.

2. The investors are loss averse, λ > 0. Loss aversion is synonymous with risk aversion (adopting

Schmidt and Zank’s (2005) view).

3. The investment horizon is a single static period.

4. The investors share the same beliefs about the probability return distributions. In particular,

investors base their believes of the future on the historical asset returns.

5. Short selling is not allowed.

6. A risk-free asset does not exist.

7. Infinite divisibility of assets.
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8. No taxes, transaction costs, or other indirect or hidden costs. Free access to information.

9. Future wealth is a function of only portfolio returns.

The goal in the empirical section is to determine, on a qualitatively level, if the mean-LPM1 model

can explain the professional financial advice with respect to the investment horizon, loss aversion, and

target return, and the differences in portfolio allocations that arises if we assume normally distributed

portfolio returns.

In particular, we examine the optimal mean-LPM1 portfolios for loss aversions ranging from λ = 1

to λ = 20, by increments of 1, over the 1-year, 4-year, and 7-year long investment horizon at the

constant target return of 4 %. The range in loss aversions is supposed to reflect a variety of investors.

Holding the target return constant over longer horizons allows to gauge the time-effect on the optimal

asset composition. In our analysis, the horizons correspond to a short, medium, and a long horizon,

respectively. The horizons seem arbitrarily chosen, but in finance, as I am aware, there does not exist

an agreed upon definition on what constitutes a short, medium, or long horizon. Moreover, as we

examine the mean-LPM1 model on the advanced dataset, the assets only go back to the 1980’s, so to

have a representative number of "long horizons" observations, we ended up with this specification. The

4 % target return corresponds to the annual mean return on the 1-month T-Bill from January 1926 to

December 2011, as computed in Table 1. The assumption that investors view risk as falling below

the annual mean return on the 1-month T-Bill seems plausible; the 1-month T-Bill is considered to be

among the least risky investments. The assumption of a 4 % target return is eventually relaxed in favour

of a more comprehensive analysis on the relationship between higher target returns and the portfolio

composition over longer horizons.

The exact formulation of LPM1 can derived directly from the normal probability density function

(Fortin & Hlouskova, 2011). This facilitates the analysis of the mean-LPM1 model under the consider-

ation of normally distributed returns. In the first part of the analysis, we begin with the classical dataset

with the assumption of normally distributed portfolio returns. Then we proceed to the nonparametric

case and note any similarities or differences between the cases. In the end, we examine the optimal

mean-LPM1 portfolios given the advanced dataset under normality and in the absence of normality.
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5.1 Classical Data

The classical data is obtained from Ibbotson’s SBBI 2012 Classic Yearbook. The data consists of

monthly prices on the 1-month Treasury bill (Cash), a market index of large-cap stocks (Stocks), and

an index of long-term government bonds (Bonds). The sample period stretches from January 1927

to December 2011 (1020 monthly observations). Figure 3 displays the monthly arithmetic (nominal)

returns over the sample period.

Figure 3: The monthly arithmetic returns for stocks, bonds, and cash from January 1927 to
December 2011s. The unusual large fluctuations in stocks from around 1927 to approximately
1945 correspond to events such as "The Stock Market Crash of 1929" and the resulting "Great
Depression", while the fluctuations around the 1940’s coincide with World War 2 (Siegel,
1998). The financial crisis, as of 2008, effect on the stock returns is also notable in the figure.
Evidently, monthly stock returns fluctuate more than the returns for the other assets. Over the
1-month horizon, bond and cash returns are arguably less prone to fluctuations, but compared
to cash, the bond index is far from stable over the 1-month horizon.

Figure 4 depicts the cumulative log returns for the assets. Over the whole sample period, stocks

offers the superior performance based on the average compounded return of 9.5 %. A dollar in stocks

at the beginning of 1927 accumulates to $ 2235 in December 2011. The final values for bond and cash
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are insignificant in comparison.

Figure 4: The cumulative log returns for stocks, bonds and cash from January 1927 toDecember
2011. Over the sample period, the stock index offers the superior performance; a dollar in the
beginning of the sample period accumulates to $ 2235 in December 2011, corresponding to an
annual compounded return of 9.5 %. The numbers for cash and bonds are only $ 87 and $ 20,
respectively. The high frequency zig-zag pattern in stocks indicate short-term periods where
bonds and cash outperformed stocks because bond and cash "trend" in relatively predictable
patterns over the short term, given the figure (long-term as well).

Table 1 gives the annual summary statistics along with the annual correlation matrix. Bonds

and cash are positively correlated; a relationship that is indicated in Figure 4. With respect to the

conventional measures of risk, the annual standard deviation and the max-min spread, the large-cap

stock index is—by far—the riskiest asset on a historical basis. Yet, in terms of performance measures

such as the historical average return and maximum return, it is stocks that dominate the other classes.

The assets were tested for normally distributed returns in R, we tested the assets up to the 10 year

horizon at 95 % confidence by applying Shapiro and Wilk (1965) test in R. Up to the 10 year horizon,

we are not allowed to reject null-hypothesis that the stock index is normally distributed. Regarding

bonds we can reject the null hypothesis for horizons longer than 4 years. For cash, we can reject the
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null-hypothesis for horizons longer than 6 years.

Mean Std.Dev Skew Kurtosis Max Min Value

Stocks 0.12 0.21 -0.42 -0.05 0.58 -0.44 2234.69

Bonds 0.06 0.06 1.23 2.36 0.29 -0.05 87.49

Cash 0.04 0.03 0.97 0.86 0.15 -0.00 19.92

Stocks Bonds Cash

Stocks 1.00 -0.03 -0.02

Bonds -0.03 1.00 0.45

Cash -0.02 0.45 1.00

Table 1: The annual correlation matrix along with the annual summary statistics for stocks,
bonds, and cash from January 1927 to December 2011. By conventional risk measures such
as the standard deviation and the max-min spread, the stock index is historically more volatile
than bonds and cash. According to performance measures such as the the annual mean return
and the observed max return, stocks are superior to the other assets.

5.1.1 Normally Distributed Returns

Figure 5 depicts the optimal mean-LPM1 portfolios associated with a short 1-year investment horizon at

the 4% target assuming normally distributed returns. In essence, the portfolios in Figure 5 are consistent

with the financial advise because lower loss aversions corresponds to riskier asset compositions—if

we subscribe to the notion that stocks are riskier than bonds that are riskier than cash. Although the

portfolios seem to gradually become riskier with decreasing loss aversions, a significant difference can

be drawn between the portfolio associated with the most loss acceptive investor and those for λ > 1.

Indeed, The portfolio corresponding to λ = 1 contains entirely stocks, even at the 1 year horizon. In

comparison, the portfolios corresponding to highly loss sensitive investors contains large cash holdings

at this short horizon. In terms of uniqueness, lower levels of loss aversion tends to produce similar

asset compositions. As such, it could be the case that as λ −→ ∞, the optimal mean-LPM1 weights

converges to a specific portfolio.
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Figure 5: The optimal mean-LPM1 allocation assuming a short 1 year horizon, a target return
of 4 %, and normally distributed portfolio returns. Cash intensive portfolios are associated
with higher loss aversions, while stocks and bonds portfolios are associated with lower loss
aversions. Moreover, the cash allocation is increasing for increasing loss aversions, but it is
increasing at a diminishing rate. The stock proportion is decreasing for increasing aversions
to losses, but similarly to cash, it is decreasing at a diminishing rate. Since the stock and cash
proportion move in opposite directions as the loss aversion increases, the change in the bond
proportion is effectively dependent on the particular level of loss aversion.

Figure 6 depicts the optimal mean-LPM1 portfolios for an investment horizon of 4 years at the

target return of 4 %. The 4-year portfolios in Figure 6 is in sharp contrast to the corresponding 1-year

portfolios, that is, corresponding in terms of the loss aversion, λ. The longer horizon induces every

investor to hold riskier portfolios— a result consistent with the financial advise. In fact, the proportion

of stocks has increased significantly at the lower levels of λ.

Cash is nonoptimal at the medium horizon except in small proportions for investors most sensitive

to losses. The change in the bond allocation from the 1 to the 4 year horizons also imply that investors

prefer riskier portfolios over longer horizons. For instance, at the 4 year horizon, investors with lower

levels of loss aversions hold less bonds than they previously did given the 1 year horizon; similarly,

investors with higher loss aversions hold more bonds at the expense of cash.
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If we view the optimal 4-year portfolios in isolation, it is clear that the level of loss aversion affects

the portfolio composition in the same way it did for the 1 year horizon: a lower loss aversions implies

riskier portfolios and vice versa. Furthermore, as the loss aversion increases the portfolios become less

distinguishable.

Figure 6: The optimal mean-LPM1 portfolio allocation assuming normally distributed returns,
a fixed horizon of 4 years, and a target return of 4 %. Cash, except at the highest loss
aversions, is not optimal at the 4 year horizon. Pure stock, or stock intensive portfolios are
optimal at the lower loss aversions, but as the loss aversion increases, bonds become more
attractive. Furthermore, the stock proportion decreases at a diminishing rate when the loss
aversion increases, while the bond proportion increases at a diminishing rate when the loss
aversion increases. As a consequence, there’s little observable difference between portfolios
corresponding to higher levels of loss aversions.

Figure 7 depicts the optimal portfolios over the long horizon of 7 years at the 4 % target return.

In comparison to the 4-year portfolios, the 7-year portfolios include a higher proportion of stocks and

a lower proportion of bonds. Referring back to the 1-year portfolios associated with the lowest loss

aversions in Figure 5, the shift towards a riskier asset composition is even more evident. Clearly,

investors prefer a higher allocation to stocks for longer horizons.
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Figure 7: The optimal mean-LPM1 portfolio allocation assuming normally distributed returns,
a buy-and-hold horizon of 7 years, and a target return of 4%. Cash is not optimal at this horizon
regardless of the investor’s loss aversion. Pure stock and stock intensive portfolios are, however,
attractive investments for investors with low and medium levels of loss aversions. As the loss
aversion increases, the optimal portfolios become less stock intensive, and subsequently less
risky.

Our findings suggest that the longer investment horizon entices investors to hold more stocks

because purely stocks or stock intensive portfolios provide the investors with the highest expected

utility. However, the convergence to stocks is more modest for portfolios corresponding to higher loss

aversions. The portfolio associated with λ = 6, for instance, contains purely stocks after 7 years as

the figures indicate. The portfolio corresponding with λ = 20, on the other hand, consist entirely of

stock for horizons equal or longer than 15 years. Accordingly, the convergence to stocks happens faster

for portfolios associated with lower levels of of loss aversion. This means that highly loss sensitive

investors need sufficiently long investment periods before they commit themselves to purely stocks.

To extend the analysis, we relax the assumption of a constant target return and acknowledge that

investors have different aspiration goals. Instead of directly examining how the portfolio composition

changes with increasing target returns and investment horizons, we opt for an indirect approach. That

is, we study how the optimal bond-to-stocks ratios change with increasing target returns and horizons.

Referring back to our previous results for the 4 % target return, cash becomes increasingly insignificant
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at the longer horizons. Hence, for increasing target returns, it seem sensible to assume that cash becomes

even less relevant5. Finally, Canner et al. (1994) study how the advisers portfolio’s bond-to-stocks ratios

changes with risk aversion. Accordingly, these insights motivates us to examine how bond-to-stocks

ratios change. The "dots" in Figure 8 depict the optimal portfolios’ bond-to-stocks ratios for target

returns ranging from 4 % to 12 % at the the 1 year horizon.

Figure 8: The optimal mean-LPM1 bond-to-stocks ratios assuming normally distributed re-
turns, a fixed 1 year horizon, and target returns ranging from 4 % to 12 %.

It is strictly incorrect to call the line segments connecting the dots as "bond-to-stock curves"6. As

such, the line segments serves only as a visual aid. In Figure 8, we observe that the bond-to-stocks

ratios are nearly identical for higher loss aversions at the 1 year horizon. This reflects the fact that the

portfolios tend to become similar with increasing loss aversions, as was shown for the 4 % target return.

Regardless of the specific target return, the bond-to-stocks ratios fall with decreasing loss aversions.

Accordingly, the previous result for the 4 % case also holds for higher target returns at the 1 year horizon

too.

5It can be shown that this is true for the dataset for hand
6The points on the line segments in between dots do not correspond to the any computed portfolios’ optimal

bond-to-stocks ratio.
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Across target returns, we observe a pattern that relates to the magnitude of the target. Bond-to-

stock ratios associated with higher target returns typically lie below ratios corresponding to lower target

returns. This suggest that stocks become relatively more attractive investments with higher target returns

in comparison to bonds. Reflecting back on the summary statistics in Table 1, bonds have limited upside

potential. Hence, bonds become riskier than stocks with higher target returns due to the LPM1 measure.

Considering that stocks are also historically more rewarding, the mean-LPM1 model favours stocks for

higher target returns at all loss aversions. Figure 9 depicts the bond-to-stocks curves for an investment

horizon of 4 years.

Figure 9: The optimal mean-LPM1 bond-to-stocks ratios assuming normally distributed re-
turns, a buy-and-hold horizon of 4 years, and target returns ranging from 4 % to 12 %.

Note that Figure 9 and Figure 8 are in the same aspect configuration; consequently, it is possible

to qualitatively determine how the optimal portfolio’s bond-to-stock ratios change as the investment

horizon lengthens. The bond-to-stock ratios in Figure 9 are below their respective 1 year ratios in Figure

8. Thus, stocks are relatively more attractive investments at the longer horizon, not only for the 4 %

target return but for higher target returns as well.

Across target returns, we observe, as we did in Figure 8, that higher target returns are associated
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with lower bond-to-stocks ratios reflecting the fact that stocks become less-risky with increasing target

returns. Moreover, the loss aversion, with respect increasing horizons and target returns, affects the

stock allocation in similar ways as before; that is, loss sensitive investors prefer a higher bond to stock

allocation than loss tolerant investors. However, for the highest target returns in Figure 9, we observe

that the bond-to-stocks ratios are virtually 0 for all loss aversion. Indeed, the loss aversion’s effect on

the portfolio composition is subsequently ignored, since everyone hold stocks at these targets. Figure

10 depicts the optimal bond-to-stock ratios at the 7 year horizon.

Figure 10: The optimal mean-LPM1 bond-to-stocks ratios assuming normally distributed
returns, a buy-and-hold horizon of 7 years, and target returns ranging from 4 % to 12 %.

Figure 10 is in accordance with our previous results on the relationship between the asset allocation

and the investor’s loss aversion, time horizon, and target return: At the long investment horizon of 7

years, the bond-to-stock ratios are below their respective 4 year curves. Across target returns, a higher

target return corresponds to a lower bond-to-stocks ratio. Across loss aversions, for target returns of 4,

6 and 8 %, investors with lower loss aversions prefer more stocks. At the 10 % and 12 % target returns,

everyone holds stocks.

To briefly summarize our results so far, we have seen that the investment horizon, target return,
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and loss aversion affect the portfolio composition under the assumption of normally distributed returns.

With decreasing loss aversions, the investors prefer in general less-risky portfolios, a result observed for

different configurations of time and target. However, for sufficiently long target or investment periods,

or a combination of the two, the loss aversion’s affect on the portfolio combination is subsequently

ignored because every investor do better by holding purely stocks. With increasing target returns, all

investors prefer a riskier allocation, and in particular, stocks. Finally, a longer investment period induces

the investors to hold more stocks.

5.1.2 Nonparametric Approach

In this section, the assumption of normally distributed returns is relaxed, and we do not assume a

specific portfolio distribution. As we proceed throughout the section, an important goal, in addition

to the overall goals, is to observe and comment on the similarities and differences we find with the

mean-LPM1 portfolios computed under the assumption of normally distributed returns to answer the

research question in Section 1.3. Figure 11 depicts the optimal mean-LPM1 portfolios associated with

a short 1-year investment horizon at the 4 % target return.

Figure 11: The optimal mean-LPM1 allocation assuming a fixed 1 year horizon, a target return
of 4 %. In general, a riskier portfolio is associated with a lower loss aversion at the short 1
year horizon. For sufficiently high loss aversions cash is nonoptimal.

The portfolios in Figure 11 resemble the 1-yearmean-LPM1 portfolios derived under the assumption
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of normally distributed returns in Figure 5. Indeed, investors with lower sensitivities to losses prefer

riskier portfolios compared to more loss averse investors. Similarly, there is a difference between

the portfolio corresponding to λ = 1 and the other portfolios in terms of riskiness, as the most loss

acceptive investor prefers only stocks. Moreover, in terms of uniqueness, portfolios corresponding to

the lowest levels of loss aversion are indistinguishable from another. A small difference relates to the

cash proportion because the nonparametric portfolios include a relatively lower proportion of cash.

Figure 12 depicts the optimal mean-LPM1 portfolios associated with the medium 4-year investment

horizon at the 4 % target return.

Figure 12: The optimal mean-LPM1 allocation assuming a fixed 1 year horizon, a target
return of 4 %. Cash is a non-optimal asset at the 4 year horizon. In general, for decreasing
loss aversions, the investors want to hold more stocks, or conversely, hold more bonds with
increasing loss aversions.

Just as in the normal case, the 4-year portfolios in Figure 12 stand in sharp contrast to the cor-

responding 1-year portfolios in Figure 11. Clearly, a longer investment horizon prompt investors to

channel their funds into riskier portfolios, and this is observed for highly loss averse investors as well.

Viewed in isolation, the optimal 4-year portfolio affect the portfolio composition in the same way it did

for the 1 year horizon: a lower loss aversions implies riskier portfolios and vice versa.

Figure 13 depicts the optimal portfolios over the long horizon of 7 years at the 4 % target return.

Similar to the case for normally distributed returns, the 7-year portfolios include a higher proportion
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of stocks and a lower proportion of bonds. Referring back to the 1-year portfolios associated with the

lowest loss aversions in Figure 5, the shift towards a riskier asset composition is even more evident.

Again, investors prefer a higher allocation to stocks for longer horizons.

Figure 13: The optimal mean-LPM1 allocation assuming a fixed 1 year horizon, a target return
of 4 %.

In comparison to the portfolios derived under the assumption of normally distributed returns, the

"non parametric" portfolios are less "elegant" and looks to be almost noisy. However, this is not

the case, and the differences can be explained. First, and foremost, the portfolios derived under the

assumption of normally distributed returns employ the LPM measure given in equation (15). Secondly,

to compute optimal portfolios for the nonparametric case, the classical dataset at the monthly frequency

is transformed into a T-year frequency dataset by compounding returns, and this "new" dataset is used

to compute T-year optimal mean-LPM1 portfolios.

Figure 14 depicts the optimal bond-to-stock ratios over the short horizon of 1 year at the 4 %

target return. Similarly to the normal case, the bond-to-stocks ratios are nearly identical for higher

loss aversions at the 1 year horizon, reflecting the fact that the portfolios tend to become alike with

increasing loss aversions. Moreover, regardless of the specific target return, the bond-to-stocks ratios

falls with decreasing loss aversions. Across target returns, the familiar pattern we observed earlier

continue to persist. That is, bond-to-stock ratios associated with higher target returns typically lie below
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ratios corresponding to lower target returns. We can interpret this observation similarly as we did under

Figure 8. Figure 15 and 16 depicts the bond-to-stocks curves for the 4 and 7 year horizon, respectively.

As we see from the figures, they are qualitatively similar to the ones derived under the normal case, that

is to Figure 9 and Figure 10.

Figure 14: The optimal mean-LPM1 bond-to-stocks ratios given an investment horizon of 1
years, and target returns ranging from 4 % to 12 %.

Figure 15: The optimal mean-LPM1 bond-to-stocks ratios given an investment horizon of 4
years, and target returns ranging from 4 % to 12 %.
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Figure 16: The optimal mean-LPM1 bond-to-stocks ratios given an investment horizon of 7
years, and target returns ranging from 4 % to 12 %.

In the end, without assuming a particular return distribution we have obtained comparable results

with the mean-LPM1 portfolios that were derived under the assumption normally distributed returns.

Moreover, the nonparametric mean-LPM1 portfolios are consistent with the financial advisers’ portfolio

recommendations. The advisers recommend a riskier portfolio allocation for lower risk aversions.

Likewise, the hypothetical mean-LPM1-investors prefer a riskier portfolio allocations for lower loss

aversions. The advisers recommend a riskier portfolio allocation for longer time horizons. The mean-

LPM1-investors also prefer a riskier portfolio composition for longer holding periods. In addition, the

mean-LPM1-investors prefer riskier assets for higher target returns to have reasonable shot at achieving

those targets.

5.2 Advanced Data

Allowing for a more realistic scenario, we test the mean-LPM1 model on a dataset containing several

assets. The dataset consist of assets from Vanguard and Fidelity, and the 5-year Treasury Bill (^FVX)7.

The assets can roughly be classified into two categories: stocks funds and bonds funds. The dataset

consists of monthly prices, and the sample period stretches from January 1980 to October 2018 (468

7The unique Yahoo ticker refers to the fund in question, and we will refer to the assets by the ticker name.
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monthly price observations).

Briefly on how Vanguard and Fidelity view the stocks funds8:

Vanguard Explorer Fund Investor Class (VEXPX) includes mainly small and mid-sized companies and

aims for high growth. Vanguard Windsor Fund Investor Shares (VWNDX) favour large-cap stocks and

aims for value. Vanguard International Growth Fund Investor Shares (VWIGX) focus on foreign stocks

with high growth potential. Vanguard advise investors to have a long investment horizons and high

tolerance for risk when investing in stocks. Fidelity Value Fund (FDVLX) aims for value, and Fidelity

considers the fund to be of high risk.

Briefly on how Vanguard views the stocks funds:

Bonds: Vanguard Intermediate-TermTax-Exempt Fund Investor Shares (VWITX) objective is to provide

fixed income to investors. It consists of quality U.S. municipal bonds with long-term maturities of 5-6

years and carry little risk. Vanguard Long-Term Tax-Exempt Fund Investor Shares (VWLTX) is similar

to VWITX, but it consists of long term bonds with maturities of 6-10 years. Vanguard High-Yield

Corporate Fund Investor Shares (VWEHX) consists of high corporate "junk bonds", perceived by

Vanguard to be risky but less than stocks. The 5 year Treasury-Bill (^FVX) provides fixed income to

investors at the maturity date.

Table 2 gives the annual summary statistics for the assets. Table 3 depicts the annual correlations

between the assets, while Figure 17 displays the cumulative log returns for the assets over the sample-

period.

8In Appendix C, the weblinks to the assets can be found.
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Mean Std.Dev Skew Kurtosis Max Min Value

VWNDX 0.12 0.17 -0.81 1.74 0.45 -0.44 34.75

FDVLX 0.13 0.19 -0.61 1.94 0.57 -0.49 49.02

VMRGX 0.11 0.17 -0.65 0.50 0.39 -0.39 32.48

VEXPX 0.11 0.22 0.17 -0.19 0.58 -0.39 29.76

^FVX 0.00 0.28 0.28 -0.06 0.71 -0.64 0.27

VWEHX 0.09 0.10 0.47 0.72 0.33 -0.16 22.64

VWLTX 0.06 0.09 0.62 2.68 0.38 -0.15 9.19

VWITX 0.06 0.07 0.79 2.65 0.30 -0.08 8.82

Table 2: Annual return statistics for the funds given return data from November 1981 to
November 2011. Except for the 5 year T-Bill, the stock funds are historically more volatile
than the bonds funds given the standard deviation and the max-min spread. However, the stock
funds offer more reward in terms of the historical mean. Over the sample period, the 5 year
T-Bill underperformed the assets significantly as indicated by the summary statistics; A dollar
yielded in the T-Bill yielded -73 % return over the period.

VWNDX FDVLX VMRGX VEXPX ^FVX VWLTX VWEHX VWITX

VWNDX 1.00 0.89 0.78 0.74 0.29 0.72 0.29 0.20

FDVLX 0.89 1.00 0.77 0.84 0.24 0.75 0.33 0.24

VMRGX 0.78 0.77 1.00 0.82 0.27 0.57 0.22 0.16

VEXPX 0.74 0.84 0.82 1.00 0.28 0.63 0.19 0.15

^FVX 0.29 0.24 0.27 0.28 1.00 -0.09 -0.53 -0.57

VWLTX 0.72 0.75 0.57 0.63 -0.09 1.00 0.58 0.55

VWEHX 0.29 0.33 0.22 0.19 -0.53 0.58 1.00 0.98

VWITX 0.20 0.24 0.16 0.15 -0.57 0.55 0.98 1.00

Table 3: Stock funds are highly positively correlated, the bond funds are also highly correlated.
Across assets we observe some weak-to medium positive correlation.
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Figure 17: The cumulative log returns for the stock and bonds funds given the sample period.
The stock assets move together. The irregularities in FDVLX is evident around 2010. I
haven’t been able to find out the reason for the spikes. Moreover, the 5-year T-bill significantly
underperformed the other assets.

The 5 year T-bill underperformed the other assets by significant margins. Regarding the FDVLX

stock fund, we observe two irregularities after 2010. It is a possibility that these irregularities will affect

the optimal mean-LPM1 portfolios.

5.2.1 Normally Distributed Returns

The assets are coded either red or blue colours depending on the asset’s security composition. Blue

colours are reserved stock funds, while red colours specify bond funds. Within a colour group, the

individual colours are only tags to identify the assets. Figure 18 depicts the optimal mean-LPM1

portfolios associated with a short 1-year investment horizon at the 4 % target assuming normally

distributed returns.
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Figure 18: The optimal mean-LPM1 allocation assuming a 1 year horizon, a target return
of 4 %, and normally distributed portfolio returns. The total stock allocation is decreasing
for increasing aversions to losses, but it is decreasing at a diminishing rate. The total bond
allocation is increasing, albeit at a diminishing rate.

In terms of groups, the portfolios become perceivably riskier with decreasing loss aversions and

vice versa. There is a notable difference between the portfolio associated with λ = 1 and the other

portfolios in terms of riskiness. The portfolio with λ = 1 include stocks only, while the other portfolios

include at most 20 % stocks. Accordingly, the investor most acceptive of losses prefers only stocks

over the short horizon. If we allow VWITX as to play the "cash role", then cash intensive portfolios

correspond to the investors most perceptive to losses. Indeed, Vanguard’s VWITX appear to be the

least risky asset; furthermore, it is the least risky asset by the conventional measures reported in Table

2. By viewing the assets in groups, Figure 18 is strikingly similar to the figures derived under the same

1 year configuration in Section 5.1.1 and Section 5.1.2—Figure 5 and 11, respectively.

It is important to mention that none of the portfolios include VWEHX—the corporate junk bond

fund. Referring back to the CorrelationMatrix 3, a correlation of 0.98 is observed betweenVWEHX and

VWITX, and the conventional risk measures in Table 2 reports that VWEHX is riskier than VWEHX.

Accordingly, the implication is that VWEHX is a redundant asset if VWITX belongs to the asset
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universe.

Instead of viewing the portfolios in terms of groups, we can consider them individually. Figure 18

reveals that the investors channel their funds into different types of assets, and in a way that corresponds

to their loss aversion it seems. Even the investor most acceptive of losses, λ = 1, channel his funds into

different stock assets; in fact, he attains a positive proportion in every stock fund available to him at the

1 year horizon. However, he seems to have a preference for Vanguard’s VWNDX, followed by VEXPX,

VMRGX, and Fidelity’s FDVLX, in that order at the 1 year horizon. At the other extreme, the most

loss perceptive investor diversify his funds primarily among the safer assets, with an even split between

VWLTX and VWITX.

Figure 19 depicts the optimal mean-LPM1 portfolios associated with the medium 4-year investment.

In comparison to the 1-year portfolios, the longer time horizon have shifted the portfolios towards riskier

compositions. Stocks become more attractive at the expense of bonds across all portfolios, at least for

portfolios corresponding to lower loss aversions. This is a result that conforms to our earlier findings.

Figure 19: The optimal mean-LPM1 allocation assuming a 4 year horizon, a target return
of 4 %, and normally distributed portfolio returns. Viewed in groups, the stock proportion
is decreasing for increasing aversions to losses, but it is decreasing at a diminishing rate.
Therefore, the bond allocation is increasing at a diminishing rate.
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If we view the assets individually, then portfolios corresponding to lower levels of loss aversion

also experience a dramatic shift towards riskier asset compositions. Indeed, VWITX the arguably least

risky bond fund is now absent, whereas it was a significant asset over the short 1 year horizon. The

longer horizon has also prompted a dramatic shift in the stock allocation, and a stock hierarchy seems

to emerge. The most loss acceptive investor only prefer Fidelity’s FDVLX.

Figure 20 depicts the optimal mean-LPM1 portfolios associated with a short 7-year investment

horizon at the 4 % target assuming normally distributed returns.

Figure 20: The optimal mean-LPM1 allocation assuming a 1 year horizon, a target return
of 4 %, and normally distributed portfolio returns. Viewed in groups, the stock proportion
is decreasing for increasing aversions to losses, but it is decreasing at a diminishing rate.
Therefore, the bond allocation is increasing at a diminishing rate. In terms of por

If we view the assets in groups, then all the previous results apply. More interestingly, if we view

the assets individually, the stock hierarchy implied in Figure 19 becomes even clearer. It is Fidelity’s

FDVLX, the value fund, that is provides the highest expected utility for the most loss acceptive investors.

And it can be shown, given this particular dataset, that for long enough horizons, every investor hold

purely FDVLX.
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5.2.2 Nonparametric Approach

In this section we study the optimal asset allocation under no particular distribution. The primary goal

is to determine the similarities and differences with the portfolios derived under the assumption of

normality.

Figure 21 depicts the optimal mean-LPM1 portfolios associated with a short 1-year investment

horizon at the 4 % target. Figure 21 is strikingly similar to Figure 18 both when we view the assets in

groups and when viewed individually. Figure 22 depicts the optimal mean-LPM1 portfolios associated

with a short 4-year investment. Although the portfolios in Figure 22 looks less promising than for the

corresponding normality case in Figure 19, the investment horizon has clearly persuaded the investors

to hold more stocks. Furthermore, FDVLX is the prefered asset as we previously found. We do not

display the portfolios for the 7 year horizon because every investor hold FDVLX stocks at that horizon.

Figure 21: The optimal mean-LPM1 allocation assuming a 1 year horizon, a target return of 4
%.
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Figure 22: The optimal mean-LPM1 allocation assuming a 4 year horizon, a target return of 4
%.

5.3 Empirical Conclusion

This thesis has investigated the mean-LPM1 model on two datasets under various configurations of

the loss aversion, target return, and investment horizon. Furthermore, we have examined the model

both in the presence and absence of the assumption of normally distributed portfolio returns. The

main conclusion from the empirical section is that the mean-LPM1 model produces portfolios that

are qualitatively similar with the financial advise, regardless of the underlying return distribution, and

specific parameter configurations.

In terms of the relationship between the portfolio allocation and the loss aversion, we observe

that lower loss aversions corresponds to relatively riskier portfolios, a result observed over several

configurations of the investment horizon and the target return.

In terms of the relationship between the portfolio allocation and the investment horizon, we obtain

consistent results that a longer investment horizon induces a relatively riskier portfolio composition, a

result that remains valid across loss aversions and target returns.

Referring back to our results, a higher target return consistently implies a riskier portfolio allocation,
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regardless of the investors loss aversion. Moreover, a higher target return implies a riskier portfolio

over longer investment horizons as well. However, for long enough horizons, it can be shown, for both

datasets, that every one hold stocks, subsequently ignoring the loss aversion and target return’s effect

on the portfolio composition.

With respect to the advanced dataset of many assets, we observe that investors diversify logically

between assets, that is, in a way that corresponds to their loss aversion.

6 Evaluation ofModel Assumptions and Discussion Pertain-

ing Future Research

The results of the empirical sectionmust be critically examined in light of the assumptions that govern the

analysis. The most important assumption to consider is the assumption that investors base their portfolio

decisions on the mean-LPM1 model. Kahneman and Tversky (1979) obtain empirical evidence that

people are risk averse in the gains domain and risk-seeking in the loss domain. However, the hypothetical

mean-LPM1 investor considered in this thesis is neither; he is risk-neutral over the domain as implied by

the utility function in equation (18). Accordingly, the mean-LPM1 model fails to implement key investor

characteristics. This is arguably the model’s greatest weakness. The mean-LPM1 does not account for

the investor’s upside ambitions. To quote (Cumova, 2004) "...in the (µ, LPM)-portfolio model returns

above the target are only input in the computation of the mean which implies (as often criticized in the

literature) neutrality towards the chance of over-performing the minimal aspiration return". Indeed, the

mean return does not separate favourable returns from unfavourable returns. A reward measure that

focus solely on reward is the Upper Partial Moments Measure (UPM) Cumova (2004). It is conceptually

similar to the LPM as it captures upward deviations from a subjective reference point. Cumova (2004)

calls the (UPM, LPM)-model a logical progression over the (µ, LPM)-model. The behaviour model of

De Giorgi et al., 2008 also facilitates a clean separation of risk and reward. Furthermore, it is consistent

with investors who are risk-seeking in the loss domain and risk averse in the gain domain. To my

knowledge, De Giorgi’s (2010) behavioural model and the (UPM, LPM) model have yet to be applied

over different investment horizons. Hence, to apply these models over longer investment horizons is

perhaps the logical progression for future research.
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The analysis does not allow for short positions in the asset. The reason why we exclude this option

is that neither Vanguard, Fidelity, or the advisers in Canner et al. (1994) recommend short positions to

their clients. Accordingly, if this assumption was to be relaxed, it would defeat the research purpose.

In this thesis, we have intentionally ignored Fisher and Statman’s (1999) factors—factors not

necessarily related to risk—that might affect the portfolio decision. Implementing social responsibility

and cognitive errors would be very interesting, but it is far from obvious how one would proceed to

combine these factors with a specific reward-risk model. Perhaps, the reward-risk model must be

abandoned in its entirety to allow for a truer analysis.

Bennyhoff (2009) reasons that human capital can provide incentives for younger investors to pursue

more aggressive portfolios, whereas this thesis assume that future wealth is a function of returns only.

Indeed, this assumption is in direct violation against the realities of the world. However, it was only

imposed to focus on the main theme of the thesis. Future research that include human capital is

welcomed.

Throughout the thesis we have assumed a static investment horizon. That is, the investor buys

the portfolio at time t = 0 and remains passive until he or she liquidate it at time t = T . Is this

assumption reasonable? It depends on the type of investor and his underlying motives, an assumption

we dodged so far allow for a broader analysis. However, if we consider retirement investors, then a

fixed investment horizon seems reasonable. In the U.S. for example, withdrawing early amounts from

the 401(k) retirement account is costly and can result in a 10 % distribution penalty tax on top of other

early withdrawal costs report Ely (2017). Furthermore, it is costly to trade according to Odean, 1999

who finds that excessive trading results in lower profits. But a dynamic approach to the puzzles with a

risk-reward model rooted in behavioural finance would be interesting to witness.
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8 Appendix

8.1 Appendix A: Mean-LPMn Program—Normal Returns

rm(list=ls(all=TRUE))
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# CTRAN Packages:

library(tseries) # For get.hist.qoute function.

library(Rsolnp) # General nonlinear programming package.

norm.solver <- function(r, kappa, t, lambda, n) {

# This function computes the optimal Mean-LPMn weights

# for n=1, and n=2 under the assumption of normally

# distributed returns. Here: lambda=loss aversion, t=horizon,

# r=return data, and kappa=target return.

nobs <- nrow(r) # The number of observations of returns.

nAssets <- ncol(r) # The number of assets.

MLPM <- function(pars) {

# Objective function that computes the Mean-LPMn utility.

# pars - is the vector of portfolio weights.

kappa <- kappa*t # T-year target return.

rp <- as.numeric(r%*%pars)

mu <- mean(rp)*12 # The annual mean return.

mup <- mu*t # The mean return over a T-year horizon.

covmat <- cov(r)*12 # Covariance matrix.

sigp <- sqrt(pars%*%covmat%*%pars)*sqrt(t) # The portfolio std.

d <- (kappa-mup)/sigp

if(n==1){ # LPM1

lpm <- (kappa-mup)*pnorm(d) + sigp*exp(-d^2/2)/sqrt(2*pi)

} else{ # LPM2

lpm <- (((kappa-mu)^(2)+sigp^(2))*pnorm(d)

+ sigp*(kappa-mu)*exp(-d^2/2)/sqrt(2*pi))

}

eu <- mup - lambda*(mean(lpm))^(1/n) # Objective function.
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return(-eu) # With minus sign because we minimize the objective function.

}

# Equality constraints are implemented as functions.

eqfun <- function(pars) {

return(sum(pars))

}

#Vvector for the equality constraints.

eqB <- 1 # sum of all weights

# Inequality constraints are implemented as functions.

ineqfun <- function(pars) {

# inequality constraints: portfolio weights.

return(pars)

}

ineqLB <- rep(0, nAssets) # Lower bound for inequality constraints.

ineqUB <- rep(1, nAssets) # upper bound for inequality constraints.

pars <- rep(1/nAssets,nAssets) # intial weights - equally weighted portfolio.

# Solve for the optimal weights.

res <- solnp(pars=pars, fun=MLPM,

eqfun=eqfun, eqB=eqB,

ineqfun=ineqfun, ineqLB=ineqLB, ineqUB=ineqUB)

opt.w <- round(res$pars, digits=4) # Round to 4 decimal digits.

return(opt.w)
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}

norm.par <- function(r, t, kappa, n=1) {

# This function computes the optimal weights for different

# loss aversions and target returns under the

# assumption of normally distributed portfolio returns.

lambda <- 1:20 # Loss aversions.

L <- length(lambda)

N <- ncol(r)

op <- matrix(0, L, N) # Return matrix.

for(i in 1:L) { # Solve for each loss aversion.

op[i,] <- norm.solver(r, kappa, t, lambda[i], n)

}

return(op)

}

# The Classical Dataset.

# Source: Ibbotson’s SBBI 2012 Classic Yearbook.

# Assets : 1-month T-Bill, large-cap stock index,

# and an index of long-term government bonds.

# Unit: Arithmetic returns.

# Frequency: Monthly.

# Time Period: 1927-01-01 to 2011-12-01.

# Assumption: Normally distributed returns.

# Read the data from the directory.

data <- read.table("marketdata.txt", header = TRUE)

r <- as.matrix(data[,2:4])
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dates <- data[,1]

# Example: The optimal Mean-LPM1 weights over 1 year horizon

# at a target return of 4 % assuming normally distributed returns.

# Depicted in a barplot.

x <- norm.par(r, t=1, kappa=0.04, n=1)*100 # Optimal weights.

names <- c("Stocks","Bonds","Cash")

colnames(x) <- names

rownames(x) <- 1:20

colz <- c("indianred2","cadetblue3","peachpuff2")

barplot(t(x), xlim=c(0,30), ylim =c(0,100), border=NA,

xlab="Loss Aversion",

ylab="Cumulative percentage", col=colz)

legend("topright", names, bty="n", fill=colz)

# Example: The optimal Mean-LPM1 bond-to-stocks ratios at the 1 year

# horizon over different target returns k.

k.4 <- norm.par(r, 1, kappa=0.04); bs.4 <- k.4[,2]/k.4[,1]

k.6 <- norm.par(r, 1, kappa=0.06); bs.6 <- k.6[,2]/k.6[,1]

k.8 <- norm.par(r, 1, kappa=0.08); bs.8 <- k.8[,2]/k.8[,1]

k.10 <- norm.par(r, 1, kappa=0.10); bs.10 <- k.10[,2]/k.10[,1]

k.12 <- norm.par(r, 1, kappa=0.12); bs.12 <- k.12[,2]/k.12[,1]

# Plot the bond-to-stocks curves.

plot(bs.4, type="o", xlim=c(20,1), ylim=c(0,5),

ylab="Bond-to-Stocks Ratio", xlab="Loss Aversion",

col="indianred3", pch=18)

lines(bs.6, type="o", col="black", pch=18)
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lines(bs.8, type="o", col="cadetblue3", pch=18)

lines(bs.10, type="o", col="darkgoldenrod1", pch=18)

lines(bs.12, type="o", col="seagreen2", pch=18)

legend("bottomleft",c("4 %","6 %","8 %","10 %","12 %")

,fill=c("indianred3","black","cadetblue3",

"darkgoldenrod1","seagreen2"), bty="n")

############################################################################

# The Advanced Dataset.

# Source: Vanguard and Fidelity funds and the 5 year T-Bill.

# Assets (Yahoo tickers): VWNDX, FDVLX, VMRGX, VEXPX, ^FVX,

# VWLTX, VWEHX, VWITX.

# Unit: $ Prices.

# Frequency: Monthly.

# Time Period: 1980-01-01 to 2018-10-01.

# Assumption: Normally distributed returns.

# Read the data from Yahoo Finance.

Symbol <- c("VWNDX","FDVLX","VMRGX","VEXPX","^FVX","VWLTX","VWEHX","VWITX")

nSymbols <- length(Symbol)

for(i in 1:nSymbols) {

new.symbol = get.hist.quote(instrument= Symbol[i],

start = "1980-01-01",

end = "2018-11-01",

quote="AdjClose",

provider = "yahoo",

origin="1980-01-01",

compression = "m",

retclass="zoo")
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names(new.symbol) = Symbol[i]

if(i==1) data = new.symbol else data = merge(data, new.symbol)

}

prices <- coredata(data)

n <- nrow(prices)

r<- apply(prices, 2, FUN=function(x){ # Convert to simple returns.

x[2:n]/x[1:(n-1)]-1

})

# Example: The optimal portfolios at the 1 year horizon for a target return

# of 4 % assuming normally distributed returns. Depicted in a barplot.

weights <- norm.par(r, t=1, kappa=0.04, n=1)*100

rownames(weights) <- 1:20

names <- c("VWNDX","FDVLX","VMRGX","VEXPX","^FVX","VWLTX","VWEHX","VWITX")

colnames(weights) <- names # Assign names to the variables.

colz <- c("deepskyblue4","dodgerblue","darkblue","blue","red",

"orange", "coral", "indianred3") # Assign colours.

barplot(t(weights), xlim=c(0,30), ylim =c(0,100), border=NA,

xlab="Loss Aversion", ylab="Cumulative percentage", col=colz)

legend("topright", names, bty="n", fill=colz)

# Example: Bond-to-stocks ratio at the 1 year horizon for a target return

# of 4 % assuming normally distributed returns. Aggregating the bonds

# together and the stocks together.

weights <- norm.par(r, t=1, kappa=0.04, n=1)

stocks <- apply(weights[,1:4], 1, FUN=sum) # Total stocks weight.
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bonds <- apply(weights[,5:8], 1, FUN=sum) # Total bonds weight.

bond.to.stocks <- bonds/stocks

plot(bond.to.stocks, type="o", xlim=c(20,1),

ylab="Bond-to-Stocks Ratio", xlab="Loss Aversion",

col="indianred3", pch=18)

# Example: The total stock allocation as a function of the loss aversion

# given a 1 year horizon and a 4 % target return under the assumption of

# normally distributed returns.

weights <- norm.par(r, t=1, kappa=0.04, n=1)*100

rownames(weights) <- 1:20

stocks <- apply(weights[,1:4], 1, FUN=sum) # Total stocks weight.

barplot(t(stocks), xlim=c(0,30), ylim =c(0,100), border=NA,

xlab="Loss Aversion",

ylab="Cumulative percentage", col=colz)

legend("topright", "Total Stock Allocation", bty="n", fill=colz)

8.2 Appendix B: Mean-LPMn Program—Nonparametric

rm(list=ls(all=TRUE))

# CRAN Packages:

library(tseries) # For get.hist.qoute function.

library(Rsolnp) # General nonlinear programming package.

accu.ret <- function(r, n) {

# This function accumulates the one-period return in "r" to n-period returns.
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# r is a matrix where each column contains the returns to an asset.

nobs = nrow(r)

N = ncol(r)

x = log(1 + r) # convert to log returns.

k = as.integer((nobs/n)) # number of accumulated returns.

y = matrix(0, nrow=k, ncol=N) # vector to hold accumulated returns.

for(j in 1:N) {

for(i in 1:k) {

start = (i-1)*n + 1 # start index.

end = i*n # end index.

y[i,j] = sum(x[start:end,j])

}

}

return(exp(y) - 1.0)

}

par.solver <- function(r, kappa, lambda, n) {

# This function computes the optimal Mean-LPMn weights

# for n=1, and n=2. Here: lambda=loss aversion, t=horizon,

# r=return data, and kappa=target return.

nobs <- nrow(r) # The number of observations of returns.

nAssets <- ncol(r) # The number of assets.

er <- apply(r, 2, mean) # Vector of mean returns.

# Define custom objective function that computes the Mean-LPM1 utility.

MLPM <- function(pars) {

# pars - is the vector of portfolio weights.

R <- as.numeric(r %*% pars) # Portfolio return.

lpm <- pmax(kappa-R,0)

eu <- mean(R) - lambda*(mean(lpm))^(1/n) # Objective function.
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return(-eu) # With minus sign because we minimize the function.

}

# Equality constraints are implemented as functions.

eqfun <- function(pars) {

return(sum(pars))

}

#Vvector for the equality constraints.

eqB <- 1 # sum of all weights

# Inequality constraints are implemented as functions.

ineqfun <- function(pars) {

# inequality constraints: portfolio weights.

return(pars)

}

# Vectors that define lower and upper bounds for the inequality constraints.

ineqLB <- rep(0, nAssets) # Lower bound for inequality constraints.

ineqUB <- rep(1, nAssets) # upper bound for inequality constraints.

pars <- rep(1/nAssets, nAssets) # intial weights - equally weighted portfolio.

res <- solnp(pars=pars, fun=MLPM, eqfun=eqfun, eqB=eqB,

ineqfun=ineqfun, ineqLB=ineqLB, ineqUB=ineqUB)

opt.w <- round(res$pars, digits=4)

return(opt.w)

}
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non.par <- function(R, t, kappa, n=1) {

# This function computes the optimal weights for different

# loss aversions and target returns.

R <- accu.ret(R, (12*t)) # Transform to t-year frequency.

lambda <- 1:20 # Loss aversions.

L <- length(lambda)

N <- ncol(r)

kappa <- kappa*t # T-year target return.

op <- matrix(0, L, N) # Matrix of optimal weights, the return object.

# Generation of optimal weights for each lambda.

for(i in 1:L) {

op[i,] <- par.solver(R, kappa, lambda[i], n) # solnp weights

}

return(op)

}

# Read the classical dataset fro the directory,

data <- read.table("marketdata.txt", header = TRUE)

r <- as.matrix(data[,2:4])

# Example: The optimal Mean-LPM1 weights over 1 year horizon

# at a target return of 4 % assuming normally distributed returns.

# Depicted in a barplot.

x <- non.par(r, t=1, kappa=0.04, n=1)*100 # Optimal weights.

names <- c("Stocks","Bonds","Cash")

colnames(x) <- names

rownames(x) <- 1:20
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colz <- c("indianred2","cadetblue3","peachpuff2")

barplot(t(x), xlim=c(0,30), ylim =c(0,100), border=NA,

xlab="Loss Aversion",

ylab="Cumulative percentage", col=colz)

legend("topright", names, bty="n", fill=colz)

# Example: The optimal Mean-LPM1 bond-to-stocks ratios at the 1 year

# horizon over different target returns k.

k.4 <- non.par(r, 1, kappa=0.04); bs.4 <- k.4[,2]/k.4[,1]

k.6 <- non.par(r, 1, kappa=0.06); bs.6 <- k.6[,2]/k.6[,1]

k.8 <- non.par(r, 1, kappa=0.08); bs.8 <- k.8[,2]/k.8[,1]

k.10 <- non.par(r, 1, kappa=0.10); bs.10 <- k.10[,2]/k.10[,1]

k.12 <- non.par(r, 1, kappa=0.12); bs.12 <- k.12[,2]/k.12[,1]

# Plot the bond-to-stocks curves.

plot(bs.4, type="o", xlim=c(20,1), ylim=c(0,6),

ylab="Bond-to-Stocks Ratio", xlab="Loss Aversion",

col="indianred3", pch=18)

lines(bs.6, type="o", col="black", pch=18)

lines(bs.8, type="o", col="cadetblue3", pch=18)

lines(bs.10, type="o", col="darkgoldenrod1", pch=18)

lines(bs.12, type="o", col="seagreen2", pch=18)

legend("bottomleft",c("4 %","6 %","8 %","10 %","12 %")

,fill=c("indianred3","black","cadetblue3",

"darkgoldenrod1","seagreen2"), bty="n")

############################################################################
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# Read the advanced dataset from Yahoo Finance.

Symbol <- c("VWNDX","FDVLX","VMRGX","VEXPX","^FVX","VWLTX","VWEHX","VWITX")

nSymbols <- length(Symbol)

for(i in 1:nSymbols) {

new.symbol = get.hist.quote(instrument= Symbol[i],

start = "1980-01-01",

end = "2018-11-01",

quote="AdjClose",

provider = "yahoo",

origin="1980-01-01",

compression = "m",

retclass="zoo")

names(new.symbol) = Symbol[i]

if(i==1) data = new.symbol else data = merge(data, new.symbol)

}

prices <- coredata(data)

n <- nrow(prices)

r<- apply(prices, 2, FUN=function(x){ # Convert to simple returns.

x[2:n]/x[1:(n-1)]-1

})

# Example: The optimal portfolios at the 1 year horizon for a target return

# of 4 % assuming normally distributed returns. Depicted in a barplot.

weights <- non.par(r, t=4, kappa=0.04, n=1)*100

rownames(weights) <- 1:20

names <- c("VWNDX","FDVLX","VMRGX","VEXPX","^FVX","VWLTX","VWEHX","VWITX")

colnames(weights) <- names # Assign names to the variables.
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colz <- c("deepskyblue4","dodgerblue","darkblue","blue","red",

"orange", "coral", "indianred3") # Assign colours.

barplot(t(weights), xlim=c(0,30), ylim =c(0,100), border=NA,

xlab="Loss Aversion", ylab="Cumulative percentage", col=colz)

legend("topright", names, bty="n", fill=colz)

# Example: The total stock allocation as a function of the loss aversion

# given a 1 year horizon and a 4 % target return.

weights <- non.par(r, t=1, kappa=0.04, n=1)*100

rownames(weights) <- 1:20

stocks <- apply(weights[,1:4], 1, FUN=sum) # Total stocks weight.

barplot(t(stocks), xlim=c(0,30), ylim =c(0,100), border=NA,

xlab="Loss Aversion",

ylab="Cumulative percentage", col=colz)

legend("topright", "Total Stock Allocation", bty="n", fill=colz)

8.3 Appendix C: Mean-Variance Program

rm(list=ls())

# CTRAN:

library(quadprog) # Quadratic optimization program.

eu.weights <- function(R, shorts=TRUE) {

# Optimal weights by maximization of expected utility.

er <- apply(R, 2, mean) # Asset mean returns.

covmat <- cov(R) # Covariance matrix.

n <- nrow(covmat)

Dmat <- covmat
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A <- 1:200 # Risk Aversion Parameters.

K <- length(A)

w <- matrix(0, K, n) # The output of the function.

# Compute optimal weights when shorting is allowed.

if(shorts==TRUE) {

for(i in 1:K) {

dvec <- er/A[i]

Amat <- cbind(rep(-1,n))

bvec <- -1

# Quadratic optimization.

result <- solve.QP(Dmat=Dmat,

dvec=dvec,Amat=Amat,bvec=bvec,meq=0)

w[i,] <- round(result$solution, 6)

if (!all(w[i,] == 0)) w[i,] <- w[i,]/sum(w[i,])

}

# Compute optimal weights when shorting is unallowed.

}else {

for(i in 1:K) {

dvec <- er/A[i]

Amat <- cbind(rep(-1,n), diag(1,n))

bvec <- c(-1, rep(0,n))

# Solve the quadratic optimization problem.

result <- solve.QP(Dmat=Dmat,

dvec=dvec,Amat=Amat,bvec=bvec,meq=0)

w[i,] <- round(result$solution, 6)

if (!all(w[i,] == 0)) w[i,] <- w[i,]/sum(w[i,])

}

}

return(w) # Optimal portfolio weights.
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}

# Load the classical dataset.

data <- read.table("marketdata.txt", header = TRUE)

r <- as.matrix(data[,2:4])

# Compute the optimal mean-var weights for risk aversions

# ranging from A=1,...,200 with short constraint.

op.weights <- eu.weights(r, shorts = TRUE)

x <- nrow(op.weights)

names <- c("Stocks","Bonds","Cash")

# Stocks and bonds recommendations from Fidelity and Vanguard.

# for different levels of risk aversions as of 24/11/2018.

# https://investor.vanguard.com/mutual-funds/list#/mutual-funds/asset-class/month-end-returns

# https://www.fidelity.com/mutual-funds/fidelity-fund-portfolios/overview

fidelity.b <- c(0.5, 0.5, 0.45, 0.40, 0.35, 0.25, 0.15, 0) # Fidelity Bonds.

fidelity.s <- c(0.2, 0.28, 0.42, 0.50, 0.60, 0.7, 0.85, 1) # Fidelity Stocks.

vanguard.b <- c(1, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0) # Vanguard Bonds.

vanguard.s <- c(0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1) # Vanguard Stocks.

# Compute the bond-to-stocks ratios for Fidelity, Vanguard,

# and the optimal mean-variance portfolios.

fidelity.b.s <- fidelity.b/fidelity.s # Fidelity bond-to-stocks ratios.

vanguard.b.s <- vanguard.b/vanguard.s # Vanguard bond-to-stocks ratios.

b.s <- op.weights[, 2]/op.weights[, 1] # Mean-variance bond-to-stocks ratios.

# Plot the bond-to-stocks ratios.

plot(vanguard.s, vanguard.b.s, pch=19,

62



xlab="Proportion of Assets in Stocks",

ylab="Bond-to-Stocks Ratio",

col="red", ylim=c(0,5), cex=1.2)

points(fidelity.s, fidelity.b.s, pch=17)

lines(op.weights[,1],b.s, col="blue", lwd=2)

colours <- c("red","black","blue")

legend("bottomleft",c("Vanguard","Fidelity","Mean-Variance"),

fill=colours, bty="n")

8.4 Appendix D: Descriptive Statistics Program

rm(list=ls())

# CTRAN Packages:

library(xtable) # Output to LaTeX.

library(tseries) #For get.hist.qoute function.

# Summary functions.

accu.ret <- function(r, n) {

# This function accumulates the one-period

# return in "r" to n-period returns.

# r is a matrix where each column contains the returns to an asset.

nobs = nrow(r)

N = ncol(r)

x = log(1 + r) # convert to log returns.

k = as.integer((nobs/n)) # number of accumulated returns.

y = matrix(0, nrow=k, ncol=N) # vector to hold accumulated returns.

for(j in 1:N) {
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for(i in 1:k) {

start = (i-1)*n + 1 # start index.

end = i*n # end index.

y[i,j] = sum(x[start:end,j])

}

}

return(exp(y) - 1.0)

}

descriptive <- function(r,t=1) {

# This function returns table of annual summary statistics

# given monthly returns.

r.a <- accu.ret(r,12*t)

names <- colnames(r) # Asset names.

Average.Return <- apply(r.a, 2, mean) # The mean asset returns.

Std.Dev <- sqrt(diag(var(r.a))) # Standard deviation of assets.

Skew <- apply(r.a, 2, skewness) # Skewness of assets.

Kurtosis <- apply(r.a, 2, kurtosis) # Skewness of assets.

Max <- apply(r.a, 2, max) # Maximum value observed for asset i.

Min <- apply(r.a, 2, min) # Minimum value observed for asset i.

Value <- apply(1+r, 2, prod) # End value of a dollar investment.

cor.mat <- cor(r.a)

descriptive <- cbind(Average.Return, Std.Dev, Skew,

Kurtosis, Max, Min, Value)

descriptive <- round(descriptive, 2)

corrmat <- round(cor.mat,2)

ret.list <- list(descriptive, corrmat)

return(ret.list)

}
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Accumulate <- function(r) {

# This function acummulate log returns.

nAssets <- ncol(r)

r <- log(1+r) # Transform to log returns.

r <- apply(r, 2, cumsum) # Accumulate log returns.

return(r)

}

################### Advanced Dataset ###################

# Obtain data on assets from Yahoo Finance.

Symbol <- c("VWNDX","FDVLX","VMRGX","VEXPX","^FVX",

"VWLTX","VWEHX","VWITX")

nSymbols <- length(Symbol)

for(i in 1:nSymbols) {

new.symbol = get.hist.quote(instrument= Symbol[i],

start = "1980-01-01",

end = "2018-11-01",

quote="AdjClose",

provider = "yahoo",

origin="1980-01-01",

compression = "m",

retclass="zoo")

names(new.symbol) = Symbol[i]

if(i==1) data = new.symbol else data = merge(data, new.symbol)

}

# Returns from February 1980 to October 2018.

dates <- seq(as.Date("1980/2/1"), to=as.Date("2018/10/1"), by = "month")
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names <- names(data)

prices <- coredata(data)

n <- nrow(prices)

r<- apply(prices, 2, FUN=function(x){ # Simple arithmetic returns.

x[2:n]/x[1:(n-1)]-1

})

colnames(r) <- names

# Compute the accumulated log returns and display them in a graph.

log.returns <- Accumulate(r)

cl <- c("deepskyblue4","dodgerblue","darkblue","blue","red",

"coral", "tomato3", "indianred4") # Assign colours.

plot(dates, log.returns[,1], type="l",

col=cl[1], ylim=c(-3,5), xlab=’’, ylab="Cumulative Log Return")

lines(dates, log.returns[,2], col=cl[2])

lines(dates, log.returns[,3], col=cl[3])

lines(dates, log.returns[,4], col=cl[4])

lines(dates, log.returns[,5], col=cl[5])

lines(dates, log.returns[,6], col=cl[6])

lines(dates, log.returns[,7], col=cl[7])

lines(dates, log.returns[,7], col=cl[8])

legend("topleft", names, fill=cl, bty="n", cex=0.8)

# Obtain summary statistics.

summary <- descriptive(r,1)

xtable(summary[[1]]) # Descriptive statistics to LaTeX.

xtable(summary[[2]]) # Correlation matrix to LaTeX.
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################### Classical Dataset ###################

# Read the classical dataset.

data <- read.table("marketdata.txt", header = TRUE)

r <- as.matrix(data[,2:4])

dates <- seq(as.Date("1927/1/1"),

to=as.Date("2011/12/1"), by = "month")

colo <- c("red","blue","black")

names <-c("Stocks","Bonds","Cash")

# Plot simple returns.

plot(dates, r[,1], type="l", col="red", xlab="",

ylab="Simple Return")

lines(dates, r[,2], col="blue" )

lines(dates, r[,3], col="black")

legend("topright", names, fill=colo, bty="n")

# Plot cumulative log returns.

g <- Accumulate(r)

plot(dates, g[,1], type="l", col="red", xlab="",

ylab="Cumulative Log Return")

lines(dates, g[,2], col="blue" )

lines(dates, g[,3], col="black")

legend("topleft", names, fill=colo, bty="n")

# Summary statistics in tables.

summary <- descriptive(r,1)

rownames(summary[[1]]) <- names

rownames(summary[[2]]) <- names

colnames(summary[[2]]) <- names

67



xtable(summary[[1]]) # Descriptive statistics.

xtable(summary[[2]]) # Annual correlation matrix.

8.5 Appendix E: Reflection Note

In this thesis, we take on a behaviourist approach and attempt to explain why the financial advisers

recommend riskier portfolio compositions to investors with longer investment horizons and lower

aversions to losses. Our motivation for the thesis subject is simple: The positive application of

Markowitz’ (1959) mean-variance model fails to describe the financial advice on these two dimensions.

Moreover, empirical research find that people violate the expected axioms of Neumann andMorgenstern

(1944) on a consistent basis.

The behaviourist approach implies that we are only interested in the investors and how they perceive

risk and losses, not to some normative "gold standard". The reward-risk model which we assume the

investors base their decision on, the mean-LPM1 model to be specific, incorporates key elements of

behavioural finance that are empirically supported. The key elements we are concerned about is the

investor’s loss aversion and the investor’s target return. Our findings are consistent with the financial

advice. The optimal mean-LPM1 portfolios over longer horizons induce a riskier portfolio composition,

holding the target return and loss aversion constant. The optimal mean-LPM1 portfolios corresponding

to lower loss aversions induce a riskier composition, ceteris paribus. Finally, The optimal mean-LPM1

portfolios corresponding to higher target returns implies a riskier portfolio, all else equal. These

findings are based on the model’s application on two dataset that differs in terms of complexity, and in

the presence and absence of normally distributed returns.

Behavioural economics, and in particular, behavioural finance is on the "up-rise" after it has been

in the shadow of expected utility theory and mean-variance over all these years. The recent Nobel prize

awarded to economist Richard H. Thaler is a testimony of this fact. Accordingly, this thesis relates

to the broader international trend of studying human behaviours in financial settings. The financial

market is internationally intertwined and it is in constant evolution, new securities emerges everyday,

some more complex than the previous one. This ever changing landscape affects the market participants

and subsequently their behaviours. Accordingly, it is a possibility that the mean-LPM1 model will fail

to describe the financial advise in the future. Since it is a descriptive theory, its survival depends on

68



being able to explain the financial advise. To safeguard its survival it must be re-evaluated against the

recommended portfolios, and possibly re-modified, or scrapped in its entirety.

In the short to intermediate future I do not believe this to be a realistic scenario however. To the

contrary, I believe the mean-LPM1 model could improve or innovate the existing financial products

offered to the common investor. Today the financial advisers screen future clients on time horizon

and risk aversion. Ignoring the time horizon, I think it could productive to screen investors on their

minimum required target returns and loss aversion instead of risk aversion. Considering that investors

view risk as falling below some subjective return, this seems reasonable. Moreover, I believe it is

more beneficial to screen investors on losses than risk aversion, since losses are concrete and easy to

understand. But, a challenge is to compute the investor’s true "loss aversion", a topic not covered in the

thesis. However, suppose it is unproblematic to discover the investors loss aversions, then I believe the

mean-LPM1 could serve as a practical investing tool and to help investors with portfolio decision.

The mean-LPM1 model is the embodiment of risk mitigation because the mean-LPM1 portfolios

offer the highest reward-to-risk trade given the investor’s target, loss aversion, and investment horizon.

However, if the mean-LPM1 model is applied as an investing tool in a professional setting, then it implies

responsibility on the adviser’s side to inform the client on the inherent dangers the tool comes with.

First, the adviser’s need to inform the client that it is possible he loses everything even if the portfolio

is optimal. Indeed, the mean-LPM1 portfolios are risky. In theory, the mean-LPM1 model discover

the best mean-LPM1 portfolios over the universe of assets. However, it is impossible to include every

possible financial assets in a practical setting. As a result, the derived mean-LPM1 portfolios are in a

sense not optimal. Moreover, the mean-LPM1 model relies on historical data to compute the optimal

portfolios for the future. In a sense, when we use historical data we are computing optimal portfolios

for the past. This point needs to be addressed to the client, it is a possibility that the underlying asset

distributions are different in the future.
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