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Abstract— Low-accuracy sensing is very common for the
large hydraulic machines and does not allow for directly mea-
suring the relative velocity which can be, otherwise, required
for the control and monitoring purposes. This paper provides a
case study of designing the second-order sliding mode observer
based on the super-twisting robust exact differentiator. The
nominal part of the system dynamics is derived from the
simple available system measurements and incorporated into
the observer structure. Parasitic by-effects, arising from the
sensor sampling, quantization, and non-modeled distortions due
to mechanical sensor interface, are shown as the main causes of
hampering the final (steady-state) convergence of the observer
states. Two cases – a continuous chirp excitation and a sequence
of the short square pulses – are demonstrated for the open-loop
motion experiments performed on a hydraulic crane, for which
an accurate estimation of the motion system states is obtained.

I. FOREWORD INSTEAD OF INTRODUCTION

Sliding mode control and observation techniques [1], [2],
as particularly robust for the systems with uncertainties and
disturbances, have gained attention in the various hydraulic
applications, see e.g. more recent examples [3], [4], [5], [6]
and several related articles in the issue [7]. A reliable real-
time velocity estimation for the hydraulic machines with low-
accuracy load position sensing belongs to essential problems
of the control and monitoring during the operation. This note
addresses that issue in the following case study.

II. PRELIMINARIES

A. Robust exact differentiator

The robust exact differentiator [8], based on the super-
twisting algorithm (STA) [9], aims for a real-time reconstruc-
tion of the state x2 = ẋ1, provided x1 is the only available
(measurable) system output. Furthermore, it is assumed that
|ẍ2| ≤ L is the bounded perturbation, for some L to be a
known constant. The state dynamics of the STA-based robust
exact differentiator is given by

˙̂x1 = L1/2λ1 |x1 − x̂1|1/2sign(x1 − x̂1) + x̂2,
˙̂x2 = Lλ2 sign(x1 − x̂1), (1)

while x̂ represents the estimate variable of the system state
x. For the appropriately chosen parameters λ1, λ2, L > 0
the STA ensures the states convergence, i.e. (x1 − x̂1) =
(x2 − x̂2) = 0, after a finite-time transient.
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B. Second-order sliding mode observer

The second-order sliding mode observer, introduced in
[10], extends the structure of an exact differentiator by
explicitly taking into account the nominal part of the system
dynamics f(t, x1, x2, u). The overall system is assumed as

ẋ1 = x2,

ẋ2 = f(t, x1, x2, u) + ξ(t, x1, x2, u),

y = x1, (2)

where x1 is, again, the single available output (position)
state. The exogenous control value is u – yet here out
of interest since our focus is on the state observation,
independently of the control loop. The system uncertainties,
correspondingly perturbations, are concentrated in the term
ξ(·). The suggested second-order sliding mode observer [10]
has the form

˙̂x1 = x̂2 + z1,
˙̂x2 = f(t, x1, x̂2, u) + z2. (3)

Note that the estimated state x̂2 appears as an argument
variable when computing the nominal system dynamics. The
correction variables of the super-twisting algorithm are

z1 = k1|x1 − x̂1|1/2sign(x1 − x̂1),

z2 = k2 sign(x1 − x̂1). (4)

According to [10], for an appropriate (k1, k2)-selection, the
variables of observer (3) converge in finite time to the state
variables of the system (2), i.e. (x̂1, x̂2)→ (x1, x2).

III. DYNAMIC STATES OF HYDRO-MECHANIC SYSTEM

A. Approximated system dynamics

The transfer characteristics of the single cylinder-driven
joint of a hydraulic machine can be approximated by

y(s) = G(s)s−1Φ[u(s)], (5)

where the control value u ∈ [−1, . . . , 1] is subject to a
static input nonlinearity Φ, and the cylinder stroke y is the
measurable output quantity. The linear transfer function G,
between the input and relative displacement rate, can be
estimated from the measured frequency response; s is the
Laplace variable. The input nonlinearity is associated, to the
large part, with dead-zone of a directional control valve, used
for operating the hydraulic cylinder, and is described by

Φ[u] =

{
u− 0.5W sign(u), if |u| > 0.5W,

0, else.
(6)
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Here the total input dead-band is denoted by W . Note that
the approximated system dynamics (5), (6) largely neglect
the residual nonlinear behavior of the control valve, hydraulic
circuits, and mechanical subsystem. At the same time, a uni-
form harmonic excitation, over admissible frequency range,
reveals an accurate match between the measured frequency
response function (FRF) and (5). The measured FRF (details
on the experimental system are given further in Section IV)
and estimated transfer function characteristics G(s)s−1 with

G(s) =
15.59

s2 + 37.15s+ 336
(7)

are shown opposite to each other in Fig. 1. Here it is worth
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Fig. 1. Frequency response characteristics

noting that for a fast dynamics of directional control valves,
a minimum phase second-order system G yields the best
reasonable linear approximation. This is with regards to the
continuity equations of hydraulic circuits, that introduce an
additional integrator between the valve-controlled hydraulic
flow and pressured-induced hydraulic force of the moving
cylinder. Further we note that the input dead-band can be
estimated either by an off- or on-line identification approach,
see e.g. [11], [12], and that by various quasi-static open-
loop control experiments. The overall identified dead-band
of hydraulic system, used in this work, is W = 0.6. A
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Fig. 2. Exemplary measured quasi-static input-output map with dead-zone

typical input-output map of the hydraulic cylinder, measured
at the quasi-static excitation conditions with a flat input
ramp, is exemplary shown in Fig. 2. Note that apart from
a strongly-pronounced input dead-zone, another coupled by-
effects of the non-modeled system behavior, like time lags,
spool and piston stiction of the control valve and cylinder
correspondingly, equally contribute to appearance of the

dead-band in the input-output characteristics. However, a
detailed and accurate decomposition of such locking and
delaying sources in the motion dynamics are out of scope
in the recent work and will be not further considered, this
without lose of generality.

B. Observer design

The nominal part of the system dynamics to be used within
the second-order sliding mode observer, cf. with (3), is given
by the following differential equation

ḟ + 37.15f = 15.59Φ[u]− 336x̂2. (8)

That one is directly derived from the system approximation
(5). Note that the nominal dynamics f(·) is not longer a
function of available system output x1. This is because x1-
state is not entering the overall motion dynamics which
has one free integrator. Obviously, the latter is due to
an unconstrained cylinder displacement, for which neither
restoring forces (like dependent on the cylinder stroke) are
in place.

The resulted sliding-mode observer, following the prelim-
inaries given in sections II-A and II-B, has the form

˙̂x1 = L1/2λ1 |y − x̂1|1/2sign(y − x̂1) + x̂2,
˙̂x2 = Lλ2 sign(y − x̂1) + f(t, x̂2, u). (9)

Since λ1 = 1.5 and λ2 = 1.1 can be directly assigned
in advance, as an optimal setting for an exact differentiator
according to [8], [13], the single remaining parameter of
observer design is L. From the former exact differentiator
developments, it is known that the gain selection should
satisfy the single condition |ÿ| ≤ L, that is L ≥ C +
KM sup |u|. Here the input-output termed conditions are

∂

∂u
ÿ ≤ KM , |ÿ|u=0 ≤ C,

cf. with [13]. It is evident that an appropriate observer
gain selection requires the second time derivative of the
output to be known. That one constitutes the acceleration
of relative motion and is inherently unavailable once our
goal is an observer-based estimation of the relative velocity.
Comprehensibly, the prediction error of the nominal dy-
namics f(·, x2) − f(·, x̂2) and uncertainties ξ(·), both of
the dimension of acceleration or generalized force, restrict
the observer gain selection and, as consequence, the state
convergence of observer (9).

Another optimal gain setting

k2 = 1.1L, k1 = 2.028
√

k2,

recently proposed in [14], aims at minimizing the amplitude
of fast-oscillations, i.e. chattering, caused by the presence of
parasitic dynamics in the closed-loop of the super-twisting
algorithm. To note is that the correspondingly determined
k1, k2 gains are entering the observer equations as in (4)
and not as in (9). Here again, L remains the single design
parameter, yet unavailable for our system in the case study.

In the recent case study, the observer gains for both above
mentioned optimal settings, i.e. according to [13] and [14],



are determined by using the measured system response and
(numerically) solving the minimization problem

min
L

N∑
i=1

(
yi − x̂1,i(L)

)2
. (10)

Here N is the full measured data set and x̂1,i is the estimated
position state as a function of variable L. The cumulative
squared error is shown in Fig. 3 against the assigned L value.
One can recognized that the optimal gain setting according
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Fig. 3. Cumulative squared error against the observer gain, once with the
gains assignments according to [13] and once according to [14].

to [14] performs slightly better in terms of the cumulative
squared error. Following to that, the determined optimal L =
0.9 value is used for the gains setting, as provided in [14].

IV. HYDRAULIC LOADER CRANE

The experimental system used in the recent case study
is a standard hydraulic loader crane with three rotary and
one telescopic joints. For the sake of simplicity, and due to
the operational space constraints, the third rotary joint only
(the so-called jib joint) is under consideration for evaluating
the sliding-mode observer. The jib joint connects the main
boom and jib of the crane and is actuated by a linear stroke
hydraulic cylinder mounted below the boom structure, cf.
Fig. 4. For more details on the crane system see e.g. [11].

Fig. 4. Experimental setup of the hydraulic loader crane

The external communication interface to the integrated
circuits cabinet is based on the Ethernet connection with
UDP (user datagram protocol). The real-time sampling rate is
set to be sufficiently high, 1 kHz. Yet, the accessible encoder
values, which reflect the linear stroke of hydraulic cylinders,
are digitally processed (onside of the circuits cabinet) at a
lower sampling rate. In addition, this yields as not fully
deterministic so that the sampling period of the updated
encoder values vary between 6 msec and 12 msec, cf. Fig. 5.

The cylinder stoke values are also subject to the quantization,
while an exact (nominal) value of the quantization step
remains unavailable. Furthermore, it should be emphasized
that the measured cylinder strokes are provided by encoders
connected to the moving links via the prestressed steel
wires of a relatively high length. This hardware solution,
which is quite common for the large-scale hydraulic cranes
working in the outside environments, gives rise to additional
perturbations of the measured cylinder stroke. All the above
mentioned (parasitic) by-effects can be seen as the output
measurement noise which aggravates observation of the
velocity state we are interested in. The measured cylinder
stroke, with the clearly visible sampling and quantization
perturbations, is exemplarily shown in Fig. 5. Note that here
a steady-state motion at the low excitation conditions has
been realized. Also it should be noted, for a better system
overview, that the full cylinder stroke is about 0.85 m.
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Fig. 5. Exemplarily measured cylinder stroke at steady-state motion

V. OBSERVER EVALUATION

The second-order sliding mode observer, designed accord-
ing to the section III-B, has been experimentally evaluated
on the motion responses of the jib joint which is driven by
the hydraulic cylinder, cf. section IV.
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Fig. 6. Estimated and real motion response to the chirp control sequence:
cylinder stroke above, and relative velocity below

First, the open-loop control signal is given by a down-
chirp sequence, starting from 1 Hz and decreasing towards
0.25 Hz during 27 seconds. The estimated and measured
motion response are shown opposite to each other in Fig.
6. The upper plot discloses the cylinder stroke while the
lower plot shows the relative velocity. One can see that the



cylinder stoke is subject to a continuous drift which can be
attributed to the asymmetric (one-rod) hydraulic cylinder and
additional impact of gravity; both are not captured by the
approximated motion dynamics (5)-(7). Further we note that
no real reference measurements of the relative velocity are
available and, therefore, an equivalent value only is obtained
from the encoder signals by a discrete-time differentiation.
With respect to the control bandwidth of directional control
valve and for the sake of an easier signals interpretation, the
depicted x2, which is equivalent to the measured velocity, is
low-pass filtered with the cut-off frequency at 200 Hz.

As next, a sequence of the square pulses of 0.5 sec length
is applied as an open-loop control signal. The measured
and observer-estimated motion response is shown in Fig. 7,
the cylinder stroke above and the relative velocity below.
Here again, the differentiated value of relative velocity is
low-pass filtered as mentioned above. One can see that at
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Fig. 7. Estimated and real motion response to the square pulses control
sequence: cylinder stroke above, and relative velocity below

each square pulse the system exhibits a transient response,
following by an idle phase until the next pulse applies. An
aperiodic pattern of a flipping-bit character appears during
each idle phase, cf. zoom-in in Fig. 7 above. One can see that
the designed observer is able to follow the measured position
state within the flipping-bit. Also the observer-corrected, i.e.
with x̂2-argument, nominal system dynamics f is shown
in Fig. 8 as a function of time. One can recognize that
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Fig. 8. Observer-corrected nominal system dynamics f(t, x̂2, u)

the f -trajectory, which is proportional to hydraulic force
and, therefore, pressure difference across the cylinder piston,
is relatively smooth and without hight-frequent oscillating

pattern. That is essential for e.g. feedback linearization.

VI. SUMMARY

In this paper, we have presented a case study of applying
the second-order sliding mode observer for estimating the
relative velocity in hydraulic machines with low-accuracy
sensing. The robust exact differentiator based on the super-
twisting algorithm has been augmented by the nominal
part of the system dynamics. The latter has been derived
and identified for our hydro-mechanical system by using a
simple set of the limited experimental data, without special
measurements and system decompositions. Two optimal gain
settings have been used for parameterizing the state observer,
while the L-gain has been obtained by numerically solv-
ing the squared error minimization problem. The designed
second-order sliding mode observer has been experimentally
evaluated for the rotary jib joint of a standard loader crane,
actuated by the linear hydraulic cylinders. An accurate state
estimation has been shown for different measured motion re-
sponses. Furthermore, the observer-corrected nominal system
dynamics, which is equivalent to the driving hydraulic force,
showed up the sufficiently smooth trajectory. That appears
promising for the future works towards the sliding mode
observer-based full-order state feedback control – relevant
for hydraulic machines with a low-accuracy output sensing.
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