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Abstract 
 

 

Battery storage systems are increasingly being used as grid-balancing measures to ensure 

smooth operation of the electrical grid due to their compactness, practical environment-

independence, high efficiencies, and wide-ranging power and energy capacities. Currently, 

battery storage systems for grid balancing are facing high lifecycle costs as well as high energy 

and material requirements. To reduce costs, the reuse of electric vehicle batteries as stationary 

storage has been proposed. Such batteries are typically replaced if their capacity drops below 

70–80% of their initial capacity. However, they may still have sufficient capacity for stationary 

applications. An advantage of reusing is that less active bulk material is wasted and thus, the 

ecological footprint of such batteries is improved. 

 

In this thesis, a theoretical and experimental investigation of a decommissioned and 

repurposed electric vehicle ZEBRA (Zero Emission Battery Research Activities) battery as 

stationary storage for autonomous grid balancing is presented. Therein, the battery operation 

mode (charge, discharge, or idle) is determined by an autonomous optimization routine based 

on a one-way communicated incentive, which represents the intention of the operator to 

achieve a certain goal, e.g. grid balancing. In a first attempt, the historic Austrian day-ahead 

stock market price for electricity serves as the incentive. A mathematical model of the molten-

salt, high-temperature ZEBRA battery is developed to simulate battery dynamics. 

 

For the implementation of the approach on a physical system, steps are taken towards 

developing highly efficient simulation and optimization routines, which can be executed on 

hardware with limited computational resources. To this end, different nonlinear and linear 

optimization approaches are compared with respect to computational costs and resulting 

control optimality. It is shown that linear programs using linear models yield comparable results 

to more complex optimization routines and models. In addition, the simulations indicate that 

the temporal resolution of the incentive strongly influences the battery dynamics and is thus 

crucial for an optimal battery operation. 

 

To validate the simulations, a linear optimization routine driven by the Austrian electricity spot-

market price for electricity is implemented on a decommissioned ZEBRA battery. The 

experimental results prove the general findings of the previous simulations, i.e. it is not possible 

to gain a profitable operation based on present economic boundary conditions, given the low 

variation currently seen in day-ahead prices. Additionally, the reuse of a ZEBRA battery 

showed significant hardware and software related challenges. Specifically, some technical 

details of the ZEBRA battery are difficult to model, e.g. the internal battery system check. 

These challenges result in a high discrepancy between the predicted theoretical and the 

observed physical potential of grid-balancing measures, which underlines the urgent need for 

field test implementations. The results obtained in this scientific contribution are valuable for 

the repurposing of other electric vehicle batteries, because many similar challenges may also 

be encountered for other battery types. The findings of this study show that it is crucial to plan 

the second use of electric vehicle batteries for grid balancing even prior to their commissioning. 

 

In order to investigate the consequences of battery storage systems as grid-balancing 

measures in a low-voltage distribution grid penetrated by distributed generation, a simulation 

study that shows the impacts of different battery positions and incentives is conducted. 
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Compared to available studies in the literature, a real, low-voltage distribution grid topology, 

real smart meter household load profiles, and real photovoltaics load data are used. The study 

incorporates: 1) a baseline simulation without storage; 2) a single, central battery storage; and 

3) multiple, distributed battery storages which together have the same power and capacity as 

the central storage. The incentives address either market conditions, grid balancing, optimal 

photovoltaic utilization, load shifting, or self-consumption. The impacts on power quality are 

assessed by the peak-to-average power ratio at the feed-in node and the maximum voltage 

drop/rise at all grid nodes. The investigated cases showed that incentives that reflect more 

general conditions, such as supraregional markets, may even deteriorate power quality. Thus, 

it was proved that it is crucial to assess the impact of grid-balancing measures on all voltage 

levels of the electrical grid. This means that to improve the power quality of low-voltage 

distribution grids using autonomously optimized devices, incentives reflecting load conditions 

are preferable.  
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1. Introduction 
 

 

Batteries have become an integral part of our lives and can be found practically everywhere, 

from day-to-day gadgets such as wristwatches, mobile phones, electric vehicle (EV) batteries, 

to very specialized devices such as heart pacemakers. Batteries have many advantages 

compared to other storage technologies [1]. They can be built with wide ranges of power and 

energy capacities, as well as voltage and current outputs, by appropriately combining cells 

based on various cell chemistries [2]. Most batteries can be operated at room temperatures. 

The individual battery cells are usually sealed, emit no exhaust gases, do not require cooling 

fans, operate noiselessly, produce no vibrations, and have good shock and vibration 

resistance. Additionally, many battery types are practically maintenance free [3] and very 

efficient since they can typically deliver 90% of input energy as output energy [4]. Batteries 

have high responsiveness [5] and their operating time scales can range from seconds to days 

[2]. This means they can be used to cover a wide spectrum of applications, ranging from 

instantaneous to long-term operation. 

 

Due to their compactness, location-independence, and wide-ranging power and energy 

capacities, battery storage systems are increasingly applied in the electrical power system, 

with a variety of cell chemistries [6]–[8]. The electrical power grid consists of several voltage 

levels between the point of electrical energy generation and the point of consumption to ensure 

minimal distribution losses and associated insulation efforts, handling issues, and costs [9]. 

The voltage levels range from several thousand to some hundred volts. Traditionally, the 

electrical energy is mainly fed in at higher voltage levels, transmitted over several voltage 

levels, and consumed mainly at the lowest voltage level. Conversely, renewables tend to 

participate in the feed-in at all voltage levels of the electrical grid [9]. Battery storage systems 

can be integrated at all these voltage levels and can support the grid by buffering electrical 

energy [10]. The round-trip efficiencies achieved in commercial battery storage solutions, 

including converters, range from 65% to almost 90% [11]. Batteries can be used for: 

 

 Uninterruptible power supply: Batteries have already been used as an auxiliary source  

for years to ensure an uninterrupted supply of critical electrical loads in the event of a  

fault like power outage or anomalies in the electrical power system [12]. 

 Island grids: Such grids consist only of a few energy sources, are spatially limited,  

and are not connected to other grids. Commercial solutions are already available for 

isolated grids in which batteries are used as buffers [13] and to compensate for power 

fluctuations [2], [14]. 

 Residential storage: Batteries are used to increase self-sufficiency by storing surplus 

electrical energy, mainly generated by renewables, and supporting demand in times  

of deficits [15]. 

 Grid support: Batteries can provide real, active, and reactive power and therefore help 

control the amount of reactive power in the electrical grid [9]. 

 Black start capability: In case of a full or partial blackout of the electrical grid, power 

sources are needed to return the energy system to normal operation [16]. Simulations 

have shown that batteries are able to provide black start capacities [2], [16], [17].  

 

In addition, balancing strategies [18], [19] as well as energy buffers are necessary [6], [20] to 

keep electrical energy generation and demand in balance. To compensate for that, grid-
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balancing approaches based on different types of batteries have already been investigated 

[21]–[25]. Energy fluctuations, caused by imbalances, occur on the generation side as well as 

on the demand side. Balancing energy is already a challenge and will be an increasing issue 

in the near future, which can be attributed to continuously progressive effects on the generation 

and the demand side. 

 

On the generation side, grid operation can be severely affected by renewables since most of 

the energy generated from renewables comes from transient sources such as wind and solar 

[18], [26]. According to the International Energy Outlook 2016 [27], renewables are indicated 

as the fastest growing source of electrical energy, with their share predicted to increase by 

2.9% per year from 22% in 2012 to 29% in 2040. Therefore, increased fluctuations can be 

expected for electricity generation in the near future. 

 

On the demand side, the need for electrical energy varies daily and seasonally and is mostly 

uncontrollable [28]. In addition, energy consumed by both industrial and residential units 

steadily increases worldwide [29]. The United States Energy Information Administration 

differentiates between members and non-members of the Organization for Economic 

Cooperation and Development (OECD) in its reports. Among the member countries of the 

OECD, the residential sector plays a significant role in energy consumption since its high 

standard of living leads to an increased energy demand for heating, cooling and for other 

energy-consuming products [30]. On the other hand, industrial demand contributes to 

increased energy usage in the growing economies of the non-OECD member countries [27]. 

Non-OECD member countries have also been exhibiting faster rates of growth of electrical 

energy demand [27]. An additional, global contributing factor to the growing demand for energy 

is the progressive electrification of the transport sector, with the total electricity share of 

electrified light-duty vehicles expected to grow to 1% by 2040 [31]. 

 

At present, high lifecycle costs [32] and high energy and material requirements [33] make 

battery storage systems less attractive for grid balancing. However, a cost reduction can be 

achieved by using systems consisting of batteries, which do not exploit their full capacity at  

all times. 

 

For this purpose, combined photovoltaic battery bank systems [34], mainly used for maximizing 

the self-consumption of locally produced energy [35] and smoothing the electricity feed-in to 

the grid [36], can be further used. Additionally, batteries on wind farms [37], [38], or EVs  

[39]–[43], can also be suitably adapted. Initial costs of battery storage systems to be used for 

grid balancing can also be reduced by using repurposed EV batteries [44]. This is because 

such batteries usually are replaced after their capacity falls below 70–80% of their initial 

capacity [45], [46], which means that they still have sufficient capacity for stationary 

applications. Therefore, using repurposed EV batteries as stationary storages is an interesting 

approach for grid balancing and is investigated in detail in the content of this thesis based on 

a theoretical and an experimental study. 
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1.1 Motivation 
 

As Fig. 1 illustrates, the number of EVs in use worldwide has increased rapidly in recent years. 

This implies that a significant number of discarded EV-batteries for stationary applications will 

be available in the near future. 

 

 

Fig. 1: Number of electric vehicles (in thousands) worldwide in use from 2005 to 2016 [47]. 

 

A second use of EV batteries reduces their ecological footprint [48] since discarding batteries 

will lead to a waste of remaining active bulk material [49]. Based on the calendar life of a 

battery, its lifetime could be almost doubled by a second use. The calendar life for lithium-ion 

(Li-ion) and high temperature sodium batteries is nearly 20 years [50]–[52] and the EV-use 

phase is just about 10 years [53]. The prerequisites for extending the lifetime of a battery are: 

 

 The battery’s cycle lifetime is not yet over. 

 The battery has only been operated in the allowed temperature range to avoid thermal 

damaging. 

 The battery has not experienced extraordinarily frequent overcharging or deep 

discharging. 

 The battery has not been exposed to unsafe charging or discharging rates. 

 

However, there are technical challenges associated with repurposing EV batteries for 

stationary applications. Since these batteries are designed as automotive batteries, they come 

with specific standards and safety measures. These measures vary across batteries and must 

occasionally be bypassed before they can be used as stationary storage. In addition, in order 

to repurpose these batteries, AC/DC charging/discharging converters may have to be installed.  

 

Repurposed EV batteries may be used either for large, centralized battery storage systems 

made out of many individual batteries, or for many small, distributed storage systems. For 

large, aggregated, centralized storage systems, electrical grid integration of battery systems 

could be even more challenging due to a higher probability of diversity in the cell chemistry 

and different operational requirements of the individual battery types involved. Therefore, a 

“master” battery management system may have to be introduced to cover all different battery 

requirements. Whereas integrating one or several types of batteries into high-capacity storage 

installations may be done by large enterprises, single batteries may be adapted by households 

or small consumers for similar purposes. A vehicle manufacturer has already announced that 

it plans to reuse its old EV batteries to build a large stationary storage with a capacity of  

1.37 1.69 2.15 4.54 7.47 16.42 55.16 112.94
226.78

420.33

745.61

1208.90

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Year

Number of electric vehicles 
(in thousands) worldwide (2005-2016)
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13 MWh [54]. Reusing EV batteries as small, distributed, stationary storages, comprising of 

several kWh, for grid balancing has been discussed in numerous publications [48], [55], [56]. 

 

Grid balancing happens on different time scales, ranging from instantaneous to long-term 

measures. Traditionally, the generation of electrical energy follows the demand [19], [28] and 

is usually controlled through various markets: 

 

 Forward markets represent the long-term, where trading is done for future power and 

energy deliveries. Trading can be centrally organized and regulated via exchanges, or 

involve unregulated, over-the-counter deals [57]. 

 Spot markets, more specifically day-ahead markets and intra-day markets, represent the 

medium-term, where the trades will be fulfilled within days. This markets can also be 

centrally organized and regulated via exchanges, or involve unregulated, over-the-

counter deals [57]. 

 Tenders for short-term grid-balancing measures procure operating reserves for certain 

periods to ensure that fast reacting power plants compensate for generation and demand 

imbalances [58]. 

 

However, more recently, measures to adapt demand to generation have gained interest. 

Demand side management (DSM) is a portfolio of measures to balance the electrical grid on 

the consumption side [19]. In DSM, controllable, flexible loads and energy storage facilities 

reduce, increase or shift energy consumption in order to match electrical energy usage with 

generation [19]. Palensky et al. [19] classified DSM strategies according to the timing, and 

impact of the measures: 

 

 Energy efficiency strategies, which are permanent measures, e.g. improving the 

efficiency of building sites; 

 Time of use measures, which are medium-term measures aiming to shift demand to off 

peak hours, e.g. heating water using cheaper night tariff; 

 Demand response measures, which are medium- to short-term measures and intend to 

cause a change in consumption patterns of end users; 

 Strategies involving operating reserves, which are short-term measures and aim to 

control and to maintain the proper functionality of the electrical grid. 

 

To operate battery storage systems as grid-balancing measures, an appropriate control 

strategy has to be developed based on the time scale of interest. With a repurposed battery 

storage, strategies are required to control demand during charging and regulate generation 

during discharging. Thus, an adaptive strategy combining demand side management and 

generation control is necessary for such an application. As for strategies in DSM, to motivate 

consumers to change their consumption according to the actual electrical energy generation, 

a specific tariff or program has to be provided [59]. To transmit such a specific tariff or program, 

different concepts have been proposed. While most grid-balancing concepts require two-way 

communication [60], local, autonomous control with unidirectional communication, as 

proposed by Kepplinger et al. [61], has been demonstrated to be an alternative grid-balancing 

solution for domestic hot water heaters. To the best of the author’s knowledge, such a control 

approach has never been investigated for repurposing EV batteries as stationary storage for 

grid balancing. Neither theoretical considerations, nor a physical implementation, has been 

addressed in the literature.  
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1.2 Problem Statement 
 

The available literature indicates that although the repurposing of electric vehicle batteries as 

stationary storage for grid balancing has attracted significant interest, aspects related to the 

technical and economic feasibility of such systems have not yet been investigated in the 

necessary scientific depth. Therefore, this study focuses on filling the knowledge gaps related 

to the following research questions: 

 

 Is it technically feasible to repurpose these batteries as stationary storage for grid 

balancing? 

 Which provisions have to be made for a physical implementation of repurposed electric 

vehicle batteries? 

 What are the differences between the modeled and actual operation of such a 

repurposed battery? 

 How can battery storages affect grid balancing in a low-voltage distribution grid? 

 

The approach to answer these questions is discussed in detail in chapter 1.3. Chapter 2 

provides a summary report of the scientific contributions published as a part of this thesis in 

PART II. A conclusion is given in chapter 3, which also discusses future research topics that 

have not yet been addressed within this work. 
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1.3 Approach 
 

In this thesis, a theoretical and experimental investigation of a repurposed electric vehicle 

ZEBRA (Zero Emission Battery Research Activities) battery as stationary storage for 

autonomous grid balancing is presented. The battery is decommissioned from the electric 

vehicle THINK City [62]. As this type of EV ranks among the first commercial electric cars, 

these batteries are now available for second-use approaches. 

 

The ZEBRA battery is a molten-salt, high-temperature battery operating efficiently and safely 

at an internal temperature between 270 and 350 °C [63]. Its operation is based on the reaction 

of sodium with nickel chloride. The redox reaction within a single battery cell is given by,   

c.f. [63], [64]: 
 

 2Na +NiCl2

discharge
→
←

charge

2NaCl + Ni Eq. 1 

 

The energy density of a ZEBRA battery is approximately 100 Wh/kg; the power density is 

approximately 150 W/kg [63], [65], [66]. The expected cycle lifetime is given to be about 3500 

full charge and discharge cycles [66]. Therefore, ZEBRA batteries are interesting for stationary 

applications due to their long-term cyclic stability [51]. In addition, ZEBRA batteries are 

thermally insulated by a double-walled vacuum chamber, and hence can be operated between 

−40 to 70 °C ambient temperature [67]. The battery reused from the THINK City vehicle 

exhibits a capacity of 28.2 kWh. 

 

The control strategy proposed to operate a stationary ZEBRA battery is close to strategies for 

DSM and is based on a unidirectionally communicated information flow—from a distributor to 

a participating device, cf. Fig. 2,. This only allows for indirect demand control. Via unidirectional 

communication, a pseudo-cost function (PCF) is transmitted to a locally implemented 

optimization routine. The PCF represents the intention of the operator to achieve a certain 

goal, e.g. grid balancing. However, the PCF can be any step-wise constant function [61]. In 

the remainder of this work, the PCF will also be referred as an “incentive”. 

 

The optimization routine is driven by the PCF and determines the decision function, 𝑢(𝑡), 

reflecting the operation mode (charge, discharge, or idle) of the battery. Optimizing the battery 

operation locally allows for the modeling of device-specific properties, since data can be locally 

acquired for fast and continuous model adaptation. As a result, optimal operating decisions 

can be made due to high model accuracy. In addition, a high-level communication 

infrastructure to ensure safety and security is not necessary, as unidirectional communication 

protects user privacy since no locally obtained data are shared [61]. The battery control 

schematics are illustrated in Fig. 2, wherein 𝑃DC and 𝑃AC represents the direct and alternating 

powers. 
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Fig. 2: Battery control schematics [68]. 

 

To achieve the above, as a first step, a mathematical model of the ZEBRA battery storage 

system is developed and used to simulate battery dynamics to estimate the grid-balancing 

potential of a repurposed battery storage system. Batteries can be modelled using 

electrochemical, statistical, or electrical models. As elaborated by Chen et al. [69], 

electrochemical models are often time-consuming and mainly used in order to investigate and 

improve the underlying electrochemical processes. Statistical models are often very abstract 

and used for system-level behavior prediction e.g. battery runtimes. Electrical models are 

equivalent circuits comprising electrical sources and components, like resistors. These models 

can be easily used in grid simulations, which is why, in this case, electrical models of the 

ZEBRA battery are developed. Historical Austrian day-ahead spot-market prices for electricity, 

provided by Energy Exchange Austria (EXAA) [70], are used as the PCF for the optimization, 

since real-time pricing has been discussed as an incentive for end-users to react to with their 

devices and corresponding demand [19], [71]–[73]. 

 

To validate the proposed battery model and the indicated potential for grid balancing, a ZEBRA 

battery is incorporated into a stationary setup and experiments are conducted. An embedded 

control hardware is developed and integrated into the battery storage setup. AC/DC 

charging/discharging converters enable the grid connection while an energy monitoring system 

logs the energy flows in and out of the system. The embedded control hardware fetches the 

PCF and enables the communication with all other hardware components. It performs the 

optimization and therefore decides if the battery gets charged, discharged, or stays idle. It also 

continuously records state data from the battery, evaluates it and adapts the battery model 

used in the optimization. In addition, the control hardware monitors safety-relevant aspects 

and in the event of a fault, is able to transfer the battery into a safe state. 

 

Since the battery position in a low-voltage distribution grid, penetrated by distributed 

generation, may influence the balancing impact, a grid simulation study is conducted. 

Additionally, the consequences of different incentives, representing different intentions of the 

operators and used to find the operation mode of the battery (charge, discharge, or idle) by 

optimization, are evaluated. The simulation is based on a real, low-voltage distribution grid 

topology in combination with smart meter household load data and distributed photovoltaics 
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generation data. The study is intended to show the differences in balancing impacts based on 

the battery storage location and different incentives. 
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2. Summary Report 
 

 

The following report summarizes the main achievements of the author’s research, the results 

gained, and underlines scientific contributions made in the publications detailed in PART II. 

The research presented ranges from a feasibility study by simulation to validation via a field 

test. A local, autonomous battery control approach based on different optimization routines 

and battery model complexities is introduced. Combinations of optimization routines and 

battery models are simulated and the results are compared. Subsequently, to validate the 

proposed battery control approach, a repurposed electric vehicle battery is incorporated into a 

stationary storage setup and the performance is compared against simulations. Finally, a grid 

simulation study of a low-voltage distribution grid, penetrated by distributed generation, is used 

to show the impact of autonomous optimized batteries as a grid-balancing measure. To 

underline and to discuss the results achieved, key figures from the original publications in 

PART II have been used, in some cases with partial modifications. 
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2.1 Feasibility Study on Autonomous Battery Control 
 

The content of this chapter has been adapted from the publication: B. Fäßler, P. Kepplinger, 

M. L. Kolhe, and J. Petrasch, “Decentralized on-site optimization of a battery storage system 

using one-way communication,” presented at the International Conference on Renewable 

Power Generation, 2015, pp. 1–6. 

 

In the first publication, the potential of a repurposed ZEBRA battery for balancing the electrical 

grid is investigated by simulation. Since the battery control is intended to run on a standalone, 

stationary storage, it is referred to as a local, autonomous battery control. The control strategy 

itself is based on an optimization routine minimizing an objective function calculated from a 

one-way communicated PCF, resulting in the operation mode (charge, discharge, or idle) of 

the battery, c.f. chapter 1.3. A similar control approach has already been proposed for domestic 

hot water heaters [61] but has never been investigated for batteries. 

 

First, a battery model was developed based on a ZEBRA battery. Since this is a high-

temperature battery, the battery has to maintain its temperature within a specified range in 

order to ensure proper functionality. Hence, the physical battery is equipped with auxiliary 

heating and cooling controlled by a built-in battery management system (BMS). The battery 

pack itself consists of several cells that are connected in series to form strings, resulting in a 

corresponding output voltage. The strings are connected in parallel to achieve a corresponding 

output current. The state of charge (SOC) is used as the normalized representation of the 

electrical energy content of the battery storage system. 

 

To describe the state of the battery based on the SOC and the temperature, two nonlinear, 

coupled ordinary differential equations are necessary; one representing the electrical energy 

content, 𝐸el and one representing the internal battery temperature, 𝑇. The two energy balances 

for the battery are: 
 

 d𝐸el
d𝑡

= 𝑃DC(𝑡) − 𝑃Ri(𝐸el(𝑡))− 𝑃h(𝑡) − 𝑃fan(𝑡),where Eq. 2 

  𝑃DC(𝑡) = {
𝜂in ∙ 𝑃AC(𝑡),      𝑃AC≥ 0

𝜂out
−1 ∙ 𝑃AC(𝑡),    𝑃AC < 0

 and Eq. 3 

 
d𝑇

d𝑡
=
1

𝐶
∙ (𝑃Ri(𝐸el(𝑡))+ 𝑃h(𝑡) − �̇�loss(𝑇(𝑡)) − �̇�cool(𝑇(𝑡))) Eq. 4 

 

In Eq. 2, 𝑃DC represents the direct charging/discharging power, 𝑃Ri, the heat dissipation across 

internal battery cell resistances, 𝑃h, the auxiliary heating power, and 𝑃fan, the cooling fan 

power. If the battery gets charged/stays idle, 𝑃AC≥ 0, and if it discharges, 𝑃AC< 0, cf. Eq. 3, 

which means there may be different charging/discharging converter efficiencies (𝜂in and 𝜂out) 

that have to be taken into account. In Eq. 4, 𝐶 represents the heat capacity, �̇�cool, the heat 

transfer rate due to cooling, and �̇�loss, the heat loss rate via the insulation of the battery pack. 

The proposed battery model is parameterized based on logged battery data provided by the 

battery’s BMS. The data are based on charging and discharging cycles of a ZEBRA battery 

from a THINK City electric vehicle. 

 

A comparison between simulated and measured SOC shows that below 80%, the SOCs 

coincide. Above 80%, the BMS balances the battery cells, which is followed by a reduction in 

charging power until the SOC reaches 100%. The cell balancing process and its duration highly 

depends on the state of each individual battery cell. Since the thermal energy balance depends 
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on the SOC, the modeled internal temperature also differs from the measured one. This makes 

these effects difficult to explicitly model and therefore these were not included in the model. 

 

The model developed is used to simulate the dynamics of the battery storage. Additionally, it 

is used to constrain the control optimization to ensure that the battery’s SOC and temperature 

is within the operational bounds. 20% ≤ SOC ≤ 100% are the bounds used, to ensure enough 

SOC for emergency temperature control. In the optimization, the permissible battery 

temperatures depend on the operation mode (charge, discharge, or idle) and the SOC. For a 

given time window, [𝑡0, 𝑡𝑛], the optimization problem can be formulated as 
 

 min𝑢∫ (𝑐(𝑡) ∙ 𝑢(𝑡) ∙ 𝑃AC,max) 𝑑𝑡
𝑡𝑛

𝑡0

, Eq. 5 

 

where 𝑐(𝑡) represents the PCF and 𝑢(𝑡), the decision function reflecting the operation mode 

of the battery. In this feasibility study, the battery operation is simulated using historic quarter-

hour day-ahead prices for electricity provided by Energy Exchange Austria [70]. It is assumed 

that the price data is known 36 hours in advance. The continuous values of the resulting 

decision function are restricted from -1 to 1; -1 represents discharging at maximum power,  

0 the idle state, and 1 charging at maximum power. To solve the optimization problem, 

MATLAB [74] with its built-in sequential quadratic programming (SQP) algorithm is used. 

 

The optimization, which determines the battery operation, is performed every 24 hours at noon, 

taking the next 36 hours into account. This reflects the clearing of the day-ahead market at late 

morning for the next day. The simulation is conducted using price data from 4 September 2014 

to 31 December 2014. The charging/discharging power is assumed constant at 1.5 kW. The 

capacity of the battery is 28.2 kWh. 

 

The resulting optimal battery operation shows continuous charging and discharging mostly at 

maximum power; no idle state was detected. Continuous charging/discharging causes self-

heating via the cell resistances, resulting in less energy needed for the auxiliary heating 

system. This in turn results in a high round-trip efficiency (converter-battery-converter) of about 

80%. Additionally, it shows that the battery is operating close to the low end of the allowed 

temperature limit, causing minimal heat loss. The mean SOC is observed to be about 40% 

with a standard deviation of 15%. For the chosen battery setup (power, capacity), theoretical 

earnings of about 37 € are predicted over the four month simulation period, indicating feasible 

operation of a repurposed electric vehicle battery for grid balancing. 

 

Since the battery model and the optimization routine need excessive computational costs, they 

need to be adapted for implementation on physical hardware with limited resources, for an 

experimental field test. Therefore, autonomous control algorithms featuring different model 

complexities and resulting control optimality have to be investigated for a physical control 

algorithm implementation on a stationary battery storage system. This study is considered in 

chapter 2.2. 
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2.2 Modification of Autonomous Battery Control 
 

The content of this chapter has been adapted from the publication: B. Faessler, P. Kepplinger, 

and J. Petrasch, “Decentralized price-driven grid balancing via repurposed electric vehicle 

batteries,” Energy, vol. 118, pp. 446–455, Jan. 2017. 

 

In this publication, steps are taken towards implementing the proposed battery control 

approach on a real, repurposed ZEBRA battery. Since embedded hardware with limited 

computational resources will be used to control the system, highly efficient simulation and 

optimization routines have to be developed. To this end, different nonlinear and linear 

optimization approaches are compared by simulation with respect to computational costs and 

resulting control optimality. The battery dynamics are simulated by the nonlinear battery model 

developed in chapter 2.1. 

 

To investigate battery storage systems as grid balancing measures, the long-term behavior of 

such systems is of greater interest than the operational dynamics. Therefore, a linear battery 

model is developed, since the high dynamics during switching are not of interest. Additionally, 

a general loss term, 𝑃loss , which incorporates the temperature model, is introduced instead of 

individual, nonlinear loss terms, resulting in a linear battery model for the electrical energy 

content 
 

 
d𝐸el
d𝑡

= 𝑃DC(𝑡)− 𝑃loss. Eq. 6 

 

𝑃loss  is estimated by simulating 100 charge and discharge cycles of the nonlinear battery model 

at 𝑃DC,max for 20% ≤ SOC ≤ 100%. 

 

Along with the battery control approach based on a SQP routine, cf. chapter 2.1, a dynamic 

programming (DP) routine and an integer linear programming (ILP) routine have been 

developed and implemented. The SQP routine is used for nonlinear optimization whereas DP 

and ILP are considered for linear optimization. 

 

The DP is based on the idea that the optimal solution of a problem can be composed by the 

solutions of many similar sub-problems [75], which are achieved using the linearized battery 

model. A self-implemented recursive routine is used to solve the optimization problem for 

discretized 𝐸el values backward in time. In doing so, based on the PCF, costs for discretized 

decision states can be calculated. Finally, the cheapest path for each discretized 𝐸el start state 

can be determined by calculating forward in time. The discretized decision states 𝑢(𝑡) are 

limited to maximum charging, discharging, and idle (1, −1, and 0). As indicated in chapter 2.1, 

the cost-optimal operation of the battery is achieved by continuously charging or discharging, 

and mostly at maximum power. The DP is constrained by an upper and lower bound for the 

SOC. 

 

The concept of DP is graphically explained in Fig. 3. Starting at all discrete 𝐸el end states, for 

a single time step backwards in time, charging is represented by a negative cell shift of two, 

discharging by a positive cell shift of three and the idle state by a positive cell shift of one. 

Based on the PCF, costs for each step can be determined; costs are accounted positive for 

discharging, negative for charging, and zero for idling. Finally, the decision states 𝑢(𝑡) can be 

determined by the cost-optimal solution of all sub-problems.  
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Fig. 3: Concept of self-implemented dynamic programming approach. The decision states are 

found backwards in time determined by the cost-optimal solution of all sub-problems [76]. 

 

In addition to SQP and DP, an ILP routine using the linear battery model is implemented. The 

decision states 𝑢(𝑡) are, as in the case of DP, discrete states for charging, discharging, and 

idling (1, −1, and 0). In doing so, the optimization approach has to be formulated using two 

decision variables (𝑢+ and 𝑢−) for each time step indicating charging/idling and discharging 

separately. Thus, converter efficiencies can be included linearly in the objective function and 

the linear battery model can be used as a constraint independently of the converter efficiencies. 
 

 min𝑢∫ 𝑐(𝑡)
𝑡𝑛

𝑡0

∙ (𝑢+(𝑡) ∙ 𝜂in
−1 ∙ 𝑃DC,max−𝑢

−(𝑡) ∙ 𝜂out ∙ 𝑃DC,max) 𝑑𝑡 Eq. 7 

 

Finally, the decision states are calculated by, 𝒖(𝑡) = 𝒖+(𝑡)− 𝒖−(𝑡). To solve the minimization 

problem, MATLAB’s intlinprog routine [74] is used. 

 

To investigate the performance of these three optimization approaches with respect to runtime 

and control optimality, a simulation study is conducted. As PCF, hourly historic Austrian day-

ahead stock market price data provided by EXAA [70] from 2015 are used. Again, it is assumed 

that the price data is known 36 hours in advance. The optimization is performed every 24 hours 

at noon, taking the next 36 hours into account. Table 1 summarizes the results. The SQP 

routine leads to the highest earnings per battery capacity and results in the best round-trip 

efficiency (converter-battery-converter) since the highest battery model complexity is used in 

the optimization. ILP shows the lowest runtime (approximately 50 times faster than SQP) and 

comparable results in terms of control optimality. DP performs marginally worse than ILP. 

However, DP would allow for a straightforward implementation since no library functions are 

needed. 
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Table 1: Performance comparison of SQP, DP and ILP 

using hourly based EXAA price data of 2015 [76]. 

Optimizer Runtime 

relative to ILP 

(–) 

Earnings/ 

Capacity 

(€/kWh) 

Round-trip 

efficiency 

(%) 

SQP 50.7 1.83 78.6 

DP 1.29 1.74 77.5 

ILP 1.00 1.75 77.4 

 

Based on the results achieved, ILP is used to determine the economic potential of battery 

storage systems using the developed autonomous control approach in the period 2003–2015. 

As PCF, hourly historic day-ahead stock market price data is used. Fig. 4 shows the annual 

earnings per battery capacity, dependent on a mean value of the standard deviation in the day-

ahead price for each day of the respective year. 

 

 

Fig. 4: Annual earnings per kWh battery capacity from 2003 to 2015 

as a function of mean standard deviation of the day-ahead prices [76]. 

 

Two short-term products are typically traded on the Austrian electrical energy stock market: 

the hour- and 15-min-based day-ahead prices. Therefore, hour- and 15-min-based intervals 

are used in simulations to investigate the economic potential of the autonomously controlled, 

optimized battery storage. ILP is used to perform the study. Based on the results shown in 

Table 2, higher earnings per battery capacity and a better round-trip efficiency can be expected 

for 15-min-based products due to higher price dynamics leading to more dynamic battery 

operation. The simulations indicate that for current day-ahead stock market prices an 

economic operation is not possible since variations in price are currently too low. This indicates 

that such batteries must be operated on markets with higher volatility and/or a larger price 

range to increase the viable earnings.  
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Table 2: Performance comparison of ILP using hourly 

and quarter-hourly EXAA price data of 2015 [76]. 

Time 

product 

Runtime relative 

to hourly based 

prices (–) 

Earnings/ 

Capacity 

(€/kWh) 

Round-trip 

efficiency 

(%) 

Hour 1.00 1.75 77.4 

15 min 3.86 2.86 78.3 

 

A further investigation showed the impact of the capacity-to-power ratio of the battery on grid-

balancing potential. To this end, the nonlinear battery model is scaled by changing the numbers 

of cells while keeping the cell properties the same. The capacity can be increased by adding 

battery cell-strings in parallel resulting in an unchanged terminal voltage. The maximum 

charging and discharging current changes proportional to the number of strings, resulting in 

an adjustable charging and discharging power. Assuming geometrical similarity, the auxiliary 

heating power and the thermal losses via the battery insulation are scaled by the battery pack 

surface to volume ratio. Since the heat generated via cell resistances is proportional to the 

square of the current, the heat transfer required for battery cooling and thus, fan power, is 

scaled by the current squared. 

 

The battery operation is simulated using ILP driven by historic hour- and 15-min-based day-

ahead prices of 2015. The earnings per battery capacity as a function of the capacity-to-power 

ratio always exhibit one distinct maximum. For low capacity-to-power ratios, the storage 

system does not have sufficient capacity to realize all optimal charging and discharging 

opportunities. For high capacity-to-power ratios, the full system capacity is never exploited. 

Generally, large systems are preferable since relative thermal losses are smaller as the surface 

to volume ratio decreases. 
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2.3 Field Testing of an Autonomously Controlled Battery 
 

The content of this chapter has been adapted from the publication: B. Faessler, P. Kepplinger, 

and J. Petrasch, “Field testing of repurposed electric vehicle batteries for price-driven grid 

balancing,” (Submitted to Elsevier Energy Journal, Manuscript Number: EGY-D-17-05788) 

 

Having demonstrated that a sufficient control objective can be obtained using linear 

optimization, the control approach for grid balancing is implemented on a decommissioned, 

high-temperature ZEBRA battery to validate the approach experimentally. Since these 

batteries have been used in early commercial electric vehicles, they are now available for 

second-use approaches. The presented control approach can also be applied to other types 

of batteries after adapting the linear battery model. The experimental setup uses the author’s 

self-developed software consisting of routines for communication, optimization and operation 

of the battery storage system. Additional hardware components had to be installed and were 

partly self-developed. 

 

The schematics and the physical implementation of the repurposed ZEBRA EV battery storage 

system is shown in Fig. 5. It consists of an embedded control hardware (ECH), charging/ 

discharging converters, a ZEBRA battery including a BMS, and an energy monitoring system. 

 

 

 

Fig. 5: Repurposed ZEBRA EV battery as stationary storage system: 

a) schematics; b) physical implementation. 

 

The ZEBRA battery used has a capacity of 28.2 kWh. The ECH consists of a BeagleBone 

Black – Rev C [77] and a serial cape [78]. Thus, the ECH is able to communicate with the 

BMS, the charging/discharging converters, the energy monitoring system, and the PCF 

distribution system via TCP/IP, CAN bus, and Modbus TCP. Furthermore, the control approach 

is implemented on the ECH. The PCF is fetched from a PCF distribution system. In case of 

this field test, the actual trading result of the Austrian 15-min-based stock market price for 

electricity is used to drive the optimization. This price data is published by EXAA [79] daily on 

weekdays at 12 noon for the next 36 hours. For charging and discharging, separate converters 

are used since the original EV single-phase charger [80] is not designed for discharging. The 
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charging converter efficiency ranges from 95% for 3.2 kW to 90% for 0.4 kW [80]. The average 

DC charging power measured during a charging process is 1.49 kW. For discharging, a three-

phase converter from Fronius [81] is used since its discharging power can be controlled 

continuously from 0–100% of the maximum power. The efficiency ranges from about 90% to 

97.5% depending on the output power [81]. Measurements showed that the average DC 

discharging power between 20% and 100% SOC is 8.64 kW, i.e. 5.8 times the DC charging 

power. All energy flows are measured and recorded by an energy monitoring system from 

Algodue [82] at a resolution of 15 minutes. The measured in- and output energy flows also 

include the powering of the energy counter and the BMS. 

 

To control the battery, a mixed integer linear programming optimization routine (MILP) using a 

linear battery model is used to find the optimal operation mode by minimizing the objective 

function calculated from the PCF, based on the prevailing 15-min-based Austrian day-ahead 

stock market price for electricity. MILP is used since the presented optimization approach in 

chapter 2.2 has to be adapted to account for different charging and discharging power and 

converter efficiencies. Furthermore, since the converters perform inefficiently up to 20% of 

their maximum output power, the boundary conditions have to exclude charging or discharging 

for lower values. Additionally, boundary conditions have to ensure that the battery’s SOC stay 

within the operational bounds (20%–100% SOC). 𝑃loss  used in the battery model is estimated 

by a least squares approach once a day by fitting the battery model on seven days of historic 

𝑃DC and SOC data. Battery state data are continuously monitored.  

 

The performance of the storage system was investigated from 24 May 2017, 4:15 to 6 June 

2017, 9:00. Furthermore, a preliminary lead-time of one week served to determine the initial 

battery loss term. During the experiment, the stationary storage system operated with a round-

trip efficiency (converter-battery-converter) of 74.4%. In doing so, the system performed  

9.43 full battery charge cycles with a median SOC of 65.2%. An accuracy analysis of the 

proposed linear battery model shows a root mean square error of 7.6% between the simulated 

and the measured SOC during the experiment. Reasons for the model error are indicated in 

Fig. 6, which shows a 36-hour time window during the experiment, depicting the day-ahead 

price, the decision function, the measured SOC, and the predicted SOC based on the executed 

decision states. In the case shown in Fig. 6, the optimization starts at midnight and predicts 

the battery operation for the next 24 hours since the available day-ahead price ends at midnight 

of the following day. Two major model deviations can be observed, one occurs at 

approximately 6:15, the other around 14:30. The first deviation can be explained by a battery 

cell balancing procedure always performed by the BMS during charging at 80% SOC. The 

second deviation can be explained by a battery balancing procedure followed by a SOC reset 

to 100%. This reset is caused by the fact that the BMS estimates the SOC by measuring the 

charging/discharging current. The end of charge, however, is determined by measuring the 

cell voltage leading to this SOC estimation error by the BMS. 
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Fig. 6: Exemplary battery operation indicating estimated SOC (dashed black line) and measured SOC  

(black line) based on the 15 minutes Austrian day-ahead stock market price for electricity (dark grey line).  

All values on the left axis are normalized with respect to their maximum value. The light grey line  

indicates the decision states executed on the storage in a 15-minute time interval. 

 

Additionally, the realized earnings have been compared to the potential earnings, which are 

investigated by simulation assuming linear battery behavior. To this end, the model is 

continually initialized at 12 noon, using the corresponding 36 hours day-ahead price and the 

battery losses estimated during the experiment. The new battery state is calculated and used 

as the initial state for the next day optimization. The resulting potential earnings during the 

experiment differs by 37.5% compared to the realized earnings. This discrepancy can be 

attributed to insufficiencies in representation of the BMS, battery behavior and converter 

characteristics. The significant economic deviation between model and experiment shows the 

urgent need for field tests of grid-balancing strategies to investigate their realizable potential. 

In addition, the results indicate that the earnings achieved must be significantly higher in order 

to operate the storage economically, even without considering the installation and equipment 

costs. Even accounting for seasonal price differences in the Austrian electricity price, battery 

operation based on the day-ahead price is not profitable from today's perspective. However, 

as a prospective application, the technical grid-balancing potential is investigated in a grid 

simulation study in chapter 2.4. 
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2.4 Grid Simulation Study of Batteries as Grid-Balancing Measure 
 

The content of this chapter has been adapted from the publication: B. Faessler, M. Schuler, 

M. Preißinger, and P. Kepplinger, “Battery storage systems as grid-balancing measure in low-

voltage distribution grids with distributed generation,” Energies, vol. 10, no. 12, pp. 1–14,  

Dec. 2017. 

 

The fourth publication investigates the impact of autonomously optimized battery storage 

systems as a grid-balancing measure in a low-voltage distribution grid, penetrated by 

distributed generation, via grid simulation. The grid consists nodes representing households, 

each of which have a load profile and may or may not have an electrical generation profile 

through photovoltaics. The influence on the power quality in this grid, of a single, feed-in-tied 

battery storage system is compared to the influence of multiple, distributed storage systems 

attached to nodes in this grid where electrical generation occurs. It is assumed that the capacity 

and the maximum charging and discharging power of the single, central storage equals the 

sum of all distributed storages. Battery operation is determined via a linear optimization routine, 

which relies on minimizing an objective function calculated from a one-way communicated 

PCF. 

 

In this grid simulation study, different PCFs, addressing either market conditions for electricity 

generation, grid balancing, optimal photovoltaic utilization, load shifting, or self-consumption 

(i.e. a load profile obtained by subtracting generated PV electricity at source) are used as 

incentives. Market conditions are incorporated in the model using the historic Austrian 15-min-

based day-ahead stock market prices for electricity. For grid balancing, optimal PV utilization, 

and load shifting, the incentives are based on the assumption that we have perfect prior 

knowledge of either the grid feed-in power, the PV generation, or the household consumption 

at each node. A detailed description of all incentives is given in Table 3. The configuration 

indicates whether the given incentive is applicable to only a single, central storage (c) or only 

multiple, distributed storages (d), or both (c/d). In case of incentives based on load shifting and 

self-consumption, the individual household load profile is assigned to the corresponding 

household-tied storage. 

 

Table 3: Incentives used to drive BESS optimization. The considered configurations for BESS 

are abbreviated by c for a single, central storage and d for multiple, distributed storages [83]. 

Abbreviation Description Incentive Configuration 

REF Reference case - - 

RTP Real-time pricing EXAA day-ahead market price c/d 

GRID Grid balancing  Total future grid load c/d 

PV Optimal PV utilization Future PV generation c/d 

LOAD Load shifting Future household consumption d 

SELF Self-consumption Future household load (incl. PV) d 

 

To allow for results close to reality, real data are applied for the low-voltage distribution grid 

topology, the household loads, and the distributed generation from photovoltaics. Data of 

commercially available Li-ion battery energy storage systems (BESSs) are used to keep 
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simulations practical. A self-implemented grid simulation tool is used to run the simulation [84]. 

This tool is based on a direct numerical method proposed by Ghatak and Mukherjee [85]. The 

temporal resolution of the grid simulation is 15 min. 

 

The weakly meshed low-voltage distribution grid is shown in Fig. 7. It comprises of 50 nodes; 

a central feed-in node (slack node, 50), a node (19) as placeholder for a central BESS, and  

48 nodes for households. At the slack node, the voltage is kept constant at 230 V with zero 

phase shift. 

 

 

Fig. 7: Low-voltage distribution grid section with a central feed-in node (slack node) [83]. 

 

Smart meter household loads are assigned to the nodes. Three PV systems with different 

typically residential dimensions are allocated. Their location is chosen randomly. The 

photovoltaic peak power corresponds to approximately one quarter of the maximum load at 

the slack node. This is considered to be a feasible penetration rate for low-voltage distribution 

grids [86], [87]. Three different BESSs with different capacities and maximum charging and 

discharging power are assigned to the nodes with PV generation. 

 

The resulting power quality is assessed by comparing the peak-to-average power ratio (PAPR) 

at the feed-in node, the maximum voltage drop/rise at all grid nodes, and the distribution 

losses. The voltage drop/rise describes the relation between the voltages of the individual 

nodes to the constant slack node voltage. The distribution losses are the cumulative losses of 

the investigated low-voltage distribution grid. 

 

The grid simulation study is conducted from 8 June 2016, 12:00 to 15 June 2016, 12:00 since 

highly accurate time-resolved data for household loads and PV generation are available in this 

period. The assigned household loads, PV generation data, and parameterized batteries are 

unmodified throughout the simulations leading to comparable results regarding PAPR, voltage 

levels, and distribution losses. 

 

In Fig. 8, the impact of a single, central storage and multiple, distributed storages on the power 

quality of the grid are compared to a reference case where no grid balancing exists, in the case 

of each of the aforementioned incentive functions. It can be seen that the PAPR is reduced 

with respect to the reference case, in all operation modes except for the RTP driven mode. 

Using RTP as the incentive results in additional peak loads. The voltage drop/rise shows that 
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a central storage does not deteriorate or significantly improve the power quality in terms of 

voltage deviation. Cumulative distribution losses remain the same as the reference case when 

using a central storage, whereas the use of distributed storages leads to higher distribution 

losses. 

 

 

Fig. 8: PAPR, voltage drop/rise and cumulative distribution losses for all configurations  

for a single, central storage (c) and multiple, distributed storages (d). The superscript *  

refers to normed quantities with respect to the reference case [83]. 

 

The different cases show that incentives that reflect more general conditions, such as the RTP, 

may worsen power quality, since they are indicators for larger, non-local grids. This means that 

it is crucial to assess the impact of battery storage systems as a grid-balancing measure on all 

voltage levels of the electrical grid. For all other incentives, both a single, central storage as 

well as multiple, distributed storages have power quality related advantages in low-voltage 

distribution grids. A central storage shows lower voltage deviations and lower distribution 

losses. Distributed storages tend to improve the PAPR. Incentives that incorporate local grid 

characteristics should be used to ensure grid reliability.  
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2.5 Discussion 
 

Research involves iterative efforts aimed at converging to an optimum solution. Such iterations 

were required during the course of this research, in order to address the unique modelling 

problems and implementation challenges that were encountered. 

 

After showing that a battery storage system could be operated by an autonomous control 

approach, we were confronted with the fact that an embedded hardware would not be able to 

run the developed routine owing to its limited computational capacity. Hence, new control 

approaches had to be investigated. 

 

Since we are interested in the long-term behavior of battery storages and not in dynamic effects 

such as those during switching, we attempted the use of linear optimization routines and linear 

battery models. We were able to prove that these newly developed routines showed similar 

control objectives as the initial, nonlinear control approach while needing less than 50 times 

the runtime. 

 

The subsequent field test showed numerous challenges to the implementation. In this thesis, 

these challenges have not been detailed due to their implementation-specific nature. Effort 

was needed to repurpose an EV ZEBRA battery, both on the hardware and the software side. 

On the hardware side, additional to the original charging converter, a discharging converter 

had to be installed. In addition, an appropriate embedded hardware had to be found which is 

also able to communicate via various bus protocols. As a result, CAN bus could be used to 

communicate with the battery attached BMS and override in-built automotive safety features. 

It was also necessary to adapt the control approach to a form that was executable on the 

embedded hardware. 

 

Finally, to investigate the grid-balancing capability of such storages, a grid simulation of a low-

voltage distribution grid was executed. For this purpose, a grid simulation method, which is 

capable of handling autonomously controlled devices like battery storage systems, was 

needed. Such a method has been developed and implemented in-house by Schuler et al. [84]. 

This method allows the battery control routine to determine the operation mode of the battery 

(charge, discharge, or idle) and incorporates its outcome into the simulation study. 
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3. Conclusion 
 

 

In this thesis, a theoretical and experimental investigation of a decommissioned and 

repurposed molten-salt, high-temperature ZEBRA (Zero Emission Battery Research Activities) 

battery as a small-scale, stationary storage for grid balancing has been investigated. The 

related questions as defined in the problem statement can be answered based on the 

presented scientific work. 

 

Is it technically feasible to repurpose these batteries as stationary storage for  

grid balancing? 

 

To show the technical feasibility of electric vehicle batteries repurposed as stationary storage, 

a ZEBRA battery model has been developed, fitted to experimental data, and used to simulate 

the battery dynamics. This type of battery ranks among the first commercial, electric vehicle 

batteries and these batteries are now available for second-use approaches. The operation 

mode of the battery (charge, discharge, or idle) is based on an autonomous, on-site 

optimization, minimizing an objective function calculated from a one-way communicated 

incentive, which represents the intention of the operator to achieve a certain goal, e.g. grid 

balancing. In this feasibility study, the historic Austrian day-ahead stock market price for 

electricity was used as incentive. The simulation of the proposed autonomous battery control 

algorithm indicated that a repurposed electric vehicle battery as stationary storage for grid 

balancing can be operated successfully based on the achieved earnings. 

 

Which provisions have to be made for a physical implementation of repurposed 

electric vehicle batteries? 

 

For a physical implementation of the battery control algorithm on an embedded hardware, 

steps towards developing highly efficient simulation and optimization routines have been 

taken. To this end, different nonlinear and linear optimization approaches were compared with 

respect to computational costs and the resulting control optimality. Again, the historic Austrian 

day-ahead stock market price for electricity served as the incentive. Results achieved by 

simulations showed that linear optimization routines based on linear models result in control 

objectives comparable to nonlinear ones, but run about 50 times faster. Hence, they are the 

best suited for a physical implementation on an embedded hardware with limited computational 

resources. Furthermore, the simulations showed a strong correlation between incentive-based 

earnings and the variation of the incentive during the same period. The resolution of the 

incentive defines the constraints on the grid-balancing measure; the shorter the time scale, the 

faster the reaction of the measure can be. In addition, the impact of changing the capacity-to-

power ratio of the modelled battery was investigated to examine if there is an optimal 

combination of capacity and power resulting in maximum earnings for a given incentive. It 

showed that the capacity-to-power ratio always exhibits one distinct maximum. 
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What are the differences between the modeled and actual operation of such a 

repurposed battery? 

 

A field test was conducted to show the practical feasibility of repurposed electric vehicle 

batteries for grid balancing. For the experimental setup, a software package has been 

developed and implemented. It comprises routines for communication, optimization and 

operation of the battery storage system. Additional hardware components were installed and 

partly self-developed. During a 14-day period, the system operated with a round-trip efficiency 

(converter-battery-converter) of about 74.4%. The accuracy of the proposed linear battery 

model showed a root mean squared error of 7.6% between the measured and estimated state 

of charge. For the simulation study, the prevailing Austrian day-ahead stock market price for 

electricity was used as the incentive. The realized earnings were 37.5% lower than the 

potential earnings indicated by simulation, assuming a linear battery behavior. This can be 

attributed to technical obstacles in the hardware implementation and model inaccuracies in the 

simulation. The resulting difference shows the urgent need for field tests to investigate the 

realizable potential of repurposed battery storage systems. Although the installation and 

equipment costs of the presented stationary battery storage cannot be determined, it can be 

stated that the earnings achieved must be significantly higher in order to operate the storage 

economically. This test implementation of a ZEBRA battery repurposed as stationary storage 

presented several unexpected challenges. We could expect similar but specific challenges 

(related to safety concerns, communication, etc.) for other battery storage types used in 

electric vehicles. This indicates that a second use of vehicle batteries for grid balancing has to 

be planned before the commissioning of such batteries. 

 

How can battery storages affect grid balancing in a low-voltage distribution grid? 

 

A grid simulation study of a low-voltage distribution grid penetrated by distributed generation 

was used to show how different battery storage locations affect the grid balancing. Additionally, 

different incentives addressing either market conditions for electricity generation, grid 

balancing, optimal photovoltaic utilization, load shifting, or self-consumption, have been used 

to determine the operation mode of the battery (charge, discharge, or idle). To this end, a 

simulation study was conducted using a real, low-voltage distribution grid topology, real smart 

meter household load profiles, and real photovoltaics load data. The impacts on power quality 

were measured in terms of the peak-to-average power ratio at the feed-in node and the 

maximum voltage drop/rise at all grid nodes. It was shown that incentives that reflect more 

general conditions, such as supraregional markets, might cause the deterioration of the power 

quality. Therefore, it is crucial to assess the impact of grid-balancing measures on all voltage 

levels of the electrical grid. Hence, to improve the power quality of a low-voltage distribution 

grid by the use of autonomously optimized devices, incentives reflecting load conditions are 

preferable. For these kinds of incentives, a single, feed-in-tied storage as well as multiple, 

distributed storages (which together have the same power and capacity as the central storage) 

attached to nodes exhibiting distributed generation, showed improvements on power quality. 

The former configuration performs better in terms of the voltage drop/rise, the latter in terms 

of the reduction of the peak-to-average power ratio. Hence, efforts should be made for grid 

and household load assessment, which include the contributions of distributed generation, in 

order to ensure grid reliability in the future. 
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Based on the main findings of this thesis, relevant future research is deduced. 

 

As shown, earnings achieved by autonomously optimized battery storage systems driven by 

the day-ahead stock market price for electricity must be significantly higher in order to operate 

repurposed electric vehicle batteries as stationary storages economically. Simulation results 

for the investigated ZEBRA battery indicated that incentives with higher resolution and 

variation lead to more dynamic battery operation. This results in higher earnings, efficiencies, 

and shorter idle times and thus, better storage system utilization. This suggests that short-term 

and highly fluctuating markets such as the frequency response reserve market might be better 

suited for an economical operation. Since the presented physical setup is not capable of 

responding as fast as is necessary for the frequency response reserve market due to technical 

challenges such as delays due to grid synchronization, no further investigations have been 

conducted. 

 

The nonlinear battery model used in the simulation studies to simulate the dynamics of the 

ZEBRA battery could be extended by a cyclic and calendric aging model. This can enable an 

investigation of the long-term behavior with higher accuracies. As a result, reasonable 

simulations lasting for several years could be executed. 

 

A potential estimation of second-use electric vehicle batteries for different stationary storage 

applications, like large-scale (aggregated), centralized systems or small-scale, distributed 

systems, could be done. This may include an analysis of which technical conditions electric 

vehicle batteries must meet to be reusable as well as a corresponding estimation of the effort 

needed to repurpose such batteries as stationary storage. Additionally, a remaining battery 

lifetime assessment is of strong interest. 

 

Furthermore, the premature exchange of electric vehicle batteries to maximize their total 

lifetime including a second use approach could also be explored. This could be of interest since 

the aging of a battery strongly depends on the operating conditions (applied 

charging/discharging power, temperature, etc.); using batteries for stationary applications 

rather than for mobile applications only, may extend their lifetime and thus reduce their 

ecological footprint. 

 

The presented autonomous control approach can further be extended to other types of 

storages and loads. For this purpose, appropriate models must be developed and the used 

optimization routine must be adapted accordingly. This would offer the opportunity to simulate 

differently initialized grids with various autonomously optimized storages and loads and to 

evaluate their grid impacts. 



30 

 

  



31 

 

References 
 

 

[1] T. M. I. Mahlia, T. J. Saktisahdan, A. Jannifar, M. H. Hasan, and H. S. C. Matseelar, “A review of available 

methods and development on energy storage; technology update,” Renew. Sustain. Energy Rev., vol. 33, 

pp. 532–545, May 2014. 

[2] K. C. Divya and J. Østergaard, “Battery energy storage technology for power systems —An overview,” 

Electr. Power Syst. Res., vol. 79, no. 4, pp. 511–520, Apr. 2009. 

[3] A. R. Landgrebe and S. W. Donley, “Battery storage in residential applications of energy from photovoltaic 

sources,” Appl. Energy, vol. 15, no. 2, pp. 127–137, Jan. 1983. 

[4] M. A. Azam, N. S. A. Manaf, E. Talib, and M. S. A. Bistamam, “Aligned carbon nanotube from catalytic 

chemical vapor deposition technique for energy storage device: a review,” Ionics, vol. 19, no. 11,  

pp. 1455–1476, Nov. 2013. 

[5] P. Mercier, R. Cherkaoui, and A. Oudalov, “Optimizing a Battery Energy Storage System for Frequency 

Control Application in an Isolated Power System,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1469–1477, 

Aug. 2009. 

[6] P. J. Hall and E. J. Bain, “Energy-storage technologies and electricity generation,” Energy Policy, vol. 36, 

no. 12, pp. 4352–4355, Dec. 2008. 

[7] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in electrical energy storage system:  

A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp. 291–312, Mar. 2009. 

[8] E. Telaretti and L. Dusonchet, “Stationary battery systems in the main world markets: Part 2: Main trends 

and prospects,” 2017, pp. 1–6. 

[9] M. Müller et al., “Evaluation of grid-level adaptability for stationary battery energy storage system 

applications in Europe,” J. Energy Storage, vol. 9, pp. 1–11, Feb. 2017. 

[10] D. Rastler, Electricity energy storage technology options: a white paper primer on applications, costs and 

benefits. Palo Alto, California: Electric Power Research Institute, 2010. 

[11] R. Dufo-López and J. L. Bernal-Agustín, “Techno-economic analysis of grid-connected battery storage,” 

Energy Convers. Manag., vol. 91, pp. 394–404, Feb. 2015. 

[12] J. M. Gurrero, L. G. De Vicuna, and J. Uceda, “Uninterruptible power supply systems provide protection,” 

IEEE Ind. Electron. Mag., vol. 1, no. 1, pp. 28–38, 2007. 

[13] J. K. Kaldellis, D. Zafirakis, and K. Kavadias, “Techno-economic comparison of energy storage systems for 

island autonomous electrical networks,” Renew. Sustain. Energy Rev., vol. 13, no. 2, pp. 378–392,  

Feb. 2009. 

[14] M. Singh and A. Chandra, “Control of PMSG based variable speed wind -battery hybrid system in an 

isolated network,” 2009, pp. 1–6. 

[15] J. Weniger, T. Tjaden, and V. Quaschning, “Sizing of Residential PV Battery Systems,” Energy Procedia, 

vol. 46, pp. 78–87, 2014. 

[16] D. Dong, P. Wang, W. Qin, and X. Han, “Investigation of a microgrid with vanadium redox flow battery 

storages as a black start source for power system restoration,” 2014, pp. 140–145. 

[17] C. Noce, S. Riva, G. Sapienza, and M. Brenna, “Electrical energy storage in Smart Grid: Black -start study 

using a real-time digital simulator,” 2012, pp. 216–220. 

[18] M. Beaudin, H. Zareipour, A. Schellenberglabe, and W. Rosehart, “Energy storage for mitigating the 

variability of renewable electricity sources: An updated review,” Energy Sustain. Dev., vol. 14, no. 4,  

pp. 302–314, Dec. 2010. 

[19] P. Palensky and D. Dietrich, “Demand Side Management: Demand Response, Intelligent Energy Systems, 

and Smart Loads,” IEEE Trans. Ind. Inform., vol. 7, no. 3, pp. 381–388, Aug. 2011. 

[20] A. Mohd, E. Ortjohann, A. Schmelter, N. Hamsic, and D. Morton, “Challenges in integrating distributed 

Energy storage systems into future smart grid,” 2008, pp. 1627–1632. 



32 

 

[21] J. Leadbetter and L. Swan, “Battery storage system for residential electricity peak demand shaving,” 

Energy Build., vol. 55, pp. 685–692, Dec. 2012. 

[22] C. Pang, P. Dutta, and M. Kezunovic, “BEVs/PHEVs as Dispersed Energy Storage for V2B Uses in the 

Smart Grid,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 473–482, Mar. 2012. 

[23] M. Bragard, N. Soltau, S. Thomas, and R. W. De Doncker, “The Balance of Renewable Sources and User 

Demands in Grids: Power Electronics for Modular Battery Energy Storage Systems,” IEEE Trans. Power 

Electron., vol. 25, no. 12, pp. 3049–3056, Dec. 2010. 

[24] N. W. Miller, R. S. Zrebiec, R. W. Delmerico, and G. Hunt, “Battery energy storage systems for electric 

utility, industrial and commercial applications,” 1996, pp. 235–240. 

[25] H. Qian, J. Zhang, J.-S. Lai, and W. Yu, “A high-efficiency grid-tie battery energy storage system,”  

IEEE Trans. Power Electron., vol. 26, no. 3, pp. 886–896, Mar. 2011. 

[26] A. Pina, C. Silva, and P. Ferrão, “The impact of demand side management strategies in the penetration of 

renewable electricity,” Energy, vol. 41, no. 1, pp. 128–137, May 2012. 

[27] IEA, “Electricity,” in World Energy Outlook 2016, IEA, 2016, p. 684. 

[28] G. Strbac, “Demand side management: Benefits and challenges,” Energy Policy, vol. 36, no. 12,  

pp. 4419–4426, Dec. 2008. 

[29] P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. Abd. Majid, “A global review of energy 

consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 

emitting countries),” Renew. Sustain. Energy Rev., vol. 43, pp. 843–862, Mar. 2015. 

[30] IEA, “Buildings sector energy consumption,” in World Energy Outlook 2016, IEA, 2016. 

[31] IEA, “Transportation sector energy consumption,” in World Energy Outlook 2016, IEA, 2016. 

[32] T. Ma, H. Yang, and L. Lu, “Feasibility study and economic analysis of pumped hydro storage and battery 

storage for a renewable energy powered island,” Energy Convers. Manag., vol. 79, pp. 387–397,  

Mar. 2014. 

[33] C. J. Barnhart and S. M. Benson, “On the importance of reducing the energetic and material demands of 

electrical energy storage,” Energy Environ. Sci., vol. 6, no. 4, p. 1083, 2013. 

[34] O. M. Toledo, D. Oliveira Filho, and A. S. A. C. Diniz, “Distributed photovoltaic generation and energy 

storage systems: A review,” Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 506–511, Jan. 2010. 

[35] C. Dötsch, A. Kanngießer, and D. Wolf, “Speicherung elektrischer Energie – Technologien zur 

Netzintegration erneuerbarer Energien,” Uwf UmweltWirtschaftsForum , vol. 17, no. 4, pp. 351–360,  

Dec. 2009. 

[36] M. Meisel et al., “Erfolgsversprechende Demand-Response-Empfehlungen im Energieversorgungssystem 

2020,” Inform.-Spektrum, vol. 36, no. 1, pp. 17–26, Feb. 2013. 

[37] S. Teleke, M. E. Baran, A. Q. Huang, S. Bhattacharya, and L. Anderson, “Control Strategies for Battery 

Energy Storage for Wind Farm Dispatching,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 725–732, 

Sep. 2009. 

[38] J. Patten, N. Christensen, G. Nola, and S. Srivastava, “Electric vehicle battery — Wind storage system,” 

2011, pp. 1–3. 

[39] K. Clement-Nyns, E. Haesen, and J. Driesen, “The impact of vehicle-to-grid on the distribution grid,”  

Electr. Power Syst. Res., vol. 81, no. 1, pp. 185–192, Jan. 2011. 

[40] W. Kempton and J. Tomić, “Vehicle-to-grid power implementation: From stabilizing the grid to supporting 

large-scale renewable energy,” J. Power Sources, vol. 144, no. 1, pp. 280–294, Jun. 2005. 

[41] T. Sousa, H. Morais, J. Soares, and Z. Vale, “Day-ahead resource scheduling in smart grids considering 

Vehicle-to-Grid and network constraints,” Appl. Energy, vol. 96, pp. 183–193, Aug. 2012. 

[42] L. Wang, S. Sharkh, and A. Chipperfield, “Optimal coordination of vehicle -to-grid batteries and renewable 

generators in a distribution system,” Energy, vol. 113, pp. 1250–1264, Oct. 2016. 

[43] B. Tarroja, L. Zhang, V. Wifvat, B. Shaffer, and S. Samue lsen, “Assessing the stationary energy storage 

equivalency of vehicle-to-grid charging battery electric vehicles,” Energy, vol. 106, pp. 673–690, Jul. 2016. 



33 

 

[44] S. Shokrzadeh and E. Bibeau, “Sustainable integration of intermittent renewable energy and ele ctrified 

light-duty transportation through repurposing batteries of plug-in electric vehicles,” Energy, vol. 106,  

pp. 701–711, Jul. 2016. 

[45] J. Neubauer and A. Pesaran, “The ability of battery second use strategies to impact plug -in electric vehicle 

prices and serve utility energy storage applications,” J. Power Sources, vol. 196, no. 23, pp. 10351–10358, 

Dec. 2011. 

[46] V. V. Viswanathan and M. Kintner-Meyer, “Second Use of Transportation Batteries: Maximizing the Value 

of Batteries for Transportation and Grid Services,” IEEE Trans. Veh. Technol., vol. 60, no. 7,  

pp. 2963–2970, Sep. 2011. 

[47] IEA, Global EV Outlook 2017. IEA, 2017. 

[48] C. Heymans, S. B. Walker, S. B. Young, and M. Fowler, “Economic analysis of second use electric vehicle 

batteries for residential energy storage and load-levelling,” Energy Policy, vol. 71, pp. 22–30, Aug. 2014. 

[49] M. O. Ramoni and H.-C. Zhang, “End-of-life (EOL) issues and options for electric vehicle batteries,” Clean 

Technol. Environ. Policy, vol. 15, no. 6, pp. 881–891, Dec. 2013. 

[50] G. Fuchs, B. Lunz, M. Leuthold, and D. U. Sauer, “Technology Overview on Electricity Storage: Overview 

on the potential and on the deployment perspectives of electricity storage technologies,” RWTH Aachen, 

Jun. 2012. 

[51] J. Sudworth, “The sodium/nickel chloride (ZEBRA) battery,” J. Power Sources, vol. 100, no. 1–2,  

pp. 149–163, Nov. 2001. 

[52] A. Saez-de-Ibarra et al., “Analysis and comparison of battery energy storage technologies for grid 

applications,” 2013, pp. 1–6. 

[53] K. Richa, C. W. Babbitt, G. Gaustad, and X. Wang, “A future perspective on lithium -ion battery waste flows 

from electric vehicles,” Resour. Conserv. Recycl., vol. 83, pp. 63–76, Feb. 2014. 

[54] Daimler AG, “World’s largest 2nd-use battery storage is starting up,” http://media.daimler.com, 

Lünen/Stuttgart, 13-Sep-2016. 

[55] R. Hein, P. R. Kleindorfer, and S. Spinler, “Valuation of electric vehicle batteries in vehicle -to-grid and 

battery-to-grid systems,” Technol. Forecast. Soc. Change, vol. 79, no. 9, pp. 1654–1671, Nov. 2012. 

[56] S. Shokrzadeh and E. Bibeau, “Repurposing Batteries of Plug-In Electric Vehicles to Support Renewable 

Energy Penetration in the Electric Grid,” 2012. 

[57] A. Hujber, “Strukturen und Mechanismen des liberalisierten Strommarktes.” 15-Apr-2002. 

[58] Austrian Power Grid AG, “Austrian Power Grid,” APG - Strom bewegt. [Online].  

Available: www.apg.at. [Accessed: 08-Feb-2016]. 

[59] L. Gelazanskas and K. A. A. Gamage, “Demand side management in smart grid: A review and proposals 

for future direction,” Sustain. Cities Soc., vol. 11, pp. 22–30, Feb. 2014. 

[60] G. Deconinck, “An evaluation of two-way communication means for advanced metering in Flanders  

(Belgium),” 2008, pp. 900–905. 

[61] P. Kepplinger, G. Huber, and J. Petrasch, “Demand Side  Management via Autonomous Control-

Optimization and Unidirectional Communication with Application to Resistive Hot Water Heaters,”  

ENOVA 2014, p. 8, Dec. 2014. 

[62] THINK Global AS, “THINK City Bedienungsanleitung.” THINK Global AS, May-2010. 

[63] C.-H. Dustmann, “Advances in ZEBRA batteries,” J. Power Sources, vol. 127, no. 1–2, pp. 85–92,  

Mar. 2004. 

[64] K. Kronsbein, “Investigation and Modelling of the ZEBRA System to Optimise State of Charge Detection,” 

Thesis, Universität Karlsruhe (TH), Stabio, 2004. 

[65] C. Daniel and J. O. Besenhard, Eds., Handbook of battery materials, 2., completely rev. and enl. ed.,  

1. Reprint. Weinheim: Wiley-VCH-Verl, 2012. 

[66] T. M. O’Sullivan, C. M. Bingham, and R. E. Clark, “Zebra Battery Technologies for the All Electric Smart 

Car,” SPEEDAM 2006 Int. Symp. Power Electron. Electr. Drives Autom. Motion , 2006. 



34 

 

[67] C.-H. Dustmann, “ZEBRA battery meets USABC goals,” J. Power Sources, vol. 72, no. 1, pp. 27–31,  

Mar. 1998. 

[68] B. Fäßler, P. Kepplinger, M. L. Kolhe, and J. Petrasch, “Decentralized on-site optimization of a battery 

storage system using one-way communication,” presented at the International Conference on Renewable 

Power Generation, 2015, pp. 1–6. 

[69] M. Chen and G. A. Rincon-Mora, “Accurate Electrical Battery Model Capable of Predicting Runtime and I–V 

Performance,” IEEE Trans. Energy Convers., vol. 21, no. 2, pp. 504–511, Jun. 2006. 

[70] EXAA Abwicklungsstelle für Energieprodukte AG, “Historical Data - Spot Prices 2014.” EXAA 

Abwicklungsstelle für Energieprodukte AG, 13-Apr-2015. 

[71] M. Doostizadeh and H. Ghasemi, “A day-ahead electricity pricing model based on smart metering and 

demand-side management,” Energy, vol. 46, no. 1, pp. 221–230, Oct. 2012. 

[72] S. Gottwalt, W. Ketter, C. Block, J. Collins, and C. Weinhardt, “Demand side management—A simulation of 

household behavior under variable prices,” Energy Policy, vol. 39, no. 12, pp. 8163–8174, Dec. 2011. 

[73] T. Logenthiran, D. Srinivasan, and T. Z. Shun, “Demand Side Management in Smart Grid Usi ng Heuristic 

Optimization,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1244–1252, Sep. 2012. 

[74] MATLAB, MATLAB and Statistics Toolbox Release 2014a. Natick, Massachusetts:  

The MathWorks Inc., 2014. 

[75] S. P. Bradley, A. C. Hax, and T. L. Magnanti, “Dynamic Programming,” in Applied mathematical 

programming, Reading, Mass: Addison-Wesley Pub. Co, 1977, pp. 320–362. 

[76] B. Faessler, P. Kepplinger, and J. Petrasch, “Decentralized price -driven grid balancing via repurposed 

electric vehicle batteries,” Energy, vol. 118, pp. 446–455, Jan. 2017. 

[77] G. Coley, “BeagleBone Black System Reference Manual.” The BeagleBoard.org Foundation, 11 -Apr-2013. 

[78] Logic Supply, Inc., “BeagleBone Black Serial Cape Manual.” Logic Supply, Inc., 20-Feb-2015. 

[79] EXAA Abwicklungsstelle für Energieprodukte AG, “Spotmarkt,” EXAA Energy Exchange Austria. [Online]. 

Available: www.exaa.at/de/marktdaten/handelsergebnisse. [Accessed: 18-Dec-2015].  

[80] MES-DEA SA, “Battery Charger E.F.” MES-DEA SA, 02-Aug-2007. 

[81] Fronius International GmbH, “Fronius Symo Datasheet.” Fronius International GmbH, 2011. 

[82] Algodue Elettronica Srl, “UEM80.” Algodue Elettronica Srl, Mar-2016. 

[83] B. Faessler, M. Schuler, M. Preißinger, and P. Kepplinger, “Battery Storage Systems as Grid -Balancing 

Measure in Low-Voltage Distribution Grids with Distributed Generation,” Energies, vol. 10, no. 12, pp. 1–14, 

Dec. 2017. 

[84] M. Schuler, B. Faessler, M. Preißinger, and P. Kepplinger, “A Method for Grid Simulation Assessing 

Demand Side Management Strategies,” in 12. Forschungsforum der Österreichischen Fachhochschulen , 

Salzburg, 2018, vol. 12, pp. 1–11. 

[85] U. Ghatak and V. Mukherjee, “An improved load flow technique based on load current injection for modern 

distribution system,” Int. J. Electr. Power Energy Syst., vol. 84, pp. 168–181, Jan. 2017. 

[86] C. Bucher, “Analysis and Simulation of Distribution Grids with Photovoltaics,” ETH Zurich, 2014.  

[87] C. Bucher, “Wie viel Solarstrom verträgt das Niederspannungsnetz?,” Bulletin Electrosuisse, no. 3/2014, 

pp. 37–40, Mar-2014. 

 

  



35 

 

PART II 
  



36 

 

  



37 

 

Paper A: Decentralized On-Site Optimization of a Battery 

Storage System Using One-Way Communication 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the conference paper published as: 

 

B. Fäßler, P. Kepplinger, M. L. Kolhe, and J. Petrasch, “Decentralized on-site optimization of 

a battery storage system using one-way communication,” presented at the International 

Conference on Renewable Power Generation, 2015, pp. 1–6. 

 

The layout has been revised for better readability. Minor revisions have been made.  
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Abstract 
 

Intermittent renewable energy sources (e.g. wind, solar energy systems) have been providing 

an exponentially growing share of electricity generation. Due to their highly transient and 

stochastic nature, they pose substantial challenges for power grid operation. Power dispatched 

from these sources are uncontrolled and do not necessarily coincide with demand; this in turn 

affects power quality. Hence, extensive demand side management (DSM) is required. DSM 

relies on flexible loads as well as energy storage facilities. Furthermore, renewable power 

generation is by its very nature highly distributed and consists of large numbers of small units. 

These have a substantial effect on traditional power grid operation and electricity pricing 

patterns. 

In this paper, a concept of unidirectional, decentralized, on-site optimization of a battery 

storage system is presented. A mathematical model of the battery storage system is used to 

simulate battery dynamics. Battery operation is driven by an optimization procedure, which 

relies on a one-way communicated pseudo-cost function (PCF). Currently, day-ahead stock 

market electricity prices are used as the PCF. Optimal operation of the battery is carried out 

by finding a control function that minimizes the costs, or maximizes profits. 

 

Keywords: Battery Storage System, Decentralized On-Site Optimization, One-Way 

Communication, Pseudo-Cost Function Driven, Demand Side Management 

 

Nomenclature

𝐴 Surface area of the  

 battery pack (m²) 

𝐶 Heat capacity (J/K) 

𝑐 Pseudo-cost function (€/MWh) 

𝑐p Specific heat capacity (J/(kg·K)) 

𝑑 Thickness of battery pack isolation (m) 

𝐸el Electrical energy content (J) 

𝑓 Heat removal proportionality  

 constant (W/K) 

ℎ Connective heat transfer  

 coefficient (W/(m²∙K)) 

𝐼DC Direct charging/discharging current (A) 

𝑘 Thermal conductivity (W/(m ∙K)) 

𝑚 Battery mass (kg) 

𝑛c Number of battery cells per string (–) 

𝑛s Number of battery cells strings (–) 

𝑃AC Alternating power (W) 

𝑃DC Direct power (W) 

𝑃Ri Heat dissipation across 

internal resistance (W) 

𝑃h Auxiliary heating power (W) 

𝑃fan Cooling fan power (W) 

�̇�cool Heat transfer rate due  

 to cooling (W) 

�̇�loss Heat loss via the insulation (W) 

𝑅i Internal resistance (Ω) 

𝑅l Internal resistance of  

 single cell (Ω) 

𝑆𝑂𝐶 State of charge (–) 

𝑇 Battery temperature (°C) 

𝑇amb Ambient temperature (°C) 

𝑡 Time (s) 

𝑢 Decision variable (–) 

𝑈DC Direct terminal voltage (V) 

𝑈T Thermal transmittance (W/(m²∙K)) 

𝜂 Charging/discharging  

 efficiency (–) 

𝜂in Charging converter efficiency (–) 

𝜂out Discharging converter 

 efficiency (–)
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1 Introduction 
 

The increasing share of renewable power generated from transient sources such as wind and 

solar poses a substantial challenge to power grid operation. Since the power generation from 

renewable sources cannot be controlled and does not necessarily coincide with the demand, 

power grids may be severely affected [1]. 

 

Currently, large, centrally operated pumped-storage hydroelectric power plants provide a 

means for managing short-term fluctuations due to the integrated renewable sources, such as 

the Sima hydroelectric power station in the west of Norway [2] or the Illwerke power plants in 

the Austrian Alps [3]. 

 

If the share of fluctuating renewable power generation further increases, alternative 

approaches are required; demand side management (DSM) provides one, which is extensively 

discussed in recent publications [4]. DSM relies on flexible loads as well as energy storage 

facilities [5]. Also, integration of distributed energy storage systems will most likely be 

necessary to provide additional capacity for short-term grid stabilization [6], [7]. 

 

Different concepts have been proposed for DSM of distributed flexible loads and distributed 

energy storage: 1) Centralized DSM with two-way communication, where the system state is 

communicated to one or more central entities, or restricted neighborhood communication [8], 

which directly controls the distributed systems [9], and 2) local autonomous DSM with 

unidirectional communication of incentive functions, where the distributed systems can act as 

independent agents. Local control intelligence of autonomous DSM only gives indirect demand 

control [8] to the energy supplier. This decentralized DSM concept has been implemented and 

tested successfully for the domestic hot water heaters [10], and is used in the current paper to 

manage decentralized battery systems. 

 

Today, the main disadvantage of local energy storage systems is high initial capital investment 

(particularly for dedicated storage devices such as batteries). Using repurposed electric vehicle 

batteries may be an interesting alternative for decentralized energy storage. After several 

thousand of charge cycles, automotive batteries do not have sufficient capacity left for mobile 

applications, however, with 50% of the original capacity intact they may still be used for 

stationary energy storage applications. Furthermore, the ecological footprint of batteries can 

also be improved [11]. 

 

In this work, the potential of repurposed ZEBRA (Zero Emission Battery Research Activities) 

batteries for autonomous control, based on DSM, is investigated by simulation. Therefore, in 

section 2, a short discussion of the autonomous approach, the details of the ZEBRA battery, 

the modeling thereof, and the resulting optimization problem as well as details of the simulation 

are presented. Simulation results are given in section 3, followed by a conclusion in  

section 4.  
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2 Approach and Model 
 

In the current work, the concept of unidirectional, decentralized, on-site optimization of 

electrochemical micro energy storage system is investigated. Fig. 1 illustrates the approach. 

 

 

Fig. 1: Schematic of the battery operation. 

 

The optimization relies on a pseudo-cost function, which can be interpreted as a measure for 

the expected gap between supply and demand at a given time in the future. 

 

Unidirectional communication refers to one-directional transmission of information; from a 

central entity or marketplace to the participating device. Besides protecting user privacy, this 

approach allows for local data acquisition at high frequency for fast and continuous adaptation 

to disturbances and system inputs. Moreover, by local optimization, higher system robustness 

is expected [12]. 

 

A mathematical model of the battery is used for the optimization problem. Minimization of the 

objective function calculated from the pseudo-cost function is expected to reduce the peak 

demand on the network and allows operating the storage system in an economic way. 

 

In the following, the details on the battery are discussed, followed by the development of a 

corresponding mathematical model in section 2.2. Afterwards, the parameterization of the 

model to reflect the real battery’s behavior is discussed. In section 2.4, the optimization 

problem is formulated using the battery model and details on the conducted simulation are 

presented in section 2.5. 

 

 

2.1 ZEBRA Battery 

 

In this work, repurposed ZEBRA batteries are used. The ZEBRA batteries are efficient, 

compact, durable, and maintenance-free. Batteries with more than 14 years of operating time 

and over 2000 cycles are still in use [11]. 
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The battery operates using a reaction of sodium with nickel chloride. The energy density is up 

to 120 Wh/kg and the power density is up to 180 W/kg [13]. A ZEBRA battery pack contains 

several cells. Cells are connected in series to form strings. Strings are connected in parallel to 

achieve the corresponding output voltage as well as the current. 

 

The cell setup is shown in detail in Fig. 2. The outer cell case forms the negative electrode. It 

contains liquid sodium metal. The inner cell case forms the positive electrode, which contains 

a mixture of NaCl, Ni and Fe. These two electrodes are separated by a 𝛽′′-alumina electrolyte. 

The ceramic electrolyte conducts sodium ions and serves as an insulator for electrons. The 

sodium ion conductivity exceeds 0.2 Ω−1cm−1 at 260 °C. The conductivity is temperature 

dependent with a positive gradient. The optimal temperature range of a ZEBRA battery lies 

between 270 and 350 °C [13]. 

 

 

Fig. 2: Battery cell setup showing the chemical reaction for charging/discharging. 

 

During discharge, cf. Fig. 2, Na+ ions are conducted through the electrolyte and react with the 

chlorides of the positive electrode to form 2NaCl and Ni [14]. During charging, the reaction is 

reversed. The chemical process can be described by the following reaction [13]: 
 

 2Na+NiCl2

discharge
→
←

charge

2NaCl +Ni Eq. 1 

 

The ZEBRA battery is controlled by a battery management system (BMS). The BMS manages 

the terminal voltage and temperature of the battery cells and performs state of charge (SOC) 

detection [14]. 

 

To ensure functionality of the battery, the stored energy has to exceed 20% of the maximum 

capacity, i.e. 𝑆𝑂𝐶min = 0.2. By this, a backup of energy for the heating system is provided, and 

premature degeneration is avoided. 

 

 
  

Charging 

2NaCl + Ni 
 

 

NiCl2 + 2Na 
 

NiCl2 + 2Na 
 

 

2NaCl + Ni 
 

Na 

Na 

Discharging 
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2.2 Battery Model 

 

In this section, a simple dynamic model of the ZEBRA battery’s state (SOC and temperature) 

is developed, assuming the battery consists of a voltage source and an internal resistance. 

 

The battery’s dynamics are described by a coupled system of two ordinary differential 

equations. The state of the battery is defined by its SOC and its internal temperature, 𝑇. 

Applying energy conservation the time derivative of SOC and temperature are given by 

 

 
𝑑𝑆𝑂𝐶

𝑑𝑡
=
1

𝐸el
(𝑢(𝑡) ∙ 𝑃AC,max ∙ 𝜂(𝑡) − 𝑃Ri(𝑆𝑂𝐶)− 𝑃h (𝑡) − 𝑃fan(𝑡)), Eq. 2 

 where 𝜂(𝑡) = {
𝜂in,              𝑢(𝑡) ≥ 0

𝜂out
−1,       𝑢(𝑡) < 0

 and Eq. 3 

 
𝑑𝑇

𝑑𝑡
=
1

𝐶
∙ (𝑃Ri(𝑆𝑂𝐶)+ 𝑃h − �̇�cool(𝑡)− �̇�loss(𝑡)), Eq. 4 

 where 𝐶 = 𝑚 ∙ 𝑐p. Eq. 5 
 

The charging/discharging power can be assumed to be constant, because power is held 

constant by a charge controller, resulting in a decision function of −1 ≤ 𝑢(𝑡) ≤ 1. The efficiency 

of the charging/discharging converter (𝜂in, 𝜂𝑜𝑢𝑡) is taken into account, since it reduces the 

maximum power input or output of the battery storage system. Thus, the input/output power, 

𝑃AC, cf. Fig. 1, is converted to the charging/discharging power, 𝑃DC. In the following, individual 

energy flows are described. 

 

2.2.1 Internal Resistance 

The power converted to heat, 𝑃Ri, in the battery by internal resistance can be described as 
 

 𝑃Ri(𝑆𝑂𝐶) = 𝑅i(𝑆𝑂𝐶) ∙ 𝐼DC(𝑆𝑂𝐶)
2, Eq. 6 

 

where 𝑅i is the internal resistance and 𝐼DC the charging/discharging current. As shown in  

Fig. 3, the internal resistance of a single battery cell depends on the SOC. If the cell is fully 

charged and a discharging process begins, Na ions pass through the 𝛽′′-alumina and react 

with NiCl2 that is closest to the ceramic. As discharging proceeds, the reaction front migrates 

inwards, causing the reaction area to decrease and the travel distance of the Na ions to 

increase, resulting in a higher resistance. For new cell designs, the relation between SOC and 

internal resistance is almost perfectly linear [14]. 

 

The ZEBRA battery used in the current study consists of 𝑛s = 2 parallel strings of 𝑛c = 144 cells 

each. Thereby, the internal resistance is the inverse of all string conductances that are 

connected in parallel, whereby the string conductance is the inverse of the sum of the serial 

connected cell resistances, 𝑅l. This results in a total internal resistance, 𝑅i, of 
 

 𝑅i = 
∑ 𝑅l
𝑛c
𝑙=1

𝑛s
. Eq. 7 
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Fig. 3: Cell setup – internal resistance. 

 

2.2.2 Heating 

The auxiliary heating system with a heating power, 𝑃h, is activated, if the battery temperature 

drops below a defined internal battery temperature limit to further ensure the functionality. In 

the ZEBRA battery, the auxiliary heating system is supplied by a resistance heater. 

 

2.2.3 Heat Loss via the Insulation 

In order to minimize the need for auxiliary heating, the battery is thermally insulated. A linear 

dependence between battery temperature, 𝑇, and ambient temperature, 𝑇amb, is postulated. 
 

 �̇�loss(𝑡) = (𝑇(𝑡) − 𝑇amb(𝑡)) ∙ 𝑈T ∙ 𝐴, Eq. 8 

 
where 𝑈T =

1

𝑑
𝑘
+
1
ℎ

 Eq. 9 

 

The thermal transmittance, 𝑈T, through the outer surface area, 𝐴, of the battery pack is caused 

by conduction (d is the insulation thickness, 𝑘 the thermal conductivity) and convection  

(ℎ is the connective heat transfer coefficient). 

 

2.2.4 Cooling 

Again, to ensure the proper functionality of the battery, its temperature has to be in a certain 

range. If the upper internal temperature limit, which depends on the SOC, is exceeded, an 

internal cooling fan is activated with the power, 𝑃fan. The cooling system induces an airflow 

inside the battery package. This enables a heat transfer between the cooling fins of each 

battery cell and the air flowing past to achieve better heat removal, �̇�cool, from the system. 
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This can be formulated as 
 

 �̇�cool(𝑡) = 𝑓 ∙ (𝑇(𝑡) − 𝑇amb(𝑡)), Eq. 10 
 

where 𝑓 is the proportionality heat removal constant. 

 

 

2.3 System Identification 

 

Based on logged charge/discharge data provided by the BMS from a ZEBRA battery, the 

model is implemented in section 2.2 and parameterized, cf. Fig. 4 and Fig. 5. The data logging 

is performed using CAN bus communication, recording SOC and temperature of the battery 

every second. The battery system specifications are listed in Table 1 and the identified 

parameters in Table 2. 

 

Table 1: Battery system specifications. 

Direct charging voltage, 𝑈DC 372.09 V 

Direct charging current, 𝐼DC 3.80 A 

Direct discharging voltage, 𝑈DC 349.20 V 

Direct discharging current, 𝐼DC 10.67 A 

Heating power AC, 𝑃h <6.5 A at 240 V(AC) 

Heating power DC, 𝑃h 300 W 

Cooling fan power, 𝑃fan 62 W 

Ambient temperature, 𝑇amb 20 °C 

Serial battery cells (two were  

damaged on the real system), 𝑛c 

142 

Parallel strings of battery cells, 𝑛s 2 

 

 

Table 2: Identified battery system parameters. 

Battery capacity, 𝐸el 28.2 kWh 

Lower temperature limit, 𝑇min   245 °C 

Upper temperature limit, 𝑇max 280 °C 

Thermal conductance, 𝑈T ∙ 𝐴 0.1519 W/K 

Battery mass, 𝑚 243 kg 

Specific heat capacity, 𝑐𝑝 270 J/(kg∙K) 

Heat removal proportionality constant, 𝑓 9.5 W/K 

Ambient temperature, 𝑇amb 20 °C 
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For system identification, the heating power, 𝑃h, during charging was set to be constant at  

200 W, for discharging 300 W, for cooling the following behavior was identified with respect to 

the temperature and decision state: 
 

 𝑃fan(𝑡) = {

62 W,                                             𝑇(𝑡) ≥ 𝑇max
0.95 W,                           𝑇(t) < 𝑇max  & 𝑢(𝑡) ≥ 0

1.77 W, 𝑇(t) < 𝑇max  & 𝑢(𝑡) ≥ 0, after heating
0 W,                                                           else

 Eq. 11 

 

The listed parameters result in a root mean square error for the SOC of 3.36% for charging, 

and 0.46% for discharging. As shown in Fig. 4, the simulated SOC coincides with the measured 

SOC as long as the SOC remains below 0.8. Above 0.8, the BMS carries out a range of 

undocumented operations with no clearly identifiable pattern. However, it is not necessary to 

understand these operations to identify a useful and accurate model of battery dynamics. 

 

 

Fig. 4: System identification for charging. Solid lines: Normalized SOC, dashed lines:  

battery temperature. Black: model; Grey: BMS measurements. 
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Fig. 5: System identification for discharging. Solid lines: Normalized SOC, the dashed lines:  

battery temperature. Black: model; Grey: BMS measurements. 

 

 

2.4 Optimization 

 

As discussed in section 2.1, the proposed approach is based on the on-site optimization of the 

battery with respect to unidirectionally communicated pseudo-costs. Optimization relies on the 

battery model as developed in section 2.2. Optimal control of a battery storage system means 

finding the optimal decision function, 𝑢(𝑡), that minimizes the costs. Given a time window, 

[𝑡0, 𝑡𝑛], for the optimization, the minimization problem reads 
 

 min𝑢∫ (𝑐(𝑡) ∙ 𝑢(𝑡) ∙ 𝑃AC,max) 𝑑𝑡
𝑡𝑛

𝑡0

. Eq. 12 

 

Additionally, the optimization problem is constrained by upper and lower bounds for the SOC 

and T at all times, i.e. 
 

 𝑆𝑂𝐶min≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶max, 𝑇𝑚𝑖𝑛 ≤ 𝑇(𝑡) ≤ 𝑇𝑚𝑎𝑥 ,𝑡0 ≤ 𝑡 ≤ 𝑡𝑛. Eq. 13 

 

 

2.5 Simulation 

 

MATLAB [15] is employed to solve the minimization problem, using the built-in sequential 

quadratic programming (SQP) algorithm provided by MATLAB’s fmincon routine. 

 

For the simulation, the battery is assumed to be charged/discharged with a constant voltage 

of 𝑈DC,max = 370.34 V and a constant current of 𝐼DC,max = 4.07 A. For charging and discharging, 

we assume an efficiency of 𝜂in = 0.9 and 𝜂out = 0.95, respectively, based on data provided by 

manufacturers of the converters BC-336-Z-3-A EF and Fronius Symo 8.2-3-M [16], [17]. The 
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initial battery SOC is set to 0.25 of the maximum SOC; the initial battery temperature is set to 

269.5 °C. 

 

The Energy Exchange Austria (EXAA) provide the day-ahead price for 2014, which is used as 

the PCF [18]. It integrates quarter hours on 3 September 2014 in the Austrian day-ahead 

market and provides price data for the upcoming 36 hours. For the simulation, the time-span 

ranges from 4 September 2014 to 31 December 2014. The optimization is performed every  

24 hours at noon, taking the next 36 hours into account, reflecting the clearing of the day-

ahead market at late morning for the next day. 

 

 

3 Results 
 

Table 3 summarizes the simulation results. The resulting optimal operation, cf. Fig. 6, shows 

continuous charging and discharging of the battery; no idle state was detected. Continuous 

charging/discharging causes self-heating due to the internal resistance and therefore less 

energy is used for the auxiliary heating system. This results also in a high efficiency. 

 

Moreover, most of the times, only a portion of the battery capacity was utilized, resulting in a 

mean SOC of about 40% and a standard deviation of 15%.  

 

Additionally, results show that the battery is operated close to the lower temperature limit, 

causing minimal heat loss. 

 

Table 3: Simulation Results. 

Runtime 118 days 

Earnings 37.28 € 

Mean SOC  41.18% 

Standard deviation SOC 15.00% 

Maximum SOC 94.32% 

Round-trip efficiency 79.81% 

Idling time during runtime 0.00% 

Mean temperature 244.96 °C 

Standard deviation temperature 1.65 °C 
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Fig. 6: Optimization results for a single day. Top: PCF (black) and decision function (grey). 

Middle: Normalized SOC (black), maximum and minimum SOC (grey). 

Bottom: Battery temperature (black), relative heating power, 𝑃h,rel(𝑡), (grey, positive), 

relative cooling power, 𝑃fan,rel(𝑡) , (grey, negative), where 

𝑃h,rel(𝑡) =
𝑃h (𝑡)

𝑃h,max
 and 𝑃fan,rel(𝑡) =

𝑃fan(𝑡)

𝑃fan,max
. 
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4 Conclusion 
 

In this publication, a simulation was conducted to explore the potential of repurposed high-

temperature ZEBRA batteries for grid balancing based on one-way communication. Therefore, 

a thermal-electrical model of the battery was developed and fitted to experimental data. 

Historic day-ahead prices from the Austrian electricity market were used to serve as pseudo-

cost functions for the optimization procedure. 

 

The simulation results show that the cost-optimal operation of the battery is achieved by 

permanent charging/discharging at maximum power; no idle state is detected. 

 

The achieved results could be performed with a round-trip efficiency of about 80% including 

the charging and discharging converters. 

 

For the investigated battery storage, the power to capacity ratio already allows us to 

successfully operate the device for grid balancing. This is reflected by the output of the 

optimizer. Earnings of about 37 € in four months can be achieved. With this, we show that it is 

possible to operate repurposed batteries using autonomous optimization as a means for 

demand side management. 
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Paper B: Decentralized Price-Driven Grid Balancing via 

Repurposed Electric Vehicle Batteries 
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Abstract 
 

The share of electricity generated from intermittent renewable sources, e.g., wind and solar 

grows rapidly. This affects grid stability and power quality. If the share of renewable power 

generation is to be increased further, additional flexibilities must be introduced. 

 

Aggregating small, distributed loads and energy storage facilities is a good medium-term 

option. In this paper, the suitability of decentralized and on-site optimized storage system 

consisting of repurposed electric vehicle batteries for grid balancing is investigated. Battery 

operation is controlled via an optimization procedure, which relies on a one-way communicated 

pseudo-cost function (PCF). Day-ahead electricity stock market prices are used as the PCF. 

 

Based on one year simulations, a sequential quadratic programming (SQP) approach is 

compared to a dynamic programming (DP) and an integer linear programming (ILP) approach 

with respect to runtime and control objective. All approaches lead to very similar results, 

however ILP leads to the shortest runtimes. ILP is then used to investigate the grid-balancing 

potential using last decade’s hourly day-ahead prices. Higher market data resolutions featuring 

quarter-hours introduced in 2014 lead to higher earnings. For hourly day-ahead prices the 

optimal capacity-to-power ratio of the battery is approximately 6 hours while for quarter-hourly 

prices it is about 3 hours. 

 

Keywords: Grid Balancing, Vehicle Batteries, Repurposed, Battery Storage, Distributed 

Storage, Optimization 

 

Nomenclature 

𝐴 Surface area of the battery 

 pack (m²) 

𝐶 Path dependent costs in DP (€) 

𝑐 Pseudo-cost function (€/MWh) 

𝑐p Specific heat capacity (J/(kg·K)) 

𝑑 Thickness of battery pack 

 isolation (m) 

𝐸el Electrical energy content (J) 

𝐸el
(𝑛s) Scaled electrical energy 

 content (J) 

𝑓 Heat removal proportionality 

 constant (W/K) 

𝑔l, 𝑔u Constraints for lower and  

 upper 𝐸el in SQP (J) 

ℎ Connective heat transfer 

 coefficient (W/(m²∙K)) 

𝐼DC Direct charging/discharging 

 current (A) 

𝐼DC
(𝑛s) Scaled charging/discharging 

 current (A) 

𝑘 Thermal conductivity (W/(m ∙K)) 

𝑚 Battery mass (kg) 

𝑚(𝑛s) Scaled battery mass (kg) 

𝑛 Total number of data points (–) 

𝑛c Number of battery cells  

 per string (–) 

𝑛s Number of battery cell strings (–) 

𝑃AC Alternating power (W) 

𝑃DC Direct power (W) 

𝑃DC
(𝑛s) Scaled direct power (W) 

𝑃fan Cooling fan power (W) 

𝑃fan
(𝑛s) Scaled cooling fan power (W) 

𝑃h Auxiliary heating power (W) 

𝑃h
(𝑛s) Scaled auxiliary heating 

 power (W) 

𝑃loss Linearized battery losses (W) 

𝑃Ri Heat dissipation across 

 internal resistance (W) 

𝑃Ri
(𝑛s) Scaled heat dissipation across 

 internal resistance (W) 

�̇�cool Heat loss via the insulation (W) 

�̇�cool
(𝑛s) Scaled heat transfer rate 

 due to cooling (W) 

�̇�loss Heat loss via the insulation (W) 

�̇�loss
(𝑛s) Scaled heat loss via 

 insulation (W) 
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𝑅c Internal resistance of 

 single cell (Ω) 

𝑅i Internal resistance (Ω) 

𝑆𝑂𝐶 State of charge (%) 

𝑠 Discrete states in 

 dynamic programming (–) 

𝑇 Battery temperature (°C) 

𝑇amb Ambient temperature (°C) 

𝑡 Time (s) 

𝑈DC Direct terminal voltage (V) 

𝑈T Thermal transmittance (W/(m²∙K)) 

𝑢AC Decision variable on 

 AC power side (–) 

𝑢DC Decision variable on 

 DC power side (–) 

𝑢hys Boolean hysteresis variable (–) 

𝜂in Charging converter efficiency (–) 

𝜂out Discharging converter 

 efficiency (–) 

𝜏 Time interval for analytic 

 solution (s) 

 

 

1 Introduction 
 

Global warming and dwindling fossil resources have sparked a strong growth in renewable 

power generation. Some industrialized countries have set very ambitious targets for increasing 

the proportion of renewables in electricity production [1]. For example, Germany plans to 

generate 80% of its electricity from renewable sources by 2050 [2]. However, fluctuating 

sources of renewable energy such as wind and solar severely affect grid operation [3], [4]. 

Supply and demand imbalances are traditionally compensated for by large-scale buffer storage 

systems, e.g. pumped storage hydro power plants. These grid-balancing strategies are limited 

by infrastructural considerations [5]. Therefore, developing additional, modular strategies for 

grid balancing are necessary [3], [6]. 

 

Aggregating small, distributed loads and energy storage facilities constitutes a promising 

approach. Such a strategy would reduce the need for new power plants [7]. In this context, 

demand side management (DSM), which is known as a portfolio of measures to balance the 

electrical grid on consumption side [6], has been extensively discussed [8]. In DSM, 

controllable, flexible loads and energy storage facilities reduce, increase or shift energy 

consumption in order to line up electrical energy usage with generation [6] The most important 

strategies used are peak clipping, valley filling, load shifting, strategic conservation, strategic 

load growth, and flexible load shaping [9]. To motivate consumers to change their consumption 

from the nominal pattern to respond according to the actual electrical energy generation, a 

specific tariff or program has to be provided [10]. Han et al. [11] distinguish between incentive- 

and time-based demand response (DR). In Ref. [10], they further divide incentive-based DR in 

classical and market-based DR. In case of classical DR, consumers agree to give-up the 

control of certain devices or react by limiting their consumption based on payments or 

preferential prices. Market-based DR allows consumers to bid with their loads and energy 

storage facilities on an appropriate marketplace. Time-based DR depend on received event 

signals e.g. price, which stimulates devices to react with their demand [11]. 

 

Contrary to DSM, distributed loads and energy storage facilities could be introduced to the 

power grid with the specific aim of balancing the grid. 

 

In any case, these devices that are to be used for grid balancing have to be equipped with 

communication hardware. While most grid-balancing concepts require two-way 

communication [12]—as price signals, bid data, etc. have to be transmitted between utilities 
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and loads and energy storage facilities [10]—local, autonomous control with unidirectional 

communication proposed by Ref. [13] has been demonstrated as a robust and cost effective 

alternative. 

 

With an increasing share of decentralized and fluctuating electricity generation due to sources 

such as wind and solar the voltage level in the power grid is affected [14], [15]. Such sources 

are often connected to the low voltage grid [16]–[18]. Active and reactive power control 

strategies have been discussed and applied to limit the voltage rise [14], [15], [19]. 

 

Battery storage systems are suitable for either large-scale applications or for aggregated 

approaches. They are practically maintenance-free [20], fast to respond [21] and highly 

efficient [22]. They have total round-trip efficiencies, including AC-DC converters, ranging from 

65% to almost 90% [23]. Various types of battery storage systems have been investigated for 

balancing electrical grids [24]–[26]. A range of cell chemistry types have been considered, 

particularly lithium-ion (Li-ion), sodium sulfur (NaS), ZEBRA (Na–NiCl2), nickel-cadmium 

(NiCd), nickel-metal hydride (NiMH), and lead acid (Pb-acid) type batteries [27], [28]. Divya et 

al. [29] state that the application timescales for future battery storage systems may range from 

seconds to days. Battery storage systems have been already investigated in large-scale 

applications for primary frequency control [30] and for secondary control [31]. Since lifecycle 

costs for such systems are higher than, for instance, pumped storage hydro power plants [32], 

numerous applications seek to aggregate already existing, small battery storage systems. 

Often, photovoltaic power systems are combined with small battery banks to increase the self-

consumption [33]. Since the capacity of such batteries is not entirely used at all times, a DSM 

motivated approach would further increase the efficiency of usage. Such concepts have been 

extensively discussed in Ref. [34]. Guille et al. [35] state that on an average, electric vehicles 

(EV) stay idle for about 22 hours a day. Hence, in DSM, the idea of aggregating batteries of 

EVs for control strategies, a concept, which is known as vehicle-to-grid (V2G), seems to be 

promising and was proposed, among others, in Refs. [29], [36]–[40]. Daimler announced [41] 

that it plans to reuse their old EV batteries and connect them to the electrical grid, thus building 

the world’s largest stationary storage facility with a capacity of 13 MWh. Using repurposed 

electric vehicle batteries may help to offset the costs associated with battery-based systems 

[42]. Batteries are generally not used in EVs once their capacity falls below 70–80% [43] of the 

initial capacity. However, they are still useful for stationary applications. This second-use 

approach also reduces the ecological footprint [44]. 

 

In the current paper, local, autonomous control with a unidirectionally communicated time-

based event signal (pseudo-cost function) [45] (as is often used in DSM), which has been 

successfully tested for domestic hot water heaters [46], is applied to battery storage systems. 

In a previous paper [47], the potential of ZEBRA (Zero Emission Battery Research Activities) 

batteries for autonomous control has been investigated by simulation. In this paper, steps are 

taken towards implementing the approach on a physical battery system by developing an 

embedded control system with highly efficient simulation and optimization routines. To this 

end, different nonlinear and linear optimization approaches are compared with respect to 

computational costs and resulting control optimality. A sequential quadratic programming 

approach (SQP) is used for nonlinear optimization. Dynamic programming (DP) as well as 

integer linear programming (ILP) are approaches considered for linear optimization. The grid-

balancing potential is estimated by simulating the battery system based on historic, Austrian, 

day-ahead market prices [48] for electricity in the period from 2003–2015. Voltage control 
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strategies of grid-connected converters is not discussed in the current paper since the scope 

of this work is on price-driven operation of battery storage systems. However, the pseudo-cost 

function could be made adaptable to the current grid situation to control the power feed-in and 

hence the voltage rise. 

 

 

2 Approach and Model 
 

A schematic representation of the physical battery storage system including all relevant 

components is shown in Fig. 1. The repurposed ZEBRA battery is connected to the electrical 

grid via an AC-DC converter. Alternating power, 𝑃AC, is transformed through the converter to 

DC power, 𝑃DC, which is used to charge the battery and vice versa. Conversion is carried out 

with an efficiency of 𝜂in and 𝜂out, respectively. The battery charge or discharge operation is 

controlled by a decision function, 𝑢DC(𝑡), indicating whether the battery is charged, discharged, 

or stays idle. The optimizer searches for an optimal 𝑢DC(𝑡) by minimizing costs based on an 

input function, called pseudo-cost function (PCF, 𝑐(𝑡)) while keeping the battery’s state of 

charge (SOC) within operational bounds, 𝐸el,min and 𝐸el,max. The SOC represents the 

normalized electrical energy content, 𝐸el, of a battery storage system. The pseudo-cost 

function is provided by the distribution system. This can be interpreted as a measure for the 

expected grid load [8]. For a given time window, [𝑡0, 𝑡𝑛], the optimization problem can be 

formulated as: 
 

 min𝑢DC∫ 𝑐(𝑡) ∙ 𝑃AC(𝑢DC(𝑡)) 𝑑𝑡,
𝑡𝑛

𝑡0

s. t.  Eq. 1 

 𝐸el,min≤ 𝐸el(𝑡) ≤ 𝐸el,max ,  𝑡0 ≤ 𝑡 ≤ 𝑡𝑛 Eq. 2 
 

 

 

Fig. 1: Schematic of the battery operation. 
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2.1 Modeling and Simulation 

 

A ZEBRA-type high temperature battery based on the reaction of sodium with nickel chloride 

is used. The optimal operational temperature range lies between 270 and 350 °C [49]. The 

redox reaction within the cell is given by, c.f. [49], [50]: 
 

 2Na+NiCl2

discharge
→
←

charge

2NaCl +Ni Eq. 3 

 

ZEBRA batteries are interesting for stationary applications due to their long-term cyclic stability 

[51]. Within a ZEBRA battery pack, battery cells are connected in series (strings) to achieve a 

desired output voltage. The desired output current is obtained by connecting strings in  

parallel. The energy density of a ZEBRA battery is about 90 Wh/kg; the power density about  

150 W/kg [52]. 

 

The battery is equipped with an auxiliary heating and cooling system controlled by a built-in 

battery management system (BMS) to stabilize the operational temperature. It also limits 

currents at increased operating temperatures. A linear current reduction for discharging 

between 290 °C and 310 °C from a maximum current of 117 A/string to 20 A/string is imposed. 

Between 310 °C and 340 °C the discharging current is limited to 20 A/string. Above 340 °C no 

charge and discharge is allowed due to safety reasons. Furthermore, the BMS manages the 

total electrical power flow through the battery. This includes cell voltage control and the state 

of charge (SOC) detection [50]. The SOC is held above 20% to maintain an energy reserve to 

be used for temperature control. In addition, the BMS provides an interface for information 

about the battery state, namely SOC, temperature, voltage, and current. 

 

2.1.1 Battery Model 

As shown in Ref. [47], the battery dynamics can be described by a system of two nonlinear, 

coupled ordinary differential equations. The transient chemical (𝐸el) and thermal (𝑇) energy 

balances are given by 
 

 
d𝐸el
d𝑡

= 𝑃DC(𝑡) − 𝑃Ri(𝐸el(𝑡))− 𝑃h(𝑡) − 𝑃fan(𝑡),where Eq. 4 

  𝑃DC(𝑡) = {
𝜂in ∙ 𝑃AC(𝑡),      𝑃AC≥ 0

𝜂out
−1 ∙ 𝑃AC(𝑡),    𝑃AC < 0

 and Eq. 5 

 
d𝑇

d𝑡
=

1

𝑚 ⋅ 𝑐p
∙ (𝑃Ri(𝐸el(𝑡)) + 𝑃h(𝑡) − �̇�loss(𝑇(𝑡))− �̇�cool(𝑇(𝑡))). Eq. 6 

 

𝑃DC is the input or output DC power. Losses inside the battery are modeled as an internal 

resistance. With decreasing SOC, the internal resistance increases due to chemical effects 

[50]. Thus, the internal resistance is 𝐸el dependent. The relation between 𝐸el and internal 

resistance is almost linear between a maximum resistance, 𝑅c,max, and a minimum resistance, 

𝑅c,min, for a single battery cell [50]. The power converted to heat by internal resistance can be 

described by 
 

 𝑃Ri(𝐸el(𝑡)) = 𝑅i(𝐸el(𝑡)) ∙ 𝐼DC(𝐸el(𝑡))
2
, Eq. 7 

 

where 𝐼DC is the direct charging or discharging current and 𝑅i the total internal resistance. The 

presented battery consists of 𝑛s parallel battery cell strings with 𝑛c battery cells each. The total 

electrical energy content of the battery is given by 𝐸el,max. 
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Thus, the total internal resistance can be described as 
 

 𝑅i(𝐸el(𝑡)) = (𝑅c,max− (𝑅c,max−𝑅c,min)∙
𝐸el(𝑡)

𝐸el,max
) ∙
𝑛c
𝑛s
. Eq. 8 

 

To keep the internal battery temperature within the prescribed range, an auxiliary resistive 

heating system with heating power, 𝑃h, is activated, if the battery temperature drops below a 

the temperature limit, 𝑇min. The battery pack is thermally insulated to minimize the energy 

necessary for auxiliary heating. A linear dependence between the battery temperature, 𝑇, the 

ambient temperature, 𝑇amb, the thermal transmittance, 𝑈T, and the outer surface area, 𝐴, of 

the battery pack is assumed. The ambient temperature is assumed to be constant as it is very 

small compared to the internal temperature of the battery and also has very small variation 

during operation. The heat losses via the insulation can be given by 
 

 �̇�loss(𝑇(𝑡)) = (𝑇(𝑡) − 𝑇amb) ∙ 𝑈T ∙ 𝐴,where Eq. 9 

 
𝑈T =

1

𝑑
𝑘
+
1
ℎ

. Eq. 10 

 

The thermal transmittance of the battery pack is caused by conduction (where d is the 

insulation thickness and 𝑘 the thermal conductivity) as well as convection (where ℎ is the 

connective heat transfer coefficient). 

 

A cooling fan with electrical input power, 𝑃fan, is activated, if the upper temperature limit, 𝑇max, 

is exceeded. Airflow across cooling fins is induced, which increases heat removal, �̇�cool, from 

the system. A linear relation between fan power and heat removal is assumed 
 

 �̇�cool(𝑇(𝑡)) = 𝑓 ∙
𝑃fan(𝑡)

 𝑃fan,max
∙ (𝑇(𝑡) − 𝑇amb),  Eq. 11 

 

where the proportionality constant, 𝑓, has units of W/K. 

 

Due to the typically long time constants of the battery system, the nonlinear terms in Eq. 4 and 

Eq. 6 can be approximated as constants during small time intervals (Δ𝜏 ≤ 300 s). The ensuing 

linear system can be solved analytically. For the transient electro-chemical energy balance the 

solution is given by 
 

 𝐸el(𝑡0+Δ𝜏) = 𝐸el(𝑡0) ∙ 𝑒
𝑐2∙Δ𝜏 +

𝑐1
𝑐2
∙ (𝑒𝑐2∙Δ𝜏 −1), where  Eq. 12 

 𝑐1 = 𝑃DC(𝑡0)− 𝑃h (𝑡0)− 𝑃fan(𝑡0) − 𝐼DC
2 ∙ 𝑅c,max ∙

𝑛c
𝑛s
 and Eq. 13 

 𝑐2 = 𝐼DC
2 ∙ (𝑅c,max−𝑅c,min) ∙

𝑛c
𝐸el,max ∙ 𝑛s

. Eq. 14 

 

In contrast for the case of 𝑢DC = 0, the solution reads 
 

 𝐸el(𝑡0+Δ𝜏) = 𝐸el(𝑡0)− (𝑃h(𝑡0)+ 𝑃fan(𝑡0)) ∙ Δ𝜏. Eq. 15 
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Similarly, the solution of the thermal energy balance is given by 
 

 𝑇(𝑡0 +Δ𝜏) =  𝑇(𝑡0) ∙ 𝑒
−𝑐4∙Δ𝜏 +

𝑐3
𝑐4
∙ (1 − 𝑒−𝑐4∙Δ𝜏 ),where Eq. 16 

 𝑐3 = 𝑃Ri(𝐸el(𝑡0))+ 𝑃h(𝑡0) + (𝑈T ∙ 𝐴 + 𝑓 ⋅ 𝑃fan(𝑡0)) ∙
𝑇amb
𝑚 ⋅ 𝑐p

 and Eq. 17 

 𝑐4 = (𝑈T ∙ 𝐴 + 𝑓 ⋅ 𝑃fan(𝑡0)) ∙
1

𝑚 ⋅ 𝑐p
. Eq. 18 

 
 

2.1.2 Parameter Identification 

Model parameter identification of an experimental ZEBRA battery system for stationary 

applications has been presented in Ref. [47]. System identification was carried out based on 

logged charge/discharge data provided by the battery’s BMS. These data include the SOC and 

the temperature of the battery. The voltage and current of each single battery cell is SOC 

dependent during charging and discharging. As this is managed internally by the BMS, the 

applied voltages and currents are modeled as independent of the current energy content, 𝐸el, 

as already stated in Eq. 12. The corresponding battery system specifications are listed in  

Table 1; the identified model parameters are listed in Table 2. 

 

Table 1: Battery system specifications. 

Terminal voltage, 𝑈DC 372 V 

Charging/Discharging current, 𝐼DC,nom 4 A 

Heating power charging, 𝑃h <6.5 A at 240 V(AC) 

Heating power discharging, 𝑃h 300 W 

Maximum cooling fan power 𝑃fan,max 62 W 

Ambient temperature, 𝑇amb 20 °C 

Serial battery cells, 𝑛c 

(two were damaged on the real system) 

142 

Parallel strings of battery cells, 𝑛s 2 
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Table 2: Identified battery system parameters. 

Maximum energy content, 𝐸el,max 28.2 kWh 

Minimum energy content, 𝐸el,min 5.64 kWh 

Maximum resistance, 𝑅c,max 30−3 Ω  

Minimum resistance, 𝑅c,min 10−3 Ω  

Stage 1 temperature limit, 𝑇1  280 °C 

Stage 2 temperature limit, 𝑇2 245 °C 

Stage 3 temperature limit, 𝑇3 260 °C 

Stage 4 temperature limit, 𝑇4 (100∙
𝐸el(𝑡)

𝐸el ,max
 + 190) °C 

Stage 5 temperature limit, 𝑇5 270 °C 

Overall heat transfer coefficient, 𝑈T ∙ 𝐴 0.15 W/K 

Battery mass, 𝑚 243 kg 

Specific heat capacity, 𝑐p 270 J/(kg∙K) 

Heating power charging, 𝑃h,1 200 W 

Heating power discharging, 𝑃h,2 300 W 

Stage 1 cooling fan power, 𝑃fan,1 0.95 W 

Stage 2 cooling fan power, 𝑃fan,2 1.77 W 

Stage 3 cooling fan power, 𝑃fan,3 62 W 

Heat removal constant, 𝑓max  9.50 W/K 

Ambient temperature, 𝑇amb 20 °C 

 

A hysteresis based control keeps the battery temperature within a defined band. To describe 

the observed dependencies of heating and fan power, a Boolean hysteresis variable, 𝑢hys, is 

introduced as follows, 
 

 𝑢hys = {
1, (𝑇(t) < 𝑇max+ 𝑇hys)∨ (𝑢hys > 0∧ 𝑇(t) ≤ 𝑇min +𝑇hys)

0,                                                                                                  else.
 Eq. 19 

 

For the heating power, the following behavior was observed, 
 

 𝑃h (𝑡) = {
𝑃h,1, 𝑢DC(𝑡) > 0 ∧ 𝑢hys > 0,

𝑃h,2, 𝑢DC(𝑡) ≤ 0 ∧ 𝑢hys > 0.
 Eq. 20 

 

For the cooling fan power, the following behavior was observed, 
 

 𝑃fan(𝑡) =

{
 
 

 
 𝑃fan,1, 𝑢DC(𝑡) > 0 ∧ 𝑇(t) < 𝑇max ∧𝑢hys > 0

𝑃fan,2, 𝑢DC(𝑡) > 0 ∧ 𝑇(t) < 𝑇max ∧𝑢hys = 0

𝑃fan,3,                                                𝑇(𝑡) ≥ 𝑇max
0 W,                                                                  else,

 Eq.21 
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where 
 

 𝑓 =
𝑃fan(𝑡)

𝑃fan,max
∙ 𝑓max . Eq. 22 

 

The maximum DC power is given by the terminal voltage times the nominal current: 
 

 𝑃DC,max = 𝑈DC ∙ 𝐼DC,nom Eq. 23 
 

The upper temperature limit, 𝑇max, and lower temperature limit, 𝑇min, depend on the SOC. For 

charging, the limits are given by 
 

 𝑇max = {
𝑇3,                                     𝑆𝑂𝐶 ≤ 70%
𝑇4,                     70% <  𝑆𝑂𝐶 < 80%
𝑇5,                                     𝑆𝑂𝐶 ≥ 80%

 and Eq. 24 

 𝑇min = 𝑇2 Eq. 25 
 

with a hysteresis of 𝑇hys = ±3 °C. 

 

The temperature limits during discharge are 
 

 𝑇max = 𝑇1  and  Eq. 26 

 𝑇min = 𝑇2 Eq. 27 
 

with a hysteresis of 𝑇hys = ±2.5 °C. 

 

2.1.3 Scaling of the Battery Model 

To investigate the impact of the capacity-to-power ratio on grid-balancing potential, the 

nonlinear battery model must be scaled. Scaling is carried out by changing the numbers of 

cells while keeping the cell properties the same. Hence, no assumptions regarding physical 

and chemical processes inside the cells are necessary. 

 

Battery capacity is increased by connecting additional battery cell-strings in parallel. Thus, the 

terminal voltage remains unchanged. Further, we allow for higher charging and discharging 

current. This results in higher charging and discharging power. With the number of cell strings, 

𝑛s ∈ ℕ, scaled battery capacity and mass are given by 
 

 𝐸el,max
(𝑛s) = 𝐸el,max ⋅

𝑛s
2
 and Eq. 28 

 𝑚(𝑛s) = 𝑚 ⋅
𝑛s
2
. Eq. 29 

 

The reference battery has two strings. Assuming geometrical similarity and thermal losses 

proportional to the battery surface area, the rate of thermal losses and heating power are 

scaled according to 
 

 𝑃h
(𝑛s) = (

𝐸el,max
(𝑛s)

𝐸el,max
)

2
3⁄

⋅ 𝑃h , Eq. 30 

 �̇�loss
(𝑛s) = (

𝐸el,max
(𝑛s)

𝐸el,max
)

2
3⁄

⋅ �̇�loss. Eq. 31 
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Varying the charging and discharging power due to a variation in current, 𝐼DC ∈ ℝ
+ , or the number of 

cell strings, 𝑛s , 

 

 𝐼DC
(𝑛s) = 𝐼DC ⋅

𝑛s
2

 Eq. 32 

 𝑃DC,max
(𝑛s) = 𝑈DC ∙ 𝐼DC

(𝑛s) Eq. 33 
 

leads to changes in the heat transfer rate due to cooling and the cooling power since the heat 

generation is increased by the internal resistance, which is increased by the current squared 

and decreased by adding cell strings. A proportional relation between them is assumed 

whereby they can be scaled according to 
 

 𝑃Ri
(𝑛s)(𝐸el(𝑡)) = 𝑅i(𝐸el(𝑡)) ∙ 𝐼DC

(𝑛s)
2
 Eq. 34 

 𝑃fan
(𝑛s) = (

𝐼DC
(𝑛s)

𝐼DC,nom
)

2

∙
2

𝑛s
⋅ 𝑃fan , Eq. 35 

 �̇�cool
(𝑛s) = (

𝐼DC
(𝑛s)

𝐼DC,nom
)

2

∙
2

𝑛s
∙ �̇�cool. Eq. 36 

 

 

2.1.4 Linear Battery Model 

Batteries have strong dynamics during switching [53]. In this study, the long-term behavior of 

battery systems is crucial, whereas fast dynamics are less important. Therefore, a simplified 

linear model that does not account for battery temperature is introduced. All losses, including 

thermal losses, are summarized as 𝑃loss. The linear model is given by 
 

 
d𝐸el
d𝑡

= 𝑃DC(𝑡)− 𝑃loss. Eq. 37 

 

The losses, 𝑃loss, for different battery capacities and applied charging and discharging power 

are determined by parameter identification using MATLAB’s built-in fminsearch routine [54]. 

Losses are estimated by performing 100 charge and discharge cycles by simulation of the full 

battery model at 𝑃DC,max between the upper and lower SOC bound. For the battery system 

used the losses per battery capacity are found to be 𝑃loss  = 2.17 W/kWh. 

 

 

2.2 Simulation 

 

A range of optimization approaches are used to determine the decision variables. The resulting 

decision states are used as input for the nonlinear battery model. A time interval, Δ𝜏, of  

60 seconds is used in the analytical solution of the nonlinear battery model shown in Eq. 12,  

Eq. 15 and Eq. 16. 

 

Historical day-ahead prices for electricity, provided by the Energy Exchange Austria (EXAA), 

are used as PCF [48]. Price data is assumed to be known 36 hours in advance. The 

optimization is carried out daily at noon. Prices are available on an hourly and quarter-hourly 

basis [55]. Historical EXAA data on an hourly basis are available going back to 2003. Quarter-

hourly products in day-ahead stock market have been available since 3 September 2014.  
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2.3 Optimization 

 

The linear and the nonlinear model of the battery system lead to different formulations of the 

optimization problem, Eq. 1. As illustrated in Fig. 1 the battery storage system is fed by  

DC power. The DC power input or output can be mapped to a decision variable, 𝑢DC.  

 −1 ≤ 𝑢DC ≤ 1, Eq. 38 

 𝑃DC = 𝑢DC ∙ 𝑃DC,max Eq. 39 
 

When considering the AC power side, converter losses have to be taken into account. Hence:  
 

 −𝜂𝑜𝑢𝑡 ≤ 𝑢AC≤ 𝜂𝑖𝑛
−1, Eq. 40 

 𝑃AC= {
𝑃DC ∙ 𝜂in

−1   
𝑃DC ∙ 𝜂out     

    𝑃DC > 0
    𝑃DC ≤ 0

 Eq. 41 

 
 

2.3.1 Sequential Quadratic Programming (SQP) 

In each iteration step, SQP approximates the nonlinear problem by a quadratic program. The 

constraint functions are replaced by linear approximations [56]. MATLAB’s built-in fmincon 

routine [57] with its SQP algorithm is used to solve the minimization problem. The objective 

function is expressed by the decision variables, 𝒖AC, the PCF, 𝒄, and the maximum power, 

𝑃DC,max, for a given time step, Δ𝑡, as follows, 
 

 min𝒖AC∑ 𝑐𝑖 ∙ 𝑢AC,𝑖 ∙ 𝑃DC,max ⋅ Δ𝑡
𝑛

𝑖=1
, s. t. Eq. 42 

 

the upper 𝑔u and lower 𝑔l bounds given by 𝐸el are fulfilled by the decision variables, 𝒖DC, i.e. 
 

 𝑔u,𝑖(𝒖DC) = 𝐸el,𝑖(𝒖DC)− 𝐸el,max ≤ 0 and Eq. 43 

  𝑔l,𝑖(𝒖DC) =  𝐸el,min−𝐸el,𝑖(𝒖DC) ≤ 0 Eq. 44 

 for 1 ≤ 𝑖 ≤ 𝑛. Eq. 45 
 

Here, 𝐸el,𝑖(𝒖DC) signifies the energy content at time step 𝑖 given the decision variables  

𝒖DC = (𝑢DC,1,… ,𝑢DC,𝑛). The decision variables, 𝒖AC and 𝒖DC, are constrained according to  

Eq. 40 and Eq. 38. 

 

To reduce the computational time, the gradient of the objective function with respect to the 

decision variable is additionally provided to the optimization routine. For the objective function, 

the 𝑗th component of the gradient is given by 
 

 
𝜕

𝜕𝒖AC,𝑗
(∑ 𝑐𝑖 ∙ 𝑢AC,𝑖 ∙ 𝑃DC,max

𝑛

𝑖=1
⋅ Δ𝑡) = 𝑐𝑗 ⋅ 𝑃DC,max ⋅ Δ𝑡. Eq. 46 

 

The initial decision variables for the SQP routine are calculated by the integer linear 

programming routine described in 2.3.3. 

 

2.3.2 Dynamic Programming (DP) 

Results in Ref. [47] show that the cost-optimal operation of the battery is achieved by 

continuously charging or discharging at maximum power. The values of the decision variable 

on the DC side can therefore be restricted to −1, 0, and 1, as required by discrete dynamic 

programming. Furthermore, dynamic programming requires that the optimal solution of the 

problem can be composed by the solutions of many similar sub-problems. Similarity in sub-

problems is achieved using the linearized battery model (Eq. 37) [58]. A recursive routine, 

which solves the optimization problem for discretized 𝐸el values backward in time, is 
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implemented. Depending on the PCF, the costs for each decision state, starting at all 

discretized 𝐸el end values, are calculated to the 𝐸el start values cf. Fig. 2. Subsequently, the 

cheapest path for each discretized 𝐸el start state can be selected by calculating forward in 

time. 

 

The smallest discretization step is defined by the smallest possible change per time interval, 

∆𝑡, which in the current problem is given by 𝑃loss . This allows for three possible paths leading 

to state transitions backwards in time reflecting charging, discharging, and idling, which change 

the state by steps of −(⌊𝑃DC,max/𝑃loss⌋ − 1), ⌈𝑃DC,max/𝑃loss⌉ + 1, and 1, respectively. 

 

The total number of discrete states, 𝑠, is given by the usable battery capacity and the losses 

per optimized time interval, ∆𝑡: 
 

 𝑠 = ⌊
(𝐸el,max−𝐸el,min)

𝑃loss ∙ ∆𝑡
⌋+ 1 Eq. 47 

 

Adding 1 ensures no null values for 𝑠 are obtained. To compute the optimal path at a specific 

stage, the path leading to minimum total cost [58] is selected. The total costs, 𝐶, at each state 

𝑖 at step 𝑗 is calculated according to 
 

 
𝐶𝑖,𝑗 = min

𝑟∈{𝑖+⌊𝑃DC,max/𝑃loss⌋−1,𝑖−1,𝑖−⌈𝑃DC,max/𝑃loss⌉−1}
(𝐶(𝑝𝑎𝑡ℎ𝑟→𝑖)

+ 𝐶𝑟,𝑗+1),where 
Eq. 48 

 𝐶(𝑝𝑎𝑡ℎ𝑟→𝑖) = {
𝜂in
−1 ⋅ 𝑐𝑖 ,                      charging,

0,                                       idling,
−𝜂out ⋅ 𝑐𝑖 ,            discharging.

 Eq. 49 

 

The basic idea is illustrated in Fig. 2. Backwards in time charging is represented by a negative 

cell shift of two, discharging by a positive cell shift of three and the idle state by a positive cell 

shift of one. Using the PCF, the optimal path for each time interval can be found. The optimal 

solution is given subsequently by the optimal solution of all sub-problems. 

 

PCF  … 2 1 3  
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𝐸
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d

 

 … −2 −1 −3 0 

 … −2 −1 −3 0 

 … −2+1 0 −3 0 

 … 0 0 0 0 

 … +1 0 0 0 

 … +2 +1 +3 0 

 Time Interval 𝑗 = {0,… ,𝑛}  

Fig. 2: Dynamic programming approach. The values inside the squares  

give the minimal pseudo-costs aggregated along the sub-path. 
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The DP optimization routine is constrained by an upper and lower bound for the 𝐸el at each 

time interval, 𝐸el,min ≤ 𝐸el,𝑖 ≤ 𝐸el,max. If the end state reached by a path violates the constraint, 

it is excluded from further analysis. 

 

2.3.3 Integer Linear Programming (ILP) 

The optimization problem Eq. 1 can be formulated as an integer linear programming (ILP) 

problem using the linear battery model and assuming only discrete switching (1, −1, and 0). 

The optimization approach is formulated introducing two decision variables, 𝑢DC,𝑖
+  and 𝑢DC,𝑖

− , for 

each time step indicating charging and discharging separately. Thus, converter efficiencies 

can be included linearly in the objective function and constraints can be formulated 

independently of converter efficiencies. 𝐸el,0 represents the initial 𝐸el. 
 

 min𝑢DC∑ 𝑐𝑖(𝑡)
𝑛

𝑖=1
∙ (𝑢DC,𝑖

+ ∙ 𝜂in
−1 ∙ 𝑃DC,max−𝑢DC,𝑖

− ∙ 𝜂out ∙ 𝑃DC,max) ⋅ Δ𝑡, s. t. Eq. 50 

 
𝐸el,min ≤ 𝐸el,0 +∑ [𝑢DC,𝑖

+ ∙ 𝑃DC,max−𝑢DC,𝑖
− ∙ 𝑃DC,max−𝑃loss ]

𝑗

𝑖=1
⋅ Δ𝑡

≤ 𝐸el,max , ∀𝑗 ∈ {1,⋯ , 𝑛}, 
Eq. 51 

 𝑢DC,𝑖
+ + 𝑢DC,𝑖

− ≤ 1, Eq. 52 

 𝑢DC,𝑖
+ ,𝑢DC,𝑖

− ≥ 0. Eq. 53 
 

The final decision variable can be calculated as 𝒖DC = 𝒖DC
+ −𝒖DC

− . For simulation results, 

MATLAB’s intlinprog routine [57] is used to solve the minimization problem. 

 

 

3 Results 
 

All results presented below are based on historic Austrian day-ahead stock market price data 

provided by EXAA [48]. The study consists of four parts: 1) The performance of the three 

optimization approaches is investigated with respect to runtime and optimality using historic 

price data from 2015. 2) Then, the best performing approach is used to determine the potential 

earnings using autonomous grid balancing in the period 2003–2015 based on hourly day-

ahead stock market price data. 3) Differences in earnings and performance, using hour- and 

15-min-based Austrian day-ahead stock market price data of 2015, are determined. 4) Finally, 

a battery capacity and charging/discharging power are scaled to find an optimal capacity-to-

power ratio for hour- and 15-min-based stock market price data of 2015. 

 

 

3.1 Optimizer Performance 

 

Optimizers are compared with respect to runtime and optimality. Results achieved based on 

2015 day-ahead data are shown in Table 3. The second column gives the relative runtime of 

the optimizers. Optimization was carried using out using MATLAB on a Lenovo T430u 

notebook equipped with an Intel Core i5-3317U and a main memory with 8 GB. The third 

column gives the annual earnings per battery capacity. Column four and five represent the 

standard deviation (SD) of the SOC in percent and the of the temperature in °C during optimal 

operation. The last two columns give the portion of idle states in percent and the round-trip 

efficiency of the battery storage system. For SQP optimization, a time interval, Δ𝜏, of  

60 seconds is used in the analytical solution of the nonlinear battery model. 
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Table 3: Performance comparison of SQP, DP and ILP using hourly based EXAA price data of 2015 . 

Optimizer Runtime 

relative to ILP 

(–) 

Earnings/ 

Capacity 

(€/kWh) 

SD 

SOC 

(%) 

SD 

Temp 

(°C) 

Portion of 

time in idle 

states (%) 

Round-trip 

efficiency 

(%) 

SQP 50.7 1.83 18.7 1.62 27.2 78.6 

DP 1.29 1.74 18.5 1.61 27.5 77.5 

ILP 1.00 1.75 18.7 1.60 27.2 77.4 

 

The SQP routine leads to the highest earnings since a nonlinear battery model with high model 

accuracy is used in the optimization. The linear programming approach provides a good 

approximation and results in the lowest computing time and a small deviation to the SQP 

solved problem. The DP approach performs marginally worse than ILP, however, it allows for 

straightforward implementation on an embedded system since no library functions are needed. 

The deviation in results between the DB and ILP is due to the discretization of SOC states 

necessary for DP. 

 

 

3.2 Potential for Autonomous Grid Balancing 

 

Earnings based on ILP for the years from 2003 to 2015 are shown in Fig. 3 based on hourly 

day-ahead stock market price data. It shows the annual earnings per battery capacity as a 

function of the mean standard deviation within the 24 hours optimization period for the 

respective year. 
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Fig. 3: Annual earnings per kWh from 2003 to 2015 as a  

function of mean standard deviation of the day-ahead prices. 

 

 

3.3 Optimization based for Varying Day-Ahead Market Time Resolution 

 

The results from section 3.2 suggest that higher earnings can be achieved by stronger market 

price fluctuations. Thus, the available hour and 15-min-based day-ahead price products are 

compared with each other. The integer linear programming algorithm is used to perform  

the analysis.  

 

In Fig. 4, an optimization for both time products is done for 36 hours starting at 12:00 January 

1 until 24:00 January 2 in 2015. Fig. 4(a) shows both time products and the corresponding 

decision variables. Fig. 4(b) shows the evolution of the SOC. Earnings of about 0.017 €/kWh 

of battery capacity can be gained for quarter-hourly day-ahead prices compared to only  

0.0018 €/kWh of battery capacity for hourly PCFs. This is attributed to higher fluctuations in 

PCF. Also for 15-min-based time products the overall efficiency is 75% compared to 73% for 

hourly-based products. Finally, a lower total battery capacity is utilized for 15-min-based price 

products. 
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Fig. 4: Comparison between hour- and 15-min-based PCF for a period of 36 hours. Hourly-based  

results are represented by solid lines; 15-min-based results are represented by dashed lines.  

Results show higher fluctuations in PCF for 15-min-based PCF, which results in higher  

earnings and a better efficiency. In addition, a lower total battery capacity is necessary. 

 

A one-year simulation of 2015 confirms the results of the first short-term simulation. It shows 

that substantially higher earnings can be achieved when price products exhibit more 

fluctuations. Additionally, fewer idle states indicate better battery system utilization. Detailed 

results are listed in Table 4. Results shown are evaluated according to Table 3. 

 

Table 4: Performance comparison of ILP using hourly and quarter-hourly EXAA price data of 2015. 

Time 

product 

Runtime relative 

to hourly based 

prices (–) 

Earnings/ 

Capacity 

(€/kWh) 

SD 

SOC 

(%) 

SD 

Temp 

(°C) 

Portion of time 

in idle states 

(%) 

Round-trip 

efficiency 

(%) 

Hour 1.00 1.75 18.7 1.60 27.2 77.4 

15 min 3.86 2.86 16.3 1.61 17.7 78.3 
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3.4 Variation of the Capacity-to-Power Ratio 

 

Earnings with respect to scaling are investigated. Battery operation is simulated using hour- 

and 15-min-based day-ahead prices of 2015 for different battery capacities resulting from  

𝑛s ∈ {1,2,4, 8} numbers of cell strings. Power scaling is done differently for both price products 

since shorter time products allow for the utilization of smaller capacity systems at a given 

charging/discharging power. Typically, capacities have to be 2–3 times the maximum 

charging/discharging power per interval (15 min or 1 h).  

 

For hourly-based products the current is 𝐼DC ∈ {1, 1.5,2, 2.5, 3,4, 5,6, 7} ∙ 𝐼DC,nom; for 15-min-

based it is 𝐼DC ∈ {1, 1.5,2, 2.5,3,4, 5,6, 8,10,12, 14,18} ∙ 𝐼DC,nom. Losses for the linear battery 

model are estimated due to the parameter identification described in section 2.1.4. Estimated 

losses per capacity for hourly-based products are presented in Fig. 5; for 15-min-based 

products in Fig. 6. Additionally, these figures show the earnings/capacity to capacity/power 

ratio achieved. In both cases, the earnings-to-capacity curve exhibits a maximum since at low 

capacity-to-power ratio the system does not have sufficient capacity to operate over the 

relevant timescales while at high capacities the full capacity of the system is never exploited. 

The optimal capacity/power ratio for maximum earnings is lower for quarter-hourly day-ahead 

prices. Generally, large storage systems are preferable since relative thermal losses decrease 

as the surface to volume ratio goes down. A sudden drop in capacity-to-power ratio is 

explained by the fact that the system loses the freedom to realize all optimal decision states. 

 

 

Fig. 5: Optimization based on variation of the battery capacity-to-power ratio for hourly-based  

time products. The upper graph a) illustrates the earnings/capacity to capacity/power ratio.  

The estimated losses-to-capacity for the ILP are shown in the lower graph b). 
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Fig. 6: Optimization based on variation of the battery capacity-to-power ratio for 15-min-based  

time products. The upper graph a) illustrates the earnings/capacity to capacity/power ratio.  

The estimated losses-to-capacity for the ILP are shown in the lower graph b). 

 

 

4 Conclusion 
 

In this paper, a modeled decentralized and on-site optimized high-temperature ZEBRA battery 

storage system was used for grid balancing. Optimal operation of this system is attained by 

minimizing an objective function calculated from a one-way communicated pseudo-cost 

function. Austrian day-ahead stock market prices for electricity were used as the pseudo-cost 

function. 

 

Efficient and robust control and optimization algorithms are key to the implementation and 

operation based on embedded hardware. Hence, three optimization approaches are compared 

with respect to runtime and optimality: sequential quadratic programming (SQP), dynamic 

programming (DP), and integer linear programming (ILP). While SQP slightly outperforms ILP 

and DP based on the control objective, it does so at significantly higher computational costs, 

i.e. approximately 50 times the runtime of ILP. ILP results in the shortest runtime closely 

followed by DP. The slightly more optimal results from SQP do not justify the substantially 

increased model complexity and excessive computational costs. Therefore, in the current work 

ILP is used for long-term simulations. 

 

Simulations reveal a strong correlation between pseudo-cost based earnings and the variation 

of the pseudo-costs during the same period. Simulations show that 15-min-based stock market 
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prices promise higher earnings than hourly-based prices. Higher price fluctuations lead to more 

dynamic battery operation, which results in higher earnings, efficiencies, and shorter idle times, 

which in turn indicate a better utilization of the storage system. 

 

All simulations showed that at current day-ahead stock market prices and storage system costs 

profitable operation of the given battery system based on day-ahead prices is not possible 

since variations in price are currently too low. This indicates that short-term, highly fluctuating 

markets such as the primary frequency control market are better suited for battery systems. 

 

Earnings per kWh of capacity as a function of the capacity-to-power ratio always exhibits one 

distinct maximum: At very low capacity-to-power ratios, the storage system is too small for 

efficient operation as it continuously threatens to violate boundary conditions, while at very 

high capacity-to-power ratios, the storage capacity is not fully used. For hourly day-ahead 

prices, the optimal capacity-to-power ratio was found with approximately 6 hours while for 

quarter-hourly day-ahead prices it is about 3 hours. 
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Abstract 
 

As electric cars become more widespread, the disposal and recycling of used batteries will 

become an important challenge. Typically, vehicle batteries are replaced if their capacity drops 

to 70–80% of their initial capacity. However, they may still be useful for stationary applications.  

 

In this paper, results from a field test of an electric vehicle battery repurposed as stationary 

storage for grid balancing are presented. A molten salt high-temperature battery is used for 

price-driven grid balancing. The operation is based on a mixed integer linear programming 

control strategy driven by the Austrian electricity spot-market price. 

 

A 14-day experiment resulted in a round-trip energy efficiency (converter-battery-converter) of 

about 74.4%. The earnings per battery capacity achieved in this period amounted to  

0.10 €/kWh. This indicates that at current market volatilities and price ranges the suggested 

mode of operation is not economically feasible. An error analysis of the model underlying the 

optimization showed a root mean square error of 7.6% in state of charge estimation. 

 

The field test implementation shows a substantial deviation between theoretical and physical 

potential of grid-balancing measures due to model inaccuracies and technical characteristics, 

thereby demonstrating the urgent need for field tests of stationary battery systems. 

 

Keywords: Grid Balancing, Repurposed Vehicle ZEBRA Battery, Distributed Storage,  

One-Way Communication, Autonomous Optimization 

 

Nomenclature 

𝑐 Pseudo-cost function (€/MWh) 

𝐸AC,in Energy imported (Wh) 

𝐸AC,out Energy exported (Wh) 

𝐸el Electrical energy content (J) 

𝑛 Total number of data points (–) 

𝑛cycle Battery charge cycles (–) 

𝑛d Total amount of seconds  

 per day (s) 

𝑃AC Alternating power (W) 

𝑃DC Direct power (W) 

𝑃loss Constant battery loss (W) 

𝑠earn Achieved earnings (€) 

𝑆𝑂𝐶 State of charge (%) 

𝑅2 Coefficient of determination (–) 

𝑡 Time (s) 

𝑡d Day-time function (s) 

𝑥c Decision variable: charging (–) 

𝑥d Decision variable: discharging (–) 

𝑢DC Decision variable on DC 

 power side (–) 

𝜂bat Battery efficiency (–) 

𝜂in Charging converter efficiency (–) 

𝜂out Discharging converter 

 efficiency (–) 

𝜂rt Round-trip efficiency (–)

 

 

1 Introduction 
 

The electrical energy market is currently facing new challenges. Boßmann et al. [1] stated that 

load curves will substantially change due to evolving electricity demand. 

 

Since renewable electricity generation, which is volatile by nature, adversely affects grid 

operation [2], [3], additional grid-balancing measures such as specific strategies and energy 

storage facilities will become necessary [4]–[6] in the foreseeable future. 
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Aggregation of small, distributed loads and storage systems for demand side management 

(DSM), along with the deployment of control strategies with the specific aim of balancing the 

grid, is considered a promising approach [4], [7], [8]. More specifically, battery storage systems 

have been proposed for distributed approaches [9], as: 

 

 their time scales will soon range from seconds to days [10] 

 they are practically maintenance-free [11] 

 they are quick to respond [12] 

 they are highly efficient [13], [14], exhibiting total round-trip efficiencies (converter-

battery-converter) ranging from 65% to almost 90% [15] 

 

Several types of battery technologies, using a range of cell chemistries [5], [14], have been 

investigated for grid-tied balancing approaches [16]–[20]. 

 

In order to reduce costs, systems that already include battery storage but do not entirely utilize 

the available capacity at all times, have been proposed. In this context, electric vehicles (EV) 

[23]–[27], battery bank systems combined with photovoltaics [21] or wind farms [22] have been 

discussed. Another option to help offset costs is to use repurposed EV batteries [28], [29]. 

Generally, EV batteries are exchanged if their capacity falls to 70–80% of their initial capacity 

[28]; at this point, they still have sufficient capacity for stationary applications. Second use of 

batteries will also reduce their ecological footprint [30], [31]. The German vehicle manufacturer 

Daimler has announced [32] plans to reuse old EV batteries in a large stationary storage facility 

with a capacity of 13 MWh. Reusing EV batteries as distributed stationary storage for grid-

balancing measures on the kWh-scale has been discussed in previous publications [30], [33], 

[34]. However, no physical implementation for grid balancing is known to the authors. 

 

This work presents a stationary grid balancing field test based on a retrofitted EV battery. A 

ZEBRA (Zero Emission Battery Research Activities) battery, decommissioned from a  

THINK City [35] vehicle, is incorporated into a stationary setup. An in-house controller software 

autonomously optimizes the operation based on the Austrian day-ahead electricity market as 

suggested by the authors in a previous work [9]. The economic performance and the battery 

efficiencies are evaluated through an energy monitoring system. We evaluated the error in the 

battery model by comparing it with the physical behavior of the ZEBRA battery. Moreover, we 

identify the difference in earnings between the physical implementation and theoretical 

simulation results. 

 

 

2 Experimental Setup 
 

The field test setup for the stationary battery storage system is shown in Fig. 1a. It comprises 

an embedded control hardware (ECH), two AC/DC converters, a repurposed EV battery 

including a battery management system (BMS), and an energy monitoring system. 
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Fig. 1: Repurposed EV battery storage system including all hardware components: 

a) schematics; b) physical implementation. 

 

For charging and discharging, separate converters are used. The converters have different 

conversion efficiencies, denoted by 𝜂in and 𝜂out for charging and discharging, respectively. 

The embedded control hardware is connected to a mobile-network-enabled router via TCP/IP, 

which establishes the connection to a pseudo-cost function (PCF) distribution system. The 

operation mode (charge, discharge, idle) is determined by optimization, minimizing an 

objective function calculated from the PCF, while keeping the battery’s state of charge (SOC) 

within the given operational bounds. The communication between the ECH and the BMS is 

realized via CAN (Controller Area Network) bus [36]. It comprises the decision variable, cyclic 

alive messages, and the actual battery state. 

 

Modbus TCP [37] is used to control the power of the discharging converter. The power through 

the charging converter is controlled by the BMS based on the battery state via a pulse-width 

modulation (PWM) signal. All energy flows through the converters are measured and recorded 

by an energy monitoring system. The physical battery storage setup is shown in Fig. 1b. The 

repurposed ZEBRA battery with its control system, converters and safety equipment is 

installed in a metal box. 

 

 

2.1 ZEBRA Battery 

 

The physical battery storage system is based on a repurposed ZEBRA vehicle battery. Cell 

chemistry relies on the reaction of sodium with nickel chloride [38]. The redox reaction [39] is: 
 

 2Na+NiCl2

discharge
→
←

charge

2NaCl +Ni Eq. 1 

 

In this study, a repurposed ZEBRA battery of the type Z36-371-ML3X-76 is used. ZEBRA 

batteries reach energy densities of approximately 100 Wh/kg and power densities of about  

150 W/kg [39]–[41]. The expected cycle lifetime is about 3500 full charge and discharge cycles 

[41]. The internal operational temperature is kept between 270 and 350 °C [39] for efficient 
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and safe operation. Therefore, the battery is equipped with a heating and cooling system 

controlled by the BMS. Additionally, the BMS performs state of charge detection and battery 

balancing. 20% of the initial battery capacity is used as a backup for the temperature control 

to avoid damage to the battery. The ZEBRA EV battery is thermally insulated by a double-

walled vacuum chamber [42]. The battery has a capacity of 28.2 kWh. Battery parameters are 

listed in Table 1 of the Appendix. 

 

 

2.2 Converters 

 

As shown in Fig. 1, the battery storage setup comprises two AC/DC converters. The original 

BC-336-Z-3-A EF single-phase charger from MES-DEA [43] is used for charging. Charging 

power is controlled by the BMS based on the battery state. It is changed for the battery 

balancing process at 80% SOC and continuously reduced close to the end of the charging 

process, as shown in Fig. 2. Otherwise, full charging power is applied. The DC charging 

characteristics of a ZEBRA battery storage system, cf. Fig. 2, shows that charging is based on 

a constant current constant voltage (CCCV) strategy, i.e. the current is fixed until a certain end 

of charging voltage is reached. The three drops in current, voltage, and power, illustrated in 

Fig. 2, can be explained by the activation of the auxiliary temperature control systems. 

Subsequently, a battery balancing process is executed, during which the battery is also slightly 

discharged. Charging at a constant voltage follows. The charging current drops automatically 

with increasing SOC. 

 

 

Fig. 2: DC charging characteristics of a ZEBRA battery storage system. 

 

According to [43], the maximum DC charging power is 3.2 kW. The converter efficiency ranges 

from 95% for 3.2 kW to 90% for 0.4 kW [43]. Detailed information is given in Table 2 of the 

Appendix. The average DC charging power measured during a charging process is 1.49 kW. 

 

Since the automotive charger BC-336-Z-3-A EF is not designed for discharging, a three-phase 

SYMO 8.2-3-M converter from Fronius [44], including a data manager module, is integrated. 
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The discharging power can be controlled continuously via Modbus TCP from 0–100% of the 

maximum power. The efficiency ranges from about 90% to 97.5% depending on the  

output power [44]. Detailed information is given in Table 3 of the Appendix. Preliminary 

measurements showed that the average DC discharging power between 20% and 100% SOC 

is 8.64 kW, i.e. 5.8 times the charging power. 

 

 

2.3 Energy Monitoring 

 

The three-phase energy counter Algodue UEM80-4D E [45] is used for energy monitoring and 

is connected between the converters and the electrical grid, cf. Fig. 1a. The ECH is able to 

fetch measured energy data via Ethernet (Modbus TCP). Technical details are given in  

Table 4 of the Appendix. The energy monitoring system measured in- and output energy, the 

powering of the energy counter, and the BMS. The energy flows are recorded at a resolution 

of 15 minutes. 

 

 

2.4 Price-Driven Optimization 

 

As shown by the authors in [9], a linear battery model approximates the dynamic behavior of 

the ZEBRA battery with reasonable accuracy. The linear battery model is described as follows, 
 

 
d𝐸el
d𝑡

= 𝑃DC(𝑡)− 𝑃loss. Eq. 2 

 

𝐸el reflects the electrical energy content of the battery, 𝑃DC the DC charging/discharging power, 

and 𝑃loss  the constant losses. The losses include internal losses via battery cell resistance and 

the auxiliary heating and cooling power. 

 

The approaches presented in [9], [46] are adapted to account for different charging and 

discharging power and converter efficiencies. For a given PCF, 𝑐(𝑡), at a resolution of 𝛥𝑡 in 

the time window [𝑡0, 𝑡𝑛], the optimization problem can be formulated as: 
 

 min𝑢DC ∫ 𝑐(𝑡) ∙ 𝑃AC(𝑢DC(𝑡)) 𝑑𝑡,
𝑡𝑛

𝑡0

s. t. Eq. 3 

 𝐸el,min≤ 𝐸el(𝑡) ≤ 𝐸el,max ,  𝑡0 ≤ 𝑡 ≤ 𝑡𝑛 Eq. 4 
 

Here, 𝑃AC denotes the power resulting at the electrical grid, accounting for power conversion. 
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To apply the optimization to the linear battery model, we formulate a mixed integer linear 

program (MILP) as 
 

 min𝑢DC∑ 𝑐𝑖(𝑡)
𝑛

𝑖=1
∙ (𝑢DC,𝑖

+ ∙ 𝜂in
−1 ∙ 𝑃DC,max−𝑢DC,𝑖

− ∙ 𝜂out ∙ 𝑃DC,max) ⋅ Δ𝑡, s. t. Eq. 5 

 
𝐸el,min ≤ 𝐸el,0 +∑ [𝑢DC,𝑖

+ ∙ 𝑃DC,max−𝑢DC,𝑖
− ∙ 𝑃DC,max−𝑃loss ]

𝑗

𝑖=1
⋅ Δ𝑡

≤ 𝐸el,max , ∀𝑗 ∈ {1,⋯ , 𝑛}, 
Eq. 6 

 0 ≤ 𝑥c,𝑖+𝑥d,𝑖 ≤ 1,𝑥c,𝑖 ,𝑥d,𝑖 ∈ {0,1} ∀𝑖, Eq. 7 

 𝑢DC,𝑖
+ ≤ 𝑢DC,max

+ ∙ (1 − 𝑥d,𝑖), Eq. 8 

 𝑢DC,𝑖
+ ≥ 𝑢DC,min

+ ∙ 𝑥c,𝑖, Eq. 9 

 𝑢DC,𝑖
− ≤ 𝑢DC,max

− ∙ (1 − 𝑥c,𝑖), Eq. 10 

 𝑢DC,𝑖
− ≥ 𝑢DC,min

− ∙ 𝑥d,𝑖 , Eq. 11 

 𝑢DC,𝑖
+ ≤ 𝑢DC,max

+ ∙ (𝑥c,𝑖+𝑥d,𝑖), Eq. 12 

 𝑢DC,𝑖
− ≤ 𝑢DC,max

− ∙ (𝑥c,𝑖+𝑥d,𝑖). Eq. 13 
 

To account for different charging and discharging power, we introduce two continuous decision 

variables, 𝑢DC,𝑖
+  and 𝑢DC,𝑖

− , for each time step, indicating charging and discharging separately. 

The composite decision variable is then given by 𝑢DC= 𝑢DC
+ +𝑢DC

− . Converter efficiencies, 𝜂in 

and 𝜂out, are included linearly in the objective function. Binary variables, 𝑥c,𝑖 and 𝑥d,𝑖, are used 

to exclude discharging during charging and vice versa. The maximum charging power, 𝑢DC,max
+ , 

set to 1 and the maximum discharging power, 𝑢DC,max
− , set to 5.8, reflect the discharging to 

charging power ratio (cf. 2.2). Since the converters perform inefficiently up to 20% of their 

maximum output power, the boundary conditions exclude charging or discharging for lower 

values, reflected by Eq. 8 – Eq. 13. The charging efficiency, 𝜂in, is set to 90% and the 

discharging efficiency, 𝜂out, to 95%. The initial electrical energy content is denoted by  

𝐸el,0 = 𝐸el(𝑡0). The battery operation is bound by a minimum and maximum electrical energy 

content, 𝐸el,min and 𝐸el,max, respectively. 

 

2.4.1 Day-Ahead Market Based Control 

Energy Exchange Austria (EXAA) offers daily block-based, hour-based and 15-min-based 

stock market prices for electricity, published daily on weekdays at 12 noon for the next  

36 hours. Simulation results presented in a previous paper [9] reveal a strong correlation 

between the earnings and the variance of the PCF. The 15-min-based product was superior 

to the hour-based product and is therefore used as PCF [47]. 

 

2.4.2 Battery Loss Estimation 

The constant loss term of the linear model is estimated by fitting the model using historic  

DC power and SOC data. More specifically, the integral form of Eq. 2 for a given time window, 

[𝑡0, 𝑡𝑛], is evaluated, i.e. 
 

 𝐸el(𝑡𝑛) = 𝐸el(𝑡0)+∫ 𝑃DC(𝑡) 𝑑𝑡
𝑡𝑛

𝑡0

− 𝑛 ∙ 𝑃loss,est. Eq. 14 
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The least squares problem can be formulated as 
 

 min𝑥‖𝑎 ∙ 𝑥 − 𝑏‖
2,where Eq. 15 

 𝑎𝑖 = 𝑖 and Eq. 16 

 𝑏𝑖 = (𝐸el(𝑡0)− 𝐸el(𝑡𝑖)+ ∫ 𝑃DC(𝑡) 𝑑𝑡
𝑡𝑖

𝑡0

), ∀𝑖 ∈ {1,⋯ ,𝑛}. Eq. 17 

 

𝐸el denotes the measured electrical energy content of the battery. To verify the quality of the 

fit, the coefficient of determination, 𝑅2, is calculated. Losses are estimated once a day based 

on seven days of historic power and SOC data. 

 

 

2.5 Implementation 

 

The controller software is implemented in Python 3 [48] running on a BeagleBone Black –  

Rev C using a Debain Jessie 8.7. The BeagleBone [49] comes with an AM335x 1GHz ARM® 

Cortex™-A8 microprocessor, 512 MB DDR3 RAM, an internal CAN bus controller and a  

16 GB Class 4 microSDHC card from SanDisk [50]. The BeagleBone CBB-Serial Cape with 

its integrated CAN bus transceiver [51] is used as interface between the physical CAN bus and 

the CAN bus controller. The Modbus connection is realized via TCP/IP. General-purpose 

input/output (GPIO) pins of the BeagleBone are used to actuate the relays connecting the 

converters to the battery. 

 

Fig. 3 shows the interactions between the processes, the inputs and outputs, and the 

communication interfaces. The main routine is the central processing unit. Pseudo-cost 

function data, provided by a PCF fetcher, are used with battery state information to find the 

optimal decision values via an optimization routine. An execution process interprets the values 

and controls the battery charging/discharging process via CAN bus and/or Modbus TCP. The 

optimization routine is executed every 15 minutes, using GLPK (GNU Linear Programming Kit) 

[52] from the PyMathProg package [53] to solve the linear optimization problem. A time-based 

job scheduler (cronjob) starts all processes. 
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Fig. 3: In-house software implementation of battery control algorithm. 
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3 Results 
 

The results obtained show the performance of the storage system during the experiment based 

on price-driven, on-site optimized operation and reveal the battery model accuracy used in the 

optimization in comparison to the physical behavior. Experimental results achieved were 

recorded from 24 May 2017, 4:15 to 6 June 2017, 9:00. Fig. 4 shows an exemplary  

24 hours window of battery operation. 

 

 

Fig. 4: Historic and future battery operation based on a 15 minutes Austrian day-ahead price optimization for  

24 hours. The dashed horizontal line separates the historic execution and the future operation of the battery. The 

black solid line shows the historic change in SOC. The estimated future trend, based on the 15 minutes given 

day-ahead stock market price for electricity (grey line), is illustrated as a dashed black line. These values are 

normalized to their maximum occurring value. The light solid grey line indicates the decision states executed  

on the battery storage in a 15-minute time interval and the dashed line the estimated future decision states. 
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3.1 Model Accuracy 

 

Daily battery losses are shown in Fig. 5. The minimum loss value observed is 1.93 W/kWh of 

battery capacity and the maximum value is 3.54 W/kWh of battery capacity. The median is 

2.74 W/kWh of battery capacity, its first and third quartile are 2.42 W/kWh and 3.13 W/kWh of 

battery capacity, respectively. The coefficients of determination, 𝑅2, for all loss estimations 

ranges from 0.86 to 0.96. 

 

 

Fig. 5: Estimated constant battery loss and 𝑅2 value for each day during the experiment. Boxplot (left) of 𝑅2 

values and estimated battery losses per capacity. Daily estimation of the battery loss per capacity (right). 

 

To determine the quality of the linear battery model, the estimated SOC is compared to the 

SOC measured by the BMS. Fig. 6 shows a 36-hour time window out of the investigated  

14-day period, depicting the day-ahead price (PCF), the corresponding decision function, the 

measured SOC, and the model prediction based on the decision states executed. The case 

shown represents optimization starting at midnight. It predicts the battery state for 24 hours 

since the currently available day-ahead price ends at midnight of the following day. Two major 

instances of model deviations are observed in Fig. 6. The first visible deviation occurs at 

approximately 6:15. According to the decision function, the battery should charge. Since the 

BMS balances the battery (cf. section 2.2), the charging process is interrupted. Another 

deviation occurs at approximately 14:30. Again, the charging process is interrupted by a 

battery balancing procedure followed by a short charging period. A sudden change in SOC to 

100% is seen around 15:15, causing a second strong deviation. The BMS determines that the 

end of charge state is reached, by measuring cell voltages and hence resets its internal SOC 

estimation to 100%. 
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Fig. 6: Comparison of battery model estimation and the physical behavior of the battery storage system. 

 

The estimated SOC is compared to the SOC provided by the BMS. The root mean square 

error (RMSE) is calculated from 24 May 2017, 12:00 to 5 June 2017, 00:00. To calculate the 

RMSE, every 15 minutes, i.e. 𝛥𝑡 = 900 seconds, an estimation of the future SOC (𝑆𝑂𝐶est) for 

the available day-ahead price time window is calculated and compared to the historic SOC 

(𝑆𝑂𝐶hist). Introducing the day-time function, 𝑡d(𝑖), which returns the seconds passed for the 

current date-time since midnight for a given time step 𝑖, the calculation of the RMSE reflecting 

the model error can be formulated as 
 

 RMSE = √∑(
𝑆𝑂𝐶est,𝑗 −𝑆𝑂𝐶hist,𝑗

𝑘
)
2𝑖+𝑘

𝑗=𝑖

, 𝑖 = {1, ⋯ ,𝑛},where Eq. 18 

 𝑘 =

{
 
 

 
 ⌈
𝑛d− 𝑡d(𝑖) 

∆𝑡
⌉,                            0 ≤ 𝑡d  (𝑖) <

𝑛d
2

⌈
𝑛d− 𝑡d(𝑖) 

∆𝑡
+
𝑛d  

∆𝑡
⌉,                                      else,

 Eq. 19 

 

where 𝑛d is the total number of seconds per day. The resulting RMSE for the experiment 

yielded to 7.6%. Deviations of the estimated SOC are illustrated in Fig. 7. 
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Fig. 7: Boxplot (left) and histogram (right) of the deviation of the estimated to  

the BMS measured SOC for the experiment conducted. 

 

 

3.2 Battery Performance 

 

Based on the energy monitoring measurements, the round-trip efficiency (converter-battery-

converter), 𝜂rt, is calculated as: 
 

 𝜂rt = 
𝐸AC,out
𝐸AC,in

, Eq. 20 

 

where 𝐸AC,in is the monitored input and 𝐸AC,out the monitored output energy during the 

observed period. The battery efficiency, 𝜂bat, is calculated as 
 

 𝜂bat = 
𝜂rt

𝜂in ∙ 𝜂out
. Eq. 21 

 

A full battery charge cycle is defined as a complete turnover of twice the battery capacity. The 

number of cycles is hence estimated by the energy transferred in and out, 𝐸AC,in and 𝐸AC,out, 

respectively: 
 

 𝑛cycle = 
(𝐸AC,in ∙ 𝜂in+𝐸AC,out ∙ 𝜂out

−1 ) ∙ 𝜂bat
2 ∙ 𝐸el,max

 Eq. 22 

 

For the 14-day duration of the experiment 𝜂rt = 74.4%, 𝜂bat = 87.0%, and 𝑛cycle = 9.43. 

 



90 

 

 

Fig. 8: Boxplot (left) and histogram (right) of the SOC for the experiment conducted. 

 

Fig. 8 shows the SOC distribution during the experiment. The median is 65.2% SOC, the first 

quartile is 45.5%, and the third quartile is 79.8%. The peak at 80% SOC can be explained by 

the cell balancing since the battery holds this state until the process is completed. The peaks 

at 20% and 100% SOC can be explained by model inaccuracies e.g. the SOC reset during the 

charging process. 

 

 

3.3 Cost Efficiency Analysis 

 

The histogram of the day-ahead price for the period 24 May 2017, 4:15 until 6 June 2017, 9:00 

is shown in Fig. 9. The minimum and maximum value of the day-ahead price observed are  

0.45 €/MWh and 59.00 €/MWh, respectively. The median of the data is 30.20 €/MWh, the first 

and third quartile are 23.64 €/MWh and 37.54 €/MWh, respectively. 
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Fig. 9: Boxplot (left) and histogram (right) of the Austrian day-ahead stock market price  

for electricity for the period 24 May 2017, 4:15 until 6 June 2017, 9:00. 

 

Fig. 10a shows the boxplot for the day-ahead price and the SOC separated according to the 

operation modes (charge, discharge, idle) for the same period from 24 May 2017, 4:15 until  

6 June 2017, 9:00. For low prices, the predominant state is charging, for medium prices, the 

predominant state is idle, and for high prices, discharging is most common. However, this 

grouping is not clear-cut: all decision states can be found for almost all SOC states. Only 

charging at very high and discharging at very low SOC does not occur, when the remaining 

capacity is insufficient to execute this decision. The histograms in Fig. 10b reveals a strong 

correlation between price and decision states. 

 

 

Fig. 10: a) Boxplot of the day-ahead stock market price for electricity and the SOC for the decision states.  

b) Histogram of the day-ahead stock market price for electricity for the decision states. 
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The earnings achieved per kWh of battery capacity during the experiment are calculated as 
 

 𝑠earn=
∑ 𝑐𝑖(𝑡)
𝑛
𝑖=1 ∙ (𝐸AC,in,𝑖(𝑡)− 𝐸AC,out,𝑖(𝑡))

𝐸el,max
. Eq. 23 

 

The potential earnings assuming linear battery behavior are investigated by simulation: the 

model is initialized at 12 noon, using the corresponding 36 hours day-ahead price and the 

estimated battery losses during the experiment. By simulation, the new battery state is 

calculated and used as the initial state for the next day optimization. The resulting potential 

earnings amount to 0.16 €/kWh of battery capacity. In comparison, the earnings realized during 

the experiment amount to 0.10 €/kWh of battery capacity. 

 

 

4 Conclusion 
 

In this paper, decentralized and on-site optimized grid balancing utilizing a repurposed high-

temperature ZEBRA battery storage system is demonstrated experimentally in the field. The 

experimental setup uses in-house software comprising routines for communication, 

optimization and operation of the battery storage system. A mixed integer linear programming 

optimization routine using a linear battery model finds the optimal operation by minimizing an 

objective function calculated from one-way communicated Austrian quarter-hour day-ahead 

stock market electricity prices. 

 

The field test shows that electrical vehicle batteries can indeed be reused as stationary storage 

for grid balancing. During a 14-day period from 24 May 2017, 4:15 to 6 June 2017, 9:00, the 

system operated with a round-trip efficiency (converter-battery-converter) of 74.4% and with a 

calculated battery efficiency of 87.0%. The estimated median of the daily battery loss 

amounted to 2.74 W/kWh of battery capacity. The battery storage system performed 9.43 full 

battery charge cycles with a median state of charge of 65.2%. 

 

An accuracy analysis of the proposed linear battery model shows a root mean square error of 

7.6% between the estimated and the measured state of charge during the experiment. In most 

cases, the state of charge is underestimated, cf. Fig. 7. 

 

Earnings in the observed period amounted to 0.10 €/kWh of battery capacity, where the 

minimum and maximum day-ahead price were 0.45 €/MWh of battery capacity and  

59.00 €/MWh of battery capacity, respectively. Although the installation and equipment costs 

of the presented stationary battery storage cannot be determined, it can be said that the 

earnings achieved must be significantly higher in order to operate the storage economically. 

We conclude that the battery must be operated on markets with higher volatility and/or a larger 

price range to increase the viable earnings. 

 

The potential earnings, found by simulation assuming linear battery behavior, amounted to 

0.16 €/kWh of battery capacity. The discrepancy to the experimental results is attributed to 

three main effects: 1) Insufficient representation of the battery management system and the 

battery behavior in the model (e.g., state dependent state of charge reset to 100%). 2) Delayed 

discharging due to a system check by the battery management system and a grid 

synchronizing processes of the converter. 3) Insufficient charging power estimation, since the 

battery is charged by a constant-current-constant-voltage strategy, which ends with a charging 
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power drop, cf. Fig. 2. The significant deviations between the model and the experiment due 

to technical obstacles and model inaccuracies show the urgent need for more field tests of 

grid-balancing strategies to investigate their potential. 

 

The reuse of a ZEBRA battery for stationary application was time consuming and technically 

challenging, suggesting similar challenges if pursued for other battery storage types used in 

electric vehicles. This indicates that a second use of vehicle batteries for grid balancing has to 

be planned from the outset. Such planning efforts are highly recommended to electric vehicle 

manufacturers. 
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Appendix 
 

Table 1: ZEBRA battery parameters [54]. 

Maximum energy content, 𝐸el,max 28.2 kWh 

Maximum degree of discharge 80% 

Open circuit voltage (DC) 

(100–85% SOC) 

371 V 

Minimum operation voltage (DC) 248 V 

Maximum discharging current (AC) 224 A 

Cell type/Number of cells ML3X/288 

Weight with BMS 243 kg 

Specific energy 118 Wh/kg 

Specific power 168 W/kg 

Operating temperature range −40 to 50 °C 

Thermal loss < 130 W 

Minimum discharge time 120 min 

 

 

Table 2: MES-DEA battery charger parameters [43]. 

Maximum input current (AC) 15.5 A 

Input voltage (AC) 110–253 V 

Mains frequency 47–63 Hz 

Operating temperature range −20 to 40 °C 

Output power (DC) 3.2 kW or max 26 A 

Weight 7 kg 
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Table 3: Fronius SYMO 8.2-3-M converter parameters [44]. 

Maximum input current (DC) 16 A 

Input voltage (DC) 200–1000 V 

Operating temperature range −25 to 60 °C 

Output power (AC)  8.2 kW 

Maximum output current (AC) 13.1 A 

Weight 21.9 kg 

 

 

Table 4: Algodue UEM80-4D E parameters [45]. 

Maximum consumption (each phase) 7.5 VA–0.5 W 

Minimum current (AC) 250 mA 

Maximum current (AC) 80 A 

Voltage range (AC) 3x230/400 V  

Mains frequency 50/60 Hz 

Accuracy Active energy class B 

according to EN 50470-3 

Reactive energy class 2 

according to IEC/EN 

62053-23 

Operating temperature range −25 to 55 °C 
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Paper D: Battery Storage Systems as Grid-Balancing 

Measure in Low-Voltage Distribution Grids 

with Distributed Generation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the journal paper published as: 

 

B. Faessler, M. Schuler, M. Preißinger, and P. Kepplinger, “Battery storage systems as grid-

balancing measure in low-voltage distribution grids with distributed generation,” Energies,  

vol. 10, no. 12, pp. 1–14, Dec. 2017. 

 

The layout has been revised for better readability. Minor revisions have been made.  
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Abstract 
 

Due to the promoted integration of renewable sources, a further growth of strongly transient, 

distributed generation is expected. Thus, the existing electrical grid may reach its physical 

limits. To counteract this, and to fully exploit the viable potential of renewables, grid-balancing 

measures are crucial. 

 

In this work, battery storage systems are embedded in a grid simulation to evaluate their 

potential for grid balancing. The overall setup is based on a real, low-voltage distribution grid 

topology, real smart meter household load profiles, and real photovoltaics load data. An 

autonomous optimization routine, driven by a one-way communicated incentive, determines 

the prospective battery operation mode. Different battery positions and incentives are 

compared to evaluate their impact. The configurations incorporate a baseline simulation 

without storage, a single, central battery storage or multiple, distributed battery storages, which 

together have the same power and capacity. The incentives address either market conditions, 

grid balancing, optimal photovoltaic utilization, load shifting, or self-consumption. 

 

Simulations show that grid-balancing incentives result in lowest peak-to-average power ratios, 

while maintaining negligible voltage changes in comparison to a reference case. Incentives 

reflecting market conditions for electricity generation, such as real-time pricing, negatively 

influence the power quality, especially with respect to the peak-to-average power ratio. A 

central, feed-in-tied storage performs better in terms of minimizing the voltage drop/rise and 

shows lower distribution losses, while distributed storages attached at nodes with electricity 

generation by photovoltaics achieve lower peak-to-average power ratios. 

 

Keywords: Grid Balancing, Grid Simulation, Autonomously Optimized Battery Storage, 

Distributed Generation, Central and Distributed Energy Storage 

 

Nomenclature

𝐶 Set of neighboring nodes (–) 

𝑐 Incentive (–) 

𝐷𝑂𝐷 Depth of discharge (%) 

𝐸el  Electrical energy content (J) 

𝐸losses Cumulative distribution losses (Wh) 

𝐼 Alternating current (A) 

𝐼slack Alternating current at the slack node (A) 

𝑁 Total set of nodes (–) 

𝑛 Total number of data points (–) 

PAPR Peak-to-average power ratio (–) 

𝑃AC Alternating power (W) 

𝑃DC Direct power (W) 

𝑃loss Linearized battery losses (W) 

𝑆slack Power at the slack node (VA) 

𝑆𝑂𝐶 State of charge (%) 

𝑡 Time (s) 

𝑈 Alternating voltage (V) 

𝑈d/r Alternating voltage drop/rise (V) 

𝑈node Alternating voltage at the individual grid  

 nodes (V) 

𝑈slack  Alternating voltage at the slack node (V) 

𝑢DC Decision variable on DC power side (–) 

𝒵 Impedance matrix (Ω) 

𝜂bat Battery efficiency (–) 

𝜂con Converter efficiency (–) 

𝑛load Amount of loads (–) 
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1 Introduction 
 

Transition from traditional, large-scale and centralized electricity generation by fossil fuels to 

more distributed renewable generation by photovoltaics (PV) and wind power is being pushed 

forward by many countries [1]. The strong volatility of renewables means that generation does 

not always coincide with electricity demand. Hence, balancing measures need to be deployed 

in the power system to counteract the strong effect of renewables on grid operation [2], [3] and, 

thereby, exploit their full potential. 

 

In particular, low-voltage distribution grids face three technical challenges due to the 

penetration by small-scale distributed generation (DG) like PV: 1) voltage rise during feed-in 

(which also limits the amount of DG capacity introduced); 2) possible harmonic distortion 

caused by feed-in controllers [4]; 3) creation of new power peaks [5]. Researchers already 

have investigated the impacts of DG on the distribution grid [6]–[10]. Besides feed-in control 

strategies for DG [11], grid-balancing measures have also been investigated. Demand side 

management (DSM) is being discussed as a promising approach for grid balancing [12], [13], 

as it changes electricity demand of consumers with respect to the time pattern of consumption 

and/or load magnitude [14]. In this context, many publications consider the special case of 

electric vehicles as usable buffer capacities [15]–[17]. 

 

The integration of additional stationary storage into the distribution grid has been considered 

[18]. In particular, battery energy storage systems (BESSs) have been proposed [19]–[24], 

different sizes and battery technologies have been discussed and their corresponding 

suitability demonstrated. BESSs are able to react practically instantaneously, and, based on 

their flexibility in capacity and location, last longer. Therefore, they can serve different purposes 

such as [25], [26]: 1) matching peak power demand; 2) improving power quality and reliability 

of the grid by providing balancing energy; 3) reducing supply interruption by bridging power;  

4) load following to increase generation utilization. 

 

Currently, BESSs for grid balancing face the obstacles of high lifecycle costs [27] and high 

energy and material requirements [28]. Used electric vehicle batteries have been proposed for 

a second use in stationary applications. As less active bulk material is wasted [29], costs are 

reduced [30], and the ecological footprint is improved [31]. 

 

In our previous work [30], [32], we proposed BESSs based on repurposed electric vehicle 

batteries for grid balancing. The prospective operation mode (charge, discharge, or idle) is 

determined based on an autonomous optimization routine driven by a one-way communicated 

incentive. The incentive represents the intention of the operator to achieve a certain goal [33], 

e.g. grid balancing, and can thus vary significantly. To the best of our knowledge, impacts of 

incentive-driven BESSs on low-voltage distributing grids have not been investigated so far. 

Therefore, the present work compares a single, central BESS and multiple, distributed BESSs 

driven by different incentives to evaluate their impact on grid load and power quality. With this, 

we want to discuss the following question: “Which incentives facilitate the integration of volatile, 

distributed electricity generation?” To this end, we investigate incentives that reflect different 

purposes, like real-time pricing, grid balancing, optimal PV utilization, DSM, or self-

consumption. 
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In section 2, the detailed approach is discussed. First, the battery model, the incentive-driven 

optimization, and different incentives are presented. Then, the simulation setup is described in 

detail. Section 3 shows the achieved results based on our approach, followed by a brief 

discussion in section 4 and a conclusion in section 5. 

 

 

2 Approach 
 

Influences of integrated BESS on a low-voltage distribution grid with high PV penetration are 

investigated. A real, low-voltage distribution grid topology, real smart meter household load 

profiles, and real PV data are used. Additionally, simulated batteries are attached either to the 

feed-in node (central) or to the nodes comprising distributed PV penetration. Operation of the 

batteries relies on an autonomous optimization approach, which is driven by an incentive. 

 

First, we discuss the battery model and optimization routine, followed by a detailed description 

of the different incentives used for battery operation. Then, we describe the simulation setup 

in detail, regarding the applied grid topology, load and PV data, as well as the simulated battery 

configurations and parameters. Finally, we define criteria to evaluate the impact on load, 

voltage levels and distribution losses. 

 

 

2.1 Autonomously Optimized Storages 

 

A BESS is operated autonomously based on a unidirectionally communicated incentive. This 

autonomous, on-site optimization approach allows for indirect load control. Different incentives 

enable the operator to pursue different measures. These measures reflect different intentions: 

1) increase self-consumption; 2) facilitate grid balancing; 3) react to the electricity market. 

 

2.1.1 Battery Model and Optimization 

As shown in a previous study [32], linear models describe the battery behavior with accuracy 

comparable to nonlinear formulations in long-term simulations. Since only the long-term 

behavior of BESSs is of interest in this study, the simulations and optimizations are based on 

the linear battery model, 
 

 
d𝐸el
d𝑡

= 𝑃DC(𝑡)− 𝑃loss, Eq. 1 

 

where 𝐸el describes the electrical energy content, 𝑃DC the DC charging or discharging power 

rate, and 𝑃loss  all battery related losses. The operation mode of the battery is controlled via the 

decision function, 𝑢DC(𝑡), reflecting charging (> 0), discharging (< 0), and idle (= 0) modes, i.e. 

𝑃DC(𝑡) = 𝑢DC(𝑡) ∙ 𝑃DC,max. The decision function is calculated by optimizing with respect to 

minimum costs for charging based on the incentive, 𝑐(𝑡). Constraints guarantee that the 

battery’s state of charge (SOC) remains within the operational bounds, 𝐸el,min and 𝐸el,max. For 

a given time span, [𝑡0, 𝑡𝑛], the optimization problem is then formulated as 
 

 min𝑢DC∫ 𝑐(𝑡) ∙ 𝑃AC(𝑢DC(𝑡)) 𝑑𝑡,
𝑡𝑛

𝑡0

 Eq. 2 
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such that 
 

 𝐸el,min ≤ 𝐸el(𝑡) ≤ 𝐸el,max , 𝑡0 ≤ 𝑡 ≤ 𝑡𝑛. Eq. 3 
 

We assume continuous operation states (−1 ≤ 𝑢DC(𝑡) ≤ 1) and introduce two decision 

variables, 𝑢DC,𝑖
+  and 𝑢DC,𝑖

− , for each time step specifying charging and discharging separately. 

The battery is connected to the electrical grid via an AC/DC converter. The conversion of  

AC to DC power and vice versa is assumed to exhibit a constant efficiency, i.e. 𝑃AC = 𝜂con ∙ 𝑃DC. 

By including the converter efficiency linearly in the objective, the optimization can be 

formulated as a linear program: 
 

 min𝑢DC∑ 𝑐𝑖(𝑡)
𝑛

𝑖=1
∙ (𝑢DC,𝑖

+ ∙ 𝜂con
−1 ∙ 𝑃DC,max−𝑢DC,𝑖

− ∙ 𝜂con ∙ 𝑃DC,max)⋅ Δ𝑡 Eq. 4 

 

Here, four boundary conditions must be fulfilled: 
 

 𝐸el,min ≤ 𝐸el,t ≤ 𝐸el,max Eq. 5 

 𝐸el,t = 𝐸el,0 +∑ [𝑢DC,𝑖
+ ∙ 𝑃DC,max−𝑢DC,𝑖

− ∙ 𝑃DC,max−𝑃loss ] ⋅ Δ𝑡,
𝑗

𝑖=1
1 ≤ 𝑗 ≤ 𝑛 Eq. 6 

 𝑢DC,𝑖
+ +𝑢DC,𝑖

− ≤ 1 Eq. 7 

 𝑢DC,𝑖
+ ,𝑢DC,𝑖

− ≥ 0 Eq. 8 
 

𝐸el,0 denotes the initial electrical energy content of the battery. The final operation state is 

calculated by 𝒖DC= 𝒖DC
+ − 𝒖DC

− . 

 

2.1.2 Incentives 

Reflecting alternative operation strategies for BESSs, we propose different incentives to drive 

the optimization routine, cf. section 2.1.1. The operation strategy addresses either market 

conditions, grid balancing, optimal PV utilization, load shifting, or self-consumption  

(see Table 1). 

 

Real-time pricing (RTP) is often discussed to control loads and storage systems [34]–[37], 

reflecting the real cost of electricity generation [37]. The Austrian Energy Stock Market (EXAA) 

offers daily block-based, hour-based and 15-min-based day-ahead stock market prices for 

electricity [38]. They are available on weekdays at 12 noon for the next 36 hours. We use  

15-min-based data as it was shown that balancing measures are improved by RTP based on 

shorter time intervals [32]. To compensate for peak loads, the future total load at the feed-in 

node defines another incentive, assuming perfect a priori knowledge of the total grid load. To 

support self-consumption of households with an integrated BESS through an incentive-driven 

approach, the incentive should reflect the future PV generation as well as the household load. 

However, to investigate the effects of consumption and generation separately, PV generation 

and total household consumption are used to define additional incentives. Again, we assume 

perfect prior knowledge of the loads and feed-in power. We classify GRID central/distributed 

and PV central as grid-motivated incentives and PV distributed, LOAD distributed, and SELF 

distributed as consumer-motivated incentives. 
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Table 1: Incentives used to drive BESS optimization. The considered configurations for BESS  

are abbreviated by c for a single, central storage and d for multiple, distributed storages. 

Abbreviation Description Incentive Configuration 

REF Reference case - - 

RTP Real-time pricing EXAA day-ahead market price c/d 

GRID Grid balancing  Total future grid load c/d 

PV Optimal PV utilization Future PV generation c/d 

LOAD Load shifting Future household consumption d 

SELF Self-consumption Future household load (incl. PV) d 

 

 

2.2 Simulation Setup 

 

Most studies in literature are based on artificial grid topologies [39], characteristic household 

loads [40], and simulated PV generation [41]. Instead, we apply real data for the low-voltage 

distribution grid topology, the household loads, and the distributed generation from 

photovoltaics to allow for results close to reality. Commercially available Li-ion BESSs are 

chosen as buffers for grid balancing to keep simulations practical. The grid simulation is based 

on a direct numerical method, as proposed by Ghatak and Mukherjee [42], which allows us to 

calculate the load flow for both, line grids as well as weakly meshed grids. The method has 

already been applied successfully in various forms [42]–[45], and used to setup a simulation 

tool in MATLAB [46]. The tool provides interfaces to include loads reacting on incentives for 

the purpose of testing load management strategies [47]. The grid is simulated at a temporal 

resolution of 15 min. 

 

2.2.1 Grid Topology 

We investigate a rural distribution grid, for which all information is available from the local 

system operator, Vorarlberger Energienetze GmbH, Bregenz, Austria [48]. The weakly 

meshed low-voltage distribution grid (Fig. 1) comprises of 50 nodes, with the slack node, i.e. 

central feed-in node (50), and an additional node (19) as placeholder for a central BESS. At 

the slack node, the voltage, 𝑈slack, is set to 230 V and no phase shift is assumed. The 

termination condition for the iterative calculation procedure in the grid simulation is set to  

Δ𝑈 < 1 mV at all nodes. 
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Fig. 1: Low-voltage distribution grid from local system operator. 

 

2.2.2 Load and Photovoltaics Data 

Smart meter household loads provided by Vorarlberger Kraftwerke AG (VKW), Bregenz, 

Austria [49], are assigned to the 48 load nodes. The temporal resolution of the load data is  

15 min. In addition, electrical energy supply data of solar panels are required in the same 

resolution, the same period, and the same geographic area as the household load data. The 

data has been recorded at a photovoltaic power plant owned by VKW [49]. It consists of  

270 modules with a total module surface area of about 460 m² and a nominal output power of 

62.1 kWp [50]. For the simulations, the PV systems at the load nodes are scaled to typically 

residential dimensions of 3, 5, and 6 kWp [51]. The location in the grid is chosen randomly, 

attaching a PV system of 3 kWp at node 37, of 5 kWp at node 21, and of 6 kWp at node 24. 

The total photovoltaic peak power accounts for 14 kWp. This corresponds to approximately 

one quarter of the maximum load noted at the slack node over the course of the simulation 

period, and in the absence of photovoltaics, which is a feasible penetration rate for low-voltage 

distribution grids [5], [52]. 

 

2.2.3 Battery Parameters 

Different BESSs with capacities ranging from 4 to 16 kWh and maximum charging and 

discharging power ranging from 2.5 to 8.5 kW are chosen to evaluate their impact on the grid. 

As distributed storages, two types of a top-rated Li-ion battery [53], the sonnenBatterie system 

[54], have been selected according to the manufacturer’s recommendation for an annual 

household consumption. At node 21 and 24, the type “eco 8/6” [55] is used since the annual 

household consumption is about 4000 kWh. For the household at node 37, an “eco 8/4” [55] 

is used since the annual consumption is less than 3300 kWh. 

 

If a single, central storage is used at node 19 as grid-balancing measure, it is assumed that its 

capacity and maximum charging and discharging power equals the sum of all selected 

distributed BESSs. The possible depth of discharge (DOD), the charging and discharging 

converter efficiency 𝜂con as well as the battery efficiency 𝜂bat for all batteries are taken from 

the original system and assumed to be constant. The round-trip efficiencies (converter–

battery–converter) for the presented systems are about 90%. Detailed battery parameters 

used for the battery model and the optimization (cf. section 2.1.1) are listed in Table 2. 
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Table 2: Node position and corresponding specification (type, capacity, depth of discharge (DOD), battery 

efficiency, nominal power and converter efficiency) for the integrated BESSs in the simulation study. 

Node Model Battery characteristic Converter characteristic 

  Capacity 

(kWh) 

DOD 

(%) 

Efficiency 

𝜂bat (%) 

Power 

𝑃AC,max (kW) 

Efficiency 

𝜂con  (%) 

37 eco 8/4 4 100 98 2.5 96 

21, 24 eco 8/6 6 100 98 3.0 96 

19 - 16 100 98 8.5 96 

 

Using the nominal AC power, the constant battery loss 𝑃loss can be estimated by calculating 

the average value between losses for charging, 𝑃loss,in, and discharging, 𝑃loss,out:  

 
𝑃loss =

(𝑃AC,max ∙
(1 − 𝜂bat)

2
) ∙ 𝜂con

⏞                  

𝑃loss,in

+ (𝑃AC,max ∙
(1 − 𝜂bat)

2
) ∙

1
𝜂con

⏞                  

𝑃loss,out

2
 

Eq. 9 

 

Note that (1-𝜂bat) has to be divided by two in Eq. 9 since 𝜂bat describes the round-trip efficiency 

of the battery. When executing the simulation, the battery is assumed to be fully charged at 

𝑡 =  𝑡𝑜. Results for the optimization are achieved using MATLAB’s linprog routine [56]. 

 

2.2.4 Evaluation Criteria 

Three evaluation criteria are used as quality measure: the peak-to-average power ratio 

(PAPR), the maximum voltage drop/rise, and the distribution losses. PAPR is a measure for 

the maximum occurring power at the slack node. Voltage drop/rise is analyzed at each 

individual node as its deviation has to be in a certain range based on standards for electrical 

grids [57]. The distribution losses are the cumulative losses of the investigated grid section. 

 

By improving the PAPR, it is possible to achieve a more uniform energy transmission reducing 

the need for expensive operating reserves. The voltage drop/rise is of interest for the grid 

operator to ensure that the voltage is kept within defined limits [57]. In addition to saving 

resources, both the utility company and the grid operator, are interested in reducing the 

distribution losses. 

 

PAPR defines the maximum occurring apparent power, 𝑆slack,max, in relation to the average 

apparent power, 𝑆slack,avg, at the slack node during the observed period of 𝑛 discrete time 

steps, 𝑡 ∈ 𝜏 = {𝑡0,… , 𝑡𝑛}, and is defined as: 
 

 
PAPR= 

𝑆slack,max
𝑆slack,avg

=
max
𝑡∈𝜏

𝑆slack(𝑡)

∑ 𝑆slack(𝑡)
𝑡𝑛
𝑡=𝑡0

|𝜏|

 
Eq. 10 

 

The maximum voltage drop/rise can be determined by the relation of the maximum or minimum 

occurring voltage of all nodes during the observed period in relation to the constant slack node 

voltage, 𝑈slack. It is given by: 
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 𝑈d/r = 
max
𝑡∈τ

|𝑈slack −𝑈node(𝑡)|

𝑈slack
 Eq. 11 

 

The cumulative distribution losses are determined by the sum of all occurring distribution 

losses of the investigated grid section during the whole simulation period, 
 

 𝐸losses = 
1

2
∑∑∫ 𝑅𝑒(𝐼𝑖,𝑗

2 (𝑡) ∙ 𝑍𝑖,𝑗) 𝑑𝑡
𝑡𝑛

𝑡0

⏞              

losses for node 𝑖 to 𝑗

𝑗∈𝐶𝑖𝑖∈𝑁

 Eq. 12 

 

where 𝑁 represents the total set of nodes and, 𝐶𝑖, the set of all neighboring nodes to node 𝑖. 

𝐼𝑖,𝑗(𝑡) and 𝑍𝑖,𝑗 are the current and impedance, respectively, at the branch connecting node 𝑖 

and 𝑗. Only effective losses are taken into account. Since by permutation of 𝑖 and 𝑗, every 

branch would be accounted for twice, the total sum has to be divided in half. 

 

 

3 Results 
 

The grid simulation is conducted from 8 June 2016, 12:00 to 15 June 2016, 12:00 for the 

reference case without a BESS, as well as for a central BESS and multiple, distributed BESSs 

at load nodes with PV systems. The assignments of loads, as well as PV and battery 

parameters are unmodified throughout the simulations. This allows comparable results 

regarding load, distribution losses, and voltage levels. Detailed numerical results achieved can 

be found in Appendix. Investigated configurations (incentives, BESS position) are listed in 

Table 1. Fig. 2 depicts all incentives. All incentives are shown normalized to one, while the 

dashed line represents the zero line. The autonomous optimization attempts to charge the 

battery at the valleys and discharge it at spikes. Hence, the more valleys and spikes the 

incentive has, the more often the battery is in an active state. The timing of the incentives 

influences the battery's reaction rate; therefore, short resolutions are important for a fast 

response. The time resolution of the conducted simulation is 15 minutes. 
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Fig. 2: Used and normalized incentives to drive the optimization of the BESS for a one-week period:  

EXAA day-ahead spot-market price for electricity (RTP); total grid load at the slack node (GRID);  

photovoltaic generation (PV); individual household loads (LOAD) for household at node 21, 24,  

and 37 comprising a distributed storage system; individual total household consumption including  

load and photovoltaic generation (SELF) for household at node 21, 24, and 37 comprising a  

distributed storage system. 

 

Fig. 3 shows the PAPR, the voltage drop/rise as well as the corresponding distribution losses 

for all incentives and battery configurations. The PAPR is reduced in all operation modes with 

respect to the reference case except for RTP driven operation. In all modes other than RTP 

driven operation, while the maximum apparent power at the slack node, 𝑆slack,max, reduces, 

the mean value, 𝑆slack,mean, remains nearly the same since the required household load has to 

be transferred and the storages work as buffer capacities. Conversely, using RTP as incentive 

results in additional peak loads with respect to the reference case. In general, the cumulative 

distribution losses are nearly unaffected by introducing a central storage, whereas distributed 

storages lead to higher distribution losses for all incentives. RTP-driven operation of distributed 

storages exhibits the highest distribution losses. The voltage drop/rise as well as the maximum 

and minimum voltages indicate that regardless of the incentive, central storages do not 

deteriorate or significantly improve the power quality in terms of voltage deviation. 
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Fig. 3: Peak-to-average power ratio, voltages and cumulative distribution losses for all  

configurations for a single, central storage (c) and multiple, distributed storages (d).  

The superscript * refers to normed quantities  with respect to the reference case, i.e.  

𝐸losses
∗ =

𝐸losses
𝐸losses,REF

,  

analogously for 𝑈d/r and PAPR. 

 

Fig. 4 illustrates the power duration curves and Fig. 5 the voltage duration curves for all 

incentives and configurations. It shows the number of hours in which the feed-in apparent 

power is above a certain level. Better utilization of the grid is reflected by a straight curve. For 

both graphs, it can be seen that local, grid-motivated incentives (GRID, PV central) perform 

best, followed by consumer-motivated incentives (PV distributed, LOAD, SELF), the reference 

case, and RTP incentives. Simulations of a central storage, except in the RTP-driven case, 

have a positive impact on the voltage level and lead to a more uniform voltage distribution. 
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Fig. 4: Power duration curve for a single, central storage (c) and multiple,  

distributed storages (d) driven by different incentives. 
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Fig. 5: Voltage duration curve for a single, central storage (c) and  

multiple, distributed storages (d) driven by different incentives. 

 

 

4 Discussion 
 

Results in section 3 show that local, grid-motivated incentives (GRID, PV central) help to 

improve the power quality in terms of the PAPR in the case of a single, central storage as well 

as in case of multiple, distributed storages. The distributed storages perform slightly better 

(15.0% reduction in PAPR for GRID distributed) than a central storage (14.5% reduction in 

PAPR for GRID central and 11.9% for PV central). This can be attributed to a higher probability 

that one of the distributed storages is close to a peak load at any given time as compared to a 

single, central storage. Hence, lower distribution losses occur for the transferred balancing 

energy. In addition, the cumulative distribution losses for distributed storages are higher than 

those for a central storage during the subsequent battery charging. In turn, the average slack 

node power is increased, which also leads to a further reduction of the PAPR. The voltage 

drop/rise is marginally better for central storages, however, for distributed storages, no 

significant change in the voltage quality is observed. 

 

Consumer-motivated incentives (PV distributed, LOAD, SELF) for distributed storages lead to 

an improvement of the PAPR. This is because these incentives at least partially incorporate 

loads contributing to the total grid load. Combining household loads and photovoltaic 

generation reduces the PAPR most significantly (12.2% for SELF). This can be attributed to 
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the fact that the incentive represents more features of the total grid load than the individual 

photovoltaic or household loads. By applying photovoltaic generation as an incentive (PV), 

PAPR is improved by 11.4%; with individual household loads as the incentive (LOAD), the 

improvement is 7.0%. The voltage quality in terms of voltage drop/rise deteriorates only 

insignificantly compared to the reference. 

 

Furthermore, we have proven that RTP incentives, as often used in literature, worsen the 

PAPR by 14.6% for a single, central storage and by 15.1% for multiple, distributed storages. 

This happens since supraregional markets do not reflect the local grid load situation. The 

voltage drop/rise for a single, central storage remains almost the same; for multiple, distributed 

storages, a deterioration of 1.8% of the minimum voltage compared to the minimum reference 

voltage is observed. 

 

For distributed storages, the distribution losses of the investigated grid section increased. This 

can be attributed to the transmission of energy to the distributed storage resulting in higher 

losses compared to a feed-in-tied storage. This energy transfer also accounts for the greater 

deviation in voltage drop/rise of distributed storages compared to a central storage. 

 

The round-trip efficiency used for the models was about 90%, which can only be achieved by 

very well-tuned systems. Lower round-trip efficiencies would increase the impact on the grid 

quality during discharging, due to the lower power output compared to systems that are more 

efficient. 

 

 

5 Conclusion 
 

In this work, the grid-balancing capability of a central battery storage was compared to 

distributed battery storage systems in a simulation study. Based on different incentives, the 

battery mode (charge, discharge, or idle) was determined by optimization. The simulation is 

based on a real grid topology in combination with smart meter household load data and 

distributed photovoltaics generation data. Evaluation criteria are the peak-to-average power 

ratio at the feed-in node, the maximum voltage drop/rise at all nodes of the grid, and the 

cumulative distribution losses of the investigated grid section. 

 

The investigated cases show that incentives that reflect more general conditions, such as 

supraregional markets, may even deteriorate power quality. Thus, we proved that it is crucial 

to assess the impact of grid-balancing measures on all voltage levels of the electrical grid. 

Hence, to improve the power quality of low-voltage distribution grids by the use of 

autonomously optimized devices, local, grid-motivated and consumer-motivated incentives are 

preferable. In these cases, both a single, central storage as well as multiple, distributed 

storages have power quality related advantages in low-voltage distribution grids; the former 

configuration performs better in terms of the voltage drop/rise and shows lower distribution 

losses, the latter in terms of the reduction of the peak-to-average power ratio. Therefore, efforts 

should be made for grid and household load assessment, which account for contributions from 

distributed generation, in order to ensure grid reliability in the future. 
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Appendix 
 

Table 3: PAPR, power, and loss results achieved for a single, central storage (c) and multiple,  

distributed storages (d) driven by different incentives. The superscript * refers to normed  

quantities with respect to the reference case, i.e. 𝐸losses
∗ =

𝐸losses
𝐸losses,REF

 and analogously for PAPR. 

  𝑆avg 

(kVA) 

𝑆min 

(kVA) 

𝑆max 

(kVA) 

PAPR 

(–) 

PAPR∗ 

(–) 

𝐸losses 

(kWh) 

𝐸losses
∗  

(–) 

REF  26.21 4.06 57.88 2.21 1.00 38.76 1.00 

RTP 
c 26.24 −3.84 66.41 2.53 1.15 38.97 1.01 

d 26.31 −3.62 66.85 2.54 1.15 50.38 1.30 

GRID 
c 26.14 12.56 49.35 1.89 0.85 38.50 0.99 

d 26.16 12.51 49.12 1.88 0.85 41.29 1.07 

PV 
c 26.38 2.80 51.32 1.95 0.88 38.83 1.00 

d 26.42 2.88 51.68 1.96 0.89 45.03 1.16 

LOAD d 26.42 0.37 54.26 2.05 0.93 44.72 1.15 

SELF  d 26.63 3.10 51.68 1.94 0.88 43.35 1.12 

 

 

Table 4: Voltage results achieved for a single, central storage (c) and multiple,  

distributed storages (d) driven by different incentives. The superscript * refers  

to normed quantities with respect to the reference case, i.e. 

 𝑈d/r 
∗ =

𝑈d/r 
 

𝑈d/r,REF 
 . 

  𝑈avg 

(V) 

𝑈min 

(V) 

𝑈max 

(V) 

𝑈d/r 
∗  

(–) 

REF  228.67 222.35 233.87 1.00 

RTP 
c 228.67 222.29 233.87 1.01 

d 228.66 218.44 236.39 1.51 

GRID 
c 228.67 222.40 233.82 0.99 

d 228.67 222.35 234.68 1.00 

PV 
c 228.67 222.40 233.82 0.99 

d 228.65 220.77 233.72 1.21 

LAOD d 228.65 221.99 235.87 1.05 

SELF  d 228.64 221.86 233.53 1.06 

 


