
Simultaneous Localization and Mapping in
Repeating Environments

by

Thomas Ånensen

25/05-2018

Supervisor:

Kristian Muri Knausgård

Course:

MAS-500 Spring 2018

This master's thesis is carried out as a part of the education at the

University of Agder and is therefore approved as a part of this

education. However, this does not imply that the University answers

for the methods that are used or the conclusions that are drawn.

University of Agder, 2018

Faculty of Technology and Science

Department of Engineering

Acknowledgements

After �ve years of studying at the University of Agder, this thesis will signify as my �nal
task carried out on the university. As such, I would like to thank the Faculty of Technology
& Science for all the knowledge I have gained throughout the years of studying at Campus
Grimstad. Additionally, I would like to thank Kristian Muri Knausgård for the encouragement
and guidance he provided during the making of this thesis.

Further, I would like to thank Ste�en Solberg at KVS Technologies for reaching out to me and
making this whole thesis happen. In addition to orchestrating this thesis, he has helped me
during the entire thesis, either over phone or in person. This was greatly appreciated. I would
also like to thank Tor Morten Finnestad at KVS Technologies. Without his technical support,
the SPURV would still be driven with a Ethernet cable sticking out of it.

Next, my gratitude goes out to my friends and peers from both in and outside of the university.
Without your support, friendship and occasional bad jokes, the last few years would have been
impossible to get through.

Lastly, my everlasting gratitude goes to my loving family. Without them I would still struggle
to �nd my way in life. Their guidance and support means the world to me.

Thomas Ånensen

i

Abstract

In this thesis, the GMapping and Hector SLAM algorithms are going to be compared to �nd the
best solution to solve the simultaneous localization and mapping problem. Robot Operating
System are going to be the proprietary system form this thesis, and both GMapping and Hector
SLAM have compatible programs for Robot Operating System. A testing area at the University
of Agder Campus Grimstad was de�ned, and both algorithms were tested using the same testing
data. The testing area consisted of areas with repeating elements and few features. The test
data was collected by driving a SPURV Research robot through the testing route, recording
necessary data. The data was played back in such a way that the algorithms interpreted it as
if the SPURV was driving live. The results can be seen in Figure 1 and shows that GMapping

and Hector SLAM are both viable solutions for the simultaneous localization and mapping
problems tested in this thesis. Figure 1 a) and c) are the results of GMapping and Figure 1 b)
and d) are the results of Hector SLAM. Both solutions depict the testing area well.

(a) (b)

(c) (d)

Figure 1: Comparison of maps generated from GMapping (left) vs Hector SLAM (right)

ii

Contents

List of Figures v

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Project Description . 1
1.2 Objective . 2
1.3 Concept . 2

2 Theory 3
2.1 Robot Operating System . 3
2.2 Mathematical Representation of SLAM . 4
2.3 Bayes Filter with Static State . 6
2.4 Occupancy Grid Mapping . 8
2.5 Scan Matching . 12
2.6 Particle Filters . 13
2.7 Monte Carlo Localization . 18
2.8 Kalman Filter . 19
2.9 Extended Kalman Filter . 21
2.10 Rao-Blackwellization . 23
2.11 Feature-Based FastSLAM 1.0 and 2.0 . 24

2.11.1 FastSALM 1.0 with Known Correspondence 24
2.11.2 FastSLAM 2.0 . 28

2.12 Grid-Based FastSLAM . 32

3 Method 36
3.1 Working Method . 36
3.2 Selection of SLAM Approach . 37
3.3 Software . 38
3.4 GMapping . 38
3.5 Hector SLAM . 39
3.6 Why GMapping and Hector SLAM? . 39
3.7 The SPURV Robot . 40
3.8 Test 1 - Initial Testing . 41

3.8.1 Test Plan for Test 1 . 41

iii

3.8.2 Execution of Test 1 . 43
3.9 Test 2 - Controlling SPURV, Identify Topics . 46

3.9.1 Test Plan for Test 2 . 46
3.9.2 Execution of Test 2 . 47

3.10 Fixing the Odometry of the SPURV . 51
3.11 Test 3 - Verify Odometry, Driving Speed . 53

3.11.1 Test Plan for Test 3 . 53
3.11.2 Execution of Test 3 . 53

3.12 Test 4 - GMapping Parameter Test . 58
3.12.1 Test Plan for Test 4 . 58
3.12.2 Execution of Test 4 . 58

3.13 Test 5 - Odometry Investigation . 61
3.13.1 Test Plan for Test 5 . 61
3.13.2 Execution of Test 5 . 61

3.14 Test 6 - Hector SLAM . 62
3.14.1 Test Plan for Test 6 . 62
3.14.2 Execution of Test 6 . 63

3.15 Test 7 - MATLAB Plot of Odometry . 65
3.15.1 Test Plan for Test 7 . 65
3.15.2 Execution of Test 7 . 65

3.16 Test 8 - Repeating, Featureless Environment . 66
3.16.1 Test Plan for Test 8 . 66
3.16.2 Execution of Test 8 . 66

4 Results 68
4.1 Test 1 - Initial Testing . 68
4.2 Test 2 - Controlling SPURV, Identify Topics . 69
4.3 Test 3 - Verify Odometry, Driving Speed . 70
4.4 Test 4 - GMapping Parameter Test . 71
4.5 Test 5 - Odometry Investigation . 75

4.5.1 Results of Test 5 Part 1 . 75
4.5.2 Results of Test 5 Part 2 . 76
4.5.3 Results of Test 5 Part 3 . 76

4.6 Test 6 - Hector SLAM . 77
4.7 Test 7 - MATLAB Plot of Odometry . 80
4.8 Test 8 - Repeating, Featureless Environment . 83

4.8.1 Results of Test 8 Part 1 . 83
4.8.2 Results of Test 8 Part 2 . 84

5 Discussion 86
5.1 Test 1 - Initial Testing . 86
5.2 Test 2 - Controlling SPURV, Identify Topics . 87
5.3 Test 3 - Verify Odometry, Driving Speed . 88
5.4 Test 4 - GMapping Parameter Test . 90
5.5 Test 5 - Odometry Investigation . 92
5.6 Test 6 - Hector SLAM . 94
5.7 Test 7 - MATLAB Plot of Odometry . 97

iv

5.8 Test 8 - Repeating, Featureless Environment . 98
5.9 Evaluation of the Testing Method . 100

6 Conclusions and Recommendations 101

7 Further Work 103

Bibliography 104

A All Results from Test 5 Part 2 A - 1

B Setting Up ROS Workspace "gmapping_ws" B - 1

C Building the ROS Package in "gmapping_ws" C - 1

D Testing of "slam_gmapping" D - 1

E Wired Connection to the SPURV E - 1

F Wireless Connection to the SPURV F - 1

v

List of Figures

1 Comparison of maps generated from GMapping (left) vs Hector SLAM (right) . ii

1.1 SPURV Responder robot in a tunnel [9] . 2

2.1 ROS module diagram [17] . 4
2.2 Example of a grid map [23] . 8
2.3 Example of an inverse sensor measurement model [23] 11
2.4 Algorithm for an inverse measurement model of a range �nder [23] 11
2.5 Particle distribution after passing through a non-linear function [23] 13
2.6 Target and proposal distribution with the resulting samples [22] 15
2.7 Particle �lter algorithm [22] . 16
2.8 Roulette wheel approach to resampling [22] . 16
2.9 Stochastic universal sampling [22] . 17
2.10 Algorithm for low variance resampling [22] . 17
2.11 Monte Carlo localization algorithm [22] . 18
2.12 Kalman �lter algorithm [23] . 21
2.13 Extended Kalman �lter linearisation [23] . 21
2.14 Extended Kalman �lter algorithm [23] . 23
2.15 FastSLAM 1.0 algorithm [23] . 27
2.16 FastSLAM algorithm for occupancy grid maps [23] 32

3.1 Illustration of the V-model working method [11] 36
3.2 SPURV Research used in thesis . 40
3.3 Sketch showing the placement of sensors on the SPURV 40
3.4 Sketch showing the coordinate system used on the SPURV, as seen from the rear 41
3.5 Depiction of the route used to perform Test 1 43
3.6 Continuation of the route used in Test 1 . 44
3.7 Function in .bashrc to set correct the IP-addresses to the SPURV 45
3.8 Function in .bashrc to set the IP addresses back to the local computer 48
3.9 Launch �le used in test 2 for pointcloud_to_laserscan algorithm in ROS 49
3.10 Launch �le used in test 2 for GMapping in ROS 50
3.11 Launch �le used in test 3 for pointcloud_to_laserscan with highlighted alterations 55
3.12 Launch �le used in test 3 for GMapping in ROS 56
3.13 Launch �le used in test 3 for GMapping with highlighted alterations 58
3.14 Debris found in the Long Hallway during Test 4 60
3.15 Debris found in the Long Hallway during Test 5 61
3.16 Launch �le used in test 6 for hector_slam algorithm in ROS 63

vi

3.17 MATLAB code used to plot /odom topic from rosbags 65
3.18 Testing area used in the �rst part of Test 8 . 66
3.19 Featureless area used in the second part of Test 8 67

4.1 Map generated using GMapping from the second test 68
4.2 Transition between /cloud topic to /scan topic 69
4.3 Map generated using GMapping from the second test 69
4.4 Maps generated using GMapping from the third test 70
4.5 Maps generated using GMapping from the fourth test 71
4.6 Maps generated using GMapping from the parameter test 72
4.7 Maps generated using GMapping from the parameter test continuation 73
4.8 Maps generated using GMapping resulting from Test 5 part 1 75
4.9 Maps generated using GMapping resulting from Test 5 part 2 76
4.10 Maps generated using GMapping resulting from Test 5 part 3 76
4.11 Maps generated using Hector SLAM . 77
4.12 Maps generated using Hector SLAM continuation 78
4.13 Plot of the odometry of the SPURV during testing from MATLAB 80
4.14 Plot of the odometry of the SPURV during testing from MATLAB continuation 81
4.15 Results of Test 8 Part 1 with Hector SLAM, GMapping and odometry 83
4.16 Results of Test 8 Part 2 with Hector SLAM, GMapping and odometry 84
4.17 Position estimate from Hector SLAM during Test 8 Part 2 85

5.1 Map generated using GMapping from the second test 87
5.2 Maps generated using GMapping from the third test 88
5.3 Comparison of maps from Test 2 and Test 3 . 89
5.4 Comparison of maps generated by GMapping at brisk walking speed from Test

3 and Test 4 . 90
5.5 Comparison of maps generated by GMapping at slow walking speed from Test 3

and Test 4 . 90
5.6 Best resulting map using GMapping from Test 4 91
5.7 Map showcasing the "spiral" tendency from Test 4 91
5.8 Map showcasing the "spiral" tendency from Test 5 92
5.9 Maps generated using GMapping resulting from Test 5 93
5.10 Comparison of maps generated from GMapping (left) vs Hector SLAM (right) . 94
5.11 Comparison of maps generated from GMapping (left) vs Hector SLAM (right)

continuation . 95
5.12 Comparison of maps generated by GMapping (left) and Hector SLAM (right) . . 96
5.13 Plot of odometry vs map generated in GMapping from Test 2 97
5.14 Plot of odometry vs map generated in GMapping from Test 5 Part 1 97
5.15 Results of Test 8 with Hector SLAM and GMapping 98
5.16 Position estimates coming from Test 8 from odometry and Hector SLAM 99

A.1 All test results from Test 5 Part 2 . A - 1
A.2 All test results from Test 5 Part 2 continuation A - 2

D.1 Map produced by logged data . D - 2

E.1 Rear panel of the SPURV Research . E - 1

vii

E.2 Functions in .bashrc to set correct IP-addresses E - 2
E.3 Entries in the ssh con�g �le . E - 2
E.4 Alias used in .bashrc . E - 3

F.1 Finding neighbouring networks in WinBox . F - 1
F.2 Set-up of the wireless connections of the SPURV F - 2

viii

List of Tables

3.1 Testing parameters investigated in Test 4 . 60

4.1 Testing parameters used in Test 4 . 74
4.2 Parameters used in Test 5 part 1 . 75
4.3 Parameters used in Test 5 part 2 . 76
4.4 Parameters used in Test 5 part 3 . 77
4.5 Hector SLAM results . 79
4.6 Corresponding data to the odometry plots . 81
4.7 Error between starting point and end point from Test 7 82
4.8 Error between starting point and end point from Test 8 Part 1 84
4.9 Error between starting point and end point from Test 8 Part 2 85

5.1 GMapping vs Hector SLAM . 95
5.2 GMapping vs Hector SLAM . 96

A.1 Test Parameters used in Test 5 Part 2 . A - 1

ix

List of Abbreviations

EKF: Extended Kalman �lter
KF: Kalman �lter
MCL: Monte Carlo localization
PF: Particle �lter
Pose: Position and orientation
ROS: Robot Operating System
SLAM: Simultaneous localization and mapping

x

Chapter 1

Introduction

KVS Technologies has developed an unmanned ground vehicle called "SPURV". This vehicle
is going to reduce the risks associated with �re �ghting in tunnels, underground structures
and large industrial sites and buildings. Currently, the robot is operated by teleoperation,
however, the company would like the robot to perform tasks autonomously. Using Simultaneous
Localization and Mapping, abbreviated SLAM [23], the robot is going to be able to generate a
map in unknown environments and navigate using this map. This, in turn, is going to give the
�re �ghters vital information about what to expect, which will make their job easier and safer.

KVS Technologies are collaborating with UiA and UiS to make the SPURV autonomous. The
student at UiA is looking into mapping and localization in repeating environments while the
student at UiS looks into path planning and obstacle avoidance. To make the SPURV able
to autonomously perform the required task of independently driving through the repeating
environments, both path planning, obstacle avoidance, localization and mapping has to be
present and working in real-time.

1.1 Project Description

The "SPURV" robot is going to use Simultaneous Localization and Mapping to generate a map
of an unknown environment with repeating features. This technique enables the SPURV to
generate a map of an unknown environment and use this map to localize itself. Sensors are
going to be used to construct the map and localize the robot. In this thesis, di�erent SLAM
algorithms are going to be researched and compared against each other. This was done to
�nd the best algorithm suited for repeating environments with few features. The following
requirements has been set for the algorithms:

• The algorithms must be compatible with Robot Operating System, as this is the system
used on the SPURV

• Operational speed is going to be walking speed

• The algorithm needs to be able to store the maps created by the mapping process

• The algorithm must be able to map large areas

1

1.2. OBJECTIVE CHAPTER 1. INTRODUCTION

• The algorithm should work for areas which can not be reached with GPS signals

The robot is going to be used in road tunnels with both straight and jagged walls. Therefore,
the algorithms has to be able to handle environments with repeating elements and few features.
The algorithms researched in this thesis does not have to take smoke �lled environments into
account. When the robot starts the �rst time in a new unknown environment, the reference
coordinate system of the robot is de�ned by the position and orientation of the robot when it
is switched on. This will also be the reference coordinate system used in the map created by
the SLAM algorithms.

1.2 Objective

This thesis is going to account for the theory needed to understand the probabilistic nature of
navigating in an unknown environment, creating a map and localizing the robot simultaneously.
Additionally, the programming in Robot Operating System and the tests conducted to verify the
performance of the Simultaneous Localization and Mapping algorithm is going to be described.
The results of the tests are going to be discussed before giving a conclusion and recommendation
on further work that can be done. Di�erent SLAM algorithms are going to be tested to �nd
the best approach for repeating environments. All �gures used in this thesis has been either
made for the thesis or used with permission from the respective author(s).

1.3 Concept

The robot is equipped with a Lidar laser range �nder, two cameras and odometry based on
Ackerman steering. The primary sensor used during the Simultaneous Localization and Map-
ping procedure is the laser range �nder. This sensor will provide a good �eld of view to detect
features of the surrounding environment which is going to be crucial when constructing the
map. In Figure 1.1 the SPURV robot is shown in a typical tunnel environment in which it
should be able to operate. SLAM was chosen as the preferred method of navigation due to a
lack of pre made maps of the areas where the SPURV would be operating.

Figure 1.1: SPURV Responder robot in a tunnel [9]

2

Chapter 2

Theory

Simultaneous Localization and Mapping, abbreviated SLAM, is a method in which a robot can
navigate in unknown territory and still retain a certain accuracy regarding its own position
and heading. This is necessary when the robot is going to autonomously follow a certain path,
for instance in a map. In this way, the robot can operate in an environment where there is no
prior knowledge of said environment. This is especially useful when there is no opportunity of
placing beacons or landmarks in the environment nor use GPS for localization of the robot.
Precise localization is crucial for a robot to be truly autonomous and operate without human
interaction.

The challenging part of the SLAM problem is to be able to localize the position and orientation
of the robot while a map is being constructed. To be able to construct a good map, the
position at which the sensor observations was taken has to be known. At the same time, it is
challenging to estimate the placement of the robot accurately without a map. In other words,
a good map is needed to estimate the position and orientation of the robot, and an accurate
position and orientation is needed to construct a map. Because of this strong dependency
between localization and mapping, the SLAM problem is often referred to as a "chicken-and-
egg" problem [4] [18] [23].

2.1 Robot Operating System

Robot Operating System, or ROS, is an open source framework for writing robot software [12].
It consists of a collection of libraries and tools which can be used to simplify the creation of
complex and robust robot algorithms to control a wide array of robots. ROS is designed from
the ground up to support collaborative robotics software development. The ROS system enables
each developer group to have the ROS code repository on their own server [14]. Although it
would be easier to have all repository stored on a single server, the advantage is that each group
gets control over their own code. Additionally, each group gets the recognition and credit they
deserve based on their work. This is one of the greatest strength of ROS. By enabling the
development of software to be modular, the community can reuse the modules that is need for
the individual projects. This enables the ROS software to be shared, used and expanded upon
by the ROS community.

3

2.2. MATHEMATICAL REPRESENTATION OF SLAM CHAPTER 2. THEORY

Figure 2.1: ROS module diagram [17]

In a nutshell, ROS is a collection of packages and libraries. Figure 2.1 shows some of the
packages found in ROS. The ROS node plays a great part in the ROS system. In the nodes,
most of the programs are executed. Information to or from the di�erent nodes are communicated
using ROS messages, rostopics, rosservice and rosparameters, to name a few ways information
is transferred between the nodes. Additionally, information can be recorded and played back
using the rosbag package. RViz and rqt are great development tools, where RViz lets the user
visualize the sensor data and rqt can be used to plot data published by ros topics and visualize
the systems running in ROS [16].

2.2 Mathematical Representation of SLAM

In this thesis, the main approach to the SLAM problem would be the 2D SLAM problem.
The reason was due to the Lidar laser range sensor, which would be the main sensor used for
SLAM. The Lidar scans in the 2D plane, and thus creating a 2D map seemed sensible. To be
able to create 3D maps, additional sensors were needed,for instance, to measure the di�erence
in elevation or generate 3D point clouds of the environment.

To be able to describe the SLAM problem in probabilistic terminology, some terms has to
be de�ned. These ideas and concepts are based on chapter 5.6.4 Terminology in the book
Introduction to Autonomous Mobile Robotics [18] and chapter 5.1 Introduction in the book
Probabilistic Robotics [23].

Position and orientation will hereafter be denoted as pose. xt is here de�ned as the pose at
time t. For a 2D planar motion, this will typically be presented as a three-dimensional vector
xt = [x, y, θ]T where x and y is the Cartesian coordinates and θ is the heading. The path from
the initial pose, x0, to the current pose, xt, is given as

4

CHAPTER 2. THEORY 2.2. MATHEMATICAL REPRESENTATION OF SLAM

x0:t = {x0, x1, x2, ..., xt} (2.1)

where

x0:t : poses of the robot from time t = 0 to time t = t

Now the control data has to be de�ned. These data are usually encoder readings from the
wheels of the robot or the control commands given to the robot. The control data at time t
will be denoted as ut. This gives the control data from time t = 0 to t = t as

u0:t = {u0, u1, u2, ..., ut} (2.2)

where

u0:t : control data to the robot from time t = 0 to time t = t

Next, the map of the environment at time t is de�ned as mt, giving the map from t = 0 to t = t
as

m0:t = {m0,m1,m2, ...,mt} (2.3)

where

m0:t : map of the environment from time t = 0 to time t = t

Lastly, the measurement data at time t is de�ned as zt, giving the measurements from t = 0 to
t = t as

z0:t = {z0, z1, z2, ..., zt} (2.4)

where

z0:t : measurement from time t = 0 to time t = t

As robot pose, control data, map and measurement data now is de�ned, the SLAM problem
can be de�ned as well. The goal is to get a probability distribution of the pose x and map m
given control data u and observations from the measurement z. There are two main forms of
SLAM, the full SLAM problem and the online SLAM problem.

The online SLAM problem is based on �nding the momentary pose xt of the robot as well as
the full map m given the measurement z1:t and the control data u1:t. This is given as

5

2.3. BAYES FILTER WITH STATIC STATE CHAPTER 2. THEORY

p(xt,m | z1:t, u1:t) (2.5)

where

xt : momentary pose of the robot
m : map
z1:t : observations from measurement from time t = 1 to t = t
u1:t : control data from time t = 1 to t = t

Here, p(xt,m | z1:t, u1:t) can be informally translated to "the probability distribution of the
current pose xt and map m given all observations z1:t and all control data u1:t".

In contrast to the online SLAM problem, the full SLAM problem calculates the posterior of the
entire path of the robot, along with the map. This takes the entire path x1:t into consideration
and not just the latest pose xt. The full SLAM problem is given as

p(x1:t,m | z1:t, u1:t) (2.6)

where

x1:t : entire path of the robot
m : map
z1:t : observations from measurement from time t = 1 to t = t
u1:t : control data from time t = 1 to t = t

In this thesis, the focus is going to be on the online SLAM problem.

Lastly, two more concepts has to be introduced: the motion model and the measurement model.
The motion model is the probability distribution of the current pose xt given the previous pose
xt−1 and the latest control data ut. This is expressed as p(xt | xt−1, ut). The measurement
model is the probability distribution of the current observation zt given the current robot pose
xt and the map m. This is expressed as p(zt | xt,m).

2.3 Bayes Filter with Static State

For problems in robotics which can be formulated as a problem with binary states that does
not change over time, the Bayes �lter with static state can be applied to address such problems.
This technique will be applied later when discussing occupancy grid mapping. This theory is
based on the concepts described in chapter 4.2 Binary Bayes Filters with Static State in the
book Probabilistic Robotics [23]. The belief of the state can be represented as a function of only
the measurement.

belt(x) = p(x | z1:t, u1:t) = p(x | z1:t) (2.7)

The binary state has two possible values, x or x where

6

CHAPTER 2. THEORY 2.3. BAYES FILTER WITH STATIC STATE

belt(x) = 1− belt(x) (2.8)

Commonly, this belief is set up as a log odds ratio. The odds of a state x is de�ned as the ratio
of the probability of this event divided by the probability of its negate

p(x)

p(x)
=

p(x)

1− p(x)
(2.9)

the log odds is therefore the logarithm to this expression

l(x) = log

(
p(x)

1− p(x)

)
(2.10)

The belief can be reinstated by using the following expression

belt(x) = 1− 1

1 + exp{l(x)}
(2.11)

By applying Bayes rule on equation (2.7), the following expression is derived

p(x | z1:t)
Bayes

=
p(zt | x, z1:t−1) p(x | z1:t−1)

p(zt | z1:t−1)
(2.12)

Then, by applying the Markov assumption, the expression becomes

p(x | z1:t)
Markov

=
p(zt | x) p(x | z1:t−1)

p(zt | z1:t−1)
(2.13)

Bayes rule can be applied on the measurement model p(zt | x), giving

p(zt | x)
Bayes

=
p(x | zt) p(zt)

p(x)
(2.14)

and by combining equation (2.13) and (2.14), the following expression is found

p(x | z1:t) =
p(x | zt) p(zt) p(x | z1:t−1)

p(x) p(zt | z1:t−1)
(2.15)

By using the same methodology, the expression for x can be found

p(x | z1:t) =
p(x | zt) p(zt) p(x | z1:t−1)

p(x) p(zt | z1:t−1)
(2.16)

Dividing (2.15) by (2.16) leads to cancellation of di�cult to calculate probabilities, resulting in

7

2.4. OCCUPANCY GRID MAPPING CHAPTER 2. THEORY

p(x | z1:t)

p(x | z1:t)
=
p(x | zt)
p(x | zt)

p(x | z1:t−1)

p(x | z1:t−1)

p(x)

p(x)

=
p(x | zt)

1− p(x | zt)
p(x | z1:t−1)

1− p(x | z1:t−1)

1− p(x)

p(x)

(2.17)

Now, by applying the log odds ratio of the belief, the following expressing is the result

lt(x) = log

(
p(x | zt)

1− p(x | zt)

)
+ log

(
p(x | z1:t−1)

1− p(x | z1:t−1)

)
+ log

(
1− p(x)

p(x)

)
= log

(
p(x | zt)

1− p(x | zt)

)
− log

(
p(x)

1− p(x)

)
+ lt−1(x)

(2.18)

and with prior initial belief

l0(x) = log

(
1− p(x)

p(x)

)
(2.19)

2.4 Occupancy Grid Mapping

Figure 2.2: Example of a grid map [23]

Given a known pose of the robot, occupancy grid mapping is a good way to address the problem
of generating consistent maps from noisy and uncertain measurement data. The general idea
of the occupancy grid is to represent the world with a grid of evenly spaced binary variables,
also known as grid cells [23]. One of the big advantages of this mapping method is that there
is no need for a feature detector, as the map is constructed using sensor data. An example of
such a map representation is shown in Figure 2.2. The concepts described here are based on
chapter 9 Occupancy Grid Mapping in the book Probabilistic Robotics [23].

There are three underlying assumptions when using occupancy grid mapping:

8

CHAPTER 2. THEORY 2.4. OCCUPANCY GRID MAPPING

1. The area that corresponds to a cell is either completely free or occupied

2. The world is static

3. The cells are independent of each other

In this section, there is a restrictive assumption that the robot poses are known. This problem
is also known as mapping with known poses.

The main goal of the occupancy grid mapping is to calculate the map based on the available
data

p(m | z1:t, x1:t) (2.20)

where

m : map
z1:t : set of measurements up to time t
x1:t : path of the robot with known poses

Let mi denote the grid cell with index i, and the map is a set of these gird cells

m = {mi} (2.21)

Each grid cell, mi, has a binary value attached to it: "1" for occupied space or "0" for free
space. The standard occupancy grid approach is to calculate the map for a collection of separate
problems. The reason for this is due to the computation load of calculating the posterior
probability for a single map. This computational load would be too high, making the calculation
of the map infeasible. The resulting sub problems of the map are to determine

p(mi | z1:t, x1:t) (2.22)

for all grid cells mi. The posterior of the map is approximated to the product of its marginals

p(m | z1:t, x1:t) =
∏
i

p(mi | z1:t, x1:t) (2.23)

The occupancy grid problem is now a binary estimation problem with static state. A binary
Bayes �lter with static state can be applied, and this �lter does not need a prediction step, only
the correction step. The procedure in chapter 2.3 will be applied for the probability distribution
of a grid cell, p(mi | z1:t, x1:t). By using the log odds representation, the following expression is
found

lt,i = log

(
p(mi | z1:t, x1:t)

1− p(mi | z1:t, x1:t)

)
(2.24)

9

2.4. OCCUPANCY GRID MAPPING CHAPTER 2. THEORY

giving the probability

p(mi | z1:t, x1:t) = 1− 1

1 + exp{lt,i}
(2.25)

The constant l0 is the prior of occupancy represented as a log odds ratio

l0 = log

(
p(mi = 1)

p(mi = 0)

)
= log

(
p(mi)

1− p(mi)

)
(2.26)

By applying the Bayes �lter with static state on the expression in the parenthesis in equation
(2.24), the following term results

p(mi | z1:t, x1:t)

1− p(mi | z1:t, x1:t)
=

p(mi | zt, xt)
1− p(mi | zt, xt)

p(mi | z1:t−1, x1:t−1)

1− p(mi | z1:t−1, x1:t−1)

1− p(mi)

p(mi)

(2.27)

and by putting it in log odds form, and explotiong the fact that the products of logarithms
turns into a sum, the �nal expression results

l(mi | z1:t, x1:t) =

l(mi | zt, xt)︸ ︷︷ ︸
inverse sensor model

+ l(mi | z1:t−1, x1:t−1)︸ ︷︷ ︸
recursive term

− l(mi)︸ ︷︷ ︸
prior

(2.28)

or in short

lt,i = inv_sensor_model(mi, xt, zt) + lt−1,i − l0 (2.29)

The expression log
(

p(mi|zt,xt)
1−p(mi|zt,xt)

)
is called the inverse sensor model. In contrast to the mea-

surement model, the inverse sensor model gives the probability distribution of the map given
the measurement and current pose, not the other way around. In other words, the inverse
sensor model can be used to generate a map based on measurement and pose only. Equation
(2.27) and (2.28) are found in the lecture Grid Maps from Cyrill Stachniss [21] as the book
Probabilistic Robotics [23] did not go too much in detail on how to derive the �nal expression
of grid mapping with known poses.

10

CHAPTER 2. THEORY 2.4. OCCUPANCY GRID MAPPING

Figure 2.3: Example of an inverse sensor measurement model [23]

Figure 2.4: Algorithm for an inverse measurement model of a range �nder [23]

As an example, a simplistic model can be set up for a range �nder, as shown in Figure 2.4.
Here, α is the width of an obstacle, β is the width of the sensor beam, r is the range to the
centre of mass, k is the beam index and φ is the heading to the measurement. The inverse
sensor model varies depending on which sensor is used. Figure 2.3 shows the e�ect of an inverse
sensor model. Here, the white grid cells represent free area, black represents occupied area and
grey represents unexplored area.

11

2.5. SCAN MATCHING CHAPTER 2. THEORY

2.5 Scan Matching

In reality, motion is quite noisy. This is something that can not be ignored as it leads to
the failure of the assumed known poses. This, in turn, leads to a faulty map. The concepts
presented here comes from a lecture by Cyrill Stchniss on Grid Maps [21]. Usually, sensors are
quite precise and can be used to correct the pose estimate. Scan matching tries to incrementally
align either two scans, or a map to a scan, without revisiting the past map. The overall goal of
the scan matcher is to maximize the likelihood of the current pose based on the previous pose
and the map knowledge.

x∗t = argmax
xt

{p(zi | xt−1,mt−1) p(xt | ut−1, x
∗
t−1)} (2.30)

There exists a variety of di�erent scan matching techniques. As there are too many methods
to describe all of them in this section, some of the di�erent ways to achieve scan matching will
be listed instead:

• Iterative closest point (ICP)

• Scan-to-scan

• Scan-to-map

• Map-to-map

• Feature-based

• RANSAC (good for outlier rejection)

• Correlative matching

12

CHAPTER 2. THEORY 2.6. PARTICLE FILTERS

2.6 Particle Filters

Figure 2.5: Particle distribution after passing through a non-linear function [23]

The idea of the particle �lter, abbreviated PF, is to use randomly generated samples to represent
the posterior of bel(xt). Such representation is approximate, but since the PF is non-parametric,
it can represent much broader distributions than, for instance, a Gaussian. This can be illus-
trated in the following way: A robot was placed in an o�ce in a typical o�ce environment. The
robot would be unsure of the speci�c o�ce it was placed in, so it simply assumes it is placed
in an o�ce. In a Gaussian distribution the robot had to have a mean, µ, and a covariance, σ.
The mean would typically be the exact placement of the robot and the covariance would be the
uncertainty. In the Gaussian world, the robot would have to guess at which o�ce it was placed
in. However, when using the particle �lter, the robot just assumes it is placed in an o�ce. The
robot would then drive along until further observations would con�rm which exact o�ce the
robot was placed in. In other words, based on later observations, the robot could determine
where it came from. This gives the robot an edge in repeating environments.

The samples of the posterior of the particle �lter is called particles, and the particles are an
hypothesis of what the world look like at time t. This is shown in Figure 2.5. In the lower right
graph, samples are drawn from a Gaussian distribution. These samples passes through a non-
linear function in the top right graph resulting in the top left graph of the particles distributed
according to the random variable Y . The concepts and ideas presented here are gathered from
chapter 4.3 The Particle Filter from the book Probabilistic Robotics [23] and the lecture Short
Introduction to Particle Filters and Monte Carlo Localization by Cyrill Stachniss [22].

The particles are represented as a weighted set of samples

χ = {〈x[j]
t , w

[j]
t 〉}

j=1,...,J
(2.31)

where

13

2.6. PARTICLE FILTERS CHAPTER 2. THEORY

χ : set of weighted samples
x

[j]
t : state hypothesis of sample j

w
[j]
t : importance weight of sample j

and the sample posterior is represented as

p(x) =
J∑
j=1

w
[j]
t δ[j]

x (2.32)

where

δ
[j]
x : Dirac distribution at sample j

Ideally, the particles which is included in the true distribution should be kept in the set χt

x
[j]
t ∼ p(xt | z1:t, u1:t) (2.33)

As a consequence, if there is a large subset of particles populated in a dense area, the more
likely it is that the true state also lies here. This is only true if there is a high enough amount
of particles to represent the distribution. Ideally there would be an in�nite amount of samples
to represent the distribution, but this is not realizable in practice.

Next, the importance sampling principle has to be explained. The key idea is that it is possible
to use a di�erent distribution g to generate samples from f . To account for the di�erences
between g and f , a weighting is used.

w =
f

g
(2.34)

14

CHAPTER 2. THEORY 2.6. PARTICLE FILTERS

Figure 2.6: Target and proposal distribution with the resulting samples [22]

The purpose of this weighting factor is to correct the mismatch between f and g. This only
works if f(x) > 0→ g(x) > 0. This is a way to represent the target distribution f(x) using the
proposal distribution g(x). This is illustrated in Figure 2.6.

The particle �lter algorithm looks like this:

1. Sample particles using the proposal distribution

x
[j]
t ∼ π(xt | ...)

2. Compute the importance weight

w
[j]
t =

target(x
[j]
t)

proposal(x
[j]
t)

3. Resampling: Draw sample i with probability w
[i]
t and repeat J times

15

2.6. PARTICLE FILTERS CHAPTER 2. THEORY

Figure 2.7: Particle �lter algorithm [22]

The particle �lter algorithm is shown in Figure 2.7.

As for resampling, two approaches are going to be discussed here. One is the roulette wheel

approach, and the other is the stochastic universal sampling.

Figure 2.8: Roulette wheel approach to resampling [22]

Figure 2.8 shows an illustration of the roulette wheel approach. This is a binary search algorithm
which selects one sample at a time. The higher the weight of the sample, the bigger is the slot

16

CHAPTER 2. THEORY 2.6. PARTICLE FILTERS

of the "roulette wheel". This is also show in Figure 2.8 where the area for w1 is signi�cantly
smaller than the area for w2. The binary search approach has a complexity of O(J log J).

Figure 2.9: Stochastic universal sampling [22]

Figure 2.10: Algorithm for low variance resampling [22]

In contrast to the roulette wheel approach of the binary search, the stochastic universal sampling
uses low variance sampling. Figure 2.9 illustrates this approach. Once again, the weights of

17

2.7. MONTE CARLO LOCALIZATION CHAPTER 2. THEORY

the samples determine how "large" of an area the sample get at the roulette table. However,
instead of selecting one sample at the time, this roulette selects all the samples to be resampled
in one turn. This gives this approach a complexity of O(J). This approach has a much lower
complexity than the binary search approach. Figure 2.10 shows the low variance resampling
algorithm.

2.7 Monte Carlo Localization

Monte Carlo localization, abbreviated MCL, is a popular localization algorithm which uses
a particle �lter to represent the belief bel(xt). The MCL algorithm supports multi-modal
distributions and is not bound to a limited parametric subset of distributions. This gives it the
ability to represent complex multi-modal distributions and even blend them using Gaussian-
style distributions. The concepts and ideas presented here are gathered from chapter 8.3 Monte

Carlo Localization in the book Probabilistic Robotics [23].

Figure 2.11: Monte Carlo localization algorithm [22]

The main di�erence of the MCL and the standard particle �lter is how the proposal distribution
and weighting is done. In contrast to the particle �lter discussed in the previous section, the
proposal distribution of the MCL uses the motion model p(xt | xt−1, ut). The weighting factor

w
[j]
t is calculated by the measurement model p(zt | xt,m). Besides these two alterations, the

algorithm works in the same way as the particle �lter. The Monte Carlo localization algorithm
is shown in Figure 2.11. In this �gure, the red underline signi�es the di�erences between the
particle �lter and Monte Carlo localization.

18

CHAPTER 2. THEORY 2.8. KALMAN FILTER

2.8 Kalman Filter

The Kalman �lter, abbreviated KF, is a Bayes �lter used on linear Gaussian systems. The
belief at time t is represented by two parameters; the mean µt and the covariance Σt. The
concepts and ideas presented here are gathered from chapter 3.2 The Kalman Filter in the
book Probabilistic Robotics [23].

The Kalman �lter assumes:

1. Gaussian distribution and noise

2. Linear motion and measurement model

xt = Atxt−1 +Btut + εt

zt = Ctxt + δt
(2.35)

In a nutshell, the Kalman �lter has two steps; a prediction step and a correction step. The
prediction step utilizes a linear variant of the motion model and added Gaussian noise to predict
the states of the system.

xt = Atxt−1 +Btut + εt (2.36)

where

At : n× n square matrix, n is the dimension of state vector xt
Bt : n×m matrix, m is the dimension of control vector ut
εt : Gaussian random vector to model uncertainty in state transition

Equation (2.36) shows the prediction state of the Kalman �lter. The random Gaussian state
transition vector εt is used to model the uncertainty of the state transition and has a covariance,
here denoted, Rt, and a mean µ at zero. Gaussian techniques share the idea that the belief can
be represented by the multivariate normal distribution

p(x) = det (2πΣ)−
1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.37)

By applying equation (2.36) in the multivariate normal distribution, equation (2.37), the fol-
lowing state transition equation can be derived

p(xt | ut, xt−1) = det (2πRt)
− 1

2 exp

{
−1

2
(xt − Atxt−1 −Btut)

TR−1
t (xt − Atxt−1 −Btut)

}
(2.38)

As there is now an expression for the prediction state of the Kalman �lter, the correction state
has to be de�ned. The linear measurement model is used in the same way to get the �nal
expression of the measurement probability p(zt | xt).

19

2.8. KALMAN FILTER CHAPTER 2. THEORY

zt = Ctxt + δt (2.39)

where

Ct : matrix of size k × n, k is the dimension of measurement vector zt
δt : measurement noise

δt is a multivariate Gaussian with zero mean and variance, here denoted, Qt. Once more,
by combining equation (2.39) and the multivariate normal distribution, equation (2.37), the
following expression for the correction step is determined:

p(zt | xt) = det (2πQt)
− 1

2 exp

{
−1

2
(zt − Ctxt)TQ−1

t (zt − Ctzt−)

}
(2.40)

Finally, to ensure that the �nal belief is a Gaussian, the initial belief has to be Gaussian.

bel(x0) = p(x0) = det (2πΣ0)−
1
2 exp

{
−1

2
(x0 − µ0)TΣ−1

0 (x0 − µ0)

}
(2.41)

Lastly, the Kalman gain Kt has to be computed. This variable determines how much of the
measurement zt is going to be incorporated in the new state estimate. The Kalman gain is
calculated by

Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1 (2.42)

where

Σ̄t : predicted covariance

The new µt is calculated using this equation

µt = µ̄t +Kt(zt − CtQt)
−1 (2.43)

where

µ̄t : predicted mean

The new covariance is calculated by using

Σt = (I −KtCt)Σ̄t (2.44)

where

I : identity matrix

20

CHAPTER 2. THEORY 2.9. EXTENDED KALMAN FILTER

Figure 2.12: Kalman �lter algorithm [23]

The full Kalman �lter algorithm is shown in Figure 2.12.

2.9 Extended Kalman Filter

The di�erence between the Kalman �lter and the extended Kalman �lter, abbreviated EKF, is
that the EKF uses local linearisation to handle non-linear distributions. Here, the assumption
is that the state transition probability and measurement probability is governed by non-linear
functions

xt = g(ut, xt−1) + εt (2.45)

zt = h(xt) + δt (2.46)

Figure 2.13: Extended Kalman �lter linearisation [23]

21

2.9. EXTENDED KALMAN FILTER CHAPTER 2. THEORY

The key idea of the EKF is to use the �rst order Taylor expansion to linearise the non-linear
function at the mean of the Gaussian. The concepts and ideas presented here are gathered
from chapter 3.3 The Extended Kalman Filter in the book Probabilistic Robotics [23]. This is
illustrated in Figure 2.13. Note that the top left �gure contains the "true" representation of
the posterior of the non-linear distribution in grey. This distribution was constructed using a
particle �lter. In contrast to this "true" distribution, the Gaussian posterior of the EKF, with
its mean, is shown in black.

The Taylor expansion makes a linear approximation of a non-linear function g from the value
of the derivative of g, namely g′. g′ is found by partially di�erentiating g

g′(ut, xt−1) =
∂g(ut, xt−1)

∂xt−1

(2.47)

For Gaussians, the most likely state at the linearisation time is the posterior mean µt−1. g can
therefore be approximated to its value µt−1 and the control data ut, giving

g(ut, xt−1) ≈ g(ut, µt−1) + g′(ut, µt−1)︸ ︷︷ ︸
=: Gt

(xt−1 − µt−1)

= g(ut, µt−1) +Gt(xt−1 − µt−1)

(2.48)

where

Gt : Jacobian of g

By writing this as a Gaussian, the transition probability is approximated as

p(xt |ut, xt−1) ≈

det(2πRt)
− 1

2 exp

{
−1

2
[xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]T ...

... R−1
t [xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]

} (2.49)

The same linearisation process is used to linearise the function h. The only di�erence is the
linearisation point. Now µ̄t is used as the linearisation point as it is the most likely state of the
robot at the time the linearisation is happening. This gives

h(xt) ≈ h(µ̄t) + h′(µ̄t)︸ ︷︷ ︸
=: Ht

(xt − µ̄t)

= h(µ̄t) +Ht(xt − µ̄t)
(2.50)

where

h′(t) : ∂h(xt)
∂xt

Ht : Jacobian of h

giving the �nal expression

22

CHAPTER 2. THEORY 2.10. RAO-BLACKWELLIZATION

p(zt |xt) ≈

det (2πQt)
− 1

2 exp

{
−1

2
[zt − h(µ̄t)−Ht(xt − µ̄t)]T Q−1

t [zt − h(µ̄t)−Ht(xt − µ̄t)]
}

(2.51)

The Kalman gain is now computed by

Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1 (2.52)

The Kalman gain is used to calculate the mean and covariance of the Gaussian distribution

µt = µ̄t +Kt(zt − h(µ̄t)) (2.53)

Σt = (I −Kt Ht)Σ̄t (2.54)

Figure 2.14: Extended Kalman �lter algorithm [23]

This results in the EKF algorithm shown in Figure 2.14.

2.10 Rao-Blackwellization

The key idea of Rao-Blackwellization is to use factorization to exploit dependencies between
variables using the formula for conditional probability, which can be found in chapter 2.2 Basic
Concepts in Probability in the book Probabilistic Robotics [23] at the top of page 16. The
concepts and ideas presented here are gathered from chapter 13 The FastSLAM Algorithm

in the book Probabilistic Robotics [23] and a lecture by Cyrill Stachniss called FastSLAM �

Feature-Based SLAM with Particle Filters [19]. The formula for conditional probability states:

p(a | b) =
p(a, b)

p(b)

⇒ p(a, b) = p(b | a) p(a)

(2.55)

23

2.11. FEATURE-BASED FASTSLAM 1.0 AND 2.0 CHAPTER 2. THEORY

By applying this to the SLAM posterior, the following expression is found

p(x0:t,m1:M | z1:t, u1:t) = p(x0:t | z1:t, u1:t)︸ ︷︷ ︸
path posterior

p(m1:M | x0:t, z1:t)︸ ︷︷ ︸
map posterior

(2.56)

The map entries are conditionally independent of each other as long as the robot poses are
known. This gives the expression

p(x0:t,m1:M | z1:t, u1:t) = p(x0:t | z1:t, u1:t)
M∏
i=1

p(mi | x0:t, z1:t) (2.57)

This expression can be exploited as the term containing the map posterior can be calculated
for each individual map feature. This enables algorithms to update small pieces of the map, in
contrast to updating the entire map at once.

2.11 Feature-Based FastSLAM 1.0 and 2.0

Before discussing the FastSLAM algorithm for occupancy grid maps, the feature-based approach
is going to be accounted for �rst. Here, the FastSLAM 1.0 algorithm will be investigated and
the di�erences between FastSLAM 1.0 and FastSLAM 2.0 discussed. The concepts and ideas
presented here are gathered from chapter 13 The FastSLAM Algorithm in the book Probabilistic
Robotics [23] and a lecture by Cyrill Stachniss called FastSLAM � Feature-Based SLAM with

Particle Filters [19].

2.11.1 FastSALM 1.0 with Known Correspondence

The FastSLAM 1.0 utilizes a particle �lter for the pose estimate of the robot and two-dimensional
EKFs for the map features. The approach described in this section assumes known data asso-
ciation.

p(x0:t,m1:M | z1:t, u1:t) = p(x0:t | z1:t, u1:t)︸ ︷︷ ︸
Solved with particle �lter

similar to MCL

M∏
i=1

p(mi | x0:t, z1:t)︸ ︷︷ ︸
Solved with two-dimensional

EKFs

(2.58)

This gives the particles

Y
[k]
t =

〈
x

[k]
t , µ

[k]
1,t,Σ

[k]
1,t, ..., µ

[k]
N,t,Σ

[k]
N,t

〉
(2.59)

where

[k] : index of particle

24

CHAPTER 2. THEORY 2.11. FEATURE-BASED FASTSLAM 1.0 AND 2.0

x
[k]
t : path estimate for the robot of particle k

µ
[k]
n,t,Σ

[k]
n,t : mean and covariance of the Gaussian for the n-th feature of particle k

When calculating the particle set Yt at time t, the previous set Yt−1 at time t−1 is needed. The
particle set from the previous time step Yt−1 is used with the new control data ut, measurement
zt and the feature correspondence ct to estimate the new particle set. The update for FastSLAM
1.0 is done in several steps

1. Extend the path posterior by sampling a new pose for each individual sample from the
motion model

x
[k]
t ∼ p(xt | x[k]

t−1, ut) (2.60)

2. Update features based on observation or no observation. This step is updating the mean
µ

[k]
n,t−1 and the covariance Σ

[k]
n,t−1 of the map features. This update has two states which

depends on whether the feature is observed, n = ct, or if the feature is unobserved, n 6= ct.
If the feature is unobserved, meaning n 6= ct, the mean and covariance remains the same
after the update.

〈
µ

[k]
n,t,Σ

[k]
n,t

〉
=
〈
µ

[k]
n,t−1,Σ

[k]
n,t−1

〉
(2.61)

However, if the feature is observed, meaning n = ct, the feature is updated using the
EKF.

p(mct | x1:t, z1:t, c1:t) =

η p(zt | xt,mct , ct) p(mct | x1:t−1, z1:t−1, c1:t−1)
(2.62)

η is here a normalizer. The probability p(mct | x1:t−1, z1:t−1, c1:t−1) is a Gaussian rep-

resented by the mean µ
[k]
n,t−1 and covariance Σ

[k]
n,t−1 which is already known. This, in

turn, mean that the only thing needed to be calculated is p(zt | xt,mct , ct). This can be
approximated to

h(mct , x
[k]
t) ≈ h(µ

[k]
ct,t−1, x

[k]
t)︸ ︷︷ ︸

=: ẑt
[k]

+h′(x
[k]
t , µ

[k]
ct,t−1︸ ︷︷ ︸

=: H
[k]
t

(mct − µ
[k]
ct,t−1)

= ẑt
[k] +H

[k]
t (mct − µ

[k]
ct,t−1)

(2.63)

By using the same methodology as the EKF, the mean and covariance can be calculated.
The Kalman gain has to be computed as to regulate the amount of sensor observation
used in the new estimate.

K
[k]
t = Σ

[k]
ct,t−1H

[k]T
t (H

[k]
t Σ

[k]
ct,t−1H

[k]T
t +Qt)

−1 (2.64)

µct,t = µct,t−1 +K
[k]
t (zt − ẑt[k]) (2.65)

25

2.11. FEATURE-BASED FASTSLAM 1.0 AND 2.0 CHAPTER 2. THEORY

Σ
[k]
ct,t = (I −K [k]

t H
[k]
t)Σ

[k]
ct,t−1 (2.66)

3. Resample using importance weights. The importance weight factor w
[k]
t is

w
[k]
t =

target(x
[k]
t)

proposal(x
[k]
t)

(2.67)

The target distribution takes into account the latest measurements zt and correspondence
ct giving the expression

p(x
[k]
1:t | z1:t, u1:t, c1:t) (2.68)

Assuming the set of particles Yt−1 being distributed as p(x1:t−1 | z1:t−1, u1:t−1, c1:t−1), the
proposal distribution is

p(x1:t | z1:t−1, u1:t, c1:t−1) = p(x
[k]
t | xt−1, ut) p(x

[k]
1:t−1 | z1:t−1, u1:t−1, c1:t−1) (2.69)

This gives an importance weight factor of

w
[k]
t =

p(x
[k]
1:t | z1:t, u1:t, c1:t)

p(x
[k]
1:t | z1:t−1, u1:t, c1:t−1)

= η p(zt | x[k]
t , ct)

(2.70)

The last expression in equation (2.70) is derived from the transformation of the numerator

p(x
[k]
1:t | z1:t, u1:t, c1:t)

= η p(zt | x[k]
1:t, z1:t−1, u1:t, c1:t) p(x

[k]
1:t | z1:t−1, u1:t, c1:t)

= η p(zt | x[k]
1:t, c1:t) p(x

[k]
1:t | z1:t−1, u1:t, c1:t)

(2.71)

To calculate p(zt | x[k]
t , ct) from equation 2.70, further transformations are necessary.

w
[k]
t = η

∫
p(zt | mct , x

[k]
t , ct) p(mct | x

[k]
t , ct) dmct

= η

∫
p(zt | mct , x

[k]
t , ct) p(mct | x

[k]
t , ct)︸ ︷︷ ︸

∼N (µ
[k]
ct,t−1,Σ

[k]
ct,t−1)

(2.72)

FastSLAM uses a linear approximation of equation 2.72, giving

w
[k]
t ≈ η |2πQ[k]

t |−
1
2 exp

{
−1

2
(zt − ẑt[k])TQ

[k]−1
t (zt − ẑt[k])

}
(2.73)

26

CHAPTER 2. THEORY 2.11. FEATURE-BASED FASTSLAM 1.0 AND 2.0

with covariance

Q
[k]
t = H

[k]T
t Σ

[k]
n,t−1H

[k]
t +Qt (2.74)

Figure 2.15: FastSLAM 1.0 algorithm [23]

The FastSLAM 1.0 algorithm is depicted in Figure 2.15.

27

2.11. FEATURE-BASED FASTSLAM 1.0 AND 2.0 CHAPTER 2. THEORY

2.11.2 FastSLAM 2.0

FastSLAM 2.0 uses a lot of the same approaches and techniques as FastSLAM 1.0, but they
mainly di�er in the proposal distribution. The di�erence is that FastSLAM 2.0 utilizes the
measurement zt when sampling the pose xt. This yields good results as the sensors are usually
more accurate than the noisy motion model. As a result, FastSLAM 2.0 draws the pose x

[k]
t

from the posterior

x
[k]
t ∼ p(xt | x[k]

1:t−1, u1:t, z1:t, c1:t) (2.75)

This distribution takes the measurement zt and correspondence ct into consideration for the
estimate of the posterior of the pose x

[k]
t , which leads to an increase in complexity of the math-

ematical deduction of the distribution. These derivations are based on chapter 13.4 Improving
the Proposal Distribution from the book Probabilistic Robotics [23].

First, the expression in equation (2.75) is rewritten with known distributions, such as the
motion and measurement models. This gives the expression

p(xt | x[k]
1:t−1, u1:t, z1:t, c1:t)

Bayes
=

p(zt | xt, x[k]
1:t−1, u1:t, z1:t−1, c1:t) p(xt | x[k]

1:t−1, u1:t, z1:t−1, c1:t)

p(zt | xt, x[k]
1:t−1, u1:t, z1:t−1, c1:t)

= η[k] p(zt | xt, x[k]
1:t−1, u1:t, z1:t−1, c1:t) p(xt | x[k]

1:t−1, u1:t, z1:t−1, c1:t)

Markov
= η[k] p(zt | xt, x[k]

1:t−1, u1:t, z1:t−1, c1:t) p(xt | x[k]
t−1, ut)

= η[k]

∫
p(zt | mct , xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t) p(mct | xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t) dmct ...

... p(xt | x[k]
t−1, ut)

Markov
= η[k]

∫
p(zt | mct , xt, ct)︸ ︷︷ ︸
∼N (zt;h(mct ,xt),Qt)

p(mct | x
[k]
1:t−1)︸ ︷︷ ︸

∼N (mct ;µct,t−1,Σct,t−1)

dmct p(xt | x[k]
t−1, ut)︸ ︷︷ ︸

∼N (xt;g(x
[k]
t−1,ut),Rt)

(2.76)

As it it stands, equation 2.76 has no closed form solution. This is due to the non-linear term h.
By linearising the expression through a �rst order Taylor expansion, the terms becomes linear.

h(mct , xt) ≈ ẑt
[k] +Hm(mct − µ

[k]
ct,t−1) +Hx(xt − x̂t[k]) (2.77)

where

ẑt : h(µ
[k]
ct,t−1, x̂t)

x̂t : g(x
[k]
t−1, ut)

Hm : ∇mct
h(mct , xt)|xt=x̂t[k]; mct=µ

[k]
ct,t−1

Hx : ∇xth(mct , xt)|xt=x̂t[k]; mct=µ
[k]
ct,t−1

28

CHAPTER 2. THEORY 2.11. FEATURE-BASED FASTSLAM 1.0 AND 2.0

By using this assumption, equation (2.76) is a Gaussian with the following parameters

Σ[k]
xt =

[
HT
xQ

[k]−1
t Hx +R−1

t

]
(2.78)

µ[k]
xt = Σ[k]

xtH
T
xQ

[k]−1
t (zt − ẑt[k]) + x̂t

[k] (2.79)

where

Q
[k]
t : Qt +HmΣ

[k]
ct,t−1H

T
m

Further, the convolution theorem provides a closed form solution for this linearised approxima-
tion.

N (zt; ẑt
[k] +Hxxt −Hxx̂t

[k], Q
[k]
t) (2.80)

Now, equation (2.76) is a product of equation (2.80) and the rightmost term in equation (2.76),
the normal distribution N (xt; x̂t

[k], Rt). This product written in Gaussian form gives

p(xt | x[k]
1:t−1, u1:t, z1:t, c1:t) = η exp

{
−P [k]

t

}
(2.81)

P
[k]
t =

1

2

[
(zt − ẑt[k] −Hxxt −Hxx̂t

[k])TQ
[k]−1
t (zt − ẑt[k] −Hxxt −Hxx̂t

[k]) ...

...+ (xt − x̂t[k])TR−1
t (xt − x̂t[k])

] (2.82)

The mean and covariance of this Gaussian are equivalent to the minimum of P
[k]
t an its curva-

ture. They can be found by calculating the �rst and second derivative of P
[k]
t .

∂P
[k]
t

∂xt
= −HT

xQ
[k]−1
t (zt − ẑt[k] −Hxxt −Hxx̂t

[k]) +R−1
t (xt − x̂t[k])

= (HT
xQ

[k]−1
t Hx +R−1

t)xt −HT
xQ

[k]−1
t (zt − ẑt[k] −Hxx̂t

[k])−R−1
t x̂t

[k]

(2.83)

∂2P
[k]
t

∂x2
t

= HT
xQ

[k]−1
t Hx +R−1

t (2.84)

The covariance Σ
[k]
xt is obtained by taking the inverse of the second derivative.

Σ[k]
xt =

[
HT
xQ

[k]−1
t Hx +R−1

t

]−1

(2.85)

The mean µ
[k]
xt is found by setting the �rst derivative to zero.

29

2.11. FEATURE-BASED FASTSLAM 1.0 AND 2.0 CHAPTER 2. THEORY

µ[k]
xt = Σ[k]

xt

[
HT
xQ

[k]−1
t (zt − ẑt[k] −Hxx̂t

[k]) +R−1
t x̂t

[k]
]

= Σ[k]
xtH

T
xQ

[k]−1
t (zt − ẑt[k]) + Σ[k]

xt

[
HT
xQ

[k]−1
t Hx +R−1

t

]
x̂t

[k]

= Σ[k]
xtH

T
xQ

[k]−1
t (zt − ẑt[k]) + x̂t

[k]

(2.86)

Now both the mean µ
[k]
xt and covariance Σ

[k]
xt of the proposal distribution is de�ned.

When it comes to updating the map features, as with FastSLAM 1.0, unobserved features are
not updated. The posterior of these features are simply copied from the previous posterior.
When a feature is observed, the update is more intricate as compared to FastSALM 1.0.

p(mct | x
[k]
t , c1:t, z1:t)

= η p(zt | mct , xt[k], ct)︸ ︷︷ ︸
∼N (zt; h(mct ,x

[k]
t),Qt)

p(mct | x
[k]
1:t−1, z1:t−1, c1:t−1)︸ ︷︷ ︸

∼N (mct ; µ
[k]
ct,t−1,Σ

[k]
ct,t−1)

(2.87)

The non-linearity of h is once more a problem as it causes the posterior to be a non-Gaussian.
This function, however can be linearised giving the expression

h(mct , xt) ≈ ẑt
[k] +Hm(mct − µ

[k]
ct,t−1) (2.88)

This leads to the Gaussian

p(mct | x
[k]
t , c1:t, z1:t)

= η exp

{
−1

2
(zt − ẑt[k])−Hm(mct − µ

[k]
ct,t−1)Q−1

t (zt − ẑt[k])−Hm(mct − µ
[k]
ct,t−1) ...

... −1

2
(mct − µ

[k]
ct,t−1)Σct,t−1(mct − µ

[k]
ct,t−1)

} (2.89)

The new mean and covariance is found by using the standard EKF measurement update equa-
tions

K
[k]
t = Σ

[k]
ct,t−1H

T
mQ

[k]−1
t (2.90)

µct,t = µct,t−1 +K
[k]
t (zt − ẑt[k]) (2.91)

Σct,t = (I −K [k]
t Hm)Σ

[k]
ct,t−1 (2.92)

The last thing necessary is to compute the importance weight factor and resample. As with
FastSLAM 1.0, the target distribution is

30

CHAPTER 2. THEORY 2.11. FEATURE-BASED FASTSLAM 1.0 AND 2.0

p(xt | u1:t, z1:t, c1:t) (2.93)

but the proposal distribution is now given by the product

p(x
[k]
1:t−1 | z1:t−1, u1:t−1, c1:t−1) p(x

[k]
t | x

[k]
1:t−1, u1:t, z1:t, c1:t) (2.94)

This gives an importance weight factor

w
[k]
t =

p(xt | u1:t, z1:t, c1:t)

p(x
[k]
t | x

[k]
1:t−1, u1:t, z1:t, c1:t) p(x

[k]
1:t−1 | z1:t−1, u1:t−1, c1:t−1)

=
p(x

[k]
t | x

[k]
1:t−1, u1:t, z1:t, c1:t) p(x

[k]
1:t−1 | u1:t, z1:t, c1:t)

p(x
[k]
t | x

[k]
1:t−1, u1:t, z1:t, c1:t) p(x

[k]
1:t−1 | z1:t−1, u1:t−1, c1:t−1)

=
p(x

[k]
1:t−1 | u1:t, z1:t, c1:t)

p(x
[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

Bayes
= η

p(zt | x[k]
1:t−1, u1:t, z1:t−1, c1:t) p(x

[k]
1:t−1 | u1:t, z1:t−1, c1:t)

p(x
[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

Markov
= η

p(zt | x[k]
1:t−1, u1:t, z1:t−1, c1:t) p(x

[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

p(x
[k]
1:t−1 | u1:t−1, z1:t−1, c1:t−1)

= η p(zt | x[k]
1:t−1, u1:t, z1:t−1, c1:t)

(2.95)

Further transformations gives the expression

w
[k]
t = η

∫
p(zt | xt, x[k]

1:t−1, u1:t, z1:t−1, c1:t) p(xt | x[k]
1:t−1, u1:t, z1:t−1, c1:t) dxt

Markov
= η

∫
p(zt | xt, x[k]

1:t−1, u1:t, z1:t−1, c1:t) p(xt | x[k]
t−1, ut) dxt

= η

∫ ∫
p(zt | mct , xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t) p(mct | xt, x

[k]
1:t−1, u1:t, z1:t−1, c1:t) dmct

p(xt | x[k]
t−1, ut) dxt

Markov
= η

∫
p(xt | x[k]

t−1, ut)︸ ︷︷ ︸
∼N (xt; g(x̂t

[k],ut),Rt)

∫
p(zt | mct , xt, ct)︸ ︷︷ ︸

∼N (zt; g(µ
[K]
ct,t−1,Σ

[k]
ct,t−1),Qt)

p(mct | x
[k]
1:t−1, u1:t−1, z1:t−1, c1:t−1)︸ ︷︷ ︸

∼N (mct ; µ
[k]
ct,t−1,Σ

[k]
ct,t−1)

dmct dxt

(2.96)

This expression can be approximated to a Gaussian over measurements zt by linearising g. The
resulting Gaussian has mean ẑt and the covariance is

L
[t]
t = HT

xQ
−1
t Hx +HmΣ

[k]
ct,t−1H

T
m +Rt (2.97)

31

2.12. GRID-BASED FASTSLAM CHAPTER 2. THEORY

The importance weight factor for the k-th particle is given by

w
[k]
t = |2πL[t]

t |−
1
2 exp

{
−1

2
(zt − ẑt)TL[t]−1

t (zt − ẑt)
}

(2.98)

As the importance weight factor now is calculated, the resampling process is done in the same
way as FastSLAM 1.0. Despite the added complexity of FastSLAM 2.0, the advantages are
better accuracy and fewer particles needed to represent and recreate the observed environment.

2.12 Grid-Based FastSLAM

Figure 2.16: FastSLAM algorithm for occupancy grid maps [23]

The grid-based FastSLAM uses the ideas from occupancy grid mapping, Monte Carlo localiza-
tion and FastSLAM 1.0 and 2.0, which all have been discussed previously. The big advantage of
the grid-based approach is that there is no need to prede�ne landmark features. The grid-based
approach can model arbitrary types of environments, using sensor input. This algorithm is il-
lustrated in Figure 2.16. One of the key ideas of this approach is that each particle contains its
own map. Subsequently, each particle has to update their map using the mapping with known

poses approach [23].

However, to improve the performance of the algorithm, a couple of approaches can be used.
To improve the pose estimate, a scan matcher can be applied before the particle �lter. This

32

CHAPTER 2. THEORY 2.12. GRID-BASED FASTSLAM

method would maximize the likelihood of the current pose and map relative to the previous
pose and map, giving

x∗t = argmax
xt

{
p(zt | xt,mt−1) p(xt | ut, x∗t−1)

}
(2.99)

Further improvements can be yielded by using a better proposal distribution. The paper
Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters by Grisetti
et al. [4] discusses such an optimal proposal distribution. The key idea here is that the sensors
are usually more precise than the motion model. This was the same basic idea as FastSLAM
2.0 used when implementing the measurement zt into the proposal distribution. The following
distribution is a result of this:

p(xt | m[i]
t−1, x

[i]
t−1, zt, ut) =

p(zt | m[i]
t−1, xt) p(xt | x

[i]
t−1, ut)

p(zt | m[i]
t−1, x

[i]
t−1, ut)

(2.100)

The co-author of the paper [4], Cyrill Stachniss, elaborates in more detail on how to sample
from this distribution in the lecture Grid-Based FastSLAM given at University of Freiburg [20].
By de�ning the term τ(xt) as the numerator of equation (2.100):

p(xt | m[i]
t−1, x

[i]
t−1, zt, ut) =

τ(xt)︷ ︸︸ ︷
p(zt | m[i]

t−1, xt) p(xt | x
[i]
t−1, ut)

p(zt | m[i]
t−1, x

[i]
t−1, ut)

(2.101)

and given

p(zt | m[i]
t−1, x

[i]
t−1, ut) =

∫
p(zt | m[i]

t−1, xt) p(xt | x
[i]
t−1, ut) dxt (2.102)

the following expression is found by combining equation (2.101) and (2.102)

p(xt | m[i]
t−1, x

[i]
t−1, zt, ut) =

τ(xt)∫
{xt|τ(xt)>ε} τ(xt) dxt

(2.103)

where

τ(xt) : p(zt | m[i]
t−1, xt) p(xt | x

[i]
t−1, ut)

By approximating a Gaussian for τ(xt), τ(xt) ' N (µ[i],Σ[i]), the following parameters of the
Gaussian is found:

µ[i] =
1

η

K∑
j=1

xj τ(xt) (2.104)

33

2.12. GRID-BASED FASTSLAM CHAPTER 2. THEORY

Σ[i] =
1

η

K∑
j=1

(xj − µ[i])(xj − µ[i])T τ(xt) (2.105)

where

xj : points sampled around the result of the scan matcher

The integral can be approximated to the sum of discrete elements.

∫
{xt|τ(xt)>ε}

τ(xt) dxt '
K∑
j=1

τ(xj) (2.106)

As for calculating the importance weight factor w
[i]
t , it is given as

w
[i]
t =

target(xi)

proposal(xi)
∝
p(zt | m[i]

t−1, xt) p(xt | x
[i]
t−1, ut)

π(x
[i]
t | mt−1, x

[i]
t−1, zt, ut)

...

...
p(x1:t−1 | z1:t−1, u1:t−1)

π(x1:t−1 | z1:t−1, u1:t−1)

=
p(zt | m[i]

t−1, xt) p(xt | x
[i]
t−1, ut)

p(zt|m[i]
t−1,xt) p(xt|x

[i]
t−1,ut)∫

p(zt|m[i]
t−1,xt) p(xt|x

[i]
t−1,ut) dxt

w
[i]
t−1

= w
[i]
t−1

∫
p(zt | m[i]

t−1, xt) p(xt | x
[i]
t−1, ut) dxt

(2.107)

By doing some approximations, the following is found

w
[i]
t = w

[i]
t−1

∫
p(zt | m[i]

t−1, xt) p(xt | x
[i]
t−1, ut) dxt

' w
[i]
t−1

∫
{xt|τ(xt)>ε}

τ(xt) dxt

' w
[i]
t−1

K∑
j=1

τ(xj)

(2.108)

The next problem that needs to be handled is the problem with particle depletion. This problem
consists of "useful" particles being taken away during resampling. The consequence of this, is
that the "memory" of the particle �lter is greatly decreased. However, the paper by Grisetti et
al. [4] also covers this problem, and proposes an elegant solution. This is done by introducing
e�ective sample size, ηeff .

ηeff =
1∑N

i=1 (w̃[i])
2 (2.109)

34

CHAPTER 2. THEORY 2.12. GRID-BASED FASTSLAM

where

w̃[i] : normalized weight of particle i

Resampling is only done if ηeff drops below a certain threshold, for instance N
2
. A decrease

of ηeff is caused by a big di�erence in the particle weight. In other words, resampling is only
done when the weights of the particles di�er signi�cantly.

35

Chapter 3

Method

Now the necessary theory needed to understand the problems faced in this thesis has been
presented. This section of the thesis serves to explain the working method of the project and
justify the selection of SLAM algorithms. In addition, the set-up of both the Robot Operating
System workspace, and all necessary software, and the SPURV robot is going to be accounted
for. Lastly, the di�erent tests performed to verify the performance of the SLAM algorithms
are detailed. This includes the main objective of each individual test and how to set up and
execute the tests.

3.1 Working Method

Figure 3.1: Illustration of the V-model working method [11]

In this thesis, the V-model working method is going to be used. This approach is illustrated
in Figure 3.1. The method consists of �ve di�erent stages during the duration project. In the

36

CHAPTER 3. METHOD 3.2. SELECTION OF SLAM APPROACH

early stage, the requirements of the project is discussed and settled upon. These are going to
be the basis of what the �nal product is evaluated by. Next, the design phase starts. Here, the
systems and subsystems are researched and developed. This is followed by the implementation
process, where the designed systems are going to be implemented on the hardware. Lastly, the
entire system is going to be tested and evaluated based on the requirements settled upon in the
requirement phase. It is important to use su�cient time for testing at the end of the project
to ensure the quality of the developed solution.

3.2 Selection of SLAM Approach

To be able to make an informed decision of which SLAM algorithm to implement, several
di�erent approaches were researched and evaluated. Concerning the repeating environment,
multi-modal assumptions are favourable and for best possible localization, non-linear motion
models were highly desired. Multi-modal properties gives the ability to assume the placement
of the robot in several places at once. This is advantageous in repeating environments were
location ambiguities are likely to occur. In addition, the �lter needed to be able to handle large
maps and preferably using grid maps to represent arbitrary environments.

The reasoning for using grid maps is that there would be few indistinguishable landmarks or
features in a tunnel. Constructing a map using these features, and distinguishing between
them, would be infeasible due to the shear amount of features. Especially in tunnels with
jagged walls. Here there would be a lot of features and the robot would have to re-observe the
feature from the approximate same hight each time. The big advantage of grid based maps
over feature based maps is that the grid based maps can use the raw sensor input coming from
the laser range �nder to construct the map. The feature based maps would need some kind of
pre-work to de�ne, then locate, the di�erent landmarks in the environment. Typical landmarks
used in this form of mapping would be corners and jump edges. Jump edges are points in
which the measurement value jumps or decreases signi�cantly in magnitude from the previous
measurement point to the next. Additionally, corners might be di�cult to distinguish from
each other when there are a lot of them in a small area.

The three main �lter types considered was the Bayes �lters, particle �lters and graph-based
�lters. They all have strengths and weaknesses, which are going to be presented.

In the Bayes �lter family, the Kalman �lter, extended Kalman �lter, unscented Kalman �lter,
extended information �lter and sparse extended information �lter were considered. The �lters
are classi�ed as a family as they all assume a Gaussian distribution and shares the basic idea that
the belief can be represented by multivariate normal distributions. Multivariate distributions
are not suited to handle at large maps, with the exception of the sparse extended information
�lter, due to the growth of the covariance matrix. These �lters are easy to implement and are
computationally cheap compared to other �lters. However, none of these �lters are supporting
grid based mapping well nor support multi-modal assumptions. As a result of this, they were
all discarded as possible solutions.

The next set of �lters evaluated were the particle �lter family. In this family, both feature maps
and grid maps could be constructed. The FastSLAM 1.0 and FastSLAM 2.0 where considered,
but ultimately came short compared to a technique using Rao-Blackwellized particle �lter

37

3.3. SOFTWARE CHAPTER 3. METHOD

and an improved proposal distribution. This approach, as described by the paper Improved
Techniques for Grid Mapping With Rao-Blackwellized Particle Filters [4], seemed to address
all of the desired properties which were requested.

Lastly, the graph-based approaches were investigated. In this approach, constraints between
the di�erent robot poses were set up, and least squares minimization was used to determine the
optimal pose estimate. After the poses are known, the map could be constructed using mapping
with known poses and the measurement data. Utilizing robust least squares SLAM with max-

mixtures, outliers in the data set could be handled properly and multi-modal assumptions could
be supported.

In the end, there were two obvious solutions for the the SLAM in repeating environments
problem; the Rao-Blackwellized particle �lter and the robust least squares with max-mixture.
Both methods supported grid based mapping, multi-modal assumptions and non-linearities.
The particle �lter, using sensor data to generate an improved proposal distribution, gave good
results in a featureless corridor, as shown in the paper [4]. In this illustration, the robot was
driving down a straight featureless corridor and the particle distribution was spread alongside
the main direction of the corridor. This feature would be advantageous when navigating in a
tunnel, which can be quite similar to a long featureless corridor. On the basis of this, and the
aforementioned properties, the particle �lter was chosen as the best solution to the SLAM in
repeating environments problem.

3.3 Software

The main development platform in this thesis was Robot Operating System, abbreviated ROS.
The Kinetic version of ROS was utilized in this thesis. ROS runs primarily on Linux based
systems. As a consequence, Ubuntu 16.04 LTS was installed as a dual boot operating system,
in conjunction with Widows 10, to be able to run ROS properly.

3.4 GMapping

The source code for the SLAM approach detailed in the paper from Grisetti et al. [4] was
available at OpenSLAM.org [3] called GMapping. However, this code was developed for the
CARMEN system and would not work with the ROS system. An open source project of
GMapping was made for ROS at GitHub.com [2] [5]. GMapping utilizes the Rao-Blackwellized
particle �lter as described in the Theory chapter. To be able to create a local copy of the
slam_gmapping �les, the command

$ git clone https://github.com/ros-perception/slam_gmapping.git <my_path>

was utilized. By inserting this command in a terminal in Ubuntu, a local clone of the repository
was created. Here, the command "git clone https://github.com/ros-perception/slam_gmap-
ping.git" clones the repository found in the URL to a local folder. The extension "<my_-
path>" is optional, and used if the user wants to clone the repository to a certain folder. The

38

CHAPTER 3. METHOD 3.5. HECTOR SLAM

folder is speci�ed by replacing the entire term "<my_path>" with the path of the desired
folder.

Similarly, to get the openslam_gmapping �les, the same command was used only the url was
changed:

$ git clone https://github.com/ros-perception/openslam_gmapping.git <my_path>

Now, as both openslam_gmapping and slam_gmapping were available, a ROS package could
be developed. Lastly, for managing and saving maps, the map_server package was used. The
git clone approach was used once again, giving the command

$ git clone https://github.com/ros-planning/navigation.git <my_path>

3.5 Hector SLAM

The hector_slam [8] approach is described by the paper A �exible and scalable SLAM system

with full 3D motion estimation [7] by Kohlbrecher et al. This technique utilizes a laser range
�nder and has no need for odometry data. This enables the algorithm to work with only a laser
range �nder. In contrast to GMapping, the hector_slam uses only a scan matcher for the 2D
pose correction. On the other side, this simplicity makes the algorithm quick, enabling it to
make use of the quick update rate of newer Lidar systems. However, as the paper [7] states,
the algorithm is only useful in small scale scenarios and in cases where large loops does not
have to be closed. This algorithm can be obtained by using the command

$ sudo apt-get install ros-kinetic-hector-slam

in a terminal. As the hector_slam package was installed, the hector_mapping package was
used for SLAM, hector_geotiff was used to save and store the maps and hector_trajectory
_server was used to save the trajectory of the SPURV.

3.6 Why GMapping and Hector SLAM?

It was decided to compare the performance of GMapping and hector_slam in areas with
repeating elements and few features based on their popularity amongst the ROS community.
In addition, it was interesting to investigate how only a scan matcher, which hector_slam is
based on, would fare against the complex Rao-Blackwellized particle �lter utilized by GMapping.

39

3.7. THE SPURV ROBOT CHAPTER 3. METHOD

3.7 The SPURV Robot

Figure 3.2: SPURV Research used in thesis

The SPURV Research robot used in this thesis is shown in Figure 3.2. This comes equipped
with a SICK MRS1000 Lidar, which can be seen as the black cylinder on the top of the robot
in the �gure. It is also equipped with one front facing and one rear facing camera. The SPURV
has an on-board router, which can broadcast its own wireless network using the antennae seen
at the top rear of the SPURV in Figure 3.2.

Figure 3.3: Sketch showing the placement of sensors on the SPURV

40

CHAPTER 3. METHOD 3.8. TEST 1 - INITIAL TESTING

Figure 3.4: Sketch showing the coordinate system used on the SPURV, as seen from the rear

The placement of the sensors on the SPURV is shown in Figure 3.3. Here, both front and rear
cameras are in the same hight of 150 mm over the rear di�erential. The rear di�erential is
used as the basis of the coordinate system, as this is seen as the most sensible placement of
the coordinate frame when concerning Ackerman steered vehicles. The x-axis is placed along
the driving axis and the z-axis is placed orthogonal to the ground plane, pointing up. This is
illustrated in Figure 3.4 which shows the SPURV from the rear.

3.8 Test 1 - Initial Testing

3.8.1 Test Plan for Test 1

The �rst test was designed to test di�erent approaches for simultaneous localization and map-
ping. The two main algorithms that were to be tested was GMapping and hector_slam,
which have both been previously described. The testing environment consisted of large corri-
dors found on campus Grimstad at the University of Agder. The main idea of this test was to
drive the SPURV down long, relative featureless corridors which were connected in a loop. This
would test both the SLAM capabilities as well as the loop closing capabilities of each algorithm.
Additionally, this test would verify whether the algorithms could handle larger maps.

The SPURV was going to be controlled by a remote computer over the wireless network broad-
casted by the SPURV. A wireless Xbox 360 controller was going to be used to control the motion
of the SPURV. A wireless adapter connected to the remote computer could be used to transfer
the signals from the wireless controller to the computer. The test was going to be conducted on
a weekend. This was to reduce the chance of people walking around in the testing area. Several
walking people introduce dynamic obstacles during testing, which was undesired. The SPURV
was supposed to drive several laps in the corridor loop. This would make it easier to identify
whether the algorithms were able to close the loop and identify the previously discovered area
or if the maps would seem to "spiral" as the robot turning in the corridors would cause a drift
in the mapping process.

41

3.8. TEST 1 - INITIAL TESTING CHAPTER 3. METHOD

To ensure that each algorithm got the same set of data, the rosbag feature in ROS was going
to be used. This feature records all the data produced by the SPURV while driving the laps.
The recording could be played back on a later date and would produce the same data as if the
SPURV was driving live. The advantage of this approach is that the SPURV did not have to
be present after recording the data set. Each of the algorithms would perceive the data coming
from the rosbag as if it was happening in real time.

42

CHAPTER 3. METHOD 3.8. TEST 1 - INITIAL TESTING

3.8.2 Execution of Test 1

(a) Starting Point for Test 1
(b) Long Hallway, accessed by turning left from
starting point

(c) Continuation of the Long Hallway
(d) Narrow Hallway, accessed by turning left three
quarters of the way through Long Hallway

Figure 3.5: Depiction of the route used to perform Test 1

43

3.8. TEST 1 - INITIAL TESTING CHAPTER 3. METHOD

(a) Open Area 1, accessed by turning left in Narrow
Hallway

(b) Open Area 2, accessed by continuing driving
straight from Open Area 1

(c) End Point of the route, accessed by driving to
the end of Open Area 2 and turning left

Figure 3.6: Continuation of the route used in Test 1

Figure 3.5 and Figure 3.6 depicts the route used in Test 1. The SPURV robot would start at
the Starting Point, Figure 3.5 a), and driving straight ahead and then turning left. This would
lead the SPURV robot down the Long Hallway shown in Figure 3.5 b) and Figure 3.5 c). At
three quarters of the way through the Long Hallway the SPURV would turn left, entering the
Narrow Hallway shown in Figure 3.5 d). Here, by driving the SPURV to the end of the Narrow

44

CHAPTER 3. METHOD 3.8. TEST 1 - INITIAL TESTING

Hallway and then turning left, the Open Area would be accessed, as shown in Figure 3.6 a).
By driving to the end of the Open Area, Figure 3.6 a) and Figure 3.6 b), the End Point was
reached by turning to the left at the end of Open Area, as shown in Figure 3.6 c). The End
Point and the Starting Point is the same place, which means the robot could take several laps
of the same route if desired.

The test was performed using the wireless network produced by the SPURV to transmit data
from the sensors on board the SPURV. The remote computer was placed in the cubicle visible to
the right in Figure 3.5 a). The wireless Xbox controller was connected to the remote computer
using a wireless adapter and used to control the motion of the SPURV.

Figure 3.7: Function in .bashrc to set correct the IP-addresses to the SPURV

The connection to the SPURV was achieved by connecting to the network "spurv", which would
start up as the SPURV robot was turned on. Once connected to the "spurv" network, the
function "spurv_master_in_wild" was used in every terminal to set the correct IP-addresses.
This function can be seen in Figure 3.7. To check if a connection was established, the command

$ rostopic list

was entered in a terminal. This would show all produced topics. Topics are one way ROS
publishes and subscribes to data. If the topics coming from the SPURV showed up, a successful
connection had been established. To be able to use the Xbox controller, the program xboxdrv
was used. This had to be started in a separate terminal to get access to the signas coming from
the wireless controller. This was done by running the command

$ sudo xboxdrv

in a separate terminal. As the connection to the SPURV and the controller was set up, the pro-
gram "joystick_example.py" was used to control the SPURV via the wireless Xbox controller.
This program came with the SPURV and was copied from the SPURV to the remote computer.
The program was started using the command

$ roslaunch spurv_examples joystick_example.launch

in a new terminal.

45

3.9. TEST 2 - CONTROLLING SPURV, IDENTIFY TOPICS CHAPTER 3. METHOD

The remote computer was set up to record the data produced by the SPURV as it was driving
along the test route. The sensor data was recorded using the rosbag package in ROS. This
was done at the remote computer using the commands

$ mkdir -p bag�les/test_1

to create the folder "bag�les" with the sub-folder "test_1". Then the command

$ cd bag�les/test_1

was used to get to the desired directory, and then the command

$ rosbag record -a

resulted in a data set, which is called "bag" in ROS, being recorded with all the data produced
by the SPURV in the desired directory.

3.9 Test 2 - Controlling SPURV, Identify Topics

3.9.1 Test Plan for Test 2

The main goal of the second test was similar to the test described in chapter 3.8.1. However,
where the test di�ered from the previous test was in how the SPURV was going to be driven
and controlled. Another aspect of the test was how the data recorded by the rosbag was done.
In the �rst test, the SPURV was controlled with a wireless Xbox controller for the motion
commands and a camera gave primary visual feedback of the scene. As the camera feedback
proved to be ine�cient at greater distances, it was concluded that the operator was going to be
walking behind the SPURV while it performed the required test route. This would be realized
by putting the remote computer, which controls the SPURV, in a backpack and walking behind
the SPURV. It was crucial that the operator did not enter the range of the laser scanner, as
this would in�uence the data gathered from the test, possibly altering the end result.

Additionally, when recording the desired data, or "topics" which they are called in ROS, it was
important to select the topics which were relevant for the testing purpose. This could be done
by setting restrictions when recording the rosbag. By utilizing the command

$ rosbag record /topic1 /topic2 <etc.>

, the topics "topic1" and "topic2" and any additional desired topics would be recorded. For this
test, the topics needed to to play back the testing route in rviz were going to be discovered.
The package pointcloud_to_laserscan should be tested to transform the data from the
point cloud topic to the laser scan topic as both GMapping and hector_slam required the
topic "/scan" to work.

46

CHAPTER 3. METHOD 3.9. TEST 2 - CONTROLLING SPURV, IDENTIFY TOPICS

Besides these two changes from the �rst test, the test was going to be performed in the same
environment as the �rst test. The goal was ultimately to verify the performance of GMapping
and hector_slam in a repeating environment using data collected in the rosbag. The sub
goals of the test was to reliably control the SPURV robot in the narrow hallways and use
pointcloud_to_laserscan to transform the "/cloud" topic into the "/scan" topic. Addi-
tionally, the topics needed to play back the recorded data in rviz were to be discovered.

3.9.2 Execution of Test 2

In the second test, the route of the �rst test was reused. This route is described in more detail
in chapter 3.8.2 and Figure 3.5 and Figure 3.6. Contrary to the �rst test, in the second test,
the remote computer was placed in a backpack before driving the SPURV with the wireless
Xbox controller.

The connection to the SPURV was achieved by connecting to the network "spurv", which
would start up as the SPURV robot was turned on. Once connected to the "spurv" network,
the function "spurv_master_in_wild" was used in each terminal who needed to communicate
with the SPURV to set the correct IP-addresses. To check if the connection to the SPURV was
established, the command

$ rostopic list

was ran. This would show all topics available, and if the topics coming from the SPURV showed
up, a successful connection had been established. To be able to use the Xbox controller, the
program xboxdrv was used. This had to be started in a separate terminal to get access to the
signals coming from the wireless controller. This was done by running the command

$ sudo xboxdrv

in a new terminal. As the connection to the SPURV and the controller was set up, the program
"joystick_example.py" was used to control the SPURV via the wireless Xbox controller. This
program came with the SPURV, and had to be copied from the SPURV to the remote computer.
The program was started using the command

$ roslaunch spurv_examples joystick_example.launch

in a new terminal.

To �nd which topics were necessary to reproduce the test run in rviz, several di�erent runs of
the route was performed. To check the results in rviz, several panels had to be added. The
following panels were added to see validate the results of the test: "Map" panel with "Topic" set
to "/map", "TF" panel, "PointCloud2" with "Topic" set to "/cloud" and "LaserScan" panel
with "Topic" set to "/scan". In the �rst run, the topics "/cloud", "/odom" and "/tf" were
recorded. This con�guration of rviz was saved and used in subsequent tests.

The data collected for the testing in rviz was done by using the commands

47

3.9. TEST 2 - CONTROLLING SPURV, IDENTIFY TOPICS CHAPTER 3. METHOD

$ mkdir -p bag�les/test_2

$ cd bag�les/test_2

$ rosbag record -O �rst_run /cloud /odom /tf

in a terminal. These commands would create the folder "test_2", change the directory to
"∼/bag�les/test_2" and then record the topics "/cloud", "/odom" and "/tf" to this directory.
The "-O �rst_run" sets the name of the bag�le to "�rst_run". These data were checked in
rviz to check if the necessary topics were percent by starting rviz

$ rviz

and then playing the bag

$ rosbag play �rst_run

In the second run, the topics "/cloud", "/odom", "/tf" and "/tf_static" were recorded using
the command

$ rosbag record -O second_run /cloud /odom /tf /tf_static

and a third control run was recorded using

$ rosbag record -O third_run /cloud /odom /tf /tf_static

For each run, once the scripts to control the SPURV with the wireless controller and the
rosbag recording was started, the lid of the computer was shut close. The computer was
quickly placed in the backpack and the SPURV was driven through the testing route. As the
front facing camera was not used during the test, the resolution was set low to a resolution of
40×60. This was to minimize use of unnecessary bandwidth of the wireless network produced
by the SPURV on transferring data coming from the camera feed.

Figure 3.8: Function in .bashrc to set the IP addresses back to the local computer

48

CHAPTER 3. METHOD 3.9. TEST 2 - CONTROLLING SPURV, IDENTIFY TOPICS

When the necessary data from the SPURV was collected, the rest of the testing was done on
the remote computer. To be able to run ROS once the SPURV was turned o�, the function
"spurv_local_power" had to be run. This function set the ROS IPs back to the local IPs of
the computer, and is shown in greater detail in Figure 3.8. Additionally, the ROS master had
to be activated in a separate terminal using the command

$ roscore

The data collected in the rosbags were used to test out the pointcloud_to_laserscan algo-
rithm. This algorithm transforms the /cloud topic into the /scan topic, which both GMapping
and hector_slam needed. This algorithm was obtained by using the command

$ sudo apt-get install ros-kinetic-pointcloud_to_laserscan

Figure 3.9: Launch �le used in test 2 for pointcloud_to_laserscan algorithm in ROS

The lunch �le for this algorithm was located in the directory /opt/ros/kinetic/share/point-
cloud_to_laserscan/lauch and the launch �le "sample_node.launch" was altered to the one
shown in Figure 3.9. The advantage of using a launch �le was that the parameters of the script
were stored in the �le. When starting up with the launch �le, these parameters were loaded as
well.

The pointcloud_to_laserscan package had to be started before GMapping and hector_slam
could be used. This was due to the topic /cloud had to be transformed into the /scan topic
beforehand. pointcloud_to_laserscan was started using the command

$ roslauch pointcloud_to_laserscan sample_node.launch

in a new terminal.

49

3.9. TEST 2 - CONTROLLING SPURV, IDENTIFY TOPICS CHAPTER 3. METHOD

Figure 3.10: Launch �le used in test 2 for GMapping in ROS

The launch �le used to test GMapping is shown in Figure 3.10. The launch �le was based on
the jackal gmapping launch �le [6], and was named "slam_gmapping_experimental.launch".
The initial map size was set to 100×100 meters with a resolution of 2 cm per grid cell. To start
GMapping, the command

$ rosparam set use_sim_time true

was executed followed by the command

$ roslauch gmapping slam_gmapping_experimental.launch

in a new terminal. Once the rosbag was completed, the commands

50

CHAPTER 3. METHOD 3.10. FIXING THE ODOMETRY OF THE SPURV

$ mkdir map

$ cd map

and then the command

$ rosrun map_server map_saver -f test_2

was run in a new terminal to save the generated map with the name "test_2" in the directory
~/map. After this was done, the terminal running GMapping had to be shut down using ctrl+c
and restarted using the command

$ roslauch gmapping slam_gmapping_experimental.launch

or simply scrolling through previously used commands using the up and down arrow keys. This
was needed if another rosbag was to be tested. The map from the next rosbag could be saved
using the same map_server command as previously mentioned.

3.10 Fixing the Odometry of the SPURV

The second test reviled an error with the odometry of the SPURV. The error was evident when
further error testing was made. When the SPURV was driving forwards, the odometry claimed
it was driving backwards. It was suspected that the error was due to a set up error in the motor
controller, or that the wrong cables were connected to the wrong poles of the motor. This error
was in reality one and the same, and the only question was whether to �x it in software or in
hardware. To further test this hypothesis the motion command

$ rostopic pub -r 10 /commands/motor/speed std_msgs/Float64 "data: 1200.0"

was given to the SPURV. This command would publish a velocity command, forcing the motor
of the SPURV to produce 1200 rpm. The velocity command was published ten times per second,
as given by the "-r 10" term. If the command resulted in the SPURV was driving forwards, the
error would lie elsewhere. However, the SPURV ended up driving backwards, strengthening
the belief that the error was in the motor controller.

As previously mentioned, the most likely source of the error was the motor controller or the
connection to the motor. As the necessary tools to access the motor controller was not available,
the connections to the motor was switched. As the motor was a 3-pole motor, by switching any
two poles, the motor would rotate in the opposite direction.

To validate that the change had an e�ect on the error, the command

51

3.10. FIXING THE ODOMETRY OF THE SPURV CHAPTER 3. METHOD

$ rostopic pub -r 10 /cmd_vel geometry_msgs/Twist

"linear:

x: 0.4

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: 0.0"

to force the SPURV to drive with a velocity of 0.4 meters per second. The reason for using the
"/cmd_vel" topic instead of "/commands/motor/speed" topic was due to the odometry. The
odometry would not be started unless something was published on the "/cmd_vel" topic. The
odometry readings were accessed by listening to the /odom topic with the command

$ rostopic echo /odom

After changing the poles of the motor, the SPURV was driving forwards when given the com-
mand to drive with a positive velocity. Additionally, the odometry also claimed the SPURV
was driving in positive x-direction. Further testing was done using the wireless Xbox controller,
accessed with the command

$ sudo xboxdrv

in a new trminal, and the control algorithm, accessed with the command

$ roslaunch spurv_examples joystick_example.launch

in a new terminal. The test was formed to test the odometry. First, by driving along the
x-axis, which was de�ned from where the SPURV was started, the odometry for the x-direction
was tested. The readings was increasing when the SPURV was driving in positive x-direction
and decreasing when driving in negative x-direction. As the readings from the x-direction
of the odometry was sensible, the SPURV was rotated 90o clockwise to investigate the y-
axis. By driving the SPURV forwards, the odometry should give out negative numbers, and
reversing should result in positive increase. This was also the case. As the odometry now gave
sensible readings, the hypothesis that the error was with the motor controller/connections was
strengthened.

52

CHAPTER 3. METHOD 3.11. TEST 3 - VERIFY ODOMETRY, DRIVING SPEED

3.11 Test 3 - Verify Odometry, Driving Speed

3.11.1 Test Plan for Test 3

The third test should test the changes done to the odometry of the SPURV. This would be done
by using the same testing area as the �rst and second test, detailed in chapter 3.8.2, Figure 3.5
and Figure 3.6. The SPURV should take one lap in the test area and log the data using rosbag.
A wireless Xbox controller was going to be used. The remote computer sending the control
information to the SPURV should also be recording the necessary topics. The computer was
going to be placed in a backpack during the test drive. The logging of the data should be done
using only the necessary topics discovered from the second test. Additionally, the in�uence of
the driving speed was to be investigated.

GMapping was going to be used to map the area using the logged data. During the mapping
process, rviz would verify whether the odometry was corresponding with the ground truth or
not. Additionally, the quality of the map produced by GMapping in this test should be compared
with the map produced in the second test. By comparing the maps, any improvements of quality
could be a result of better odometry.

3.11.2 Execution of Test 3

In the third test, the route of the �rst test was reused. This route is described in more detail in
chapter 3.8.2 and Figure 3.5 and Figure 3.6. Similarly to the second test, in the third test, the
remote computer was placed in a backpack before driving the SPURV with the wireless Xbox
controller.

The connection to the SPURV was achieved by connecting to the network "spurv", which
would start up as the SPURV robot was turned on. Once connected to the "spurv" network,
the function "spurv_master_in_wild" was used in each terminal who needed to communicate
with the SPURV to set the correct IP-addresses. To check if the connection to the SPURV was
established, the command

$ rostopic list

was ran. This would show all topics available, and if the topics coming from the SPURV showed
up, a successful connection had been established. To be able to use the Xbox controller, the
program xboxdrv was used. This had to be started in a separate terminal to get access to the
signals coming from the wireless controller. This was done by running the command

$ sudo xboxdrv

in a new terminal. As the connection to the SPURV and the controller was set up, the program
"joystick_example.py" was used to control the SPURV via the wireless Xbox controller. This
program came with the SPURV, and had to be copied from the SPURV to the remote computer.
The program was started using the command

53

3.11. TEST 3 - VERIFY ODOMETRY, DRIVING SPEED CHAPTER 3. METHOD

$ roslaunch spurv_examples joystick_example.launch

in a new terminal. Due to the success of this method of connecting to and controlling the
SPURV, as described above, this approach was decided to used in subsequent tests when driving
the SPURV. Additionally, it was decided that the approach had been detailed well, and that it
did not need to be re-explained in every subsequent test.

As with the second test, the folder "test_3" had to be created and the data needed to be
recorded in this folder. This was done by running the commands

$ mkdir -p bag�les/test_3

$ cd bag�les/test_3

$ rosbag record -O �rst_run /cloud /odom /tf /tf_static

in a terminal. These commands would create the folder "test_3" in "bag�les", change the
directory to "sim/bag�les/test_3" and then record the topics /cloud, /odom and /tf and
/tf_static to this directory. The "-O �rst_run" sets the name of the bag�le to "�rst_run". To
investigate how the speed of the SPURV would in�uence the mapping process, a slow run of
the testing route was performed. The data from this run was stored in "test_3" by using the
command

$ rosbag record -O second_run_slow /cloud /odom /tf /tf_static

in the terminal already with the directory ~/bagfiles/test_3.

For each run, once the scripts to control the SPURV with the wireless controller and the
rosbag recording was started, the lid of the computer was shut close. The computer was
quickly placed in the backpack and the SPURV was driven through the testing route. As the
front facing camera was not used during the test, the resolution was set low to a resolution of
40×60. This was to minimize use of unnecessary bandwidth of the wireless network produced
by the SPURV on transferring data coming from the camera feed.

When the necessary data from the SPURV was collected, the rest of the testing was done on
the remote computer. To be able to run ROS once the SPURV was turned o�, the function
"spurv_local_power" had to be run. This function set the ROS IPs back to the local IPs of
the computer. Additionally, the ROS master had to be activated using the command

$ roscore

in a separate terminal.

54

CHAPTER 3. METHOD 3.11. TEST 3 - VERIFY ODOMETRY, DRIVING SPEED

Figure 3.11: Launch �le used in test 3 for pointcloud_to_laserscan with highlighted alterations

The lunch �le for this algorithm was located in the directory /opt/ros/kinetic/share/point-
cloud_to_laserscan/lauch and the launch �le "sample_node.launch" was altered to the one
shown in Figure 3.11. The advantage of using a launch �le was that the parameters of the
script were stored in the �le. When starting up with the launch �le, these parameters were
loaded as well. The di�erences between the launch �le used in the second test and the one
used in the third test are highlighted in Figure 3.11. The �eld of view angle was changed from
± 90o to ± 135o, given in radians as ± 2.35619. This was to get the full bene�t of the entire
scanning range of the Lidar.

The pointcloud_to_laserscan package had to be started before GMapping could be used.
This was due to the topic /cloud had to be transformed into the /scan topic beforehand.
pointcloud_to_laserscan was started using the command

$ roslauch pointcloud_to_laserscan sample_node.launch

in a new terminal.

55

3.11. TEST 3 - VERIFY ODOMETRY, DRIVING SPEED CHAPTER 3. METHOD

Figure 3.12: Launch �le used in test 3 for GMapping in ROS

The launch �le used to test GMapping is shown in Figure 3.12. The initial map size was set to
100×100 meters with a resolution of 2 cm per grid cell and 10 particles in the particle �lter.
To start GMapping, the command

$ rosparam set use_sim_time true

was executed followed by the command

$ roslauch gmapping slam_gmapping_experimental.launch

in a new terminal. To play the rosbag, the command

56

CHAPTER 3. METHOD 3.11. TEST 3 - VERIFY ODOMETRY, DRIVING SPEED

$ rosbag play <name_of_bag>

Was used. Once the rosbag was completed, the commands

$ mkdir -p map/test_3

$ cd map/test_3

and then the command

$ rosrun map_server map_saver -f �rst_run

was run in a new terminal to save the generated map with the name "�rst_run" in the directory
~/map/test_3. After this was done, the terminal running GMapping had to be shut down
using ctrl+c and restarted using the command

$ roslauch gmapping slam_gmapping_experimental.launch

or simply scrolling through previously used commands using the up and down arrow keys. This
was needed if another rosbag was to be tested. The map from the next rosbag was saved
using the command

$ rosrun map_server map_saver -f second_run_slow

in the same terminal.

57

3.12. TEST 4 - GMAPPING PARAMETER TEST CHAPTER 3. METHOD

3.12 Test 4 - GMapping Parameter Test

3.12.1 Test Plan for Test 4

Due to the resulting maps from the third test, it was decided to perform a new test on the
same data set as was used in the third test. The only di�erence between the tests was changing
the parameters of GMapping. The overall goal of the fourth test was to investigate the e�ects
of the parameters of GMapping. The parameters which were going to be investigated were the
map resolution and number of particles in the particle �lter. Previously these values were a
map resolution of 5 cm/grid cell and 10 particles in the particle �lter. The test was designed
to investigate the impact of these two parameters. If the resulting maps had a better overall
quality, the test would be considered a success. The hypothesis to be tested was that more
particles in the particle �lter should result in better pose estimates, as explained in the Theory
chapters about particle �lters.

3.12.2 Execution of Test 4

First, the ROS master had to be started. This was done by using the command

$ roscore

in a new terminal.

The pointcloud_to_laserscan package had to be started before GMapping could be used.
This was due to the topic /cloud had to be transformed into the /scan topic beforehand.
pointcloud_to_laserscan was started using the command

$ roslauch pointcloud_to_laserscan sample_node.launch

in a new terminal.

Figure 3.13: Launch �le used in test 3 for GMapping with highlighted alterations

58

CHAPTER 3. METHOD 3.12. TEST 4 - GMAPPING PARAMETER TEST

The launch �le used to test GMapping is shown in Figure 3.13. The initial map size was set to
100×100 meters with a resolution of 5 cm per grid cell and 30 particles in the particle �lter.
To start GMapping, the command

$ roslauch gmapping slam_gmapping_experimental.launch

was used in a new terminal. To play the rosbag, the command

$ rosbag play <name_of_bag>

Was used. Once the rosbag was completed, the commands

$ mkdir -p map/test_3

$ cd map/test_3

and then the command

$ rosrun map_server map_saver -f params_�rst

was run in a new terminal to save the generated map with the name "�rst_run" in the directory
~/map/test_3. After this was done, the terminal running GMapping had to be shut down
using ctrl+c and restarted using the command

$ roslauch gmapping slam_gmapping_experimental.launch

or simply scrolling through previously used commands using the up and down arrow keys. This
was needed if another rosbag was to be tested. The map from the next rosbag was saved
using the command

$ rosrun map_server map_saver -f params_second_slow

in the same terminal.

59

3.12. TEST 4 - GMAPPING PARAMETER TEST CHAPTER 3. METHOD

Figure 3.14: Debris found in the Long Hallway during Test 4

It was determined to collect additional data with the SPURV. The same test route was used
to collect the data, however there were some debris in the way in the Long Hallway. This
is shown in Figure 3.14. The same approach for controlling the SPURV and gathering and
storing the data set, which previous tests have detailed, was utilized. The data from the
SPURV was saved in the directory ~/bagfiles/test_4 and the maps where stored in the
directory ~/map/test_4.

Table 3.1: Testing parameters investigated in Test 4

Resolution of Map Number of Particles
5 cm/grid cell 30
10 cm/grid cell 30
5 cm/grid cell 60
5 cm/grid cell 100

During the test run, the SPURV was driven at a slow walking speed. In every sharp corner,
the SPURV was slowed down further. This was done to get good sensor data in the transitions
between the di�erent hallways. The map resolution and number of particles parameters were
to be further tested to see their in�uence on the produced maps. Table 3.1 shows how the
parameters was changed during testing. This was done by changing the parameters in the
launch �le before starting GMapping. Each parameter con�guration was tested twice. This
was to try to eliminate random results and thereby reinforcing the results.

60

CHAPTER 3. METHOD 3.13. TEST 5 - ODOMETRY INVESTIGATION

3.13 Test 5 - Odometry Investigation

3.13.1 Test Plan for Test 5

During the fourth test, a trend concerning a spiralling e�ect on the maps produced by GMapping
was discovered. It was decided to investigate in what way the odometry of the SPURV was
playing a part of this spiralling e�ect. To test this, the test route described in chapter 3.8.2
was going to be used. In contrast to previous test, the test route was going to be driven in
the opposite direction. If the spiral e�ect indeed was caused by the odometry, the spiral would
change direction. The hypothesis tested was that the sharp turns of the hallways would be
contributing to a bad odometry estimate. If this was the case, by turning the SPURV in the
opposite direction in each corner, the spiral should also change direction, re�ecting the change
in turning direction. After collecting the data from the test route, GMapping was going to be
used to validate if the spiral had changed direction or not.

3.13.2 Execution of Test 5

Figure 3.15: Debris found in the Long Hallway during Test 5

In the �fth test, the testing route described in chapter 3.8.2 was once again used. In contrast
to previous test, the route was driven in the opposite direction, meaning the SPURV started in
the starting point, then driving to Open Area 2, Open Area 1, Narrow Hallway, Long Hallway
before ending up at the starting point again. In other words, as seen from the starting point, the
SPURV would be driving in a clockwise direction. The only di�erence from this test and prior
test was the debris shown in Figure 3.15. The collection of data was done in a similar fashion
as described in the previous tests. The parameters used by GMapping for map resolution and
number of particles in the particle �lter were 10 cm/grid cell and 30 particles.

61

3.14. TEST 6 - HECTOR SLAM CHAPTER 3. METHOD

Due to the results of the �rst run of Test 5, the test was decided to be split into three sub
tests. In part 1 of the test, the SPURV was to be driven slowly through the testing route in a
clockwise direction. In part 2 of the test, the SPURV was to be driven fast through the testing
route in a clockwise direction. This was done to ensure that GMapping would break, revealing
the direction of the spiral. Lastly, in part 3 of the test, the SPURV was to be driven slowly
through the original testing direction, meaning counter-clockwise. This was done as a control.

3.14 Test 6 - Hector SLAM

3.14.1 Test Plan for Test 6

The results of the third test revealed that the odometry problems from Test 2 was �xed.
However, the odometry seemed to struggle with sharp corners. For that reason, it was decided to
test hector_slam with the data collected in all the previous tests. The results of hector_slam
should be compared with the maps produced by GMapping from the previous tests. The
hector_slam approach was interesting to investigate as it did not utilize the odometry data.
As the SPURV struggled to give accurate odometry readings in the sharp corners used in
the testing area, it was suspected that hector_slam might yield a better results. The test
consisted of altering the launch �le of hector_slam to make it work with the data recorded by
the SPURV in the previous tests. Next, the maps produced by hector_slam and GMapping
were going to be compared. This was done to �nd the best mapping approach based on the
testing area and collected data.

62

CHAPTER 3. METHOD 3.14. TEST 6 - HECTOR SLAM

3.14.2 Execution of Test 6

Figure 3.16: Launch �le used in test 6 for hector_slam algorithm in ROS

It was decided to use the rosbags from Test 2, Test 3, Test 4 and Test 5 to check the perfor-
mance of hector_slam. The original launch �le "mapping_default.launch" for hector_mapping,
found in the directory /opt/ros/kinetic/share/hector_mapping/launch, was altered with the
entries highlighted in Figure 3.16. The two changes consisted of adding a static transformation
detailing the placement of the Lidar sensor compared with the reference coordinate system and
changing the resolution of the map from 5 cm/grid cell to 10 cm/grid cell.

The tests were performed by �rst starting the rosmaster using the command

$ roscore

in a new terminal. Then the pointcloud_to_laserscan node had to be started. This was done
by using the command

63

3.14. TEST 6 - HECTOR SLAM CHAPTER 3. METHOD

$ roslauch pointcloud_to_laserscan sample_node.launch

in a new terminal. Next, hector_slam was started using the command

$ roslauch hector_slam_launch tutorial.launch

in a new terminal. The latest command would start up hector_mapping, rviz and hector_geotiff.
The hector_geotiff was used to save, store and recall maps produced by hector_slam.
Lastly, the command

$ rosbag play <name_of_bag> --clock

was used to play the recorded rosbags from the previous tests. For each new rosbag, the
hector_slam was stopped with ctrl+c and restarted before playing the next bag. hector_slam
was restarted using the same command

$ roslauch hector_slam_launch tutorial.launch

in the terminal it was originally used in.

64

CHAPTER 3. METHOD 3.15. TEST 7 - MATLAB PLOT OF ODOMETRY

3.15 Test 7 - MATLAB Plot of Odometry

3.15.1 Test Plan for Test 7

Test 7 was designed to verify whether the odometry of the SPURV was accurate or not. It was
decided to plot the odometry topic coming from the di�erent rosbags in MATLAB. MATLAB
would be used to plot the output of the /odom topic and the results of these plots would show
the overall odometry of the SPURV. If these plots did not corresponded with the ground truth,
it would be concluded that the odometry of the SPURV had to be improved.

3.15.2 Execution of Test 7

Figure 3.17: MATLAB code used to plot /odom topic from rosbags

The script shown in Figure 3.17 shows the script used to realize the plotting of the rosbags
in MATLAB. The add on "Robotics System Toolbox" had to be downloaded and installed to
MATLAB before the code could function. The full path to the rosbag had to be provided to
the function rosbag() for MATLAB to get access to the rosbag. Once MATLAB had access
to the rosbag, the timeseries() function was used to obtain the x- and y-position of the
SPURV. After this, the pose was plotted and the axis of the plot was labelled before giving the
plot a suitable title.

65

3.16. TEST 8 - REPEATING, FEATURELESS ENVIRONMENTCHAPTER 3. METHOD

3.16 Test 8 - Repeating, Featureless Environment

3.16.1 Test Plan for Test 8

The eighth and �nal test was designed to test the performance of GMapping and hector_slam
in the area of the testing route with the least amount of features. In this test, it was decided to
use the Long Hallway. This was the area with the least features in the testing route. The test
was split into two separate sub-tests. In the �rst part of the test, the SPURV was supposed to
drive down the entirety of the Long Hallway and return to the starting point. In the second
part of the test, the SPURV was driven several laps in front of an area without any signi�cant
features before returning to the starting point. In both test, the result would be evaluated
based on the overall quality of the maps and whether the starting point and end point of the
maps would correspond or not.

3.16.2 Execution of Test 8

(a) (b)

(c) (d)

(e)

Figure 3.18: Testing area used in the �rst part of Test 8

66

CHAPTER 3. METHOD3.16. TEST 8 - REPEATING, FEATURELESS ENVIRONMENT

In the �rst part of Test 8, the testing area shown in Figure 3.18 was used. The SPURV
was driven down the hallway with the wireless Xbox controller and the remote computer was
collecting the data produced by the SPURV. The SPURV was driven through the hallway, as
shown in Figure 3.18 a) to d). This was the end of the hallway, and the SPURV was driven
back to the original starting point. On the way back, the SPURV would pass the area shown
in Figure 3.18 e) before turning right, ending up at the starting area. In both parts of the
test, the SPURV was driven at a slow walking speed. Once the data was collected, GMapping
and hector_slam was used to produce maps and MATLAB was used to check the odometry
coming from the SPURV. These approaches has been detailed in previous tests.

Figure 3.19: Featureless area used in the second part of Test 8

In the second part of the test, portions the Long Hallway was reused. In contrast to the �rst
part of the test, the SPURV was to take several laps in front of the area with the least features
of the Long Hallway. This area is shown in Figure 3.19. The SPURV was driven to this area
and then it took three laps in front of the featureless area before returning to the starting
area. Once again, GMapping and hector_slam was used to produce maps and MATLAB was
used to check the odometry coming from the SPURV. These approaches has been detailed in
previous tests.

67

Chapter 4

Results

In this section, the results from the testing of algorithms and the SPURV are going to be
presented and commented on.

4.1 Test 1 - Initial Testing

Figure 4.1: Map generated using GMapping from the second test

The SPURV was not able to perform the required route which was de�ned by Test 1. Around
the doorway of the Long Hallway, shown in Figure 4.1, the data transfer speed of the SPURV
became too slow to safely control the SPURV with camera feedback only. Despite this, two sets
of data was recorded from the start point to the middle of the Long Hallway. These data sets
revealed that there was an error with the laser scan data. There seemed to be a transformation
that was missing.

Additionally, it was discovered that by changing the resolution of the front facing camera in
the set up �le did not retain the full image, only with poorer quality, as one would expect.
Instead, the image was "cropped", resulting in only the top left part of the image remaining
after decreasing the resolution. The remaining area was dependant on what the resolution was
set to, naturally.

68

CHAPTER 4. RESULTS 4.2. TEST 2 - CONTROLLING SPURV, IDENTIFY TOPICS

4.2 Test 2 - Controlling SPURV, Identify Topics

Walking behind the SPURV while it was recording data worked well. Additionally, the topics
needed to recreate the data in rviz was discovered. The topics needed was /cloud, /odom, /tf
and /tf_static. Once the rosbag was set up to record these topics, the recording process as
well as driving and manoeuvring of the SPURV was trivial.

(a) Starting area of the second test with /cloud
topic

(b) Starting area of the second test with /scan
topic

Figure 4.2: Transition between /cloud topic to /scan topic

The rosbags collected provided the necessary topics to be reproduced in rviz, as shown in
Figure 4.2 a). Further, the pointcloud_to_laserscan worked to generate the /scan topic,
which can be seen in Figure 4.2 b). The screen-shots were taken in the same general time frame
and area to make them as representative of the transformation as possible.

Figure 4.3: Map generated using GMapping from the second test

By using the rosbag, pointcloud_to_laserscan and GMapping, a map of the test route
was created, as shown in Figure 4.3.

69

4.3. TEST 3 - VERIFY ODOMETRY, DRIVING SPEED CHAPTER 4. RESULTS

4.3 Test 3 - Verify Odometry, Driving Speed

(a) Result of GMapping at brisk walking speed
(b) Result of GMapping at slow walking speed

Figure 4.4: Maps generated using GMapping from the third test

The results shown in Figure 4.4 are from the third test. Here, GMapping was used with 10
particles in the particle �lter and a map resolution of 2 cm/grid cell. The �gure shows the
testing area at campus Grimstad as described in chapter 3.8.2. The map shown in Figure 4.4
b) was cut short due to technical di�culties during the test run. The end point was not reached
and the map stops in the middle of Open Area 2, as described in chapter 3.8.2. This was not
seen as a problem, as the function of the second part of the third test was to see how much the
speed of the SPURV in�uenced the mapping quality of GMapping.

70

CHAPTER 4. RESULTS 4.4. TEST 4 - GMAPPING PARAMETER TEST

4.4 Test 4 - GMapping Parameter Test

(a) Result of GMapping at brisk walking speed

(b) Result of GMapping at slow walking speed

Figure 4.5: Maps generated using GMapping from the fourth test

The results shown in Figure 4.5 are from the third test. Here, GMapping was used with 30
particles in the particle �lter and a map resolution of 5 cm/grid cell. The �gure shows the
testing area at campus Grimstad as described in chapter 3.8.2. The map shown in Figure 4.5
b) was cut short due to technical di�culties during the test run. The end point was not reached
and the map stops in the middle of Open Area 2, as described in chapter 3.8.2.

71

4.4. TEST 4 - GMAPPING PARAMETER TEST CHAPTER 4. RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Maps generated using GMapping from the parameter test

72

CHAPTER 4. RESULTS 4.4. TEST 4 - GMAPPING PARAMETER TEST

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Maps generated using GMapping from the parameter test continuation

73

4.4. TEST 4 - GMAPPING PARAMETER TEST CHAPTER 4. RESULTS

Table 4.1: Testing parameters used in Test 4

Resolution of Map Number of Particles Corresponding Figure
5 cm/grid cell 30 Figure 4.6 a) and b)
10 cm/grid cell 30 Figure 4.6 c) and d)
5 cm/grid cell 100 Figure 4.6 e) and f)
5 cm/grid cell 60 Figure 4.7 a) and b)
5 cm/grid cell 30 Figure 4.7 c) and d)
10 cm/grid cell 30 Figure 4.7 e)
5 cm/grid cell 30 Figure 4.7 f)

After collecting a new data set with the SPURV, the testing parameters shown in Table 4.1
was used with GMapping. The maps shown in Figure 4.7 c) and d) was created as a control
after the poor quality of Figure 4.6 e) and f) and Figure 4.7 a) and b). Figure 4.7 e) and f)
was created to check the two best solutions one more time to check their performance.

74

CHAPTER 4. RESULTS 4.5. TEST 5 - ODOMETRY INVESTIGATION

4.5 Test 5 - Odometry Investigation

4.5.1 Results of Test 5 Part 1

(a) (b)

(c) (d)

Figure 4.8: Maps generated using GMapping resulting from Test 5 part 1

Table 4.2: Parameters used in Test 5 part 1

Resolution of Map Number of Particles Corresponding Figure
10 cm/grid cell 30 Figure 4.8 a) and b)
5 cm/grid cell 30 Figure 4.8 c) and d)

The results of the �rst part of Test 5 gave good coherent maps. These maps are shown in
Figure 4.8. The maps are continuous and the starting point and end point matches up well, as
can be seen as the top part of the maps are connected.

75

4.5. TEST 5 - ODOMETRY INVESTIGATION CHAPTER 4. RESULTS

4.5.2 Results of Test 5 Part 2

(a) (b)

Figure 4.9: Maps generated using GMapping resulting from Test 5 part 2

Table 4.3: Parameters used in Test 5 part 2

Resolution of Map Number of Particles Corresponding Figure
10 cm/grid cell 30 Figure 4.9 a)
5 cm/grid cell 30 Figure 4.9 b)

In the second part of Test 5, the maps created by GMapping would start to break. The maps
shown in Figure 4.9 was selected to represent the best outcome, Figure 4.9 a), and worst
outcome, Figure 4.9 b), of the second part of Test 5. It was performed ten tests, which are all
represented in Appendix A. In �ve of the ten tests, the maps would break in a similar fashion
as shown in Figure 4.9 b). In the renaming �ve cases, the maps would look more closely to the
map shown in Figure 4.9 a).

4.5.3 Results of Test 5 Part 3

(a) (b)

Figure 4.10: Maps generated using GMapping resulting from Test 5 part 3

76

CHAPTER 4. RESULTS 4.6. TEST 6 - HECTOR SLAM

Table 4.4: Parameters used in Test 5 part 3

Resolution of Map Number of Particles Corresponding Figure
10 cm/grid cell 30 Figure 4.10 a) and b)

In the third and �nal part of Test 5, the test route was driven in the original counter-clockwise
direction. The maps shown in Figure 4.10 was the results of this test. Even though this part of
the test was performed while driven the SPURV very slowly, the starting point and end point
of the route did not match up particularly well. This can be seen in Figure 4.10 and looking
to the rightmost part of the maps. Compared to the maps produced in the �rst part of Test 5,
shown in Figure 4.8, the maps produced by part three of Test 5 were of a poorer quality.

4.6 Test 6 - Hector SLAM

(a) (b)

(c) (d)

Figure 4.11: Maps generated using Hector SLAM

77

4.6. TEST 6 - HECTOR SLAM CHAPTER 4. RESULTS

(a) (b)

(c)
(d)

(e)

Figure 4.12: Maps generated using Hector SLAM continuation

78

CHAPTER 4. RESULTS 4.6. TEST 6 - HECTOR SLAM

Table 4.5: Hector SLAM results

Associated Figure Associated Test Associated rosbag
Figure 4.11 a) Test 2 �rst_run
Figure 4.11 b) Test 2 second_run
Figure 4.11 c) Test 2 third_run
Figure 4.11 d) Test 3 �rst_run
Figure 4.12 a) Test 3 second_run_slow
Figure 4.12 b) Test 4 �rst_run_slow
Figure 4.12 c) Test 5 Part 1 �rst_run
Figure 4.12 d) Test 5 Part 2 second_run_fast
Figure 4.12 e) Test 5 Part 3 third_run_slow_original

The results shown in Figure 4.11 and Figure 4.12 are the results of using the hector_slam
algorithm on the rosbags coming from Test 2, Test 3, Test 4 and Test 5. The associated test
and rosbag to each �gure are detailed in Table 4.5. All of the maps resulting from a test
where the SPURV was driving counter-clockwise around the testing area struggles to connect
the starting point and end point of the test route. This can easily be seen in Figure 4.11 b) and
Figure 4.12 e). In the bottom of both �gures, the start point and end point does not connect
at all. By looking closely at the bottom of Figure 4.11 b), it can be seen that the same end
point is repeating three times. In the bottom of Figure 4.12 e) the same area is repeated twice.
In contrast, in Figure 4.12 b), Figure 4.12 c) and Figure 4.12 d), the maps were all coherent
and well constructed.

79

4.7. TEST 7 - MATLAB PLOT OF ODOMETRY CHAPTER 4. RESULTS

4.7 Test 7 - MATLAB Plot of Odometry

(a) (b)

(c) (d)

Figure 4.13: Plot of the odometry of the SPURV during testing from MATLAB

80

CHAPTER 4. RESULTS 4.7. TEST 7 - MATLAB PLOT OF ODOMETRY

(a) (b)

(c)

Figure 4.14: Plot of the odometry of the SPURV during testing from MATLAB continuation

Table 4.6: Corresponding data to the odometry plots

Associated Figure Associated Test Associated rosbag Test Direction
Figure 4.13 a) Test 2 �rst_run CCW
Figure 4.13 b) Test 2 second_run CCW
Figure 4.13 c) Test 2 third_run CCW
Figure 4.13 d) Test 4 �rst_run CCW
Figure 4.14 a) Test 5 Part 1 �rst_run CW
Figure 4.14 b) Test 5 Part 2 second_run_fast CW
Figure 4.14 c) Test 5 Part 3 third_run_slow_original CCW

Figure 4.13 and Figure 4.14 shows the results of plotting the odometry of the SPURV in
MATLAB. Table 4.6 gives further information to the �gures. In the instances where the SPURV

81

4.7. TEST 7 - MATLAB PLOT OF ODOMETRY CHAPTER 4. RESULTS

was performing the test route in a counter-clockwise direction, the odometry seemed to not
correspond with the ground truth. This is evidenced by looking at Figure 4.13 a), Figure 4.13
b), Figure 4.13 c), Figure 4.13 d), Figure 4.14 b) and Figure 4.14 c). All of these �gures has
one thing in common, the testing route was all driven in a counter-clockwise direction. Figure
4.14 a) and Figure 4.14 b) both showcases a decent odometry. In both of these instances, the
robot was driving in a clockwise direction.

Table 4.7: Error between starting point and end point from Test 7

Associated Figure Start Point (x,y) End Point (x,y)
Error [m] (x,y)
(EP-SP)

Error [m](√
x2 + y2

)
Figure 4.13 a) (0,0) (-20,45) (-20,45) 49
Figure 4.13 b) (0,0) (10,50) (10,50) 51
Figure 4.13 c) (0,0) (-14,48) (-14,48) 50
Figure 4.13 d) (0,0) (-16,50) (-16,50) 52
Figure 4.14 a) (0,0) (-16,-19) (-16,-19) 25
Figure 4.14 b) (-16,-19) (-15,-21) (1,-2) 2
Figure 4.14 c) (-15,-21) (-52,-37) (-37,-16) 40

The error shown in Table 4.7 was de�ned as End Point − Start Point. The coordinates of the
Start Point and End Point was gathered by visual approximation of the coordinate value. This
was deemed valid as the error between the Start Point and End Point was far greater than
the error from the visual approximation. In all of the tests, the SPURV was driven to the
approximate same spot at the end of the test as where it started, give or take a few meters.
Even though this approach was imprecise, it does not cause errors of 10 to 37 meters in x-
direction and 45 to 50 meters in y-direction. The errors from the position estimate from the
odometry of the SPURV can be seen in Table 4.7 in the "Error" column.

82

CHAPTER 4. RESULTS 4.8. TEST 8 - REPEATING, FEATURELESS ENVIRONMENT

4.8 Test 8 - Repeating, Featureless Environment

4.8.1 Results of Test 8 Part 1

(a)

(b)

(c)

Figure 4.15: Results of Test 8 Part 1 with Hector SLAM, GMapping and odometry

83

4.8. TEST 8 - REPEATING, FEATURELESS ENVIRONMENT CHAPTER 4. RESULTS

The results coming from Test 8 Part 1 is shown in Figure 4.15. Both maps produced by
GMapping and hector_slam were of good quality. In addition, the stating point and end
point of the maps lined up in both of the instances. This is shown in Figure 4.15 a) and Figure
4.15 b). Figure 4.15 c) shows the odometry coming from the SPURV during the test. In the
�gure, it can be seen that the odometry estimate of the position of the SPURV starts o� good,
then progressively turns worse as the SPURV drives further away from the starting area.

Table 4.8: Error between starting point and end point from Test 8 Part 1

Associated Figure Start Point (x,y) End Point (x,y)
Error [m] (x,y)
(EP-SP)

Error [m](√
x2 + y2

)
Figure 4.13 a) (0,0) (26,11) (26,11) 28

Table 4.8 shows the error from the position estimate coming from the odometry of the SPURV.
In this test, the error in the position estimate of the SPURV was quite severe. The error
in position was 26 meters in x-direction and 11 meters in y-direction. Despite this, the map
generated in GMapping was quite good. This map can be seen in Figure 4.15 b).

4.8.2 Results of Test 8 Part 2

(a)

(b)
(c)

Figure 4.16: Results of Test 8 Part 2 with Hector SLAM, GMapping and odometry

84

CHAPTER 4. RESULTS 4.8. TEST 8 - REPEATING, FEATURELESS ENVIRONMENT

The results from Test 8 Part 2 were also good. These can be seen in Figure 4.16. Both
GMapping and hector_slam produced good quality maps where both the starting point and
end point of the testing area lined up. This is shown in Figure 4.16 a) and Figure 4.16 b).
Figure 4.16 c) shows the position estimate coming from the odometry of the SPURV. In this
instance, the odometry estimate was not too bad, almost lining up with the ground truth.

Table 4.9: Error between starting point and end point from Test 8 Part 2

Associated Figure Start Point (x,y) End Point (x,y)
Error [m] (x,y)
(EP-SP)

Error [m](√
x2 + y2

)
Figure 4.13 a) (26,11) (22,7) (-4,-4) 6

Table 4.9 shows the error from the position estimate coming from the odometry of the SPURV.
In this test, the error in the position estimate was -4 meters in x-direction and -4 meters in
y-direction. This error was more justi�ed based on the imprecise placement of the starting
point and end point during testing. The map generated in GMapping can be seen in Figure
4.16 b).

Figure 4.17: Position estimate from Hector SLAM during Test 8 Part 2

Figure 4.17 shows the position estimate coming from hector_slam. This position estimate
was more or less spot on to the ground truth and is shown as the green line in Figure 4.17.

85

Chapter 5

Discussion

In this section, the results coming from the di�erent test are going to be discussed. This means
that the results from the individual tests as well as di�erent tests might be compared to each
other to form a statement regarding the test results. The statement should be a re�ection of
the goals described in the test plan for the test in question.

5.1 Test 1 - Initial Testing

Even though Test 1 did not yield the expected results, it made for an excellent learning op-
portunity. It was discovered that the SPURV was not able to transfer both the camera feed
and the sensor data over vast distances. However, at short distances, this was not a problem.
Additionally, another discovery was made. The rosbag was set to record all data produced by
the SPURV. This resulted in huge amounts of unwanted data. Future tests could be improved
by recording the desired data only, instead of recording all produced data.

Another improvement which could be carried out in subsequent tests was to walk behind the
SPURV robot when it was driving, with the remote computer in a backpack. This would
increase the ease of controlling the SPURV in the narrow hallways. Additionally, this would
make it easier to transfer the sensor data, as it was discovered that this worked well over short
distances.

As it was discovered that changing the resolution did not result in the same image with grainier
image quality, driving with camera feedback was discarded as a valid way of controlling the
SPURV. This problem would also be solved by walking behind the SPURV when it was oper-
ating.

There was an error with the data coming from the laser scanner. The transformation seemed
to be missing. This was also con�rmed by looking at the description of the sick_scan [10]
package. This package was the one used by the Lidar. The description stated the following:

"The LaserScan data should only be used for debugging purposes. They provide the
raw data for each scan plane in a di�erent coordinate frame. Due to the geometry of
the scanning planes of the MRS1104 there is no coordinate transformation between

86

CHAPTER 5. DISCUSSION5.2. TEST 2 - CONTROLLING SPURV, IDENTIFY TOPICS

the scan planes that can be described by tf messages, therefore no tf messages are
published. That is why the PointCloud2 data should be used." [10]

In the subsequent tests, the data from the point cloud of the Lidar was going to be used and
converted to laser scan using pointcloud_to_laserscan package in ROS. The testing of
GMapping and hector_slam was not performed due to the errors in the laser scan data.

5.2 Test 2 - Controlling SPURV, Identify Topics

Figure 5.1: Map generated using GMapping from the second test

The map generated by GMapping in the second test, as shown in Figure 5.1, was of no partic-
ularly good quality, but had some potential. While generating the map, an critical error was
discovered. The odometry of the robot was set up wrong. By further testing, it was discovered
that by driving the SPURV forwards, the data coming from the odometry claimed the robot
was driving backwards. This resulted in faulty odometry, which was one potential reason for the
poor quality of the resulting map. On the basis of this, it was decided to not test hector_slam
before the odometry was �xed.

Despite the poor quality of the generated map, the test also showed that the
pointcloud_to_laserscan transformation worked. This was proven as the transformation
was good enough for the GMapping algorithm to work properly without crashes. Further, it
was discovered that to be able to reproduce the driven route with the necessary data, only
the topics /cloud, /odom, /tf and /tf_static was needed. This, in turn, would lessen the load
put on the network coming from the SPURV, as only the required topics were transmitted and
recorded.

87

5.3. TEST 3 - VERIFY ODOMETRY, DRIVING SPEED CHAPTER 5. DISCUSSION

Walking behind the SPURV while driving it through the hallways at the campus worked ex-
ceptionally well. The data was transferred without signi�cant delay, and the added control
gained by walking behind the SPURV made it much easier to control through the testing route.
This was especially apparent in the narrow parts of the hallways and when people were walking
around. At one time during testing, a door was suddenly opened. This door would not have
been avoided if the operator was not placed directly in the environment, resulting in a potential
collision.

5.3 Test 3 - Verify Odometry, Driving Speed

(a) Result of GMapping at brisk walking speed
(b) Result of GMapping at slow walking speed

Figure 5.2: Maps generated using GMapping from the third test

The goal of the third test was to see if the changes done to the SPURV had �xed the odometry. If
the results of the mapping done with GMapping was corresponding to the movements performed
in the test, the odometry error was most likely linked to the set up of the motor and motor
controller. Figure 5.2 was the result from the testing. In both Figure 5.2 a) and Figure 5.2 b)
the corresponding names was given to the hallways as described in chapter 3.8.2.

88

CHAPTER 5. DISCUSSION 5.3. TEST 3 - VERIFY ODOMETRY, DRIVING SPEED

(a) Result of GMapping from Test 2
(b) Result of GMapping from Test 3 with brisk
walking speed

Figure 5.3: Comparison of maps from Test 2 and Test 3

Figure 5.3 shows the di�erence in the maps produced by the second and third test. In both
tests, the parameters of GMapping was the same. The �eld of view was altered in the third test
from ± 90o to ± 135o, given in radians as ± 2.35619. In addition, the poles of the motor were
changed between the second and third test. Figure 5.3 a) shows the result of the second test.
In this �gure, the entire testing route was �ipped. Also, in every sharp turn there would be
weird distortions. Figure 5.3 b) shows the result of the third test. Here, the hallways are much
straighter and the distortions in the sharp turns are gone. In addition, the map corresponds to
the true execution of the testing route. Based on the quality of the map of the third test, it
was concluded that the odometry was �xed.

As Figure 5.2 shows, the odometry of SPURV struggles when taking sharp turns. This was
apparent as the end point and start point did not align, neither did the Long Hallway, as shown
in Figure 5.2 a). Additionally, the quality of the map shown in Figure 5.2 b) was much better
than the map map shown in Figure 5.2 a). The main di�erence between these was the speed at
which the SPURV had driven while performing the testing route. Based on the results shown
in Figure 5.2, it was concluded that driving speed had a signi�cant in�uence on the quality of
the maps produced by GMapping.

89

5.4. TEST 4 - GMAPPING PARAMETER TEST CHAPTER 5. DISCUSSION

5.4 Test 4 - GMapping Parameter Test

(a) Result of GMapping at brisk walking speed
from Test 3

(b) Result of GMapping at brisk walking speed
from Test 4

Figure 5.4: Comparison of maps generated by GMapping at brisk walking speed from Test 3
and Test 4

(a) Result of GMapping at brisk walking speed
from Test 4

(b) Result of GMapping at slow walking speed

Figure 5.5: Comparison of maps generated by GMapping at slow walking speed from Test 3
and Test 4

In both cases where the parameters where changed to 30 particles in the particle �ler and map
resolution of 5 cm/grid cell, as shown in Figure 5.4 b) and Figure 5.5 b), from the parameters

90

CHAPTER 5. DISCUSSION 5.4. TEST 4 - GMAPPING PARAMETER TEST

of 10 particles in the particle �lter and map resolution of 2 cm/grid cell, as shown in Figure 5.4
a) and Figure 5.5 a), the resulting maps were better. The maps in Figure 5.4 b) and Figure
5.5 b) were both more coherent and the walls more pronounced compared to the results from
the third test.

Figure 5.6: Best resulting map using GMapping from Test 4

Figure 5.6 shows the best resulting map from Test 4. This map captured the true testing
route well. However, the loop closer did not seem to recognise that the start point and end
point of the testing route was the same location. This can be seen to the lower right in Figure
5.6. The increase in particles did not result in better maps. On the contrariety, the maps
were all disjointed and incoherent. By decreasing the resolution to 10 cm/grid cell the maps
got "sharper" and, without one notable exception, performed as well as the maps with the
resolution of 5 cm/grid cell. Based on the results, if further tuning of GMapping where to be
performed, the number of particles in the �lter should remain at 30 while the resolution of the
map could be altered.

Figure 5.7: Map showcasing the "spiral" tendency from Test 4

91

5.5. TEST 5 - ODOMETRY INVESTIGATION CHAPTER 5. DISCUSSION

A trend in all of the maps produced in both Test 3 and Test 4 seemed to be apparent. Most
of the maps had a tendency to "spiral" in a counter clockwise motion. This spiral tended to
result in a "snapping" of the Narrow Hallway, which can be seen in Figure 5.7. It was suspected
that the cause of this e�ect originated from either the odometry of the SPURV or bad loop
closing from GMapping. It was estimated that the most likely source of the errors came from
the odometry. This was determined due to the consistency of the spiral e�ect going in the
same direction each time. Odometry has a tendency to drift over time, leading to errors in the
pose estimates propagating over time as the SPURV would keep on driving. By navigating the
SPURV in sharp corners, the error in rotation would most likely propagate as well. Additionally,
the points where the maps would intersect seemed to be inconsistent and illogical places for the
loop closer to close the loops. It was therefore decided to further investigate the odometry to
determine if it was the cause of the spiral e�ect in the maps.

5.5 Test 5 - Odometry Investigation

Figure 5.8: Map showcasing the "spiral" tendency from Test 5

In the �fth test, it was decided to test how the odometry was a�ecting the results of GMapping.
By driving the SPURV in the opposite direction, contrary to previous test, it was suspected
that the spiralling e�ect seen in Figure 5.7 would change direction. The spiral shown in Figure
5.7 had a counter-clockwise direction. It was suspected that this was a result of the SPURV
having to take several left turns, and an error in the odometry would propagate over time,
resulting in the counter-clockwise spiral. The spiral e�ect shown in Figure 5.8 shows the spiral
going in a clockwise direction. This gave further belief that the odometry could be improved,
and that it might be a�ecting the results of GMapping.

92

CHAPTER 5. DISCUSSION 5.5. TEST 5 - ODOMETRY INVESTIGATION

(a) (b)

Figure 5.9: Maps generated using GMapping resulting from Test 5

The map shown in Figure 5.9 a) was produced from the �rst part of Test 5. In this part of the
test, the SPURV was driven slowly through the testing route in a clockwise direction. The map
shown in Figure 5.9 b) was produced from third part of Test 5. In this part of the test, the
SPURV was driven slowly through the testing route in a counter-clockwise direction. In both
maps, it was interesting to see how the maps would conjoin when the SPURV would re-enter
the starting point. This area can be seen in both Figure 5.9 a) and Figure 5.9 b) to the right
in both �gures. In Figure 5.9 a), this area is coherent with no signi�cant signs of overlapping
areas. However, in Figure 5.9 b) this area is overlapping. The rest of both maps are virtually
similar. The main di�erence between the tests that resulted in the maps seen in Figure 5.9 was
the driving direction. This gives further claim that the odometry might not be ideal and that
it negatively a�ects the results of GMapping.

93

5.6. TEST 6 - HECTOR SLAM CHAPTER 5. DISCUSSION

5.6 Test 6 - Hector SLAM

(a) (b)

(c) (d)

Figure 5.10: Comparison of maps generated from GMapping (left) vs Hector SLAM (right)

94

CHAPTER 5. DISCUSSION 5.6. TEST 6 - HECTOR SLAM

(a) (b)

(c) (d)

Figure 5.11: Comparison of maps generated from GMapping (left) vs Hector SLAM (right)
continuation

Table 5.1: GMapping vs Hector SLAM

Associated Figure Associated Test Associated rosbag Speed Test Direction
Figure 5.10 a) and b) Test 2 third_run Fast CCW
Figure 5.10 c) and d) Test 3 �rst_run Fast CCW
Figure 5.11 a) b) Test 4 �rst_run_slow Slow CCW
Figure 5.11 c) and d) Test 5 Part 1 �rst_run Slow CW

95

5.6. TEST 6 - HECTOR SLAM CHAPTER 5. DISCUSSION

The results shown in Figure 5.10 and Figure 5.11 are the comparisons of the maps produced
by GMapping, which can be seen in the �gures to the left, and hector_slam, which can be
seen in the �gures to the right. The table shown in Table 5.1 shows in which test the maps
have been gathered from and some of the important test parameters involved. There seemed
to be a trend where walking speed and test direction had an in�uence over the overall quality
of the maps produced by both GMapping and hector_slam. Further, it is evident that when
the odometry is false or poor, the hector_slam approach yields better results. This can be
seen in all of the �gures in Figure 5.10.

(a) (b)

Figure 5.12: Comparison of maps generated by GMapping (left) and Hector SLAM (right)

Table 5.2: GMapping vs Hector SLAM

Associated Figure Associated Test Associated rosbag Speed Test Direction

Figure 5.12 a) and b) Test 5 Part 3
third_run_slow_-
original

Slow CCW

One exception can be seen in Figure 5.12. Here, the GMapping solution seems to be the better
representation of the ground truth than the hector_slam solution. Figure 5.12 b) shows that
the hector_slam solution generates a repeated area of the test route, which can be seen at
the bottom of Figure 5.12 b). This repeated area is more clearly perceptible once compared
with the result from GMapping, as seen in Figure 5.12 a). The table shown in Table 5.2 shows
from which test the maps have been gathered from and some of the important test parameters
involved.

96

CHAPTER 5. DISCUSSION 5.7. TEST 7 - MATLAB PLOT OF ODOMETRY

5.7 Test 7 - MATLAB Plot of Odometry

(a) (b)

Figure 5.13: Plot of odometry vs map generated in GMapping from Test 2

Figure 5.13 shows the odometry and generated map resulting from Test 2. The test was
performed by driving in a counter-clockwise direction through the testing area. It was discovered
in this test that the odometry data was false, giving the opposite readings of the ground truth.
This was further con�rmed by looking at Figure 5.13 a). In the test the SPURV would drive
forwards and turn left and then preceding to turn left at each corner. By looking in the bottom
of Figure 5.13 a) at coordinates X = 0, Y = 0 it is evident that the odometry of the SPURV
interpreted the motion as going in reverse and then turn right. This can be seen as the the
SPURV starts in X = 0, Y = 0 the moves to approximately X = −5, Y = 0 before going in a
positive Y-direction.

(a)

(b)

Figure 5.14: Plot of odometry vs map generated in GMapping from Test 5 Part 1

By contrast, when the SPURV was performing Test 5 Part 1, the mapping result from GMapping
was good. Figure 5.14 a) shows the odometry from the test. In this instance, the odometry was

97

5.8. TEST 8 - REPEATING, FEATURELESS ENVIRONMENTCHAPTER 5. DISCUSSION

much better than the odometry shown in Figure 5.13 a). By looking at the starting coordinates
of the SPURV at X = 0, Y = 0, the general trend of the odometry plot seemed to �t the ground
truth. Additionally, the resulting map was excellent, especially when compared to the map in
Figure 5.13 b).

By looking at the results from Test 7, it was quite apparent that the driving direction during
testing in�uenced the resulting odometry. From the results presented, in every instance the
SPURV was driving counter-clockwise, the odometry was not a good representation of the
ground truth. When the SPURV was driving clockwise, the odometry was generally better.
Based on these results, it was concluded that the odometry was not fully optimized, leading
to errors in the position estimate of the SPURV. Further, this error was more prominent when
driving in a counter-clockwise direction as opposed to driving in a clockwise direction. It was
also suspected that the odometry error may have in�uenced the quality of the maps coming
from GMapping.

5.8 Test 8 - Repeating, Featureless Environment

(a) (b)

(c) (d)

Figure 5.15: Results of Test 8 with Hector SLAM and GMapping

The main objective of Test 8 was to investigate how GMapping and hector_slam would
perform in an environment with few features. The Long Hallway was chosen as this was the
most featureless part of the testing area. Figure 5.15 a) and b) shows the results from Test 8

98

CHAPTER 5. DISCUSSION5.8. TEST 8 - REPEATING, FEATURELESS ENVIRONMENT

Part 1 and Figure 5.15 c) and d) shows the results of Test 8 Part2. In both parts of the test, the
maps produced by GMapping and hector_slam were of high quality and a good representation
of the mapped area. In addition, in all of the maps, the starting point and end point of the
testing route were coherent and without any overlap. Even in Test 8 Part 2 when the SPURV
was driving several laps in front of the area with the least features of the testing area, the maps
were coherent and of high quality.

(a) (b)

(c)

Figure 5.16: Position estimates coming from Test 8 from odometry and Hector SLAM

Figure 5.16 a) and b) shows the position estimate coming from the SPURV. Figure 5.16 c) shows
the position estimate coming from hector_slam. The position estimate shown in Figure 5.16
a) comes from Test 8 Part 1 where the SPURV was driving down the entirety of the Long
Hallway. In this �gure, a drift in position can be seen. This is most obvious as the starting
point and end point of the plot are nowhere near each other. In Figure 5.16 b) the positon
estimate from the odometry of the SPURV seems far better. Here, the starting point and
end point are in the same proximity. In contrast, Figure 5.16 c) shows the position estimate
coming from hector_slam in Test 8 Part 2. This estimate is almost the exact ground truth
and corresponds well to the path the SPURV was driven in Test 8 Part 2.

99

5.9. EVALUATION OF THE TESTING METHOD CHAPTER 5. DISCUSSION

5.9 Evaluation of the Testing Method

The tests performed in this thesis could have been improved to give more quanti�able results.
One way this could have been done was to mark the position and orientation where the SPURV
stated on each individual test. Subsequently, when the test was completed, the SPURV could
be remotely controlled to the exact position and orientation where the SPURV started. As a
consequence, this could possibly yield a di�erence of centimetres when comparing the starting
point and end point. As such, by comparing the position estimate of the SPURV based on the
odometry, a more conclusive and precise result could be gathered. Due to the fact that the
starting point and end point of the test would be at the exact same place, give or take a couple
of centimetres and degrees, any deviation from this would be caused by the interpretation of
the data from the SPURV. Slippage of the wheels might also contribute to some of the errors,
as odometry estimates usually assumes no slip during position estimation.

Even though this testing method was not carried out during the tests in this thesis, the results
coming from this thesis still have validity. With deviations of up to 40 meters in x-direction
and 50 meters in y-direction between the starting point and end point of the testing route, the
small amount of inaccuracies of the exact stopping point of the SPURV is negligible. These
numbers can be further inspected in chapter 4.7 Test 7 - MATLAB Plot of Odometry. In this
chapter the result of the deviation between starting point and endpoint based on the position
estimate from the odometry of the SPURV have been presented in tables.

100

Chapter 6

Conclusions and Recommendations

In this thesis, two di�erent SLAM algorithms have been tested in the most repeating and
featureless testing environment found on the University of Agder Campus Grimstad. Both
solutions were compatible with Robot Operating System and were both able to create maps of
the testing area. Both solutions were able to save and store the generated maps. None of the
algorithms needed GPS signals to work. Both algorithms worked with a fast and slow walking
speed, but it was discovered that both solutions produced better maps during slow walking
speed. It was discovered that each of the algorithms had strengths and shortcomings which are
going to be accounted for now.

The GMapping solution of the SLAM problem was able to produce good quality maps. However,
the solution was heavily reliant on decent position estimates coming from the odometry. When
the position estimates where accurate, the resulting maps were coherent and continuous. When
the position estimates were poor, the maps were distorted. Even when the maps were distorted,
they were a better representation of the environment than just the position estimate coming
from the odometry.

The hector_slam solution of the SLAM problem was also able to produce good quality maps.
This solution was only reliant on the laser range �nder to estimate the position of the SPURV
and generate the map. Compared with GMapping, the hector_slam algorithm was far less
complicated and thereby able to process the data coming from the SPURV faster. However, if
the SPURV was travelling in vast open areas, the hector_slam algorithm might be struggling
with position estimation. As hector_slam only relies on the data coming from the laser range
�nder and the previous mapped area to estimate the position, the algorithm might be unable
to estimate the position when there are no features to correlate the latest laser scans with. This
was not tested in the thesis as the primary operating area of the SPURV was in road tunnels.
Here, the SPURV would be encapsulated by walls which should make the problem with open
areas improbable.

Based on the results shown and discussed in this thesis, both solutions worked in the testing
area at Campus Grimstad. However, both solutions were heavily reliant on the driving speed
of the SPURV. It was discovered that lower speeds yielded better results than fastest speeds.
By further improving the position estimates from the odometry of the SPURV, the resulting
maps of GMapping would most likely be improved. It was shown in Test 5 and Test 7 how the

101

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

odometry in�uenced the maps produced by GMapping. GMapping with improved odometry
might be outperforming hector_slam as several of the results from Test 6 showed that the
starting area and end point of the testing route did not align with the hector_slam approach.
This resulted in a duplication of the area, which was not percent in the testing area or in the
results from GMapping.

In the end, by looking at the results from Test 8, it was shown that both GMapping and
hector_slam were able to produce high quality maps when driving through a long hallway
with repeating areas and few features found on Campus Grimstad. On the basis of the results
and tests performed in the thesis, it was concluded that both GMapping and hector_slam
would be suitable solutions regarding the SLAM problem in repeating areas with few features.

To further improve the odometry of the SPURV, it is suggested to put encoders on each wheel.
These encoders could be placed on the shafts going out of the di�erentials to each wheel. Here,
the encoders would be able to measure the true rotation of the individual wheels. In addition,
by placing the encoders near the di�erentials they would be easy to case in. This would keep
dirt and grime out of the encoders. As an additional design improvement, handles could be
placed on the SPURV, making it easier to carry around. Alternatively, a backpack solution for
transporting the SPURV could be developed. This would make the SPURV easier to transport
for the operator, and the backpack solution could be designed in such a way that most critical
and expensive sensors would be protected.

102

Chapter 7

Further Work

As for further work, the /scan topic coming from the sick_scan package needs to be suppressed
for the algorithms to work properly on the SPURV. This topic would in�uence the signals
coming to both GMapping and hector_slam. As the topic coming from sick_scan is only
used in debugging circumstances, it can safely be removed. Further, either GMapping and
hector_slam needs to be installed to the SPURV and the launch �les of the SPURV has
to be modi�ed to start the required packages. In either case, the parameters of the selected
SLAM algorithm could be tuned to further improve the performance. Lastly, tests needs to be
performed in road tunnels to verify the performance of the chosen SLAM algorithm. This is
important as the performance of the algorithm has to be veri�ed in the environment it is meant
to be used.

103

Bibliography

[1] �lewatcher.com. Download mirrors for basic_localization_stage.bag (8.16 mb). http:

//www.filewatcher.com/m/basic_localization_stage.bag.8554022-0.html. Accessed:
March 2018.

[2] Brian Gerkey. slam_gmapping. https://github.com/ros-perception/slam_gmapping.
Accessed: February 2018.

[3] Giorgio Grisetti et al. Gmapping. http://www.openslam.org/gmapping.html. Accessed:
February 2018.

[4] Giorgio Grisetti et al. Improved techniques for grid mapping with rao-blackwellized particle
�lters. http://ieeexplore.ieee.org/document/4084563/. Acessed: February 2018.

[5] Giorgio Grisetti et al. openslam_gmapping. https://github.com/ros-perception/
openslam_gmapping. Accessed: March 2018.

[6] Jackal. gmapping.launch. https://github.com/jackal/jackal/blob/indigo-devel/
jackal_navigation/launch/include/gmapping.launch. Accessed: April 2018.

[7] Stefan Kohlbrecher et al. A �exible and scalable slam system with full 3d motion estima-
tion. http://ieeexplore.ieee.org/document/6106777/. Accessed: April 2018.

[8] Stefan Kohlbrecher and Johannes Meyer. hector_slam. http://wiki.ros.org/
hector_slam. Accessed: April 2018.

[9] KVS Technologies. Norwegian engineers develop robots to improve �re safety in road
tunnels. http://kvstech.no/en/2017/06/21/norske-ingeniorer-utvikler-roboter-
som-skal-bedre-brannsikkerheten-i-lange-veitunneler-teknisk-ukeblad/. Ac-
cessed: January 2018.

[10] Michael Lehning et al. sick_scan. http://wiki.ros.org/sick_scan. Accessed: April
2018.

[11] Morten Ottestad. Mechatronics_thesis_2017.pdf. https://uia.instructure.com/
courses/883/files?preview=69018. Accessed: May 2018.

[12] ros.org. About ros. http://www.ros.org/about-ros/. Accessed: April 2018.

[13] ros.org. Creating a workspace for catkin. http://wiki.ros.org/catkin/Tutorials/
create_a_workspace. Accessed: March 2018.

[14] ros.org. History. http://www.ros.org/history/. Accessed: April 2018.

104

http://www.filewatcher.com/m/basic_localization_stage.bag.8554022-0.html
http://www.filewatcher.com/m/basic_localization_stage.bag.8554022-0.html
https://github.com/ros-perception/slam_gmapping
http://www.openslam.org/gmapping.html
http://ieeexplore.ieee.org/document/4084563/
https://github.com/ros-perception/openslam_gmapping
https://github.com/ros-perception/openslam_gmapping
https://github.com/jackal/jackal/blob/indigo-devel/jackal_navigation/launch/include/gmapping.launch
https://github.com/jackal/jackal/blob/indigo-devel/jackal_navigation/launch/include/gmapping.launch
http://ieeexplore.ieee.org/document/6106777/
http://wiki.ros.org/hector_slam
http://wiki.ros.org/hector_slam
http://kvstech.no/en/2017/06/21/norske-ingeniorer-utvikler-roboter-som-skal-bedre-brannsikkerheten-i-lange-veitunneler-teknisk-ukeblad/
http://kvstech.no/en/2017/06/21/norske-ingeniorer-utvikler-roboter-som-skal-bedre-brannsikkerheten-i-lange-veitunneler-teknisk-ukeblad/
http://wiki.ros.org/sick_scan
https://uia.instructure.com/courses/883/files?preview=69018
https://uia.instructure.com/courses/883/files?preview=69018
http://www.ros.org/about-ros/
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://www.ros.org/history/

BIBLIOGRAPHY BIBLIOGRAPHY

[15] ros.org. How to build a map using logged data. http://wiki.ros.org/slam_gmapping/
Tutorials/MappingFromLoggedData. Accessed: March 2018.

[16] ros.org. Tools. http://wiki.ros.org/Tools. Accessed: April 2018.

[17] Isaac I. Y. Saito. Apis. http://wiki.ros.org/APIs. Accessed: April 2018.

[18] Roland Siegwart et al. Introduction to Autonomous Mobile Robots. MIT Press, 2nd edition,
2011.

[19] Cyrill Stachniss. Fastslam: Feature-based slam with particle �lters. http:

//ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam12-
fastslam.pdf. Accessed: February 2018.

[20] Cyrill Stachniss. Grid-based fastslam. http://ais.informatik.uni-freiburg.de/
teaching/ws13/mapping/pdf/slam13-gridfastslam.pdf. Accessed: Februry 2018.

[21] Cyrill Stachniss. Grid maps. http://ais.informatik.uni-freiburg.de/teaching/ws13/
mapping/pdf/slam10-gridmaps.pdf. Accessed: February 2018.

[22] Cyrill Stachniss. Short introduction to particle �lters and monte carlo localiza-
tion. http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam09-
particle-filter.pdf. Accessed: February 2018.

[23] Sebastian Thrun et al. Probabilistic Robotics. MIT Press, 2006.

105

http://wiki.ros.org/slam_gmapping/Tutorials/MappingFromLoggedData
http://wiki.ros.org/slam_gmapping/Tutorials/MappingFromLoggedData
http://wiki.ros.org/Tools
http://wiki.ros.org/APIs
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam12-fastslam.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam12-fastslam.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam12-fastslam.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam13-gridfastslam.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam13-gridfastslam.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam10-gridmaps.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam10-gridmaps.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam09-particle-filter.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/slam09-particle-filter.pdf

Appendix A

All Results from Test 5 Part 2

(a)
(b)

(c) (d)

Figure A.1: All test results from Test 5 Part 2

Table A.1: Test Parameters used in Test 5 Part 2

Resolution of Map Number of Particles Corresponding Figure
5 cm/grid cell 30 Figure A.2 a) and b)
10 cm/grid cell 30 Rest of the �gures

A - 1

APPENDIX A. ALL RESULTS FROM TEST 5 PART 2

(a) (b)

(c)
(d)

(e) (f)

Figure A.2: All test results from Test 5 Part 2 continuation

A - 2

Appendix B

Setting Up ROS Workspace

"gmapping_ws"

To be able to work in the ROS environment, a catkin workspace had to be set up. This approach
is shown in the tutorials at the ROS wiki [13]. This section is going to showcase how this was
done, using the names and paths of the set up used in the thesis. This is done for convenience
and clarity.

Firstly, a source folder has to be made. By using the command

$ mkdir -p ∼/gmapping_ws/src

in a terminal, leading to the folder gmapping_ws with the subfolder src being created. Next,
the workspace could be made by changing directory to the gmapping_ws folder,

$ cd ∼/gmapping_ws/

and then using catkin_make to create the necessary folders and �les. This was done using the
command

$ catkin_make

By using this command, two new folders were created: build and devel. In the devel folder,
the setup.*sh �le was located. This �le needed to sourced to be sourced. As the current
directory was ~/gmapping_ws/, the following command was used to source the setup.*sh:

$ source devel/setup.bash

This sourcing could also be set up in the .bashrc-�le to make each subsequent terminal source
the workspace by themselves. This was achieved by opening the .bashrc-�le with the command

$ sudo gedit ∼/.bashrc

B - 1

APPENDIX B. SETTING UP ROS WORKSPACE "GMAPPING_WS"

and putting this line of code somewhere in the �le:

$ source ∼/gmapping_ws/devel/setup.bash

This ensured that the workspace was properly sourced.

B - 2

Appendix C

Building the ROS Package in

"gmapping_ws"

The command catkin_make was used to build the ROS packages located in the src folder. Be-
fore the command was executed, the folders containing openslam_gmapping, slam_gmapping
and map_server had to be moved to the ~/gmapping_ws/src directory. The folders that
needed to be moved were named gmapping, containing openslam_gmapping and slam_gmapping,
and navigation, containing map_server. The �les was moved using the

$ mv <from_path> <to_path>

command. However, during building, several errors with the navigation package occurred.
These errors comprised of missing libraries which needed to be installed. By instaling the
following libraries, the errors ceased;

$ sudo apt install libbullet-dev

$ sudo apt install libsdl-dev

$ sudo apt install libsdl-image1.2-dev

$ sudo apt install ros-kinetic-b�

$ sudo apt install sudo apt install ros-kinetic-move-base

These libraries might have been included if the apt package manager was used when acquir-
ing the �les for openslam_gmapping, slam_gmapping and map_server, making these last
commands redundant.

To build the package, the commands

$ cd ∼/gmapping_ws

$ catkin_make

C - 1

APPENDIX C. BUILDING THE ROS PACKAGE IN "GMAPPING_WS"

was used to build the packages located in the src folder. ROS should be able to detect the
packages, once properly sourced, with the command

$ rospack �nd <package_name>

This was a good way to check whether the packages was built and sourced correctly.

C - 2

Appendix D

Testing of "slam_gmapping"

As the ROS package now was properly built, testing began. This was done bt following the
"slam_gmapping" tutorial "How to Build a Map Using Logged Data" [15]. The key idea of
this approach was to make a map using logged data, known as "bag", and slam_gmapping.
First, the ROS master had to be activated by using the command

$ roscore

in a new terminal

In a di�erent terminal, the ROS simulation time had to be set to "true" before any ROS nodes
were activated.

$ rosparam set use_sim_time true

To verify that the simulation time was set to "true", the command

$ rosparam get /use_sim_time

would return the value of use_sim_time, which should return "true".

Next, the slam_gmapping node could be started using the command

$ rosrun gmapping slam_gmapping scan:=base_scan

where the laser scan topic was set to "base_scan".

In a new terminal, the bag containing the logged data was played using the command

$ rosbag play --clock <name of the bag>

Lastly, the map was recorded using

D - 1

APPENDIX D. TESTING OF "SLAM_GMAPPING"

$ rosrun map_server map_saver -f <map_name>

If it is desired, the mapping process can be viewed in rviz during mapping by using the
command

$ rosrun rviz rviz

then adding a map display and setting the topic to "/map". This could be useful for �nding
errors.

Figure D.1: Map produced by logged data

The bag provided by the tutorial was faulty, resulting in a freeze of the algorithm. However, a
replacement was found on the internet [1], and this bag yielded the results found in Figure D.1.
In the �gure, several rooms connected by hallways are distinguishable from the grey unexplored
areas surrounding it.

D - 2

Appendix E

Wired Connection to the SPURV

Figure E.1: Rear panel of the SPURV Research

The connections to the robot are located at the rear panel, as shown in Figure E.1. There
are �ve red rectangles in the �gure signifying di�erent components. The �rst is the charger
connection to the SPURV. Next is the on/o� switch which is used to turn on or o� the power
to the SPURV. Third is the rear view camera followed by hdmi and usb connections shown in
rectangle four. The hdmi and usb connections can be used to connect a monitor and keyboard
to the SPURV and operate it more like a regular computer. Lastly, the �fth rectangle is the
LAN/Ethernet cable connection. This is important for establishing communication between
the SPURV and the user's computer.

To be able to connect to the SPURV, two connections has to be created on the computer: one
fro the cabled connection and one for connection with internet access. In ubuntu, this is done
by clicking on the wi-� symbol at the top of the menu bar. Then a menu drops down. Here,
by pressing "edit connections..." and then "Add", a new connection can be established. Once

E - 1

APPENDIX E. WIRED CONNECTION TO THE SPURV

"Add" has been pressed, several choices of connection types are presented in a drop down menu.
For both connection cases, cable and internet access, the "Ethernet" option is used. The reason
for sharing internet through an Ethernet cable is due to the restrictive set-up of the "eduroam"
network used by the university. For the �rst Ethernet connection, which was named "Wired
connection 1" the following settings has to be made. Under the "Ethernet" tab and "Device"
option press the drop down menu and select "00:90:F5:F0:76:E4". Once this is done, navigate
to the "IPv4 Settings" tab and press the drop down menu at the "Method" option. This should
be set to "Manual". Further, under the "Addresses" option write the following: For "Address"
write "10.1.8.10", for "Netmask" write "24" and do not write anything in "Gateway".

Now, the cabled connection is created. Next, the internet access connection has to be created.
This is done by sharing the internet of the computer with the SPURV over Ethernet. By using
the same approach as with the cabled connection, the Ethernet connection is created. This
connection was called "Spurv_nett". Under the "Ethernet" tab, click on the drop down menu
of "Devices" and select "enp5sofz(00:90:F5:F0:76:E4)". Under the "IPv4 Settings", press the
drop down menu of "Method" and select "Shared to other computers". Now all the necessary
Ethernet connections are created.

(a) Function for cabled connection (b) Function for sharing internet over Ethernet

Figure E.2: Functions in .bashrc to set correct IP-addresses

To set the correct IP-addresses, the functions shown in Figure E.2 were created to make the
process of setting the correct IP-addresses trivial. These functions were created in .bashrc
and would be valid for all future sourced terminals. The function "spurv_master_in_wild",
shown in Figure E.2 a), is used when connecting with either an Ethernet cable or connecting
to the wireless network broadcasted by the SPURV. When the SPURV needs to be connected
to the internet, the function "spurv_master_shared_net", which is shown on Figure E.2 b),
is used.

(a) Entry for the cabled connection (b) Entry for the shared network connection

Figure E.3: Entries in the ssh con�g �le

To be able to access the SPURV through the cabled connection, the secure shell ssh protocol
is used. Here the user connects with the user "nvidia" of the SPURV. This is done by using
the command

E - 2

APPENDIX E. WIRED CONNECTION TO THE SPURV

$ ssh nvidia@<IP-address>

and then typing in the password for the user "nvidia". To make this process easier and quicker,
a con�g �le was made in the .ssh directory containing the entries of Figure E.3. By doing
this, the procedure can be reduced to the command

$ ssh spurv_kabel

when connecting to the SPURV with, for instance, an Ethernet cable. The entries needed for
realising this is shown in Figure E.3 a). Likewise, if the shared network is used, the command

$ ssh spurv_delt_nett

is used. This entries is illustrated in Figure E.3 b). In both cases, the password for the user
"nvidia" has to be typed to gain access to the SPURV.

Figure E.4: Alias used in .bashrc

For further quality of life improvements, the alias functionality in .bashrc was used. Figure
E.4 shows two such aliases. The �rst alias named "mount_spurv" makes the �les stored on
the SPURV robot easily accessible on the computer, making the SPURV functioning similarly
to an USB-stick in terms of accessing the �les. The next alias called "s" simply resources the
terminal. This comes in handy while setting up the SPURV, saving a lot of typing. Both of
these line of code has to be written in .bashrc.

E - 3

Appendix F

Wireless Connection to the SPURV

Figure F.1: Finding neighbouring networks in WinBox

When using the wireless connectivity provided by the SPURV, which is practical when driving
over larger distances, WinBox is the best way to con�gure the network.Figure F.1 shows how
to detect local neighbouring networks using the "Neighbours" tab. Once the SPURV has been
detected, the name, MAC-address and IP-address shows up in the table. This can be seen at
the bottom of Figure F.1 where the "Identity" or name of the SPURV is "008-UiASPURV".
By clicking on the IP-address, it is automatically �lled in to the "Connect To" section, as seen
at the top of Figure F.1. Once this is done, the "Connect" button can be pressed to connect
to the SPURV.

F - 1

APPENDIX F. WIRELESS CONNECTION TO THE SPURV

(a) Connecting to existing network

(b) Broadcasting local network

Figure F.2: Set-up of the wireless connections of the SPURV

Now, as the connection between WinBox and the SPURV has been established, the wireless

F - 2

APPENDIX F. WIRELESS CONNECTION TO THE SPURV

network can be con�gured. There are two options for the network set up which are suitable
for the SPURV, namely "CPE" and "WISP AP". The "CPE" option, shown in Figure F.2
a), is used when connecting to an already existing wireless network. Due to the strict set-up
of the network "eduroam" on the University of Agder, this connection was not feasible to use
with the SPURV. However, if this connection was possible, the SPURV could drive wherever
there was coverage of "eduroam" on campus. The second option, "WISP AP", is used when
the SPURV is broadcasting its own network. The con�guration of this network is shown in
Figure F.2 b). Here the name of the network, band and password are set. Once this is done,
the network should be visible with the set name. By selecting this network, and entering the
correct password, the user is connected to the SPURV through the wireless connection.

F - 3

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Project Description
	Objective
	Concept

	Theory
	Robot Operating System
	Mathematical Representation of SLAM
	Bayes Filter with Static State
	Occupancy Grid Mapping
	Scan Matching
	Particle Filters
	Monte Carlo Localization
	Kalman Filter
	Extended Kalman Filter
	Rao-Blackwellization
	Feature-Based FastSLAM 1.0 and 2.0
	FastSALM 1.0 with Known Correspondence
	FastSLAM 2.0

	Grid-Based FastSLAM

	Method
	Working Method
	Selection of SLAM Approach
	Software
	GMapping
	Hector SLAM
	Why GMapping and Hector SLAM?
	The SPURV Robot
	Test 1 - Initial Testing
	Test Plan for Test 1
	Execution of Test 1

	Test 2 - Controlling SPURV, Identify Topics
	Test Plan for Test 2
	Execution of Test 2

	Fixing the Odometry of the SPURV
	Test 3 - Verify Odometry, Driving Speed
	Test Plan for Test 3
	Execution of Test 3

	Test 4 - GMapping Parameter Test
	Test Plan for Test 4
	Execution of Test 4

	Test 5 - Odometry Investigation
	Test Plan for Test 5
	Execution of Test 5

	Test 6 - Hector SLAM
	Test Plan for Test 6
	Execution of Test 6

	Test 7 - MATLAB Plot of Odometry
	Test Plan for Test 7
	Execution of Test 7

	Test 8 - Repeating, Featureless Environment
	Test Plan for Test 8
	Execution of Test 8

	Results
	Test 1 - Initial Testing
	Test 2 - Controlling SPURV, Identify Topics
	Test 3 - Verify Odometry, Driving Speed
	Test 4 - GMapping Parameter Test
	Test 5 - Odometry Investigation
	Results of Test 5 Part 1
	Results of Test 5 Part 2
	Results of Test 5 Part 3

	Test 6 - Hector SLAM
	Test 7 - MATLAB Plot of Odometry
	Test 8 - Repeating, Featureless Environment
	Results of Test 8 Part 1
	Results of Test 8 Part 2

	Discussion
	Test 1 - Initial Testing
	Test 2 - Controlling SPURV, Identify Topics
	Test 3 - Verify Odometry, Driving Speed
	Test 4 - GMapping Parameter Test
	Test 5 - Odometry Investigation
	Test 6 - Hector SLAM
	Test 7 - MATLAB Plot of Odometry
	Test 8 - Repeating, Featureless Environment
	Evaluation of the Testing Method

	Conclusions and Recommendations
	Further Work
	Bibliography
	All Results from Test 5 Part 2
	Setting Up ROS Workspace "gmapping_ws"
	Building the ROS Package in "gmapping_ws"
	Testing of "slam_gmapping"
	Wired Connection to the SPURV
	Wireless Connection to the SPURV

