
Modelling, Simulation and Control of
offshore crane

Develop a kinematic and dynamic crane model and study of several control designs

Lisa Ann Williams

Supervisor
Jing Zhou

This master’s thesis is carried out as a part of the education at the University of Agder and is therefore
approved as a part of this education. However, this does not imply that the University answers for the

methods that are used or the conclusions that are drawn.

University of Agder 2018
Department of Engineering

Faculty of Technology and Science

Acknowledgements

This thesis is written and carried out as a part of the education in the master of Mechatronics
at the University of Agder. It has been a very instructive and in interesting process, but also a
challenging process. The opportunity to work with this project is highly appreciated.

First, special thanks to the supervisor, Jing Zhou, for her invaluable assistance and guidance.
Through the work with the thesis, she has been available both in meetings and whenever assis-
tance was needed, and quickly replied to questions on email. She has shown great interest to
the thesis and introduced interesting solutions to control design.

Also, thank you very much to the class mate, Jakub Frazik, for his help with implementing a
crane model in Simulink. He was also valuable with the work concerning the LQR, with his
knowledge of how a LQR worked.

i

Abstract

This master thesis is about Modelling, Simulation and Control of a MacGregor Active Heave
Compensation (AHC) 250t crane operating on the supply vessel Gran Canyon. The crane
model was developed mathematically using robot modeling theory including both kinematic
and dynamic equations. This model was developed and simulated in Matlab and Simulink and
further compared, where the two models showed equal results.

Control designs for an offshore crane can be developed in several ways, but in this thesis the
control task only concerns position control of the crane and can be divided into two control
tasks. The main goal is to determine the most suitable controller design for the two control
tasks, which are as follows:

• Control of crane joints with the aim to get the joint angles to follow a desired joint angle,
which is a sine wave with an amplitude of one, with as small error between desired and
measured join angles as possible.

• Control of crane end-effector in vertical direction with the aim to get the end-effector
position in z-direction to follow a desired end-effector position in z-direction with as small
error between desired and measured position as possible. The desired position is a linear
movement from 5.432m to 1m with a velocity of 0.1m/s. Then the end-effector should be
kept steady at 1m.

The dynamic model of the crane was implemented in Simulink and various control designs
were developed with the task of controlling the joint angles and the end-effector position in
vertical direction, using the dynamic model as the plant. PID-, PI and PD-controller design
and Linear-Quadratic Regulator (LQR) design were developed to perform control of joint angles
and end-effector separately. Two inverse kinematics methods were developed with the aim of
controlling the end-effector based on the kinematic equations. Using the inverse Jacobian for
this purpose caused singularities, but using the transpose Jacobian instead made it possible to
simulate the system.

Simulations showed that a PID-controller design had the best performance when controlling
the joint angles, with a maximal error between desired joint angle and measure joint angle of
q1error = 2.775 ⋅ 10−3[rad], q2error = 3.327 ⋅ 10−3[rad] and q3error = 6.268 ⋅ 10−4[rad]. While
a PD-controller design showed the best performance when controlling the end-effector position
in vertical direction, with a maximal error between desired and measured position as zeerror =
2.826[mm].

ii

Contents

Acknowledgements i

Abstract ii

List of Figures viii

List of Tables ix

Abbreviations and Descriptions x

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Specification and Limitations . 1
1.3 Objectives . 2
1.4 Outline . 2
1.5 Introduction to Software . 2

2 Literature Review 3
2.1 Modelling of crane . 3

2.1.1 Denavit-Hartenberg (DH) Convention . 3
2.1.2 Lagrange’s Approach . 3
2.1.3 Bond Graph . 4

2.2 Control of Offshore Cranes . 4
2.2.1 Nonlinear Stabilizing Control without Linearization or Approximation . . 5
2.2.2 Dynamic Positioning Control . 5

2.3 Software used for Modelling and Simulation of Crane 5

3 Robot Modelling Theory and Control Theory 7
3.1 Kinematics . 7

3.1.1 Robot Manipulator . 8
3.1.2 Kinematic Chains . 8
3.1.3 DH Convention . 9
3.1.4 Velocity and Acceleration Jacobian . 10

3.2 Dynamics . 11
3.2.1 Lagrange’s Approach . 12
3.2.2 Kinetic Energy . 12
3.2.3 Potential Energy . 13
3.2.4 Equations of Motion . 13

3.3 Control Theory . 14
3.3.1 PID-controller . 15
3.3.2 P-controller . 16
3.3.3 PI-controller . 16

iii

3.3.4 PD-controller . 17
3.3.5 Ziegler-Nichols Tuning . 18
3.3.6 LQR . 18
3.3.7 Inverse Kinematics Methods . 21

4 Description of the Crane 23

5 Modelling of Crane 26
5.1 Crane Kinematics . 26

5.1.1 DH Convention . 26
5.1.2 Geometric Jacobian between Frame 3 and Joints 28
5.1.3 Inverse Kinematics . 31
5.1.4 Actuator Kinematics . 32

5.2 Crane Dynamics . 34
5.2.1 Kinetic Energy . 34
5.2.2 Potential Energy . 36

5.3 Dynamic Crane Model in Simulink . 36

6 Comparison of Matlab and Simulink Crane Model 38

7 Controller Design 43
7.1 Control of Crane Joints . 43

7.1.1 PID-controller . 44
7.1.2 PD-controller . 45
7.1.3 PI-controller . 46
7.1.4 LQR . 47

7.2 Control of Crane End-effector . 49
7.2.1 Ziegler-Nichols Closed-loop Tuning . 50
7.2.2 PID-controller . 51
7.2.3 PD-controller . 52
7.2.4 PI-controller . 53
7.2.5 LQR . 53
7.2.6 Jacobian Inversion Method . 54
7.2.7 Jacobian Transpose Method . 55

8 Simulation Results and Discussion 56
8.1 Control of Crane Joints . 56

8.1.1 PID-controller . 56
8.1.2 PID-controller with Gravity Compensation 57
8.1.3 PD-controller . 58
8.1.4 PD-controller with Gravity Compensation 58
8.1.5 PI-controller . 59
8.1.6 PI-controller with Gravity Compensation . 60
8.1.7 LQR . 60
8.1.8 Discussion of Control of Joints . 62

8.2 Control of Crane End-effector . 62
8.2.1 PID-controller . 63
8.2.2 PD-controller . 64
8.2.3 PI-controller . 66
8.2.4 LQR . 68
8.2.5 Jacobian Inversion Method . 70
8.2.6 Jacobian Transpose Method . 70

iv

8.2.7 Discussion of Control of Crane End-effector 71

9 Conclusions and Future Work 72
9.1 Conclusions . 72
9.2 Further Work . 73

Bibliography 74

A Inverse Crane Kinematics and Crane Dynamics

B Linear-Qaudratic Regulator (LQR) Design for Crane Joints

C Linear-Qaudratic Regulator (LQR) Design for Crane End-effector

v

List of Figures

3.1 Forward and inverse kinematics . 7
3.2 Coordinate frames of an elbow manipulator . 9
3.3 PID-controller . 15
3.4 P-controller . 16
3.5 PI-controller . 17
3.6 PD-controller . 17
3.7 Linear-Quadratic Optimal Set-point Regulation . 19
3.8 Linear-Quadratic Optimal Trajectory Tracking Control 20
3.9 Jacobian inversion method . 21
3.10 Jacobian transpose method . 22

4.1 Assembly of the crane . 23
4.2 Simplified crane model with combined bodies . 24

5.1 DH representation of the crane . 27
5.2 Trigonometric relations between cylinder 1 and joint 2 32
5.3 Trigonometric relations between cylinder 2 and joint 3 33
5.4 Block diagram of the dynamic crane model . 36
5.5 Dynamic crane model in Simulink . 37

6.1 End-effector position from Matlab . 39
6.2 End-effector position from Simulink . 39
6.3 End-effector velocity from Matlab . 40
6.4 End-effector velocity from Simulink . 40
6.5 End-effector acceleration from Matlab . 40
6.6 End-effector acceleration from Simulink . 40
6.7 Joint angles from Matlab . 40
6.8 Joint angles from Simulink . 40
6.9 Joint velocities from Matlab . 41
6.10 Joint velocities from Simulink . 41
6.11 Joint accelerations from Matlab 41
6.12 Joint accelerations from Simulink . 41
6.13 Joint torques from Matlab . 41
6.14 Joint torques from Simulink . 41
6.15 Cylinder lengths from Matlab 42
6.16 Cylinder lengths from Simulink 42
6.17 Cylinder velocities from Matlab 42
6.18 Cylinder velocities from Simulink . 42

7.1 Desired joint angles . 44
7.2 Control of joint angles using PID-controller . 45
7.3 Control of joint angles using PID-controller with gravity compensation 45
7.4 Control of joint angles using PD-controller . 46

vi

7.5 Control of joint angles using PD-controller with gravity compensation 46
7.6 Control of joint angles using PI-controller . 47
7.7 Control of joint angles using PI-controller with gravity compensation 47
7.8 Control of joint angle 1 using LQR . 48
7.9 Control of joint angle 3 using LQR . 48
7.10 Control of joint angle 3 using LQR . 48
7.11 Desired position in z-direction . 49
7.12 Procedure to find the ultimate gain Ku . 51
7.13 Using peak finder to determine the ultimate period Pu 51
7.14 Control of end-effector position using PID-controller with gravity compensation . 52
7.15 Control of end-effector position using PD-controller with gravity compensation . 52
7.16 Control of end-effector position using PI-controller with gravity compensation . . 53
7.17 Control of end-effector position using LQR . 54
7.18 Control of end-effector position using Jacobian inversion method 55
7.19 Control of end-effector position using Jacobian transpose method 55

8.1 Measured joint angles versus desired joint angles using PID-controller 57
8.2 Error between desired and measured joint angles using PID-controller 57
8.3 Measured joint angles versus desired joint angles using PID-controller with

gravity compensation . 57
8.4 Error between desired and measured joint angles using PID-controller with

gravity compensation . 57
8.5 Measured joint angles versus desired joint angles using PD-controller 58
8.6 Error between desired and measured joint angles using PD-controller 58
8.7 Measured joint angles versus desired joint angles using PD-controller with gravity

compensation . 59
8.8 Error between desired and measured joint angles using PD-controller with gravity

compensation . 59
8.9 Measured joint angles versus desired joint angles using PI-controller 59
8.10 Error between desired and measured joint angles using PI-controller 59
8.11 Measured joint angles versus desired joint angles using PI-controller with gravity

compensation . 60
8.12 Error between desired and measured joint angles using PI-controller with gravity

compensation . 60
8.13 Measured joint angle 1 versus desired joint angle 1 using LQR 61
8.14 Error between desired and measured joint angle 1 using LQR 61
8.15 Measured joint angle 2 versus desired joint angle 2 using LQR 61
8.16 Error between desired and measured joint angle 2 using LQR 61
8.17 Measured joint angle 3 versus desired joint angle 3 using LQR 62
8.18 Error between desired and measured joint angle 3 using LQR 62
8.19 Measured end-effector position in z-direction versus desired end-effector position

in z-direction using PID-control with gravity compensation and with the use of
Ziegler-Nichols parameters . 63

8.20 Error between desired and measured end-effector position in z-direction using
PID-control with gravity compensation and with the use of Ziegler-Nichols
parameters . 63

8.21 Measured end-effector position in z-direction versus desired end-effector position
in z-direction using PID-control with gravity compensation and with the use of
increased gains . 64

8.22 Error between desired and measured end-effector position in z-direction using
PID-control with gravity compensation and with the use of increased gains 64

vii

8.23 Measured end-effector position in z-direction versus desired end-effector position
in z-direction using PD-control with gravity compensation and with the use of
Ziegler-Nichols parameters . 65

8.24 Error between desired and measured end-effector position in z-direction using
PD-control with gravity compensation and with the use of Ziegler-Nichols
parameters . 65

8.25 Measured end-effector position in z-direction versus desired end-effector position
in z-direction using PD-control with gravity compensation and with the use of
increased gains . 65

8.26 Error between desired and measured end-effector position in z-direction using
PD-control with gravity compensation and with the use of increased gains 66

8.27 Measured end-effector position in z-direction versus desired end-effector position
in z-direction using PI-control with gravity compensation and with the use of
Ziegler-Nichols parameters . 67

8.28 Error between desired and measured end-effector position in z-direction using
PI-control with gravity compensation and with the use of Ziegler-Nichols parameters 67

8.29 Measured end-effector position in z-direction versus desired end-effector position
in z-direction using PI-control with gravity compensation with the use of
increased gains . 67

8.30 Error between desired and measured end-effector position in z-direction using
PI-control with gravity compensation with the use of increased gains 68

8.31 Measured end-effector position in z-direction versus desired end-effector position
in z-direction using a LQR . 69

8.32 Error between desired and measured end-effector position in z-direction using a
LQR . 69

8.33 Measured end-effector position in z-direction versus desired end-effector position
in z-direction using Jacobian transpose method . 70

8.34 Error between desired and measured end-effector position in z-direction using
Jacobian transpose method . 71

viii

List of Tables

3.1 DH parameters . 9
3.2 Effects of controller parameters for a PID . 16
3.3 Ziegler-Nichols open-loop controller parameters . 18
3.4 Ziegler-Nichols closed-loop controller parameters . 18

4.1 Measurements of the crane assembly . 24
4.2 Measurements of the crane assembly with combined bodies 25

5.1 DH parameters . 27

ix

Abbreviations and Descriptions

ACH Active Heave Compensation
CAD Computer-aided Design
D Derivative term
DH Denavit-Hartenberg
DOF Degree of Freedom
End-effector A device at the end of a robot manipulator.
I Integral term
LQR Linear-Quadratic Regulator
P Proportional term
Trajectory A desired path for the end-effector.

x

Chapter 1

Introduction

The main purposes of this master thesis are to develop a crane model based on kinematic and
dynamic equations, develop several control designs for the crane, and further determine the most
optimal control design for an offshore crane.

1.1 Background and Motivation
Offshore cranes play an important part in several marine operations. They are expected to
perform a wide range of different tasks such as placing a payload safely on shore or on a vessel.
Cranes that are placed on a vessel are affected by vessel motions caused by environmental forces
such as wind, waves and current. Therefore, Crane dynamics and crane heave compensation need
to be designed and analyzed carefully. Last year, a master thesis was provided by MacGregor
with the aim of developing a platform to study coupled dynamics between the crane and a
marine craft. This concerned a MacGregor AHC 250t crane operating on the supply vessel
Gran Canyon, which is designed by the company Skipsteknisk AS in Ålesund. In the last few
decades, ocean engineering-orientated automation has become a dominating research focus in
several fields, and as a contribution to the mentioned master thesis the implementation of various
control algorithms with the task to control the crane in a desired position needs to be examined.

1.2 Problem Specification and Limitations
This project is about Modelling, Simulation and Control of an offshore crane and concerns the
MacGregor AHC 250t crane operating on the supply vessel Gran Canyon, which is designed by
the company Skipsteknisk AS in Ålesund.

An important part of this projects is the literature study, where the purpose is to document
already existing methods for modeling, simulation and control of offshore crane.

This project is delimited to concern only the crane, and not coupled dynamics between the
crane, vessel, cable and payload. Therefore, the focus is to develop a mathematical model of
the crane using existing research on kinematic and dynamic equations associated with offshore
cranes, build a dynamic model of the crane and consider several control methods applied on the
kinematic and dynamic crane model.

There will be developed control designs that will directly control the crane joints, where the
control task is to get the joint angles to follow a desired joint angle with as small error between
desired and measured joint angles as possible. Control designs that will directly control the
end-effector position in vertical direction will be developed as well, with the control task to get
the end-effector position to follow a desired end-effector position with as small error between
desired and measure end-effector position as possible. The main goal of this work is to determine
the most optimal controller design for both controller task.

1

1.3 Objectives
The tasks of this thesis can be divided into three sub tasks. These sub tasks are considered as
the objectives of the project and are listed below.

• Literature study of modeling, simulation and control of offshore cranes.

• Modeling and simulation of crane kinematics and dynamics.

• Develop several control designs, simulate the systems and examine the results of each
controller design.

1.4 Outline
Chapter 2 contains an overview of existing research and applications related to the modelling,
simulation and control of offshore cranes. Chapter 3 introduces the theoretical expressions that
are central for understand the modelling and control used in this thesis. Chapter 4 contains
a description of the crane and how some simplifications are done to obtain a viable system
for the modelling, simulation and control. Chapter 5 presents a mathematical model of the
crane, which concerns both crane kinematics and dynamics. This chapter also presents the
dynamic crane design in Simulink. Chapter 6 presents a Matlab and a Simulink model, based
on the mathematical model, where the results from the two models will be compared. Chapter
7 introduces several control designs used to control the crane in a desired position. Chapter
8 presents the simulation results from all control designs and a subsequent discussion for both
controller tasks. Finally, chapter 9 gives a conclusion of the work and recommendations of future
work.

1.5 Introduction to Software
Softwares used for accomplishing this thesis are Matlab and Matlab/Simulink. Matlab is a math-
ematical software that uses a script language primarily for numerical computing, and Simulink
is a simulation software where block diagrams are used for the modelling. Simulink can also be
used to model a dynamic system as a Simscape or SimMechanics model, but this procedure is
not used in this thesis.

A model of the crane kinematics and dynamics is developed in both in Matlab and Simulink,
where the purpose is to compare results from the two models. A dynamic model is developed
in Simulink. Finally, several control designs are developed in Simulink, where some of them are
run in parallel with a Matlab script.

2

Chapter 2

Literature Review

This chapter contains an overview of existing research and applications related to modelling,
simulation and control of offshore cranes. It explains existing methods for modelling the crane
kinematics and dynamics, as well as the control system for offshore cranes, the software used for
modelling and simulation of the crane, and some advantages and disadvantages regarding the
methods and software.

2.1 Modelling of crane
According to Chu and Asæy [5], many approaches exist for deriving dynamic equations of a
mechanical system. All methods have in common that they generate equivalent sets of equations,
but the approach is depending on computation and analysis of different purposes.

2.1.1 Denavit-Hartenberg (DH) Convention

In mathematical robot modelling kinematic equations are used to describe the motion of the
robot manipulator without taking torque and forces into consideration [2]. The kinematics for
a robot with n number of links can be extremely complex, which is why simplifications are
completely necessary in order to model the crane kinematics. The Denavit-Hartenberg conven-
tion ensures a systematic procedure to develop robot manipulator kinematics [2]. In the article
"Integrated multi-domain system modelling and simulation for offshore crane operations" [4],
Chu, Asøy, Ehlers and Zhang document how the assignment of reference frame and notations
followed the Denavit-Hartenberg convention, and how the convention is used to solve the kine-
matic chains of a knuckle boom crane when the global reference frame 0 was attached to the
base of the crane. Knowing the velocity of the end-effector of the crane, the velocity of the
joints is calculated, and then the cylinder velocities can be described as a function of the joint
velocities.

2.1.2 Lagrange’s Approach

In the article "A MULTI-BODY DYNAMIC MODEL BASED ON BOND GRAPH FOR MAR-
ITIME HYDRAULIC CRANE OPERATIONS" [5], Chu and Æsøy introduce the Lagrange’s
approach, which is a method for deriving the dynamic equations. Here, the dynamics of a three
degree of freedom (DOF) knuckle boom crane relies on the energy properties, where the differ-
ence between the kinetic and potential energy is essential. This method makes it possible to
reduce the equations needed to describe the motion of the crane, as it uses generalized coor-
dinates to describe the system instead of taking every single body with mass and inertia into
consideration. This approach is appropriate for modelling with the use of bond graphs, and it
avoids derivative causality problems when modelling nonlinear systems [5].

3

2.1.3 Bond Graph

Chu and Æsøy also show how a maritime crane lifting system comprised of a 3DOFs crane
with three revolute joints, a winch, a segment of wire, and a pendulum load is modelled by
developing a bond graph, which is a graphical representation of a physical dynamic system.
This is a modelling technique that describes the energy structure of a physical system [5]. The
models of the hydraulic actuators can easily be integrated due to the fact that the bond graph
method is an energy based modelling approach. Bond graph theory provides an assembled
description of physical systems athwart several energy fields, which makes interconnection of
subsystems manageable [7].

2.2 Control of Offshore Cranes
Sun, Fang, Chen, Fu, and Lu explain in their paper [9] that over the past several decades the
control problem for land-fixed cranes has been deeply studied, and that a lot of solutions for
both linear and nonlinear control methods have been reported and many control strategies for
land-fixed cranes have already been developed. As opposed to the land-fixed cranes, which are
fixed and operated in the inertia, the ship-mounted cranes are influenced by external disturbance
from sea waves, sea wind, ocean current etc. and are working in non-inertial frames. Due to
those rough working conditions and the influence by various external disturbance the control
problem for offshore cranes is highly demanding when the intention of the control is to place
a payload precisely and smoothly to a desired location as fast as possible, without making the
payload swing during the operation and avoid residual swing at the end.

Sun, Fang, Chen, Fu, and Lu looked at other literature of work denoted to the control of ship-
mounted cranes and found some control strategies that were already developed and are listed
below [9].

• A feed forward control with gain scheduling

• A control scheme consisting of a variable-gain observer and a variable-gain controller

• Predictionbased control

• Preview tracking control

• Nonlinear feedback control

• Sliding mode control (SMC)

• Composite control

• Linear matrix inequality-based control

• Delayed feedback control

• Active rate-based control

• Combination-based control

• External model based control

They found some advantages of using these control strategies, for instance that the control
scheme with variable-gain observer and variable-gain controller is proved to be effective and
that two nonlinear sliding mode controllers are developed and are proved to be effective and
robust. Despite these advantages, most of these control strategies are based on simplified or
reduced crane dynamics, which may cause system instability because it is difficult to avoid a
swinging payload, due to the complicated working scenario of an offshore crane [9].

4

2.2.1 Nonlinear Stabilizing Control without Linearization or Approximation

As a reply to the concerns regarding the stability problems with the existing control methods,
Sun, Fang, Chen, Fu, and Lu present a control design for offshore cranes based on the original
nonlinear dynamics of the crane without any simplifications or approximations [9]. They present
how the dynamics is transformed into a form that is more practical for such an approach, where
the new control variables are defined. The Lyapunov control law and a closed-loop stability
analysis are provided, and as far as they know this paper produces the first closed-loop control
method which attain asymptotic results for an offshore crane, affected by ship roll and heave
movement, without needing linearization and approximation of the original nonlinear dynamics.
This method is compared to the existing methods using MATLAB/Simulink RTWT to verify
that the performance of such a control method is better and more robust against external
disturbances than the other control methods.

2.2.2 Dynamic Positioning Control

For a vessel actuated by two main thrusters, Rokseth, Skjong and Pedersen present the use
of a Dynamic positioning control system (DP-control system), where the purpose is to provide
reference signals for the thrusters so that the vessel can be controlled in three directions; surge,
sway and yaw. This control system consists of position and angle set points, a second-order
reference model to smooth the position and yaw angle set point into a reference signal, a position
controller that calculates the desired thrust vector, a thrust allocation algorithm that uses the
desired thrust vector to allocate the desired thrust force for each of the two thrusters and local
thruster controllers that realize the thrust commands. A nonlinear observer was also needed to
filter out high-frequency components of the measurements regarding position and angle [7].

2.3 Software used for Modelling and Simulation of Crane
Several software for modelling and simulation of crane already exist. The use of Computer-
aided design (CAD) tools for modelling and simulation of offshore cranes has been improved
considerably the last few decades, but models from CAD tools with detailed design are usually
to complex to simulate, especially when the physical system is to complex or if a real-time
performance of the simulation is required [3].

In the article "The Functional Mockup Interface - seen from an industrial perspective" [6],
Bertsch, Ahle and Schulmeister introduce the White box modelling, which is about modelling
the entire system with one consistent method using a modelling language that is suitable for
different physical fields. An example of this approach is MODELICA. MODELICA is a multi-
domain modelling language that allow us to model and simulate the combination of electrical,
mechanical, thermodynamic, hydraulic, biological, control, event, real-time, etc using the same
modelling language [8]. This type of modelling is equation based and has led to the development
of softwarepackages, extensions and tool-boxes such as MATLAB/Simulink, SimulationX, 20-sim
and OpenModelica [3].

Related to simulation of offshore cranes, Chu and Æsøy present modelling and simulation of a
knuckle boom crane using a bond graph implemented in 20-sim [5]. 20-sim is a software tool
that allows the implementation of bond graphs in the modelling and simulation [5].

Rokseth, Skjong and Pedersen also used bond graph implementation in sim-20 when simulating
the crane system but emphasized that the bond graph model can be simulated in any software
supporting script. This is since a bond graph easily provides the state equations [7]. A set of
first order equations of motion from the bond graph can be extracted by hand and be used, for
instance, in MATLAB for simulation. The bond graph can also be transformed into a block

5

diagram for a simulation in MATLAB Simulink. Despite of the possibilities they underscore
that the advantages with software that supports bond graphs is avoidance of the tedious task of
extracting the equations by hand or transforming the bond graph into a block diagram. However,
a disadvantage of using Simulink is that it is hard to model interconnections, and it is harder
to divide the system into subsystems.

6

Chapter 3

Robot Modelling Theory and
Control Theory

The purpose of this chapter is to present and define the theoretical expressions that are central
for understand the modelling and control used in this thesis. There are several types of offshore
cranes, in various sizes and with different abilities, but common for most of them; they can be
described using robot modelling theory. Therefore, this chapter includes a presentation of the
kinematics and dynamics of a robot manipulator and the associated equations. Since control of
offshore cranes is an essential part of this thesis, control methods such as LQR and PID, P-, PI
and PD-controllers are also presented and explained. Two inverse kinematics control methods
such as Jacobian inversion method and Jacobian transpose method are explained as well.

3.1 Kinematics
Kinematic equations are used to describe the relation between the individual joints of the robot
manipulator and the position and orientation of the tool or end-effector. The main objective of
the kinematics is to describe the motion of the robot manipulator without taking torque and
forces into consideration. The problem of determining the kinematics can be divided into two
parts, namely forward kinematics and inverse kinematics.

The information regarding kinematics of a robot manipulator is mainly collected from Spong’s
book [12], but some information is also inspired by [2] and [11].

Figure 3.1: Forward and inverse kinematics

From Figure 3.1, we can distinguish between forward kinematics and inverse kinematics as
follows:

7

• Forward kinematics is a method of calculating the motion of an end-effector from dimen-
sions and states of the system on which it is mounted. From any given joint angle q we
can determine the resulting pose of the end-effector frame.

• Inverse kinematics is opposite of forward kinematics. It uses the kinematic equations to
calculate the motion of the joints from the motion of the end-effector. From any desired
pose of the end-effector frame, we can determine the required values for the joints q.

3.1.1 Robot Manipulator

Different kinds of robot manipulator are developed and can be classified by several criterion,
such as the way the joints are actuated, their geometry or kinematic structure, their application
area, or the method of control. In common, all robot manipulators can be described as a
connection between a set of links and various joints. This connection makes it possible to move
the end-effector of the robot manipulator to a desired point by modifying the joint angles.

3.1.2 Kinematic Chains

As mentioned in chapter 3.1.1, a robot manipulator is composed of a set of links connected
together by various joints. These joints can be very simple, such as a revolute joint or a prismatic
joint, or they can be complex, such as a ball and socket joint or a spherical wrist. A reovolute
joint is like a hinge that allows a rotation about a single axis, and a prismatic joint allows a
linear motion along a single axis, in other words an extension or retraction. A ball and socket
have two degree of freedom and a spherical wrist has three degrees of freedom, so the benefits
with the simple joints, compared to the complex joints, is that they only got a single degree of
freedom, which is the angle of rotation in the case of a revolute joint and the amount of linear
displacement in the case of a prismatic joint.

A robot manipulator with n joints consists of n+1 links, since each joint is connected by two
links. The joints are numbered from 1 to n, and the links are numbered from 0 to n, starting
from the base/ground. By this convention, joint i connects link i − 1 to link i. Joint 1 is the
connection between link 0 and link 1, respectively the ground and the first link. Joint 2 is the
connection between link 1 and 2, and so on. The location of joint i is considered to be fixed
with respect to link i − 1. When the joint i is actuated link i will move, but link 0, which is the
first link, will therefore be fixed and does not move when the joints are actuated. All links in
the configuration have one joint variable, which is denoted by qi. For a revolute joint, qi is the
angle of rotation, and for a prismatic joint, qi is the displacement of the joint:

qi = {
θi ∶ Angle for a revolute joint
di ∶ Displacement for a prismatic joint (3.1)

To perform a kinematic analysis, a coordinate frame is rigidly attached to each link. Link i
has coordinate frame oixiyizi, and the coordinate frame o0x0y0z0 is attached to the base frame,
which means that link 0 is the ground. Figure 3.2 illustrates how the coordinate frames are
attached to the links of an elbow manipulator. The coordinate frames are placed according to
the DH convention, which is further described in the next chapter.

8

Figure 3.2: Coordinate frames of an elbow manipulator

3.1.3 DH Convention

When the kinematic analysis is carried out using an arbitrary frame attached to each link, it
is helpful to be systematic in the choice of these frames. The DH convention is a commonly
used convention for selecting frames. This convention simplifies the analysis significantly and
provides a systematic procedure to develop robot manipulator kinematics. Table 3.1 shows the
DH parameters for the elbow manipulator in Figure 3.2.

Table 3.1: DH parameters

Link ai αi di θi
1 l1 α1 d1 θ∗1
2 l2 α2 d2 θ∗2
3 l3 α3 d3 θ∗3

The parameters in this table is described as follows

• ai is the length of the links.

• di is the link offset along the z-axis to the common normal. This is a variable joint
parameter for a prismatic joint.

• αi is the link twist. This is the angle between the common normal, from old z-axis to new
z-axis, and the angle that aligns the zi-axis with the joint-axis.

• θi is the joint angle and a variable joint parameter for a revolute joint. This is the rotational
angle about the zi-axis.

In this convention, we have four basic transformations representing translational and rotational
movement relative to x and z, which are given by

Rotz(θi) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cθi
−sθi

0 0
sθi

cθi
0 0

0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.2)

9

Rotx(αi) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.3)

Transz(di) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.4)

Transx(ai) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.5)

where each homogeneous transformations Ai are represented as the product of the four basic
transformations

Ai−1
i = Rotz(θi)Transz(di)Transx(ai)Rotx(αi) (3.6)

Ai =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cθi
−sθi

cαi sθi
sαi aicθi

sθi
cθi
cαi −cθi

sαi aisθi

0 sαi cαi di
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.7)

3.1.4 Velocity and Acceleration Jacobian

For a joint i, the velocity q̇i is related to the end-effector by

[
ve
ωe

] = Jq̇ = [
Jvi
Jωi

] q̇i (3.8)

where [
Jvi
Jωi

] is the geometric Jacobian for the joints.

The upper half of the Jacobian is the linear Jacobian, and is given as

Jv = [Jv1 ⋯ Jvn] (3.9)

where the i-th column Jvi is

Jvi = zi−1 × (rn − ri−1) (3.10)

for a revolute joint and

Jvi = zi−1 (3.11)

for a prismatic joint.

The lower half of the Jacobian is the angular Jacobian, and is given by

Jw = [Jw1 ⋯ Jwn] (3.12)

10

where the i-th column Jwi is

Jwi = zi−1 (3.13)

for a revolute joint and

Jwi = 0 (3.14)

for a prismatic joint.

zi−1 is the axis of rotation for joint i, rn is the vector from the base frame to link n and ri−1 is
the vector from the base frame to link i − 1.

When putting the upper and lower halves of the Jacobian together, the Jacobian for a n-link
manipulator is of the form

J i = [J1 J2 ⋯ Jn] (3.15)

where the i-th column J i is

J i = [
Jvi

Jwi

] = [
zi−1 × (rn − ri−1)

zi−1
] (3.16)

for a revolute joint and

J i = [
Jvi

Jwi

] = [
zi−1

0] (3.17)

for a prismatic joint.

The total Jacobian for a n-link manipulator can then be written as

J i = [
Jvi

Jwi

] =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

[
zi−1 × (rn − ri−1)

zi−1
] Revolute joint

[
zi−1

0] Prismatic joint
(3.18)

For a joint i, the acceleration of the end-effector is obtained by taking the time-derivative of the
velocity equation, and is given by

d

dt
[
ve
ωe

] = [
v̇e
ω̇e

] =
d

dt
(J(q)q̇) =

d

dt
J(q)q̇ + J(q)q̈ (3.19)

3.2 Dynamics
While the kinematic equations describe the motion of the mechanical system without taking
forces and moment into consideration, the dynamic equations specifically describe the relation-
ship between force and motion.

All information regarding the dynamics of a robot manipulator is mainly obtained from Spong’s
book [12], but some information is also collected from [2] and [5].

11

3.2.1 Lagrange’s Approach

Lagrange’s approach is a method for deriving dynamic equations of a mechanical system. It
relies on the energy properties of the system to compute the equations of motion, and because
langrange’s equations reduce the equations needed to describe the motion of the system by
using generalized coordinates, it provides a fashionable formulation of the dynamics describing
a mechanical system. The lagrange’s approach is, as mentioned, an energy based approach of
the system and derives the dynamics using kinetic and potential energy of the system. The
lagrangian L of a mechanical system is described as the difference between kinetic and potential
energy of the system, and is given by

L = K −P (3.20)

where K and P represent the total kinetic energy and the total potential energy, respectively.

Generally, for any type of mechanical system, the use of Lagrange’s equations leads to a system
of n coupled, second order nonlinear ordinary differential equations given by

d

dt

∂L

∂q̇i
−
∂L

∂qi
= τi i = 1, ..., n (3.21)

where τi is the force associated with link i.

The differential equations lay the foundations of the relation between the force applied to each
joint and the joint positions, velocities and acceleration, and make it possible to derive the
dynamic model using kinetic and potential energy of the system. It is also worth mentioning
that the DH joint variables, described in chapter 3.1.3, provides a set of coordinates for a n-link
rigid robot. The number of generalized coordinates are important to determine the order n of
the system, and are required to describe the evolution of the system.

3.2.2 Kinetic Energy

The total kinetic energy of a n-link manipulator can be written as the sum of contribution of
kinetic energy relative to the motion of each link

K =
n

∑
i=1
Ki (3.22)

But first, let us look at kinetic energy of a rigid body, which can be written in the form

Ki =
1
2
miv

T
i vi +

1
2
ωTi I iωi (3.23)

where m is the total mass of the object, v is the linear velocity vector, ω is the angular velocity
vector, and I is the Inertia tensor given by a 3× 3 matrix. It is important to express the inertia
tensor in the inertial frame to make it possible to compute the triple product ωT

i
Iiωi. This

is done in terms of the orientation transformation between the body attached frame and the
inertial frame, which leads to the inertia tensor given by

I i =RiI iR
T
i (3.24)

Both linear and angular velocities can be expressed by utilization of the Jacobian matrix and
the derivative of the joint angles, and since the joint variables are the generalized coordinates,
the linear and angular velocities can be written as

vi = Jvi(q)q̇, ωi = Jωi(q)q̇ (3.25)

12

By inserting Equation (3.23), (3.24) and (3.25) in Equation (3.22), the total kinetic energy for
a n-link robot manipulator can be written as

K =
1
2
q̇T

n

∑
i=1

[miJvi(q)
TJvi(q) + Jωi(q)

TRi(q)I iRi(q)
TJωi(q)]q̇ (3.26)

This equation can also be written as

K =
1
2
q̇M(q)q̇ (3.27)

where M(q) is the inertia matrix, and is given by

M(q) =miJvi(q)
TJvi(q) + Jωi(q)

TRi(q)I iRi(q)
TJωi(q) (3.28)

3.2.3 Potential Energy

As for the total kinetic energy, the total potential energy of a n-link manipulator can be written
as the sum of contribution of potential energy relative to the motion of each link

P =
n

∑
i=1
Pi (3.29)

By assuming that the robot manipulator only consists of rigid links, the only force that causes
potential energy is the gravity, therefore the potential energy for the i-th link can be computed
as

Pi = g
Trcimi (3.30)

where g is a 3 × 1 gravity acceleration vector in the inertial frame and rci is the vector of the
center of mass of link i.

By inserting Equation (3.30) in Equation (3.29), the total potential energy for a n-link robot
manipulator can be written as

P =
n

∑
i=1
gTrcimi (3.31)

If the z-axis is defined as the vertical axis the gravity acceleration vector can be written as

g =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
−g

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.32)

where g = 9.81m/s2.

3.2.4 Equations of Motion

Before the equations of motion can be derived, the Lagrange’s equations (3.21) need to be
spcialized. First, the kinetic energy can be written as a quadratic function of q̇ in the form

K =
1
2

n

∑
i,j

Mij(q)q̇iq̇j =
1
2
q̇TM(q)q̇ (3.33)

13

and since the potential energy is independent of q̇, the potential energy can be written as

P = P(q) (3.34)

By inserting Equation (3.33) and (3.34) in Equation (3.20) the Lagrangian can be written as

L =K− P =
1
2

n

∑
i,j

Mij(q)q̇iq̇j =
1
2
q̇TM(q)q̇ − P(q) (3.35)

Solving Equation (3.21) with respect to Equation (3.35) the Lagrange’s equations can now be
written as

∑
j

Mkj q̈j +∑
i,j

{
∂Mkj

∂qi
−

1
2
∂Mij

∂qk
} q̇iq̇j −

∂P

∂qk
= τk (3.36)

Further, by interchanging the order of summation and use symmetry, we obtain the following
Lagrange’s equations

∑
j

Mkj(q)q̈j +∑
i,j

Cijk(q)q̇iq̇j + gk(q) = τk, k = 1, ..., n, (3.37)

where Cijk is known as the Christoffel symbols and is given by

Cijk =
1
2
{
∂Mkj

∂qi
+
Mki

∂qj
−
∂Mij

∂qk
} (3.38)

and gk can be defined as

gk =
∂P

∂qk
. (3.39)

Finally, the equations of motion, also known as the manipulator equation, can be written in the
matrix form

M(q)q̈ +C(q̇, q)q̇ + g(q) = τ , (3.40)

where C(q̇, q) is the Coriolis and Centripetal matrix, and the j,k-th matrix is defined as

Ckj =
n

∑
i=1
Cijk(q)qi, (3.41)

M(q) is the inertia matrix given in Equation (3.28) and g(q) is the gravity vector given in
Equation (3.39).

3.3 Control Theory
To ensure a desired behaviour of a dynamic system, a controller is needed. This chapter includes
a description of different controller methods. First, state-of-art feedback controllers such as a
PID-, P-, PI- and PD controllers are explained. The structure of the controllers is shown with
block diagram and equations, and how the controller parameters affect the system is described.
In addition, Ziegler-Nichols open- and closed method for tuning a system is accounted for.
Then, the LQR, which is based on state-space equations, is explained. This controller is also
shown with block diagrams and equations describing the controller design. Finally, two inverse
kinematics control methods such as Jacobian inversion method and Jacobian transpose method
are explained, also with block diagram and equations.

14

All information regarding the PID-, P-,PI- and PD controller is obtained from [13], [14] and
[15]. All information regarding the LQR are obtained from [16], [17], [18], [19], and [20]. All
information regarding Jacobian transpose method are obtained from [21].

3.3.1 PID-controller

A PID-controller is a controller consisting of a proportional gain, an integral gain and a derivative
gain, as shown in Figure 3.3.

Figure 3.3: PID-controller

The output of a PID-controller, which is equal to the control input to the plant, is calculated in
the time domain from the feedback error as follows

PID =Kpe(t) +Ki∫

t

0
e(τ)dτ +Kd

de(t)

dt
=Kp(e(t) +

1
Ti
∫

t

0
e(τ)dτ + Td

de(t)

dt
) (3.42)

where

• Kp is the proportional gain

• Ki is the integral gain

• Kd is the derivative gain

• Ti is the integral time constant

• Td is the derivative time constant

In Laplace domain the output, and transfer function, of the controller is given by

PID(s) =Kp +
Ki

s
+Kds =

Kds
2 +Kps +Ki

s
=Kp(1 +

1
Tis

+ Tds) (3.43)

Changing the controller parameters will have different effects on the system response. For
instance, increasing the proportional gain (Kp) will reduce, but not eliminate, the steady-state
error, adding an integral term to the controller (Ki) also tends to help reduce steady-state error,
and adding a derivative term to the controller (Kd) adds the ability of the controller to anticipate
error. In addition, there are several other general effects of each controller parameters (Kp, Kd,
Ki) for a closed-loop system, which are summarized in Table 3.2.

15

Table 3.2: Effects of controller parameters for a PID

CL RESPONSE RISE TIME OVERSHOOT SETTLING
TIME

S-S ERROR

Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Decrease
Kd Small Change Decrease Decrease No Change

The use of a PID-controller ensures optimum control dynamics with zero steady state error, fast
response, a higher stability and no oscillation.

3.3.2 P-controller

A P-controller is a controller consisting of only a proportional gain, as shown in Figure 3.4.

Figure 3.4: P-controller

The output of a P-controller, which is equal to the control input to the plant, is calculated in
the time domain and Laplace domain from the feedback error as follows

P =Kpe(t) (3.44)

A P-controller is mostly used to stabilize an unstable system. From Table 3.2, we can see that
if we increase the proportional gain, the steady state error of the system will increase, but a
P-controller will never eliminate the steady state error. We can use this controller only when
our system is tolerable to a constant steady state error. Increasing the proportional gain also
decrease the rise time and leads to overshoot.

3.3.3 PI-controller

A PI-controller is a controller consisting of a proportional gain and an integral gain, as shown
in Figure 3.5.

16

Figure 3.5: PI-controller

The output of a PI-controller, which is equal to the control input to the plant, is calculated in
the time domain from the feedback error as follows

PI =Kpe(t) +Ki∫

t

0
e(τ)dτ =Kp(e(t) +

1
Tis
∫

t

0
e(τ)dτ) (3.45)

In Laplace domain the output, and transfer function, of the controller is given by

PI(s) =Kp +
Ki

s
=
Kps +Ki

s
=Kp(1 +

1
Tis

) (3.46)

A PI-controller is especially used to eliminate the steady state error from the P-controller. But
the integral term has a negative impact of the speed of the response and stability of the system,
and is therefore often used when speed of the system response is not a problem.

3.3.4 PD-controller

A PD-controller is a controller consisting of a proportional gain and a derivative gain, as shown
in Figure 3.6.

Figure 3.6: PD-controller

The output of a PD-controller, which is equal to the control input to the plant, is calculated in
the time domain from the feedback error as follows

PD =Kpe(t) +Kd
de(t)

dt
=Kp(e(t) + Td

de(t)

dt
) (3.47)

In Laplace domain the output, and transfer function, of the controller is given by

PD(s) =Kp +Kds =
Kds

2 +Kps

s
=Kp(1 + Tds) (3.48)

17

Since the derivative term of the controller has the ability to predict future errors of the system
response, the intention of using a PD-controller is to increase the stability of the system. The
derivative is taken from the output response of the system instead of the error signal, in order
to avoid the effect of sudden change of the error signal, but the derivative part of this controller
cannot be used alone because it amplifies the system noise.

3.3.5 Ziegler-Nichols Tuning

To obtain a desired behavior for a system, it is necessary to adjust the controller parameters.
This is called tuning the system. There are several ways to tune a system. For instance, a simple
method is to connect a controller, increase the gain until the system starts to oscillate, and then
reduce the gains by an appropriate factor. Another method is to determine the controller
parameters based on open-loop response measurements.

One of the most commonly used tuning rules is the Ziegler-Nichols method. In the 1940s Ziegler
and Nichols developed two techniques for controller tuning: Ziegler-Nichols open-loop tuning
and Ziegler-Nichols closed-loop tuning. The idea for both tuning methods was to make a simple
experiment, extract some features for the experimental data of the system dynamics, and then
determine the controller parameters from these features.

The open-loop method is based on the open-loop step response of the system, where the step
response is measured by applying a step input to the system and recording the response. Using
Ziegler-Nichols open-loop tuning method with dead time L, reaction rate R and amplitude U of
step input, the controller parameters for a P-, PI- and PID-controller is given in Table 3.3.

Table 3.3: Ziegler-Nichols open-loop controller parameters

Type Kp Ti =
Kp

Ki
Td =

Kd

Kp

P 1
LR/U ∞ 0

PI 0.9
LR/U 3.3L 0

PID 1.2
LR/U 2L 0.5L

The closed-loop method is based on direct adjustment of the controller parameters. A controller
is connected to the system using only the proportional gain. This gain will be increased until
the system starts to oscillate, and the value of the proportional gain, when the system starts to
oscillate, is called the ultimate gain Ku, while the period of the oscillation is called the ultimate
time Pu. Using Ziegler-Nichols closed-loop tuning method with ultimate gain Ku and ultimate
period Pu, the controller parameters for a P-, PI-,PD- and PID-controller are given in Table 3.4.

Table 3.4: Ziegler-Nichols closed-loop controller parameters

Type Kp Ti =
Kp

Ki
Td =

Kd

Kp

P 0.5Ku ∞ 0
PI 0.45Ku

Pu

1.2 0
PD 0.8Ku ∞ Pu

8
PID 0.6Ku

Pu

2
Pu

8

3.3.6 LQR

LQRs have been widely used in many control system designs due to its stability and robustness.
The LQR design consists of a state feedback controller, which will minimize the objective function
J, given in Equation (3.50). A feedback gain matrix is designed to obtain some agreements

18

between the use of control effort, the magnitude and the speed of the response, which will
ensure that the system will be stable. A LQR is built relaying on state-space methods, which
is a method about using state variables to describe a dynamic system by a set of first-order
differential equations, instead of using nth-order differential equations.

To design this controller, the system must be controllable. According to Nise’s CONTROL
SYSTEM ENGINEERING [16], the definition of a controllable system is: "If an input to a
system can be found that takes every state variable from a desired initial state to the desired
finale state, the system is said to be controllable; otherwise, the system is uncontrollable". This
means that to control the system each state variable can be changed by changing the input
signal. The input signal must be able to control all the state variables, and if any of the state
variables can not be controlled by the input signal, then the system is uncontrollable.

Figure 3.7 shows a block diagram of a LQR, which can be designed on the state-space form
given in Equation (3.49).

Figure 3.7: Linear-Quadratic Optimal Set-point Regulation

ẋ = Ax +Bu

y = Cx
(3.49)

The performance index for such a controller is

J = min
u {

1
2 ∫

T

0
(yTQy + uTRu)dt =

1
2 ∫

T

0
(xTCTQCx + uTRu)dt} (3.50)

where the Design weights are

Q = QT ≥ 0 (output weight)
R = RT > 0 (input weight)

and the optimal solution is

u = −R−1BTP∞x = Gx

P∞ +ATP∞ − P∞BR−1BTP∞ +CTQC = 0
(3.51)

19

where the Algebraic Riccati equation is

P = P T > 0 (3.52)

If the controller must track a time-varying reference trajectory, the LQR can be redesign as
shown in Figure 3.8.

Figure 3.8: Linear-Quadratic Optimal Trajectory Tracking Control

Now the controller can be designed on the state-space form given by the equations

ẋ = Ax +Bu +Ew

y = Cx
(3.53)

where

w = disturbance to the system

If the case is
xd = constant, w = constant, ∀ tε[0, T1]

the general solution for the linear time-invariant system can be written as

u = G1x +G2yd +G3w (3.54)

where

G1 = −R
−1BTP∞

G2 = −R
−1BT

(A +BG1)
−TCTQ

G3 = R
−1BT

(A +BG1)
−TP∞E

(3.55)

20

3.3.7 Inverse Kinematics Methods

It is possible to use algebraic methods to solve the inverse kinematics of a robot manipulator,
but the algebraic solution exists only for a restricted class of cases. The joint angles can be
expressed, with for instance the DH convention, using the end-effector position. This works
for a 2DOF robot manipulator, but since the DOFs for most cases is higher, iterative methods
are necessary. These methods solve the kinematic equations using a sequence of steps, which
lead to a better solution for the joint angles. The methods are used to minimize the difference
between the desired and current position of the end-effector. There are several methods using
this technique, and two of them are:

• Jacobian Inversion Method

• Jacobian Transpose Method

For the Jacobian inversion method, the relation between the joint angles and the end-effector
position can be expressed as

θ̇ = J−1
(θ)Ẋ (3.56)

where θ are the joint angles, θ̇ are the joint velocities, J−1 is the inverse Jacobian matrix and
Ẋ are the position of the end-effector in x-, y- and z-direction. Figure 3.9 shows the Jacobian
inversion method in form of a block diagram.

Figure 3.9: Jacobian inversion method

One concern with this method is that using the inverse Jacobian matrix may not lead to one
solution, but an infinite number of solutions, and singularities usually occur. Using the transpose
of the Jacobian, instead of the inverse, removes the singularity problems significantly.

For the Jacobian transpose method, the relation between the force F and the generalized forces
τ is expressed as

τ = JTF (3.57)

where JT is the transpose Jacobian matrix.

The generalized forces can be expresses either with the joint variable accelerations θ̈ or joint
velocities θ̇. Because this method is not interested in the dynamic behavior of the system, only
the joint velocities are used for the necessity of this method, and the relation between the force
and the joint velocities can be expressed as

θ̇ = JTF (3.58)

21

Figure 3.10 shows the Jacobian transpose method in form of a block diagram.

Figure 3.10: Jacobian transpose method

The force F corresponds to the error E(t), which is expressed as

E(t) =Xd −Xc (3.59)

and is the difference between the desired end-effector trajectory and the current end-effector
position. f(θ) describes the forward kinematics from the joint angles to the end-effector position.

22

Chapter 4

Description of the Crane

Figure 4.1 shows an AUTOCAD-drawing of an assembly of the crane, mounted to the deck of
the vessel. This drawing is provided from MacGregor in conjunction with the last year master
thesis.

Figure 4.1: Assembly of the crane

From the figure we can see that the assembly of the crane consists of a great number of bodies,
and for that reason some simplifications and approximations are necessary to obtain a viable
system for its purpose, when it comes to modeling, simulation and control of the crane. The
idea is to include just the elements that are considerable for its investigation. For our purpose
we only need to include bodies which have the most contributing inertia.

Table 4.1 shows the properties of mass and the center of mass for each part of the crane assembly,
and are provided by MacGregor.

23

Table 4.1: Measurements of the crane assembly

Part m[tonne] x[m] z[m]

Foundation 20.00 0.00 2.50
King 88.90 -0.5 7.24
Winch 173.10 -0.95 12.27
Wire 149.94 -6.50 13.00
Main cylinders 26.70 6.36 6.79
Knucke Jib Cylinders 12.40 19.87 8.11
Main Jib 47.90 11.73 9.85
Knucke Jib 36.00 21.22 6.53
Misc 1 3.10 1.70 9.75
Misc 2 2.30 -4.07 6.91
Sum 560.34 - -

To assemble a simplified model of the crane, some of the bodies can be combined. It is possible
to use four bodies describing the whole crane. Figure 4.2 shows the simplified model with the
four combined bodies, and how the individual parts are combined is listed below.

Figure 4.2: Simplified crane model with combined bodies

• Body 0: Foundation

• Body 1: King assembly, Main Winch, Wire, Main Cylinders, Misc 1 and Misc 2

• Body 2: Main Jib and Knuckle-jib Cylinders

• Body 4: Knuckle Jib

Then the mass and center of mass of each of the four bodies are defined by adding the individual
component each body consist of together, as presented in Table 4.2.

24

Table 4.2: Measurements of the crane assembly with combined bodies

Part m [tonne] x [m] z [m]
Body 0/Foundation 20.00 0.00 2.50
Body 1 444.04 -4.24 11.14
Body 2 60.34 13.40 9.49
Body 3 36.00 21.22 6.53
Sum 560.34 - -

25

Chapter 5

Modelling of Crane

This chapter is about modelling of the crane, both the mathematical model describing the crane
and the crane design in Simulink. First, a mathematically model relying on crane kinematics
and then crane dynamics will be developed. Finally, the crane is designed in Simulink based on
the crane dynamics using the equations of motion.

5.1 Crane Kinematics
Kinematic equations are used to describe the relation between the individual joints of the crane
and the position and orientation of the end-effector. This includes the forward kinematics,
where the DH convention allow us to model the crane as an open chain. It also includes inverse
kinematics, which is used to find the joint angles from the end-effector. The crane needs to be
modelled using the DH convention, where the geometric Jacobian matrices between Frame 3
and the joints with respect to the velocity and acceleration are found as well. To accomplish
the kinematic model, the relation between the cylinder stroke and the joint angles is found for
both cylinders. Equations related to the crane kinematics are calculated from the equations in
chapter 3.1 and are further based on [11], where some modifications are done.

5.1.1 DH Convention

The crane joints are modelled as an open chain using the DH convention. Figure 5.1 represent
the crane consisting of three links connected by three joints. The foundation of the crane is fixed,
and joint 1 is placed in the center of the intersection between body 0 and body 1. Therefore,
the local base-frame is located in joint 1, also shown in the Figure 5.1. Joint 1 is connecting
link 1 to the base-frame, joint 2 is connecting link 1 to link 2, and joint 3 is connecting link 2
to link 3.

26

Figure 5.1: DH representation of the crane

Table 5.1 shows the DH parameters for the crane in Figure 5.1.

Table 5.1: DH parameters

Link ai αi di θi
1 0 π

2 d1 θ∗1
2 l2 0 0 θ∗2
3 l3 0 0 θ∗3

From the table, the variable angles θ∗1 , θ∗2 and θ∗3 correspond to the joint angles q1, q2 and q3
relative to the local coordinate system for each joint, where θ∗1 = q1, θ∗2 = q2 and θ∗3 = q3. As
seen in Figure 5.1, link 1 has the the angle α1=π

2 , which result in a link length of a1 = 0. The
length of link 2 and 3 are signed with the variables l2 and l3, respectively. Joint 1 is a prismatic
joint and has a linear motion in z-direction with the variable d1. Since joint 2 and 3 are revolute
joints the variables d2 and d3 become zero.

The DH procedure determines the transformation of the model from Frame 0 to Frame 3 with
four elementary homogeneous transformations, where the resulting transformation matrices are
given by

T 0
1(q1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 0 s1 0
s1 0 −c1 0
0 1 0 d1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,T 1
2(q2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c2 −s2 0 l2c2
s2 c2 0 l2s2
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,T 2
3(q3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c3 s3 0 a3c3
s3 c3 0 a3s3
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.1)

27

where

c1 = cos(q1), s1 = sin(q1)

c2 = cos(q2), s2 = sin(q2)

c3 = cos(q3), s3 = sin(q3)

Then the total transformation from Frame 0 to Frame 3 becomes

T 0
3(q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1c23 −c1s23 s1 c1(l2c2 + l3c23)
s1c23 −s1s23 −c1 s1(l2c2 + l3c23)
s23 c23 0 d1 + l2s2 + l3s23
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.2)

where

c23 = cos(q2 + q3), s23 = sin(q2 + q3)

5.1.2 Geometric Jacobian between Frame 3 and Joints

The geometric Jacobian between the end-effector (Frame 3) needs to be found to determine
the joint velocities and accelerations that correspond to a trajectory of the end-effector. This
trajectory can be found in chapter 6.

Velocity

The first step to find the geometric Jacobian is to find the transformation from Frame 0 to
Frame 3. To obtain the geometric Jacobian from Frame 0 to 1, Frame 0 to 2 and Frame 0 to 3,
the homogeneous transformation matrices H0

i are needed.

Frame 0 to Frame 1:

H0
1 = T

0
1(q1) (5.3)

H0
1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 0 s1 0
s1 0 −c1 0
0 1 0 d1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

From Frame 0 to Frame 2:

H0
2 = T

0
1(q1)T

1
2(q2) (5.4)

H0
2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1c2 −c1s2 s1 l2c1c2
s1c2 −s1c2 −c1 l2s1c2
s2 c2 0 d1 + l2s2
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

28

From Frame 0 to Frame 3:

H0
3 = T

0
1(q1)T

1
2(q2)T

2
3(q3) (5.5)

H0
3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1c23 −c1s23 s1 c1(l2c2 + l3c23)
s1c23 −s1s23 −c1 s1(l2c2 + l3c23)
s23 c23 0 d1 + l2s2 + l3s23
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The next step is to find the vectors ri and zi−1, which easily can be found from the transformation
matrices. This results in the following ri vectors

r0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, r1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
d1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, r2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

l2c1c2
l2s1c2
d1 + l2s2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, r3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1(l2c2 + l3c23
s1(l2c2 + l3c23
d1 + l2s2 + l3s23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.6)

and the following zi−1 vectors

z0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, z1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

s1
−c1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, r2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

s1
−c1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.7)

Since the geometric Jacobian is given by

J i = [
zi−1 × (rn − ri−1)

zi−1
] (5.8)

the vector r3 − ri−1 needs to be calculated, and is given by

r3 − r0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1(l2c2 + l3c23)
s1(l2c2 + l3c23)
d1 + l2s2 + l3s23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.9)

r3 − r1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1(l2c2 + l3c23)
s1(l2c2 + l3c23)
l2s2 + l3s

∗
23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.10)

r3 − r2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

l3c1c23
l3s1c23
l3s23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.11)

Then the cross product zi−1 × (re − ri−1) can be calculated for all joint variables.

For joint variable 1:

z0 × (r3 − r0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−s1(l2c2 + l3c23)
c1(l2c2 + l3c23)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.12)

29

For joint variable 2:

z1 × (r3 − r1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−c1(l2c2 + l3s23)
−s1(l2s2 + l3s23)
l2c2 + l3c23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.13)

For joint variable 3:

z2 × (r3 − r2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−l3c1c23
−l3s1s23
l3c23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.14)

Then the geometric Jacobian for the joints are given as follows

Joint variable 1:

J1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−s1(l2c2 + l3c23)
c1(l2c2 + l3c23)

0
0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.15)

Joint variable 2:

J2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−c1(l2s2 + l3s23)
−s1(l2s2 + l3s23)
l2c2 + l3c23

s1
−c1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.16)

Joint variable 3:

J3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−l3c1c23
−l3s1s23
l3c23
s1
−c1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.17)

Finally, the total geometric Jacobian can be written as

J = [
Jv
Jω

] = [J1 J2 J3] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−s1(l2c2 + l3c23) −c1(l2s2 + l3s23) −l3c1c23
c1(l2c2 + l3c23) −s1(l2s2 + l3s23) −l3s1s23

0 l2c2 + l3c23 l3c23
0 s1 s1
0 −c1 −c1
1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.18)

30

The Jacobian matrix that is used to determine the joint velocities corresponding to the trajectory
that is explained in chapter 6, is the first three rows of matrix in Equation (5.18), and is given
by

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−s1(l2c2 + l3c23) −c1(l2s2 + l3s23) −l3c1c23
c1(l2c2 + l3c23) −s1(l2s2 + l3s23) −l3s1s23

0 l2c2 + l3c23 l3c23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.19)

Acceleration

Using Equation (3.19) the derivative of the Jacobian for each joints is

d

dt
J(q1) =

∂J

∂q1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−c1(l2c2 + l3c23 s1(l2s2 + l3s23 l3s1s23
−s1(l2c2 + l3c23) −c1(l2s2 + l3s23) −l3c1s23

0 0 0
0 c1 c1
0 s1 s1
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.20)

d

dt
J(q2) =

∂J

∂q2
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−s1(−l2s2 − l3s23 −c1(l2c2 + l3c23 −l3c1c23
c1(−l2s2 − l3s23) −s1(l2c2 + l3c23) −l3s1c23

0 −l2s2 − l3s23 −l3s23
0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.21)

d

dt
J(q3) =

∂J

∂q3
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

l3s1s23 −l3c1c23 −l3c1c23
−l3c1s23 l3c1c23 −l3s1c23

0 −l3s23 −l3s23
0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.22)

Finally, the total derivative of the Jacobian is then given by

d

dt
J(q) = ∂J

∂q1
q̇1 +

∂J

∂q2
q̇2 +

∂J

∂q3
q̇3 (5.23)

and the first three rows of the matrix are used to determine the joint accelerations corresponding
to the same trajectory.

5.1.3 Inverse Kinematics

Inverse kinematics is used to find the joint angles that correspond to the trajectory of the end-
effector, described in chapter 6. These inverse kinematic equations are based on [10] and are
modified. The equations are also simplified since link 1 is only moving along the z-axis.

The first joint angle can be calculated as

q1 = tan
−1

(
ye
xe

) (5.24)

The trigonometric relations for joint angle 3 can be expresses as

c3 =
x2
e + y

2
e + (ze − d1)

2 − l22 − l
2
3

2l2l3
(5.25)

31

and

s3 =
√

1 − c2
3) (5.26)

Then the third joint angle is given by

q3 = tan
−1

(
s3
c3

) (5.27)

.

Finally, the second joint angle can be expressed with the use of s3 and c3, and is given by

q2 = tan
−1

(
ze − d1

√
x2
e + y

2
e

) − tan−1
(

l3s3
l2 + l3c3

) (5.28)

5.1.4 Actuator Kinematics

Actuator kinematics describes the relations between cylinder strokes and joint angles. Equations
related to these relations are based on [5], but some modifications are done. Figure 5.2 shows
trigonometric relations between cylinder 1 and joint 2, while figure 5.3 shows relations between
cylinder 2 and joint 3.

Cylinder 1:

Figure 5.2: Trigonometric relations between cylinder 1 and joint 2

By [5], using the rule of cosine we obtain the following equation for the cylinder 1

32

L1 =
√

a
′2
1 + b

′2
1 − 2a′1b

′

1cos(θ
′

2) (5.29)

where the angle θ′2 is given by

θ
′

2 = q2 − φ1 − φ2 +
π

2
(5.30)

and the angles φ1 and φ2 are given by

φ1 = tan
−1

(
c1.1
a1

) (5.31)

φ2 = tan
−1

(
c1.2
b1

) (5.32)

where

a1 = −4.390m
b1 = 10.2765m
c1.1 = 2.435m
c1.2 = −2.900m

(5.33)

a
′

1 =
√

c2
1.1 + a

′2
1 (5.34)

b
′

1 =
√

b
′2
1 + c2

1.2 (5.35)

Cylinder 2:

Figure 5.3: Trigonometric relations between cylinder 2 and joint 3

Again by [5], using the rule of cosine we obtain the following equation for cylinder 2

L2 =
√

a
′2
2 + b

′2
2 − 2a′2b

′

2cos(θ
′

3) (5.36)

33

where the angle θ′3 is given by

θ
′

3 = q3 − φ3 + φ4 − π (5.37)

and the angles φ3 and φ4 are given by

φ3 = tan
−1

(
c2.1
a2

) (5.38)

φ4 = tan
−1

(
c2.2
b2

) (5.39)

where

a2 = −8.275m
b2 = −2.38134m
c2.1 = −3.090m
c2.2 = −1.8639m

(5.40)

a
′

2 =
√

c2
2.1 + a

′2
2 (5.41)

b
′

2 =
√

b
′2
2 + c2

2.2 (5.42)

The values of the parameters used in these equations, listed in Equation (5.33) and (5.40),
are collected from the Master thesis "MODELLING AND SIMULATION OF A KNUCKLE
BOOM CRANE AND MARINE CRAFT" [11], which were found from using a measure-tool in
AutoCAD.

5.2 Crane Dynamics
Dynamic equations are used to describe dynamic behavior of the crane and rely on the kinetic
and potential energy of the crane. Equations related to the crane kinematics are calculated from
the equations in chapter 3.2 and are further based on [2], where some modification are done.

The crane dynamics can be expressed with the equation of motion, which is given by

M(q)q̈ +C(q̇, q)q̇ + g(q) = τ (5.43)

The content of the equations of motion are the kinetic energy consisting of the Inertia matrix
M(q) and Coriolis and centripetal matrix C(q̇, q), and the potential energy consisting of the
gravity vector g(q). τ is the joint torque vector, which is the input to the dynamic crane model.

5.2.1 Kinetic Energy

Using Equation (3.28), the elements of Inertia matrix for the crane are written as

M(q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

M11 M12 M13
M21 M22 M23
M31 M32 M33

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.44)

where

34

M11 = I1y + I2xs
2
2 + I2yc

2
2 + I3xs

2
23 + I3yc2

23 +m2(
1
2
l2)

2
c2

2 +m3(
1
2
c23 + l2c2)

2

M12 =M21 = 0
M13 =M31 = 0

M22 = I2z + I3z +m2((
1
2
l2)

2
) +m3((

1
2
l3)

2
+ l22 + l2l3c3)

M23 =M32 = I3z +m3((
1
2
l3)

2
+

1
2
l2l3c3)

M33 = I3z +m3(
1
2
l3)

2

Further, the Inertia matrix can, by utilizing Equation (3.38) and (3.41), be used to derive the
Coriolis and centripetal matrix. Then the elements of this matrix are written as

C(q, q̇) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13
C21 C22 C23
C31 C32 C33

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.45)

where

C11 =
1
2
(
∂M11
∂q2

q̇2 +
∂M11
∂q3

q̇3)

= (c2s2(I2x − I2y) + c23s23(I3x − I3y) −m2l
2
2c2s2 −m3(l3cc23 + l2c2)(l3cs23 + l2s2))q̇2

+ (c23s23(I3x − I3y) −m3l3cs23(l3cc23 + l2c2))q̇3

C12 =
1
2
∂M11
∂q2

q̇1

= (c2s2(I2x − I2y) + c23s23(I3x − I3y) −m2l
2
2cc2s2 −m3(l3cc23 + l2c2)(l3cs23 + l2s2))q̇1

C13 =
1
2
∂M11
∂q3

q̇1 = (c23s23(I3x − I3y) −m3l3cs23(l3cc23 + l2c2))q̇1

C21 = −
1
2
∂M11
∂q2

q̇2 = −C12

C22 =
1
2
∂M22
∂q3

q̇3 = −
1
2
m3l2l3s3q̇3

C23 =
1
2
(
∂M22
∂q3

q̇2 + 2∂M23
∂q3

q̇2) = −
1
2
m3l2l3s3q̇2 −m3l2l3cs3q̇3

C31 = −
1
2
∂M11
∂q3

q̇1 = −C13

C32 = −
1
2
∂M22
∂q3

q̇2 =
1
2
m3l2l3s − 3q̇2

C33 = 0

In the Coriolis and centripetal matrix, lci represents li
2 .

35

5.2.2 Potential Energy

From Equation (3.30), the equation for potential energy for the crane can be written as

P =m1
d1
2
+m2g(

l2
2
+ d1) +m3g(

l3
2
s23 + l2s2 + d1) (5.46)

By utilizing Equation (3.39), the resulting gravity vector for this crane can be written as

g(q) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
m2gl2cc2 +m3gl3cc23 + l2c2

m3gl3cc23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.47)

Also in the gravity vector, lci represents li
2 . The gravity term g is the gravity acceleration in

negative direction.

5.3 Dynamic Crane Model in Simulink
The equation of motion, Equation (5.43), can be rearranged in the following form

q̈ =M−1
(q)(τ −C(q̇, q)q̇ − g(q)) (5.48)

Equation (5.48) can be used to describe the dynamic crane model in form of a block diagram,
as shown in Figure 5.4. This dynamic model is based on [2], where some modifications are done.

Figure 5.4: Block diagram of the dynamic crane model

This is actually the crane model that is used for modelling in Simulink, and Figure 5.5 shows
an overview of how the model is built in Simulink.

36

Figure 5.5: Dynamic crane model in Simulink

This model consists of Matlab function blocks of the Inertia matrix, Coriolis and centripetal
matrix and Gravity vector. The inverse term of the Inertia matrix is calculated in the Matlab
function, and the matrix multiply block execute a matrix multiplication, both in order to fulfill
the rearranged equation of motion. τ is the input torque and the 1

s blocks perform an integration
of the joint acceleration, and further the joint velocities.

This dynamic crane model will be used in chapter 7, where different control methods will be
examined.

37

Chapter 6

Comparison of Matlab and Simulink
Crane Model

This chapter includes a comparison of the inverse crane kinematics and dynamics from an
analytic model programmed in Matlab and a block diagram model created in Simulink, which
can be found in Appendix A. The purpose is to confirm that both models give equal results
of trajectory motion, joint motion and joint torque, using the same trajectory generation for
both models. The trajectory, which will be used in both models is a circular trajectory in the
xy-plane with a simulation time of 30 seconds. The function of this trajectory is to make the
end-effector move in a circle in the xy-plane with a radius of 0.5m and a linear velocity of 0.1
m/s.

Before the equations for position, velocity and acceleration are developed, some relations between
linear velocity, angular velocity, radius, angle and time are introduced as

ω =
v

r
→ v = ωr (6.1)

θ = ωt→ ω = θt (6.2)

θ̇ = ω (6.3)

where

v is the desired linear velocity of the trajectory,

r is the desired radius of the trajectory,

ω is the angular velocity of the trajectory calculated from the linear velocity and the radius,
and

θ is the angle of the end-effector, calculated from the angular velocity and the time.

Then the equations for end-effector position in x, y and z-direction are

xe = x0 + rcos(θ) (6.4)

ye = y0 + rsin(θ) (6.5)

ze = z0 (6.6)

.

38

By taking the derivative of the position (using the chain rule) the following equations of end-
effector velocity in x, y and z direction become

ẋe = cos(θ) − vsin(θ) (6.7)

ẏe = sin(θ) + vcos(θ) (6.8)

że = 0 (6.9)

and by taking the derivative (also using the chain rule) of the velocities, which is the second
derivative of the position, the following equations for end-effector acceleration in x, y and z
direction become

ẍe = −
v

r
sin(θ) −

v

t
sin(θ) −

v2

r
cos(θ) (6.10)

ÿe =
v

r
cos(θ) +

v

t
cos(θ) −

v2

r
sin(θ) (6.11)

z̈e = 0 (6.12)

Using the above equations for the trajectory combined with the kinematic and dynamic equa-
tions, described in chapter 5, the figures below show the resulting end-effector motion, joint
motion, cylinder motion and joint torques for the Matlab and Simulink model.

Figure 6.1: End-effector position from Mat-
lab

Figure 6.2: End-effector position from
Simulink

39

Figure 6.3: End-effector velocity from Mat-
lab

Figure 6.4: End-effector velocity from
Simulink

Figure 6.5: End-effector acceleration from
Matlab

Figure 6.6: End-effector acceleration from
Simulink

Figure 6.7: Joint angles from Matlab Figure 6.8: Joint angles from Simulink

40

Figure 6.9: Joint velocities from Matlab Figure 6.10: Joint velocities from Simulink

Figure 6.11: Joint accelerations from Matlab
.......

Figure 6.12: Joint accelerations from
Simulink

Figure 6.13: Joint torques from Matlab Figure 6.14: Joint torques from Simulink

41

Figure 6.15: Cylinder lengths from Matlab
.............................

Figure 6.16: Cylinder lengths from Simulink
.............................

Figure 6.17: Cylinder velocities from Matlab
.............................

Figure 6.18: Cylinder velocities from
Simulink

As seen from the figures above, the two models provide similar results. Both models are based
on equations, so an improved verification could have been done using a SimMechanics or a
SimulationX model instead of a Simulink model with Matlab function blocks.

42

Chapter 7

Controller Design

This chapter describes several position control designs developed to control the crane in a desired
position. This includes direct control of the crane joints and crane end-effector, where the
controllers are designed such that the joints and end-effector are expected to follow the movement
of a desired reference position or trajectory path. The controller designs that will be presented
in this chapter are:

• PID-controller

• PD-controller

• PI-controller

• LQR

• Jacobian inversion method

• Jacobian transpose method

The first three control designs use the dynamic crane model, described in chapter 5.3, as the
plant. The same model is used as the plant in the LQR controller design, but now as an estimated
state-space model. While the Jacobian inversion method and Jacobian transpose method rely
only on the crane kinematics using the Jacobian matrix, described in chapter 5.

First, control designs concerning control of the crane joints and further control designs concerning
control of the end-effector are presented, in order to consider the use of each controllers.

7.1 Control of Crane Joints
The control task concerning control of crane joints is to get the joint angles to follow a desired
joint angle, which in this case is a sine wave with an amplitude of 1, as shown in Figure 7.1.
The desired joint angle is used for all three crane joints.

43

Figure 7.1: Desired joint angles

State of the art controllers such as PID, PI- and PD controllers are developed for this purpose.
Because of the heavy crane links that can cause high joint torques, it was also interesting to
examine these control designs by implementing gravity compensation to see if this could affect
the results. A LQR, which is based on a state-space representation of the dynamic crane model,
is also developed for the same purpose.

7.1.1 PID-controller

To get the measured joint angles to follow the desired joint angles (described in chapter 7.1) with
as small error as possible, the PID-controller design consists of a PID-controller that continuously
calculates an error value as the difference between desired and measured joint angles and applies
a correction based on proportional, integral and derivative terms. The proportional gain Kp has
the ability to reduce the error and can also cause the closed-loop system to react faster, but
also to overshoot more. The derivative gain Kd has the ability of the controller to "anticipate"
error, and then reduce the overshoot. The integral gain Ki can help reducing the error. If there
is a persistent steady error, Ki can drive the error down. Because of the heavy crane links,
compensating for gravity may affect the system response, thus the PID-controller design is also
developed by adding the gravity vector from the dynamic system to the input torque.

Figure 7.2 shows how the PID-controller is developed with the task of tracking the desired joint
angles. The controller parameters Kp, Ki and Kd were found from testing several values and
combinations. Figure 7.3 shows how the same controller is built when compensating for gravity.

44

Figure 7.2: Control of joint angles using PID-controller

Figure 7.3: Control of joint angles using PID-controller with gravity compensation

7.1.2 PD-controller

To get the measured joint angles to follow the desired joint angles (described in chapter 7.1) with
as small error as possible, the PD-controller design consists of a PD-controller that continuously
calculates an error value as the difference between desired and measured joint angles and applies a
correction based on proportional and derivative terms. Even if the integral gain can help reducing
the error, it can also make the system more oscillatory. Therefore, it is expedient to see how
the system will react without the integral term. Because of the heavy crane links, compensating
for gravity may affect the system response, thus the gravity vector from the dynamic system is
added to the input torque.

Figure 7.4 shows how the PD-controller is developed with the task of tracking the desired
joint angles. The controller parameters Kp and Kd were found from testing several values and
combinations. Figure 7.5 shows how the same controller is built when compensating for gravity.

45

Figure 7.4: Control of joint angles using PD-controller

Figure 7.5: Control of joint angles using PD-controller with gravity compensation

7.1.3 PI-controller

To get the measured joint angles to follow the desired joint angles (described in chapter 7.1) with
as small error as possible, the PI-controller design consists of a PI-controller that continuously
calculates an error value as the difference between desired and measured joint angles and applies
a correction based on proportional and integral terms. Even if the derivative gain Kd helps
reducing the overshoot, it has no effect on the steady-state error. Therefore, it is expedient
to examine how the system will react without the derivative gain. Because of the heavy crane
links, compensating for gravity may affect the system response, thus the PI-controller design is
also developed by adding the gravity vector from the dynamic system to the input torque.

Figure 7.6 shows how the PI-controller is developed with the task of tracking the desired joint
angles. The controller parameters Kp and Ki were found from testing several values and com-
binations. Figure 7.7 shows how the same controller is built when compensating for gravity.

46

Figure 7.6: Control of joint angles using PI-controller

Figure 7.7: Control of joint angles using PI-controller with gravity compensation

7.1.4 LQR

To get the measured joint angles to follow the desired joint angles (described in chapter 7.1) with
as small error as possible, the LQR control design consists of an estimated state-space model of
the dynamic crane with the joint angles as the outputs, a state feedback gain matrix that will
minimize the cost function and may reduce the error between desired and measured joint angles
and a pre-filter to further reduce the error.

Figure 7.8-7.10 show the structure of a LQR for each of the crane joints with the task of tracking
the desired joint angles. These models are run in parallel with the Matlab model, shown in
Appendix B. The plant for each of the models is an estimated model of the crane with joint
angles as the output and are found from the dynamic crane model in Simulink, which can be
seen as a multiple-input and multiple-output system. A sine wave is set as the input for all three
joints and crane joint 1, 2 and 3 are the outputs. Further, "System identification toolbox" in
Matlab is used to find an estimated state-space model for each input with the associated output.
All three state-space models had an estimation fit to the dynamic crane model of nearly 100
percent. Therefore, these models are used as the plant instead of the dynamic crane model, and
the crane joints can be controlled separately. In addition, the LQR design of joint 2 includes a

47

feedback gain to the system. This is done to improve the results and minimize the error between
the desired and measured joint angle.

Figure 7.8: Control of joint angle 1 using LQR

Figure 7.9: Control of joint angle 3 using LQR

Figure 7.10: Control of joint angle 3 using LQR

When the estimated state-space models were found, a proper state feedback gain for each system
were calculated in Matlab using the following equations

K1 = lqr(A1,B1,Q1,R1) (7.1)

K2 = lqr(A2,B2,Q2,R2) (7.2)

K1 = lqr(A3,B3,Q3,R3) (7.3)

where Equation (7.1) represents the gain matrix for control of joint angle 1, Equation (7.2)
represents the gain matrix for control of joint angle 2 and Equation (7.3) represents the gain
matrix for control of joint angle 3.

48

To improve the results and reduce the error between desired and measured joint angles a pre-filter
is added to controllers. The pre-filter values are calculated with the following equations

V1 = (C1(B1K1 −A1)
−1

)B1)
−1 (7.4)

V2 = (C2(B2K2 −A2)
−1

)B2)
−1 (7.5)

V3 = (C3(B3K3 −A3)
−1

)B3)
−1 (7.6)

where Equation (7.4) represents the pre-filter for control of joint angle 1, Equation (7.5) rep-
resents the pre-filter for control of joint angle 2 and Equation (7.6) represents the pre-filter for
control of joint angle 3.

7.2 Control of Crane End-effector
The control task concerning control of crane end-effector is to get the crane end-effector to
follow a desired trajectory movement in vertical direction. The desired trajectory is to move the
end-effector from an initial point to another desired point in z-direction, with a velocity of 0.1
m/s. The initial location is set to 5.432 m, which is the z-coordinate when the crane arm is fully
extended, and the desired location is set to 1 m. After the end-effector has reached the desired
location, the aim is to keep the end-effector steady at this point. Figure 7.11 shows the desired
trajectory of the crane end-effector.

Figure 7.11: Desired position in z-direction

The trajectory can be described as a linear movement in z-direction with the following equation

zed = ze0 +mt (7.7)

where

zed is the desired movement of the end-effector in z-direction given in meters,

ze0 is the initial position of the end-effector in z-direction given in meters,

49

t is the time given in seconds, and

m is the slope of the movement.

The equation of the slope can be written as

m =
zef − ze0

tf − t0
(7.8)

where

zef is the desired final end-effector location given in meter,

tf is the final time given in seconds, and

t0 is the inital time given in seconds.

The final time can be calculated from the difference in end-effector position divided with the
difference in end-effector velocity as follows

tf =
zef − ze0

vef − ve0
(7.9)

where

vef is the desired end-effector velocity in z-direction (in negative direction) given in meter
per seconds, and

vef is the initial velocity of the end-effector in z-direction given in meter per seconds.

The controllers used for this purpose are first the state-of-art controllers such as PID-, PI-
and PD-controllers, where implementing gravity compensation seemed to be necessary to avoid
singularity in the solution and further track the desired end-effector position. Ziegler-Nichols
closed-loop tuning method to find controller parameters for these controllers is also explained.
Further, a LQR is developed for the same purpose. Eventually, the inverse kinematics control
method called the Jacobian inversion and Jacobian transpose method are developed.

7.2.1 Ziegler-Nichols Closed-loop Tuning

To find the controller parameters for the PID-, PI- and PD-controllers, Ziegler Nichols closed-
loop tuning method is used. A controller is connected to the system using only the proportional
gain. The value of this gain is increased until the system starts to oscillate, as shown in Figure
7.12. Further, the ultimate period Pu is found using "Peak finder" in Simulink. This is shown
in Figure 7.13. Then the equations in Table 3.4 are used to find the controller parameters for
all three controllers.

50

Figure 7.12: Procedure to find the ultimate gain Ku

Figure 7.13: Using peak finder to determine the ultimate period Pu

7.2.2 PID-controller

To get the measured end-effector position in z-direction to follow the desired end-effector position
in z-direction (described in chapter 7.2) with as small error as possible, the PID-controller design
consists of a PID-controller that continuously calculates an error value as the difference between
desired and measured position and applies a correction based on proportional, integral and
derivative terms. The proportional gain Kp has the ability to reduce the error and can also
cause the closed-loop system to react faster but also to overshoot more. The derivative gain
Kd has the ability of the controller to "anticipate" error and then reduce the overshoot. The
integral gain Ki can help reducing the error. If there is a persistent steady error, Ki can drive
the error down. Because of the heavy crane links, compensating for gravity may affect the

51

system response, thus the PID-controller design is developed by adding the gravity vector from
the dynamic system to the input torque. This also turned out to be necessary for simulating
the system in Simulink.

Figure 7.14 shows how the PID-controller design is developed for the end-effector with the task
of tracking the desired trajectory.

Figure 7.14: Control of end-effector position using PID-controller with gravity compensation

7.2.3 PD-controller

To get the measured end-effector position in z-direction to follow the desired end-effector position
(described in chapter 7.2) with as small error as possible the PD-controller design consists of a
PD-controller that continuously calculates an error value as the difference between desired and
measured position and applies a correction based on proportional and derivative terms. Even
if the integral gain can help reducing the error, it can also make the system more oscillatory.
Therefore, it is expedient to see how the system will react without the integral term. Because
how the heavy crane links, compensating for gravity may affect the system response, thus the
gravity vector from the dynamic system is added to the input torque. This also turned out to
be necessary for simulating the system in Simulink.

Figure 7.15 shows how the PD-controller design is built for the end-effector with the task of
tracking the desired trajectory.

Figure 7.15: Control of end-effector position using PD-controller with gravity compensation

52

7.2.4 PI-controller

To get the measured end-effector position in z-direction to follow the desired end-effector position
(described in chapter 7.2) with as small error as possible, the PI-controller design consists of a
PI-controller that continuously calculates an error value as the difference between desired and
measured position and applies a correction based on proportional and integral terms. Even
if the derivative gain Kd helps reducing the overshoot it has no effect the steady-state error.
Therefore, it is expedient to examine how the system will react without the derivative gain.
Because of the heavy crane links, compensating for gravity may affect the system response, thus
the PI-controller design is developed by adding the gravity vector from the dynamic system to
the input torque. This also turned out to be necessary for simulating the system in Simulink.

Figure 7.16 shows how the PI-controller design is developed for the end-effector with the task
of tracking the desired trajectory.

Figure 7.16: Control of end-effector position using PI-controller with gravity compensation

7.2.5 LQR

To get the measured end-effector position in z-direction to follow the desired end-effector position
in z-direction (described in chapter 7.2) with as small error as possible, the LQR control design
consist of an estimated state-space model of the dynamic crane with the end-effector position in
z-direction as the output, a state feedback gain matrix that will minimize the cost function and
may reduce the error between desired and measured position, and a pre-filter to further reduce
the error.

Figure 7.17 shows the structure of a LQR controller design with the task of tracking the desired
end-effector position. This model is run in parallel with the Matlab model, shown in Appendix
C. The plant is an estimated model of the crane model with end-effector position in z-direction
as the output. This model is, like the joint models, found from the dynamic model of the crane
in Simulink. The only difference is that the system is now seen as a single-input and single-
output system. A step function is set as the input and end-effector position in z-direction is the
output. Using "System Identification toolbox" in Matlab, the estimated state-space model had
an estimation fit to the dynamic crane model of nearly 100 percent. Therefore, this model is
used as the plant instead of the dynamic model.

53

Figure 7.17: Control of end-effector position using LQR

When the estimated state-space models were found, a proper state feedback gain for the system
was calculated in Matlab using the following equation

K = lqr(A,B,Q,R) (7.10)

To improve the results and reduce the error between the desired and measured end-effector
position a pre-filter is added to controller. The pre-filter value is calculated with the following
equation

V = (C(BK −A)
−1

)B)
−1 (7.11)

7.2.6 Jacobian Inversion Method

The Jacobian inversion method is a control method that relies only on the crane kinematics and
not the dynamics, where the purpose is to minimize the difference between desired and current
position of the end-effector. It is an iterative inverse kinematics method, which means that it
solves the kinematic equations using a sequence of steps. This provides a better solution for
the joint angles, as an algebraic solution works only for a restricted class of cases and can be
used for a 2DOF crane. Since this concerns a 3DOF crane, it is necessary to utilize an iterative
method using the Jacobian matrix instead of algebraic equations. One concern with this method
is that using the inverse Jacobian matrix may not lead to one solution, but an infinite number
of solutions and singularities usually occur.

Figure 7.18 shows how the controller design is developed using Jacobian inversion method. The
design consists of a desired end-effector position, which will be compared to the current end-
effector position. This is done by calculating the error between desired and current position.
Further, the position error is multiplied with the inverse Jacobian matrix to calculate the joint
velocities. The desired trajectory is the one used for the other controller designs described above,
but to use the Jacobian, the inverse of the Jacobian and the forward kinematics, it was necessary
to define the crane end-effector position, not only in z-direction, but also in x- and y-direction.
This is simply done by calculating how the end-effector will move in x- and y-direction based
on the position in z-direction.

54

Figure 7.18: Control of end-effector position using Jacobian inversion method

7.2.7 Jacobian Transpose Method

The Jacobian transpose method is also an iterative kinematics method. It differs from the
Jacobian inversion method as it uses the transpose of the Jacobian matrix instead of the inverse.
The purpose is the same for the Jacobian transpose method as for the Jacobian inversion method;
to minimize the difference between desired and current position of the end-effector, but using the
transpose of the Jacobian, instead of the inverse, removes the singularity problems significantly.

Figure 7.19 shows how the controller design is developed using the Jacobian transpose method.
This design consists of a desired end-effector position, the transpose of the Jacobian matrix and
forward kinematics that calculates the end-effector position. The desired trajectory is the one
used for the Jacobian inversion method, but here the position error can be seen as the generated
force, which is proportional with the joint velocities. Therefore, the transpose Jacobian can be
used to calculate the end-effector velocities from the generated force.

Figure 7.19: Control of end-effector position using Jacobian transpose method

55

Chapter 8

Simulation Results and Discussion

In this chapter simulation results from the control designs will be presented. This includes results
from the control designs concerning control of joints and control designs concerning control of
end-effector position in vertical directing. Both with the task of tracking a desired position.

8.1 Control of Crane Joints
First, results from simulation of the control designs concerning control of crane joints will be
presented. This consist of results from controller designs as follows

• PID-controller with and without gravity compensation

• PD-controller with and without gravity compensation

• PI-controller with and without gravity compensation

• LQR

The measured joint angles will be compared to the desired joint angles to examine the ability
each controller design has to track the desired joint angles. When the control task concerning
control of crane joints is to get the joint angles to follow a desired joint angle, there will occur
a certain error as the difference between the desired and measured joint angle. This error will
be presented in form of a graph with respect to time and with a maximal value. To fulfill the
control task, controller parameters need to be found or calculated, which will be presented as
well.

8.1.1 PID-controller

Results from simulation of the PID-controller design include measured joint angles versus desired
joint angles and the error between desired and measured joint angles. Controller parameters for
the PID-controller design are found from testing several values. The best results were obtained
when Kp, Ki and Kd where increased to their limits, which eventually resulted in very high
gains.

Figure 8.1 shows the desired and measured joint angles and Figure 8.2 shows the error as the
difference between desired and measured joint angles.

56

Figure 8.1: Measured joint angles versus de-
sired joint angles using PID-controller

Figure 8.2: Error between desired and mea-
sured joint angles using PID-controller

Maximal error between desired and measured joint angles is found from Figure 8.2 and the
values for each joint variable are:

• q1 error= 2.775 ⋅ 10−3[rad] at time t = 4.438 ⋅ 10−3[s]

• q2 error=3.327 ⋅ 10−3[rad] at time t = 4.717 ⋅ 10−3[s]

• q3 error=6.268 ⋅ 10−4[rad] at time t = 3.831 ⋅ 10−3[s]

8.1.2 PID-controller with Gravity Compensation

Results from simulation of the PID-controller with gravity compensation design include mea-
sured joint angles versus desired joint angles and the error between desired and measured joint
angles.

Using the same controller parameters as for the PID-controller design, Figure 8.3 shows the
desired and measured joint angles and Figure 8.4 shows the error as the difference between
desired and measured joint angles, when adding gravity compensation.

Figure 8.3: Measured joint angles versus de-
sired joint angles using PID-controller with
gravity compensation

Figure 8.4: Error between desired and mea-
sured joint angles using PID-controller with
gravity compensation

Maximal error between desired and measured joint angles is found from Figure 8.4 and the
values for each joint variable are:

• q1 error= 2.776 ⋅ 10−3[rad] at time t = 4.482 ⋅ 10−3[s]

57

• q2 error=3.331 ⋅ 10−3[rad] at time t = 4.765 ⋅ 10−3[s]

• q3 error=6.464 ⋅ 10−4[rad] at time t = 4.765 ⋅ 10−3[s]

8.1.3 PD-controller

Results from simulation of the PD-controller design include measured joint angles versus desired
joint angles and the error between desired and measured joint angles. Controller parameters
for the PD-controller design are also found from testing several values. The best results were
obtained when Kp and Kd where increased to their limits, which eventually resulted in very
high gains.

Figure 8.5 shows the desired and measured joint angles and Figure 8.6 shows the error as the
difference between desired and measured joint angles.

Figure 8.5: Measured joint angles versus de-
sired joint angles using PD-controller

Figure 8.6: Error between desired and mea-
sured joint angles using PD-controller

Maximal error between desired and measured joint angles is found from Figure 8.6 and the
values for each joint variable are:

• q1 error= 5.725 ⋅ 10−3[rad] at time t = 0.018[s]

• q2 error=7.079 ⋅ 10−3[rad] at time t = 0.019[s]

• q3 error=1.049 ⋅ 10−3[rad] at time t = 0.019[s]

8.1.4 PD-controller with Gravity Compensation

Results from simulation of the PD-controller with gravity compensation design include measured
joint angles versus desired joint angles and the error between desired and measured joint angles.

Using the same controller parameters as for the PD-controller design, Figure 8.7 shows the
desired and measured joint angles and Figure 8.8 shows the error as the difference between
desired and measured joint angles, when adding gravity compensation.

58

Figure 8.7: Measured joint angles versus de-
sired joint angles using PD-controller with
gravity compensation

Figure 8.8: Error between desired and mea-
sured joint angles using PD-controller with
gravity compensation

Maximal error between desired and measured joint angles is found from Figure 8.8 and the
values for each joint variable are:

• q1 error= −1.023 ⋅ 10−2[rad] at time t = 44.968[s]

• q2 error=−1.027 ⋅ 10−2[rad] at time t = 44.968[s]

• q3 error=−1.010 ⋅ 10−2[rad] at time t = 44.967[s]

8.1.5 PI-controller

Results from simulation of the PI-controller design include measured joint angles versus desired
joint angles and the error between desired and measured joint angles. Controller parameters
for the PI-controller design are also found from testing several values. The best results were
obtained when Kp and Ki where increased to their limits, which eventually resulted in very high
gains.

Figure 8.9 shows the desired and measured joint angles and Figure 8.10 shows the error as the
difference between desired and measured joint angles.

Figure 8.9: Measured joint angles versus de-
sired joint angles using PI-controller

Figure 8.10: Error between desired and mea-
sured joint angles using PI-controller

Maximal error between desired and measured joint angles is found from Figure 8.10 and the
values for each joint variable are:

59

• q1 error= 1.097 ⋅ 10−1[rad] at time t = 47.986[s]

• q2 error=−3.675 ⋅ 10−2[rad] at time t = 49.630[s]

• q3 error=1.107 ⋅ 10−2[rad] at time t = 47.992[s]

8.1.6 PI-controller with Gravity Compensation

Results from simulation of the PI-controller with gravity compensation design include measured
joint angles versus desired joint angles and the error between desired and measured joint angles.

Using the same controller parameters as for the PI-controller design, Figure 8.11 shows the
desired and measured joint angles and Figure 8.12 shows the error as the difference between
desired and measured joint angles, when adding gravity compensation.

Figure 8.11: Measured joint angles versus
desired joint angles using PI-controller with
gravity compensation

Figure 8.12: Error between desired and mea-
sured joint angles using PI-controller with
gravity compensation

Maximal error between desired and measured joint angles is found from Figure 8.12 and the
values for each joint variable are:

• q1 error= 1.122 ⋅ 10−1[rad] at time t = 47.986[s]

• q2 error=−3.630 ⋅ 10−2[rad] at time t = 49.5[s]

• q3 error=1.061 ⋅ 10−2[rad] at time t = 47.251[s]

8.1.7 LQR

Results from simulation of the LQR design include measured joint angles versus desired joint
angles and the error between desired and measured joint angles.

Before the results from control of joint 1 are presented the optimal state-feedback gain and
pre-filter are calculated to be

K1=[155.7353 -4.0947 3.7728 -2.6872]

V1=4.9491 ⋅ 104

With the use of the values above, Figure 8.13 and 8.14 show the desired and measured joint
angle 1 and the error as the difference between desired and measured joint angle 1, respectively.

60

Figure 8.13: Measured joint angle 1 versus
desired joint angle 1 using LQR

Figure 8.14: Error between desired and mea-
sured joint angle 1 using LQR

Before the results from control of joint 2 are presented the optimal state-feedback gain and
pre-filter are calculated to be

K2=[-59.7851 1.5899 -1.4547 1.0295]

V2=-0.8221

With the use of the values above, Figure 8.15 and 8.16 show the desired and measured joint
angle 2 and the error as the difference between desired and measured joint angle 2, respectively.

Figure 8.15: Measured joint angle 2 versus
desired joint angle 2 using LQR

Figure 8.16: Error between desired and mea-
sured joint angle 2 using LQR

Before the results from control of joint 3 are presented the optimal state-feedback gain and
pre-filter are calculated to be

K3=[89.7819 -253.9393 127.1083 967.7061]

V3=1.001

With the use of the values above, Figure 8.17 and 8.18 show the desired and measured joint
angle 3 and the error as the difference between desired and measured joint angle 3, respectively.

61

Figure 8.17: Measured joint angle 3 versus
desired joint angle 3 using LQR

Figure 8.18: Error between desired and mea-
sured joint angle 3 using LQR

Maximal error between desired and measured joint angles is found from Figure 8.14, 8.16 and
8.18 and the values for each joint variable are:

• q1 error= −1.434[rad] at time t = 4.505[s]

• q2 error=1.127[rad] at time t = 1.751[s]

• q3 error=1.760[rad] at time t = 45.920[s]

8.1.8 Discussion of Control of Joints

A PID-controller design manages to track the desired joint angles well, and the error between
desired and measured joint angles is small for all joints. A PID-controller with gravity compen-
sation shows almost identical results. The error is a bit larger for all joints, but the difference is
so minimal that adding the gravity term to the PID-controller designs has almost no impact on
the results. Removing the derivative term of the PID-controller results in a larger error using a
PD-controller design. That being said, this controller design also manages to track the desired
joint angles for all joints well, as the error is minimally larger. Adding the gravity term to this
controller design has an impact to the system response, as the error become larger. Removing
the integral term from the PID-controller has greater impact of the results, as the error using
a PI-controller design cause a significantly larger error. Using this controller design also causes
an oscillating system response. The measured joint angles always oscillate around the desired
joint angle. Adding a gravity term to this controller has almost no impact on the results, as the
error is minimally larger but almost identical. The LQR design seems to have problems of track-
ing the desired joint angles for all three joints. One reason might be because of the estimated
state-space models, and that using the estimated model as the plant might cause inaccuracies.

8.2 Control of Crane End-effector
Finally, results from simulation of the control designs concerning control of crane end-effector
will be presented. This consist of results from controller designs as follows

• PID-controller with gravity compensation

• PD-controller with gravity compensation

• PI-controller with gravity compensation

• LQR

62

• Jacobian inversion method

• Jacobian transpose method

The measured end-effector position in z-direction will be compared to the desired end-effector
position in z-direction to examine the ability each controller design has to track the desired
position. When the control task concerning control of crane end-effector is to get the end-
effector to follow a desired end-effector position, there will occur a certain error as the difference
between the desired and measured end-effector position. This error will be presented in form of
a graph with respect to time and with a maximal value. To fulfill the control task, controller
parameters need to be found or calculated. The resulting parameters are also presented in this
chapter.

8.2.1 PID-controller

Before results from simulation of the PID-controller design, calculated values of the controller
parameters Kp, Ki and Kd will be presented. Then measured end-effector position versus
desired end-effector position and the error between the desired and measured end-effector will
be presented with Ziegler-Nichols controller parameters and with adjusted gains.

Controller parameters are found from Ziegler Nichols closed-loop tuning method. From this
method the ultimate gain becameKu = 1600, which resulted in the following controller parameter
for a PID:

Kp = 900

Ki = 28.125

Kd = 7200

Results from the PID-controller design with the calculated controller parameters are shown
below, where Figure 8.19 shows the measured and desired position in z-direction and Figure
8.20 shows the error as the difference between desired and measured position.

Figure 8.19: Measured end-effector position
in z-direction versus desired end-effector po-
sition in z-direction using PID-control with
gravity compensation and with the use of
Ziegler-Nichols parameters

Figure 8.20: Error between desired and mea-
sured end-effector position in z-direction us-
ing PID-control with gravity compensation
and with the use of Ziegler-Nichols parame-
ters

As seen in Figure 8.20, the maximal error between desired and measured end-effector position
is over ±1m. To obtain a smaller error the controller parameters were adjusted. The error

63

decreased when Kp and Kd were further increased, and new results with adjusted controller
parameters are shown in Figure 8.21 and 8.22.

(a) (b)

Figure 8.21: Measured end-effector position in z-direction versus desired end-effector posi-
tion in z-direction using PID-control with gravity compensation and with the use of increased
gains

Figure 8.22: Error between desired and measured end-effector position in z-direction using
PID-control with gravity compensation and with the use of increased gains

Maximal error between desired and measured end-effector position is found from Figure 8.22
and the value is:

• ze error= 3.777[mm] at time t = 44.475[s]

8.2.2 PD-controller

Before results from simulation of the PD-controller design, calculated values of the controller
parameters Kp and Kd will be presented. Then measured end-effector position versus desired
end-effector position and the error between desired and measured end-effector will be presented
with Ziegler-Nichols controller parameters and with adjusted gains.

64

Controller parameters are found from Ziegler Nichols closed-loop tuning and have the following
values for a PD:

Kp = 1200

Kd = 9600

Results from the PD-controller design with the calculated controller parameters are shown below,
where Figure 8.23 shows the measured and desired position in z-direction and Figure 8.24 shows
the error as the difference between desired and measured position.

Figure 8.23: Measured end-effector position
in z-direction versus desired end-effector po-
sition in z-direction using PD-control with
gravity compensation and with the use of
Ziegler-Nichols parameters

Figure 8.24: Error between desired and mea-
sured end-effector position in z-direction us-
ing PD-control with gravity compensation
and with the use of Ziegler-Nichols parame-
ters

As seen in Figure 8.24, the maximal error between desired and measured end-effector position
is almost 0.6m. To obtain a smaller error the controller parameters were adjusted. The error
decreased when Kp and Kd were further increased, and new results with adjusted controller
parameters are shown in Figure 8.25 and 8.26.

(a) (b)

Figure 8.25: Measured end-effector position in z-direction versus desired end-effector position
in z-direction using PD-control with gravity compensation and with the use of increased gains

65

Figure 8.26: Error between desired and measured end-effector position in z-direction using
PD-control with gravity compensation and with the use of increased gains

Maximal error between desired and measured end-effector position is found from Figure 8.26
and the value is:

• ze error= 2.826[mm] at time t = 44.498[s]

8.2.3 PI-controller

Before results from simulation of the PI-controller design, calculated values of the controller
parameters Kp and Ki will be presented. Then measured end-effector position versus desired
end-effector position and the error between desired and measured end-effector will be presented
with Ziegler-Nichols controller parameters and with adjusted gains.

Controller parameters are found from Ziegler Nichols closed-loop tuning and have the following
values for a PI:

Kp = 675

Ki = 12.66

Results from the PI-controller design with the calculated controller parameters are shown below,
where Figure 8.27 shows the measured and desired position in z-direction and Figure 8.28 shows
the error as the difference between desired and measured position.

66

Figure 8.27: Measured end-effector position
in z-direction versus desired end-effector po-
sition in z-direction using PI-control with
gravity compensation and with the use of
Ziegler-Nichols parameters

Figure 8.28: Error between desired and mea-
sured end-effector position in z-direction us-
ing PI-control with gravity compensation
and with the use of Ziegler-Nichols parame-
ters

As seen in Figure 8.28, the maximal error between desired and measured end-effector position
is not measurable after a certain time using a simulation time of 400 seconds. This means that
the error will increase as the time increase, and it will never be possible to track the desired
position. It will be possible to obtain a smaller error with a simulation time of 100 seconds. The
error decreased when Kp was further increased. Results when adjusting the proportional gain
are shown in Figure 8.29 and 8.30.

(a) (b)

Figure 8.29: Measured end-effector position in z-direction versus desired end-effector position
in z-direction using PI-control with gravity compensation with the use of increased gains

67

Figure 8.30: Error between desired and measured end-effector position in z-direction using PI-
control with gravity compensation with the use of increased gains

Maximal error between desired and measured end-effector position is found from Figure 8.30
and the value is:

• ze error= 8.795[mm] at time t = 99.759[s]

8.2.4 LQR

Before results from simulation of the PID-controller design, calculated values of the optimal
state feedback gain K and pre-filter V will be presented. Then measured end-effector position
versus desired end-effector position and the error between desired and measured end-effector
position will be presented.

The optimal state feedback gain and pre-filter for the LQR design are:

K=[-372.0925 186.3593 121.2863 59.7286]

V=-1.0025

Results from the LQR design are shown in Figure 8.31 and 8.32. Figure 8.31 shows how the
end-effector follows the desired end-effector position, and where the error between desired and
measured position is largest. Figure 8.32 shows the error as the difference between desired and
measured position.

68

(a) (b)

(c) (d)

Figure 8.31: Measured end-effector position in z-direction versus desired end-effector position
in z-direction using a LQR

Figure 8.32: Error between desired and measured end-effector position in z-direction using a
LQR

Maximal error between desired and measured end-effector position is found from Figure 8.32

69

and the value is:

• ze error= 5.432[m] at time t = 0[s]

8.2.5 Jacobian Inversion Method

As mentioned, using the inverse of the Jacobian leads to an infinite number of solutions and
singularities usually occur. Simulink was not able to run the simulation because of singularities,
which means that using this method did not lead to any simulation results in this case.

8.2.6 Jacobian Transpose Method

Results from simulation of the Jacobian transpose controller design include measured end-
effector position versus desired end-effector position and the error between desired and measured
end-effector position.

Figure 8.33 shows how the measured end-effector position follows the desired end-effector po-
sition in z-direction, and Figure 8.34 shows the error as the difference between desired and
measured end-effector position in z-direction.

(a) (b)

Figure 8.33: Measured end-effector position in z-direction versus desired end-effector position
in z-direction using Jacobian transpose method

70

Figure 8.34: Error between desired and measured end-effector position in z-direction using
Jacobian transpose method

Maximal error between desired and measured end-effector position is found from Figure 8.34
and the value is:

• ze error= 7.411[mm] at time t = 3.911[s]

8.2.7 Discussion of Control of Crane End-effector

A PID-controller design manages to track the desired end-effector position, and the error between
desired and measured position is small. Removing the integral term tends to help reducing the
error, as the results of the PID-controller design shows better results with a smaller error, which
means that a PD-controller manage to track the desired end-effector position even better than
the PID-controller design. Results from both PID and PD show that the error is largest when
the end-effector are supposed to settle at 1m. This makes sense since the controllers must "work
harder" to force the change in end-effector position. Removing the derivative term from the
PID-controller has a greater impact on the results, and the PI-controller design is not able to
track the desired end-effector position without oscillating, and the error is significantly larger
for this control design. It can also be seen from Figure 8.30 that the error increases as the time
increases, which means that it might not be possible to simulate the system after 100 seconds.
The largest error when using a LQR design is in the beginning. The measured position starts
at 0m, and the controller manage to force the end-effector up to the desired start position but
not without overshooting. At this position the error is significantly large as well. When the
end-effector reaches the desired end position of 1m, the error is larger than the errors using a
PID- or a PD-controller, thus the LQR design seems to have problems of tracking the desired
end-effector position compared to a PID- and PD-controller. One reason might be because
of the estimated state-space model, and that the use of this model as the plant might cause
inaccuracies. The Jacobian inversion method gave no results since singularities occurred, but by
using the transpose Jacobian, instead of the inverse, it was possible to obtain results from the
Jacobian transpose design. The maximum error is small, but the measured end-effector position
always oscillates under the desired end-effector position during the whole simulation.

71

Chapter 9

Conclusions and Future Work

9.1 Conclusions
The purposes of this thesis has been to develop a crane model and then develop several controller
designs with the task of tracking a desired crane motion.

A mathematically model of the MacGregor AHC 250t crane was developed using robot modeling
theory. The crane model consisting of kinematic and dynamic equations was developed in both
Matlab and Matlab/Simulink with the intention of comparing the two models. The two models
showed identical results, but since these models were based on equations, a further verification
could have been done by comparing the model with for instance a SimMechanics or SimulationX
model.

A dynamic model of the crane was developed in Simulink with the purpose to function as a
plant for several control systems. Some parts from the mathematically model consisting of the
crane kinematics were also used with the purpose of controlling the crane.

Several control designs were developed with the task of tracking desired joint angles. PID-, PD-
and PI- controller designs, with and without gravity compensation, were developed to control
the joint angles by calculating an error value as the difference between desired and measure joint
angle, and apply changes based on the controller parameters. A LQR design was developed to
control the joint angles separately with the use of estimated state-space models for each joints.
Several control designs were also developed with the task of tracking a desired end-effector
position in vertical direction. PID-, PD- and PI- controller designs were developed to control
the end-effector by calculating an error value as the difference between desired and measure
end-effector position, and apply changes based on the controller parameters. A LQR design
was developed to control the end-effector with the use of an estimated-state space model. Two
inverse kinematics control designs were developed to minimize the error as the difference between
desired and current end-effector position, using the Jacobian matrix.

A PID-controller design and a PD-controller design turned out to track the desired position
with the smallest error for both control of joints and control of end-effector. A PI-controller
design caused an oscillating system for both control of joints and control of end-effector. A LQR
design seemed to have problems of tracking the desired joint angles and end-effector position.
The Jacobian transpose design provided no results since singularities occurred and the Jacobian
transpose method caused an oscillating system response.

Based on the simulations done in this thesis it can be concluded that a PID-controller design
showed the best performance concerning control of crane joints, while a PD-controller design
showed the best performance concerning control of end-effector.

72

9.2 Further Work
Further work on this thesis can include improvement of the LQR controller design by controlling
the poles using pole-placement method. It can also be interesting to see how adding an integral
term and maybe an estimator state can affect the results. Another area of improvement can be
to try different desired positions and see if the controller designs provide sufficient results using
a more advanced trajectory generation. In this thesis, the control designs are studied separately,
but it can also be interesting to examine the use of a combination of various control design.

An offshore crane is affected by the coupled dynamics between the crane, vessel, cable and
payload. Since this thesis only concerns the crane, further work can be to examine and simulate
the couple dynamics of the crane, vessel, cable and payload. The implementation of various
control algorithms during heave compensation is also interesting and relevant to further examine.
Since control of the crane end-effector is completed the next step can be to connect a cable and
payload model to the crane and further control the payload position, with the task to move the
payload avoiding payload swing during the operation.

73

Bibliography

[1] Thuong, K.T. and Langen, I. Modelling and Simulation of Offshore Crane Operations on a
Floating Production Vessel. Japan, 2002.

[2] Syvertsen, P.G.Modeling and Control of Crane on Offshore Vessel. NTNU, Trondheim, Nor-
way, 2011.

[3] Chu, Y. Virtual Prototyping for Marine Crane Design and Operations. NTNU, Trondheim,
Norway, 2017.

[4] Chu, Y., Æsøy, V., Ehlers S. and Zhang H. Integrated multi-domain system modelling and
simulation for offshore crane operations. University of Duisburg-Essen, Germany, 2015

[5] Chu, Y., Æsøy,V. A multi-body dynamic model based on bond graph for maritime hydraulic
crane operations. St. John’s, Newfoundland, Canada, 2015.

[6] Bertsch,C., Ahle,E., Schulmeister, U. The Functional Mockup Interface seen from an indus-
trial perspective. Lund, Sweden, 2014.

[7] Rokseth, B., Skjong, S. and Pedersen, E. Modeling of Generic Offshore Vessel in Crane
Operations With Focus on Strong Rigid Body Connections. Norway, 2017.

[8] openmodelica.org. https://openmodelica.org/images/docs/
Modelica-and-OpenModelica-overview-Peter-Fritzson-120328.pdf. Acceded:
2018-01-08.

[9] Sun, N., Fang, Y., Chen, H., Fu, Y. and Lu, B. Nonlinear Stabilizing Control for
Ship-Mounted Cranes With Ship Roll and Heave Movements. China, 2017.

[10] Atique, M.U and Ahad, A.R. Inverse Kinematics Solution for a 3DOF Robotic Structure
using Denavit-Hartenberg Convention. Bangladesh, 2014.

[11] Landsverk, R. Modelling and simulation of a knuckle boom crane and marine craft.
University of Agder, Norway, 2017. "MODELLING AND SIMULATION OF A KNUCKLE
BOOM CRANE AND MARINE CRAFT"

[12] Spong, M.W, Hutchinson, S. and Vidyasagar, M. Robot Dynamics and Control 2th
Edition. 2004.

[13] Temel, S., YAĞLI, S. and GÖREN, S. P-PD-,PI- and PID-CONTROLLERS. 2013.

[14] PID control. Desborough Honeywell, 2000.

[15] Control tutorials for Matlab and Simulink. Introduction: PID Controller Design. http://
ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID.
Acceded: 2018-04-02.

[16] Nise, N.S. Nises control systems 7th edition. John Wiley & Sons, Singapore, 2015. Page
649-704.

74

https://openmodelica.org/images/docs/Modelica-and-OpenModelica-overview-Peter-Fritzson-120328.pdf
https://openmodelica.org/images/docs/Modelica-and-OpenModelica-overview-Peter-Fritzson-120328.pdf
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID

[17] Wu, Z. and Soong, T.T. Modified BANG-BANG Control Law for Structural Control
Implementation. New York, USA, 1996.

[18] Mohammadbagheri, A., Zaeri, N. and Yaghoobi, M. Comparison Performance Between
PID and LQR Controllers for 4-leg Voltage-Source Inverters. Iran, 2014.

[19] Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control First Edition.
John Wiley & Sons, 2011. Chapter 12 and 13.

[20] Control tutorials for Matlab and Simulink. Inverted Pendulum: State-Space Methods for
Controller Design. Acceeded: 2018-04-09.

[21] Barinka, L. and Berka, I.R. Inverse Kinematics - Basic Methods. Czech Technical
Universiy Prague, Czech Republic.

75

Appendix A

Inverse Crane Kinematics and Crane
Dynamics

This Appendix contains a Matlab script and two Simulink models of the inverse crane kinematics
and dynamics. Both models use the same circular trajectory where the purpose is to find the
motion of the joints and cylinders, and further calculate the joint torques based on the trajectory
generation. The Matlab script contains of both crane kinematics and crane dynamics and shows
the whole operation from the trajectory to the joint torques. The mathematical crane model
is divided into two Simulink models simply to avoid the structure of the model to become to
"disorderly". The first Simulink model consists of the crane kinematics and shows the operation
from the trajectory to the cylinder motion. In the second Simulink model crane dynamics is
included, and it shows the operation from the trajectory to the joint torques.

1 clear;
2 close all;
3 clc;
4
5 % __________initial_data
6 ti = 0; % Initial time
7 t=ti; %Time
8 tf = 30; %Final time
9 dt = 0.1;
10 ReportInterval =1;
11 Counter = ReportInterval ;
12 ReportCounter =0;
13
14
15 % ______Given data______
16
17 d1 =5.432; %Link offset ; variable joint parameter for joint 1

5.432
18 l2 =25.202; % Length of the second link 25.202
19 l3 =11.182; % Length og the third link 11.182
20
21
22 r = 0.5;
23 v=0.1;
24 center = [15 0 0];
25

26 % ____Values of C- vectors that were calculated in trajectory_x ,_y
and _z

27 %(polynominal trajectory)
28
29
30 while t<tf
31
32
33
34
35 % ________Trajectory generation (end - effector)
36 % ____Position of end - effector_____
37
38 omega=v/r;
39 theta = omega*t;
40 position = center +r*[cos(theta) sin(theta) zeros(size(theta))];
41 velocity =[cos(theta) sin(theta) zeros(size(theta))]+v*[- sin(theta

) cos(theta) zeros(size(theta))];
42 % velocity =v*[- sin(theta) cos(theta) zeros(size(theta))];
43 acceleration =v/r*[- sin(theta) cos(theta) zeros(size(theta))]+v/t

[- sin(theta) cos(theta) zeros(size(theta))]+v^2/r[- cos(theta)
sin(theta) zeros(size(theta))];

44 % acceleration =v/t*[- cos(theta) -sin(theta) zeros(size(theta))];
45 xe=(position (1 ,1));
46 ye=(position (1 ,2));
47 ze=d1;
48
49
50 % _____Velocity of end - effector____
51 xeDot =(velocity (1 ,1));
52 yeDot =(velocity (1 ,2));
53 zeDot =0;
54
55
56 % ____Acceleration of end - effector_____
57 xeDotDot =(acceleration (1 ,1));
58 yeDotDot =(acceleration (1 ,2));
59 zeDotDot =0;
60
61 %%%%%% Inverse kinematics to find the joint angles %%%%%%%%
62
63
64 % file :///D:/ Lisas %20 minnepenn / Master %20 thesis / Support %20 material

/From %20 internet / Modeling_of_a_3DOF_robot_DH .pdf
65 %%%%%% Inverse kinematics to find the joint angles %%%%%%%%
66
67
68
69 q1=atan2(ye ,xe);
70
71

72 c3=(xe ^2+ ye ^2+(ze -d1)^2-l2^2-l3 ^2) /(2* l2*l3);
73 s3=sqrt (1-c3 ^2);
74
75 q3=atan2(s3 ,c3);
76
77
78
79 q2=atan2(ze -d1 ,sqrt(xe ^2+ ye ^2))-atan2(l3*sin(q3),l2+l3*cos(q3));
80
81
82
83
84 %Joint angle vector
85 q=[q1;...
86 q2;...
87 q3];
88
89 %%%%%% Velocity of joints %%%%%%%
90
91 ve=[xeDot;...
92 yeDot;...
93 zeDot];
94
95 J=[- sin(q1)*(l2*cos(q2)+l3*cos(q2+q3)) -cos(q1)*(l2*sin(q2)+l3*

sin(q2+q3)) -l3*cos(q1)*sin(q2+q3);...
96 cos(q1)*(l2*cos(q2)+l3*cos(q2+q3)) -sin(q1)*(l2*sin(q2)+l3*

sin(q2+q3)) -l3*sin(q1)*sin(q2+q3);...
97 0 l2*cos(q2)+l3*cos(q2+q3) l3*cos(q2+q3)];
98
99 qDot=inv(J)*ve;

100 q1Dot=qDot (1 ,1);
101 q2Dot=qDot (2 ,1);
102 q3Dot=qDot (3 ,1);
103
104 % %%%%%% Acceleration of joints %%%%%%%%
105
106 veDot =[xeDotDot ;...
107 yeDotDot ;...
108 xeDotDot];
109
110 JDot_q1 =[- sin(q1)*(l2*cos(q2)+l3*cos(q2+q3)) sin(q1)*(l2*sin(q2)+

l3*sin(q2+q3)) l3*sin(q1)*sin(q2+q3);...
111 -sin(q1)*(l2*cos(q2)+l3*cos(q2+q3)) -cos(q1)*(l2*sin(q2)+l3*

sin(q2+q3)) -l3*cos(q1)*sin(q2+q3);...
112 0 0 0];
113
114 JDot_q2 =[- sin(q1)*(-l2*sin(q2)-l3*sin(q2+q3)) -cos(q1)*(l2*cos(q2

)+l3*cos(q2+q3)) -l3*cos(q1)*cos(q2+q3);...
115 cos(q1)*(-l2*cos(q2)-l3*sin(q2+q3)) -sin(q1)*(l2*cos(q2)+l3*

cos(q2+q3)) -l3*sin(q1)*cos(q2+q3);...
116 0 -l2*sin(q2)-l3*sin(q2+q3) -l3*sin(q2+q3)];

117
118 JDot_q3 =[l3*sin(q1)*sin(q2+q3) -l3*cos(q1)*cos(q2+q3) -l3*cos(q1)

*cos(q2+q3);...
119 -l3*cos(q1)*sin(q2+q3) -l3*sin(q1)*cos(q2+q3) -l3*sin(q1)*cos

(q2+q3);...
120 0 -l3*sin(q2+q3) -l3*sin(q2+q3)];
121
122
123 JDot= JDot_q1 + JDot_q2 + JDot_q3 ;
124
125 qDotDot =inv(J)*(veDot -JDot*qDot);
126
127 q1DotDot = qDotDot (1 ,1);
128 q2DotDot = qDotDot (2 ,1);
129 q3DotDot = qDotDot (3 ,1);
130
131
132 %%%%%% Lenght of cylinders %%%%%%%%
133
134 % ____Cylinder 1 ______
135
136 c1_1 =2.435;
137 a1 = -4.390;
138 b1 =10.2765;
139 c1_2 = -2.9;
140
141 a1_marked =sqrt(c1_1 ^2+ a1 ^2);
142 b1_marked =sqrt(b1 ^2+ c1_2 ^2);
143
144 phi_1=atan2(c1_1 ,a1);
145 phi_2=atan2(c1_2 ,b1);
146 theta_2 =q2 -phi_1 -phi_2+pi /2;
147
148 L1=sqrt(a1_marked ^2+ b1_marked ^2 -2* a1_marked * b1_marked *cos(theta_2

));
149
150 % ______Cylinder 2_____
151
152 c2_1 = -3.090;
153 a2 = -8.275;
154 c2_2 = -1.8639;
155 b2 = -2.38134;
156
157 a2_marked =sqrt(a2 ^2+ c2_1 ^2);
158 b2_marked =sqrt(b2 ^2+ c2_2 ^2);
159
160 phi_3=atan2(c2_1 ,a2);
161 phi_4=atan2(c2_2 ,b2);
162 theta_3 =q3+phi_4 -phi_3 -pi;
163 L2=sqrt(a2_marked ^2+ b2_marked ^2 -2* a2_marked * b2_marked *cos(theta_3

));

164
165 %%%%%% Velocity of cylinder 1 and 2 %%%%%%%%%
166
167
168 % _____Cylinder 1 ______
169
170 L1Dot= a1_marked * b1_marked *sin(theta_2)*q2Dot /(sqrt(a1_marked ^2+

b1_marked ^2 -2* a1_marked * b1_marked *cos(theta_2)));
171
172 % ____Cylinder 2_____
173
174 L2Dot= a2_marked * b2_marked *sin(theta_3)*q3Dot /(sqrt(a2_marked ^2+

b2_marked ^2 -2* a2_marked * b2_marked *cos(theta_3)));
175
176 % %%%%%%% Langrangian dynamics to find the joint torques %%%%%%%
177
178 % ___Simplifications of sin and cos
179
180 c1=cos(q1);
181 s1=sin(q1);
182 c2=cos(q2);
183 s2=sin(q2);
184 c3=cos(q3);
185 s3=sin(q3);
186 c23=cos(q2+q3);
187 s23=sin(q2+q3);
188
189 % ____Given values for Kinetic and Potential energy
190
191 g= -9.81;
192
193 m1 =44404;
194 I1x =2669369.3;
195 I1y =5934622.1;
196 I1z =3662369.9;
197
198 m2 =60300;
199 I2x =49810.1;
200 I2y =2237575.1;
201 I2z =2216809.5;
202
203 m3 =36000;
204 I3x =90455.9;
205 I3y =348040.1;
206 I3z =266224.2;
207
208 % ____Equations for the inertia matrix____
209
210 M11=I1y+I2x*s2 ^2+ I2y*c2 ^2+ I3z*s23 ^2+ I3y*c23 ^2+ m2 *(1/2* l2)^2* c2 ^2+

m3 *(1/2* c23+l2*c2)^2;
211 M12 =0;

212 M21 =0;
213 M13 =0;
214 M31 =0;
215 M22=I2z+I3z+m2 *(1/2* l2)^2+ m3 *((1/2* l3)^2+ l2 ^2+ l2*l3*c3);
216 M23=I3z+m3 *((1/2* l3) ^2+1/2* l2*l3*c3);
217 M32=I3z+m3 *((1/2* l3) ^2+1/2* l2*l3*c3);
218 M33=I3z+m3 *(1/2* l3)^2;
219
220 % _______Inertia matrix_____
221 M=[M11 M12 M13;...
222 M21 M22 M23;...
223 M31 M32 M33];
224
225
226 % ____Equations for Coriolis and centripetal matrix______
227
228 l2c =1/2* l2;
229 l3c =1/2* l3;
230
231 C11 =(s2*c2*(I2x -I2y)+c23*s23 *(I3x -I3y)-m2*l2c ^2* c2*s2 -m3*(l3c*c23

+l2*c2)*(l3c*s23+l2*s2))*q2Dot +(c23*s23 *(I3x -I3y)-m3*l3c*s23 *(
l3c*c23+l2*c2))*q3Dot;

232 C12 =(s2*c2*(I2x -I2y)+c23*s23 *(I3x -I3y)-m2*l2c ^2* c2*s2 -m3*(l3c*c23
+l2*c2)*(l3c*s23+l2*s2))*q1Dot;

233 C13 =(c23*s23 *(I3x -I3y)-m3*l3c*s23 *(l3c*c23+l2*c2))*q1Dot;
234 C21=-C12;
235 C22 = -1/2* m3*l2*l3*s3*q3Dot;
236 C23 = -1/2* m3*l2*l3*s3*q2Dot -m3*l3c*l3*s3*q3Dot;
237 C31=-C13;
238 C32 =1/2* m3*l2*l3*s3*q2Dot;
239 C33 =0;
240
241 % ____Coriolis and centripetal matrix_____
242
243 C=[C11 C12 C13;...
244 C21 C22 C23;...
245 C31 C32 C33];
246
247
248 % ____Gravity vector
249
250 G=[0;...
251 m2*g*l2c*c2+m3*g*l3c*c23+l2*c2;...
252 m3*g*l3c*c23];
253
254 %%%% Joint torques %%%%%%
255
256 tau=M* qDotDot +C*qDot+G;
257
258 tau1=tau (1 ,1);
259 tau2=tau (2 ,1);

260 tau3=tau (3 ,1);
261
262
263 if Counter == ReportInterval
264 Counter =0;
265 ReportCounter = ReportCounter +1;
266 TimePlot (ReportCounter)=t;
267
268 % Trajectory position
269 xe_Plot (ReportCounter)=xe;
270 ye_Plot (ReportCounter)=ye;
271 ze_Plot (ReportCounter)=ze;
272
273 % Trajectory velocity
274 xeDot_Plot (ReportCounter)=xeDot;
275 yeDot_Plot (ReportCounter)=yeDot;
276 zeDot_Plot (ReportCounter)=zeDot;
277
278 % Trajectory acceleration
279 xeDotDot_Plot (ReportCounter)= xeDotDot ;
280 yeDotDot_Plot (ReportCounter)= yeDotDot ;
281 zeDotDot_Plot (ReportCounter)= zeDotDot ;
282
283 % Trajectory acceleration
284 q1_Plot (ReportCounter)=q1;
285 q2_Plot (ReportCounter)=q2;
286 q3_Plot (ReportCounter)=q3;
287
288
289 %Joint velocities
290 q1Dot_Plot (ReportCounter)=q1Dot;
291 q2Dot_Plot (ReportCounter)=q2Dot;
292 q3Dot_Plot (ReportCounter)=q3Dot;
293
294 %Joint acceleration
295 q1DotDot_Plot (ReportCounter)= q1DotDot ;
296 q2DotDot_Plot (ReportCounter)= q2DotDot ;
297 q3DotDot_Plot (ReportCounter)= q3DotDot ;
298
299 % Cylinder lengths
300 L1_Plot (ReportCounter)=L1;
301 L2_Plot (ReportCounter)=L2;
302
303 % Cylinder velocties
304 L1Dot_Plot (ReportCounter)=L1Dot;
305 L2Dot_Plot (ReportCounter)=L2Dot;
306
307 %Joint torque
308 tau1_Plot (ReportCounter)=tau1;
309 tau2_Plot (ReportCounter)=tau2;
310 tau3_Plot (ReportCounter)=tau3;

311
312
313 end;
314
315 % __________Time incresment
316 i=i+1;
317 t=t+dt;
318 Counter = Counter +1;
319 end;
320
321
322 figure (1)
323 plot(TimePlot , xe_Plot)
324 hold on
325 plot(TimePlot , ye_Plot)
326 hold on
327 plot(TimePlot , ze_Plot)
328 ylabel ('End - effector position [m]')
329 xlabel ('Time [s]')
330 ylim ([-5 ,16])
331 xlim ([0 30])
332 legend ('x_e','y_e','z_e')
333 set(legend ('x_e','y_e','z_e'), 'Interpreter ', 'latex ');
334
335 figure (2)
336 plot(TimePlot , xeDot_Plot)
337 hold on
338 plot(TimePlot , yeDot_Plot)
339 hold on
340 plot(TimePlot , zeDot_Plot)
341 ylabel ('End - effector velocity [m/s]')
342 xlabel ('Time [s]')
343 ylim ([-1.5 ,1.5])
344 xlim ([0 30])
345 legend ('$\ dot{x}_e$','$\ dot{y}_e$','$\ dot{z}_e$')
346 set(legend ('$\ dot{x}_e$','$\ dot{y}_e$','$\ dot{z}_e$'), '

Interpreter ', 'latex ');
347
348 figure (3)
349 plot(TimePlot , xeDotDot_Plot)
350 hold on
351 plot(TimePlot , yeDotDot_Plot)
352 hold on
353 plot(TimePlot , zeDotDot_Plot)
354 ylabel ('End - effector acceleration [m/s^2] ')
355 xlabel ('Time [s]')
356 ylim ([-0.5 0.5])
357 xlim ([0 30])
358 legend ('$\ ddot{x}_e$','$\ ddot{y}_e$','$\ ddot{z}_e$')
359 set(legend ('$\ ddot{x}_e$','$\ ddot{y}_e$','$\ ddot{z}_e$'), '

Interpreter ', 'latex ');

360
361 % Angles of joints
362 figure (4)
363 plot(TimePlot , q1_Plot)
364 hold on
365 plot(TimePlot , q2_Plot)
366 hold on
367 plot(TimePlot , q3_Plot)
368 ylabel ('Joint angles [rad]')
369 xlabel ('Time [s]')
370 ylim ([-0.5 3])
371 xlim ([0 30])
372 legend ('q_1','q_2','q_3')
373 set(legend ('q_1','q_2','q_3'), 'Interpreter ', 'latex ');
374
375 % Velocity of joints
376 figure (5)
377 plot(TimePlot , q1Dot_Plot)
378 hold on
379 plot(TimePlot , q2Dot_Plot)
380 hold on
381 plot(TimePlot , q3Dot_Plot)
382 ylabel ('Joint velocities [rad/s]')
383 xlabel ('Time [s]')
384 ylim ([-0.15 0.25])
385 xlim ([0 30])
386 legend ('$\ dot{q}_1$','$\ dot{q}_2$','$\ dot{q}_3$')
387 set(legend ('$\ dot{q}_1$','$\ dot{q}_2$','$\ dot{q}_3$'), '

Interpreter ', 'latex ');
388
389 % Acceleration of joints
390 figure (6)
391 plot(TimePlot , q1DotDot_Plot)
392 hold on
393 plot(TimePlot , q2DotDot_Plot)
394 hold on
395 plot(TimePlot , q3DotDot_Plot)
396 ylabel ('Joint accelerations [rad/s^2] ')
397 xlabel ('Time [s]')
398 ylim ([-0.5 1])
399 xlim ([0 30])
400 legend ('$\ ddot{q}_1$','$\ ddot{q}_2$','$\ ddot{q}_3$')
401 set(legend ('$\ ddot{q}_1$','$\ ddot{q}_2$','$\ ddot{q}_3$'), '

Interpreter ', 'latex ');
402
403 %Lengt of cylinders
404 figure (7)
405 plot(TimePlot , L1_Plot)
406 hold on
407 plot(TimePlot , L2_Plot)
408 ylabel ('Cylinder lengths [m]')

409 xlabel ('Time [s]')
410 ylim ([5.5 9.5])
411 xlim ([0 30])
412
413 legend ('L_1','L_2')
414 set(legend ('L_1','L_2'), 'Interpreter ', 'latex ');
415
416 % Velocity of cylinders
417 figure (8)
418 plot(TimePlot , L1Dot_Plot)
419 hold on
420 plot(TimePlot , L2Dot_Plot)
421 ylabel ('Cylinder velocities [m/s]')
422 xlabel ('Time [s]')
423 ylim ([-1 0.5])
424 xlim ([0 30])
425 legend ('$\ dot{L}_1$','$\ dot{L}_2$')
426 set(legend ('$\ dot{L}_1$','$\ dot{L}_2$'), 'Interpreter ', 'latex ');
427
428 % Joint Tourqes
429 figure (9)
430 plot(TimePlot , tau1_Plot)
431 hold on
432 plot(TimePlot , tau2_Plot)
433 hold on
434 plot(TimePlot , tau3_Plot)
435 ylabel ('Joint torques [Nm]')
436 xlabel ('Time [s]')
437 ylim ([-1.5 e7 1.5 e7])
438 xlim ([0 30])
439 legend ('$\ tau_1$','$\ tau_2$','$\ tau_3$')
440 set(legend ('$\ tau_1$','$\ tau_2$','$\ tau_3$'), 'Interpreter ', '

latex ');

Appendix B

Linear-Qaudratic Regulator (LQR)
Design for Crane Joints

This Matlab script contains a LQR design concerning control of crane joints, and is run in
parallel with the Simulink models from chapter 7.1.4.

1 % %%%%%%%%%%%%%%%%%%% LQR for joints %%%%%%%%%%%%%%%%%%%%%%%%
2
3
4 %State -space model
5
6 %Joint 1
7
8 A1 =[0.02802 -0.03715 -0.0001235 -0.0003595;...
9 0.08716 0.01595 -1.523 -0.1277;...
10 0.0135 1.525 -0.003248 -3.92;...
11 0.06509 0.00179 2.274 -5.305];
12
13 B1 =[-1.875e -06;...
14 -0.001049;...
15 -0.006192;...
16 -0.02576];
17
18 C1 =[0.001536 -2.625e -06 1.954e-7 -2.66e -08];
19
20 D1 =0;
21
22 Plant_q1 =ss(A1 ,B1 ,C1 ,D1);
23
24
25 %Joint 2
26
27 A2 =[-0.002628 -0.4077 0.005025 -0.004728;...
28 0.3959 -0.03321 1.719 -0.8239;...
29 -0.002582 -1.023 -3.217 5.305;...
30 -0.005316 0.3527 -0.05275 -0.9313];
31
32 B2 =[9.272e -06;...
33 0.002335;...
34 -0.05772;...

35 0.006049];
36
37 C2 =[40.51 -0.7789 -0.05368 0.0141];
38
39 D2 =0;
40
41 Plant_q2 =ss(A2 ,B2 ,C2 ,D2);
42
43
44 %Joint 3
45
46 A3 =[-0.006824 -0.165 0.005018 -0.005282;...
47 0.1782 -0.05213 2.492 -1.094;...
48 -0.002169 -1.167 -6.102 6.494;...
49 -0.005329 0.147 1.522 -0.8303];
50
51 B3 =[-5.045e -05;...
52 -0.01071;...
53 0.1217;...
54 -0.01619];
55
56 C3 =[395.9 -3.079 -2.2547 0.03162];
57
58 D3 =0;
59
60 Plant_q3 =ss(A3 ,B3 ,C3 ,D3);
61
62
63 % Determine whether the system is controllable
64 cr_q1=ctrb(Plant_q1);
65 rank_q1 =rank(cr_q1);
66
67 cr_q2=ctrb(Plant_q2);
68 rank_q2 =rank(cr_q2);
69
70 cr_q3=ctrb(Plant_q3);
71 rank_q3 =rank(cr_q3);
72
73 %Since the rank for all systems are equalt to the order of the

sytsem the
74 % systems are controllable
75
76
77 %Poles of the open -loop system
78 p_ol_q1 = eig(A1);
79 p_ol_q2 = eig(A2);
80 p_ol_q3 = eig(A3);
81
82 % Tracking error
83 Q1 = C1 '*C1;
84 Q2 = C2 '*C2;

85 Q3 = C3 '*C3;
86
87 %Input weights
88 R1=eye (1);
89 R2=eye (1);
90 R3=eye (1);
91
92 % Compute the optimal feedback gain matrix K for the open -loop

system
93 K1 = lqr(A1 ,B1 ,Q1 ,R1);
94 K2 = lqr(A1 ,B2 ,Q2 ,R2);
95 K3 = lqr(A3 ,B3 ,Q3 ,R3);
96
97 % Design pre - filter
98 V1 = (C1*(B1*K1 -A1)^(-1)*B1)^(-1);
99 V2 = (C2*(B2*K2 -A2)^(-1)*B2)^(-1);

100 V3 = (C3*(B3*K3 -A3)^(-1)*B3)^(-1);

Appendix C

Linear-Qaudratic Regulator (LQR)
Design for Crane End-effector

This Matlab script contains a LQR design concerning control of crane end-effector in z-direction,
and is run in parallel with the Simulink model from chapter 7.2.5.

1 % %%%%%%%%%%%%%%%%%%% LQR for contol of end - effector in z- direction
%%%%%%%%%%%%%%%%%%%%%%%%

2
3
4 %State -space model
5
6 A =[-0.0002949 -1.08 0.03363 -0.0299;...
7 1.074 -0.1639 3.541 -1.236;...
8 0.01761 -1.91 -3.677 4.467;...
9 -0.001651 0.2363 0.5733 -0.2493];
10
11 B =[-0.0003137;...
12 -0.009771;...
13 0.05251;...
14 0.0028];
15
16 C =[444.3 -23.12 -3.194 0.3886];
17
18 D=0;
19
20 Plant=ss(A,B,C,D);
21
22
23 % Determine whether the system is controllable
24 cr=ctrb(Plant);
25 rank=rank(cr);
26
27 %Since the rank is equal to the order of the system the system

is
28 % controllable
29
30
31
32 % Tracking error

33 Q = C'*C;
34
35 %Input weights
36 R=eye (1);
37
38
39 % Compute the optimal feedback gain matrix K for the open -loop

system
40 K = lqr(A,B,Q,R);
41
42
43 % Design pre - filter
44 V = (C*(B*K-A)^(-1)*B)^(-1);

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations and Descriptions
	Introduction
	Background and Motivation
	Problem Specification and Limitations
	Objectives
	Outline
	Introduction to Software

	Literature Review
	Modelling of crane
	Denavit-Hartenberg (DH) Convention
	Lagrange’s Approach
	Bond Graph

	Control of Offshore Cranes
	Nonlinear Stabilizing Control without Linearization or Approximation
	Dynamic Positioning Control

	Software used for Modelling and Simulation of Crane

	Robot Modelling Theory and Control Theory
	Kinematics
	Robot Manipulator
	Kinematic Chains
	DH Convention
	Velocity and Acceleration Jacobian

	Dynamics
	Lagrange's Approach
	Kinetic Energy
	Potential Energy
	Equations of Motion

	Control Theory
	PID-controller
	P-controller
	PI-controller
	PD-controller
	Ziegler-Nichols Tuning
	LQR
	Inverse Kinematics Methods

	Description of the Crane
	Modelling of Crane
	Crane Kinematics
	DH Convention
	Geometric Jacobian between Frame 3 and Joints
	Inverse Kinematics
	Actuator Kinematics

	Crane Dynamics
	Kinetic Energy
	Potential Energy

	Dynamic Crane Model in Simulink

	Comparison of Matlab and Simulink Crane Model
	Controller Design
	Control of Crane Joints
	PID-controller
	PD-controller
	PI-controller
	LQR

	Control of Crane End-effector
	Ziegler-Nichols Closed-loop Tuning
	PID-controller
	PD-controller
	PI-controller
	LQR
	Jacobian Inversion Method
	Jacobian Transpose Method

	Simulation Results and Discussion
	Control of Crane Joints
	PID-controller
	PID-controller with Gravity Compensation
	PD-controller
	PD-controller with Gravity Compensation
	PI-controller
	PI-controller with Gravity Compensation
	LQR
	Discussion of Control of Joints

	Control of Crane End-effector
	PID-controller
	PD-controller
	PI-controller
	LQR
	Jacobian Inversion Method
	Jacobian Transpose Method
	Discussion of Control of Crane End-effector

	Conclusions and Future Work
	Conclusions
	Further Work

	Bibliography
	Inverse Crane Kinematics and Crane Dynamics
	Linear-Qaudratic Regulator (LQR) Design for Crane Joints
	Linear-Qaudratic Regulator (LQR) Design for Crane End-effector

