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Abstract

Optimal sensor placement is a complicated task where several parameters have to be considered si-
multaneously. The problem has been a subject of much research in the last decades, but there does
not seem to be a consensus regarding how to solve the problem. With the increasing use of sensors in
a variety of applications, e.g. surveillance and motion tracking, optimal placement is desirable due to
the possible reduction of the total cost.

In this thesis, a method for solving the static 3D Sensor Placement Problem is presented. From a
3D model of the environment, the constraints of the problem can be de�ned in the User Interface,
including Regions of Interest, sensor parameters, possible sensor positions and discretization accuracy.
The User Interface is developed in Matlab, utilizing a variety of functions and scripts.

Based on the output data from the User Interface, several optimization algorithms are developed and
compared. First, a traditional Greedy Algorithm is developed in C++. This algorithm is extremely
fast, but it has been proven to be sub-optimal. A Brute Force Algorithm is also developed in C++,
to guarantee the global optimum. Since this algorithm computes the coverage of all possible sensor
placement combinations, it will always produce the same result, which is guaranteed to be the global
optimum. The Brute Force Algorithm requires vast amounts of computational power for more complex
problems, and it has been shown that a threshold exists where the Brute Force Algorithm is not feasible
due to hardware and computational time restrictions. To enable the use of the developed Brute Force
Algorithm in more complex problems, it is converted to CUDA for utilization of a GPU. By converting
the problem to CUDA, a considerable speedup was achieved, enabling the use of the GPU-Based Brute
Force Algorithm on more complicated problems.

A Genetic Algorithm has also been developed in Matlab. The Genetic Algorithm is a meta-heuristic
algorithm; hence it can not guarantee to produce the global optimum. By designing suitable genetic
operators and investigating the e�ect of parameter tuning, a method has been developed which has
proven to produce the optimal results for all veri�able tests. This algorithm converges to a solution
much faster than the GPU-Based Brute Force Algorithm, also needing less computational power.
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1 | Introduction

1.1 Research Background and Motivation

A classical problem in computational geometry is the Art Gallery Problem, formulated by Victor Klee
in 1974 [2] during a conference. It concerns placement of guards in a polygon-formed room. The guards
have an unlimited range of sight and no angular limitations such as limited �eld of view. The problem
is to determine the minimum number of guards and their position, to adequately cover the room. The
Art Gallery Problem is often recognized as the predecessor of the Sensor Placement Problem.

In today's industry, the demand for optimal sensor solutions is increasing. As the sensor technology
advances along with the progress in both optimization and algorithms, the sensor solutions today
should be as close to the optimal solution as possible. In this thesis 3D sensors are the considered
sensor type, focusing mainly on the camera. Cameras are among the most utilized sensor technologies
since it is usable in a vast variety of applications, e.g., surveillance, autonomous vehicles, augmented
reality, object tracking, and people detection. In many of these applications, the sensor cost can quickly
get excessive. Taking into account the cost of the sensor itself in addition to the required wiring and
installation, minimizing the number of sensors for a given application can reduce the total cost of the
system. Optimizing sensor placement is a di�cult task since there are many variables and parameters
to be taken into account. First, the position and pose of each camera have to be decided based on given
positioning constraints. The process of �nding the best location can be in�uenced by requirements and
options such as coverage redundancy for speci�c areas, di�erent sensor types with individual sensor
parameters, and obstacles which block the sensor view. Considering the mentioned parameters and
variables, designing a general solution to solve the sensor placement problem is a demanding task.

Today, many camera arrays are placed iteratively, by humans, using trial-and-error methods which is
both a time-consuming and challenging task. There are, in the literature, numerous approaches to
solving the problem for di�erent problem formulations but still there does not seem to be a consensus
regarding which method is the best. An intuitive solution would be to evaluate all possible solutions
in the search space using a Brute Force method. This is a computationally massive task since the
search space can quickly get very large for such problems. However, with the technology available
today concerning both CPU and GPU computational power, it should be possible to design algorithms
that can guarantee the global optimum given speci�c inputs below a given threshold size determined
by the hardware and time limitations.

With the increasing focus on algorithms and optimization, especially driven by the Arti�cial Intelli-
gence technology, smart algorithms are getting increasingly popular. Algorithms such as neural net-
works, genetic algorithms, and other learning algorithms are well documented to work for complicated
optimization problems. The optimal Sensor Placement Problem is usually formulated as a discrete
optimization problem, where the environment is modeled using voxels, and the possible camera loca-
tions are given as points with a �xed distance between each other along plausible location lines such
as beams or walls.
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1.2. PROBLEM DESCRIPTION

1.2 Problem Description

As the project proposal states, given in App. A.1, the objective is to develop an optimization method
for optimal placement of 3D sensors in a de�ned environment. The proposal states that a User Interface
should be designed where the constraints of the problem can be speci�ed. Based on the output from
this User Interface, an optimization algorithm should be developed to determine the optimal placement.
It was also stated that a literature study should be performed to identify the state-of-the-art methods
for solving related or similar problems.

Based on the project proposal a more speci�c problem formulation is presented:

� A literature review should be performed to determine the state-of-the-art methods for solving
the Sensor Placement Problem.

� Develop a Graphical User Interface (GUI) where the optimization problem can be speci�ed. The
GUI should be developed in Matlab/Simulink with support for VRML models. It should be
possible to specify several constraints: sensor parameters, sensor price, regions of interest for
redundancy and possible sensor locations.

� The main optimization method will be a Brute Force Algorithm using a GPU. The code generated
from the GUI must be compatible with CUDA C/C++ to run on the GPU.

� It is also preferable to design another algorithm, using a di�erent approach. The reason for this
is that a Brute Force Algorithm may require too much computational power to be practical for
larger problems. Also, for users who do not have access to a CUDA-supported GPU, another
approach should be developed.

1.3 Report Outline

The thesis is divided into six chapters.

� Chapter 1: Chapter 1 is the introductory chapter. First, the background and motivation for
the thesis are presented. Following is the formulation of the problem statement before the outline
of the thesis is described.

� Chapter 2: In Chapter 2, a comprehensive literature study is presented. Here, several applica-
tions are shown along with a variety of approaches used to solve related problems. This chapter
aims to provide a background to the problem as well as to show the challenges related to the
problem statement.

� Chapter 3: In chapter 3, the necessary background theory is presented. First, the science
of computational geometry is presented which connects geometrical concepts and computational
algorithms. A presentation of the developed sensor and environmental model succeeds this before
a brief description of User Interfaces is given. The fundamental background of optimization theory
is recapitulated where the discrete optimization is emphasized. Algorithms to solve combinatorial
optimization problems are presented before an example of a Set-Cover Problem is given to show
an implementation of combinatorial algorithms in a discrete optimization problem. The chapter
is �nalized with an introduction of the JSON format and parallel programming in CUDA.
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1.3. REPORT OUTLINE

� Chapter 4: The method is presented as case studies in chapter 4. For each case study, both the
methodical work and the relevant results are presented. Firstly, the design and development of the
User Interface are presented. Thereafter, the sensor model and User Interface output is veri�ed.
The �rst algorithm for solving the sensor placement problem is the Greedy Algorithm which is
given together with the Brute Force Algorithm. Then, the development of the Genetic Algorithm
is presented along with a test to investigate the e�ect of parameter tuning. Then, the Brute Force
Algorithm is converted into CUDA code for utilization of the GPU. When the algorithms are
developed and presented, implementation of k -coverage (redundancy) is introduced and applied
to both the Brute Force and the Genetic Algorithm. The �nal case study of this chapter is
to combine all the previous work into a case. This includes problem description in the User
Interface followed by an initial analysis of the problem using the Greedy Algorithm. The Genetic
Algorithm is then used along with the Brute Force Algorithm to �nd the best sensor placement
for the given problem. Finally, a neighborhood search is conducted to investigate if this can
further improve the solution.

� Chapter 6: In chapter six, the methods and results are discussed along with a presentation of
the suggested further work.

� Chapter 7: The �nal chapter of this thesis concludes the work and answers the problem state-
ment based on the achieved results.

All required additional information such as code, test results and supplementary information is
provided in the appendices. Also, a GitHub repository is made where all code can be accessed
and downloaded as well as the full source code for the User Interface: https://github.com/

Vegardtve/sensorplacement. The source code for the User Interface is too extensive to be
appended with the thesis, and the reader is therefore encouraged to visit the repository for
running the User Interface or investigating the source code.
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2 | Literature Review

In this chapter, a review of the current research will be presented, providing an overview of applications,
methods, and results of previous work in Sensor Placement Problems (SPP) and problems closely
related. The majority of the research has been focused on the 2D discrete problem formulation, but in
the later years, the trend shows an increasing amount of research on discrete 3D problems. There is
some research focused on continuous problem formulations; however, most of this research is limited
to speci�c cases and not very useful in practice. Kirchhof [3] states that:

For almost every existing sensor technique a localization solution exists. These solutions are often in
a prototype state since they are either developed as a proof of concept for the sensor technique or to be
used in specialized individual applications.

This statement highlights a problem that can be seen in much of the work in the literature. Since
around 2000, there has been a large number of publications on issues in sensor placement. However,
for almost every new paper a new method of formulating and solving the problem is developed.

In 1995 Tarabanis et al. [4] published an extensive survey on sensor planning. At this point, the Sensor
Placement Problem was mostly solved with trial-and-error solutions involving human interaction. In
this work, several reasons for making sensor placement automatic was listed, such as reducing time
and cost of sensor placement and achieving more robust solutions.

Hörster and Lienhart [5] formulated four di�erent versions of the SPP to provide a consensus for
problem formulations:

1. Given the number of sensors of one type and their speci�c parameters, determine the position
and pose such that the coverage is maximized.

2. Given several types of sensors, their parameters and speci�c costs as well as the maximum total
price of the sensor array, determine the sensor array, the sensor types and positions/poses that
maximize coverage in the given space.

3. Given the �xed positions and respective types of some sensors determine their optimal poses such
that coverage is maximized.

4. Given a minimally required percentage of coverage, determine the sensor array with the minimum
cost that satis�es the coverage constraint.

Additionally, the authors presented a User Interface (UI) where users could apply the developed meth-
ods to all 2D problems within the limitations of the User Interface. In this UI, the possible sensor
locations could be speci�ed, as well as Regions of Interest (ROI) which are areas of higher importance.
The authors found that a Binary Integer Problem (BIP) formulation was able to solve the SPP but
had restrictions related to the total number of constraints due to the complexity of the algorithm. For
more extensive problems, the authors suggested a Greedy Algorithm.
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Bianco and Tisator [6] suggested a Direct Search (DS) based algorithm for solving the problem stated
by [5]. The proposed algorithm outperformed approximate algorithms like the Greedy algorithm within
a reasonable convergence time. Although the problem is formulated in 2D, the authors state that
extending the SPP to 3D would only require minor changes.

Erdem and Sclaro� [7] formulated the 2D SPP as problem formulation number 4 stated by [5]. The
problem was converted to a variant of the Set Cover Problem solved using BIP optimization. In the
future work, the authors stated that a continuous formulation that guarantees the global optimum
would be desirable.

Kirchhof [3] also focused on the 2D SPP but solved the problem for both the discrete and the continuous
case. The discrete problem is solved by BIP and Mixed Integer Programming (MIP). The continuous
case is brie�y presented in this work, and solved using a Nonlinear Programming (NLP) method.
These algorithms work together in a way that the continuous approach aims to improve the solution
of the discrete problem formulation. The author states that although the work is formulated as a 2D
problem, it is applicable also in 3D.

Altinel et al. [8] analyzed the BIP and stated that for large-scale problems the solution would be too
computationally complex to achieve in a reasonable amount of time. The authors suggested using a
Greedy Algorithm to provide a satisfactory solution to the 2D SPP in shorter time.

Hovland and Dybedal [9] further explored the Integer Programming methods and developed a Mixed-
Integer Linear Program (MILP) for solving the continuous 3D SPP. By using linearization, the problem
was converted from a nonlinear problem to a linear problem. For the linearized problem, it was possible
to �nd the optimal solution. The drawback with this solution was the computational complexity of
the MILP and the linearization, which limits the scalability of the solution.

Davis and Mittal [10] researched the SPP with extension to random occlusion. In this research, it
is stated that a full search algorithm is too computationally expensive to be used in such problems.
Instead, a Simulated Annealing (SA) algorithm is used to �nd a sub-optimal solution in a reasonable
amount of time. Introducing random occluding objects presents another aspect of many problems such
as surveillance and industrial automation where objects can move around in the volumes of interest.

Wireless Sensor Networks (WSN) have received a considerable amount of research in sensor placement
in the latest years. In these problems, a large outdoor environment is often considered, which should
be covered by an extensive sensor array. Akbarzadeh et al. [11] developed a probabilistic sensing model
which has been implemented on di�erent optimization schemes such as Covariance-Matrix Adaption
Evolution Strategy (CMA-ES). The authors claim that this approach is novel when taking into account
both the probabilistic sensor model and also using elevation maps to analyze the visibility in 3D
environments. In a later article Akbarzadeh et al. [12] presented a Gradient Descent Algorithm to
optimize the SPP based on probabilistic sensing models which gave as good or better results in much
shorter computational time than the CMA-ES algorithm. Tam et al. [13] formulated the problem to
solve a k -coverage 3D problem where each point in a Region of Interest needed to be covered by the
sensing range of at least one sensor. The authors also used probabilistic sensing and a new method
of determining if an obstacle is blocking the visibility of a point from a given sensor, based on linear
regression. A modi�ed Particle Swarm Optimization (PSO) algorithm is presented to solve the SPP.
Topcouglou [14] focused on a more speci�c WSN, namely the wireless multimedia sensor network
(WMSN). A simulation environment for large, outdoor, 3D environments was the main objective for
this work. A Genetic Algorithm (GA) is suggested to solve the placement problem.
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Sensor placement is vital in other applications as well, such as the reconstruction of known scenes.
Fleishman et al. [15] stated that the global optimum was not necessary due to the practical application
of the research. A Greedy Algorithm was developed to �nd satisfactory camera positions given a set
of possible locations.

With the increased popularity of Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality
(MR), depth cameras have been a subject of much research. Chabra [16] focuses on optimizing place-
ment of depth cameras for known dynamic 3D scenes. The intended use of this work is in medical
studies and surgery practice. A Greedy Algorithm is presented to determine how many cameras are
needed, and then a SA algorithm determines the best position by avoiding occlusion. Occlusion is vital
in 3D reconstruction since it can lead to holes in the reconstructed scene.

Medical training was also the application for the work of State et al. [17]. In this work, a simulator
was developed which supported interactive placement and manipulation of multiple cameras to see the
e�ect of altering the positions of multiple sensors. The users could then place the cameras to cover as
much of a medical operation as possible.

Rahiman and Kearney [18] studied the motion tracking issue in VR systems. Reference markers are
often used to track motion, and then a 3D scene can be reconstructed by triangulation. To make this
reconstruction as good as possible, a SA algorithm was designed to �nd a good solution in a reasonable
amount of time.

Another area in which sensor placement can be a useful tool is barrier coverage. Zhang [19] formulated
a barrier coverage problem where maximum coverage of the whole scene is not necessary, but rather to
have full coverage of a particular barrier, e.g. to observe breaches. An Integer Linear Program (ILP)
was developed to solve the SPP, which proved superior to a Greedy Algorithm.

Autonomous vehicles have been another area of much research for a large variety of applications. Cortés
et al. [20] studied a sensing network where the sensors were mounted on autonomous vehicles moving in
2D. Autonomous vehicles present a dynamic aspect to the sensor placement problem, which is mainly
static in the literature. Both continuous and discrete problem formulations have been researched,
where both have been solved by solving the problem in a Voronoi partitioned area.

Schwager et al. [21] also focused on moving sensors but rather than agents moving in 2D; the agents can
move in 3D, i.e. �ying agents. Flying agents can be useful in many applications such as surveillance,
object recognition and tracking. A decentralized control method was developed for deploying all agents
in the sensing network.

As described throughout this chapter, there are numerous solutions to the Sensor Placement Problem,
many of them problem-speci�c with a lack of generality. Fig. 2.1 shows an illustration of the various
optimization methods described throughout this chapter.
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Figure 2.1: Di�erent Methods of Optimization for the Sensor Placement Problem
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3 | Background Theory

In this chapter, the relevant theory will be presented. Firstly in Sec. 3.1, the concepts of Computational
Geometry, which is the science of combining geometrical concepts and algorithms, is introduced and
presented in the context of sensor placement. Previous work on sensor model formulations is presented
in Sec. 3.2. In Sec. 3.3 the proposed coverage and visibility model is presented before the environmental
model is shown in Sec. 3.4. Then, an introduction to User Interfaces is given in Sec. 3.5.

The main research �eld of this thesis is optimization and algorithms, and a thorough introduction to
optimization theory is presented in Sec. 3.6. Several algorithms to solve discrete optimization problems
are presented in Sec. 3.7, where both heuristics, meta-heuristic and exact methods are presented. A
Set-Cover example problem is formulated and solved in Sec. 3.8 to show the di�erence between exact
and heuristic algorithms.

The main programming languages for algorithms are Matlab and C++. To use Matlab data in C++,
and vice versa, the JSON �le extension is used, which is presented in Sec. 3.9. The �nal section, Sec.
3.10 concerns parallel programming. With the technology available today, programmers can bene�t
greatly from using GPUs in complex optimization tasks. This section presents CUDA, which is a
programming language developed by NVIDIA to utilize the parallel nature of GPUs, along with the
necessary background to adopt CUDA to di�erent applications.
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3.1. COMPUTATIONAL GEOMETRY

3.1 Computational Geometry

Computational geometry connects algorithms and geometry to solve geometric problems. Forrest [22]
de�ned computational geometry as

The mathematical representation, manipulation, analysis and synthesis of shape information in a com-
puter.

Since 1970, computational geometry has been a �eld of much research due to its broad variety of
application domains, such as:

� Robotics

� CAD/CAM software

� Computer graphics

� Pattern recognition

In many cases, extensive data sets cause problems challenging to solve due to the computational
complexity of the problem. Therefore, an important aspect of algorithms in computational geometry
is e�cient programming while keeping the algorithms robust. Often in the literature, assumptions
are made to avoid the challenges of creating such algorithms, resulting in unrealistic algorithms only
applicable in particular cases [23].

3.1.1 Polygons

One of the main elements in geometry is the polygon. It is a �gure that lies in a plane, i.e. it is two
dimensional. It is de�ned as a chain of straight lines that can form a closed circuit. Two well-known
examples are triangles and rectangles, being 3- and 4-gons, respectively.

Polygons can be classi�ed in several ways. A convex polygon, S, is de�ned such that all two points
(p, q) ∈ S can be connected with a straight line inside the polygon. A non-convex polygon is called
concave. Here the �oor plan of the area to be observed is limited to a concave polygon. Also, the
polygon should be simple, i.e. no lines should cross each other. The di�erence between a concave and
non-simple polygon is that a concave polygon can not have intersecting lines. Three di�erent polygons
can be seen in Fig. 3.1.

(a) (b) (c)

Figure 3.1: Polygons: (a) Convex Polygon (b) Non-simple Polygon (c) Concave Polygon
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3.1. COMPUTATIONAL GEOMETRY

3.1.2 VRML and Indexed Face Sets

In 1995, Virtual Reality Modeling Language (VRML) was introduced to de�ne 3D virtual worlds to be
used in VRML browsers or on the world wide web. A VRML �le is text-based and contains information
regarding vertices, faces, colors, etc. for 3D polygons. The VRML �le syntax and format is out of the
scope of this thesis since the �les are mostly generated by the modeling software, and will therefore not
be described. The interested reader can �nd more information regarding the VRML language in [24].

A VRML �le is often called a world, and it has the �le extension *.wrl. Objects can be described in
several ways in VRML, but due to the Matlab support of the Indexed Face Set geometry node, this is
considered here.

The Indexed Face Set node is speci�ed with coordinates of vertices and indices to de�ne the faces. It is
not limited to triangles, but VRML can only draw convex faces; thus concave faces are split into several
convex faces. Most CAD software can export the 3D models to *.wrl to be used by the developed
Matlab UI. If a 3D model is saved in any other �le extension, it can be converted into VRML by using
conversion software, for example MeshLab [25].

In Matlab, the support for 3D models is mainly based on the VRML format, but to a certain extent,
X3D can also be used in the 3D editor and 3D animation tools included. With the VRML editor, 3D
worlds can be edited in Matlab [26].

Throughout this thesis, the VRML coordinate system will be used unless otherwise is speci�ed. The
VRML coordinate system di�ers from the coordinates system used by Matlab and can be seen in Fig.
3.2.

X

Z

Y

Figure 3.2: VRML Coordinate System

In Matlab, a function is provided for converting VR worlds modeled with indexed face sets into patches.
These functions and the patch objects are covered in the following section.
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3.1. COMPUTATIONAL GEOMETRY

3.1.3 Patch Objects

Patch objects are used in Matlab to draw real-world objects using polygons that may or may not be
connected. The objects can be drawn in arbitrary shapes, which make patch objects a powerful tool
when handling tasks with 3D objects [27].

Patches can be created from Indexed Face Sets using the Matlab function vrifs2patch(ifs) [28], where
ifs is the variable where the Indexed Face Set is stored. Additionally, patches can be implemented in
an existing ifs variable using the function vrpatch2ifs(patches,ifs) [29]. Since patch objects are easy to
de�ne and handle in Matlab by themselves, all objects made in the user interface will be created as
patches.

A patch object can be de�ned in multiple ways, but in this thesis, the method of de�ning multifaceted
patches will be used. This is described in the Matlab documentation [30], but it will be slightly altered
since it is desirable to have triangular faces rather than rectangular. An example of how to set up a
patch object will be demonstrated for a cube using low-level syntax.

In Fig. 3.3, a visualization of how the triangular faces will look can be seen. Also, the vertices are
indexed from 1 to 8. The faces are de�ned as can be seen in Eq. 3.1.

f = [1, 6, 2; 1, 5, 6; 2, 6, 3; 6, 7, 3; 5, 8, 6; 8, 7, 6; 1, 4, 2; 4, 3, 2; 4, 7, 3; 4, 8, 7; 1, 5, 4; 5, 8, 4] (3.1)

The numbers in Eq. 3.1 are the vertices of the object. The coordinates of the vertices need to be spec-
i�ed as v. The patch object can then be made using the Matlab function patch('Vertices',v,'Faces',f),
which produces the cube seen in Fig. 3.3.

1 2

34

5
6

78

Figure 3.3: Patch Representation of a Cube
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3.1. COMPUTATIONAL GEOMETRY

3.1.4 The Art Gallery Problem

The 2D case of the Sensor Placement Problem is closely associated with the Art Gallery Problem,
stated by Victor Klee during a conference in 1974:

Consider a room shaped like a simple polygon with n vertices. Determine how many guards, able to
survey 360◦ about their own position, which is �xed, is the minimum to cover the whole polygon [31].

From the problem formulation, it is seen that this problem can be extended to a Sensor Placement
Problem by adding some constraints. It is much more theoretical than the sensor placement problem
since the guards do not have limited range of sight, obstacles are not considered, and there are no
limitations in the �eld of view. However, the solutions presented are interesting and have provided
researchers with ideas that can be adapted to more complex problems.

Chvátal [2] presented a proof that n
3 guards can cover any simple polygon of n vertices. It is proved

that this number is always su�cient and occasionally necessary.

In 1978, Fisk presented his proof of Chávatal's theorem, which was much more straightforward and
elegant than the original proof. This proof is based on 3-colouring and triangulation:

Firstly, triangulate the polygon so that no new vertices are added. By 3-colouring every triangle, every
vertex has one of three colors, and it can be shown that each color forms a set of guards placed at these
vertices able to cover the whole polygon. Choosing the color with the fewest vertices implies that the
number of guards must be smaller than or equal to n

3 [32].

A visual representation of the proof by Fisk can be seen in Fig. 3.4, where a polygon with n = 11
vertices can be seen. By applying the method presented above, it can be seen that the green vertices
form a set of 3 vertices. By placing guards at each of these vertices, the whole art gallery is covered.
This example also shows an important aspect of the proof presented by Chvátal. The art gallery in the
�gure can be covered by only using two of the three green vertices; hence the solution of three vertices
is su�cient, but in this case not necessary.

Figure 3.4: 3-Coloured Triangulated Art Gallery
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3.2. SENSOR MODEL

3.2 Sensor Model

The Art Gallery Problem (AGP) has many similarities to the Sensor Placement Problem. However,
the 3D SPP is more complex due to several important factors:

� The AGP is formulated in 2D, while the SPP considered here is a 3D problem.

� The sensor model in the AGP assumes an omnidirectional sensing range, whereas many sensors,
in reality, have a directional �eld of view.

� The AGP assumes unlimited sensing range. This assumption can not be made for real sensors,
which have limited range.

The Art Gallery Problem can be seen as a predecessor to the Sensor Placement Problem, and com-
putational geometry inspires many of the solutions to Sensor Placement Problems. One of the main
di�erences between the 2D Sensor Placement Problem and the Art Gallery Problem is the sensing
model. In this section, some previous work on sensor models will be presented for both the 2D and
the 3D case.

Ma and Liu [33] consider 2D sensors with a limited �eld of view. The sensor model is a 4-tuple
consisting of position, sensing range, centerline, and �eld of view. A point is said to be covered if and
only if:

||L− L1|| ≤ R (3.2)

∠(L,L1) ∈ (−α, α) (3.3)

where:

L - Sensor location
L1 - Point location
R - Sensing range
α - Field of view

Peng et al. [34] developed a 3D sensor model with a limited �eld of view. Also, a hole detection method
is presented. The model uses binarization with edge and feature extraction to determine the location
of coverage holes.

PTZ (Pan-Tilt-Zoom) cameras are considered for �xed sensor positions. The sensor model is a 5-tuple
consisting of position, sensing direction, maximal tilt angle and two o�set angles to describe the vertical
and horizontal �eld of view relative to the sensing direction.

Akbarzadeh et al. [35] use probabilistic sensor coverage instead of the commonly used binary coverage
method for two reasons: 1) It is stated to represent real sensors better. 2) The coverage function is
di�erentiable, which is a requirement for some optimization methods such as the Gradient Descent
Algorithm.

By also introducing weighted data points, the importance of covering a given point is also considered.
A Line-of-Sight (LoS) method is proposed to identify obstacles blocking the visibility. This method
uses the elevation data of the environment.
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3.2. SENSOR MODEL

A point is said to be covered if and only if:

1. It is visible by the given sensor.

2. The angle in the XY plane between the sensor and the point is inside the coverage area given
the pan angle and the �eld of view.

3. The angle between the sensor and the point in the XZ plane is inside the coverage area given the
tilt angle and the �eld of view.

4. The distance between the point and the sensor is below the sensor range.

In non-probabilistic formulations, the above constraints are modeled as stated above. In this work,
probabilistic sensing is used, hence an uncertainty is introduced if the point is too close to the edge of
the �eld of view or the limit of the range. To implement probabilistic sensing, sigmoid functions are
used.

Tam et.al [13] presents a novel 3D sensor model based on [35]. Also, a novel LoS model is developed
to determine the number of points between a given sensor and a point. A point is said to be covered
by a given sensor if and only if the following conditions are met:

d(sj , ei) ≤ rjs (3.4)

arctan

(
yei − ysj
xei − xsj

)
∈ [αj , αj + θj ] (3.5)

arctan

(
hei − hsj
d(sj , ei)

)
∈ [εj , βj + εj ] (3.6)

There are no obstacles blocking the LoS (3.7)

where:

d(sj , ei) - Distance between sensor sj and point ei
(xei , y

e
i , h

e
i ) - Coordinates of point ei

(xsj , y
s
j , h

s
j) - Coordinates of sensor sj

rjs - Range of sensor sj
αj - Angle which de�nes the sensor orientation about the Z-axis
θj - Pan angle of the sensor about the Z-axis
βj - Angle which de�nes the sensor orientation about the X-axis
εj - Tilt angle of the sensor about the X-axis

It should be noted that the presented work is formulated using the Matlab coordinate system (Positive
Z-axis upwards, positive X-axis out of the screen). The LoS method is based on linear regression to
�nd intersecting obstacles between the sensor and the point to be observed.
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3.3. PROPOSED COVERAGE AND VISIBILITY MODEL

3.3 Proposed Coverage and Visibility Model

The proposed sensor model is inspired by [35] and [13]. It assumes binary coverage and obstacles are
taken into account as opposed to much of the previous work [5, 9, 33,36,37].

The considered sensor type in this thesis is the camera, therefore the sensor model aims to resemble the
camera. The �eld of view of a camera (FOV) is computed from the focal length and image size, and
it is assumed that the vertical FOV is equal to the horizontal FOV. This assumption may be slightly
inaccurate for some speci�c sensors, but introducing a di�erence in the vertical and horizontal FOV
requires minor code changes and can be done without any complications. Further, both radial and
tangential distortion are neglected, while assuming a rectilinear image. This assumption is realistic
with the lens technology available today, together with proper camera calibration tools. The vertical
and horizontal �eld of view for the proposed model is shown in Fig. 3.5.

X

Y

-Z

Figure 3.5: Horizontal and Vertical Field of View

A sensor, k, is de�ned by a 5-tuple [Pk, fk, αk, θk, rk].

where:

Pk - Sensor position (xk, yk, zk)
fk - Field of view of the sensor de�ned from the mid-line.
αk - Sensor pan angle (Rotation about y-axis)
βk - Sensor tilt angle (Rotation about z-axis)
rk - Sensing range
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The rotation about the x-axis of the sensor is not taken into account since most cameras are limited
to pan and tilt movement. If αk = βk = 0, the direction vector of the sensor is along the X-axis.
The desired sensor orientation is realized by RotY (αk) ·RotZ(βk), where the coordinate system is the
moving local coordinate system of the sensor such that the sensing direction is always along the local
x-axis. The pan and tilt angles are shown in Fig. 3.6 along with the rotational planes.

βk

Z

X

Y

Figure 3.6: Camera Pan and Tilt Rotations

A point i (xi, yi, zi) is said to be covered by a sensor k if and only if the following constraints are
satis�ed:

� Lki ≤ rk - The Euclidean distance from sensor k to point i is smaller than, or equal to, the sensing
range of sensor k.

� ∠xz(θki − αk) ∈ (−fk, fk) - The angle between sensor k and point i in the xz-plane is in the �eld
of view fk of the αk oriented sensor.

� ∠xy(εki − βk) ∈ (−fk, fk) - The angle between sensor k and point i in the xy-plane is in the �eld
of view fk of the βk oriented sensor.

� vki,j = 1 - Point i is visible from sensor k with respect to obstacle j. The algorithm used to

compute visibility is described in Alg. 1. vki,j should be equal to 1 ∀j for a point i to be visible
from k.

The following equations apply for the mentioned constraints:

Lki = ||Pk −Pi|| =
√

(xk − xi)2 + (yk − yi)2 + (zk − zi)2 (3.8)

θki = atan2(zi − zk, xi − xk) (3.9)

εki = atan2(yi − yk, Lki ) (3.10)

The constraints can then be formulated as a function:

Cki = f [(Lki ), (θ
k
i ), (εki ), (v

k
i,j)] (3.11)
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3.3. PROPOSED COVERAGE AND VISIBILITY MODEL

Algorithm 1: Visibility Algorithm

Input:
1 Obsx, Obsy, Obsz - Obstacle data points array
2 xk,yk,zk - Sensor position
3 fk,αk, βk - Sensor parameters
4 thr - Angular threshold
5 i - The index of the data point to be checked whether is visible or not
Result:

6 vki,j - Boolean visibility variable
Data:

7 for j = 1:length(Obsx) do
8 xj = Obsx(j);
9 yj = Obsy(j);

10 zj = Obsz(j);
11 Lj = ||P j − P k||;
12 θj = atan2(zj − zk, xj − xk);
13 εj = atan2(yj − yk, Lj);
14 if (θj − αk) ∈ (−fk, fk) then
15 if |θki − θj | < thr then
16 if (εj − βk) ∈ (−fk, fk) then
17 if |εki − εj | < thr then
18 if Lj < Lki then
19 vki,j = 0;

20 else
21 vki,j = 1;

22 end
23 else
24 vki,j = 1;

25 end
26 else
27 vki,j = 1;

28 end
29 else
30 vki,j = 1;

31 end
32 else
33 vki,j = 1;

34 end

35 if vki,j == 0 then
36 Point i is blocked from sensor k by obstacle j
37 end
38 end
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3.4 Environmental Model

The environment is de�ned in this thesis as the discrete static volume containing 3D grid points which
should be covered by the sensor(s). Each point in the grid represents a voxel in the real scene. The
grid point is the center point of the voxel. The voxel is said to be covered if the corresponding data
point is within the sensing range and visible from one or more of the sensors placed in the environment.

Each point is annotated according to what it represents in the environment speci�ed by the user:

0. Obstacle.

1. Data point to be observed by minimum one sensor.

2. Data point to be observed by minimum two sensors.

3. Data point to be observed by minimum three sensors.

4. Data point that does not need to be observed by any sensors.

The annotations are used to determine if a point is either an obstacle or a Region of Interest which
allow for k-coverage functionality. This is often desirable, and in some cases required, for certain areas
of the scene. A maximum of 3 sensors is said to be required to cover any grid point in a k-coverage
region of interest, but this is easily extendable to a larger number. Obstacles are static, rigid objects
which block the sensor line of sight if it is within the sensing range. Complicated obstacle models,
e.g. cabinets where the content can only be seen from one side, are not considered. Also, transparent
obstacles are not taken into account. If a closed chain of data points is de�ned as an obstacle, the
content that lies within this chain is not possible to cover by de�nition in this thesis. The environment
is imported and de�ned in the User Interface to determine the constraints for the optimization problem.

By changing the voxel size, the discretization accuracy can be modi�ed. The user should be able to
alter the environmental model by specifying Regions of Interest with k-coverage requirements, voxel
size and possible sensor positions (along speci�c straight lines in the environment). This is important
to make the solution applicable in a variety of environments with di�erent problem speci�cations.

3.5 Matlab Graphical User Interface

A User Interface (UI) is a program that enables the user to communicate with the system, often
a machine, device or program, to perform a speci�c task. User Interfaces are also known as HMIs
(Human Machine Interface) or MMIs (Man-Machine Interface), and are often graphical (GUI). The
UI is de�ned from the input to the output. The user speci�es the input required to manipulate the
program to the desired output which is the result of the actions and decisions made by the user.

The User Interface should help the user with decision-making by providing the relevant information
in a simple, yet understandable manner. For most UIs to be usable in practice, they should include a
guide, or user manual, to aid the user in making decisions and also to interpret the di�erent messages
provided by the UI. If users are not accommodated properly, many users can lose interest and feel that
the program is too complex or cumbersome. Usability is the most important aspect of User Interface
design. Other important aspects to consider when developing a UI are [38,39]:
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� Conciseness:

It is of high importance that the information provided to the user is concise and limited to only
the information relevant to perform speci�c tasks. Also, the result of any action should be as
close to the intended outcome as possible.

� Consistency:

For users to be able to get an understanding of how the program works, it is essential to be
consistent with the coding style, notation, and comments. If users should troubleshoot the UI
themselves, and the code is inconsistent with notations, etc., it is often practically impossible to
troubleshoot for anyone except the developer.

� Understandability:

If the user does not understand the software, it is not usable. A well-documented user manual
can provide understandability, as well as a de�ned work�ow for the user to follow.

� Aesthetics:

Colors and graphics should be used to provide useful information only. An aesthetically pleasing
UI is attractive and draws attention.

� Robustness:

The User Interface should not have any random aspects to the produced input. For the same
inputs and decisions, the output must always be the same.

Matlab is chosen as the programming platform for the UI. The main reasons for using Matlab is that
it includes an extensive library of functions available for the software designer. The Matlab support
for VRML models and patch objects makes the handling and interfacing of 3D objects more accessible
than many other programs where such support is limited. Also, the programming language is easy
to understand and interpret for other developers who desire to either troubleshoot or implement new
functionality in the UI.

The Matlab Graphical User Interface (GUI) is a vital part of this thesis. As previously stated, much of
the work in the literature is limited to case-speci�c solution contributing little to provide a consensus
in both environment generation and optimization solutions. Therefore, the GUI is made to provide a
common platform for problems to be formulated on, thus enabling optimization programs to have the
same inputs.

There are three main methods of designing GUIs in Matlab:

1. Matlab App Designer

2. Matlab GUIDE

3. Creating Matlab GUI Programmatically

Both the App Designer and GUIDE are interfaced solutions for creating custom User Interfaces with
pre-de�ned UI objects such as sliders and buttons. This provides easier solutions for users that want
to develop UIs. In this thesis, the third option is chosen to have more control over the work�ow and
design of the User Interface. Matlab has built-in functions for GUIs such as dialog boxes, buttons, and
panels.

Callbacks are the functions that are executed when the user does any pre-de�ned function in the User
Interface such as clicking on a menu item. Callback functions are then executed to produce the desired
result of the action taken.
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3.6 Optimization

In both science and everyday life, optimization is an important tool for humans, nature and machines.
Optimization is related to making one or several decisions, whether it is to determine which material
combination that provides the best characteristics in manufacturing, distribution of taxis to minimize
the waiting time for customers, or choosing where to place cameras in a given environment. In this
section, an introduction to optimization will be given to provide the relevant theory for the optimization
in this thesis. For the interested reader, it is encouraged to visit one or several of the available
textbooks [40�42]. Firstly, some fundamentally important notations will be discussed, namely objective
function, decision variables, constraints, feasible solution and local/global optimum.

Optimization, in mathematics, is the selection of the best decision variables with regards to a set of
given constraints for problems formulated mathematically. The optimal solution is, in most problems,
either the maximum or minimum of the objective function. A simple optimization example is to
minimize a real function with one adjustable variable, such as

min
x∈[0.1,1.5]

f(x) =
cos(5 · π · x)

x
(3.12)

Which translates to choosing the value of x that minimizes the objective function f(x), where x is
constrained to be any value between 0.1 and 1.5. For this given problem, the optimal solution is the
minimum of the objective function. Optimization problems can often become more complicated than
the presented problem, which can be solved intuitively without complicated algorithms. Algorithms
are the method used to �nd the optimal solution of the given problem. Since optimization prob-
lems can take numerous di�erent forms, there are several algorithms to be used for di�erent problem
formulations.

For almost all optimization problems, there can be several solutions x∗ which can be so-called local
optima. Fig. 3.7 shows Eq. 3.12 in the speci�ed range:
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Figure 3.7: Objective Function with Multiple Minima
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From Fig. 3.7, the global minimum can be identi�ed easily by investigating the graph of the function.
The solution x∗ is a global minimum if f(x∗) ≤ f(x) ∀ x inside the feasible set S ⊆ R. With the same
notation, a solution x∗ is a local minimum f(x∗) ≤ f(x) ∀ x inside a neighbourhood of x∗.

A feasible solution is a solution where the desicion variables lie inside the constraints. For Eq. 3.12,
the solutions that lies inside the feasible subset S = (0.1, 1.5) ⊆ R are feasible solutions.

3.6.1 Optimization Categories

Optimization problems can be classi�ed in several ways. This section aims to identify the distinc-
tion between continuous and discrete problems, constrained and unconstrained problems and convex
optimization. Finally, problem complexity will be brie�y presented.

Continuous and Discrete Optimization

When the optimization parameters can take any value inside a given constraint, the optimization prob-
lem is called a continuous problem. For continuous problems, an in�nite number of feasible solutions
exist.

A branch of mathematical optimization is discrete optimization which covers optimization problems
where the variables are restricted to be discrete. These problems are often called combinatorial opti-
mization problems. For many problems, it is practically impossible for variables to have anything else
than integer or binary values. One example is to choose the number of antennas needed to cover a given
area with adequate signal strength. In this example, the decision variable must take a non-negative
integer value which can be mathematically formulated as x∗ ∈ Z>. Problems, where the decision vari-
ables must have the values of integers, are called integer programming problems (IP). Binary decision
variables do also often appear, and a thought case could be whether or not factories should be shut
down or maintained in a set of cities to achieve the highest possible pro�t in a company. The decision
variables must then take binary values and can be mathematically formulated as x∗ ∈ (0, 1). Such
problems are called binary programming problems (BP).

In some problems, some variables are limited to take discrete values, but others may take any value.
Such problems are called mixed integer programming problems (MIP).

A general distinction between continuous and discrete optimization problems is given in [40], where
the discrete optimization problems are identi�ed as where the decision variable(s) must be chosen from
a �nite set. These sets, however, tend to get very large. On the other hand, the continuous problems
contain an in�nite number of possible values for the decision variables, such as when they are limited
to real numbers only.

Often, continuous problems are easier to solve than discrete problems. There are several reasons to
support this claim:

� Gradient methods are not applicable in most discrete problem formulations.

� For most discrete problems, all combinations or permutations of feasible solutions have to be
evaluated to guarantee the global optimum. This makes many discrete optimization tasks com-
putationally hard.

� In many continuous problems, the solution often lies nearby the bounds of the constraints, and
therefore the algorithm can often start searching in the vicinity of the bounds. Also, when the
gradient can be computed at all points for a smooth function, it is easier to gather information
regarding the neighborhood of a point in continuous problems. Since the discrete function is not
smooth, this rule-of-thumb does not apply in discrete optimization.
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Constrained and Unconstrained Optimization

Problems with no constraints on the decision variables are classi�ed as unconstrained optimization
problems. If the feasible set is S = Rn for n decision variables, the problem is said to be unconstrained.
Unconstrained optimization is used in several applications, e.g. pattern recognition [43] and linear
regression [41].

However, most problems are constrained in one or several ways. Generally, for continuous optimiza-
tion problems, the constraints have the form of either being equality- or inequality-constrained. The
Rosenbrock function [44], commonly used to test optimization algorithms, is given as an optimization
problem in Eq. 3.13.

min
x∈R2

f(x) = f(x1, x2) = (1− x1)2 + 100(x2 − x2
1)2 (3.13)

With the following constraints:

x1 − x2 = 0 (3.14)

x1 + x2 ≥ 0 (3.15)

Eq. 3.14 is called an equality constraint, and Eq. 3.15 is called an inequality constraint. The global
minimum of Eq. 3.13 is x∗ = (x1, x2) = (1, 1), which is feasible since it satis�es both constraints.

A particular case of constrained optimization is linear programming. An optimization task is de�ned
as a linear program when both the objective function and all constraints are linear functions of the
decision variable. On the other hand, when at least one of the constraints or objective function is
nonlinear, the problem is de�ned as a nonlinear program.

Convexity

Convexity is an important aspect of optimization. If a problem is convex, it is generally easier to
solve [40]. For a problem to be convex, both the objective function and the constraint function must
be convex. A 1D function f(x) is convex if and only if [45]:

∀x1, x2 ∈ S, ∀α ∈ [0, 1] : f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (3.16)

Where the domain of the function S is a convex set. The set S ∈ Rn is said to be convex if a straight
line drawn between each possible pair of points in S lies entirely inside the set [40]. Eq. 3.16 can only
determine convexity for 1D functions. For functions of larger dimensions, convexity is often checked
by the method described of drawing lines inside the set.

An example of a convex function is the quadratic functions f(x) = x2.
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Complexity Classes

Decision problems (problems that can be answered with a yes/no answer) are often classi�ed into
di�erent complexity classes. Complexity classes are highly relevant in discrete optimization tasks since
they can provide information about how complicated the problem is, and possibly how it can be solved.
A short presentation of complexity classes related to time will be given here. Mainly, the P and NP
classes will be presented.

A problem is in complexity class P if it can be solved in polynomial time with a deterministic Turing
machine. Problems in P are often easy, and for most problems, there have been developed algorithms
that solve the problems in polynomial time. Polynomial time complexity is often written as O(nk),
which denotes the computational time required (O()). O(nk) means that a problem of input complexity
n and a positive constant k can be solved in a predictable amount of time calculated from the polynomial
function nk.

The NP class is the set of problems that can not be solved by a deterministic Turing machine in
polynomial time (but can be veri�ed by a nondeterministic Turing machine in polynomial time). All
problems in P are also in NP (P ⊆ NP ).

NP-hard problems more di�cult than NP problems, since some NP-hard problems may not be in NP.
They are classi�ed as problems where an algorithm for solving the problem is reducible (in polynomial
time) to an algorithm that can solve all NP problems.

When considering decision problems, the term NP-complete is fundamental. A decision problem is
NP-complete if the corresponding optimization problem is in both the NP and NP-hard set.

In practice, almost all combinatorial optimization problems are either NP-complete or NP-hard. This
is an essential aspect of such problems, indicating the computational complexity. Fig. 3.8 shows the
relationship between the described complexity classes.

Figure 3.8: Visualization of Complexity Classes
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3.7 Combinatorial Algorithms

Algorithms are computer programs written in a language that can be understood by the computer to
solve a problem given a set of inputs. From these inputs, some instructions are provided on how to
solve the given problem. The output of the algorithm is the solution to the problem. In this section,
combinatorial algorithms will be presented.

Combinatorial problems arise in many practical optimizations when the search-space is discrete and
often large, and the solution can be measured using an objective function. When the search space gets
especially large, it is not possible to �nd the optimal solution to combinatorial problems in a reasonable
amount of time, since the problems tend to be NP-hard/NP-complete. [46]. Combinatorial problems
contain a large variety of di�erent problems, including the following [47]:

� Knapsack problem

� Traveling salesman problem

� Set-cover problem

� Facility location problem

� Job scheduling problem

Since the problems are so complicated, approximation algorithms are often used to �nd an acceptable
solution within a reasonable amount of time. In this section, both heuristics and meta-heuristics
approximation algorithms will be presented as well as exact algorithm programming methods.

3.7.1 Heuristics

Heuristic algorithms are commonly used in combinatorial optimization. These algorithms are not
guaranteed to provide the optimal solution but �nd a satisfactory answer in a reasonable amount of
time. These algorithms take advantage of the knowledge of the programmer about the given task.
Such knowledge may be a rule-of-thumb, an educated guess or even common sense. The algorithms
are often developed for solving one particular problem. Since the algorithms need to be fast, they are
often inspired by the Greedy Algorithm.

A Greedy Algorithm is de�ned in this thesis as an algorithm that �nds a solution based on the
best solution at each iteration. In most problems, this will provide a sub-optimal solution, making
it a heuristic algorithm. Since the search space is reduced at each iteration, the Greedy Algorithm
converges to a solution very quickly.
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3.7.2 Meta-heuristics

Where heuristic algorithms tend to be made for one speci�c problem, meta-heuristics are, generally,
more problem-independent. Most meta-heuristic algorithms are inspired by natural processes since
these tend to reach an equilibrium, which is often optimal. Nature inspires many computational
theories and methods since processes in nature often can be treated as computations [48]. One of the
main problems for heuristic algorithms is that they tend to get stuck in local minima. Most meta-
heuristic algorithms have features to avoid this problem. A conventional method of preventing such
minima is by doing a neighborhood search [49].

Examples of methods inspired by nature are:

� Simulated Annealing [50]

� Particle Swarm Optimization [51]

� Genetic Algorithms [52]

� Arti�cial Neural Networks [53]

� Tabu search [54]

In this section, the simulated annealing (SA) and genetic algorithm (GA) algorithms will be brie�y pre-
sented. For the interested reader, [48,49] are comprehensive sources of information on meta-heuristics.

Simulated Annealing (SA)

The SA algorithm is inspired by the annealing process in metallurgy which is the process of heating
a metal to a speci�c temperature, and after a given period at that temperature, the metal is cooled
down slowly to allow it to get the desired properties. It is often done to soften a metal or improve the
conductivity. It is a popular method commercially because it can restore the ductility of metals that
have been strain-hardened [55].

By introducing a probability of accepting a worse solution than the current best, the algorithm aims
to avoid being stuck in local minima. The objective function is evaluated by an energy function, E,
and the temperature is denoted t. The change in energy in the current iteration is denoted ∆E. The
acceptance probability is then described using Eq. 3.17.

e−∆E/t ≥ r (3.17)

where r is a randomly generated number between 0 and 1 (r ∼ U(0, 1)). A new solution is also accepted
if the energy function is better than the previous best solution.

There are di�erent ways of de�ning the cooling schedule of the SA algorithm, such as [56]:

� Exponential cooling schedule

T (k) = T0 · αt (3.18)

where α ∈ (0, 1) is a constant that determines how rapidly the temperature decreases.

� Linear cooling schedule

T (t) = T0 − ηt (3.19)
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Where η is constant.

� Logarithmic cooling schedule

T (t) =
c

log(t+ d)
(3.20)

Where c, d are constants. In many algorithms d is equal to one, and c is often a large constant.

The cooling scheme is very important in Simulated Annealing since it greatly in�uences the way the
algorithm converges. The general SA algorithm for a problem where the energy function should be
minimized can be seen in Alg. 2.

Algorithm 2: Simulated Annealing Algorithm

Input:
1 Kmax : Maximum number of iterations
2 Tf : Final temperature
3 Ω : System to be optimized
Data:

4 while T > Tf do
5 while K < Kmax do
6 Do a random change to the system Ω, resulting in a new system Ω′

7 Evaluate the change in the energy function ∆E for the new system
8 Generate a random number r between zero and one
9 if ∆E ≤ 0 then
10 Ω = Ω′

11 else
12 if e−∆E/t ≥ r then
13 Ω = Ω′

14 end
15 end
16 K = K + 1

17 end
18 Use a cooling schedule to set the new temperature T

19 end

Genetic Algorithms (GA)

The Genetic Algorithm is among the most popular algorithms in combinatorial problems, and it is a
type of evolutionary algorithms which are the most in�uential meta-heuristics for optimization [48].
Where the SA Algorithm only has one solution that is altered at each iteration, the GA has a population
of several solutions. There are several reasons to why this algorithm has gained so much interest, e.g.
since the GA is:

� Largely parallel

� Suitable for large, complicated problems

� Guaranteed to �nd very good or even globally optimal solutions

� Easy to adapt to di�erent problems
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Compared to the SA Algorithm, the GA is much faster for problems with a large search space. Before
presenting the GA, some concepts from natural evolution will be brie�y introduced:

Mutation is the genetic operator that randomly alters the genetic material (often without any practical
e�ect). It is important in genetic algorithms since it introduces a random e�ect which aids in avoiding
local minima.

Crossover is the genetic operation that �rst breaks two parent chromosomes and then reconnects
them, creating children chromosomes that inherit features from both parents. In GA, this can be done
by selecting common traits between two parents and passing these traits onto the next generation,
resulting in a child with the best features of both parents.

Selection is done by evaluating the �tness function which describes the �tness of an individual and
then selecting individuals by a selection scheme based on these �tness function values.

The general idea of a Genetic Algorithm is given in Alg. 3.

Algorithm 3: Genetic Algorithm
Input:

1 P(0) : Initial population
Data:

2 while stopping criterion is not met do
3 Evaluate the �tness function of each individual in the population P(k)
4 Based on the selection scheme, choose the best individuals as parents for the next

generation
5 Apply crossover to the parents, to generate the o�spring
6 Mutate some of the o�spring with a probability factor
7 Generate the new generation P(k + 1)
8 k = k + 1

9 end

The stopping criterion is highly problem-dependent, and for many problems, there could be several
stopping criteria, such as:

� Maximum number of generations

� Convergence limits

� Changes in a �tness function

When designing Genetic Algorithms, the programmer needs to consider several factors that a�ect the
results of the algorithm. Firstly, the �tness function must be designed; then a selection scheme must be
made to choose which individuals to select as parents for the next generations. Then, both mutation
and crossover methods must be made.

Determining appropriate schemes in the GA can be a di�cult task since it requires considerable
knowledge of the problem. Also, multiple aspects need to be considered for the algorithm to work
in the best possible way, such as maintaining a random aspect while preserving a su�ciently high
selection pressure for the GA to converge to the best possible solution.
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3.7.3 Exact Algorithms

Contrary to the heuristic and meta-heuristic algorithms, the exact algorithm guarantees to produce
the optimal results. For large scale problems, the trade-o� is computational time. Since the gradient
method is impossible to use in combinatorial problems, every feasible solution must be investigated.
This is usually done by listing either all possible combinations, permutations or permutations with
repetition depending on the problem formulation.

C(n, k) =
n!

k!(n− k)!
(3.21)

P (n, k) =
n!

(n− k)!
(3.22)

Pr(n, k) = nk (3.23)

Eq. 3.21 shows how many combinations are needed for a problem with n possibilities, and k number
of variables. Eq. 3.22 shows the number of possible permutations with n possibilities and k variables,
and 3.23 shows the number of permutations if repetition is allowed. As can be seen from the equations,
these numbers rapidly increase as the size of the problem increases. Tab. 3.1 shows the rapid increase
of the equations above.

Table 3.1: Increase of Combinatorial Equations with n=20

k Value 1 2 3 4 5
Combinations 20 190 1140 4845 15504
Permutations 20 380 6840 116280 1860480
Permutations with Repetition 20 400 8000 160000 3200000
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3.8 Set-Cover Problem

In this section, the Set-Cover Problem (SCP) is presented as an introductory example to combinatorial
optimization. A Greedy Algorithm is used to �nd an approximate solution, which will be proved to
be sub-optimal for a given problem. The SCP is chosen due to its similarities to the discrete sensor
placement problem. An exact algorithm will also be used to determine the optimal solution.

The Set-Cover Problem is one of the most popular and traditional problems in combinatorial opti-
mization. It is applicable in many practical applications, such as [57]:

� Vehicle routing

� Facility location allocation

� Crew scheduling

� Distributing of broadcasting frequencies

The decision variant of the SCP was proven to be NP-complete by Karp in 1972 [58], whereas the
optimization variant is NP-hard [59]. There have been developed numerous heuristics for the SCP,
many of which are also relevant for the Sensor Placement Problem due to the similarity between the
two problems. The SCP can be formulated in the following way:

Given a set X, called the universe, and a number of subsets S = {s1, s2, . . . , sn} ⊆ X, �nd the minimal
set Z that includes one or more subsets of S and Z ⊆ X, such that:

k⋃
i=1

Zi = X (3.24)

Which translates as minimizing the number of subsets required to cover the whole universe, where
k is the number of subsets in Z. The objective function to minimize is then the number of subsets.
By rewriting the problem, given a set of indices with the same length as numbers of subsets, C =
{1, 2, . . . , n}, where each element can be either zero or one. If C = {0, 0, 1}, subset number three is
placed in Y where Y ⊆ C.

The optimization problem could then be formulated as

min |C| =
m∑
j=1

Cj (3.25)

subject to

n⋃
i=1

Yi = X (3.26)
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Example:

A universe is given in Fig. 3.9 as a grid, where the subsets are also indicated.

s6

s4

s3

s2

s1

s5

Figure 3.9: Set Cover Problem Example [1]

The value of the optimal set can be found intuitively by looking at the �gure as Copt = {0, 0, 1, 1, 1, 0}
which translates to subsets (s3, s4, s5). The objective function is then |C|opt = 3. All subsets can be
listed in a table, such as Tab. 3.2 where the points in the universe are listed from top left (1) to bottom
right (12) horizontally.

Table 3.2: Subset Coverage for Set-Cover Example

Subset 1 2 3 4 5 6
P. 1 1 0 1 0 0 0
P. 2 1 0 0 1 0 0
P. 3 1 0 0 0 1 0
P. 4 1 0 1 0 0 0
P. 5 1 1 0 1 0 0
P. 6 1 1 0 0 1 0
P. 7 0 0 1 1 0 0
P. 8 0 1 0 1 0 0
P. 9 0 1 0 0 1 0
P. 10 0 0 1 0 0 1
P. 11 0 0 0 1 0 1
P. 12 0 0 0 0 1 0
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By using an OR-operation on the subsets, the combination with the fewest subsets can be found with
a Brute Force Method. Since this problem is NP-hard (or NP-complete if formulated as a decision
problem), the Brute Force Method is the only way of guaranteeing an optimal solution. The Brute
Force Algorithm for the SCP can be seen in Alg. 4. This algorithm is shown in Matlab code in App.
A.5.2.

Algorithm 4: Brute Force Algorithm for the Set-Cover Problem

Input:
1 X : Universe
2 S : Subsets
3 nss : Initial guess on number of subsets to cover the universe
Result:

4 Y : Array of indices with chosen sets
Data:

5 while X 6= Y do
6 Calculate all combinations required to explore all possible solutions
7 Evaluate the coverage of all possible subset combinations Snss given nss
8 Select the best combination Snss

best

9 if Snss
best covers the whole universe then

10 Y = Snss
best

11 else
12 Increase the number of subsets to cover the universe nss = nss + 1
13 end
14 end

In practice, since the problem can be so complex, the SCP is often solved using approximation al-
gorithms that are much faster, but produces approximate solutions. Detailed descriptions of these
algorithms for the SCP can be found in the literature [59�61]. The most used approximation algo-
rithm is a Greedy Algorithm shown in Alg. 5 [1]. Note that the notation {F} in line 7 indicates the
corresponding index in S that is represented by F.

Algorithm 5: Greedy Heuristic for the Set-Cover Problem

Input:
1 X : Universe
2 S : Subsets
Result:

3 Y : Array of indices with chosen sets
Data:

4 while X 6= ∅ do
5 select the set F ⊆ S such that X− F is minimized
6 X = X− F
7 Y = Y ∪ {F}
8 end

The Greedy Algorithm will, for the problem given in Fig. 3.9, choose the sets s1, s4, s5, s3, in that
order, such that C = {1, 0, 1, 1, 1, 0}; |C| = 4. This indicates that for the given problem, the Greedy
Algorithm does not provide the optimal solution since it only considers the best subset at each iteration.
This algorithm can be found as a Matlab script in App. A.5.1.
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3.9 The JSON File Format

The JSON (JavaScript Object Notation) �le format will be used in this thesis to store the UI data and
import it into C++. JSON is an intuitive format which is easy to understand and use. It is language
independent, which is one of the main reasons for it being so popular. JSON �les can, however, get quite
extensive, e.g. compared to binary �les. JSON is written for easy interpretation and understanding,
whereas the binary �les are made to be understood by a computer but not necessarily being readable
by humans. A JSON �le is recognized by its extension, which is *.json. There are several available
values for elements to take in JSON:

� Object

� Array

� String

� Number

� True/false/null

An object is enclosed by curly brackets and contains pairs of names and values. Names and values
are separated by colons, and commas separate the pairs. Arrays are enclosed by squared brackets and
separated by commas. An element is de�ned as a string if it is wrapped in double quotation marks
(, i.e., ”abc”). Contrary to C-like languages, octal and hexadecimal formats are not used in JSON.
Instead, values are de�ned by numbers, and dots specify decimal points.

A JSON example can be seen in the code snippet below.

1 {"Camera":

2 {

3 "Number of cameras": 2,

4 "Camera parameters": [

5 {"Field of view":120,"Range":8,"Cost":20},

6 {"Field of view":90,"Range":12,"Cost":22}

7 ],

8 "Array of numbers":[1,2,3,4,5,6,7,8,9,10,11]

9 }

10 }

Here, a JSON object is made, called camera. This contains a set of objects. The �rst object stores
information regarding the number of cameras. The second object is an array of objects for each camera,
which speci�es the camera parameters. Finally, an array of numbers is included.

Matlab includes functions for encoding and decoding JSON �les [62]. This makes the encoding of
Matlab objects into JSON objects straightforward. There are several available methods of parsing
JSON �les in C++. In this thesis, the JSON11 library [63] is used due to its simple syntax.
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3.10 Parallel Programming with CUDA

Since CUDA (Compute Uni�ed Device Architecture) was released in 2007, general-purpose computing
on graphics processing units (GPGPU) has accelerated. CUDA is a programming language developed
to enable programmers to utilize the parallel architecture of GPUs. GPUs are an essential part of
many accelerated applications in �elds such as [64]:

� Arti�cial intelligence

� Cars

� Drones

� Robotics

� Hashing algorithms

In this section, the fundamental theory on graphical processing units and the essential functions of the
CUDA language will be presented. For the interested reader information regarding GPUs and CUDA
can be found at [65,66].

3.10.1 The Graphical Processing Unit

When NVIDIA released the �rst GPU in 1999 [67] the intended use was mainly to improve the graphics
of computer applications, but nowadays the GPU is also used in other �elds and sciences. Throughout
this section, the GPU term will be understood as NVIDIA GPUs. One of the main di�erences between
a CPU and a GPU is understood by comparing the di�erences in cores and memory latency. While
modern day CPUs usually have 4-8 cores optimized for minimal memory latency and quickly being able
to switch between di�erent operations, GPUs have thousands of cores optimized to process as many
operations as possible, simultaneously. The trade-o� is the memory latency, but since operations are
done in an overlapping parallel manner, the memory overhead is often not noticeable for the user.

If a CPU is a Leatherman, a GPU is a very sharp knife. You can't tighten a hex bolt with a knife, but
you can de�nitely cut some stu� [68].

This quote highlights the main di�erence in usage between the GPU and the CPU. Where the CPU
is versatile, and superior in doing sequential, demanding tasks, the GPU outperforms the CPU in
cases where more straightforward computations need to be done numerous times, and each iteration
is independent.

The primary function of the GPU is 3D video rendering, which consists of vast amounts of matrix, and
�oating point operations to describe coordinates, light, textures, transparency, etc. Since each pixel is
independent, the calculations can be done in parallel.

The GPU is built up around a scalable array of Streaming Multiprocessors (SMs). A function that
should be executed on the GPU is called a kernel function. This kernel is distributed onto a grid of
blocks, where the required blocks for the given kernel operation is allocated to the available multipro-
cessors. Multiple thread blocks can execute at the same time on the same multiprocessor since each
multiprocessor can handle hundreds of threads concurrently [65].
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3.10.2 CUDA Programming

The terms kernel, threads, blocks and grid are essential to understand when programming CUDA
applications.

Kernels

To execute functions in parallel, kernels are used. To specify a C++ function as a kernel, a speci�er
has to be used as can be seen in line 1 in the code snippet below where __global__ speci�es that
mykernel is a kernel function. In line 8 the kernel is invoked and executed on N parallel threads where
all threads are inside the same block.

1 __global__ void mykernel()
2 {
3 // Some function
4 }
5

6 /*
7

8 ....
9

10 */
11 int main()
12 {
13 // Define the inputs to the function
14 mykernel <<< 1,N >>>()
15 }

Threads

Threads are organized in blocks which again are processed by SMs. The threads can be spread out
into 1D-, 2D- or 3D-arrays, where the total number of threads is limited by the available threads on
the GPU. Each thread is responsible for one kernel call. The thread id can be accessed inside the
kernel using the threadIdx function. If the threads are distributed in a 1D array, the thread number is
accessed using threadIdx.x, whereas for 2D- and 3D-arrays the thread number for the other dimensions
are accessed using threadIdx.y and threadIdx.z.

Blocks

Multiple threads are collected into blocks. On current GPUs, one block may contain up to 1024 threads.
Kernels can be executed on several blocks, meaning that the total number of kernel calls available is
the number of blocks times the number of threads per block. The identity of the block can be found
using the blockIdx function.

Grid

Blocks are again grouped into a grid. The grid is handled by the GPU, distributed to a set of SMs.
Each SM is responsible for one or more blocks in the grid.

The number of blocks per grid and threads per block is speci�ed by the user in the kernel call.
Inside <<< . . . >>> the user can specify the number of blocks and threads per blocks using <<<
numBlocks, numThreadsPerBlock >>>. Fig. 3.10 shows the hierarchy of blocks and threads inside a
grid. In this example, both the blocks and threads are de�ned as one-dimensional.
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CPU Code (Host)

Serial Code

Invoke kernel 
on n blocks 

and m threads

Serial Code

Grid of n blocks 

Block 1

Block 2

Block n-1

Block n

Block of m threads

Thread 1 Thread 2 Thread m-1 Thread m

Figure 3.10: Illustration of CUDA Threads and Blocks

Memory

To reduce the slow memory transfer from the global memory of the GPU, each thread has its own
dedicated memory. Also, each block has a shared memory which all threads in the block can access.
Finally, all threads in the grid have access to the global memory. A visualization of the GPU memory
hierarchy can be seen in Fig. 3.11.

Grid of n blocks 

Block 1 Block n

Block of m threads

Thread 1 Thread m

Global Memory

Per Thread 
Memory

Shared 
Memory

Shared 
Memory

Per Thread 
Memory

Figure 3.11: GPU Memory Hierarchy
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CUDA Syntax

The CUDA language is basically C++ with extensions. NVIDIA has produced their own compiler,
the nvcc compiler which can compile CUDA �les. These are recognized as �les with a *.cu extension.

The CUDA �les contain the functions for both the host (CPU) and the device (GPU) code. Also, a
C++ �le is made, which includes the reference to the CUDA �le inside the main function.

The work�ow of CUDA programming can be described in three steps:

1. Transfer data from the host memory to the device memory to be executed in the kernel.

2. Invoke the kernel to load the GPU program and execute it.

3. Copy results from device memory to host memory and clear device memory.

To present the key commands and provide a template for applications, a minimal CUDA example
is given in Fig. 3.13. The CUDA code example �lls an array where each element has the value
of its corresponding index. Each thread is responsible for �lling in the value of the array element
corresponding to the identity of the thread. First, the CUDA header �les are included along with
the iostream library which allows the usage of std::cout for printing values to the display. Line 5-11
de�nes the kernel function which is invoked in line 38. The GPU used to execute this code is a NVIDIA
GTX 1080, and the grid size used in this example is de�ned in line 17-20. In line 22-32, memory is
allocated on both the host and the device as well as initialization of the host array, where all elements
in the array are set to zero. Before the kernel is invoked, the memory is transferred from the host to
the device (line 35), and when the kernel call is �nished, the result data is transferred back from the
device to the host (line 41). To ensure that the results are correct, the �rst 100 values of the host
array is displayed before the memory is freed on both the host and the device (line 50-51).

The code is compiled in Linux using

nvcc -ccbin -clang-3.8 -lstdc++ cuda�le.cu main.cpp -o outres

This means that nvcc is linked with the clang-3.8 compiler which is responsible for compiling the C++
�le. The main.cpp �le is simply a main function which calls upon the function in the CUDA �le. For
the presented problem, the main.cpp �le can be seen in Fig. 3.12.

1 void calcul();
2

3 int main()
4 {
5 calcul();
6 return 0;
7 }

Figure 3.12: CUDA Example Code: C++ �le
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1 #include "cuda_runtime.h"
2 #include "device_launch_parameters.h"
3

4 #include <iostream>
5 __global__ void kernel(int* data)
6 {
7 // Get the global id of the thread
8 int thid = blockDim.x*blockIdx.x + threadIdx.x;
9 // Fill the array with the index of the current thread

10 data[thid] = thid;
11 }
12

13 void calcu()
14 {
15 // Allocation, transfer and free an integer array of size 20
16

17 int n_blocks = 50; // Number of blocks in the grid
18 int n_threads_per_block = 256; //Threads per block
19 int data_n = n_blocks*n_threads_per_block; //Number of elements
20 size_t size = data_n * sizeof(int); //Size (in bytes) of arrays
21

22 int* data_host = (int*)malloc(size); //Allocate host memory
23 int* data_dev; //Pointer to the device memory
24

25 // Fill the host array with zeros
26 for(int i = 0; i < data_n; i++)
27 {
28 data_host[i] = 0;
29 }
30

31 // Allocate device memory
32 cudaMalloc(&data_dev,size);
33

34 // Transfer array from host memory to device memory
35 cudaMemcpy(data_dev, data_host, size, cudaMemcpyHostToDevice);
36

37 // Invoke kernel
38 kernel <<< n_blocks, n_threads_per_block >>> (data_dev);
39

40 // Transfer memory from device memory to host memory
41 cudaMemcpy(data_host, data_dev, size, cudaMemcpyDeviceToHost);
42

43 // Print the first 100 elements in the host array
44 for(int i = 0; i < 100 ; i++)
45 {
46 std::cout << data_host[i] << std::endl;
47 }
48

49 // Free memory
50 cudaFree(data_dev);
51 free(data_host);
52 }

Figure 3.13: CUDA Example Code: CUDA �le
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4 | User Interface, Case Studies and Re-
sults

In this chapter, the methodical work of the thesis will be presented based on the given theory in Ch.
3. The chapter is divided into case studies where di�erent aspects of the Sensor Placement Problem is
considered. For each section, the results are presented along with the methodical work.

The �rst section (Sec. 4.1) concerns the development and design of the User Interface. Here, the
emphasis is on the methods used to ful�ll the desired goals rather than how the UI should be used. A
user manual is appended (App. A.2) where a description of how the program should be used can be
found.

In Sec. 4.2, a case study is made to verify the output of the UI and the sensor model. Here, two
sensors with �xed poses are to be placed in an environment de�ned in the UI. Next, both a Greedy
Algorithm and a Brute Force Algorithm are presented and compared to each other to investigate the
optimality of the Greedy Algorithm and the computational time for the two algorithms (Sec. 4.3).

Sec. 4.4 regards development of a Genetic Algorithm (GA) for the Sensor Placement Problem. Here,
genetic operators are designed to give the best result in the Sensor Placement Problem. The deter-
mination of parameters in the algorithm is vital for producing the desired result, and an assessment
of parameter tuning is given, where the mutation rate is emphasized as the most important tuneable
parameter along with the population size and the number of generations. Finally, the algorithm is
compared to the Brute Force Algorithm using the same tests as in Sec. 4.3.

A Brute Force Algorithm (BFA) is desirable since it is deemed to produce the optimal result. However,
since the problem size increases so rapidly with increasing input size, a threshold exists where solving
the problem with the presented Brute Force approach becomes practically impossible due to the re-
quired computational time. Therefore, a case study is made in Sec. 4.5 where the BFA is converted
from C++ to CUDA with the purpose of increasing the mentioned threshold, making the algorithm
usable for even more complex problems. The developed GPU-based Brute Force Algorithm is com-
pared to the CPU implementation concerning computational time and to ensure that the results are
the same.

In Sec. 4.6, a method of introducing k -covered Regions of Interest is presented, along with implemen-
tation details for both the BFA and GA.

Finally, all the above case studies are combined into a �nal test where optimal sensor placement
should be conducted in a robotic test laboratory. This test includes several obstacles and a Region
of Interest. First, the problem is de�ned in the UI, before an initial analysis is conducted using the
Greedy Algorithm. With increased knowledge about the problem, the Genetic Algorithm is used to
determine optimal, or at least very good, solutions to satisfy the requirements. Then, the problem is
reduced to be handled by the BFA where a global optimum can be ensured. Finally, a neighborhood
search is done to evaluate the neighborhood of the solutions, potentially improving the solution further.
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4.1 Matlab User Interface

As formulated in the problem statement, one of the main intentions of this thesis is to develop a
platform where a 3D �le can be imported into a User Interface and provide the constraints for an
optimization problem given this 3D model. The User Interface (UI) should include functions to de�ne
the Sensor Placement Problem in di�erent ways depending on the intention of the user. The user
should be able to:

� De�ne possible placement points for the sensors

� De�ne multiple sensors with di�erent parameters and price

� De�ne regions of interest where k-coverage is required

� De�ne the optimization parameters to get the required accuracy and problem formulation

� Output the optimization task to a JSON �le

� Visualize the optimized placement

To include all the desired functions mentioned above, the UI is made with a de�ned work�ow:

1. Import VRML model

2. Add �oor to imported model

3. Add camera parameters

4. De�ne placement lines

5. De�ne regions of interest

6. De�ne optimization parameters

7. Generate JSON �le

8. Visualize results

Using the theory presented in Sec. 3.1, the model is converted from a VRML model to a patch
object interpretable in Matlab. Often, these models are made without any �oor which is added in the
UI, partly for visualization but most importantly it is necessary to know the polygonal shape of the
environment. It is assumed that the walls surrounding the environment are straight, i.e. the x- and
z-coordinates are not dependent of the height.

The sensor model is calculated by de�ning the camera parameters as described in Sec. 3.3. Further,
the lines where the sensors can be placed is de�ned as well as any Regions of Interest. Finally,
the optimization accuracy is de�ned to generate the JSON �le which can be processed in C++. As a
veri�cation option, the user can visualize the optimization result by importing the generated parameters
such as camera position and pose. It should be noted that the VRML coordinate system is being used
in the User Interface. Also, a standard length unit is not speci�ed since di�erent problems can be
formulated using di�erent units. The user should, therefore, ensure that the length unit is consistent,
e.g. the sensor model and the room should correspond to each other.

By using the drop-down menus, the user can specify all details of the problem. In Fig. 4.1, the main
window of the UI can be seen. This section aims to describe the di�erent methods that have been used
to develop the user interface. For a description of how to use the UI the appended user manual, seen
in App. A.2, should be used.
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The full source code of the UI is too extensive to append and is therefore uploaded to a GitHub
repository which can be found at https://github.com/Vegardtve/sensorplacement. Here, the full
documentation to the UI can be found, along with the VRML �le which is used throughout this section.
The UI is pre-de�ned for this environment for new users to better understand the work�ow. It should be
possible to perform all actions without any modi�cations from this repository. The code is su�ciently
commented for every function and script to be understandable for any experienced Matlab programmer.
The source code of the UI is also made available to enable other users to modify or improve it if any
limitations or errors are found. Also, a video is made where the User Interface is demonstrated. The
video can be found in either the GitHub repository or at https://youtu.be/XAflsneC-x4.

Figure 4.1: Main Window User Interface

4.1.1 Adding the Floor and Camera Parameters

When the user clicks Add Floor, an input window is opened. The �oor is added by specifying all
vertices of the polygon de�ning the �oorplan. By using the �gure tracer in Matlab, the coordinates of
each vertex can be retrieved. The polygon is made at a user-speci�ed height which must correspond
with the height at �oor level. Since some models are made with a negative height from the roof to
the �oor, no standard �oor height can be de�ned. Fig. 4.2 shows the method of adding a �oor to the
VRML model in the UI.
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Figure 4.2: Example of Adding Floor in the User Interface

The user can add several cameras with di�erent camera parameters. This is desirable since, in many
situations, several cameras with di�erent parameters and price are available. Cameras can be added
by clicking Add Camera, and all added cameras can be seen using the List of Added Cameras button.
The menus for adding sensors and displaying the added sensors can be seen in Fig. 4.3a and Fig. 4.3b,
respectively.

(a) Adding a Sensor in the User Interface (b) List of Added Cameras

Figure 4.3: Displaying Added Sensors in the User Interface
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4.1.2 Placement Lines

When the Add Lines item is chosen, two windows are opened. The �gure window displays the patch
model and can be used for tracing to get the coordinates of the desired data points. The placement
lines are limited to being straight lines de�ned using the (x, y, z) coordinates of the starting- and
end-points. Multiple placement lines can be speci�ed, and the user can choose which lines actually to
choose by checking the Accepted box. The accepted lines can be visualized with the Display Placement
Lines menu item, which opens a �gure window showing the placement lines together with the patch
model. An example of three added lines is �rst de�ned in Fig. 4.4a, and then visualized in Fig. 4.4b
which is exported from the �gure window in the Display Lines menu item.

(a) Example of De�ning Placement Lines (b) Visualizing Added Placement Lines

Figure 4.4: Adding and Visualizing Placement Lines

4.1.3 Region of Interest

The room is discretized into equal sized voxels. Each of these voxels must be annotated with one of
the following parameters, as described in Sec. 3.4:

1. Obstacle

2. User speci�ed Region of Interest

3. 1-coverage (Standard) volume

The Region of Interest (ROI) procedure allows the user to specify volumes of special interest, which
can be annotated as one of the following:

� Non-interest volume

� 2-coverage volume

� 3-coverage volume

The ROI groups are added to expand the problem to also include k -covered volumes, i.e. speci�c zones
in the environment of either high or no importance. This expands the number of possible annotations
for each cube. The procedure of generating a user-de�ned ROI will now be presented. A �owchart is
made for better visualization of the process and can be seen in Fig. 4.5.
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Start
Input: Array of corner 

coordinates

Algorithm:
Discretize walls z and x 

coordinates

Algorithm: 
Generate fishnet

Algorithm:
Generate user-defined 
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End
Output: Square matrix, 

ROI cube

Algorithm output:
Squares matrix: 

[O,B,L,R,O]

User Input: 
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User Input: 
Region of Interest info: 
coordinates and weight

Algorithm output:
ROI Cube:
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Algorithm output:
Array of data points: [x,z]

Figure 4.5: Flowchart of the Region of Interest Generation

As can be seen in Fig. 4.5, the ROI procedure consists mainly of three separate algorithms, which will
be described in this section. The �rst two algorithms are used to discretize the �oor into a �shnet,
and the third algorithm generates the ROI based on user-speci�ed inputs. Firstly, the user has to
specify in which direction the �shnet generation algorithm should swipe along, either the horizontal
or vertical axis. The algorithm should swipe along the horizontal axis if there are re-occurring values
in the z-axis coordinates of the walls. If there are re-occurring values in the x-axis coordinates, the
algorithm should swipe along the vertical axis. If neither, or both, of the conditions above are met,
it generally does not matter which direction the algorithm is chosen to swipe along. This function is
included to limit the number of generated voxels outside the environment.
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Discretize walls z and x coordinates

The �rst algorithm makes data points along the edges of the polygon made out of the corners in the
room. It is assumed that the corners can form a closed polygon. The algorithm is shown in Pseudocode
in Alg. 6.

Algorithm 6: Discretize Walls

Input:
1 x: Array of corner x-coordinates
2 z: Array of corner z-coordinates
3 nlin: Number of data points along a line
Result:

4 xlin : Array of data points, x-coordinates
5 zlin : Array of data points, z-coordinates
Data:

6 xlin = [];
7 zlin = [];
8 for i = 1 : length(x) do
9 if i == length(x) then
10 if x(i) == x(1) then
11 xl(i) = x(1);
12 zl(i) = linspace(z(i),z(1),nlin);

13 else
14 m = (z(i) - z(1))/(x(i) - x(1));
15 xl(i) = linspace(x(i),x(1),nlin);
16 zl(i) = m*xl(i) - m*x(i) + z(i);

17 end
18 else
19 m = (z(i) - z(i+1))/(x(i) - x(i+1));
20 xl(i) = linspace(x(i),x(i+1),nlin);
21 zl(i) = m*xl(i) - m*x(i) + z(i);

22 end
23 xlin = [xlin xl(i)];
24 zlin = [zlin zl(i)];

25 end
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Generate �shnet

When the direction is de�ned, and the (x,z) data points are provided by Alg. 6, the next step in the
procedure is to generate the �shnet. In Alg. 7, the algorithm for swiping along the vertical axis is
shown in Pseudocode. The algorithm for generating the �shnet along the horizontal axis has minor
di�erences but uses the same procedure. The size of each side of the voxel is set to 0.5 [length unit] as
a standard. This is not available to change from the UI itself since it can produce errors that result
in program failure. However, if it is desirable to change the size of the voxel, it can easily be done by
altering the source code.

Algorithm 7: Fishnet Generation along Vertical Axis

Input:
1 xl - Array of linearized x-coordinates for walls
2 zl - Array of linearized z-coordinates for walls
3 s - length of square side
Result:

4 cubes : array of square data (x,z)
Data:

5 xlim = max(xl);
6 O = [min(xl), min(zl)];
7 bOK = true;
8 i = 0;
9 xd = round(xl,1);
10 while bOK do
11 L = [O(1) ; O(2) + s];
12 B = [O(1) + s; O(2)];
13 R = [O(1) + s; O(2) + s];
14 if R(1)>xlim then
15 break
16 end
17 xc = �nd(xd==round(R(1),1));
18 zv = zl(xc);
19 zlim = max(zv);
20 if L(1) < xlim then
21 if L(2) < zlim then
22 O(i) = [L(1); L(2)];
23 cubes(i) = [O,L,B,R,O];
24 i = i+1;

25 else
26 O(i) = [B(1); 0];
27 cubes(i) = [O,L,B,R,O];
28 i = i+1;

29 end
30 else
31 bOK = false;
32 end
33 end
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The squares are de�ned with four coordinates: L,B,R and O as Alg. 7 shows. Each of these coordinates
contains x and z components, and are shown for visualization in Fig. 4.6a.
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(a) Fishnet Cube Coordinates

y
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UL0 UR0

BR0

BL0

UL1 UR1

BR1BL1

(b) Region of Interest Example

Figure 4.6: De�nition of a Region of Interest

Generate user-de�ned region of interest

The last algorithm utilizes the presented theory on faces and vertices in Sec. 3.1.4 to make a patch
object based on the user-de�ned coordinates of the ROI volume. The user de�nes the volume using
the following: BL, BR, UL, UR, Y0, Y1 and w. The �rst six variables de�ne the cube, and w indicates
the weight of the cube, recalling the three ROI groups described at the beginning of this section.

In Fig. 4.6b, a ROI volume is presented for visualization. The subscript of either 0 or 1 indicates the
(x,z) coordinates at either Y0 or Y1, accordingly. Fig. 4.7 shows how to add a ROI in the UI which is
done by choosing the Add Region of Interest menu item.

Figure 4.7: Adding a Region of Interest in the User Interface
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The ROI de�ned in Fig. 4.7 can be seen in Fig. 4.8, which shows the result of the Visualize Region of
Interest menu item. Fig. 4.8a shows that the ROI is added according to the coordinates speci�ed in
Fig. 4.7, and Fig. 4.8b shows the 3D representation of the ROI in the environment.

(a) Added Region of Interest 2D View in the User
Interface with Coordinates

(b) Added Region of Interest 3D View in the User
Interface

Figure 4.8: Region of Interest Visualization in the User Interface

4.1.4 Optimization Parameters and JSON Generation

To generate the �nal grid of data points, the optimization parameters need to be speci�ed. First, the
roof and �oor height are de�ned along with the number of data points in the vertical direction. The
voxel height is calculated from Eq. 4.1.

hv =
|ht − hf |

nv
(4.1)

where:

hv - Voxel height
hf - Height at �oor level
ht - Height at top level
nv - Number of vertical data points

Further, the user should also specify the distance between the placement points along the de�ned
placement lines. For each line, a linearly spaced vector is computed from the start point to the end
point. The distance between each point in the x-direction is determined by Eq. 4.2.

dpl =
|xe − xs|
apl · ll

(4.2)
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where:

dpl - Distance between each discrete placement point
xe - X-coordinate at the start of the line
xs - X-coordinate at the end of the line
apl - Placement line accuracy (discrete points per length unit)
ll - Length of line

In Fig. 4.9, the UI window for specifying the �oor height, top height, number of vertical data points
and placement line accuracy.

Figure 4.9: Problem Accuracy

To determine the array of annotations, every data point is evaluated with respect to whether or not it
lies within an obstacle or a region of interest. It is then annotated corresponding to either the obstacle
annotation or the weight of the ROI. This is done using a user-made function, inpolyhedron [69] which
determines if a data point is inside a 3D object made of faces and vertices and unifyMeshNormals [70]
which ensures that all face normals point in the same direction, which is a requirement to determine
if a data point is inside an object.

The JSON �le is then generated when the user selects Generate JSON. The JSON �le consists of arrays
of:

� X-coordinates of grid points

� Y-coordinates of grid points

� Z-coordinates of grid points

� X-coordinates of placement points

� Y-coordinates of placement points

� Z-coordinates of placement points

� Array of annotations

� Camera parameters for all speci�ed cameras

Alternatively, the UI also stores this data in a *.mat �le if the optimization program is written in
Matlab code or the data should be viewed in Matlab for another purpose.
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4.2 Sensor Model Veri�cation

To test and verify the sensor model developed in Sec. 3.2, a test case was made. This test is also used
to verify that the output of the developed UI was correct. It should be noted that the length unit is
not included for either the room size or the sensor range since it is not of importance as long as the
length unit for the sensing range equals the length unit for the environment. The length unit could be
understood, e.g. as meters, for this test.

In this case, two sensors are to be placed with �xed poses. A Brute Force Algorithm was developed
speci�cally for this task. The environment in which maximum coverage is desired can be seen in Fig.
4.10. The camera parameters can be seen in Tab. 4.1

Figure 4.10: Environment Model for Sensor Model Veri�cation

An obstacle is added, as can be seen in the middle of the room. This is added as a Region of Interest in
the UI but de�ned as an obstacle in the program to test the sensor model. The C++ code for �nding
the camera positions can be seen in App. A.8.1. Since two cameras are to be placed, the optimization
program utilizes two nested for -loops outside the main coverage function to ensure that all possible
combinations are evaluated.

Table 4.1: Camera Parameters : Sensor Model Test

Camera Parameters Camera 1 Camera 2
Field of View 60◦ 60◦

Range 8 8
Pan −135◦ 0
Tilt 0 0

The output of the Matlab UI can be seen in Fig. 4.11. The output is only viewed in the XZ-plane at
Y = −6, hence the obstacles which can be seen in Fig. 4.10 are not displayed since they are beneath
the plane in view.
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Figure 4.11: User Interface Output : Sensor Test Model

The result of the optimization algorithm can be seen in Fig. 4.12, with the camera positions being:

Camera 1 (x,y,z) : (5.57692,−6, 15.7308)

Camera 2 (x,y,z) : (0,−6, 4.40816)

Figure 4.12: Optimization Result Visualization for Sensor Model Veri�cation

With this setup, the cameras cover just over 50% of the data points. In this test, there were 1930 data
points, 141 possible camera locations, and 70 obstacle points. In total, the script evaluated 269 million
data points in 38 seconds on an Intel i7-6700K 4.00 GHz CPU. This case study veri�ed the sensor
model, which corresponded with the desired camera model. It also validated the UI output, ensuring
that the JSON �le was correctly exported from Matlab, imported into C++ and used successfully in
the optimization program.
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4.3 Camera Placement Algorithms

This case study aims to develop and compare two optimization algorithms. The �rst algorithm is
a Greedy Algorithm designed to be fast, but not necessarily converge to the global optimum. The
second algorithm computes all possible combinations of placing k cameras with n possible camera
locations and evaluates every combination to �nd the combination which yields the highest coverage.
The problem used to compare the algorithms will be limited to a relatively small problem in this section
since the aim to benchmark the two algorithms.

4.3.1 Greedy Algorithm

As mentioned in Sec. 3.7.1, the Greedy Algorithm is a popular heuristic method for solving optimization
problems. It converges to a solution extremely fast, since it only considers the best solution at a given
iteration. The drawback of this algorithm is that the solution may not be the global optimum.

In this thesis, A Greedy Algorithm is developed for several reasons. Firstly, it can act as a reference
for other algorithms concerning optimality. If the solution of the Greedy Algorithm is better than
the solution of another algorithm, it can be concluded that this algorithm can not guarantee a global
minimum for the given problem. Another function of the Greedy Algorithm is that it can provide an
initial guess for other optimization algorithms, such as a suggested number of cameras needed to cover
a given volume.

The suggested Greedy Algorithm is presented in Pseudo code in Alg. 8. In each iteration, the total
coverage of the previously placed cameras is calculated. The objective of each iteration is then to �nd
the best position and pose of the next camera, and re-calculate the coverage. The problem statement
can be formulated in several ways with only minor changes to the algorithm, such as

max

ns∑
i

Ci s.t. ns = ndef (4.3)

min(ns) s.t.

ns∑
i

Ci ≥ Cdef (4.4)

where:

ndef - De�ned number of sensors to be placed
Cdef - De�ned number of data points to be covered
Ci - Coverage array for camera i
ns - Number of cameras

It could also be extended to handle variable tilt angle. The variable tilt angle can be implemented
in the same manner as variable pan angle by adding another for -loop. The C++ code of the Greedy
Algorithm can be found in App. A.8.2.

51



4.3. CAMERA PLACEMENT ALGORITHMS

Algorithm 8: Greedy Placement Algorithm

Input:
1 numcams - Number of cameras to be placed
2 campx, campy, campz - Arrays of placement points
3 datax, datay, dataz - Arrays of data points
4 pans - Array of pan con�gurations
5 obstacles - Array of obstacle points
6 fov,range,tilt - Camera parameters
Result:

7 x_out, y_out, z_out : Arrays of best camera position
8 pan_out - Array of pan angles
Data:

9 lcamp = length( campx ); ldata = length( datax );
10 out_coverage (1:ldata ) = 0; f_coverage (1:ldata ) = 0;
11 for i = 1 : numcams do
12 if i > 0 then
13 for covcount = 1:ldata do
14 if f_coverage(covcount) == 1 then
15 out_coverage(covcount) = 1 ;
16 end
17 end
18 end
19 max = 0 ;
20 for j = 1:lcamp do
21 x = campx(j) ; y = campy(j) ; z = campz(j) ;
22 for k = 1:length( pans ) do
23 pan = pans(k) ; sum = 0 ;
24 for m = 1:ldata do
25 if out_coverage(m) != 1 then
26 Compute coverage b : b = 1 if covered and visible
27 if b == 1 then
28 coverage(m) = 1 ;
29 else
30 coverage(m) = 0 ;
31 end
32 sum = sum +b ;

33 end
34 end
35 if sum > max then
36 max = sum ; num = j ;
37 for covc = 1:ldata do
38 f_coverage(covc) = coverage(covc) ;
39 end
40 pan_out(i) = pan ; x_out(i) = x ; y_out(i) = y; z_out(i) = z;

41 end
42 end
43 end
44 end
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4.3.2 Brute Force Algorithm

The Brute Force Algorithm (BFA) aims to compute all combinations of possible camera placements.
Given n possible placement points and k di�erent cameras to be placed, the total number of combina-
tions can be determined by the binomial coe�cient,

(
n
k

)
. The formula for the binomial coe�cient can

be seen in Eq. 4.5.

(
n

k

)
=

n!

k!(n− k)!
(4.5)

When k and n increase to be large numbers, the binomial coe�cient evaluates to be extremely large,
making this algorithm computationally heavy. The rapid increase of the binomial coe�cient is visual-
ized in Fig. 4.13. The advantage of the BFA is that it is deemed to �nd the global optimum.
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Figure 4.13: Visualization of the Rapid Increase of the Binomial Coe�cient

The Brute Force Algorithm is formulated using nested for -loops to iterate through all possible solutions,
and then calculating the best positions and poses for a given number of cameras.

The algorithm can be presented in �ve steps:

1. Load �les from JSON and de�ne the number of cameras and possible pan angles

2. Compute coverage from all poses at all positions

3. Make a matrix of all possible combinations for placing k cameras in the given positions and poses

4. Evaluate total coverage by looping through all possible combinations

5. Find best combination and print results

The Pseudo code of the algorithm can be seen in Alg. 9, where steps 2-4 are covered. The function
for generation of the combinations matrix is inspired by the Rosetta Combinations code [71].

The BFA is expandable to k -coverage and tilt angle variation without altering too much of the code.
K -coverage is an important aspect, and will be covered in Sec. 4.6. The C++ code of the BFA can be
found in App. A.8.3.
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Algorithm 9: Brute Force Placement Algorithm
Input:

1 numcams - Number of cameras to be placed
2 campx, campy, campz - Arrays of placement points
3 datax, datay, dataz - Arrays of data points
4 pans - Array of pan con�gurations
5 obstacles - Array of obstacle points
6 fov,range,tilt - Camera parameters
Result:

7 pannum - Pan angle indices for best combination
8 camnum - Camera indices for best combination
Data:

9 ldata = length(datax);
10 lcamp = length(campx);
11 lpans = length(pans);
12 for i = 1:lcamp do
13 Set current camera position x,y,z ;
14 for k = 1:lpans do
15 Set current pan angle pan ;
16 iter = iter + 1;
17 for j = 1:ldata do
18 Determine coverage and visibility ;
19 and store in b(iter,j);

20 end
21 end
22 end
23 combarr = nchoosek(1:1:(lcamp*lpans),ncams);
24 for m = 1:length(combarr) do
25 bcombs = false(1,ldata);
26 for n=1:numcams do
27 ind = combarr(m,n);
28 bcombs = bcombs OR b(ind,1:end);

29 end
30 sumtot(m) = sum(bcombs);

31 end
32 valmax = max(sumtot);
33 paramind = �nd(sumtot == valmax);
34 outdata = combarr(paramind,1:end);
35 for l = 1:numcams do
36 ind = outdata(j) - 1;
37 cou = �oor(ic/lpans);
38 pannum(j) = outdata(j) - cou*lpans;
39 camnum(j) = cou + 1;

40 end
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4.3.3 Comparison

The algorithms are compared for 1 . . . 4 cameras for a test case with the following parameters:

� Number of cameras : 1 . . . 4

� Number of possible camera positions : 70

� Possible pan angles : (−3 · π/4, 0, π/2)[rad]

� Number of data points to be covered : 1490

� Number of obstacle points : 98

The optimization task is then to maximize coverage given Ndef number of cameras:

max

ns∑
i

Ci (4.6)

With the following constraints

ns = ndef (4.7)

xc, yc, zc ∈ P (4.8)

α ∈ αdef (4.9)

r = 8 (4.10)

β = 0 rad (4.11)

f = π/3 rad (4.12)

where:

ndef - De�ned number of sensors to be placed
Ci - Coverage array for camera i with length equal to the number of data points to be covered
N - Number of cameras
xc, yc, zc - Camera positions
P - Possible camera positions
α - Pan angles
αdef - Possible pan angles
r - Camera range
f - Camera �eld of view
β - Camera tilt angle

The algorithms were compiled in C++ using the following command.

g++ code.cpp -O3 -o outexec

The -O3 �ag speci�es that the executable outexec should be compiled for optimal speed when running
the executable. The executable is run using the following command.

cat json�le.json | ./outexec --stdin

The tests are performed on an Intel i7-6700K 4.00 GHz CPU.

The results of the BFA can be seen in Tab. 4.2. For all number of cameras, the program was executed
�ve times to get the mean computational time and verify that the results were consistent.
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Table 4.2: Brute Force Algorithm Test Case Results

No. Cameras 1 2 3 4
No. combinations 210 21945 1521520 78738660
X positions [0] [0, 7] [0, 0, 12] [0, 0, 12, 7.54]
Z positions [7] [12, 0] [5, 14, 0] [3, 16, 0, 12.82]
Pan angles [0] [0, π/2] [0, 0, π/2] [0, 0, π/2,−3 · π/4]
Sum coverered datapoints 400 745 947 1088
Computational time [s] 0.1466 0.3263 18.395 1170.77

The Greedy Algorithm was also tested for the same problem for 1 . . . 4 cameras. The program was
executed �ve times for this algorithm also. The results of the Greedy Algorithm can be seen in Tab.
4.3.

Table 4.3: Greedy Algorithm Test Case Results

No. Cameras 1 2 3 4
X positions [0] [0, 7] [0, 0, 12] [0, 0, 12, 0]
Z positions [7] [12, 0] [7, 14, 0] [7, 14, 0, 1]
Pan angles [0] [0, π/2] [0, 0, π/2] [0, 0, π/2, 0]
Sum coverered datapoints 400 745 921 1044
Computational time [s] 0.1514 0.2534 0.3200 0.3654

As can be seen from the tables, the Greedy Algorithm computes the same positions as the Brute Force
Algorithm for one and two camera(s). For more than two cameras, the Greedy Algorithm calculates
sub-optimal solutions. When comparing the total computational time the Greedy Algorithm is seen to
have the superior computational time. Where the computational time of the Brute Force Algorithm
increases rapidly when more cameras are introduced, the Greedy Algorithm only uses slightly more
time due to the decreasing search space for each iteration.
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4.4 Developing a Genetic Algorithm

Based on the presented theory on algorithms in Sec. 3.7, a Genetic Algorithm (GA) is designed
for the sensor placement problem. The intention of developing a GA is to make an approximation
algorithm that has a higher probability of �nding the optimal solution than the Greedy Algorithm
while converging to the solution faster than the Brute Force Algorithm.

The Genetic Algorithm is not as prone to getting stuck in local optima as the Greedy Algorithm due
to the randomness introduced in several parts of the algorithm. This is an important aspect in making
good approximation algorithms. The GA developed in this thesis has rather conservative schemes
for selection of parents and children, where survival of the �ttest is used as a basis for the schemes.
Also, the presented crossover method favors the parent with the highest �tness although the method
introduces a random variable for children also to inherit genes from the weakest parent. In this section,
the design of the algorithm will be presented and compared to the Greedy Algorithm and the Brute
Force Algorithm using the same tests as presented in Sec. 4.3.

4.4.1 Algorithm Design

The algorithm is designed to solve the decision version of the sensor placement problem, formulated
as:

Given the number of sensors, their possible positions and poses, how many data points can be covered?

Each solution can be scored using a �tness function:

F =

ns∑
i=1

Ci (4.13)

The coverage for sensor i, Ci, is calculated using the same methods as described for the Brute Force
Algorithm.

Initialization

The population is initialized with user-determined population size. The �rst population consists of
randomly chosen feasible solutions based on the possible sensor locations and poses. Each individual
consists of ns features, where each feature is an integer which corresponds to the sensor index. This
index can be converted to sensor position and pan angle. The �rst population is then evaluated using
the �tness function.

Parent Selection Scheme

The parent selection scheme is based on the roulette selection principle [72]. For each individual in the
population, a probability is assigned based on its �tness. I = (I1, I2, . . . , In) is a population with the
corresponding �tness scores F = (F1, F2, . . . , Fn). A probability is then given to each individual in the
population according to the following equation

pk =
Fk
n∑
i=1

Fi

(4.14)
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The parents are then chosen by calculating a random number r ∼ U(0, 1) and selecting the appropriate
parent given the random number. The probabilities are sorted in a list where the sum of all elements is
equal to one. Then, starting from the top of the list, the �tness of the individual is subtracted from the
random number until the sum of this is equal to, or below, zero. In this way, the probability is highest
for choosing the �ttest individuals as parents. There are several other methods of selecting parent
individuals such as the tournament selection principle [73]. The roulette selection method presented
in this thesis is conservative and has a signi�cant selection pressure, meaning that it is biased towards
selecting the �tter solutions. If the selection pressure is too high, the algorithm may be stuck in local
optima, and if the selection pressure is too low, the algorithm becomes too random, which makes the
design of the selection scheme an essential part of the GA design.

Crossover

Similarly to the roulette selection principle, the presented crossover method has a large selection
pressure to favor the �ttest parent when combining the features of two parents. The most popular
crossover method is the single point crossover which is shown in Fig. 4.14, where two children are
produced from the two parents. By de�ning a cut, both children inherit features from both parents.

1 0 0

0 1 0 1 0 0 1 1

1 1 1 0 1

Cut

1 0 0 1 0 0 1 1

0 1 0 1 1 1 0 1

Parents Children

Figure 4.14: Single Point Crossover Method

In this thesis, another method is used. Unlike the single point method, only one child is produced from
two parents; hence the children pool is half the size of the parent pool. The method is inspired by the
fusion operator suggested by [61]. Suppose two parents are chosen for crossover, P1 and P2, with the
�tness scores f1 and f2. Then, a probability can be assigned to both parents in the same way as for
the parent selection. Also, say that the parents have a length of k features. For each feature of the

child C(n), n ∈ k the probability of choosing feature n from P1 is
f1

f1 + f2
unless P1(n) = P2(n), in

which case the child will inherit P1(n) regardless.

Mutation

Where both the selection and crossover methods have a large selection pressure, the mutation provides
random changes of the child to allow for diversity. By generating a random number rm ∼ U(0, 1), one
random feature of the child will be mutated if rm > mf , where mf is the mutation factor.

Children Selection and New Population

The �ttest half of the children are selected, without any randomized selection method, to replace the
lowest ranked individual in the current population to form a new population. The full algorithm can
be seen in Pseudocode in Alg. 10, and as a Matlab script in App. A.7.1.
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Algorithm 10: Genetic Algorithm for the Sensor Placement Problem

Input:
1 sp - Size of population
2 npar - Number of parents per generation
3 ng - Number of generations
4 mf - Mutation factor
5 ns - Number of cameras to be placed
Result:

6 Positions and angles for best sensor positions
Data:

7 Initialize sp randomly chosen individuals in a population
8 Evaluate �tness of all individuals in the initial population
9 while n < ng do
10 Select npar parents for reproduction based on the roulette selection scheme
11 while i < sch do
12 Choose two parents from parent pool based on the parent selection scheme
13 Apply probabilistic �tness based crossover to create one child
14 Mutate the child with a probability of mf (mf ∈ (0, 1))
15 i = i+ 1 ;

16 end
17 Evaluate the �tness of all children
18 Select the best half of the children pool to replace the worst individuals the existing

population
19 Evaluate �tness of the new population
20 n = n+ 1 ;

21 end
22 Convert result to camera coordinates and camera angles
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4.4.2 Tuning the Variables in the Genetic Algorithm

A test was made to investigate the e�ect of the population size, the number of generations and mutation
factor in the Genetic Algorithm. Four tests were made, where, for each of the four tests, three sub-tests
(1-3) were conducted with varying population size and number of generations. The main tests (A-D)
were done with the setup seen in Tab. 4.4.

Table 4.4: Test Setup for Mutation Factor Tests

Test no. ndp ns np ncp nco
A 1490 2 3 70 21945
B 1490 3 3 70 1 521 520
C 1490 4 3 70 78 738 660
D 1490 5 3 70 3.2440e+09

where:

ndp - Number of data points in the universe to be covered
ns - Number of cameras to be placed
np - Number of possible pan angles
ncp - Number of possible camera placement points
nco - Number of possible placement combinations given by the binomial coe�cient

Since the test setup is the same as for the Greedy Algorithm and the Brute Force Algorithm, the
global optimum has been found which was desirable to ensure proper veri�cation methods for the
Genetic Algorithm. The tests were executed in Matlab on an i7-490K CPU, which should suggest
slower execution time than it would have been in C++ on an i7-6800K CPU, which was used for the
Brute Force Algorithm and Greedy Algorithm tests previously presented.

The population size, number of generations and average computational time is shown in Tab. 4.5.
It can be seen that, for smaller problems, the Genetic Algorithm is slower than the Brute Force
Algorithm. For larger problems, however, the Genetic Algorithm is considerably faster than the Brute
Force Algorithm. For each test (A1-D3), 15 tests are done for each of the seven di�erent mutation
factors: (1/2, 1/4, 1/3, 1/5, 2/3, 1/6, 3/4). This means that the algorithm is executed 1260 times in
total. Mutation factors higher than 3/4 did not yield good results because then the algorithm was
more or less a random search algorithm. With mutation factors lower than 1/6, the algorithm became
too similar to a hill-climbing algorithm and got stuck in local minima. The �tness score of the best
individual for all tests can be seen in App. A.3. In the table below, sp indicates the population size,
ng is the number of generations and tc is the average computational time in seconds.

Table 4.5: Variables and Timing for Mutation Factor Tests

Test No: A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
sp 500 300 900 1000 1500 1200 2500 1500 2000 2000 2800 3200
ng 50 70 150 150 150 200 300 200 250 250 300 320
tc 1.27 2.33 7.87 11.86 23.62 14.59 33.86 12.6 21.51 25.69 44.80 54.3

Fig. 4.15 to 4.18 show a visual representation of the mean value of all tests along with the global
optimal solution. The �gures clearly show that the higher mutation rates yield the best results. When
looking at the �gures, it should be noted that the optimal value (black line) is only reached if all 15
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tests yielded the optimal result. For test A-C, the optimal results were reached in all 15 tests for
mutation rate equal to 3/4. For test D, however, only 14 out of 15 tests with mutation factor 3/4
reached the global optimum which results in a mean value below the global optimum.
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Figure 4.15: Mean Fitness Scores for Test A with Varying Mutation Factors
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Figure 4.16: Mean Fitness Scores for Test B with Varying Mutation Factors
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Mean Results of Mutation Factor Test C

Test 1: 2500 ind., 300 gen.
Test 2: 1500 ind., 200 gen.
Test 3: 2000 ind., 250 gen.

Figure 4.17: Mean Fitness Scores for Test C with Varying Mutation Factors
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Mean Results of Mutation Factor Test D

Test 1: 2000 ind., 250 gen.

Test 2: 2800 ind., 300 gen.

Test 3: 3200 ind., 320 gen.

Figure 4.18: Mean Fitness Scores for Test D with Varying Mutation Factors
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It has been shown in this case study that the Genetic Algorithm can �nd very good, and more often
than not, the optimal solution of the sensor placement problem in a reasonable time. By having a high
selection pressure on both the selection and crossover phases of the algorithm, the best solution was
found by keeping the mutation rate high. For all tests, the number of parents in the parent pool, and
children generated is equal to

npar =
3 · sp

10
(4.15)

nch =
npar

4
(4.16)

where:

npar - Number of parents chosen for crossover
sp - Population size
nch - Number of children chosen to replace the least �t individuals in the population

It must be emphasized that the Genetic Algorithm can never guarantee to �nd the global optimum
of the presented problem because it is random to a certain degree. However, contrary to, e.g., the
Monte-Carlo search which is strictly random it should be heavily in�uenced by the �ttest solution in
the population, increasing the probability of �nding the optimal solution.

To visualize the di�erence in scalability for the GA, BFA and Greedy Algorithm, a comparison can be
seen in Fig. 4.19.
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Figure 4.19: Comparison of Computational Times for the Developed Algorithms

As can be seen from the �gure, the Genetic Algorithm provides better scalability compared to the
BFA since the BFA proliferates for increasing input sizes, e.g. with a factor of ≈ 60 from three to four
cameras.
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4.5 Speeding Up a Brute Force Algorithm

In Sec. 4.3.2 the Brute Force Algorithm (BFA) is presented and tested on a CPU. It can be seen clearly
that for larger problems, the computational time of this algorithm would be too large for practical use
since the binomial coe�cient proliferates. Each combination is independent of the others, and for each
combination, the calculations are the same. These factors indicate that parts of the algorithm can
be converted to a kernel function. For each combination, simple instructions are performed such as
for -loops, or- and addition-operators.

4.5.1 Converting to CUDA

The C++ code is converted to CUDA code using the principles presented in Sec. 3.10. Since the code
is compiled with nvcc and clang-3.8 instead of g++, some libraries can no longer be used. The json11
library is not supported by CUDA which caused issues since it is essential in converting the code from
JSON to readable arrays in C++. The proposed solution is to divide the problem into two di�erent
programs. The �rst program is responsible for importing the JSON �le and doing the calculations for
determining the coverage matrix and the combinations matrix. These matrices are exported to two
separate *.txt �les which can be loaded into the second program. The *.txt �les are imported into the
second program which is responsible for the optimization part. In the second program, the user has to
de�ne some parameters for the given problem:

� Number of data points

� Number of pan angles available

� Number of possible sensor positions

� Number of sensors to be placed

The *.txt �les are converted to int and bool 1D arrays. Since these arrays can become quite large,
they need to be pre-allocated in the heap instead of allocating them on the stack which can cause
a segmentation fault. The *.txt �le is imported using a while loop which utilizes the shift operator
to collect the items in the �le and store them in the correct locations in the arrays. These arrays
are then copied to pre-allocated memory in the GPU. This limits the number of arrays to be copied
onto the GPU memory to three arrays; the combination array, the subsets array and an array which
stores the �tness of each combination. The arrays are then used in the kernel function which is being
executed on the grid of threads and blocks. Finally, the �tness array is copied back to device memory
for post-processing, before the allocated memory is freed.
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4.5.2 Sizing the Problem for a NVIDIA GTX 1080 GPU

In Tab. 4.6, the hardware restrictions for the NVIDIA GTX 1080 can be seen. With 2560 CUDA cores
distributed in 20 multiprocessors it can handle large grid sizes. The maximum restriction of blocks in
a 1D grid is 2 147 483 647, and the maximum number of threads can be computed by multiplying the
warp size with the number of threads per warp which evaluates to 32 · 32 = 1024 threads per blocks.
Finally, the global memory is just above 8 GB, which is important to keep in mind when programming
CUDA.

Table 4.6: NVIDIA GTX 1080 Device Query

Parameter Value
Compute Capability 6.1
Multiprocessors 20
Max Blocks in the Grid (1D) 2 147 483 647
Warp Size 32
Number of CUDA Cores 2560
Global Memory [MB] 8113

The number of blocks in the grid is determined by the problem size given by Eq. 4.17.

nb =
nc + nth − 1

nth
(4.17)

where:

nc - Number of combinations given by
ncp!

ns! · (np · ncp − ns)!
nb - Number of blocks in the grid
np - Number of available pan angles
ncp - Number of possible sensor locations
ns - Number of sensors to be placed
nth - Number of threads per block

If the block size calculated by Eq. 4.17 exceeds the maximum capacity given in Tab. 4.6, then the
problem must be chopped up and executed in several kernel calls.

Memory Considerations

As previously mentioned, the maximum global memory for the GTX 1080 is just above 8 GB. If
the arrays that should be copied onto the GPU exceeds this limit, the problem must be chopped up
similarly as for the block size. The total required memory in MB can be determined by Eq. 4.18.

M =
(nc ·MI) + (ndp · ncp · np ·MB) + (nc · ns ·MI)

10242
[MB] (4.18)

where:

MI ,MB - Bytes allocated by integer and boolean values, respectively
ndp - Number of datapoints to be observed
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4.5.3 Kernel Function

The kernel function is distributed to the di�erent multiprocessors of the GPU which are responsible
for thread execution. The kernel function for the GPU is made from the most computationally heavy
calculations done in the BFA, which can be seen in lines 28-34 in Alg. 9. The kernel function can be
seen as a CUDA code snippet in Fig. 4.20.

1 __global__ void mykernel(int* devarr, bool* subs, int* sum,
2 unsigned long len, unsigned long nsens, unsigned long usize)
3 {
4 // Kernel function to run on GPU
5 // Defining variables (stored in each kernel)
6 unsigned long th_id = blockIdx.x * blockDim.x + threadIdx.x;
7 bool barr[1490] = {0}; //Array for storing coverage
8 int totsum = 0; // Sum of covered points
9

10 if(th_id < len){
11 for(unsigned long i = 0; i < nsens; i++)
12 {
13 int ind = devarr[th_id*nsens + i];
14 for(unsigned long j = 0; j < usize; j++)
15 {
16 if(barr[j] == 0)
17 {
18 if(subs[ind*usize + j] == 1){
19 barr[j] = 1;
20 totsum +=1;
21 }
22 }
23 }
24 }
25 sum[th_id] = totsum;
26 }else sum[th_id] = 0;
27 }

Figure 4.20: CUDA Code Snippet for the Brute Force Kernel Function

When comparing the mentioned instructions in the original BFA to the presented kernel function, a
considerable resemblance can be seen. The main di�erence is that the outer for loop is removed in the
kernel function. Instead of sequentially looping through all combinations in the CPU, the combinations
are distributed onto the grid in the GPU, enabling each thread to handle its unique combination given
by the thread id. Each thread stores the variables th_id, barr,totsum and ind inside local memory
which can only be accessed by the thread. This makes each kernel execution unique, and by combining
the result from each thread into an array (sum) the kernel represents the outer for loop of the BFA.
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4.5.4 Test Results

The full CUDA program and the program for converting the information from the JSON �le to *.txt
�les can be seen in App. A.9.1 and App. A.9.2. The code was compiled in Linux with nvcc V8.0.61
and clang V3.8. The command for compiling the code can be seen below:

nvcc -ccbin clang-3.8 -lstdc++ -arch=sm_61 main.cpp kernel.cu -o out_cuda

It is essential to include the architecture �ag to specify that the code is compiled for the GTX 1080
GPU which has compute capability 6.1. This allows for more than 65535 blocks per grid, which is the
maximum limit for previous architectures.

To compare the results of the CUDA program with the CPU BFA, four tests are done. These tests
are the same as was done in Sec. 4.3. Tab. 4.7 shows the results of the test concerning memory
usage and utilization of the GPU. As can be seen from the table, both the required power usage and
the temperature increases when the number of blocks increases. For smaller tests, the power usage
and temperature stay below 50W and 50◦C which indicates that the GPU is not fully utilized. For
the larger tests, however, both the temperature and power usage is higher, showing more signi�cant
workload on the GPU.

Table 4.7: GPU Test Results

Number of Sensors 1 2 3 4
Required Number of Blocks 1 22 1486 76894
Total Memory Used [Mb] 0.32 0.58 24.66 1575.1
Average Peak Temperature [C] 47 48 52 55
Average Peak Power Usage [W] 44 45 115 139

In Tab. 4.8, the comparison in runtime between the kernel call execution time and the CPU equivalent
is shown. Each test was done ten times to ensure that the results were correct and consistent.

Table 4.8: GPU vs CPU Computational Results

Number of Sensors 1 2 3 4
Avg. GPU Calculation Time [s] 0.00309 0.00597 0.145 7.601
Avg. CPU Calculation Time [s] 0.146 0.3260 18.3950 1170.8
Achieved Speedup x 47.25 x 54.60 x 126.86 x 154.03

As can be seen in Tab. 4.8, the speedup is considerable, especially when the problem size increases.
Considering the power usage and temperature, the speedup becomes larger for more complicated
problems since more of the GPU is utilized.
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4.6 Adding K-Coverage Functionality

For many practical problems, it is desirable, or even necessary, to be able to de�ne regions in the
environment which need to be covered by multiple sensors. The standard coverage formulation is �at
coverage, which means that the optimization goal is to have as many data points as possible visible
and covered by one sensor. K -coverage implies that at least k sensors should cover every/some data
points. It is common to set k -coverage in certain Regions of Interest (ROI).

In the literature, there are several methods of implementing k -coverage to the sensor placement prob-
lem. For omnidirectional sensors, the k-UC (k-Unit-disk Coverage) problem and the k-NC (k-Non-
unit-disk Coverage) problem [74] are often used. The k-UC problem assumes that all sensors have the
same sensing length, whereas the k-NC problem allows for di�erent sensing ranges.

The authors of [75] presents two methods of solving the k-coverage problem. The �rst is a naive, but
intuitive, approach to merely �nd good, or even optimal, placement to ensure 1-coverage of the region
of interest and then just duplicating k sensors in these positions. This may result in an excessive
number of sensors, and many data points that have higher than k -coverage.

The second method improves the duplication approach by determining how much of the environment
that do not satisfy the k -coverage constraint after placing sensors to ensure 1-coverage.

The similarity between the methods proposed above is that they formulate the k -coverage as a hard
constraint. A hard constraint, in optimization problems, must be satis�ed for the solution to be
feasible. Constraints can also be de�ned as soft constraints, meaning that the solution can be feasible
without the constraint being ful�lled, although the solution will most likely be better if the constraint
is fully satis�ed.

In this thesis, the k -coverage constraint is de�ned as a soft constraint, although if it is not satis�ed,
the solution is heavily penalized. Thus, the optimal solution will most likely satisfy the constraint
fully. The general idea is that if every data point in the ROI is not covered by k sensors, the �tness
function will be penalized. The penalty will be proportional to the coverage percentage of the ROI. A
proportionality constant ηk determines how heavily the solution is penalized according to Eq. 4.19.

P = ηk ·
nroi
nroi∑
i=0

ci

(4.19)

where:

ηk - Penalization constant
ci - ROI coverage of point i. ci = 1 if point i is covered by the required k sensors.
nroi - Number of data points which requires k-coverage

4.6.1 Implementation

For the Brute Force Algorithm, the penalty is introduced by �rstly de�ning an annotation array R
which is de�ned as

∀i ∈ (0, ndp), Ri =


1 if point i requires coverage from one sensor

2 if point i requires coverage from two sensors

3 if point i requires coverage from three sensors

(4.20)
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There are several methods of ensuring k -coverage. The annotations array is required for determining if
a given solution is satisfactory k -covered. For the GPU-based BFA, the result of this is another required
*.txt �le for storing the annotations. Recalling the output from the UI, the annotations array is already
stored in the JSON �le, meaning that implementing this requires little e�ort. By introducing the
annotations array, the equation for calculating the required memory size is slightly altered. Previously,
Eq. 4.18 described the memory requirement. The updated equation which accounts for the annotations
array can be seen in Eq. 4.21.

M =
(nc ·MI) + (ndp · ncp · np ·MB) + (nc · ns ·MI) + (ndp ·MI)

10242
[MB] (4.21)

Although the added memory is minimal, it is important to consider, since the memory limitations on
the GPU cannot be exceeded. The annotations array is allocated and copied to the GPU memory using
the same method as for the other arrays. Regarding the Genetic Algorithm, k -coverage is included in
the same manner as in the kernel function for the BFA, described in Alg. 11. K -coverage will not be
included in the Greedy Algorithm since it will mostly be used for initial evaluation purposes due to its
sub-optimal performance compared to the other algorithms. However, introducing k -coverage in the
Greedy Algorithm could be done by weighting the ROI data points higher than normal data points
until satisfactory k -coverage is achieved, then placing the rest of the cameras using a Greedy method
to cover as much of the remaining scene as possible.

Algorithm 11: K-Coverage Algorithm

1 Given a combination of ns sensors
Input:

2 sc = 0 - Sum variable
3 P = 0 - Penalty
4 covk - K-coverage array
5 sumarr - Array for storing total coverage
Result:

6 fitness - Fitness of current combination
Data:

7 for i = 1 : ns do
8 for j = 1 : ndp do
9 if point j is covered by sensor i then
10 covk(j) = covk(j) + 1 ;
11 end
12 end
13 end
14 for k = 1 : ndp do
15 if point k is satisfactory covered then
16 sumarr(k) = 1 ;
17 if point k is a ROI point then
18 sc = sc+ 1 ;
19 end
20 end
21 end
22 Set penalty according to ROI coverage if k-coverage is not achieved;
23 fitness = sum(sumarr)− P
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4.7 High Accuracy Final Test

This case study aims to collect all the previous work and combine it into a real case with higher
accuracy, i.e. more complexity, than previously presented. This problem concerns a robotic test
laboratory located at the Mechatronics Innovation Lab (MIL) in Grimstad. The 3D model of the
environment can be seen in Fig. 4.21. Multiple sensors are to be placed along the walls to maximize
the coverage of the environment. The area in the bottom right corner is not considered in this task
since coverage of this area is not necessary. It should, therefore, be excluded in the User Interface.
The problem requirement is to cover > 90% of the environment with as few sensors as possible given
the sensor parameters. If the coverage is improved drastically by adding one sensor even though the
coverage requirement is ful�lled, it may be desirable to do so. The sensor parameters are given as:

� Range: 9[m]

� Field of View (horizontally and vertically): 45◦

� Tilt : 30◦ downwards

The desired voxel size is 0.5x0.5x0.5[m3] (x,y,z). The area of the room is approximately 192[m2]

and the height is 6[m]. The expected number of voxels is therefore
192 · 6
0.53

= 9216. Most likely, the

number of voxels will be slightly lower than this prediction due to the quadratic approximations in the
discretization of the environment.

(a) Full 3D Scene (b) 3D Scene Details

Figure 4.21: 3D Environment for the High Accuracy Test

The cameras should be placed at roof height, 6[m], along speci�ed walls shown in Fig. 4.22b . The
placement accuracy is set to 0.5[m], resulting a total of 134 possible camera locations.
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A region of interest is added in an area where the gantry robot can interact with one of the other
robots, as can be seen in the �gure. This volume is especially important and therefore 100% of it must
be covered by at least two cameras. The ROI can be seen in Fig. 4.22a. The region of interest is
de�ned by the corners (x,z): (3, 11), (6, 11), (3, 6) and (6, 6), at height (y) 0 to −3.

(a) Region of Interest Final Test (b) Placement Lines in the Final Test

Figure 4.22: De�ning the Region of Interest and Placement Lines for the Final test

The output of the User Interface can be seen in Fig. 4.23, which shows the point cloud of the ROI and
the obstacles. As can be seen from the �gure, the scene is accurately reproduced.

(a) Obstacles and ROI 3D View (b) Obstacles and ROI XZ View

Figure 4.23: JSON Output Region of Interest and Obstacles Final Test

In total, the environment is represented by a total of 9084 data points. 1317 of these are considered
obstacles, and 360 points are considered as a ROI. All tests are executed on an Intel i7-6700K running
on Linux. A combination of Matlab and C++/CUDA code is used.
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4.7.1 Case Analysis Using the Greedy Algorithm

The Greedy Algorithm is used to investigate how many cameras are needed and which pan angles
to choose from for this problem. Therefore, the Greedy Algorithm is executed for 1 . . . 10 cameras,
with the following available pan angles: [0, π/4, π/2, 3 · π/4,−π/4,−π/2,−3 · π/4]. The ROI is not
considered in this analysis, as the aim is to merely determine the increase in coverage as the number
of cameras increases.

The Greedy Algorithm is chosen due to the decreasing problem-size which results in slow conver-
gence time, whereas the BFA computational time, on the other hand, increases rapidly for increasing
problems. This makes the Greedy Algorithm very useful in the initial analysis of the problem. The
computational time of the di�erent tests with the Greedy Algorithm can be seen in Fig. 4.24.
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Figure 4.24: Computational Time for the Greedy Algorithm

As previously proven, the Greedy Algorithm will, presumably not produce the optimal result. Thus,
the coverages listed in Tab. 4.9 will most likely be improved by both the BFA and the GA. In the table,
Sa and Sr,a indicate the total accumulated coverage and the accumulated ROI coverage, respectively,
for the associated sensor number and the previous sensors.

Table 4.9: Greedy Algorithm Analysis Results

Sensor No. 1 2 3 4 5 6 7 8 9 10

X Position 8.81 0 13.5 0 0 9.38 0 13.93 4.83 1.5
Z position 10.93 11 0 0 16.5 10.01 4.5 3.34 16.83 0
Pan Angle −3 · π/4 π/4 3 · π/4 π/4 π/4 −π/2 π/4 −3 · π/4 −π/2 π/4
Sa(%) 39.2 61.1 76.2 90.6 92.6 94.1 98.4 99.0 99.7 99.9
Sr,a(%) 0 0 0 7.8 7.8 9.4 86.7 86.7 96.1 96.7

From the above analysis, it can be seen that the Greedy algorithm produces acceptable results con-
cerning coverage, but the ROI is not properly covered for any number of cameras. However, the results
suggest that the number of cameras should be somewhere between 3 and 6 cameras to satisfy the
requirements for this task.
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4.7.2 Genetic Algorithm

In the previous analysis, the number of cameras were limited to 1 . . . 10 cameras. In this section, the
Genetic Algorithm (GA) will be used to obtain more information regarding the minimum number of
cameras to satisfy the requirements. Contrary to the Greedy Algorithm, the GA will maximize the
coverage with respect to the ROI coverage requirement. The penalty function is de�ned as:

P =


η · nr

cr
if cr > 0 && cr < pc · nr

η · nr if cr == 0

0 if cr ≥ pc · nr

(4.22)

where:

η - Penalization constant
cr - Sum of covered ROI data points
nr - Number of data points in the ROI

pc - Required coverage of ROI

(
%

100

)

The following parameters are used in the GA:

Table 4.10: Genetic Algorithm Parameters Final Test

No. Cameras Req. ROI Coverage [%] η Population Size Generations
3 100 3500 3000 300
4 100 4000 4000 400
5 100 4000 5000 500
6 100 4000 6000 600

The available pan angles for the GA are: (0, π/4,−3 · π/4) [rad].For each number of cameras, three
tests are done to ensure consistent solutions. These tests are performed using Matlab, the Matlab code
can be seen in App. A.10.1. The timing can be seen in Fig. 4.25.
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Figure 4.25: Computational Time for the Genetic Algorithm
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The results are shown in Tab. 4.11.

Table 4.11: Genetic Algorithm Final Test Results

Test X Positions Z Positions Pan Angles Cov [%] ROI Cov [%]

3A [0, 0, 6.5] [7.5, 9.5, 0] [0, 0, π4 ] 59.1 100

3B [0, 0, 6.5] [7.5, 9.5, 0] [0, 0, π4 ] 59.1 100

3C [0, 0, 6.5] [7.5, 9.5, 0] [0, 0, π4 ] 59.1 100

4A [0, 0, 0, 7] [5.5, 7.5, 9, 0] [0, 0, π4 ,
π
4 ] 77.3 100

4B [0, 0, 0, 7] [5.5, 7.5, 9, 0] [0, 0, π4 ,
π
4 ] 77.3 100

4C [0, 0, 0, 7] [5.5, 8.5, 9, 0] [0, 0, π4 ,
π
4 ] 77.2 100

5A [0, 0, 0, 0, 7.5] [7.5, 9.5, 12, 0, 0] [0, 0, π4 ,
π
4 ,

π
4 ] 91.5 100

5B [0, 0, 0, 0, 7.5] [7.5, 9.5, 12, 0, 0] [0, 0, π4 ,
π
4 ,

π
4 ] 91.5 100

5C [0, 0, 0, 0, 7.5] [7.5, 9.5, 12, 0, 0] [0, 0, π4 ,
π
4 ,

π
4 ] 91.5 100

6A [0, 0, 0, 0, 8, 8.81] [0, 6, 9.5, 13.5, 0, 10.93] [π4 ,
π
4 , 0,

π
4 ,

π
4 ,
−3·π

4 ] 96.1 100

6B [0, 0, 0, 0, 8, 8.81] [0, 6, 9.5, 13.5, 0, 10.93] [π4 ,
π
4 , 0,

π
4 ,

π
4 ,
−3·π

4 ] 96.1 100

6C [0, 0, 0, 0, 7.5, 8.81] [0, 6, 9.5, 13, 0, 10.93] [π4 ,
π
4 , 0,

π
4 ,

π
4 ,
−3·π

4 ] 95.8 100

As can be seen in Tab. 4.11, the results are highly consistent. The largest deviation can be seen from
test 6A to 6C (0.3%). This shows that the population size and number of generations are su�cient to
produce consistent results, which indicates that result has been found which is close to the optimum.
It is believed that the optimal result has been found for 3− 5 cameras and that the best results for 6
cameras may be optimal. To visualize the evolution of the population, the position and �tness of the
30 �ttest individuals at generation 1,50,100,125 and 200 are shown for three cameras in Fig. 4.26.
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(a) Generation Number 1
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(b) Generation Number 50
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(c) Generation Number 100
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(d) Generation Number 125
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Figure 4.26: The Position and Fitness of the 30 Best Individuals for Various Generations
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As seen in Fig. 4.26, the diversity decreases drastically as the algorithm evolves. In generation number
200, it can be seen that all the 30 best-ranked individuals have the same features, contrary to e.g. the
�rst generation where the diversity is high, resulting in varying �tness scores. The coverage results can
be seen for �ve cameras in Fig. 4.27, and for six cameras in Fig. 4.28. The program for evaluating
and visualization of the optimization results can be seen in App. A.10.4.

(a) 2D Coverage for 5 Cameras (b) 3D Coverage for 5 Cameras

Figure 4.27: GA Coverage Results for 5 Cameras

(a) 2D Coverage for 6 Cameras (b) 3D Coverage for 6 Cameras

Figure 4.28: GA Coverage Results for 6 Cameras

The results show that the GA �nds a feasible solution for both �ve and six cameras where the ROI is
fully covered, and the overall coverage is 91.5% and 96.1%, respectively. Since the GA can not guarantee
the global optimum, it may be desirable to verify the result by doing a Brute Force Algorithm analysis
of the problem.
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4.7.3 Brute Force Algorithm

Since it can not be said with absolute certainty that the GA produces the optimal result, the Brute
Force Algorithm (BFA) can be used to possibly improve the solution. Based on the information from
the previous algorithms, the problem can be further limited regarding possible camera locations and
pan angles. The possible pan angles for this algorithm is (0, π/4,−3 · π/4) [rad] since these are the
most commonly used in the Greedy algorithm, and the only pan angles used in the GA. Further, the
possible camera locations can also be limited, since the best positions are assumed to be in a certain
range for each wall, not at the ends of the wall. These assumptions are supported by the results from
the GA. The new placement lines can be seen in Fig. 4.29. In total, there are 83 possible sensor
locations, compared to the previous number of 134.

Figure 4.29: New Placement Lines for the BFA Final Test

By implementing these changes, the problem is reduced to a minimum size which is essential for the
BFA due to its increasing problem size for a larger number of cameras. Tab. 4.12 shows the total
number of possibilities for 4 . . . 6 cameras compared to the number of possibilities before the problem
was minimized.

Table 4.12: Number of Combinations for the Final Test

No. Cameras No. Combinations (New) No. Combinations (Old) Reduction Factor
4 156 340 626 3.4008e+ 09 21.7522
5 7.6607e+ 09 3.6184e+ 11 47.2334
6 3.1153e+ 11 3.2023e+ 13 102.7908

It is clear that the problem needs to be chopped up due to the large array size of the combinations
array. The number of chops is determined by Eq. 4.23.

nch =
nc · ns ·MI

Mlim
(4.23)
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where:

nch - Required number of chops
nc - Number of combinations
ns - Number of sensors
MI - Integer size in bytes
Mlim - Maximum matrix size in bytes

In Sec. 4.5, a C++ program for making *.txt �les from the *.json �le was described. This program,
however, does not support any functionality for chopping up the combinations matrix into several �les.
A solution was found using a user-created Matlab class [76], which includes the desired functionality.
With this class, a function can be made which can be executed several times in series because the
previous iteration is available. If the workspace is not cleared between function calls, the class enables
the desired chopping by de�ning a maximum number of combinations to be stored at each function
call.

Matlab includes the dlmwrite function for writing variables to *.txt �les. This function tends to be
very slow for larger �les. Therefore, a user-created MEX function is used [77] which is 30 − 40 times
faster than dlmwrite. This provides a major speedup but comes at the cost of requiring more memory
than necessary since the MEX function requires a double matrix as its input. Knowing that a double
is stored in Matlab as an 8-byte variable, this means that the matrix gets twice as large as it needs to
be. The program for generating the chopped combinations matrix can be seen in A.10.2.

The computer with an i7-6800K processor has a RAM size of 32 GB. The GTX 1080 has a global
memory size of 8 GB. The Matlab version installed on this computer is 2018a. Here, the latest
supported GCC compiler is 6.3.9. Since the MEX script must be compiled in Linux, this compiler
must be installed. Due to access restrictions at the end of the project, it was not possible to install this
GCC compiler since this requires administrator access. Hence, the combinations matrix needed to be
computed and stored on a Windows computer with a i7−4790K processor and 8GB RAM. This limits
the size of the computed matrix to Mlim = 7.5e8. Adding to this, the required computational time for
one matrix generation is ≈ 45 minutes on the i7− 4790K compared to ≈ 25 minutes on the i7-6800K.
Also, 20 minutes are required for �le transfer from the computational computer to the computer with
the GTX 1080 GPU which is responsible for evaluating the combinations.

For Mlim = 7.5e8, the number of required chops are 51. For each chop, a 7.65GB matrix is stored as
a ∗.txt �le on the disk. Each �le contains a matrix of 1.5e8 combinations of 5 cameras. This �le is
then transferred to the GPU computer for evaluation of the combinations. The CUDA program can
be found in App. A.10.3. During the tests, the peak GPU usage and C++ timings were recorded and
can be seen in Tab. 4.13.

Table 4.13: C++ and CUDA Requirements and Results

Parameter Value
Maximum Temperature 69◦ C
Maximum Power Usage 145 W
Threads per Block 1024
Number of Blocks in Grid 146 485
GPU Memory Usage 4.9 GB
GPU Computational Time per Test 134.8 s
Total C++ Computational Time per Test 270 s
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4.7. HIGH ACCURACY FINAL TEST

As the table shows, the GPU is not fully utilized. Both the temperature and power usage are below
the listed maximum of 90◦ C and 198 W, respectively. Larger arrays could be imported, and there
could be more blocks in the grid. If there were more RAM available on the computer which calculates
the combinations matrices, the number of chops could be reduced, reducing the total computational
time. The test results for all 51 tests can be seen in App. A.3. Fig. 4.30 shows the best solution with
the highest coverage for each of the 51 chops. The total computational time for this test was 36 hours
which includes a substantial amount of manual work between each combination.
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Figure 4.30: Coverage per Chop Final Test

From the �gure, it can be seen that the maximum value occurs at two chops: 2 and 34. In the table
in App. A.3 this can be seen to represent the following combination indices: [45, 57, 73, 94, 139] and
[1, 45, 57, 73, 138]. Due to the way the placement lines are de�ned, the point (0, 0) appears twice. Both
combinations are two representations of the same positions, which can be seen in Tab. 4.14.

Table 4.14: Brute Force Algorithm Result for 5 Cameras

X Postions Z Positions Pan Angles Coverage % ROI Coverage %
[0 0 0 0 7.5] [0 7.5 9.5 12 0] [π/4 0 0 pi/4 π/4] 91.5 100

This result is the same as from the Genetic Algorithm. The di�erence is that, with the BFA, the result
is guaranteed to be the global optimum.
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4.7.4 Continuous Neighborhood Optimization

The solution found by the GA and veri�ed by the BFA meets the requirements. However, since the
camera placement is a discrete optimization task, the optimal solution is limited by the discretization
accuracy. Therefore, by making a continuous optimization problem in the neighborhood of the previous
solution, an improved solution may be found. The continuous problem formulation is written in
Matlab and solved by using built-in Matlab functions. The optimization problem is formulated as a
minimization problem:

min
K
ns∑
i=1
Ci

(4.24)

s.t

P ∗ ∈ P0 ±Np (4.25)

Φ∗ ∈ Φ0 ±Nφ (4.26)

where:

K - Large constant (>> ndp)
ns - Number of sensors
Ci - Coverage array for sensor i
P ∗,Φ∗ - The decision variables, position and pan angle, respectively
P0,Φ0 - The initial values found by discrete optimization
Np,NΦ - Neighborhood size for position and pan angle, respectively

The coverage is calculated in the same manner as previously described, including visibility and k -
coverage. The following Matlab optimization methods have been considered:

� Fmincon [78]:

Among the most popular optimization methods in Matlab is fmincon. There are several available
algorithms in fmincon, all of which will not be described here. Some methods require the gradient
of the objective functions, which, naturally, is not obtainable in this optimization problem. The
most common algorithm is the interior-point algorithm.

� Global Search [79]:

The global search can be seen as an extension of the fmincon method. Here, there are options
for repeated runs of local solvers, e.g., fmincon. By combining the results of the local solvers, it
is more plausible to �nd the optimal solution rather than by only using one single solver, since
more trial points are evaluated.

� Simulated Annealing [80]:

Previously described in Sec. 3.7.2, the Simulated Annealing algorithm �rst produces a trial point
at random inside the de�ned bounds, and determines whether or not it is better than the current
point. It is accepted with a probability even though it is not better. When the temperature is
lowered, the probability of choosing worse points decreases.
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� Particle Swarm [81]:

The particle swarm algorithm is a population-based algorithm, same as the Genetic Algorithm
used previously. It is inspired by �ock animals, e.g., birds, that swarms. Each particle is assigned
some attraction force from both itself best-found solution, and the best solution found by the
entire population. The population then gathers at either one or multiple minima after some
iterations, which is likely to be either an optimal or very good solution to the problem.

The neighborhood size is determined to be Np = 1[m],NΦ = 45◦. The constant K is set to be 100000.
The objective function of the optimization problem can be found in App. A.11.1 and the script for
de�ning the problem and solving using the mentioned methods can be found in App. A.11.2. Tab.
4.15 shows the main results of the optimization algorithms.

Table 4.15: Results of Continuous Neighborhood Search

Optimization Algorithm Objective Value Computational Time [s]
Discrete BFA (Initial) 12.0322 -
Fmincon 12.0322 124.40
Global Search 12.0322 6645.33
Simulated Annealing 12.0322 15983.27
Particle Swarm 11.9717 19251.73

As can be seen from the table, the Particle Swarm Algorithm �nds the best solution, at the cost of a
much larger computational time (≈ 5 [hrs], 20 [mins]). Contrary to the other algorithms, the particle
swarm algorithm does not need any initial guess. The position and pose found by the Particle Swarm
Algorithm can be seen in Tab. 4.16.

Table 4.16: Result after Continuous Neighborhood Search

Algorithm Brute Force Algorithm Particle Swarm Algorithm
X Positions [0 0 0 0 7.5] [0 0 0.24 7.75]
Z Positions [0 7.5 9.5 12 0] [7.99 9.67 12.25 0 0]
Pan Angles [rad] [π/4 0 0 π/4 π/4] [0.03 -0.03 0.77 0.80 0.81]
Coverage % 91.5 92
ROI Coverage % 100 100

As can be seen from the table, the Particle Swarm Algorithm improves the solution by 0.5%, which
translates to covering 42 voxels more than the discrete BFA and GA covered. Fig. 4.31 and 4.32 shows
a comparison between the BFA coverage and continuous coverage in 2D and 3D, respectively. As can
be seen from the �gures, the improvement in coverage for the continuous optimization method is not
visually signi�cant although the coverage is increased by 42 voxels.
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(a) 2D Coverage for the Continuous Optimization (b) 2D Coverage for the Brute Force Optimization

Figure 4.31: 2D Comparison of BFA and Continous Optimization Results

(a) 3D Coverage for the Continuous Optimization (b) 3D Coverage for the Brute Force Optimization

Figure 4.32: 3D Comparison of BFA and Continous Optimization Results

4.7.5 Case Study Results

Using the presented methods in this section, a case study has been conducted where all aspects of this
thesis have been used to perform a Sensor Placement task in an environment with several obstacles
and a Region of Interest which requires coverage from 2 cameras. The User Interface was used to de�ne
the problem according to the problem description.

By �rst using the Greedy Algorithm the problem was analyzed, and information regarding the pan
angles and the number of cameras could be extracted from the results. Based on this, the Genetic
Algorithm was used to reduce the problem further. The results from the GA were highly consistent
which indicates that optimal, or at least close to optimal, solutions have been found. The Genetic
Algorithm found a feasible solution for minimum �ve cameras. As mentioned in the problem description
for the case study, it was also desirable to investigate the increase in coverage for more cameras than
required, if the increase in coverage is considerable. By increasing the number of cameras from �ve to
six, the GA found an increase in coverage of 4.6%.
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The GPU-Based Brute Force Algorithm was used to verify that the solution from the GA was indeed
the global optimum. To conduct a Brute Force analysis, it is vital to reduce the problem to a minimum
due to the complexity and required computational time of this method. The Brute Force analysis is
a comprehensive task, but the results were highly successful, showing that the global optimum was
found in the GA for the given problem description.

Since the above methods are conducted using a discrete optimization formulation, it was desirable also
to conduct a neighborhood search using one of Matlab's optimization methods. A continuous problem
statement was formulated and solved for �ve cameras. It was found an improved solution which covers
0.5% more voxels than the previous solution.

Tab. 4.17 shows the sensor position for both the discrete and continuous optimization results for �ve
cameras and the GA result for six cameras.

Table 4.17: Results of the Final Case Study

Algorithm BFA PSO GA
Number of Cameras 5 5 6
X Positions [0 0 0 7.5] [0 0 0.24 7.75] [0,0,0,0,8,8.81]
Z Positions [0 7.5 9.5 12 0] [7.99 9.67 12.25 0 0] [0,6,9.5,13.5,0,10.93]
Pan Angles [rad] [π4 , 0, 0,

π
4 ,

π
4 ] [0.03 -0.03 0.77 0.80 0.81] [π4 ,

π
4 , 0,

π
4 ,

π
4 ,
−3·π

4 ]
Coverage % 91.5 92 96.1
ROI Coverage % 100 100 100

Depending on the cost of adding another sensor, it could be decided to add another camera, opting for
the GA solution for six cameras. However, since the problem stated a requirement of > 90% coverage,
the solution for �ve cameras is feasible and most likely cheaper than the solution for six cameras. This
section has demonstrated the work of this thesis and utilized both the User Interface and developed
algorithms.
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In this chapter, the most signi�cant results and methods are presented and discussed. Based on
the problem description, the main topics of this thesis is the development of a User Interface and
development and comparison of di�erent optimization strategies. Finally, suggestions are made for
further work in the �eld of Sensor Placement Problems.

5.1 User Interface

There have been several User Interfaces designed for various aspects of the sensor placement problem.
However, there does not seem to be any open-source User Interface for the 3D Sensor Placement
Problem with the versatility presented in this thesis. The UI can be used to produce a platform
for optimization algorithms, aiming to provide a consensus for methods to solve Sensor Placement
Problems.

In the developed User Interface, it is possible to de�ne the environment and its constraints based on
a 3D model stored as a VRML �le. The UI is designed in Matlab and is available open-source in
the GitHub repository. Matlab was chosen as the programming software due to its broad library of
functions for both 3D models and development of UIs. Although the software is not open-source, it is
commonly used in both academia and industry.

Development of the UI was a tremendous task since several di�erent functions are needed for the UI
to be useful in a variety of practical applications. The User Interface is robust and straightforward
to use, especially considering the appended user manual which describes the required steps to de�ne
the environment. The code is structured to make bug �xes and functionality additions as simple as
possible. All scripts and functions are also adequately commented for easier understanding.

The UI exports a JSON �le which is a popular �le type due to its compatibility with all popular
programming languages. It is readable by humans due to the use of JavaScript notation. The UI
output can also be exported as a MAT-�le to be used in Matlab. Therefore, optimization algorithms
can be developed using any language compatible with JSON. Although Matlab is easy to use regarding
syntax and documentation, it can be seen that other programming languages are superior concerning
computational speed and versatility.

5.2 GPU-Based Brute Force Algorithm

Several authors have previously claimed that a Brute Force search for the global optimum is practically
impossible due to the complexity of the problem. This thesis has shown that by converting the Brute
Force Algorithm to CUDA, a full search has been made possible in many sensor placement problems.

The developed GPU-based method is at least 100 times as fast as a CPU method for complex problems.
This is signi�cant and increases the threshold for which problem can be solved using the developed
BFA. It has been scaled for the GTX1080, which is currently one of the best GPUs available from
NVIDIA. One of the main limitations when scaling problems for a GPU is the accessible memory,
which is only ≈ 8[GB]. In the �nal case study, the BFA was conducted for �ve cameras, where 51
chops were required. This number could have been decreased slightly since the available RAM in the
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computer developing the combinations matrix was 8 [GB]. If a computer was available with Matlab
and RAM size of, e.g., 16 [GB], the number could have been reduced. Since CUDA is not compatible
with the json11 library, a separate program was needed to generate the arrays containing information
about the problem: the coverage matrix and the annotations array. Also, a program was needed
to produce the chopped combinations matrices, which currently is conducted in Matlab. Since the
annotations array and the coverage matrix only need to be computed once for a given problem, it
is not seen as a problem to use the presented method. However, it would be bene�cial to develop
a method for generating the combinations matrices in CUDA, since a considerable speedup is most
likely achievable by converting the code from Matlab to C++, in addition to eliminating the need for
a secondary computer. Using a GPU to accelerate algorithms has given successful results, and should
be considered if many parallel operations are to be done independently.

5.3 Genetic Algorithm

Some research exists on the development of Genetic Algorithms for the Sensor Placement Problem,
or other closely related problem, however much of this research is limited to case-speci�c applications
or weakly documented. The algorithm details have often been excluded nor has the algorithm been
veri�ed to produce the optimal result.

The Genetic Algorithm developed in this thesis has been shown to produce the optimal result in almost
all performed tests. The algorithm uses conservative selection methods, focusing strongly on �tness
when selecting parents and in the crossover phase. Too conservative parameters and schemes can often
make the GA act too much like a hill-climbing algorithm, deeming it to end up in local minima. The
proposed algorithm avoids this with the use of a high mutation factor, i.e., a high percentage of the
children will have one of their features mutated randomly. Considering a su�ciently sized population,
parent pool, children pool and number of children per generation this will, in most cases, introduce
the required randomness to avoid the algorithm getting stuck in local minima.

Compared to the GPU-Based BFA, the GA is much faster, e.g., in the �nal test where the BFA needed
≈ 36 hours the GA produced the same result in ≈ 15 minutes. The computational time can most
likely be reduced further by converting the problem to C++. The results show that the developed GA
is very successful in �nding the optimal placement, veri�ed by the BFA.

If the GA is to be used alone, without veri�cation by the BFA, there are several methods to be used
to get the best possible results. Some suggested methods are:

� Run the algorithm several times:

This is perhaps the most e�cient method for ensuring a good solution. If the result is consistent
with several algorithm executions, it is most likely the optimal result. It is essential that the
positions must also be consistent, not only the overall coverage since, for complex problems,
several con�gurations can result in the same overall coverage.
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� Select a su�ciently large population size and number of generations:

The population size and number of generations are the two most important variables for ensuring
the best possible results. This has been shown in Sec. 4.4.2 where parameter tuning for the GA
was investigated. For the �nal test, the number of individuals and number of generations was
determined to be

ni = ns · 1000 (5.1)

ng = ns · 100 (5.2)

where:

ni - Number of individuals in the population
ng - Number of generations
ns - Number of sensor to be placed

It should be noted that these numbers were applicable 5 sensors, 3 available pan angles and 134
possible placement points in an environment of 9084 grid points. Considering that the number
of children generated per generations is equal to 3·ni

20 = 750 children, the algorithm created 380
000 unique individuals, in total. Compared to the number of possible combinations, 8.53e10, the
number of individuals is very small.

Although the results of the Genetic Algorithm are highly satisfactory, it must be emphasized that it
can not guarantee to �nd the global optimum every time for any parameter combination since it has
several random aspects. However, for all tests in this thesis, the GA has found the best solution more
often than not, indicating that the developed algorithm works very good for the sensor placement
problem.

5.4 Further Work

Throughout this thesis, some of the most critical aspects of the Sensor Placement Problem has been
researched; however, there are several �elds where further work is proposed.

GPU-Based Genetic Algorithm

The Genetic Algorithm has been developed in Matlab due to its easy syntax and vast library compared
to C++. Also, since the computational time is low compared to, e.g., the BFA, it was not required to
convert the algorithm to C++ in this thesis. Suggested further work would be to convert the Genetic
Algorithm to C++ to enable CUDA programming and GPU utilization.

Converting algorithms from C++ to CUDA has been shown to be highly bene�cial in this thesis. The
Genetic Algorithm has several parallel aspects which can be transformed to CUDA, which can result in
massive reductions in computational time. Firstly, the initialization of the population is independent
for each individual, meaning that it could be transformed into a kernel function to be executed on the
GPU. Next, the evaluation of each individual could also be done in a kernel call, much like the kernel
function used in the BFA. Selection of parents is also a parallel process which could be bene�cial to
parallelize using CUDA. There are several aspects of the developed GA algorithm that can be converted
to kernel functions to achieve a considerable speedup after the code has been converted to C++.
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Multiple Sensor Models

Often, multiple sensor models are available with di�erent parameters and price. By extending the
problem to handle multiple sensor models at once, the algorithms need slight modi�cations. For the
Genetic Algorithm, there are no major problems related to this, other than developing a new objective
function. By determining coverage for all sensor types at all possible locations, the algorithm could
be used similarly by adding a feature to each individual where the sensor cost is stored. The new
objective function to be maximized could be:

O = ζ · C − (1− ζ)

ns∑
i=1

Pi (5.3)

where:

O - Objective function
ζ - Weighting variable (∈ (0, 1))
C - Coverage value
P - Price per sensor i

By varying ζ, either coverage or total price can be weighted. Implementing multiple sensor models
in the BFA provides more di�culties since the total number of combinations increases massively.
Therefore, a proposed solution would be to use the Genetic Algorithm to determine the sensor type
for each sensor and use the BFA to optimize sensor placement.

Dynamic Scene

In many situations, the environment to be observed is not static. Obstacles are considered to be static
in this thesis, but many obstacles, e.g., robots, can move inside de�ned areas in practice. By including
moving obstacles, the aspect of time is included in the Sensor Placement Problem. This could be done
in several ways, depending on how the problem is formulated. The most probable formulation is for
speci�c objects to move in pre-de�ned paths. If the position of every obstacle is known at every point
in time, it should be possible to include this in the placement algorithm. The suggested approach is
�rst to extend the User Interface to handle the dynamic scene by inputting multiple �les at given time
steps and comparing the �les to determine which voxels are moving and which are static. Then, by
restricting the movement pattern to be linear between each input �le, the estimated position can be
found for each voxel given the di�erence in time between two �les. The number of input �les provides
the accuracy of this linearization.

The optimization problem should then be formulated to cover a given percentage of the voxels in the
scene at any time step between the �rst and last input �le, sorted chronologically dependent on the
time step. One way to do this could be to de�ne a large matrix where the position of each obstacle
is stored at each time step. Then, the visible voxels can be determined from each possible camera
location given the pose of the sensor at all time steps.

The next step would be to modify the algorithm to take the time into account and solve the optimization
problem. There are probably other methods of solving the problem of dynamic scenes, but it is of the
author's belief that the proposed method could at least act as an inspiration for further work in this
topic.
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The literature study showed that the Sensor Placement Problem is a complex problem with several
aspects which need to be considered. There seems to be little consensus regarding how to best solve
the problem, and several algorithms have been developed and tested in the literature. In this thesis, a
method of solving the problem is presented, by �rst designing a User Interface, which determines the
environment and sets the constraints for the optimization algorithm which is responsible for determin-
ing the best sensor positions and poses given the constraints.

The User Interface is developed in Matlab, where the user can specify the constraints and de�ne the
environment of the optimization problem. The user can specify sensor parameters, available sensor
positions, and regions of interest where redundancy is required. The output is a JSON �le where all
necessary information is stored in arrays.

To optimally place sensors in the de�ned environment, several methods are considered. A traditional
approach is to use a Greedy Algorithm to get approximate solutions. The Greedy Algorithm has been
proven to be sub-optimal; therefore other algorithms were desired. Two algorithms are developed in
this thesis, a Genetic Algorithm, and a GPU-Based Brute Force Algorithm.

The Genetic Algorithm is inspired by the natural process of evolution. The appropriate genetic oper-
ators are de�ned for the Sensor Placement Problem and have provided excellent results. The selection
pressure is high for both the crossover and selection schemes, but the mutation rate should be kept
high to ensure the necessary random aspect to avoid the algorithm being stuck in local minima.

Since the problem is NC-complete, the Genetic Algorithm can never fully guarantee the global optimum
solution. The only method of being able to guarantee this is by doing a Brute Force search of all feasible
solutions in the search space. In this thesis, a Brute Force Algorithm is developed and adopted on a
NVIDIA GTX 1080 GPU using CUDA programming. By incorporating the parallel nature of vital
parts of the algorithm to a kernel function, a considerable speedup has been achieved. Comparing the
Genetic Algorithm and the GPU-Based Brute Force Algorithm, the former is seen to have a much lower
computational time whereas the latter always guarantees the optimal result. Therefore, for problems
where the Brute Force method is applicable within a reasonable amount of time, and a NVIDIA GPU
is available, the suggested method is the GPU-Based Brute Force Algorithm. However, since this is
not always the case, the developed Genetic Algorithm has also been proven to �nd the global optimum
with correct parameter tuning for all veri�able tests in this thesis. Since the algorithm converges much
faster than the BFA, it can be executed several times to ensure consistent results for the given test.
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A.1 Project Proposal

Figure A.1: Problem Proposal
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A.2 GUI: User Manual

This document is written as a guide for the Matlab GUI: Sensor Placement Optimization.

A.2.1 Intended Use

The UI is made to simplify the problem formulation of the Sensor Placement Problem in 3D for sensors
de�ned by the �eld of view, range, and price. The UI supports *.wrl (VRML) �les with nodes de�ned
as Indexed Face Set as its input. The process for de�ning the problem follows the procedure shown
below, with further explanations throughout this document.

1. Import VRML model

2. Add �oor

3. Add cameras

4. De�ne placement lines

5. De�ne regions of interest

6. De�ne optimization parameters

7. Generate optimization code

8. Visualize results

A.2.2 About

The GUI is made as part of a master thesis at the University of Agder 2018 by Vegard Tveit.

A.2.3 Requirements

The program is made using Matlab 2017a. It is assumed that the user has some programming experi-
ence with Matlab, but most of the code is properly commented for easier understanding and bug �xes.
It is recommended to use separate software for interpreting, changing or converting the 3D VRML
�les. A proposed software is Meshlab.

In the VRML �le, the geometry nodes must be de�ned as indexed face set. Also, the transform node
must be de�ned as layout. In the VRML �le, this should look as following: DEF layout Transform {.

The user should have some knowledge regarding computational geometry and optimization for best
use of the software, but this is not required. The software is set up for an example program where the
user is only required to follow the necessary steps without doing any modi�cations. By being able to
see the intended options for a given problem, the user can get a better understanding of how to use
the UI.

A.2.4 File

As a safety feature, in case the program crashes, or errors are made, the UI stores information for each
signi�cant step in *.mat �les. If the program shuts down and is started again, the *.mat �les can be
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used as a method of restoring previous data. This method replaces the commonly used save as and
load functions, but the result is the same.

A.2.5 Edit

The Edit menu contains the function for de�ning the problem.

Edit VRML

The Edit VRML menu opens Matlab's VRML editor. The full documentation for this program can be
seen in https://se.mathworks.com/help/sl3d/the-3d-world-editor.html (retrieved 23.01.2018),
and will not be described in this document.

Floor

To determine the shape of the polygon enclosed by the walls, a function for adding a �oor to the
problem space is included. The "Add Floor" menu opens a �gure window and a dialog box where
the corner coordinates are speci�ed. There are no limits on the number of de�ned corners. The
coordinates should be separated by spaces, and it should be checked that there are equally many y-
and z-coordinates as x-coordinates. To get the corner coordinates, the data cursor in the �gure toolbar
can be used. Another tip is when in "Rotate 3D" mode, the view can be changed by right-clicking in
the �gure window. By choosing XZ view, it is easier to get the correct x- and z-coordinates. When
the dialog box is closed, the �oor is added to the �gure for visualization and saved to the Matlab
workspace as well as added to the Indexed Face Set in the VRML model.

Camera

The camera menu is the most extensive sub-menu, where the sensors are de�ned as well as the place-
ment lines for the sensors. Firstly, the camera parameters are speci�ed in the "Add Camera" menu.
Additionally, the price can be speci�ed for each sensor in any desired unit in the dialog box.

After the cameras are de�ned, the user needs to specify where the sensors can be placed. This is done
in the "Add Lines" menu, which opens a dialog box and a �gure. The lines should be straight and
de�ned by the start and end point of the line. Similarly to the procedure of adding the �oor, the
coordinates can be found using the data cursor tool. When the close button is pushed, the dialog
box closes, and the lines are saved to the Matlab workspace. The lines that should be used for sensor
placement must have the Accepted choice checked. In this way, the program understands which lines
to use, and which to ignore. When the lines are speci�ed, lines.mat is saved with the information from
the dialog box. This mat �le must not be deleted before the JSON �le is generated since it will be
used later in the program.

The lines can be visualized using the "Visualize Lines" menu. A new dialog box is opened, where the
accepted lines are displayed. By pressing the Visualize button, a �gure window opens with the 3D
model (shown in red) as well as the placement lines (shown in blue).

Region of Interest

A region of Interest enables the user to have k -coverage possibilities. First, the user should specify
whether the grid generation should be along the vertical or horizontal axis. To get a better under-
standing of why this is relevant, two �gures are shown in Fig. A.2. Fig. A.2b shows an example of
a polygonal �oor plan, where it would be easiest to generate the �shnet along the vertical axis. The
reason for this is that for this polygon, every point along the vertical axis represents a unique point at
the polygonal edge. Contrarily, in Fig. A.2a, every point along the horizontal axis represents a unique
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point along the polygonal edge. It should be noted that the grid generation starts at the bottom left
corner of the polygon.

(a) Figure for Horizontal Grid Generation (b) Figure for Vertical Grid Generation

Figure A.2: Directions of Grid Generation

The next step is to add the Region of Interest. This is done by clicking the "Add Region of Interest"
option, which opens an input window and a �gure of the generated grid of the polygon representing
the �oor. The user has to specify the coordinates for the Region of Interest according to Fig. A.3.

In Fig. A.3, a ROI volume is presented for visualization. The subscript of either 0 or 1 indicates the
corner coordinates at either Y0 or Y1, respectively.

y
-z

x

UL0 UR0

BR0

BL0

UL1 UR1

BR1BL1

Figure A.3: Region of Interest Cube Coordinates and Indices

Additionally, the user has to specify the weight option, either 1, 2 or 3. A weight of 1 corresponds to
a 2-covered region of interest, which is the standard option. 2 is a 3-covered region of interest, and 3
in a zero-covered region of interest, which means that the region is of no interest concerning coverage.

The user can add multiple ROIs, and display them in a list using the "Visualize Region of Interest"
function, which also displays the region of interest in the 3D scene.
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A.2.6 Optimization

Setup Parameters

Here, the main parameters for the optimization accuracy are de�ned. Firstly, the room height at �oor
and roof level must be established. Next, the height of the voxels is speci�ed by determining the total
number of voxels in the vertical direction. Finally, the placement lines accuracy is de�ned by specifying
the number of placement points per length unit along the de�ned lines.

Generate JSON

When the parameters are de�ned, as well as all other necessary parameters are set up to describe the
problem, the JSON �le can be generated. Generating the JSON �le may take some time. When the �le
is created, a �gure is shown that graphically shows the output regarding obstacles, placement points,
and regions of interest.

A.2.7 Visualization

In the Visualization menu, the result from the optimization algorithm can be seen.

Load Optimization Results

When Load Optimization Results is chosen, the user must specify the position (x,y,z) of all sensor
to be placed along with the number of sensors and their respective pan angles. For now, the sensor
parameters are considered to be �xed, but this can easily be changed in the callback functions. The
user must also specify the �lename of the *.mat �le where the optim data is stored from the UI output.
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A.3 Test Data for the Genetic Algorithm

Table A.1: Mutation Factor Test: A1

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 749 749 749 749 732 749 749 749 736 749 749 749 749 749 749 747 5.33
1/4 731 749 736 731 731 749 749 736 749 732 749 736 749 749 749 741.67 8.29
1/3 749 749 749 749 749 732 749 749 749 732 749 736 731 749 749 744.67 7.51
1/5 749 732 731 749 749 749 720 749 736 749 731 749 736 749 749 741.80 9.79
2/3 736 749 749 749 749 749 749 749 749 749 749 749 749 749 749 748.13 3.36
1/6 731 749 731 749 749 749 749 736 749 749 749 749 749 732 749 744.60 7.63
3/4 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 0

Table A.2: Mutation Factor Test: A2

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 736 731 749 731 749 749 736 749 732 732 736 749 719 731 731 737.33 9.41
1/4 725 749 731 732 732 732 732 749 749 731 731 736 707 732 749 734.47 11.20
1/3 749 719 720 732 749 731 731 749 749 725 731 749 749 736 749 737.87 11.61
1/5 719 736 731 732 736 717 717 731 736 719 749 749 720 732 731 730.33 10.42
2/3 749 749 749 731 749 732 736 732 736 749 749 749 736 736 720 740.13 9.41
1/6 749 731 736 732 749 749 731 732 725 749 736 736 731 736 732 736.93 8.05
3/4 749 749 749 731 749 749 749 749 731 749 749 736 749 749 731 744.53 7.75

Table A.3: Mutation Factor Test: A3

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 0
1/4 749 749 749 749 749 749 749 749 749 749 736 749 749 749 749 748.13 3.36
1/3 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 0
1/5 749 749 749 749 749 749 749 749 732 749 749 749 749 749 749 747.87 4.39
2/3 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 0
1/6 749 749 749 749 749 736 749 749 732 749 749 749 749 749 749 747 5.33
3/4 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 749 0
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Table A.4: Mutation Factor Test: B1

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 945 945 945 945 945 945 945 945 945 945 945 945 937 945 945 944.47 2.07
1/4 937 924 937 937 924 945 945 936 937 945 928 945 937 945 945 937.80 7.53
1/3 945 936 945 936 945 945 945 945 937 945 937 936 937 945 945 941.60 4.32
1/5 945 937 936 937 937 945 931 945 937 937 937 937 937 937 928 937.53 4.67
2/3 937 945 945 945 945 945 945 945 945 945 937 945 945 945 945 943.93 2.81
1/6 930 930 937 930 937 945 928 936 937 926 926 937 945 937 936 934.47 6.00
3/4 945 937 945 945 945 945 945 945 945 945 945 945 945 945 945 944.47 2.07

Table A.5: Mutation Factor Test: B2

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 945 937 945 945 945 945 945 937 937 945 945 945 945 933 945 942.60 4.22
1/4 945 945 945 945 945 937 945 937 931 937 937 937 945 937 945 940.87 4.81
1/3 945 937 945 937 945 945 945 945 945 945 932 945 945 945 945 943.07 4.15
1/5 945 937 931 945 932 937 937 945 937 945 937 933 937 945 945 939.20 5.27
2/3 945 945 945 945 945 945 945 945 945 945 945 945 945 945 945 945 0
1/6 937 937 945 945 928 937 945 924 931 945 928 937 937 945 945 937.73 7.28
3/4 945 945 945 945 945 945 945 945 945 945 945 945 945 945 945 945 0

Table A.6: Mutation Factor Test: B3

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 945 945 945 945 945 945 945 945 945 945 945 945 945 945 945 945 0
1/4 945 937 933 945 945 945 945 945 945 936 937 945 945 936 937 941.40 4.66
1/3 945 945 945 945 937 937 945 936 937 936 937 937 945 937 945 940.60 4.27
1/5 937 945 945 937 937 936 928 937 937 937 945 931 945 932 945 938.27 5.60
2/3 945 945 945 945 945 945 945 945 937 945 945 945 945 945 945 944.47 2.07
1/6 928 937 945 926 937 945 937 933 945 922 945 922 936 925 937 934.67 8.40
3/4 945 945 945 945 945 945 945 945 945 945 945 945 945 945 945 945 0
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Table A.7: Mutation Factor Test: C1

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 0
1/4 1070 1085 1086 1086 1068 1068 1086 1068 1068 1086 1086 1086 1086 1082 1075 1079.07 8.32
1/3 1086 1073 1077 1086 1072 1075 1068 1086 1086 1071 1086 1086 1068 1086 1086 1079.47 7.56
1/5 1086 1086 1086 1069 1076 1085 1068 1076 1086 1085 1085 1086 1077 1086 1071 1080.53 6.94
2/3 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1082 1082 1086 1086 1085.47 1.41
1/6 1076 1068 1072 1086 1086 1077 1085 1068 1069 1068 1086 1077 1085 1082 1086 1078.07 7.53
3/4 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 0

Table A.8: Mutation Factor Test: C2

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 1070 1073 1082 1085 1085 1086 1086 1086 1082 1086 1085 1086 1085 1086 1067 1082 6.45
1/4 1082 1061 1086 1065 1086 1077 1065 1085 1067 1086 1070 1085 1073 1076 1055 1074.60 10.36
1/3 1068 1086 1086 1086 1086 1077 1067 1068 1082 1086 1086 1068 1085 1085 1085 1080.07 8.04
1/5 1072 1068 1082 1077 1059 1056 1071 1068 1072 1064 1082 1082 1077 1068 1082 1072 8.40
2/3 1086 1086 1086 1085 1086 1086 1086 1086 1077 1086 1086 1086 1086 1086 1085 1085.27 2.31
1/6 1069 1064 1067 1085 1067 1071 1063 1082 1070 1086 1068 1064 1071 1065 1070 1070.80 7.49
3/4 1086 1086 1086 1086 1086 1086 1086 1086 1085 1086 1086 1086 1086 1085 1086 1085.87 0.35

Table A.9: Mutation Factor Test: C3

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 1086 1082 1082 1086 1086 1085 1086 1086 1086 1086 1086 1070 1086 1082 1086 1084.07 4.22
1/4 1085 1086 1068 1086 1086 1085 1086 1072 1070 1082 1071 1086 1068 1082 1086 1079.93 7.59
1/3 1085 1082 1068 1086 1082 1086 1085 1069 1068 1082 1086 1071 1086 1072 1086 1079.60 7.53
1/5 1086 1077 1067 1072 1071 1086 1068 1086 1054 1068 1069 1067 1068 1058 1068 1071 9.42
2/3 1086 1086 1086 1086 1086 1086 1086 1085 1086 1086 1086 1086 1086 1086 1086 1085.93 0.26
1/6 1073 1086 1067 1077 1082 1065 1070 1069 1063 1086 1086 1069 1064 1061 1085 1073.53 9.30
3/4 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 1086 0
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Table A.10: Mutation Factor Test: D1

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 1195 1186 1195 1195 1194 1184 1186 1186 1186 1186 1195 1180 1195 1181 1195 1189.27 5.70
1/4 1180 1184 1186 1195 1174 1178 1179 1190 1179 1195 1187 1195 1180 1163 1177 1182.80 8.86
1/3 1183 1195 1176 1193 1182 1195 1195 1181 1187 1190 1183 1195 1184 1179 1176 1186.27 7.08
1/5 1180 1180 1190 1180 1186 1190 1179 1181 1189 1184 1179 1183 1187 1182 1181 1183.40 4.01
2/3 1195 1186 1195 1195 1195 1194 1181 1189 1195 1191 1195 1195 1195 1194 1186 1192.07 4.50
1/6 1182 1171 1185 1175 1184 1182 1179 1184 1186 1182 1174 1187 1162 1161 1182 1178.40 8.23
3/4 1195 1194 1195 1195 1195 1194 1195 1195 1194 1195 1191 1195 1194 1194 1189 1194 1.73

Table A.11: Mutation Factor Test: D2

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 1195 1190 1195 1195 1194 1195 1195 1195 1195 1186 1195 1195 1190 1182 1194 1192.73 4.01
1/4 1164 1194 1189 1185 1185 1170 1181 1182 1183 1194 1177 1184 1180 1195 1195 1183.87 9.04
1/3 1194 1195 1195 1181 1173 1185 1195 1185 1195 1195 1179 1181 1184 1187 1187 1187.40 7.15
1/5 1195 1186 1183 1194 1192 1195 1180 1191 1195 1182 1190 1188 1182 1187 1166 1187.07 7.79
2/3 1186 1195 1184 1194 1194 1195 1195 1195 1187 1193 1195 1195 1195 1195 1195 1192.87 3.81
1/6 1177 1165 1186 1194 1191 1186 1179 1183 1186 1182 1185 1186 1194 1179 1181 1183.60 7.26
3/4 1194 1195 1195 1195 1195 1195 1195 1194 1195 1195 1193 1195 1195 1195 1195 1194.73 0.59

Table A.12: Mutation Factor Test: D3

mf Test no. Avg. Std.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1/2 1195 1195 1181 1195 1195 1195 1194 1195 1195 1194 1194 1195 1195 1194 1186 1193.20 4.07
1/4 1168 1190 1181 1194 1195 1195 1180 1186 1181 1181 1195 1191 1194 1180 1195 1187.07 8.22
1/3 1183 1185 1194 1190 1164 1189 1195 1186 1195 1195 1195 1183 1195 1195 1186 1188.67 8.33
1/5 1185 1180 1192 1190 1194 1184 1186 1184 1176 1186 1189 1194 1183 1188 1178 1185.93 5.42
2/3 1194 1195 1194 1195 1195 1195 1195 1194 1195 1195 1195 1195 1194 1195 1195 1194.73 0.46
1/6 1182 1179 1187 1187 1179 1184 1194 1178 1182 1192 1179 1176 1173 1184 1194 1183.33 6.43
3/4 1195 1195 1195 1195 1190 1195 1195 1195 1195 1195 1195 1195 1195 1195 1195 1194.67 1.30
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A.4 Test Data for the Final Test Brute Force Algorithm

Tab. A.13 and A.14 shows the result of each chop in the BFA analysis with 5 cameras. For each chop,
the time used in Matlab to generate the combinations matrix is provided along with the time required
to write the ∗.txt �le. Also, the last combination is listed to show the range of each chop. The best
combination is given along with the coverage result for this combination.

Table A.13: BFA Best Coverage Result Chop 1-25 Final Test

Chop Generate [s] Write [s] Last Best Coverage [%]
1 2354.2 305.8 0 149 175 176 246 0 45 57 73 139 84.9
2 2316.2 327.3 1 141 201 223 229 1 45 57 73 139 91.5
3 2317.9 330.1 2 148 150 207 211 2 33 45 55 136 77.3
4 2333.8 329.8 3 187 192 215 229 3 45 57 73 139 85.9
5 2313.8 330.1 5 8 37 167 211 4 45 57 73 136 89.8
6 2295.43 329.4 6 13 23 60 175 5 33 45 55 136 77.3
7 2311.0 330.7 7 19 53 122 209 6 45 57 73 139 86.6
8 2305.4 328.9 8 27 70 201 221 7 57 73 136 224 89.7
9 2320.7 337.3 9 38 41 103 164 9 36 48 58 139 84.3
10 2360.5 332.5 10 52 70 219 232 10 51 73 136 218 87.7
11 2326.3 342.0 11 72 171 201 202 10 57 73 136 224 87.9
12 2351.2 340.7 12 110 136 144 183 12 45 57 73 139 87.5
13 2334.2 335.1 14 20 91 113 162 13 57 73 136 224 86.2
14 2342.5 333.6 15 38 53 101 169 15 36 48 58 139 84.3
15 2346.9 339.8 16 63 121 138 184 15 45 57 73 139 87.6
16 2422.4 351.4 17 114 123 156 177 17 33 45 55 136 77.3
17 2447.1 333.0 19 32 151 153 210 18 45 60 76 139 88.0
18 2363.6 341.1 20 63 81 108 206 19 45 79 133 209 84.2
19 2352.2 342.7 21 139 145 146 165 21 45 70 139 221 88.1
20 2345.9 336.4 23 48 75 101 240 22 45 79 133 209 83.1
21 2358.3 340.6 24 104 105 184 221 24 46 54 85 139 88.7
22 2345.3 338.5 26 87 109 152 168 25 45 85 133 203 82.6
23 2380.4 342.8 27 114 124 126 191 27 48 85 139 203 88.5
24 2355.9 341.8 29 60 68 154 161 28 49 57 94 136 83.1
25 2384.5 348.4 31 36 68 221 232 30 45 52 88 136 87.6
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Table A.14: BFA Best Coverage Result Chop 1-25 Final Test

Chop Generate [s] Write [s] Last Best Coverage [%]
25 2384.5 348.4 31 36 68 221 232 30 45 52 88 136 87.6
26 2367.8 340.5 32 97 151 184 238 31 52 57 94 136 84.4
27 2405.6 349.4 34 68 143 187 237 33 45 55 91 136 86.6
28 2389.9 340.7 36 54 108 237 244 36 54 58 94 139 87.2
29 2400.3 341.4 38 47 89 182 248 37 45 58 94 139 87.2
30 2419.6 350.4 40 45 67 222 244 39 54 61 94 139 88.5
31 2411.8 353.6 42 47 77 95 133 42 45 64 94 139 88.0
32 2396.6 354.8 44 54 58 158 206 42 57 64 94 139 89.7
33 2528.0 374.0 46 66 155 178 197 45 57 73 94 139 91.5
34 2732.2 362.2 48 90 181 212 227 48 57 73 94 136 91.4
35 2448.7 345.3 50 187 193 208 212 49 51 57 94 136 82.9
36 2470.5 351.3 53 84 114 160 186 51 57 73 94 136 91.4
37 2470.7 353.1 56 63 123 160 246 54 57 73 94 136 91.2
38 2467.4 352.4 58 149 156 231 241 57 60 76 100 127 85.0
39 2474.3 353.6 61 142 150 178 215 60 85 94 136 203 49.6
40 2505.1 347.7 65 69 85 164 177 63 79 94 142 224 49.6
41 2471.7 347.1 68 96 106 187 210 66 79 94 142 224 49.8
42 2481.8 353.0 72 81 100 189 237 69 82 94 142 224 49.9
43 2498.1 355.4 76 86 188 240 248 72 82 91 142 224 49.7
44 2477.7 351.0 80 121 154 189 245 79 94 142 209 224 50.5
45 2495.6 351.5 85 124 198 229 232 85 94 142 203 224 50.6
46 2494.8 352.5 91 109 113 179 237 86 94 142 200 224 49.9
47 2572.9 367.6 98 101 112 117 145 94 42 167 203 224 43.0
48 2508.5 359.8 106 115 149 159 169 100 142 167 203 224 39.7
49 2520.4 355.7 116 171 200 209 230 106 145 167 203 224 36.5
50 2527.7 349.5 132 195 211 215 234 118 148 167 203 224 31.3
51 2571.3 351.5 180 197 201 220 245 145 167 203 224 248 28.7
52 191.6 215.3 0 0 0 0 0 182 203 221 236 248 19.5
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A.5 Matlab Scripts for the Set-Cover Problem

A.5.1 Set Cover Greedy Algorithm

1 % Greedy Heuristic Algorithm for
2 % the set cover example
3 % Author: Vegard Tveit
4 % Date: 03.04.2018
5

6

7 % note that this algorithm
8 % is written specifically
9 % for the set cover

10 % example problem
11

12 clear;
13 clc;
14

15 % Initialize universe
16 U = ones(12,1);
17 Usize = length(U);
18

19 % Define subsets
20 S = [1 0 1 0 0 0;...
21 1 0 0 1 0 0;...
22 1 0 0 0 1 0;...
23 1 0 1 0 0 0;...
24 1 1 0 1 0 0;...
25 1 1 0 0 1 0;...
26 0 0 1 1 0 0;...
27 0 1 0 1 0 0;...
28 0 1 0 0 1 0;...
29 0 0 1 0 0 1;...
30 0 0 0 1 0 1;...
31 0 0 0 0 1 0];
32

33 S = S';
34 bOK = true;
35 covered = zeros(Usize,1);
36

37 while(bOK)
38 mat = zeros(6,1);
39

40

41 mat = zeros(6,1);
42 for i = 1:Usize
43 if covered(i) == 0
44 for j = 1:6
45 if S(j,i) == 1
46 mat(j) = mat(j) + 1;
47 end
48 end
49 end
50 end
51

52 maxi = max(mat);
53 sol = find(mat == maxi);
54 sol = sol(1);
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55

56 for k = 1:Usize
57 if S(sol,k) == 1
58 covered(k) = 1;
59 end
60 end
61 disp('New sol found')
62 disp(sol)
63 disp('Coverage')
64 disp(covered)
65

66 if(sum(covered) == Usize)
67 bOK = false;
68 end
69 end

A.5.2 Set Cover Exact Algorithm

1 % Exact algorithm for
2 % the set cover example
3 % Author: Vegard Tveit
4 % Date: 03.04.2018
5

6

7 % note that this algorithm
8 % is written specifically
9 % for the set cover

10 % example problem
11

12 clear;
13 clc;
14

15 % Initialize universe
16 U = ones(12,1);
17 Usize = length(U);
18

19 % Define subsets
20 S = [1 0 1 0 0 0;...
21 1 0 0 1 0 0;...
22 1 0 0 0 1 0;...
23 1 0 1 0 0 0;...
24 1 1 0 1 0 0;...
25 1 1 0 0 1 0;...
26 0 0 1 1 0 0;...
27 0 1 0 1 0 0;...
28 0 1 0 0 1 0;...
29 0 0 1 0 0 1;...
30 0 0 0 1 0 1;...
31 0 0 0 0 1 0];
32

33 Sub_vec = 1:1:6;
34 S = S';
35 bOK = true;
36 num_subs = 1;
37 maxim = 0;
38 while(bOK)
39 comb_vec = nchoosek(Sub_vec,num_subs);
40 for i = 1:nchoosek(length(Sub_vec),num_subs)
41 curr_comb = zeros(1,Usize);
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42 for j = 1:num_subs
43 index = comb_vec(i,j);
44 curr_comb = curr_comb | S(index,1:end);
45 end
46 if sum(curr_comb) > maxim
47 maxim = sum(curr_comb);
48 indout = [i,j];
49 end
50 end
51 if maxim == Usize
52 bOK = false;
53 fprintf('Best solution found with %i subsets \n',num_subs)
54 fprintf('Subsets at indexes ')
55 fprintf('%i ',comb_vec(indout(1),1:end))
56 fprintf('fully covers the universe \n')
57 else
58 fprintf('Increasing the number of subsets \n')
59 num_subs = num_subs + 1;
60 end
61 end

A.6 Matlab Functions for the Sensor Placement Problem

A.6.1 Coverage Function

1 function b = covered1(i,x,y,z,datax,datay,dataz,obsta,pan)
2 % Function to determine the coverage of point i
3 % in the data points array from sensor placed at (x,y,z)
4 % given the pan angle (pan).
5

6 % Camera parameters (valid for all cameras)
7 range = 9;
8 tilt = pi/6;
9 fov = 45 * pi/180;

10

11 % Point to locate
12 xp = datax(i);
13 yp = dataz(i);
14 zp = datay(i);
15 % Norm of (x,y,z),(xp,yp,zp)
16 L = sqrt((xp-x)^2+(zp-z)^2+(yp-y)^2);
17 % XY angle
18 xya = atan2(zp-z,xp-x);
19 % XZ angle
20 xza = atan2(yp-y,L);
21 % Determine if point is covered and visible from
22 % current sensor config. b = 1 if covered and visible
23 if (L < range)
24 if ((pan-fov) <= xya) && (xya <= (pan+fov))
25 if ((tilt-fov) <= xza) && (xza <= (tilt+fov))
26 % Evaluate all obstacle points to ensure that no obstacle points block
27 % the sensor coverage of point i. b = true if covered and visible
28 for jj = 1:length(obsta)
29 xoi = obsta(jj,1);
30 yoi = obsta(jj,3);
31 zoi = obsta(jj,2);
32 oi_L = sqrt((xoi-x)^2+(zoi-z)^2+(yoi-y)^2);
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33 oi_xya = atan2(zoi-z,xoi-x);
34 db = 0.25;
35 oi_xza = atan2(yoi-y,oi_L);
36 if ((pan-fov) <= oi_xya) && (oi_xya <= (pan+fov))
37 if(abs(xya-oi_xya) < db)
38 if((tilt-fov) <= oi_xza) && (oi_xza <= (tilt+fov))
39 if(abs(xza-oi_xza) < db)
40 if(L > oi_L)
41 b = false;
42 else
43 b = true;
44 end
45 else
46 b = true;
47 end
48 else
49 b = true;
50 end
51 else
52 b = true;
53 end
54 else
55 b = true;
56 end
57

58 end
59

60 else
61 b = false;
62 end
63 else
64 b = false;
65 end
66 else
67 b = false;
68 end

A.6.2 Environmental Function

1 function env = environment_generate(my_matfile)
2 % Function to produce a struct (env) of the UI output
3 % from the generated *.mat file
4

5 inp = load(my_matfile);
6 env.datax = inp.optim{4};
7 env.datay = inp.optim{5};
8 env.dataz = inp.optim{6};
9 env.campx = inp.optim{2};

10 env.campz = inp.optim{3};
11 % Note: Defined as -6 for this specific problem
12 env.campy(1:length(env.campx)) = -6;
13 env.annot = inp.optim{1};
14

15 oc = 0;
16 % Determine obstacles
17 for ka = 1:length(env.annot)
18 if env.annot(ka) == 1
19 oc = oc + 1;
20 env.obsta(oc,1:3) = [env.datax(ka),env.datay(ka),env.dataz(ka)];
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21 end
22 end

A.6.3 Function for Finding the Camera Position and Pan Angle

1 function [panx,camx] = EvalNum(npans,i)
2 % function to translate the combinations indices
3 % to the indices of the camera position and pan arrays
4

5 ic = i - 1;
6 pc = floor(ic/npans);
7 panx = i - pc*npans;
8 camx = pc + 1;

A.7 Matlab Scripts for the Genetic Algorithm

A.7.1 Genetic Algorithm for the Sensor Placement Problem

1 %% Genetic Algorithm for the Sensor Placement Problem
2 % Author: Vegard Tveit
3 % Date: 20.04.2018
4 % Comment: Genetic algorithm with crossover and mutation operators
5

6 clear;
7 clc;
8 close all;
9

10 env = environment_generate('optim2.mat');
11 datax = env.datax; % Discrete data points (x)
12 datay = env.datay; % Discrete data points (y)
13 dataz = env.dataz; % Discrete data points (z)
14 campx = env.campx; % Discrete placement points (x)
15 campy = env.campy; % Discrete placement points (y)
16 campz = env.campz; % Discrete placement points (z)
17 obsta = env.obsta;
18

19 % Define number of pan angles
20 pans = [0,pi/2,-3*pi/4];
21

22 % Preallocate variables and initialize
23 ldata = length(datax); % Number of data points
24 lpans = length(pans); % Number of pan angles
25 lcamp = length(campx); % Number of placement points
26

27 x = zeros(lcamp,1); % Placement point array (x)
28 y = zeros(lcamp,1); % Placement point array (y)
29 z = zeros(lcamp,1); % Placement point array (x)
30 b = false(lpans,ldata); % Coverage matrix - Combs
31 iter = 0; % Indexation counter
32

33 % Compute coverage for all possible camera poses and positions
34 for i = 1:lcamp
35 x(i) = campx(i); % Get camera position (x)
36 y(i) = campy(i); % Get camera position (y)
37 z(i) = campz(i); % Get camera position (z)
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38

39 % Loop through all pan angles
40 for k = 1:lpans
41 pan = pans(k); % Get pan angle
42 iter = iter + 1; % Update indexation
43

44 % Compute coverage of all data points
45 for n = 1:ldata
46 b(iter,n) = covered1(n,x(i),y(i),z(i),datax,datay,dataz,...
47 obsta,pan);
48 end
49 end
50 end
51

52 % Initalize pool of chromosomes randomly
53 numchromo = 900;
54 numsubs = iter;
55 usize = ldata;
56 numsens = 2;
57 chromo = zeros(numchromo,numsens);
58 for i = 1:numchromo
59 for j = 1:numsens
60 ind = randi(numsubs,1);
61 chromo(i,j) = ind;
62 end
63 end
64

65 b = b';
66 % Evaluate fitness of chromosomes
67 fitmat = zeros(numchromo,1);
68 for m = 1:numchromo
69 bch = false(usize,1);
70 for n = 1:numsens
71 inde = chromo(m,n);
72 bch(1:end,1) = bch(1:end,1) | b(1:end,inde);
73 end
74 fitmat(m) = sum(bch);
75 end
76 avgsum_init = sum(fitmat)/length(fitmat);
77

78 % Select best parents for next generation
79 [sortarr,indarr] = sort(fitmat,'descend');
80

81 % Make pool of parent solutions
82 % MUST BE AN EVEN NUMBER
83 numpar_gen = 3*numchromo/5;
84 max_generations = 90;
85 generations = 1;
86

87 childreninto = zeros(numpar_gen/4-1,numsens);
88 while(generations < max_generations)
89 % Probability of being chosen
90 prob_par = zeros(numpar_gen,1);
91 for pk = 1:numpar_gen
92 prob_par(pk,1)=fitmat(indarr(pk))/sum((fitmat(indarr(1:numpar_gen))));
93 end
94

95 % Select half of the pool for reproduction
96 repIter = 1;
97 bRep = true;
98 par_out = zeros(numpar_gen/2,1);

A - 17



A.7. MATLAB SCRIPTS FOR THE GENETIC ALGORITHM

99 for i = 1:numpar_gen/2
100 randRep = rand();
101 bRep = true;
102 repIter = 1;
103 while(bRep)
104 randRep = randRep - prob_par(repIter);
105 if randRep < 0
106 bRep = false;
107 indeRep = repIter;
108 end
109 repIter = repIter + 1;
110 end
111 par_out(i) = indeRep;
112 end
113 % par_out now contains the indices of the individuals
114 % in the mating pool. These chormosomes should undergo
115 % crossover and mutation
116

117 par = indarr(1:numpar_gen,1);
118

119 children_out = zeros(numpar_gen/2-1,numsens);
120 for i = 1:numpar_gen/2-1
121 par1 = par_out(i);
122 par2 = par_out(i+1);
123

124 % Mutation Rate
125 p_m = 3/4;
126

127 % Crossover function
128 CroP1 = sort(chromo(par1,1:end));
129 CroP2 = sort(chromo(par2,1:end));
130

131 scP1 = fitmat(par1);
132 scP2 = fitmat(par2);
133

134 ProbP1 = scP1/(scP1+scP2);
135 ProbP2 = 1-ProbP1;
136

137

138 % Cut
139 rCro = rand();
140 ChiCro = zeros(numsens,1);
141 for Ci = 1:numsens
142 if(CroP1(Ci) == CroP2(Ci))
143 ChiCro(Ci) = CroP1(Ci);
144 end
145 if(CroP1(Ci) ~= CroP2(Ci))
146 if rCro <= ProbP1
147 ChiCro(Ci) = CroP1(Ci);
148 else
149 ChiCro(Ci) = CroP2(Ci);
150 end
151 end
152 end
153

154 randMutProb = rand();
155 if(randMutProb < p_m)
156

157 bMut = true;
158 arrMut = zeros(numsubs,1);
159
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160 rMut = randi(numsens,1);
161 for Mi = 1:numsubs
162 for Ni = 1:numsens
163 if(ChiCro(Ni) == Mi)
164 arrMut(Mi) = 1;
165 end
166 end
167 end
168 hMut = find(arrMut == 0);
169 riMut = randi(length(hMut),1);
170 ChiCro(rMut) = hMut(riMut);
171 end
172

173 children_out(i,1:numsens) = ChiCro;
174 end
175

176 % Select best half+1 of the children to bring into the population
177 fitchildren = zeros(numpar_gen/2-1,1);
178 for m = 1:numpar_gen/2-1
179 bch = false(usize,1);
180 for n = 1:numsens
181 inde = children_out(m,n);
182 bch(1:end,1) = bch(1:end,1) | b(1:end,inde);
183 end
184 fitchildren(m) = sum(bch);
185 end
186

187 [chilsorted,indchild] = sort(fitchildren,'descend');
188 % Into population : childreninto ->
189 childreninto(1:numpar_gen/4-1,1:end) = ...
190 children_out(indchild(1:numpar_gen/4-1,1:end),1:end);
191

192 % New population
193 for i = 1:length(childreninto)
194 chromo(indarr(end-i),1:end) = childreninto(i,1:end);
195 end
196

197 % Fitness of new population
198 fitmat = zeros(numchromo,1);
199 for m = 1:numchromo
200 bch = false(usize,1);
201 for n = 1:numsens
202 inde = chromo(m,n);
203 bch(1:end,1) = bch(1:end,1) | b(1:end,inde);
204 end
205 fitmat(m) = sum(bch);
206 end
207

208 % Select best parents for next generation
209 [sortarr,indarr] = sort(fitmat,'descend');
210 generations = generations + 1;
211 end
212 outVal = chromo(indarr(1),1:end);
213

214 % Post process
215 [panx,camx] = EvalNum(lpans,outVal);
216 % Display Results
217 disp('Camera Positions x : ')
218 campx(camx)
219 disp('Camera Positions z : ')
220 campz(camx)
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221 disp('Pan Angles [rad] : ')
222 pans(panx)
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A.8 C++ Scripts

A.8.1 Sensor Model Test Case

1 // C++ Code for placement of two pre-defined cameras for a given JSON file with visibility model
2 // Author : Vegard Tveit
3 // Date : 22.02.2018
4 // Comment : This code uses the json11 library found at :
5 // https://github.com/dropbox/json11
6

7 // Initial Setup
8 #include <iostream>
9 #include "json11.hpp"

10 #include <string>
11 #include <fstream>
12 #include <vector>
13 #include <cmath>
14

15 using namespace json11;
16 using std::string;
17 typedef std::vector<Json> array;
18 static void parse_from_stdin() {
19 // Initialize strings, ints etc
20 string buf;
21 string line;
22 int i = 0;
23 double mat[2];
24 double val = 0;
25 double val_annot = 0;
26 double outval = 0;
27 int j = 0;
28 long long int ii; //gpu thread index (to be used later)
29 string err,mystr;
30 std::string mystrings;
31 std::string teststring;
32 std::string annotations;
33

34 while (std::getline(std::cin, line)) {
35 buf += line + "\n";
36 }
37 // Pass data from json file
38 auto json = Json::parse(buf, err);
39

40 /*
41 Input Json Array Index :
42 0 : Annotations
43 1 : Camera Points (x)
44 2 : Camera Points (z)
45 3 : Data Points (x)
46 4 : Data Points (y)
47 5 : Data Points (z)
48 6 : Camera Parameters
49 */
50 /* Store JSON data into arrays
51 annot : Double array of annotations
52 datax : Double array of data points (x)
53 datay : Double array of data points (y)
54 dataz : Double array of data points (z)
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55

56 Note: Camera poisions - Fixed in y -direction at -6
57

58 camx : Camera positions (x)
59 camz : Camera poisitons (z)
60 */
61 // Store annotations to annot
62 double annot[json[0].array_items().size()];
63 for(auto &value :json[0].array_items()){
64

65 annotations = value.dump();
66 std::string::size_type sz;
67 val_annot = stod(annotations,&sz);
68 annot[j] = val_annot;
69 j = j + 1;
70 }
71 // Store data points (x) to datax
72 double datax[json[3].array_items().size()];
73 int kx = 0;
74 for(auto &valuex :json[3].array_items()){
75 std::string dataxs;
76 double valx;
77 dataxs = valuex.dump();
78 std::string::size_type sz;
79 valx = stod(dataxs,&sz);
80 datax[kx] = valx;
81 kx = kx + 1;
82 }
83

84 // Store data points (y) to datay
85 double datay[json[4].array_items().size()];
86 int ky = 0;
87 for(auto &valuey :json[4].array_items()){
88 std::string datays;
89 double valy;
90 datays = valuey.dump();
91 std::string::size_type sz;
92 valy = stod(datays,&sz);
93 datay[ky] = valy;
94 ky = ky + 1;
95 }
96 // Store data points (z) to dataz
97 double dataz[json[5].array_items().size()];
98 int kz = 0;
99 for(auto &valuez :json[5].array_items()){

100 std::string datazs;
101 double valz;
102 datazs = valuez.dump();
103 std::string::size_type sz;
104 valz = stod(datazs,&sz);
105 dataz[kz] = valz;
106 kz = kz + 1;
107 }
108

109 // Store camera positions (x) to camposx
110 double camposx[json[1].array_items().size()];
111 int kcx = 0;
112 for(auto &value_cx :json[1].array_items()){
113 std::string camposxs;
114 double camx;
115 camposxs = value_cx.dump();
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116 std::string::size_type sz;
117 camx = stod(camposxs,&sz);
118 camposx[kcx] = camx;
119 kcx = kcx + 1;
120 }
121 // Store camera positions (z) to camposz
122 double camposz[json[2].array_items().size()];
123 int kcz = 0;
124 for(auto &value_cz :json[2].array_items()){
125 std::string camposzs;
126 double camz;
127 camposzs = value_cz.dump();
128 std::string::size_type sz;
129 camz = stod(camposzs,&sz);
130 camposz[kcz] = camz;
131 kcz = kcz + 1;
132 }
133

134 // Determine number of obstacle points
135 int cot0 = 0;
136 for(int k0 = 0 ; k0 < json[0].array_items().size() ; k0++){
137 if(annot[k0] != 0){
138 cot0 = cot0 + 1;
139 }
140 }
141

142 // Determine all obstacle coordinates and collect into double arrays
143 int coto = 0;
144 double obstx[cot0];
145 double obsty[cot0];
146 double obstz[cot0];
147

148 for(int ko = 0 ; ko < j ; ko++){
149 if(annot[ko] != 0){
150 double obstxx = datax[coto];
151 double obstyy = datay[coto];
152 double obstzz = dataz[coto];
153

154 obstx[coto] = obstxx;
155 obsty[coto] = obstyy;
156 obstz[coto] = obstzz;
157 coto = coto + 1;
158 }
159 }
160

161 // Test sensor placement
162 // Initialize camera parameters for both cameras
163 int numkk = 0;
164 double xcam1, zcam1, xcam2, zcam2;
165 // Pan and tilt angles should be defined in [-pi,pi]
166 const double pi = 3.1415926535897;
167 double pan =-3* pi/4; // Pan (Rot X of the camera)
168 double fov = 60*(pi/180); // Half of the field of view
169 double tilt = 0; // Tilt (Rot Z of the camera)
170 double range = 8; // The range of the camera
171 double x,y,z,x2,y2,z2;
172 double pan2 = 0;
173 double fov2 = 60 * (pi/180);
174 double tilt2 = 0;
175 double range2 = 8;
176
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177 // Initialize loop help variables
178 double max = 0;
179 double maxk = 0;
180 int numk = 0;
181 int num = 0;
182 bool b;
183 int iter = 0;
184 // Loop through all camera positions for camera 1
185 for(int j_k = 0 ; j_k < kcz; j_k++) {
186 // Set current camera 1 position
187 x = camposx[j_k];
188 y = -4;
189 z = camposz[j_k];
190 // Initialize sum variable
191 int sum = 0;
192

193 // Loop through all camera positions for camera 2
194 for(int k = 0 ; k < kcz ; k++){
195 // Set current camera 2 position
196 x2 = camposx[k];
197 y2 = -4;
198 z2 = camposz[k];
199

200 // Initialize sum variable
201 int sumk = 0;
202 // Loop through all data points for the current camera position
203 for(int i = 0; i < ky ; i++){
204 // Set current data point set
205 double xp = datax[i];
206 double yp = dataz[i];
207 double zp = datay[i];
208 // Determine distance from sensor to data point
209 double L = std::sqrt(std::pow(xp-x,2) + std::pow(zp-z,2) + std::pow(yp-y,2));
210 double La = std::sqrt(std::pow(xp-x2,2) + std::pow(zp-z2,2) + std::pow(yp-y2,2));
211 // Determine angle between sensor and data point (XY plane)
212 double xya = std::atan2((zp-z),(xp-x));
213 double xya2 = std::atan2((zp-z2),(xp-x2));
214 // Determine angle between sensor and data point (XZ plane)
215 double xza = std::atan2((yp-y),L);
216 double xza2 = std::atan2((yp-y2),La);
217

218 // Determine if point is seen by camera 1
219 if(L < range){
220 if( (pan - fov) <= xya && xya <= (pan+ fov) ){
221 if( ((tilt - fov) <= xza) && (xza <= (tilt + fov)) ){
222 // Determine visibility
223 for(int vk = 0 ;vk < coto ; vk++){
224 //Set GPU thread index (to be used later)
225 ii = vk + coto*i + coto*ky*k + coto*ky*kcz*j_k;
226 //std::cout << ii << std::endl;
227

228 double xobs = obstx[vk];
229 double yobs = obsty[vk];
230 double zobs = obstz[vk];
231 double o_L = std::sqrt(std::pow(xobs-x,2) +
232 std::pow(zobs-z,2) + std::pow(yobs-y,2));
233 double o_xya = std::atan2((zobs-z),(xobs-x));
234 double thr = 0.25;
235 double o_xza = std::atan2((yobs-y),o_L);
236

237 // Is obstacle point within sensing range
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238 b=1;
239 if((pan - fov) <= o_xya && o_xya <= (pan + fov) ){
240 if(std::abs(xya - o_xya) < thr){
241 if( ((tilt - fov) <= o_xza) && (o_xza <= (tilt + fov)) ){
242 if(std::abs(xza - o_xza) < thr){
243 if(L > o_L){
244 b = 0;
245 }
246 }
247 }
248 }
249 }
250 }
251 }
252 else{
253 b = 0;
254 }
255 }
256 else{
257 b = 0;
258 }
259 }
260 // Determine if point is seen by camera 2
261 else if(La < range2){
262 if( (pan2 - fov2) <= xya2 && xya2 <= (pan2+ fov2) ){
263 if( (tilt2 - fov2) <= xza2 && xza2 <= (tilt2 + fov2) ){
264 // Determine visibility
265 for(int vk1 = 0 ;vk1 < coto ; vk1++){
266 double xobs1 = obstx[vk1];
267 double yobs1 = obsty[vk1];
268 double zobs1 = obstz[vk1];
269 double o_L1 = std::sqrt(std::pow(xobs1-x,2) +
270 std::pow(zobs1-z,2) + std::pow(yobs1-y,2));
271 double o_xya1 = std::atan2((zobs1-z),(xobs1-x));
272 double thr1 = 0.25;
273 double o_xza1 = std::atan2((yobs1-y),o_L1);
274

275 // Is obstacle point within sensing range
276 b = 1;
277 if((pan2 - fov2) <= o_xya1 && o_xya1 <= (pan2 + fov2) ){
278 if(std::abs(xya2 - o_xya1) < thr1){
279 if( ((tilt2 - fov2) <= o_xza1) &&
280 (o_xza1 <= (tilt2 + fov2)) ){
281 if(std::abs(xza2 - o_xza1) < thr1){
282 if(La > o_L1){
283 b = 0;
284 }
285 }
286 }
287

288 }
289 }
290 }
291 }
292 else{
293 b = 0;
294 }
295 }
296 else{
297 b = 0;
298 }
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299 } else{
300 b = 0;
301

302 }
303 // Sum for the current camera position increases by one if the above conditions are fullfilled
304 sumk = sumk + b;
305 }
306 // End of inner loop (data points)
307 // If the sum of the current camera position is better than the previous best
308 // set current camera 1 and 2 position to best position for the given camera 1 position
309 if(sumk > maxk){
310 maxk = sumk;
311 numk = k;
312 }
313 }
314 // If the sum for the current camera 1 and camera 2 combination is better
315 // than the previous best, set the current positions to best
316 if(maxk > max){
317 max = maxk;
318 num = j_k;
319 numkk = numk;
320 xcam1 = x;
321 zcam1 = z;
322 xcam2 = x2;
323 zcam2 = z2;
324 }
325 }
326

327 // Print results
328 std::cout << std::endl << std::endl << std::endl;
329

330 std::cout << "The best camera positions is : X : " << camposx[num] << " Y : " << camposz[num]
<<

331 " and " << " X : " << camposx[numkk] << " Y : " << camposz[numkk] << std::endl;
332 }
333 // Main execution
334 int main(int argc, char **argv) {
335 if (argc == 2 && argv[1] == string("--stdin")) {
336 parse_from_stdin();
337 return 0;
338 }
339 }

A.8.2 Heuristic Greedy Algorithm

1 // C++ Code for iterative placement of n pre-defined cameras for a given
2 //JSON file with visibility model with variable pan angle
3 // Author : Vegard Tveit
4 // Date : 25.02.2018
5 // Comment : This code uses the json11 library found at :
6 // https://github.com/dropbox/json11
7

8 // Initial Setup
9 #include <iostream>

10 #include "json11.hpp"
11 #include <string>
12 #include <fstream>
13 #include <vector>
14 #include <cmath>
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15

16 using namespace json11;
17 using std::string;
18 typedef std::vector<Json> array;
19 static void parse_from_stdin() {
20 // Initialize strings, ints etc
21 string buf;
22 string line;
23 int i = 0;
24

25 //double val = 0;
26 double val_annot = 0;
27 //double outval = 0;
28 int j = 0;
29 long long int ii; //gpu thread index (to be used later)
30 string err,mystr;
31 std::string mystrings;
32 std::string teststring;
33 std::string annotations;
34

35 while (std::getline(std::cin, line)) {
36 buf += line + "\n";
37 }
38 // Pass data from json file
39 auto json = Json::parse(buf, err);
40

41 /*
42 Input Json Array Index :
43 0 : Annotations
44 1 : Camera Points (x)
45 2 : Camera Points (z)
46 3 : Data Points (x)
47 4 : Data Points (y)
48 5 : Data Points (z)
49 6 : Camera Parameters
50 */
51 /* Store JSON data into arrays
52 annot : Double array of annotations
53 datax : Double array of data points (x)
54 datay : Double array of data points (y)
55 dataz : Double array of data points (z)
56

57 Note: Camera poisions - Fixed in y -direction at -6
58

59 camx : Camera positions (x)
60 camz : Camera poisitons (z)
61 */
62 // Store annotations to annot
63 double annot[json[0].array_items().size()];
64 for(auto &value :json[0].array_items()){
65

66 annotations = value.dump();
67 std::string::size_type sz;
68 val_annot = stod(annotations,&sz);
69 annot[j] = val_annot;
70 j = j + 1;
71 }
72 // Store data points (x) to datax
73 double datax[json[3].array_items().size()];
74 int kx = 0;
75 for(auto &valuex :json[3].array_items()){
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76 std::string dataxs;
77 double valx;
78 dataxs = valuex.dump();
79 std::string::size_type sz;
80 valx = stod(dataxs,&sz);
81 datax[kx] = valx;
82 kx = kx + 1;
83 }
84

85 // Store data points (y) to datay
86 double datay[json[4].array_items().size()];
87 int ky = 0;
88 for(auto &valuey :json[4].array_items()){
89 std::string datays;
90 double valy;
91 datays = valuey.dump();
92 std::string::size_type sz;
93 valy = stod(datays,&sz);
94 datay[ky] = valy;
95 ky = ky + 1;
96 }
97 // Store data points (z) to dataz
98 double dataz[json[5].array_items().size()];
99 int kz = 0;

100 for(auto &valuez :json[5].array_items()){
101 std::string datazs;
102 double valz;
103 datazs = valuez.dump();
104 std::string::size_type sz;
105 valz = stod(datazs,&sz);
106 dataz[kz] = valz;
107 kz = kz + 1;
108 }
109

110 // Store camera positions (x) to camposx
111 double camposx[json[1].array_items().size()];
112 int kcx = 0;
113 for(auto &value_cx :json[1].array_items()){
114 std::string camposxs;
115 double camx;
116 camposxs = value_cx.dump();
117 std::string::size_type sz;
118 camx = stod(camposxs,&sz);
119 camposx[kcx] = camx;
120 kcx = kcx + 1;
121 }
122 // Store camera positions (z) to camposz
123 double camposz[json[2].array_items().size()];
124 int kcz = 0;
125 for(auto &value_cz :json[2].array_items()){
126 std::string camposzs;
127 double camz;
128 camposzs = value_cz.dump();
129 std::string::size_type sz;
130 camz = stod(camposzs,&sz);
131 camposz[kcz] = camz;
132 kcz = kcz + 1;
133 }
134

135 // Determine number of obstacle points
136 int cot0 = 0;
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137 for(int k0 = 0 ; k0 < json[0].array_items().size() ; k0++){
138 if(annot[k0] != 0){
139 cot0 = cot0 + 1;
140 }
141 }
142

143

144

145 // Determine all obstacle coordinates and collect into double arrays
146 int coto = 0;
147 double obstx[cot0];
148 double obsty[cot0];
149 double obstz[cot0];
150

151 for(int ko = 0 ; ko < json[0].array_items().size() ; ko++){
152 if(annot[ko] != 0){
153 double obstxx = datax[coto];
154 double obstyy = datay[coto];
155 double obstzz = dataz[coto];
156

157 obstx[coto] = obstxx;
158 obsty[coto] = obstyy;
159 obstz[coto] = obstzz;
160 coto = coto + 1;
161 }
162 }
163

164 // Test sensor placement
165 // Initialize camera parameters
166 // ------------------------------------------
167 // The following needs to be user specified :
168 // numcams : Number of cameras
169 // numpans : Number of pan options
170 // panarr : Array of pan options
171 // -------------------------------------------
172 int numcams = 4;
173 // Pan and tilt angles should be defined in [-pi,pi]
174 const double pi = 3.1415926535897;
175 double fov = 60*(pi/180); // Half of the field of view
176 double tilt = 0; // Tilt (Rot Z of the camera)
177 double range = 8; // The range of the camera
178 double x,y,z;
179

180 double myxval,myzval;
181 // Initialize loop help variables
182 double max = 0;
183 int num = 0;
184 bool b;
185

186

187 // Initialize arrays and loop help variables
188 double pan;
189 int numpan = 3;
190 double mypval[numcams];
191 double camxpos[numcams];
192 double camzpos[numcams];
193 int coverage[kz];
194 int final_coverage[kz];
195 int ff_coverage[kz];
196 double panarr[numpan] = {0,pi/2,-3*pi/4};
197
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198

199

200 // Loop through number of cameras
201 for(int camcount = 0 ; camcount < numcams ; camcount++){
202 if(camcount > 0){
203 for(int covcount = 0 ; covcount < ky ; covcount++){
204 if(final_coverage[covcount] == 1){
205 ff_coverage[covcount] = 1;
206 }
207 }
208 }
209 max = 0; // Reset max variable for current camer
210 for(int j_k = 0 ; j_k < kcz; j_k++) {
211

212 // Set current camera 1 position
213 x = camposx[j_k];
214 y = -6;
215 z = camposz[j_k];
216 // Initialize sum variable
217

218 for(int pancount = 0 ; pancount < numpan ; pancount++){
219

220 int sum = 0; // Reset sum variable for current pan angle
221 pan = panarr[pancount]; // Set pan angle
222

223 for(int i = 0; i < ky ; i++){
224

225 // Only compute visibility and coverage is point is not yet covered
226 if(ff_coverage[i] != 1){
227

228 // Set current data point set
229 double xp = datax[i];
230 double yp = dataz[i];
231 double zp = datay[i];
232 // Determine distance from sensor to data point
233 double L = std::sqrt(std::pow(xp-x,2) + std::pow(zp-z,2) + std::pow(yp-y,2));
234 // Determine angle between sensor and data point (XY plane)
235 double xya = std::atan2((zp-z),(xp-x));
236 // Determine angle between sensor and data point (XZ plane)
237 double xza = std::atan2((yp-y),L);
238 // Determine if point is seen by camera
239 if(L < range){
240 if( (pan - fov) <= xya && xya <= (pan+ fov) ){
241 if( ((tilt - fov) <= xza) && (xza <= (tilt + fov)) ){
242 // Determine visibility
243 for(int vk = 0 ;vk < coto ; vk++){
244 double xobs = obstx[vk];
245 double yobs = obsty[vk];
246 double zobs = obstz[vk];
247 double o_L = std::sqrt(std::pow(xobs-x,2) + std::pow(zobs-z,2)
248 + std::pow(yobs-y,2));
249 double o_xya = std::atan2((zobs-z),(xobs-x));
250 double thr = 0.25;
251 double o_xza = std::atan2((yobs-y),o_L);
252

253 // Is obstacle point within sensing range
254 b=1;
255 if((pan - fov) <= o_xya && o_xya <= (pan + fov) ){
256 if(std::abs(xya - o_xya) < thr){
257 if( ((tilt - fov) <= o_xza) && (o_xza<=(tilt + fov))){
258 if(std::abs(xza - o_xza) < thr){
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259 if(L > o_L){
260 b = 0;
261 }
262 }
263 }
264 }
265 }
266 }
267 }
268 else{
269 b = 0;
270 }
271 }
272 else{
273 b = 0;
274 }
275 }
276 else{
277 b = 0;
278 }
279 if(b==1){
280 coverage[i] = 1;
281 }
282 else{
283 coverage[i] = 0;
284 }
285 // Sum for the current camera position increases by one
286 // if the above conditions are fulfilled
287 sum = sum + b;
288 }
289 }
290

291 // If current pan config is better than previously for the current camera
292 // Save pan config as best
293 if(sum > max){
294 max = sum;
295 num = j_k;
296

297 // Loop through coverage array
298 for(int covi = 0 ; covi < ky ; covi++){
299 final_coverage[covi] = coverage[covi];
300 }
301 myxval = camposx[num];
302 myzval = camposz[num];
303 mypval[camcount] = pan;
304 camzpos[camcount] = myzval;
305 camxpos[camcount] = myxval;
306 }
307

308 }
309 }
310 }
311

312 // Output results
313 for(int ijj = 0; ijj < numcams ; ijj++){
314 double myvalue = camxpos[ijj];
315 double myzvalue = camzpos[ijj];
316 double mypanvalue = mypval[ijj];
317 std::cout << std::endl;
318 std::cout << "Camera x : " << myvalue << std::endl;
319 std::cout << "Camera z : " << myzvalue << std::endl;
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320 std::cout << "Pan : " << mypanvalue << std::endl;
321 }
322 double fsum = 0;
323 for(int ickk = 0; ickk < ky ; ickk++){
324 if(ff_coverage[ickk] == 1){
325 fsum = fsum + 1;
326 }else if(final_coverage[ickk] == 1){
327 fsum = fsum + 1;
328 }
329 }
330 double fperc = (fsum/ky) * 100;
331

332 std::cout << "Percentage coverage " << fperc << std::endl;
333 }
334 // Main execution loop
335 int main(int argc, char **argv) {
336 if (argc == 2 && argv[1] == string("--stdin")) {
337 parse_from_stdin();
338 return 0;
339 }
340 }

A.8.3 Combinatorial Brute Force Algorithm

1 // C++ Code for combinatorial placement of n pre-defined cameras for a given
2 // JSON file with visibility model with variable pan angle
3 // Author : Vegard Tveit
4 // Date : 27.03.2018
5 // Comment : This code uses the json11 library found at :
6 // https://github.com/dropbox/json11
7

8 // User need to define:
9 // "numcams" in line 158,

10 // "numpans" in line 162
11 // "panarray" in line 167
12

13 // Initial Setup
14 #include <iostream>
15 #include "json11.hpp"
16 #include <string>
17 #include <fstream>
18 #include <vector>
19 #include <cmath>
20 #include <algorithm>
21 #include <chrono>
22 #include <numeric>
23 #include <functional>
24

25 // Typedefs and namespace
26 using namespace json11;
27 using std::string;
28 typedef std::vector<Json> array;
29 typedef std::vector< std::vector<int> > matrix_int;
30 typedef std::vector<int> array_int;
31 typedef std::vector<bool> array_bool;
32 typedef std::vector< std::vector<bool> > matrix_bool;
33 typedef std::vector< std::vector<double> > matrix_double;
34 typedef std::chrono::high_resolution_clock Clock;
35
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36 // Initialize function callers
37 array_int evalu(int lpans, int valueo);
38 long long int nchoosek(int N, int K);
39 matrix_int comb(int N, int K);
40

41 // Function to run in main loop
42 static void parse_from_stdin() {
43 // Initialize strings, ints etc
44 string buf;
45 string line;
46 int i = 0;
47 double val_annot = 0;
48 int j = 0;
49 string err,mystr;
50 std::string mystrings;
51 std::string teststring;
52 std::string annotations;
53

54 while (std::getline(std::cin, line)) {
55 buf += line + "\n";
56 }
57 // Pass data from json file
58 auto json = Json::parse(buf, err);
59

60 // Store annotations to annot
61 double annot[json[0].array_items().size()];
62 for(auto &value :json[0].array_items()){
63

64 annotations = value.dump();
65 std::string::size_type sz;
66 val_annot = stod(annotations,&sz);
67 annot[j] = val_annot;
68 j = j + 1;
69 }
70 // Store data points (x) to datax
71 double datax[json[3].array_items().size()];
72 int kx = 0;
73 for(auto &valuex :json[3].array_items()){
74 std::string dataxs;
75 double valx;
76 dataxs = valuex.dump();
77 std::string::size_type sz;
78 valx = stod(dataxs,&sz);
79 datax[kx] = valx;
80 kx = kx + 1;
81 }
82

83 // Store data points (y) to datay
84 double datay[json[4].array_items().size()];
85 int ky = 0;
86 for(auto &valuey :json[4].array_items()){
87 std::string datays;
88 double valy;
89 datays = valuey.dump();
90 std::string::size_type sz;
91 valy = stod(datays,&sz);
92 datay[ky] = valy;
93 ky = ky + 1;
94 }
95 // Store data points (z) to dataz
96 double dataz[json[5].array_items().size()];
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97 int kz = 0;
98 for(auto &valuez :json[5].array_items()){
99 std::string datazs;

100 double valz;
101 datazs = valuez.dump();
102 std::string::size_type sz;
103 valz = stod(datazs,&sz);
104 dataz[kz] = valz;
105 kz = kz + 1;
106 }
107

108 // Store camera positions (x) to camposx
109 double camposx[json[1].array_items().size()];
110 int kcx = 0;
111 for(auto &value_cx :json[1].array_items()){
112 std::string camposxs;
113 double camx;
114 camposxs = value_cx.dump();
115 std::string::size_type sz;
116 camx = stod(camposxs,&sz);
117 camposx[kcx] = camx;
118 kcx = kcx + 1;
119 }
120 // Store camera positions (z) to camposz
121 double camposz[json[2].array_items().size()];
122 int kcz = 0;
123 for(auto &value_cz :json[2].array_items()){
124 std::string camposzs;
125 double camz;
126 camposzs = value_cz.dump();
127 std::string::size_type sz;
128 camz = stod(camposzs,&sz);
129 camposz[kcz] = camz;
130 kcz = kcz + 1;
131 }
132

133 // Determine number of obstacle points
134 int cot0 = 0;
135 for(int k0 = 0 ; k0 < json[0].array_items().size() ; k0++){
136 if(annot[k0] != 0){
137 cot0 = cot0 + 1;
138 }
139 }
140

141 // Determine all obstacle coordinates and collect into double arrays
142 int coto = 0;
143 double obstx[cot0];
144 double obsty[cot0];
145 double obstz[cot0];
146

147 for(int ko = 0 ; ko < json[0].array_items().size() ; ko++){
148 if(annot[ko] != 0){
149 double obstxx = datax[coto];
150 double obstyy = datay[coto];
151 double obstzz = dataz[coto];
152

153 obstx[coto] = obstxx;
154 obsty[coto] = obstyy;
155 obstz[coto] = obstzz;
156 coto = coto + 1;
157 }
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158 }
159

160 // Initialize constants
161 const double pi = 3.1415926535897;
162 const int numcams = 2;
163 const int numpan = 3;
164 double pan;
165 bool b;
166

167 // USER DEFINED array of possible pan angles
168 const double panarray[numpan] = {0,pi/2,-3*pi/4};
169 // Pan and tilt angles should be defined in [-pi,pi]
170

171 // Sensor parameters
172 double fov = 60*(pi/180); // Half of the field of view
173 double tilt = 0; // Tilt (Rot Z of the camera)
174 double range = 8; // The range of the camera
175 double x,y,z;
176

177 // Determine coverage for all positions and all poses
178 int combco = numpan*kcz;
179 auto t1 = Clock::now();
180 matrix_bool outmat(combco,std::vector<bool>(ky));
181 int iteration = 0;
182

183 for(int j_k = 0; j_k < kcz ; j_k++){
184

185 // Set current camera 1 position
186 x = camposx[j_k];
187 y = -6;
188 z = camposz[j_k];
189

190 for(int pancount = 0 ; pancount < numpan ; pancount++){
191

192 pan = panarray[pancount]; // Set pan angle
193

194 for(int i = 0; i < ky ; i++){
195

196 // Set current data point set
197 double xp = datax[i];
198 double yp = dataz[i];
199 double zp = datay[i];
200 // Determine distance from sensor to data point
201 double L = std::sqrt(std::pow(xp-x,2) + std::pow(zp-z,2) + std::pow(yp-y,2));
202 // Determine angle between sensor and data point (XY plane)
203 double xya = std::atan2((zp-z),(xp-x));
204 // Determine angle between sensor and data point (XZ plane)
205 double xza = std::atan2((yp-y),L);
206 // Determine if point is seen by camera
207 if(L < range){
208 if( (pan - fov) <= xya && xya <= (pan+ fov) ){
209 if( ((tilt - fov) <= xza) && (xza <= (tilt + fov)) ){
210 // Determine visibility
211 for(int vk = 0 ;vk < coto ; vk++){
212 double xobs = obstx[vk];
213 double yobs = obsty[vk];
214 double zobs = obstz[vk];
215 double o_L = std::sqrt(std::pow(xobs-x,2) + std::pow(zobs-z,2)
216 + std::pow(yobs-y,2));
217 double o_xya = std::atan2((zobs-z),(xobs-x));
218 double thr = 0.25;
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219 double o_xza = std::atan2((yobs-y),o_L);
220

221 // Is obstacle point within sensing range
222 b=true;
223 if((pan - fov) <= o_xya && o_xya <= (pan + fov) ){
224 if(std::abs(xya - o_xya) < thr){
225 if( ((tilt - fov) <= o_xza) && (o_xza <= (tilt + fov)) ){
226 if(std::abs(xza - o_xza) < thr){
227 if(L > o_L){
228 b = false;
229 }
230 }
231 }
232 }
233 }
234 }
235 }
236 else{
237 b = false;
238 }
239 }
240 else{
241 b = false;
242 }
243 }
244 else{
245 b = false;
246 }
247

248 outmat[iteration][i] = b;
249 }
250 iteration = iteration + 1;
251 }
252 }
253

254 // Determine number of combinations
255 long int comnum = nchoosek(combco,numcams);
256 // Array to store combinations
257 matrix_int combarr(comnum , std::vector<int>(numcams));
258 combarr = comb((int)combco,(int)numcams);
259 int sumof;
260

261 // Print the number of combinations and number of cameras
262 std::cout << "No. of combinations: " << comnum << " " << "No. of cameras: "
263 << numcams << std::endl;
264 array_bool testbool(ky);
265 array_bool bout(ky);
266 auto tt = Clock::now();
267 array_int sum(comnum);
268 for(int m = 0; m < comnum ; m++){
269

270 std::fill(bout.begin(),bout.end(),false);
271 for(int n = 0; n < numcams ; n++){
272 int ind = combarr[m][n];
273 // bout = bout | helparr
274 std::transform(bout.begin(),bout.end(),outmat[ind].begin(),bout.begin(),std::plus<bool>());
275

276 }
277 sum[m] = std::accumulate(bout.begin(),bout.end(),0);
278

279 }
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280

281 auto ttt = Clock::now();
282 auto t2 = Clock::now();
283 int max = 0;
284

285 int ind;
286 for(int j = 0; j < comnum ; j++)
287 {
288 if (sum[j]> max)
289 {
290 max = sum[j];
291 ind = j;
292 }
293 }
294

295 std::cout << "Elapsed Time: "
296 << std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count()
297 << " milliseconds" << std::endl;
298

299 std::cout << "Max Covered : " << max << " at index " << ind << std::endl;
300

301 // Post process
302 array_int camout(numcams);
303 for(int i = 0 ; i < numcams ; i++)
304 {
305 camout[i] = combarr[ind][i];
306 }
307

308 matrix_int indarr(numcams,std::vector<int>(2));
309

310 for(int i = 0; i < numcams ; i++)
311 {
312 array_int arrhelp(numcams);
313 arrhelp = evalu(numpan, camout[i]);
314 indarr[i][0] = arrhelp[0];
315 indarr[i][1] = arrhelp[1];
316

317 double cameraxpar = camposx[indarr[i][1]];
318 double cameraypar = camposz[indarr[i][1]];
319 double camerapan = panarray[indarr[i][0]];
320 std::cout << std::endl << std::endl;
321 std::cout << "Camera x coordinate : " << cameraxpar << std::endl;
322 std::cout << "Camera y coordinate : " << cameraypar << std::endl;
323 std::cout << "Pan angle : " << camerapan << std::endl;
324 }
325 }
326

327 // Main execution loop
328 int main(int argc, char **argv) {
329 if (argc == 2 && argv[1] == string("--stdin")) {
330 parse_from_stdin();
331 return 0;
332 }
333 }
334 //--------------------------------------------------------------------------------------------------------
335 // FUNCTIONS
336

337 // Function for determining matrix of all combinations
338 matrix_int comb(int N, int K)
339 {
340 long long int fi = nchoosek(N,K);

A - 37



A.8. C++ SCRIPTS

341 matrix_int out((int)fi + 1,std::vector<int>(K));
342 int c2;
343 std::string bitmask(K, 1); // K leading 1's
344 bitmask.resize(N, 0); // N-K trailing 0's
345 // int testi = 1;
346 int count = 0;
347 // print integers and permute bitmask
348 do {
349 c2 = 0;
350 for (int i = 0; i < N; ++i) // [0..N-1] integers
351 {
352 if (bitmask[i]){
353 out[count][c2] = i;
354 c2 = c2 + 1;
355 }
356 }
357 count = count + 1;
358 } while (std::prev_permutation(bitmask.begin(), bitmask.end()));
359 return out;
360 }
361

362 // Function for determining the binomial coefficient
363 long long int nchoosek(int N, int K)
364 {
365 std::string bitmask(K, 1); // K leading 1's
366 bitmask.resize(N, 0); // N-K trailing 0's
367 long long int counter = 0;
368 do {
369 counter = counter + 1;
370 } while (std::prev_permutation(bitmask.begin(), bitmask.end()));
371

372 return counter;
373 }
374 // Function for evaluating the camera and pan indexes
375 array_int evalu(int lpans, int valueo)
376 {
377 array_int outarray(2); //Initialize array
378 double ic = (double)valueo;
379 double pc = floor(ic/lpans); // Determine the current camera index
380 int panx = valueo - (int)pc*lpans; // Determine the current pan angle index
381 int camx = (int)pc;
382

383 // Return results
384 outarray[0] = panx;
385 outarray[1] = camx;
386 return outarray;
387 }
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A.9 CUDA C++ Scripts

A.9.1 C++ Program for Importing JSON and Exporting Text File Matrices for

CUDA

1 // C++ Code for reading a JSON file and converting to txt files
2 // for CUDA usage
3 // Author : Vegard Tveit
4 // Date : 10.04.2018
5 // Comment : This code uses the json11 library found at :
6 // https://github.com/dropbox/json11
7 // Initial Setup
8 #include <iostream>
9 #include "json11.hpp"

10 #include <string>
11 #include <fstream>
12 #include <vector>
13 #include <cmath>
14 #include <algorithm>
15 #include <chrono>
16 #include <numeric>
17 #include <functional>
18 #include <fstream>
19

20

21 // Typedefs and namespace
22 using namespace json11;
23 using std::string;
24 typedef std::vector<Json> array;
25 typedef std::vector< std::vector<int> > matrix_int;
26 typedef std::vector<int> array_int;
27 typedef std::vector<bool> array_bool;
28 typedef std::vector< std::vector<bool> > matrix_bool;
29 typedef std::vector< std::vector<double> > matrix_double;
30 typedef std::chrono::high_resolution_clock Clock;
31

32 // Initialize function callers
33 array_int evalu(int lpans, int valueo);
34 //double factorial(double n);
35 long long int nchoosek(int N, int K);
36 matrix_int comb(int N, int K);
37

38 // Function to run in main loop
39 static void parse_from_stdin() {
40 // Initialize strings, ints etc
41 string buf;
42 string line;
43 int i = 0;
44 double val_annot = 0;
45 int j = 0;
46 long long int ii; //gpu thread index (to be used later)
47 string err,mystr;
48 std::string mystrings;
49 std::string teststring;
50 std::string annotations;
51

52 while (std::getline(std::cin, line)) {
53 buf += line + "\n";
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54 }
55 // Pass data from json file
56 auto json = Json::parse(buf, err);
57

58 /*
59 Input Json Array Index :
60 0 : Annotations
61 1 : Camera Points (x)
62 2 : Camera Points (z)
63 3 : Data Points (x)
64 4 : Data Points (y)
65 5 : Data Points (z)
66 6 : Camera Parameters
67 */
68 /* Store JSON data into arrays
69 annot : Double array of annotations
70 datax : Double array of data points (x)
71 datay : Double array of data points (y)
72 dataz : Double array of data points (z)
73

74 Note: Camera poisions - Fixed in y -direction at -6
75

76 camx : Camera positions (x)
77 camz : Camera poisitons (z)
78 */
79 // Store annotations to annot
80 double annot[json[0].array_items().size()];
81 for(auto &value :json[0].array_items()){
82

83 annotations = value.dump();
84 std::string::size_type sz;
85 val_annot = stod(annotations,&sz);
86 annot[j] = val_annot;
87 j = j + 1;
88 }
89 // Store data points (x) to datax
90 double datax[json[3].array_items().size()];
91 int kx = 0;
92 for(auto &valuex :json[3].array_items()){
93 std::string dataxs;
94 double valx;
95 dataxs = valuex.dump();
96 std::string::size_type sz;
97 valx = stod(dataxs,&sz);
98 datax[kx] = valx;
99 kx = kx + 1;

100 }
101

102 // Store data points (y) to datay
103 double datay[json[4].array_items().size()];
104 int ky = 0;
105 for(auto &valuey :json[4].array_items()){
106 std::string datays;
107 double valy;
108 datays = valuey.dump();
109 std::string::size_type sz;
110 valy = stod(datays,&sz);
111 datay[ky] = valy;
112 ky = ky + 1;
113 }
114 // Store data points (z) to dataz
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115 double dataz[json[5].array_items().size()];
116 int kz = 0;
117 for(auto &valuez :json[5].array_items()){
118 std::string datazs;
119 double valz;
120 datazs = valuez.dump();
121 std::string::size_type sz;
122 valz = stod(datazs,&sz);
123 dataz[kz] = valz;
124 kz = kz + 1;
125 }
126

127 // Store camera positions (x) to camposx
128 double camposx[json[1].array_items().size()];
129 int kcx = 0;
130 for(auto &value_cx :json[1].array_items()){
131 std::string camposxs;
132 double camx;
133 camposxs = value_cx.dump();
134 std::string::size_type sz;
135 camx = stod(camposxs,&sz);
136 camposx[kcx] = camx;
137 kcx = kcx + 1;
138 }
139 // Store camera positions (z) to camposz
140 double camposz[json[2].array_items().size()];
141 int kcz = 0;
142 for(auto &value_cz :json[2].array_items()){
143 std::string camposzs;
144 double camz;
145 camposzs = value_cz.dump();
146 std::string::size_type sz;
147 camz = stod(camposzs,&sz);
148 camposz[kcz] = camz;
149 kcz = kcz + 1;
150 }
151

152 // Determine number of obstacle points
153 int cot0 = 0;
154 for(int k0 = 0 ; k0 < json[0].array_items().size() ; k0++){
155 if(annot[k0] != 0){
156 cot0 = cot0 + 1;
157 }
158 }
159

160 // Determine all obstacle coordinates and collect into double arrays
161 int coto = 0;
162 double obstx[cot0];
163 double obsty[cot0];
164 double obstz[cot0];
165

166 for(int ko = 0 ; ko < json[0].array_items().size() ; ko++){
167 if(annot[ko] != 0){
168 double obstxx = datax[coto];
169 double obstyy = datay[coto];
170 double obstzz = dataz[coto];
171

172 obstx[coto] = obstxx;
173 obsty[coto] = obstyy;
174 obstz[coto] = obstzz;
175 coto = coto + 1;

A - 41



A.9. CUDA C++ SCRIPTS

176 }
177 }
178

179 // Initialize constants
180 const double pi = 3.1415926535897;
181 const int numcams = 2;
182 const int numpan = 3;
183 double pan;
184 bool b;
185

186

187

188 // USER DEFINED array of possible pan angles
189 const double panarray[numpan] = {0,pi/2,-3*pi/4};
190 // Pan and tilt angles should be defined in [-pi,pi]
191

192

193 // Sensor parameters
194 double fov = 60*(pi/180); // Half of the field of view
195 double tilt = 0; // Tilt (Rot Z of the camera)
196 double range = 8; // The range of the camera
197 double x,y,z;
198

199

200 // Determine coverage for all positions and all poses
201 int combco = numpan*kcz;
202 auto t1 = Clock::now();
203 matrix_bool outmat(combco,std::vector<bool>(ky));
204 int iteration = 0;
205 for(int j_k = 0; j_k < kcz ; j_k++){
206

207 // Set current camera 1 position
208 x = camposx[j_k];
209 y = -6;
210 z = camposz[j_k];
211

212 for(int pancount = 0 ; pancount < numpan ; pancount++){
213

214 pan = panarray[pancount]; // Set pan angle
215

216 for(int i = 0; i < ky ; i++){
217

218 // Set current data point set
219 double xp = datax[i];
220 double yp = dataz[i];
221 double zp = datay[i];
222 // Determine distance from sensor to data point
223 double L = std::sqrt(std::pow(xp-x,2) + std::pow(zp-z,2) +
224 std::pow(yp-y,2));
225 // Determine angle between sensor and data point (XY plane)
226 double xya = std::atan2((zp-z),(xp-x));
227 // Determine angle between sensor and data point (XZ plane)
228 double xza = std::atan2((yp-y),L);
229 // Determine if point is seen by camera
230 if(L < range){
231 if( (pan - fov) <= xya && xya <= (pan+ fov) ){
232 if( ((tilt - fov) <= xza) && (xza <= (tilt + fov)) ){
233 // Determine visibility
234 for(int vk = 0 ;vk < coto ; vk++){
235 double xobs = obstx[vk];
236 double yobs = obsty[vk];
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237 double zobs = obstz[vk];
238 double o_L = std::sqrt(std::pow(xobs-x,2) + std::pow(zobs-z,2)
239 + std::pow(yobs-y,2));
240 double o_xya = std::atan2((zobs-z),(xobs-x));
241 double thr = 0.25;
242 double o_xza = std::atan2((yobs-y),o_L);
243

244 // Is obstacle point within sensing range
245 b=true;
246 if((pan - fov) <= o_xya && o_xya <= (pan + fov) ){
247 if(std::abs(xya - o_xya) < thr){
248 if( ((tilt - fov) <= o_xza) && (o_xza <= (tilt + fov)) ){
249 if(std::abs(xza - o_xza) < thr){
250 if(L > o_L){
251 b = false;
252 }
253 }
254 }
255 }
256 }
257 }
258 }
259 else{
260 b = false;
261 }
262 }
263 else{
264 b = false;
265 }
266 }
267 else{
268 b = false;
269 }
270

271 outmat[iteration][i] = b;
272 }
273 iteration = iteration + 1;
274 }
275 }
276

277 // Determine number of combinations
278 long int comnum = nchoosek(combco,numcams);
279 // Array to store combinations
280 matrix_int combarr(comnum , std::vector<int>(numcams));
281 combarr = comb((int)combco,(int)numcams);
282 std::cout << combarr[1][1] << std::endl;
283

284 // Write all binary subsets to "subsets.txt"
285 std::ofstream subsets;
286 subsets.open("Subsets_1.txt");
287 for(int i = 0; i < iteration; i++){
288 for(int j = 0; j < ky ; j++){
289 subsets << outmat[i][j] << " ";
290 }
291 subsets << "\n";
292 }
293

294 // Write all combinations to "combinations.txt"
295 std::ofstream myfile;
296 myfile.open("Combinations_2.txt");
297 for(int j = 0; j < comnum ; j++){
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298 for(int i = 0; i < numcams ; i++){
299

300 myfile << combarr[j][i] << " ";
301 }
302 myfile << "\n";
303 }
304 myfile.close();
305 }
306

307 // Main execution loop
308 int main(int argc, char **argv) {
309 if (argc == 2 && argv[1] == string("--stdin")) {
310 parse_from_stdin();
311 return 0;
312 }
313 }
314 //--------------------------------------------------------------------------------------------------------
315 // FUNCTIONS
316

317 // Function for determining matrix of all combinations
318 matrix_int comb(int N, int K)
319 {
320 long long int fi = nchoosek(N,K);
321 matrix_int out((int)fi + 1,std::vector<int>(K));
322 int c2;
323 std::string bitmask(K, 1); // K leading 1's
324 bitmask.resize(N, 0); // N-K trailing 0's
325 // int testi = 1;
326 int count = 0;
327 // print integers and permute bitmask
328 do {
329 c2 = 0;
330 for (int i = 0; i < N; ++i) // [0..N-1] integers
331 {
332 if (bitmask[i]){
333 out[count][c2] = i;
334 c2 = c2 + 1;
335 }
336 }
337 count = count + 1;
338 } while (std::prev_permutation(bitmask.begin(), bitmask.end()));
339 return out;
340 }
341

342 // Function for determining the binomial coefficient
343 long long int nchoosek(int N, int K)
344 {
345 std::string bitmask(K, 1); // K leading 1's
346 bitmask.resize(N, 0); // N-K trailing 0's
347 long long int counter = 0;
348 do {
349 counter = counter + 1;
350 } while (std::prev_permutation(bitmask.begin(), bitmask.end()));
351

352 return counter;
353 }
354 // Function for evaluating the camera and pan indexes
355 array_int evalu(int lpans, int valueo)
356 {
357 array_int outarray(2); //Initialize array
358 double ic = (double)valueo;
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359 double pc = floor(ic/lpans); // Determine the current camera index
360 int panx = valueo - (int)pc*lpans; // Determine the current pan angle index
361 int camx = (int)pc;
362

363 // Return results
364 outarray[0] = panx;
365 outarray[1] = camx;
366 return outarray;
367 }

A.9.2 CUDA Program for the Brute Force Algorithm

1 /*
2 CUDA code for GPU optimization of camera placement problem
3 Author : Vegard Tveit
4 Date : 17.04.2018
5 Comment : The user has to specify:
6

7 - Number of sensors to be placed
8 - Number of possible combinations(nchoosek)
9 - Modify UNISIZE

10 - Number of datapoints
11 - Number of possible placement points
12 - Number of possible pan angles
13 - "subsets.txt" and "combinations.txt"
14

15 */
16 // Initial Setup
17 #include <iostream>
18 #include <string>
19 #include <fstream>
20 #include <vector>
21

22 #include <new>
23 #define UNISIZE 1490
24 #include <cmath>
25 #include <algorithm>
26 #include <numeric>
27 #include <functional>
28 #include <fstream>
29 __global__ void mykernel(int* devarr, bool* subs, int* sum, unsigned long len,
30 unsigned long nsubs, unsigned long usize)
31 {
32 // Kernel function to run on GPU
33 // Defining variables (stored in each kernel)
34 // The id of the current thread
35 unsigned long th_id = blockIdx.x * blockDim.x + threadIdx.x;
36 bool barr[1490] = {0}; //Array for storing coverage
37 int totsum = 0; // Sum of covered points
38 if(th_id < len){
39 for(unsigned long i = 0; i < nsubs; i++)
40 {
41 int ind = devarr[th_id*nsubs + i];
42 for(unsigned long j = 0; j < usize; j++)
43 {
44 // Only do calculations if point is uncovered by current combination
45

46 if(barr[j] == 0)
47 {
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48

49 if(subs[ind*usize + j] == 1){
50 barr[j] = 1;
51 totsum +=1;
52 }
53

54

55 }
56 }
57 }
58 sum[th_id] = totsum;
59 }else sum[th_id] = 0;
60 }
61

62 void readfromtxt(){
63

64 unsigned long num_sensors = 3;
65 unsigned long ncombs = 1521520;
66

67 unsigned long ndp = 1490;
68 unsigned long campos = 70;
69 unsigned long numpans = 3;
70

71 // Dynamically allocate arrays
72 int* array = (int*)malloc(ncombs*num_sensors*sizeof(int));
73 bool* subs_array = (bool*)malloc(ndp*campos*numpans*sizeof(bool*));
74

75 //Load subsets from txt file and store in 1D array
76 std::ifstream subsfile("Subsets.txt");
77 bool b;
78 unsigned long col_s = 0;
79 while (subsfile >> b)
80 {
81 subs_array[col_s] = b;
82 col_s +=1;
83 }
84

85 std::cout << " " <<std::endl;
86 std::cout << " " <<std::endl;
87 std::cout << " " <<std::endl;
88 // Store combinations array in a 1D array
89 std::ifstream myfile("Combinations_1.txt");
90 int a;
91 unsigned long col = 0;
92

93 while (myfile >> a)
94 {
95 array[col] = a;
96 col += 1;
97 }
98 std::cout << "Col subs : " << col_s << " and col arr: " << col << std::endl;
99 //GPU variables

100 unsigned long n_threads_per_block = 1024; //Threads per block
101 unsigned long n_blocks = (ncombs + n_threads_per_block - 1)/n_threads_per_block;
102

103 std::cout << "Number of blocks :" << n_blocks << std::endl;
104 unsigned long data_n = n_blocks*n_threads_per_block; // Total number of available threads
105

106 //Vectorize array for GPU calculations
107 unsigned long chop_combs;
108 //unsigned long ncrit = data_n;
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109 chop_combs = ncombs;
110

111 std::cout << "No. of available threads: " << data_n << std::endl;
112 std::cout << "Number of used threads : " << chop_combs << std::endl;
113 size_t i_datasize = chop_combs*sizeof(int);
114 std::cout << "i_datasize [bytes] : " << i_datasize << std::endl;
115 // Allocate CPU Memory
116 int* sum_host = new int[chop_combs];
117 //std::cout << "bool array datasize [bytes] : " << b_datasize << std::endl;
118 size_t array_datas = chop_combs*num_sensors*sizeof(int);
119 size_t bool_subs_size = ndp*numpans*campos*sizeof(bool);
120

121 std:: cout << "Array size : " << array_datas <<
122 " and subs size " << bool_subs_size << std::endl;
123

124 // Allocate GPU Memory
125 bool* subs_dev;
126 int* sum_dev;
127 int* array_dev;
128 cudaMalloc(&subs_dev,bool_subs_size);
129 cudaMalloc(&array_dev, array_datas);
130 cudaMalloc(&sum_dev,i_datasize);
131

132 // Copy host (CPU) arrays to device (GPU) arrays
133 cudaMemcpy(subs_dev, subs_array, bool_subs_size, cudaMemcpyHostToDevice);
134 cudaMemcpy(sum_dev, sum_host, i_datasize, cudaMemcpyHostToDevice);
135 cudaMemcpy(array_dev, array, array_datas, cudaMemcpyHostToDevice);
136

137 // Run "mykernel" function on GPU threads with gpu timing
138 cudaEvent_t start, stop;
139 cudaEventCreate(&start);
140 cudaEventCreate(&stop);
141 cudaEventRecord(start);
142

143 mykernel <<< n_blocks,n_threads_per_block >>>
144 (array_dev,subs_dev,sum_dev,chop_combs,num_sensors,ndp);
145

146 cudaDeviceSynchronize();
147 cudaEventRecord(stop);
148

149 cudaEventSynchronize(stop);
150 float milliseconds = 0;
151 cudaEventElapsedTime(&milliseconds, start, stop);
152

153 printf("The elapsed time for kernel execution was %.2f ms\n", milliseconds);
154 // Copy results back to cpu memory
155 cudaMemcpy(sum_host, sum_dev, i_datasize, cudaMemcpyDeviceToHost);
156

157 // Post process
158 int max = 0;
159 unsigned long ind = 0;
160 for (unsigned long i = 0; i < chop_combs ; i++){
161 if(sum_host[i] > max){
162 max = sum_host[i];
163 ind = i;
164 }
165 }
166

167 printf("Highest coverage value: %i, at index %lu. \n",max,ind);
168 std::cout << "The index represents camera index: ";
169 for(int m = 0; m < num_sensors ; m++){
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170

171 printf("%i ", array[ind*num_sensors + m]);
172 }
173 std::cout << std::endl;
174 //Free allocated memory on CPU and GPU
175 cudaFree(subs_dev);
176 cudaFree(sum_dev);
177 cudaFree(array_dev);
178 delete[] sum_host;
179 free(array);
180 free(subs_array);
181 }
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A.10 Scripts for the Final Test

A.10.1 Matlab Program for Genetic Algorithm with K-Cover

1 %% Genetic Algorithm with K-Coverage
2 % Author: Vegard Tveit
3 % Date: 22.05.2018
4 clear;
5 clc;
6 close all;
7

8 % Specify the input *.mat file from the UI to set up the environment
9 env = environment_generate('Final_0705.mat');

10 datax = env.datax; % Discrete data points (x)
11 datay = env.datay; % Discrete data points (y)
12 dataz = env.dataz; % Discrete data points (z)
13 campx = env.campx; % Discrete placement points (x)
14 campy = env.campy; % Discrete placement points (y)
15 campz = env.campz; % Discrete placement points (z)
16 obsta = env.obsta;
17 annot = env.annot;
18 % Define number of pan angles
19 pans = [pi/4,pi/2,-3*pi/4,0];
20

21 % Preallocate variables and initialize
22 ldata = length(datax); % Number of data points
23 lpans = length(pans); % Number of pan angles
24 lcamp = length(campx); % Number of placement points
25

26 x = zeros(lcamp,1); % Placement point array (x)
27 y = zeros(lcamp,1); % Placement point array (y)
28 z = zeros(lcamp,1); % Placement point array (x)
29 b = false(lpans,ldata); % Coverage matrix - Combs
30 iter = 0;
31

32 % Indexation counter
33 c = 0;
34 for i = 1:ldata
35 if(annot(i) == 2)
36 init_cov(i) = 2;
37 c = c + 1;
38 else
39 init_cov(i) = 1;
40 end
41 end
42

43 % Compute coverage for all possible camera poses and positions
44 for i = 1:lcamp
45 x(i) = campx(i); % Get camera position (x)
46 y(i) = campy(i); % Get camera position (y)
47 z(i) = campz(i); % Get camera position (z)
48

49 % Loop through all pan angles
50 for k = 1:lpans
51 pan = pans(k); % Get pan angle
52 iter = iter + 1; % Update indexation
53

54 % Compute coverage of all data points
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55 for n = 1:ldata
56 b(iter,n) = covered1(n,x(i),y(i),z(i),datax,datay,dataz,...
57 obsta,pan);
58 end
59 end
60 end
61

62 % Initalize pool of chromosomes randomly
63 numchromo = 3000;
64 numsubs = iter;
65 usize = ldata;
66 numsens = 3;
67 chromo = zeros(numchromo,numsens);
68 alpha = 4000;
69 for i = 1:numchromo
70 for j = 1:numsens
71 ind = randi(numsubs,1);
72 chromo(i,j) = ind;
73 end
74 end
75

76 b = b';
77 % Evaluate fitness of chromosomes
78 fitmat = zeros(numchromo,1);
79 cove = zeros(1,ldata);
80 cove(1:end) = init_cov(1:end);
81 cf = 0;
82 for m = 1:numchromo
83 bch = false(usize,1);
84 cove = zeros(1,ldata);
85 cove(1:end) = init_cov(1:end);
86 cf = 0;
87 penalty = 0;
88 barr = zeros(1,ldata);
89 for n = 1:numsens
90 inde = chromo(m,n);
91 for i = 1:ldata
92 if( b(i,inde))
93 barr(i) = barr(i) + 1;
94 end
95 end
96 end
97 for j = 1:ldata
98 if(barr(j) >= init_cov(j))
99 bch(j) = true;

100 if(annot(j) == 2)
101 cf = cf + 1;
102 end
103 end
104 end
105 if cf > 0 && cf < c
106 penalty = alpha*(c/cf);
107 end
108 if cf == 0
109 penalty = alpha*c;
110 end
111 fitmat(m) = sum(bch) - penalty;
112 end
113 avgsum_init = sum(fitmat)/length(fitmat)
114 % Select best parents for next generation
115 [sortarr,indarr] = sort(fitmat,'descend');
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116

117 % Make pool of parent solutions
118 % MUST BE AN EVEN NUMBER
119 numpar_gen = 3*numchromo/5;
120 max_generations = 300;
121 generations = 1;
122

123 childreninto = zeros(numpar_gen/4-1,numsens);
124

125 tic
126 % Main loop iterating through the generation
127 while(generations < max_generations)
128

129 % Probability of being chosen
130 for pk = 1:numpar_gen
131 prob_par(pk,1) = fitmat(indarr(pk))/sum((fitmat(indarr(1:numpar_gen))));
132 end
133

134 % Select half of the pool for reproduction
135 repIter = 1;
136 bRep = true;
137 par_out = zeros(numpar_gen/2,1);
138 for i = 1:numpar_gen/2
139 randRep = rand();
140 bRep = true;
141 repIter = 1;
142 while(bRep)
143 randRep = randRep - prob_par(repIter);
144 if randRep < 0
145 bRep = false;
146 indeRep = repIter;
147 end
148 repIter = repIter + 1;
149 end
150 par_out(i) = indeRep;
151 end
152 % par_out now contains the indices of the individuals
153 % in the mating pool. These chormosomes should undergo
154 % crossover and mutation
155

156 par = indarr(1:numpar_gen,1);
157

158 children_out = zeros(numpar_gen/2-1,numsens);
159 for i = 1:numpar_gen/2-1
160 par1 = par_out(i);
161 par2 = par_out(i+1);
162

163 % Mutation Rate
164 p_m = 3/4;
165

166 % Crossover function
167 CroP1 = sort(chromo(par1,1:end));
168 CroP2 = sort(chromo(par2,1:end));
169

170 scP1 = fitmat(par1);
171 scP2 = fitmat(par2);
172

173 ProbP1 = scP1/(scP1+scP2);
174 ProbP2 = 1-ProbP1;
175 rCro = rand();
176 for Ci = 1:numsens
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177 if(CroP1(Ci) == CroP2(Ci))
178 ChiCro(Ci) = CroP1(Ci);
179 end
180 if(CroP1(Ci) ~= CroP2(Ci))
181 if rCro <= ProbP1
182 ChiCro(Ci) = CroP1(Ci);
183 else
184 ChiCro(Ci) = CroP2(Ci);
185 end
186 end
187 end
188 randMutProb = rand();
189 if(randMutProb < p_m)
190

191 bMut = true;
192 arrMut = zeros(numsubs,1);
193

194 rMut = randi(numsens,1);
195 for Mi = 1:numsubs
196 for Ni = 1:numsens
197 if(ChiCro(Ni) == Mi)
198 arrMut(Mi) = 1;
199 end
200 end
201 end
202 hMut = find(arrMut == 0);
203 riMut = randi(length(hMut),1);
204 ChiCro(rMut) = hMut(riMut);
205 end
206

207 children_out(i,1:numsens) = ChiCro;
208 end
209

210 % Select best half+1 of the children to bring into the population
211 fitchildren = zeros(numpar_gen/2-1,1);
212 for m = 1:numpar_gen/2-1
213 bch = false(usize,1);
214 for n = 1:numsens
215 inde = children_out(m,n);
216 bch(1:end,1) = bch(1:end,1) | b(1:end,inde);
217 end
218 fitchildren(m) = sum(bch);
219 end
220

221 [chilsorted,indchild] = sort(fitchildren,'descend');
222 children_out(indchild(1:6),1:end);
223 % Into population : childreninto ->
224 childreninto(1:numpar_gen/4-1,1:end) = children_out(indchild(1:numpar_gen/4-1,1:end),1:end);
225 % New population
226 for i = 1:length(childreninto)
227 chromo(indarr(end-i),1:end) = childreninto(i,1:end);
228 end
229 chromo(450:end,1:end);
230 % Fitness of new population
231 fitmat = zeros(numchromo,1);
232 for m = 1:numchromo
233 bch = false(usize,1);
234 cove = zeros(1,ldata);
235 cove(1:end) = init_cov(1:end);
236 cf = 0;
237 penalty = 0;

A - 52



A.10. SCRIPTS FOR THE FINAL TEST

238 barr = zeros(1,ldata);
239 for n = 1:numsens
240 inde = chromo(m,n);
241 for i = 1:ldata
242 if( b(i,inde))
243 barr(i) = barr(i) + 1;
244 end
245 end
246 end
247 for j = 1:ldata
248 if(barr(j) >= init_cov(j))
249 bch(j) = true;
250 if(annot(j) == 2)
251 cf = cf + 1;
252 end
253 end
254 end
255 if cf > 0 && cf < c
256 penalty = alpha*(c/cf);
257 end
258 if cf == 0
259 penalty = alpha*c;
260 end
261 fitmat(m) = sum(bch) - penalty;
262 end
263

264 % Select best parents for next generation
265 [sortarr,indarr] = sort(fitmat,'descend');
266 best(generations) = sortarr(1);
267

268 generations = generations + 1;
269 end
270 toc
271 sortarr(1:10);
272 outVal = chromo(indarr(1),1:end);
273

274 % Post process
275 [panx,camx] = EvalNum(lpans,outVal);
276

277 % Display Results
278 disp('Camera Positions x : ')
279 campx(camx)
280

281 disp('Camera Positions z : ')
282 campz(camx)
283

284 disp('Pan Angles [rad] : ')
285 pans(panx)

A - 53



A.10. SCRIPTS FOR THE FINAL TEST

A.10.2 Matlab Program for Generation of Combinations Matrix

1 %% Generate Combinations
2 clc; clear
3 % User Need to Specify
4 % - k : Number of cameras
5 % - n : Number of possible placement points
6 n = 249;
7 k = 5;
8 e = CombinaisonEnumerator(k, 249);
9

10 %% This part of the script needs to be executed several times
11 % Ctrl + Left Click for execution of this section only
12 clear A
13 limiter = 1;
14 maxlim = 1.5e8;
15 ncams = 5;
16 A = zeros(maxlim,ncams);
17 tic
18 while(e.MoveNext() && limiter < maxlim + 1)
19

20 A(limiter,1:ncams) = e.Current + 45;
21 limiter = limiter + 1;
22 end
23 toc
24 tic
25 mex_WriteMatrix('combtests_1.txt',A,'%f',' ', 'w+');
26 toc
27 A(end,:)

A.10.3 CUDA Program for Brute Force Algorithm with K-Cover

1 /*
2 CUDA code for GPU optimization of camera placement problem
3 With support of 2-coverage Region of Interest
4 Author : Vegard Tveit
5 Date : 17.04.2018
6 Comment : The user has to specify:
7

8 - Number of sensors to be placed
9 - Number of possible combinations(nchoosek)

10 - Modify UNISIZE
11 - Number of datapoints
12 - Number of possible placement points
13 - Number of possible pan angles
14 - "subsets.txt", "annotations.txt" and "combinations.txt"
15

16 */
17 // Initial Setup
18 #include <iostream>
19 #include <string>
20 #include <fstream>
21 #include <vector>
22

23 #include <new>
24 #define UNISIZE 9084
25 #include <cmath>
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26 #include <algorithm>
27 #include <numeric>
28 #include <functional>
29 #include <fstream>
30 __global__ void mykernel(int* annotations, int* devarr, bool* subs,
31 int* sum, unsigned long len, unsigned long nsubs, unsigned long usize, int roisum)
32 {
33 // Kernel function to run on GPU
34 // Defining variables (stored in each kernel)
35 unsigned long th_id = blockIdx.x * blockDim.x + threadIdx.x;
36 int barr[9084] = {0}; //Array for storing coverage
37 int totsum = 0; // Sum of covered points
38 int count_roi = 0;
39 int penalty = 0;
40 int alpha = 4000;
41

42 int ct = 0;
43 if(th_id < len){
44 for(unsigned long i = 0; i < nsubs; i++)
45 {
46 int ind = devarr[th_id*nsubs + i];
47 for(unsigned long j = 0; j < usize; j++)
48 {
49 if(subs[ind*usize + j]){
50 barr[j] += 1;
51 }
52 }
53

54 }
55 for(int i = 0 ; i < usize ; i++){
56 if(barr[i] >= annotations[i]){
57 totsum += 1;
58 if(annotations[i] == 2){
59 count_roi += 1;
60 }
61 }
62 }
63 if(count_roi > 0 && count_roi < roisum){
64 penalty = alpha*(roisum/count_roi);
65 }
66 if(count_roi == 0){
67 penalty = alpha*roisum;
68 }
69

70 sum[th_id] = totsum - penalty;
71 }else sum[th_id] = 0;
72

73 }
74

75 void readfromtxt(){
76

77 //Specify the inputs
78 int num_sensors = 5;
79 int ncombs = 1.5e8; // Size of chopped Combinations Matrix
80 unsigned long ndp = 9084;
81 unsigned long campos = 83;
82 unsigned long numpans = 3;
83

84 std::cout << "num combs : " << ncombs << std::endl;
85

86 // Dynamically allocate arrays on CPU
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87 int* array = (int*)malloc(ncombs*num_sensors*sizeof(int));
88 bool* subs_array = (bool*)malloc(ndp*campos*numpans*sizeof(bool*));
89 int* annot_array = (int*)malloc(ndp*sizeof(int));
90

91 //Load subsets from txt file and store in 1D array
92 std::ifstream subsfile("Subsets.txt");
93 double b;
94 unsigned long col_s = 0;
95 while (subsfile >> b)
96 {
97 subs_array[col_s] = (bool) b;
98

99 col_s +=1;
100

101 }
102 for(int i = 0; i < 15 ; i++){
103 std::cout << subs_array[i] << std::endl;
104 }
105 std::cout << std::endl << std::endl <<std::endl;
106 std::ifstream myfile("combtinations.txt");
107 double bb;
108 unsigned long col = 0;
109 while (myfile >> bb)
110 {
111 array[col] = (int) bb;
112 if(col < 10) std::cout << bb << std::endl;
113 col += 1;
114 }
115 // Store annotations in a 1D array
116 // The annotation of a point describes whether it is
117 // a ROI, obstacle or normal data point
118 std::ifstream annotfile("Annotations.txt");
119 double an;
120 unsigned long col2 = 0;
121 while (annotfile >> an)
122 {
123 annot_array[col2] =(int) an;
124 col2 += 1;
125 }
126 // Make annotation array (to be used inside kernel)
127 int* init_cov = (int*)malloc(ndp*sizeof(int));
128 //int init_cov[ndp];
129 int c = 0;
130 for(int i = 0 ; i < ndp ; i++){
131 if(annot_array[i] == 2){
132 c += 1;
133 init_cov[i] = 2;
134 }else{
135 init_cov[i] = 1;
136 }
137 }
138 //GPU variables
139 unsigned long n_threads_per_block = 1024;
140 unsigned long n_blocks = (ncombs + n_threads_per_block - 1)/n_threads_per_block;
141

142 std::cout << "Number of blocks :" << n_blocks << std::endl;
143 unsigned long data_n = n_blocks*n_threads_per_block; // Total number of available threads
144

145 //Vectorize array for GPU calculations
146 unsigned long chop_combs;
147 chop_combs = ncombs;
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148 std::cout << "No. of available threads: " << data_n << std::endl;
149 std::cout << "Number of used threads : " << chop_combs << std::endl;
150

151 size_t i_datasize = chop_combs*sizeof(int);
152 size_t array_datas = chop_combs*num_sensors*sizeof(int);
153 size_t bool_subs_size = ndp*numpans*campos*sizeof(bool);
154 size_t annot_size = ndp*sizeof(int);
155

156 std::cout << "i_datasize [bytes] : " << i_datasize << std::endl;
157

158 // Allocate CPU Memory
159 int* sum_host = new int[chop_combs];
160

161 std:: cout << "Array size : " << array_datas <<" and subs size "
162 << bool_subs_size << std::endl;
163

164 // Allocate GPU Memory
165 int* annot_dev;
166 bool* subs_dev;
167 int* sum_dev;
168 int* array_dev;
169

170 cudaMalloc(&subs_dev,bool_subs_size);
171 cudaMalloc(&array_dev, array_datas);
172 cudaMalloc(&sum_dev,i_datasize);
173 cudaMalloc(&annot_dev,annot_size);
174

175 // Copy host (CPU) arrays to device (GPU) arrays
176 cudaMemcpy(subs_dev, subs_array, bool_subs_size, cudaMemcpyHostToDevice);
177 cudaMemcpy(sum_dev, sum_host, i_datasize, cudaMemcpyHostToDevice);
178 cudaMemcpy(array_dev, array, array_datas, cudaMemcpyHostToDevice);
179 cudaMemcpy(annot_dev,init_cov,annot_size,cudaMemcpyHostToDevice);
180

181 // Run "mykernel" function on GPU threads with gpu timing
182 cudaEvent_t start, stop;
183 cudaEventCreate(&start);
184 cudaEventCreate(&stop);
185 cudaEventRecord(start);
186

187 mykernel <<< n_blocks,n_threads_per_block >>>
188 (annot_dev,array_dev,subs_dev,sum_dev,chop_combs,num_sensors,ndp,c);
189

190 cudaDeviceSynchronize();
191 cudaEventRecord(stop);
192 cudaEventSynchronize(stop);
193

194 float milliseconds = 0;
195 cudaEventElapsedTime(&milliseconds, start, stop);
196

197 printf("The elapsed time for kernel execution was %.2f ms\n", milliseconds);
198 // Copy results back to cpu memory
199 cudaMemcpy(sum_host, sum_dev, i_datasize, cudaMemcpyDeviceToHost);
200

201 // Post process
202 int max = 0;
203 unsigned long ind = 0;
204 for (unsigned long i = 0; i < chop_combs ; i++){
205 if(sum_host[i] > max){
206 max = sum_host[i];
207 ind = i;
208 }
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209 }
210 std::cout << "Max val : " << max << std::endl;
211 printf("Highest coverage value at index %lu. \n",ind);
212 std::cout << "The index represents camera index: ";
213 for(int m = 0; m < num_sensors ; m++){
214

215 printf("%i ", array[ind*num_sensors + m]);
216 }
217 std::cout << std::endl;
218

219 //Free allocated memory on CPU and GPU
220 cudaFree(subs_dev);
221 cudaFree(sum_dev);
222 cudaFree(array_dev);
223 delete[] sum_host;
224 free(array);
225 free(subs_array);
226

227 }

A.10.4 Matlab Program for Visualization

1 %% Program to Evaluate Fitness of a Sensor Combination
2 clear;
3 clc;
4 close all;
5 env = environment_generate('mini_0705.mat');
6 datax = env.datax; % Discrete data points (x)
7 datay = env.datay; % Discrete data points (y)
8 dataz = env.dataz; % Discrete data points (z)
9 campx = env.campx; % Discrete placement points (x)

10 campy = env.campy; % Discrete placement points (y)
11 campz = env.campz; % Discrete placement points (z)
12 obsta = env.obsta;
13 annot = env.annot;
14

15 % Preallocate variables and initialize
16 ldata = length(datax); % Number of data points
17 ncams = 5;
18 c = 0;
19 % Determine initial coverage array
20 for i = 1:ldata
21 if(annot(i) == 2)
22 init_cov(i) = 2;
23 c = c + 1;
24 else
25 init_cov(i) = 1;
26 end
27 end
28 b = false(ncams,ldata); % Coverage matrix - Combs
29 iter = 0;
30 p = [0.0264 -0.0296 0.7689 0.8033 0.8050]; %Pan
31 x = [0 0 0 0.2426 7.7448]; % X Pos
32 z = [7.9870 9.6687 12.2536 0 0]; % Z Pos
33

34 y(1:ncams) = -6;
35

36 % Compute coverage for all possible camera poses and positions
37 for i = 1:ncams
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38 pan = p(i);
39 % Compute coverage of all data points
40 for n = 1:ldata
41 b(i,n) = covered1(n,x(i),y(i),z(i),datax,datay,dataz,...
42 obsta,pan);
43 end
44 end
45 cove = zeros(1,ldata);
46 out = zeros(1,ldata);
47 cf = 0;
48 totsum = 0;
49 % Evaluate visibility and coverage from all sensors
50 for j = 1:ncams
51 for i = 1:ldata
52 if( b(j,i) )
53 cove(i) = cove(i) + 1;
54 end
55 end
56 end
57 % Evaluation k-coverage
58 for k = 1:ldata
59 if(cove(k) >= init_cov(k))
60 totsum = totsum + 1;
61 out(k) = 1;
62 if(init_cov(k) == 2)
63 cf = cf + 1;
64 end
65 end
66 end
67 tot = totsum;
68 % Figure for visualization
69 figure()
70 ccc = 0;
71 for i = 1:ldata
72 if(annot(i) == 2 && out(i) == 1)
73 scatter3(datax(i),dataz(i),datay(i),'b');
74 hold on
75 end
76 if(annot(i) == 2 && out(i) == 0)
77 scatter3(datax(i),dataz(i),datay(i),'r');
78 hold on
79 end
80 if out(i) == 0
81 ccc = ccc + 1;
82 scatter3(datax(i), dataz(i), datay(i),'m')
83 hold on
84 end
85 end
86 for(k = 1:length(campx))
87 scatter3(campx(k),campy(k),campz(k),'g*')
88 hold on
89 end
90 for j = 1:ncams
91 scatter3(x(j), y(j), z(j),'k')
92 hold on
93

94 end
95 for i = 1:length(obsta)
96 scatter3(obsta(i,1), obsta(i,3), obsta(i,2),'r*')
97 hold on
98 end
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99 h = zeros(5, 1);
100 h(1) = plot(NaN,NaN,'ob');
101 h(2) = plot(NaN,NaN,'ok');
102 h(3) = plot(NaN,NaN,'*g');
103 h(4) = plot(NaN,NaN,'*r');
104 h(5) = plot(NaN,NaN,'om');
105 legend(h, 'ROI','Camera positions','Possible placement points',...
106 'Obstacles','Uncovered data points');
107 title('Coverage Results');
108 xlabel('X [m]')
109 ylabel('Y [m]')
110 zlabel('Z [m]')
111

112 fprintf('The sum is %i \n',tot)
113 if cf < c
114 fprintf('The ROI is not fully covered\n')
115 else
116 fprintf('The ROI is fully covered\n')
117 end
118

119 disp(tot/9084)

A.11 Matlab Scripts for the Continuous Neighborhood Optimization

A.11.1 Objective Funciton

1 function val = objfunc(p,yi,ncams)
2 %Import problem structure
3 env = environment_generate('mini_0705.mat');
4 datax = env.datax;
5 datay = env.datay;
6 dataz = env.dataz;
7 obsta = env.obsta;
8 annot = env.annot;
9

10 ldata = length(datax);
11 b = zeros(ncams,ldata);
12 alpha = 4000;
13 % Compute coverage of all data points
14 for i = 1:ncams
15 x = p(5 + i);
16 y = yi(i);
17 z = p(10 + i);
18 for n = 1:ldata
19 b(i,n) = covered1(n,x,y,z,datax,datay,dataz,...
20 obsta,p(i));
21 end
22 end
23 c = 0;
24 % Initialize array of required coverage
25 init_cov = zeros(ldata,1);
26 for i = 1:ldata
27 if(annot(i) == 2)
28 init_cov(i) = 2;
29 c = c + 1;
30 else
31 init_cov(i) = 1;
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32 end
33 end
34 cove = zeros(ldata,1);
35 cf = 0;
36 tot = 0;
37 penalty = 0;
38 bch = false(ldata,1);
39 % Evaluate coverage
40 for j = 1:ncams
41 for i = 1:ldata
42 if( b(j,i) )
43 cove(i) = cove(i) + 1;
44 end
45 end
46 end
47 for k = 1:ldata
48 if(cove(k) >= init_cov(k))
49 bch(k) = true;
50

51 if(init_cov(k) == 2)
52 cf = cf + 1;
53 end
54 end
55 end
56

57 % Penalize solutions that does not fully cover the ROI
58 if cf > 0 && cf < c
59 penalty = alpha*(c/cf);
60 end
61 if cf == 0
62 penalty = alpha*c;
63 end
64

65 sumt = sum(bch) - penalty;
66 if sumt <= 0
67 sumt = 1;
68 end
69 val = 100000/sumt; % Output value
70 end

A.11.2 Main Script

1 clc; clear
2

3 % Initialize problem
4

5 ncams = 5;
6 yi(1:ncams) = -6;
7 func = @(p)objfunc(p,yi,ncams);
8 % p is array of decision variables
9

10 % Determine bounds for each decision variable
11 lb(1:5) = [0 -pi/4 -pi/4 0 0];
12 ub(1:5) = [pi/2 pi/4 pi/4 pi/2 pi/2];
13 lb(6:15) = [0 0 0 0 6.5 6.5 8.5 11 0 0];
14 ub(6:15) = [0 0 0 1 8.5 8.5 10.5 13 0 0];
15

16 %Initial guess
17 x0 = [
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18 0 0 pi/4 pi/4 pi/4 ...
19 0 0 0 0 7.5 ...
20 7.5 9.5 12 0 0
21 ];
22 %% Fmincon
23 tic
24 [x,fval,output] = fmincon(func,x0,[],[],[],[],lb,ub);
25 toc
26

27 %% Simulated Annealing
28 tic
29 options = saoptimset('PlotFcns',{@saplotbestx,...
30 @saplotbestf,@saplotx,@saplotf},'Display','iter');
31 [x,fval,output] = simulannealbnd(func,x0,lb,ub,options)
32 toc
33 %% Global Search
34 tic
35 gs = GlobalSearch('Display','iter','StartPointsToRun','bounds');
36 problem = createOptimProblem('fmincon','x0',x0,'objective',func,'lb',lb,...
37 'ub',ub);
38

39 x = run(gs,problem);
40 toc
41 %% Particle Swarm Optimization
42 tic
43 nvars = 15;
44 options = optimoptions('particleswarm','Display','iter')
45 [x,fval,exitflag,output] = particleswarm(func,nvars,lb,ub,options)
46 toc
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