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Abstract

Advanced motion compensation is an important �eld of engineering in today's o�shore
industry. Performing advanced load handling operations at sea requires high attention to
both safety and e�ciency. In environments governed by wave motion and harsh weather
conditions, these types of operations are complex tasks. Most of the load handling scenarios
are performed by advanced o�shore loader cranes, where many of these are equipped with
the industry's state-of-the-art Active Heave Compensation. This technology is capable of
compensating for the wave height disturbance, meaning that the load is kept at a constant
height above the sea�oor. A common problem arises when equipment or personnel have
to be transported from a moving vessel to another vessel or o�shore installation. In these
scenarios compensation of the side-to-side motion is of equal importance as the relative
height movement.

This thesis proposes a method to reduce this side-ways motion. An anti-swing system has
been developed for a simulation model of a suspended load attached to a moving base
robot. The work focuses on deriving mathematical models of the related systems, where
control systems are designed to the reduce the swing motion of the suspended load by
actuation of the load handling robot. The developed system models are based on the
available equipment of the Norwegian Motion-Laboratory. Results of the proposed system
are obtained from the simulation of the motion system, which yields a system capable of
tracking the robotic tool-point reference signal with acceptable accuracy and reducing the
suspended load's swing-angles with satisfactory performance.

I





Contents

Abstract I

Preface III

List of Figures VIII

List of Tables IX

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Assumption and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Industrial Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Suspended Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.3 Motion Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.1 GitHub Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Motion Laboratory 4
2.1 Equipment and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Stewart Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Industrial Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Electrical Winch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Motion Reference Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Motion-Capture System . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Laser Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.7 Central Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Theory 14
3.1 Robot Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Robot Geometry and Dimensions . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Forward Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Suspended Load Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Simple Pendulum (2D-System) . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Suspended Load (3D-System) . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Full System Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Calibrated Transformations . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Stewart Platform Motion . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Updated Robot Tool-Point Motion . . . . . . . . . . . . . . . . . . . 40
3.3.4 Updated Suspended Load Motion . . . . . . . . . . . . . . . . . . . . 41
3.3.5 Camera System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Control System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 State-Space Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 State-Space Linearization . . . . . . . . . . . . . . . . . . . . . . . . 45

III



3.4.3 State-Space Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.4 State-Feedback Design . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.5 Linear Quadratic Regulator (LQR) . . . . . . . . . . . . . . . . . . . 49
3.4.6 Reference Input (Pre-�lter) . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.7 Integral Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.8 Controllability and Oberservability . . . . . . . . . . . . . . . . . . . 53
3.4.9 Estimator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.10 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.11 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Method 59
4.1 Robot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Forward Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Suspended Load Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Simple Pendulum 2D Model . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Suspended Load 3D Model . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Motion System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.1 Stewart Platform Motion . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Updated Robot Tool-Point Motion . . . . . . . . . . . . . . . . . . . 68
4.3.3 Combined Motion System Model . . . . . . . . . . . . . . . . . . . . 69

4.4 Control System Design Simple Pendulum . . . . . . . . . . . . . . . . . . . 71
4.4.1 Non-Linear System Plant . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Estimator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.4 Linear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.5 Non-Linear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Control System Design Suspended Load . . . . . . . . . . . . . . . . . . . . 81
4.5.1 Non-Linear System Plant . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 Extended Kalman Filter Estimator . . . . . . . . . . . . . . . . . . . 83
4.5.3 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.4 Linear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.5 Non-Linear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Control Design Motion System . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6.1 Non-Linear System Plant . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6.2 Extended Kalman Filter Estimator . . . . . . . . . . . . . . . . . . . 98
4.6.3 Linear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Results 106
5.1 Simulation Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Suspended Load Initial Euler-Angles . . . . . . . . . . . . . . . . . . 106
5.1.2 Robot Tool-Point Motion . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.3 Stewart Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1.4 Wire Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Simulation Results Suspended Load . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2.3 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.4 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Simulation Results Motion System . . . . . . . . . . . . . . . . . . . . . . . 115

IV



5.3.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.3 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.4 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.5 Scenario 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.6 Scenario 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Discussion 123
6.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Control System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4 Implementation to Motion-Lab . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusion 127

Bibliography 130

Appendices A - 1

A Technical Speci�cation A - 1
A.1 Stewart Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 1

A.1.1 E-Motion 8000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 1
A.1.2 E-Motion 1500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 2

A.2 Comau Industrial Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - 3

B Maple Scripts B - 1

C Matlab Scripts C - 1
C.1 Robot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 1

C.1.1 Forward Kinematics - Symbolic Derivation . . . . . . . . . . . . . . . C - 1
C.1.2 Comau Robot System Block . . . . . . . . . . . . . . . . . . . . . . . C - 3

C.2 Suspended Load System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 11
C.2.1 Pendulum Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 11
C.2.2 Pendulum Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . C - 12

C.3 Stewart Platform Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 13
C.4 Control System Simple Pendulum . . . . . . . . . . . . . . . . . . . . . . . . C - 16

C.4.1 Extended Kalman Filter Estimator . . . . . . . . . . . . . . . . . . . C - 16
C.4.2 Pendulum 2D Linear Control . . . . . . . . . . . . . . . . . . . . . . C - 17

C.5 Control System Suspended Load . . . . . . . . . . . . . . . . . . . . . . . . C - 20
C.5.1 Extended Kalman Filter Estimator . . . . . . . . . . . . . . . . . . . C - 20
C.5.2 Pendulum 3D Linear Control . . . . . . . . . . . . . . . . . . . . . . C - 22

C.6 Control System Motion System . . . . . . . . . . . . . . . . . . . . . . . . . C - 25
C.6.1 Extended Kalman Filter Estimator . . . . . . . . . . . . . . . . . . . C - 25
C.6.2 Motion System Linear Control . . . . . . . . . . . . . . . . . . . . . C - 29

C.7 Animation and Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 33
C.7.1 Robot Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 34
C.7.2 Suspended Load Pose . . . . . . . . . . . . . . . . . . . . . . . . . . C - 35
C.7.3 Stewart Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 36
C.7.4 Full System Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 37

C.8 Math3d Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C - 39

V



List of Figures

2.1 An Overview of the Norwegian Motion Laboratory . . . . . . . . . . . . . . 5
2.2 Photo of Stewart Platform EM 8000 . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Photo of Stewart Platform EM 8000 . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Photo of the Comau Smart 5 NJ 110-3.0 . . . . . . . . . . . . . . . . . . . . 7
2.5 Photo of the Kongsberg Seatex MRU Installed on EM 1500 . . . . . . . . . 8
2.6 Motion-Capture System - Oqus 700+ Cameras . . . . . . . . . . . . . . . . 9
2.7 Photos of the Laser Tracker and Measuring Probe . . . . . . . . . . . . . . . 9
2.8 TwinCAT 3 XAE Intergration . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9 TwinCAT ADS Communication Brigde . . . . . . . . . . . . . . . . . . . . . 11
2.10 Con�guration of the Analog and Digital I/O Modules of the Beckho� PC/PLC 11
2.11 Overview of the Communication Con�guration of the Motion-Lab . . . . . . 12

3.1 Geometry, Dimensions and Joint Coordinate System of the Comau Robot . 15
3.2 Robot Base Rotation based on Projection of the Tool-Point . . . . . . . . . 21
3.3 Planar Two-Link Elbow Con�guration . . . . . . . . . . . . . . . . . . . . . 22
3.4 Geometric Approach for Inverse Kinematics of θ2 . . . . . . . . . . . . . . . 23
3.5 Geometric Approach for Inverse Kinematics of θ3 . . . . . . . . . . . . . . . 24
3.6 An Illustration of the Simple Hanging Pendulum . . . . . . . . . . . . . . . 26
3.7 An Illustration of the Suspended Load in 3-Dimensions . . . . . . . . . . . . 30
3.8 An Overview of the Full System Setup, with Body-Fixed Coordinate System

and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 De�nition of Axis and Orientation for Vessel Motion . . . . . . . . . . . . . 36
3.10 State-Space Represented with Block Diagram . . . . . . . . . . . . . . . . . 44
3.11 Block Diagram of a State-Feedback System . . . . . . . . . . . . . . . . . . 48
3.12 Block Diagram of a State-Feedback System with a Pre-Filter . . . . . . . . 50
3.13 Block Diagram of a State-Feedback System with an Integral Control . . . . 52
3.14 Block Diagram of an Estimator Con�guration . . . . . . . . . . . . . . . . . 54
3.15 Overview of the Kalman Filter Operation . . . . . . . . . . . . . . . . . . . 57

4.1 Comau Robot Forward Kinematic System Block . . . . . . . . . . . . . . . 59
4.2 Comau Robot Forward Kinematic Model . . . . . . . . . . . . . . . . . . . . 60
4.3 3D Visualization from the Comau Robot Forward Kinematic Model . . . . . 61
4.4 Comau Robot Inverse Kinematic System Block . . . . . . . . . . . . . . . . 61
4.5 Functions Describing the Simple Pendulum System . . . . . . . . . . . . . . 62
4.6 Pendulum 2D System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Visualization of the 2D Pendulum Model Response . . . . . . . . . . . . . . 63
4.8 Suspended Load/Pendulum System Functions . . . . . . . . . . . . . . . . . 64
4.9 Suspended Load/Pendulum 3D System Model . . . . . . . . . . . . . . . . . 65
4.10 Simulation Model of the Robot and Suspended Load . . . . . . . . . . . . . 66
4.11 3D Visualization of the Robot and Suspended Load Model in Home Position 66
4.12 Stewart Platform Motion System . . . . . . . . . . . . . . . . . . . . . . . . 67
4.13 Comau Robot Forward Kinematic System, Updated for Relative Motion . . 68
4.14 Comau Robot Forward Kinematic System with Stewart Platform Motion . . 69
4.15 Full Motion System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.16 3D Visualization of the Full System Model . . . . . . . . . . . . . . . . . . . 70

VI



4.17 Non-Linear Plant Pendulum 2D . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.18 Simulink Representation of the Estimator Blocks . . . . . . . . . . . . . . . 73
4.19 2D Pendulum Model with Kalmen Filter and Extended Kalman Filter . . . 74
4.20 Estimator Comparison of 2D Pendulum with Sinusoidal Acceleration Input

with θ = 20 [deg] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.21 Estimator Comparison of 2D Pendulum with Sinusoidal Acceleration Input,

θ = 20 [deg] and Lw = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.22 Step Response of 2D Pendulum Linear System with State-Feedback and

Pre-Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.23 Non-Linear 2D Pendulum System with Extended Kalman Filter and State-

Feedback Pre-Filter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.24 Step Response of 2D Pendulum Linear System with State-Feedback and

Integral Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.25 Non-Linear 2D Pendulum System with Extended Kalman Filter and State-

Feedback Integral Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.26 Non-Linear 2D Pendulum System with a Non-Linear Virtual Damper Com-

pensator and PD Position Control . . . . . . . . . . . . . . . . . . . . . . . 80
4.27 Step Response of 2D Pendulum with Non-Linear Virtual Damper and PD

Position Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.28 Non-Linear Plant of the Suspended Load and Robot Tool-Point . . . . . . . 82
4.29 EKF Estimation of the Suspended Load System . . . . . . . . . . . . . . . . 84
4.30 EKF Estimation of the Suspended Load System, with Initial O�set Angles . 85
4.31 Closed Loop Step Response of the Non-Linear Suspended Load and Robot

System, with State-Feedback Pre-Filter Control . . . . . . . . . . . . . . . . 88
4.32 Simulink Model of the Non-Linear Suspended Load and Robot System, with

State-Feedback Pre-Filter Control . . . . . . . . . . . . . . . . . . . . . . . . 89
4.33 Closed Loop Step Response of the Non-Linear Suspended Load and Robot

System, with State-Feedback Integral Control . . . . . . . . . . . . . . . . . 91
4.34 Simulink Model of the Non-Linear Suspended Load and Robot System, with

State-Feedback Integral Control . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.35 Simulink Model of the Non-Linear Suspended Load and Robot System, with

Virtual Damper and Cascade Control . . . . . . . . . . . . . . . . . . . . . . 94
4.36 Closed Loop Step Response of the Non-Linear Suspended Load and Robot

System, with Virtual Damper and Cascade Control . . . . . . . . . . . . . . 95
4.37 System Model of the Comau Robot Kinematics with Stewart Platform Motion 96
4.38 Noisy Measurements and EKF Estimation of Stewart Platform Orientation

(Relative to Neutral Frame) . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.39 Noisy Measurements and EKF Estimation of the Suspended Load's Euler-

Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.40 Closed Loop Step Response of the Non-Linear Motion System, with State-

Feedback Integral Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.41 Simulink Model of the Non-Linear Motion System, with State-Feedback

Integral Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Tool-Point Reference Signal, Sequence of Step-Input . . . . . . . . . . . . . 107
5.2 Tool-Point Reference Signal, Sinusoidal Input . . . . . . . . . . . . . . . . . 108
5.3 Simulated Wave Motion by Stewart Platform . . . . . . . . . . . . . . . . . 109
5.4 Suspended Load Results for Scenario 1 . . . . . . . . . . . . . . . . . . . . . 111
5.5 Suspended Load Results for Scenario 2 . . . . . . . . . . . . . . . . . . . . . 112
5.6 Suspended Load Results for Scenario 3 . . . . . . . . . . . . . . . . . . . . . 113

VII



5.7 Suspended Load Results for Scenario 4 . . . . . . . . . . . . . . . . . . . . . 114
5.8 Motion System Results for Scenario 1 . . . . . . . . . . . . . . . . . . . . . 116
5.9 Motion System Results for Scenario 2 . . . . . . . . . . . . . . . . . . . . . 117
5.10 Motion System Results for Scenario 3 . . . . . . . . . . . . . . . . . . . . . 118
5.11 Motion System Results for Scenario 4 . . . . . . . . . . . . . . . . . . . . . 119
5.12 Motion System Results for Scenario 5 . . . . . . . . . . . . . . . . . . . . . 121
5.13 Motion System Results for Scenario 6 . . . . . . . . . . . . . . . . . . . . . 122

VIII



List of Tables

2.1 Technical Information of the Beckho� Servomotor (AM8532-H). Data for
400 V AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Comau Robot Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Denavit-Hartenberg Table for Comau Robot (3-DOF) . . . . . . . . . . . . 16
3.3 Coordinate System Annotations used for the Full System Kinematics . . . . 35
3.4 Fixed Homogeneous Transformations Obtained from Calibration . . . . . . 35

4.1 Robot Forward Kinematic Model - Home Position . . . . . . . . . . . . . . . 60
4.2 Robot Forward Kinematic Model - O�set Position . . . . . . . . . . . . . . 60
4.3 Robot and Suspended Load Model in Home Position . . . . . . . . . . . . . 67
4.4 Wave Trajectory for the Stewart Platform Motion η . . . . . . . . . . . . . 68
4.5 Cascade Controller Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Numerical Values of the Covariance Matrices . . . . . . . . . . . . . . . . . 99

5.1 Suspended Load Initial Euler-Angles, Downwards Position . . . . . . . . . . 106
5.2 Suspended Load Initial Euler-Angles, O�set Position . . . . . . . . . . . . . 106
5.3 Robot Tool-Point in Home Position Con�guration . . . . . . . . . . . . . . . 107
5.4 Sinusoidal Reference Trajectory for the Tool-Point Position P rt . . . . . . . 108
5.5 Simulation Scenarios of the 3D Pendulum . . . . . . . . . . . . . . . . . . . 110
5.6 Abbreviations used to describe the 3D Pendulum Results . . . . . . . . . . 110
5.7 Simulation Scenarios of the Full Motion System . . . . . . . . . . . . . . . . 115

A.1 E-Motion 8000 - Speci�cation and Capacity . . . . . . . . . . . . . . . . . . A - 1
A.2 E-Motion 1500 - Speci�cation and Capacity . . . . . . . . . . . . . . . . . . A - 2
A.3 Comau Smart 5 NJ 110-3.0 - Technical Speci�cation . . . . . . . . . . . . . A - 3
A.4 Denavit-Hartenberg Table for Comau Robot (6-DOF) without extension armA - 3

IX



1 Introduction

1.1 Background and Motivation

Advanced motion compensation is a topic with increased interest in the o�shore industry,
especially when considering o�shore crane load handling operations. Load operations in-
volving �oating wind turbines, autonomous shipping and vessel-to-vessel loading. are a
few examples of scenarios where motion compensation is a subject for improved safety and
performance. Active Heave Compensation (AHC) is a technology widely used by current
load handling cranes [1]. These are capable of controlling the load's height while the vessel
is experiencing a wave-induced motion, in 6 degrees of freedom (6-DOF). To safely and
e�ciently handle scenarios where a crane should transfer a hanging load from a moving
vessel to a secondary vessel or o�shore installation, an extension of the AHC technology
is desired. 6-DOF wave motion will not only a�ect the height of a suspended load but
also in�uence the swing motion of the load. Today such operations are limited by the
weather window, where the signi�cant wave height should be below 2.5 [m] to allow for
such load transfers [2]. Introducing an anti-swing system can reduce the load's pendulated
movements caused by the relative wave motion of the vessel, i.e., implementing a control
algorithm to compensate for the suspended load's surge and sway motion. Which can
extend the window for safe load handling operation.

A recognized process of measuring the relative motion of an o�shore vessel is using Motion
Reference Units (MRU). Installing one or multiple MRUs, the wave motion experienced
by the vessel can be obtained and used as a reference signal to a compensation system.
Experimental research done by [3], utilizes this method of using MRUs to measure the
important DOFs. Regarding the scenario of a suspended load attached to an o�shore
crane, a way of measuring the position of the load is necessary to implement an anti-swing
system. Techniques of motion detection can be applied, with the use of laser trackers or
vision systems. Motion tracking by using a vision system and Aruco markers is investigated
by [4]. Motion tracking of a moving target was conducted by [5], where a laser tracker
and a tracking probe was used to measure the relative motion between two wave-induced
platforms.

The Norwegian Motion-Laboratory is a research facility located at the University of Agder.
This laboratory consists of a couple of wave simulation platforms which, together with the
available industrial robot and measurement systems, enables the possibility to conduct
experiments and research related to o�shore motion compensation and load handling op-
erations.
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1.2 Problem Description

In this master thesis, the primary objective is to design and develop a simulation model
capable of compensating for the swing angles of a suspended load attached to a moving
base robot. The system will inherit the functionality of the Norwegian Motion-Laboratory,
where one of the motion platforms will be simulated to generate a wave motion. The
industrial robot will be restricted to act as a 3-DOF o�shore crane and will experience
relative motion at its base. The motion of the robot base will in�uence the motion of the
attached load, where the swing angle should be compensated for, by using the robot as an
actuator.

A more speci�c description of the project objectives is presented as:

� Get familiar with the current infrastructure of the Norwegian Motion-Laboratory

� Kinematic analysis of the industrial robot should be performed, where a mathemat-
ical simulation model of the system should be developed.

� Analysis of the kinematics and dynamics of a suspended load connected to a moving
attachment point should be conducted.

� Kinematic analysis of the full motion system should be identi�ed.

� A combined full system simulation model should be developed, for the suspended load
attached to the industrial robot, where the system is in�uenced by 6-DOF platform
motion.

� An anti-swing control system capable of compensating for the load's swing motion
should be designed and implemented to the simulation models.

1.3 Assumption and Limitations

1.3.1 Industrial Robot

Control of the industrial robot is considered to be achievable through actuation of the
angular joint motion. The robot is assumed to act as a rigid system, where no dynamic
analysis is necessary for the joint actuation. Feedback from the robot's tool-point position
and velocity is considered to be available.

1.3.2 Suspended Load

The suspended load can be assumed to act as a 3-dimensional pendulum, where the wire
is considered as a massless rigid rod. Elongation and de�ection of the wire are not to be
considered in this thesis, and the small frictional elements between the robot's tool-point
and the wire are neglectable.

1.3.3 Motion Platform

Measurements for the relative motion of the platform are assumed to be time continuous
and available for the simulation experiments.
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1.4 Report Outline

A short description of the chapters and their contents are given by the following bullet
points:

� Chapter 1 - Introduction
A description of the motivation and background, together with the problem statement
for this master thesis is presented.

� Chapter 2 - Motion Laboratory
This chapter presents the Norwegian Motion Laboratory, a research facility located
at the University of Agder. A brief introduction to the available equipment and the
current con�guration of the facility is presented.

� Chapter 3 - Theory
In this chapter, the background theory and fundamental equations are introduced.
This includes topics of the robot kinematics, analysis of the kinematics and dynamics
of the suspended load. Combined motion system analysis, where the motion platform
is connected with the industrial robot and suspended load system. A description of
control system design, will also be introduced by this chapter.

� Chapter 4 - Method
Here, the method and approach is presented for the modelling and simulation of the
presented systems. With the use of Matlab and Simulink, mathematical models of
the industrial robot, suspended load, and motion platform are made. This chapter
also presents and describes the implementation of the di�erent control systems.

� Chapter 5 - Results
This chapter presents the reader with the results for the conducted simulations of
the developed models and control systems.

� Chapter 6 - Discussion
The reader will be presented with a discussion of the work conducted for this master
thesis, together with suggestions for further work.

� Chapter 7 - Conclusion
This chapter elaborates the author's main conclusions and �ndings for the related
work.

1.4.1 GitHub Repository

Throughout this thesis, computer software such as Matlab and Simulink have been used to
aid in the design and development of the mathematical system models and control system.
The related scripts are provided by the appendices. Also, a GitHub repository has been
constructed for this master thesis. Here, it is possible to download the scripts as well as
the full simulation models for the system models and control systems.

https://github.com/jantolsen/motionlab-anti-swing-system.
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2 Motion Laboratory

The Norwegian Motion Laboratory (Motion-Lab) [6] is a research establishment in the
Mechatronics Laboratory located at the University of Agder (UiA). The Motion-Lab is
a part of the infrastructure in the Norwegian Center for O�shore Wind Energy (NOR-
COWE) [7] and is together with UiA and NORCOWE, founded by the Research Council
of Norway. The main aim of the Motion-Lab is focused towards extending and improving
the current methods for o�shore motion compensation. Examples of experiments which
can be conducted with the facility are; load transfer operations (vessel-to-�xed and vessel-
to-vessel), accuracy performance evaluation of measurement systems (LIDARS, MRU's,
etc.), playback of 6 degree-of-freedom (DOF) time series (wave-induced vessel motion),
etc. The Motion-Lab is open for researchers, students and external partners to conduct
related experiments, simulations, and measurements.

The main equipment installed in the Motion-Lab are the two Stewart platforms, intended
for simulation of two �oating vessels exposed to stochastic wave motion. An industrial
6-DOF robot is mounted on top of the larger platform, which enables experiments with
load handling operation. This type of con�guration enables experiments related to vessel-
to-vessel motion compensation (VVMC) to be conducted in the laboratory. The facility is
equipped with multiple sensors and tracking equipment, allowing for extensive motion mea-
surement. The Motion-Lab is a unique testing facility, and several successful experiments
have already been carried out in the laboratory [3, 4, 8].

2.1 Equipment and Setup

A photo of the Motion-Lab is shown in Fig. 2.1. The two Stewart Platforms from Bosch
Rexroth (E-Motion 1500 and E-Motion 8000) are visible, and the industrial robot (COMAU
Smart 5 NJ110 - 3.0) can be seen mounted on top of the larger platform. Motion reference
units (MRUs) from Kongsberg Seatex are installed on each platform and a motion capture
system consisting of 17 Oqus 700+ cameras from Qualisys can be seen mounted to the
surrounding walls. A laser tracker (LEICA Absolute Tracker AT960) is also available for
use. All of the mentioned equipment, except for the motion capture system, are connected
either directly or indirectly to an embedded PC (Beckho� CX 2040) which acts as the
central control unit for the Motion-Lab.
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Figure 2.1: An Overview of the Norwegian Motion Laboratory [6]

2.1.1 Stewart Platforms

As mentioned, the Motion-Lab is equipped with two 6-DOF E-Motion Platforms, these
platforms are known as Stewart Platforms which is a type of parallel robot. Each platform
has six prismatic electrical actuators. These actuators are installed in pairs at three �xed
corners of the base and are linked with a neighboring actuator at the platform. This
con�guration enables the platform to move in 6 degrees-of-freedom. Popular �elds of
application for the Stewart Platform includes �ight simulations, wave motion simulations,
and driving simulators.

E-Motion 8000

The largest Stewart Platform is a Bosch Rexroth E-Motion 8000 (EM 8000), this motion
system has a payload capacity of 8000 [kg]. For the ongoing experiments related to VVMC,
the EM 8000 is most often used to simulate the motion of the main vessel. The platform
is connected to a motion computer, later referred to as Motion PC 1, which is controllable
via the central control unit. Technical speci�cation and capacity of the EM 8000 can be
found in App. A.1.1 (Tab. A.1). A photo of the EM 8000 is shown in the �gure (Fig. 2.2)
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Figure 2.2: Photo of Stewart Platform EM 8000

E-Motion 1500

A Bosch Rexroth E-Motion 1500 (EM 1500) is the smaller Stewart Platform, it has a load
capacity of 1500 [kg] and is often used in experiments to simulate the secondary vessel in
VVMC or the receiving platform in load handling operations. In the same manner as the
larger platform, the EM 1500 is connected to an independent motion computer (Motion PC

2 ) which can be controlled by the central control unit. A photo of the EM 1500 platform
is shown in the �gure below (Fig. 2.3), and a table of the technical speci�cation can be
found in App. A.1.2 (Tab. A.2).

Figure 2.3: Photo of Stewart Platform EM 8000
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2.1.2 Industrial Robot

The industrial robot associated with the Motion-Lab is a Comau Smart 5 NJ 110-3.0, this
high-performance industrial robot is installed on top of the EM 8000, which is shown in
Fig. 2.4. The Comau robot is a six-DOF elbow manipulator which utilizes a parallelogram
linkage design. Meaning that the actuator responsible for the elbow motion is localized on
the shoulder, which reduces the weight of the upper arm. It has a wrist payload capacity
of 110 [kg], and a maximum horizontal reach close to 3 [m] [9]. The robot is connected
to an independent computer running a Linux operating system, which is controllable from
the central control unit. Related to the experiments conducted in the Motion-Lab, the
Comau robot is often used to simulate load handling and crane operations. To undergo
these scenarios it is possible to lock the wrist joints of the Comau robot, hence removing
3-DOF from the robot, this enables simulations with a closer resemblance with an o�shore
crane. Additional technical speci�cation and information of the work-space of the Comau
robot can be found in App. A.1.2.

Figure 2.4: Photo of the Comau Smart 5 NJ 110-3.0

2.1.3 Electrical Winch

To simulate the lifting operation of load handling scenarios, an electrically actuated winch
is installed on top of the industrial robot, see Fig. 2.4. The winch drum is actuated by a
Servo Motor from Beckho� (AM8532-H) [10], which is controlled by a digital servo drive
from Beckho� (AX5103) [11]. The drive is connected via EtherCAT to the central control
unit, which makes it fully controllable through the Beckho� interface. Some technical
information of the servomotor (winch motor) is listed in Tab. 2.1.
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Table 2.1: Technical Information of the Beckho� Servomotor (AM8532-H). Data for 400
V AC [10]

Description Value Unit

Standstill Torque 2.37 [Nm]
Rated Torque 1.85 [Nm]
Peak Torque 11.65 [Nm]
Rated Power 1.38 [kW ]
Rated Speed 9000 [rpm]

2.1.4 Motion Reference Unit

The two Stewart Platforms are equipped with a motion reference unit (MRU H 5th gen-
eration) from Kongsberg Seatex [12]. These MRU's incorporates three highly accurate
accelerators and three high-end angular rate gyros, which enables 6-DOF measurement
for the motion of each platform. Both of the MRU's are directly connected to the central
control unit, enabling for easy access to the motion data. A picture of the Kongsberg
Seatex MRU installed on the EM 1500 platform can be seen in 2.5.

Figure 2.5: Photo of the Kongsberg Seatex MRU Installed on EM 1500
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2.1.5 Motion-Capture System

A full motion-capture system is available in the Motion-Lab. 17 Qqus 700+ cameras
from Qualisys [13] are mounted on the surrounding walls, which enables a full coverage
of the laboratory's working volume. With the use of markers, the cameras can record
and calculate position with high accuracy and speed. In normal mode the cameras can
capture 300 frames per second (FPS) with 12 megapixels (MP) and 4096 x 3072 resolution.
Enabling High-speed mode the frame rate enhances to 1100 FPS with 3 MP and 2024 x
1536 resolution. The data captured by the cameras are logged with a Qualisys motion-
capture system which runs on a dedicated computer. Fig. 2.6 shows pictures of the wall
mounted Qqus cameras.

Figure 2.6: Motion-Capture System - Oqus 700+ Cameras

2.1.6 Laser Tracker

To perform high-speed dynamic measurements, the Motion-Lab is equipped with a Leica
Absolute Tracker AT960. The laser tracker can deliver high-precision 6-DOF probing
and measurement data, it o�ers a maximum permissible error of ±15µm+ 6µm\m and a
measuring range up to 160m (ø) [14]. In addition to the laser tracker, a Leica T-Mac Frame
(TMC30-F) 6-DOF measuring probe is also available in the Motion-Lab. Combining this
with the Leica AT960 enables real-time tracking capabilities in 6-DOF. The laser tracker
can in this case follow the probe, and give high-speed automated measurements with a
sampling frequency of 1kHz. A picture of the Leica AT960 laser tracker and the Leica
T-Mac probe can be seen in Fig. 2.7

(a) Leica Absolute Tracker (AT960) (b) Leica T-Mac Frame (TMC30-F)

Figure 2.7: Photos of the Laser Tracker and Measuring Probe [14]
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2.1.7 Central Control Unit

Acting as a central control unit for the equipment installed in the Motion-Lab is a Beckho�
CX 2040. The control unit is a combination of an embedded computer and a hardware
PLC which runs on a Windows 7 Embedded based operating system (OS). With Beck-
ho� TwinCAT automation software [15], it is possible to con�gure the control unit to run
a real-time runtime kernel in parallel with the Windows OS, known as TwinCAT - eX-
tended Automation Runtime (XAR) [16]. This feature removes normal OS interrupts and
guarantees real-time control and monitoring of the connected equipment.

The TwinCAT software is also available with the TwinCAT - eXtended Automation En-
gineering (XAE) which works as an extension to Microsoft Visual Studio. This feature
enables the user to develop programs on a standard Windows computer (with Visual Stu-
dio) using IEC6113-3 and C or C++ languages and to upload the program to a connected
Beckho� unit. An illustration of the XAE scheme is shown in Fig. 2.8. The TwinCAT

Standard enables the use of the basic framework of Visual Studio with the bene�ts con-
cerning handling, connection to source code control software, etc. The Twincat Integrated
will integrate itself into Visual Studio, which makes C, C++, C# programming languages
and links to Matlab/Simulink available [17].

Figure 2.8: TwinCAT 3 XAE Intergration [17]

The control unit communicates with the connected equipment through either an Ethernet
or EtherCAT connection, or directly through the I/O modules. During real-time runtime,
data can be transmitted and received, to and from the control unit via ADS router. In
other words, while the control unit runs the assigned program on the real-time kernel, the
development computer (standard Windows computer, non-real-time) can communicate
with the control unit by sending and receiving data via the ADS protocol. An illustration
of the ADS communication bridge is shown in Fig. 2.9.
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Figure 2.9: TwinCAT ADS Communication Brigde [18]

Similar to a standard PLC, the Beckho� CX 2040 has available slots for installation of
extension modules. The control unit available in the Motion-Lab is equipped with a total
of 6 analog and digital I/O modules; two analog output modules, two analog input modules,
one digital input module and one digital output module. Fig. 2.10 presents an overview
of the installed modules and the related connection con�guration.
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Figure 2.10: Con�guration of the Analog and Digital I/O Modules of the Beckho� PC/PLC
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2.2 Communication

As presented in Sec. 2.1, the Norwegian Motion Laboratory consists of multiple di�erent
equipment and systems. This also includes di�erent computers which are responsible for
the connection and interaction with the equipment, where the Beckho� embedded PC/PLC
is working as the overall central control unit. This section will present an overview of the
equipment connected to the control unit, and the communication con�guration.

Currently, a total of 6 computers are installed in the Motion-Lab:

� The central control unit, a Beckho� embedded PC/PLC.

� Two motion PC's, one for each Stewart Platform (EM 1500 and EM 8000).

� A Linux based system, for the interaction with the Comau industrial robot.

� A dedicated motion-capture computer, for the Qualisys Qqus motion-capture system.

� A development computer running a standard Windows OS, which is referred to as
the Host PC.

A schematic of the current communication con�guration is shown in Fig. 2.11. The
lowest level illustrates the connected equipment to the central control unit, where some
are indirectly connected via dedicated computers. It should be noted that the Qualisys
motion-capture system is currently not connected to the control unit and therefore not
included in the schematics.
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As the communication overview illustrates, di�erent connections use di�erent communica-
tion protocols, e.g., the Stewart Platforms use a SERCOS protocol to communicate with
the motion PC's, and User Datagram Protocol (UDP) is used for communication between
the MRU and the control unit. The communication protocols are illustrated by di�erent
colors of the vertical connection lines, where some require a speci�c communication cable
and connection socket.

Each of the installed components has been assigned one or more static IP address and a
communication port. All of the connected equipment is assigned an IP address on the
form: [192.168.xx]. Here the two last digits [xx] represents the row and column number,
respectively. This is illustrated with the dashed red lines. An example of this is the Comau
Robot, which is located at the �rst row, and the third column, hence it has been allocated
with [192.168.13] as its IP address. It should be noted that some of the installed equipment
has several communication interfaces, which leads to multiple IP addresses being assigned
to the same system. E.g. Motion PC 2 has one interface for communication with the
EM 1500 [192.168.21], and one for UDP communication with the central control unit
[192.168.31].

There are two network switches installed in the communication con�guration. The Internet
Switch is for internet connection, where the connected systems are assigned a dynamic IP
address. A Rack Switch is also installed in the lab, which is used for internal connection
between the equipment. This enables for easier interaction between the equipment and the
development computer. The equipment connected to the rack switch has been assigned
with an additional static IP address on the form: [192.168.1xx], where the two last digits
correlate to the row and column number. As an example, Motion PC 1 has three di�erent
communication interfaces. [192.168.20] is assigned for the connection with the Stewart
Platform, [192.168.30] for the UDP connection with the control unit (Beckho� CX 2040),
and [192.168.130] is assigned for the connection to the Rack Switch.

All of the previously presented computers are connected to a keyboard-video-mouse (KVM)
switch, except the Beckho� embedded PC/PLC (this is controlled by a remote desktop
con�guration). The KVM switch allows the user to interact with the available computers
by a master keyboard, mouse, and screen. The numbers outlined by green circles (see Fig.
2.11) relates to the assigned KVM switch port number.
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3 Theory

This chapter will present the fundamental theory and governing equations applied in the
future approaches and methods. Which include topics such as robot kinematics, load
dynamics, control system design and implementation.

3.1 Robot Kinematics

Kinematics is known as the description of a manipulators motion, without considering
the required torques and forces. This section will describe the use of forward and inverse
kinematics, to derive a set of governing equations which describes the relation between the
joint variables and the motion and orientation of the industrial robot.

3.1.1 Robot Geometry and Dimensions

In this project, the industrial robot is used to simulate a 3-DOF o�shore loader crane.
Meaning that the wrist joints of the robot (3-DOF) will be considered as �xed, and will
not be actuated. Fig. 3.1 shows an overview of the industrial robot with the installed
extension tool, together with the notation of main dimensions and coordinate systems of
the joints.

As Fig. 3.1 shows, the Comau robot utilizes a parallelogram linkage design. This design
allows the actuator for the elbow motion to be positioned at the shoulder of the robot, which
reduces the weight of the upper arm. A general principle in robot design is to locate as much
of the robot mass away from the distal links [19]. In this thesis, the dynamics of the robot
are not taken into consideration. The closed-chain of the parallelogram link is therefore
simpli�ed, and the elbow actuator is considered to be located at the elbow joint (x3, y3, z3).
This simpli�cation allows the robot to be treated as an open-chain manipulator, which can
be considered to be valid, due to the parallelogram linkage is kinematically equivalent to a
two-link planar arm [20]. The dimension values of the Comau robot are listed in Tab. 3.1.

Table 3.1: Comau Robot Dimensions

Notation Value Unit

a1 0.350 [m]
d1 0.830 [m]
a2 1.160 [m]
a3 0.250 [m]
d4 1.492 [m]
d6 0.210 [m]
dtp 0.567 [m]

14



CHAPTER 3. THEORY 3.1. ROBOT KINEMATICS

a2

d1

a3

Pt

d4 d6 dtp

x5 , x6

y5

z6
z7

x7

x4

z4

x3

y3

y2

x2

z1

x1

z0

x0

a1

Figure 3.1: Geometry, Dimensions and Joint Coordinate System of the Comau Robot

3.1.2 Forward Kinematics

Forward kinematics is used to determine the pose of the manipulator end e�ector as a
function of the joint angles. For the industrial robot, it is desired to �nd a set of equations
which can describe the position, velocity, and acceleration of the tool-point using the
angular position, velocity and acceleration of the joints as inputs.

A convention known as Denavit-Hartenberg (DH) is used to derive the forward kinematics
for an open-chain manipulator [19]. This technique is a systematic and commonly used
approach for describing the pose of the tool-point based on the joint angles. The DH
parameter table is constructed by assigning a local right-handed coordinate system in each
joint, with the z-axis aligned with the rotational axis of the joint. Then a parameter table
can be constructed by representing each homogeneous transformation Ai as a product of
four basic transformations:

Ai = Rz(θi)Tz(di)Tx(ai)Rx(αi) (3.1)
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Where:

Rz(θi) =


cos θi − sin θi 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1

 Tz(di) =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1



Tx(ai) =


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

 Rx(αi) =


1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1


The parameters θi, di, ai, αi are associated with link i and joint i, and are referred to as;
joint angle, link o�set, link twist and link length, respectively. These parameters are given
by the relationship between the two chosen coordinate systems, where for a revolute joint
the θi parameter is the single variable, and the remaining three are constants.

In this thesis, the right-hand rule convention is used for coordinate system and joint ori-
entation. The interface provided by Comau uses clockwise rotation as positive, with the
forearm pointing upwards (link d4 parallel to z0, see Fig. 3.1) as default home position.
Correcting for these disparities, a DH parameter table of the Comau robot has been con-
structed using the overview shown in Fig. 3.1 and is presented in Tab. 3.2. Notice that the
coordinate system of joint 1 is positioned at the location of the global coordinate system
(x0,y0,z0), hence no relative translation or rotation, between them.

Table 3.2: Denavit-Hartenberg Table for Comau Robot (3-DOF)

Link i θi di ai αi
1 −θ1 d1 a1

π
2

2 π
2 − θ2 0 a2 0

3 θ3 + π
2 + θ2 0 a3

π
2

4 π d4 + d6 + dtp 0 0

As mentioned in Sec. 3.1.1, the Comau robot is in this project considered as a 3-DOF
system with the wrist joints considered �xed. Hence, the presented DH table (Tab. 3.2)
does not include all available joints. A full DH parameter table for the Comau robot, with
correction for the disparities of the Comau interface, is available in App. A.2.

Using the constructed DH table (Tab. 3.2) the homogeneous transformation matrices can
be derived as follows:

A1 = Rz(−θ1)Tz(d1)Tx(a1)Rx(
π

2
)

=


cos θ1 0 − sin θ1 a1 cos θ1
− sin θ1 0 − cos θ1 −a1 sin θ1

0 1 0 d1
0 0 0 1

 (3.2)
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A2 = Rz(
π

2
− θ2)Tz(0)Tx(a2)Rx(0)

=


sin θ2 − cos θ2 0 a2 sin θ2
cos θ2 sin θ2 0 a2 cos θ2

0 0 1 0
0 0 0 1

 (3.3)

A3 = Rz(θ3 +
π

2
+ θ2)Tz(0)Tx(a3)Rx(

π

2
)

=


− sin(θ2 + θ3) 0 cos(θ2 + θ3) −a3 sin(θ2 + θ3)
cos(θ2 + θ3) 0 sin(θ2 + θ3) a3 cos(θ2 + θ3)

0 1 0 0
0 0 0 1

 (3.4)

A4 = Rz(π)Tz(d4 + d6 + dtp)Tx(0)Rx(0)

=


−1 0 0 0
0 −1 0 0
0 0 1 d4 + d6 + dtp
0 0 0 1

 (3.5)

Now by using Eq. 3.2 - Eq. 3.5 and substitute the forearm length with L = d4 + d6 + dtp,
the transformation matrix of the robot tool-point relative to the global coordinate can be
derived as shown by Eq. 3.6.

T 0
t = T 0

4 = A1A2A3A4 (3.6)

=


cos θ1 cos θ3 sin θ1 − cos θ1 sin θ3 cos θ1(a1 − L sin θ3 − a3 cos θ3 + a2 sin θ2)
− cos θ3 sin θ1 cos θ1 sin θ1 sin θ3 − sin θ1(a1 − L sin θ3 − a3 cos θ3 + a2 sin θ2)

sin θ3 0 cos θ3 d1 + L cos θ3 + a2 cos θ2 − a3 sin θ3
0 0 0 1


The �rst 3 × 3 entries of Eq. 3.6 contains information of the orientation of the robot
tool-point relative to the global coordinate, this is also referred to as the rotation matrix
R0
t .

R0
t =

 cos θ1 cos θ3 sin θ1 − cos θ1 sin θ3
− cos θ3 sin θ1 cos θ1 sin θ1 sin θ3

sin θ3 0 cos θ3

 (3.7)

Tool-Point Position

The �rst three entries of the last column of Eq. 3.6 describes the position of the tool-
point relative to the global coordinate system. Which means that the forward kinematics
equation for the tool-point position is equal to:

Pt =

xtyt
zt

 =

 cos θ1(a1 − L sin θ3 − a3 cos θ3 + a2 sin θ2)
− sin θ1(a1 − L sin θ3 − a3 cos θ3 + a2 sin θ2)

d1 + L cos θ3 + a2 cos θ2 − a3 sin θ3

 (3.8)
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Where:

xt - Tool-point position, x-direction [m]
yt - Tool-point position, y-direction [m]
zt - Tool-point position, z-direction [m]
θ1 - Angular position, joint 1 [rad]
θ2 - Angular position, joint 2 [rad]
θ3 - Angular position, joint 3 [rad]
a1 - Dimension [m]
a2 - Dimension [m]
d1 - Dimension [m]
L - Dimension (L = d4 + d6 + dtp) [m]

Jacobian Matrix

The Jacobian matrix is an important quantity in the analysis of robot kinematics and works
as a mapping between the joints angular velocity and tool-point velocity. The Jacobian
matrix is derived from the forward kinematics equation Eq. 3.8, and is expressed as:

J =


∂xt
∂θ1

∂xt
∂θ2

∂xt
∂θ3

∂yt
∂θ1

∂yt
∂θ2

∂yt
∂θ3

∂zt
∂θ1

∂zt
∂θ2

∂zt
∂θ3

 (3.9)

Inserting the full expression of Eq. 3.8 into Eq. 3.9 gives the following Jacobian matrix.

J =

J11 J12 J13
J21 J22 J23
J31 J32 J33

 (3.10)

Where the entries of Eq. 3.10 are equal to

J11 = − sin θ1(a1 − L sin θ3 − a3 cos θ3 + a2 sin θ2)

J12 = a2 cos θ1 cos θ2

J13 = − cos θ1(L cos θ3 − a3 sin θ3

J21 = − cos θ1(a1 − L sin θ3 − a3 cos θ3 + a2 sin θ2)

J22 = −a2 cos θ2sinθ1

J23 = sin θ1(L cos θ3 − a3 sin θ3)

J31 = 0

J32 = −a2 sin θ2

J33 = −L sin θ3 − a3 cos θ3
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Tool-Point Velocity

With the derived Jacobian matrix (Eg. 3.10), the forward kinematic equation for the
tool-point velocity as a function of the joint's angular velocity can be expressed.

Ṗt =

ẋtẏt
żt

 = J

θ̇1θ̇2
θ̇3

 (3.11)

Where:

ẋt - Tool-point velocity, x-direction [ms ]
ẏt - Tool-point velocity, y-direction [ms ]
żt - Tool-point velocity, z-direction [ms ]
J - Jacobian matrix [−]
θ̇1 - Angular velocity, joint 1 [ rads ]

θ̇2 - Angular velocity, joint 2 [ rads ]

θ̇3 - Angular velocity, joint 3 [ rads ]

Derivative of the Jacobian Matrix

In the same manner as the Jacobian matrix relates to the mapping of the angular joints and
tool-point velocity, the derivative of the Jacobian matrix aids to derive the relation between
joint angular acceleration and tool-point acceleration. The derivative of the Jacobian
matrix can be derived by di�erentiating the original Jacobian matrix (Eg. 3.10), or by the
following expression:

J̇ =


∂(Jθ̇1)
∂θ1

∂(Jθ̇1)
∂θ2

∂(Jθ̇1)
∂θ3

∂(Jθ̇2)
∂θ1

∂(Jθ̇2)
∂θ2

∂(Jθ̇2)
∂θ3

∂(Jθ̇3)
∂θ1

∂(Jθ̇3)
∂θ2

∂(Jθ̇3)
∂θ3

 (3.12)

The derivative of the Jacobian matrix for the Comau robot can be expressed as.

J̇ =

J̇11 J̇12 J̇13
J̇21 J̇22 J̇23
J̇31 J̇32 J̇33

 (3.13)
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Where each entry of Eq. 3.13 are equal to

J̇11 = −θ̇1 cos θ1(a1 − L sin θ3 − a3 cos θ3 + a2 sin θ2)

− a2θ̇2 sin θ1 cos θ2

+ θ̇3 sin θ1(L cos θ3 − a3 sin θ3)

J̇12 = −a2θ̇1 sin θ1 cos θ2

− a2θ̇2 cos θ1 sin θ2

J̇13 = θ̇1 sin θ1(L cos θ3 − a3 sin θ3)

+ θ̇3 cos θ1(L sin θ3 + a3 cos θ3)

J̇21 = θ̇1 sin θ1(a1 − L sin θ3 − a3 cos θ3 + a2 sin θ2)

− a2θ̇2 cos θ1 cos θ2

+ θ̇3 cos θ1(L cos θ3 − a3 sin θ3)

J̇22 = −a2θ̇1 cos θ1 cos θ2

+ a2θ̇2 sin θ1 sin θ2

J̇23 = θ̇1 cos θ1(L cos θ3 − a3 sin θ3)

− θ̇3 sin θ1(L sin θ3 + a3 cos θ3)

J̇31 = 0

J̇32 = −a2θ̇2 cos θ2

J̇33 = −θ̇3(L cos θ3 − a3 sin θ3)

Tool-Point Acceleration

With the derivative of the Jacobian matrix (Eq. 3.13), it is possible to derive the forward
kinematic expression for the tool-point acceleration, as a function of the joint's angular
velocity and acceleration.

P̈t =

ẍtÿt
z̈t

 = J̇

θ̇1θ̇2
θ̇3

 + J

θ̈1θ̈2
θ̈3

 (3.14)

Where:

ẍt - Tool-point acceleration, x-direction [m
s2
]

ÿt - Tool-point acceleration, y-direction [m
s2
]

z̈t - Tool-point acceleration, z-direction [m
s2
]

J̇ - Derivative of the Jacobian matrix [−]
θ̈1 - Angular acceleration, joint 1 [ rad

s2
]

θ̈2 - Angular acceleration, joint 2 [ rad
s2
]

θ̈3 - Angular acceleration, joint 3 [ rad
s2
]

The Matlab scripts used to derive the presented governing equations for the forward kine-
matics can be found in App. C.1.1.
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3.1.3 Inverse Kinematics

Inverse kinematic concerns the derivation of the joint angular con�guration given a desired
tool-point position. In other words, a set of governing equations describing the required
robot joint variables needed to obtain a desired tool-point motion. In this thesis, a ge-
ometric approach will be used to derive the inverse kinematics, and since the robot will
be considered as a 3-DOF system, the inverse kinematics of the joints related to the wrist
motion will be omitted.

Joint Angle θ1

The 3-DOF robot can be considered as the con�guration shown in Fig. 3.2. The tool-
point coordinates have been projected onto the XY-plane of the global coordinate system
(x0, y0, z0).

z1

ϴ1 

y1

z0

x0

y0

z2

x2

y3

z3

x3

yt

xt

zt

x1

Figure 3.2: Robot Base Rotation based on Projection of the Tool-Point

Using this projection, the robot base can be seen to have rotated an angle θ1, relative to
the global coordinate system. This gives an expression of the rotation angle as a function
of the tool-point position.

θ1 = −atan2(yt, xt) (3.15)

Instead of the normal inverse tangent function, atan2 will be used in these formulations.
The latter function considers the sign of the vector components and place the calculated
angle in the correct quadrant.
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Joint Angle θ2

With the base rotation covered, the robot can be simpli�ed and considered as a planar
two-link elbow system. Inverse kinematics of such a system has two possible solutions;
elbow-down and elbow-up, as can be seen in Fig. 3.3.

x0

z0

Elbow Up

Elbow Down

Figure 3.3: Planar Two-Link Elbow Con�guration

Due to the structure of the Comau robot, the planar projection di�ers from the one shown
in Fig. 3.3. With the forearm having an o�set from the elbow joint. An illustration of
the Comau con�guration is shown in Fig. 3.4. Here the link a1 together with the line B
symbolises the two-link elbow system used for elbow-down vs. elbow-down analysis.

The length of the line B is constant and can be calculated as:

B =
√
a32 + L2 (3.16)

The tool-point components xt
′ and yt

′ indicates the tool-point position relative to the
coordinate system of the shoulder joint (x2, y2, z2). These components can be found by
using the transformation matrix.

P 2
t =

xt′yt′
zt
′

 = (A1)
−1Pt (3.17)

Now the length of line C can be calculated to be:

C =
√

(xt′)2 + (yt′)2 (3.18)

Introducing the law of cosines on the triangle a2BC gives the following expression.

C2 = a2
2 +B2 − 2a2B cos(π − α) (3.19)
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x2

y2

Pt

x3

a2

a3

L
y3

yt'

xt'

B

C

ϴA 

B · sin(α )

B · cos(α )

Figure 3.4: Geometric Approach for Inverse Kinematics of θ2

Using the properties of the unit circle (cos(π−α) = − cosα) Eq. 3.19 can be rewritten as:

cosα =
C2 − a22 −B2

2a2B
:= D (3.20)

D is de�ned as equal to cosα for easier notation. An expression for α can now be derived
from Eq. 3.20, but a better approach is to introduce the Pythagorean identity.

sin2 α+ cos2 α = 1 (3.21)

⇒ sinα = ±
√

1−D2 (3.22)

Now combining Eq. 3.20 and Eq. 3.22, the angle α is equal:

α = atan2(sinα,D) (3.23)

= atan2(±
√

1−D2, D) (3.24)

The advantages of expressing the angle α as in Eq. 3.24, lies with the possibility to select
the elbow con�guration based on the two solutions of the square root. An elbow-down and
elbow-up con�guration is selected by choosing a negative and a positive sign, respectively.
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The two assisting variables θA and θB can be derived as

θA = atan2(yt
′, xt

′) (3.25)

θB = atan2(B sinα, a2 +B cosα) (3.26)

Finally, the joint angle θ2 can be expressed.

θ2 =
π

2
− (θA − θB) (3.27)

Joint Angle θ3

The last joint angle θ3 is derived based on the same geometric approach. Fig. 3.5 shows
the same planar two-link elbow system, with the elbow joint in a small angular o�set.

x2

y2

Pt

x3

a2

L y3

B

a3

Figure 3.5: Geometric Approach for Inverse Kinematics of θ3

The constant angle ϕ can be calculated to be equal:

ϕ = atan2(a3, L) (3.28)

Using the geometries shown in Fig. 3.5, and with α and θ2 expressed by Eq. 3.24 and Eq.
3.27, respectively. The �nal joint angle θ3 can be expressed as:

θ3 = α− ϕ− θ2 (3.29)
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Joint Angular Velocity

In the derivation of the robot forward kinematics, the Jacobian matrix served as an im-
portant quantity, which is also true for the inverse kinematics. The joint's angular velocity
can be expressed as a product of the inverse Jacobian matrix (found in Eq. 3.10) and the
tool-point velocity.

θ̇ = J−1Ṗt

⇒

θ̇1θ̇2
θ̇3

 = J−1

ẋtẏt
żt

 (3.30)

Joint Angular Acceleration

The joint angular acceleration is derived by rearranging Eq. 3.14, which is dependent on
the inverse of the Jacobian matrix and the derivative of the Jacobian matrix (Eq. 3.13).

θ̈ = J−1(P̈t − J̇ θ̇)

⇒

θ̈1θ̈2
θ̈3

 = J−1
(ẍtÿt

z̈t

− J̇
θ̇1θ̇2
θ̇3

) (3.31)
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3.2 Suspended Load Motion

As a part of this thesis, it is desired to design and develop a system capable of stabilizing
the surge and sway motion of a suspended payload. In this regard, it is essential to derive
the governing equation for which describes the motion of the load. The suspended load is
considered to be connected to the wire of the winch. Hence the payload will be hanging
from the robot's tool-point, which will be responsible for the load motion.

This section will present the analysis and derivation of the governing equations for both a
2-dimensional (2D) and a 3-dimensional (3D) system of the suspended load. The former
analysis will set a basis for understanding the motion of a hanging load, which will be
bene�cial when extending the scenario to a full 3D analysis.

The compensation of the suspended load's heave motion is assumed to be achievable by
varying the length of the wire, for which the winch motor will act as an actuator. However,
this compensation task is not within the scope of this thesis, and will therefore not be
analyzed.

3.2.1 Simple Pendulum (2D-System)

Before conducting a full analysis of the 3-dimensional (3D) suspended payload, it was
desired to develop a model for the simple pendulum system. The simple hanging pendulum
only considers 2-dimensions (2D) but has a signi�cant correlation with the 3D suspended
payload. This model will later be used for testing and simulations of di�erent controller
schemes and will work as a basis for the upcoming analysis of the full 3D system.

xt(t)x

z

mp

Pt = [xt, zt]

Pp = [xp, zp]

Lw(t)

Figure 3.6: An Illustration of the Simple Hanging Pendulum
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An illustration of the simple pendulum system is shown in Fig. 3.6. The payload Pp with
a mass mp is connected via a rigid wire with length Lw, to the tool-point Pt. To induce
the system, a horizontal motion is applied to the tool-point, which will introduce an angle
φ between the payload and its equilibrium point.

The analysis of the simple pendulum system is performed under the following assumptions.

� The payload is assumed to be a point mass.

� The wire is assumed to be a massless rigid rod.

� The de�ection and elongation of the wire is neglected.

� The frictional elements of the tool-point motion and wire swing is neglected.

� Motion of the tool-point is restricted to the horizontal direction (x).

� The angle φ and the tool-point position is assumed to be measurable.

The simple pendulum can be considered as a 3-DOF system, with the generalized coordi-
nate vector q(t) ∈ R3.

q(t) =

 xt(t)Lw(t)
φ(t)

 (3.32)

Payload Position

The following equation describes the position of the payload coordinates relative to the
coordinate system (x,z)

xp = xt + Lw sinφ (3.33)

zp = zt − Lw cosφ (3.34)

Using Eq. 3.33 and Eq. 3.34, the expression for the payload position can be rewritten in
vector formulation.

Pp = Pt + Lw

[
sinφ
− cosφ

]
, Pt + Lwλ (3.35)

Payload Velocity

The velocity of the hanging payload is derived by di�erentiating the expression of the
payload position (Eq. 3.35).

Ṗp = Ṗt + Lwλ̇+ L̇wλ (3.36)

⇒
[
ẋp
żp

]
=

[
ẋt
żt

]
+ Lw

[
cosφ
sinφ

]
φ̇+ L̇w

[
sinφ
− cosφ

]
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Lagrangian

The Lagrangian is the di�erence between a system's kinetic and potential energy. The
function is a useful quantity when considering the formulation of the equation of motion,
and is given by.

L = K − P (3.37)

Where:

L - Lagrangian [kgm
2

s2
]

K - Kinetic energy [kgm
2

s2
]

P - Potential energy [kgm
2

s2
]

The kinetic energy (K) of the simple pendulum system can be derived as follows.

K =
1

2
mpṖ

2
p

=
1

2
mpẋ

2
t +

1

2
mpż

2
t +mpẋtL̇w sinφ−mpżtL̇w cosφ

+mpẋtφ̇Lw cosφ+mpżtφ̇Lw sinφ

+
1

2
mpL

2
wφ̇

2 +
1

2
mpL̇

2
w (3.38)

With the gravity g acting in the opposite direction of the Z-axis (see Fig. 3.6), the potential
energy (P) of the simple pendulum system is equal to.

P = mpgzp

= mpgzt −mpgLw cosφ (3.39)

Now combining Eq. 3.38 and Eq. 3.38, the extended formulation for the Lagrangian of
the simple hanging pendulum is given by.

L =
1

2
mpẋ

2
t +

1

2
mpż

2
t +mpẋtL̇w sinφ−mpżtL̇w cosφ

+mpẋtφ̇Lw cosφ+mpżtφ̇Lw sinφ

+
1

2
mpL

2
wφ̇

2 +
1

2
mpL̇

2
w

−mpgzt +mpgLw cosφ (3.40)
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Equation of Motion

The Euler-Lagrange equation is used to derive the dynamic equation of motion for the
simple pendulum system. The Euler-Lagrange equation is de�ned as [19].

d

dt

∂L
∂q̇k
− ∂L
∂qk

= τk (3.41)

Where:

L - Lagrangian [kgm
2

s2
]

qk - Generalized coordinate k [−]
q̇k - Derivative of generalized coordinate k [−]
τk - Generalized force associated with qk [N ]

A few simpli�cations have been made to reduce the complexity of the Lagrangian (given by
Eq. 3.40), these simpli�cations are based on the following assumptions and considerations.

� Tool-point will only be actuated in the horizontal direction, which leads to żt = 0.

� The wire length is considered to have a constant value, hence L̇w = 0.

These assumptions lead to a new simpli�ed expression of the simple pendulum Lagrangian.

L =
1

2
mpẋ

2
t +mpẋtφ̇Lw cosφ+

1

2
mpL

2
wφ̇

2

−mpgzt +mpgLw cosφ (3.42)

The tool-point is considered to be actuated as pure motion by the industrial robot, and
the wire length considered to be kept constant, during this analysis. Leading to the inves-
tigation of the force requirements of the tool-point and wire being neglected, and only φ
will remain as the generalized coordinate of interest (see Eq. 3.32). Hence, the dynamic
equation of motion concerning the simple pendulum can be expressed as.

d

dt

∂L
∂φ̇
− ∂L
∂φ

= 0 (3.43)

Inserting Eq. 3.42 into Eq. 3.43, gives the following equation.

mpẍtLw cosφ+mpL
2
wφ̈+mpgLw sinφ = 0 (3.44)

Solving for φ̈ gives:

φ̈ = −cosφẍt
Lw

− g sinφ

Lw
(3.45)

Eq. 3.45, together with Eq. 3.35 and Eq. 3.36 can now be used to describe the motion of
the simple pendulum system.
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3.2.2 Suspended Load (3D-System)

This subsection will present and derive the formulation of the equation of motion for
the suspended load in 3-dimensions. In the same manner, as in the study of the simple
pendulum, the suspended payload is considered to be attached to the robot's tool-point via
the wire of the winch. The equations of motion are derived from the following assumptions.

� The payload is assumed to be a point mass with a known weight.

� The wire is assumed to be a massless rigid rod.

� The de�ection and elongation of the wire is neglected

� The frictional elements between the wire and tool-point are neglected.

An illustration of the 3D suspend load system is shown in Fig. 3.7, this representation is
based on the set of Euler-angles, as done by Gustafsson [21]. The suspended load Pp with
mass mp is connected to the tool-point Pt via the wire Lw. When in motion, the load will
initiate a rotational angle φβ around the x-axis, and an angle φα around the φβy-axis. The
notation of φβy and φβz emphasizes the new coordinate frame created by the �rst rotation
φβ .

z y

mp

Lw

x

Pp = [xp, yp, zp]

Pt = [xt, yt, zt]

y

z

Фβ  

Фβ  

Figure 3.7: An Illustration of the Suspended Load in 3-Dimensions
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Payload Position

Using the Euler-angle representation shown in Fig. 3.7, the suspended load position can
be expressed as.

xp = xt − Lw sinφα (3.46)

yp = yt + Lw cosφα sinφβ (3.47)

zp = zt − Lw cosφα cosφβ (3.48)

Combining Eq. 3.46 - Eq. 3.34, the payload position can be rewritten to a vector formu-
lation.

Pp = Pt + Lw

 − sinφα
cosφα sinφβ
− cosφα cosφβ

 , Pt + Lwλ (3.49)

Payload Velocity

The expression for the velocity of the suspended load is derived by di�erentiating the
position expression (Eq. 3.49) and is given by.

Ṗp = Ṗt + Lwλ̇+ L̇wλ (3.50)

⇒

ẋpẏp
żp

 =

ẋtẏt
żt

+ Lw

 −φ̇α cosφα
−φ̇α sinφα sinφβ + φ̇β cosφα cosφβ
φ̇α sinφα cosφβ + φ̇β cosφα sinφβ

+ L̇w

 − sinφα
cosφα sinφβ
− cosφα cosφβ


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Lagrangian

Similar as for the analysis of the simple pendulum, the Lagrangian of the 3-dimensional
suspended load is used to formulate the dynamic equation of motion.

Using Eq. 3.50, the kinetic energy of the suspended load can be derived as.

K =
1

2
mpṖ

2
p

=
1

2
mpẋ

2
t +

1

2
mpẏ

2
t +

1

2
mpż

2
t +

1

2
mpL̇

2
w

+
1

2
mpL̇

2
w cos2 φα −

1

2
mpL

2
w cos2 φα

+
1

2
mpL

2
wφ̇

2
α +

1

2
mpL

2
wφ̇

2
β cosφα

−mpLwẋt sinφα +
1

2
mpL

2
wφ̇α sin2 φα

−mpLwφ̇αẋt cosφα −
1

2
mpLwL̇wφ̇α sin2 φα

−mpL̇wżt cosφα cosφβ +mpL̇wẏt cosφα sinφβ

+mpLwφ̇β ẏt cosφα cosφβ +mpLwφ̇αżt cosφβ sinφα

+mpLwφ̇β żt cosφα sinφβ −mpLwφ̇αẏtsinφα sinφβ (3.51)

De�ning gravity in the opposite direction of the z-axis (see Fig. 3.7), the potential energy
of the 3D suspended load is given by.

P = mpgPp

= mpgzt −mpgLw cosφα cosφβ (3.52)

The Lagrangian for the 3D suspended load can be expressed by Eq. 3.53, where K and P
is equal to Eq. 3.51 and Eq. 3.52, respectively.

L = K − P (3.53)
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Equation of Motion

Analogous to the system of the simple pendulum, the Euler-Lagrange equation de�ned by
Eq. 3.41 is used to �nd the dynamic equation of motion for the 3-dimensional suspended
load. The generalized coordinate vector will be composed of the two Euler-angles φα and
φβ , and the associated generalized force will equal τk = 0. The Euler-Lagrange equation
for the suspended load is given by.

d

dt

∂L
∂q̇k
− ∂L
∂qk

= 0 (3.54)

Where the generalized coordinate vector is given by

qk =

[
φα
φβ

]
(3.55)

Solving the Euler-Lagrange equation (Eq. 3.54) by using the Lagrangian derived by Eq.
3.53 and the generalized coordinate vector (Eq. 3.55), gives the following coupled pair of
second order di�erential equations.

Lwφ̈α = ẍt cosφα + ÿtsinφα sinφβ

− z̈t sinφα cosφβ − g sinφα cosφβ

− 2L̇wφ̇α − Lwφ̇2β sinφα cosφα (3.56)

Lw cosφαφ̈β = −ÿt cosφβ − z̈t sinφβ

− g sinφβ − 2L̇wφ̇β cosφα

+ 2Lwφ̇αφ̇β sinφα (3.57)

Now, by using the derived equation of position Eq. 3.49 and velocity Eq. 3.50, together
with the di�erential equations Eq. 3.56 and Eq. 3.57 it is possible to describe the dynamic
motion of the suspended pendulum.

Throughout this section, Maple was used to in the derivation of the Lagrangian and Euler-
Lagrange equations. The Maple script is available in App. B.
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3.3 Full System Motion

The experimental setup of the Motion-Lab uses the Stewart platform to simulate the
motion of a �oating vessel. With the Comau robot mounted on top of the platform, the
simulated wave motion will introduce a relative motion of the robot base. Leading to the
robot's tool-point and the suspended load to be in�uenced by both the generated wave
motion and the actuation of the robot joints.

In the previous sections, expressions for the robot kinematics (Sec. 3.1) and the suspended
load motion (Sec. 3.2) are derived relative to their internal frame coordinate. This section
will expand these expressions, and formulate the relative motion and relation between the
moving frames of the full system.

An illustration of the full system setup is shown in Fig. 3.8. This �gure shows the body-
�xed coordinate systems of the equipment, together with the homogeneous transformation
between them. A world coordinate is added to act as a global reference to the motion. See
Tab. 3.3 for a detailed description of the coordinate system annotations.

{bg}

{bn} {bb} {bc}

{br}

{bt}

{bp}

Y
Z

X

H
g
nH
g
n

H
b
rH
b
rH

n
bH
n
b

H
b
cH
b
c

H
r
tH
r
t

E-Motion 
8000

Comau
Robot

Camera
System

Suspended
Load

World 
Coordinate

Figure 3.8: An Overview of the Full System Setup, with Body-Fixed Coordinate System
and Transformations
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Table 3.3: Coordinate System Annotations used for the Full System Kinematics

Annotation Description

{bg} World Coordinate
{bn} E-Motion 8000 (Neutral)
{bb} E-Motion 8000 (Body-�xed)
{br} Comau Robot (Base)
{bt} Comau Robot (Tool-point)
{bc} Camera System
{bp} Suspended Payload

As shown in the illustration, the E-Motion 8000 has been assigned with two coordinate
system ({bn} and {bb}), the former dictates the coordinate system of the platform in
neutral position, i.e. in the position when the platform is not exposed to a wave-induced
motion. The latter describes the coordinate system for when the platform is in motion.
This notation is introduced to easier describe the homogeneous transformations between
the platform and the equipment installed on the platform.

Homogeneous Transformations

Homogeneous transformations will be used to describe the relative motion between the
equipment in focus. The world coordinate {bg} will be used as a general reference to the
di�erent frames illustrated in Fig. 3.8. The primary transformations are shown in the
overview, where the superscripts and subscripts referrers to the relative frame and the
focus frame, respectively. E.g. Hb

r is the homogeneous transformation of the Comau robot
base-frame {br} given in the E-Motion 8000 body-�xed frame {bb}.

3.3.1 Calibrated Transformations

Some of the presented homogeneous transformations remain as �xed relations during the
wave-induced simulation, i.e., these transformations will persist as constant relationships
independent of the system motion. Which is the case for the homogeneous transformations
related to the equipment installed on the Stewart platform, as well as the transformation
between the world coordinate and the neutral frame of the Stewart platform. These trans-
formations are obtainable through calibration. Tørdal et al. [22] introduces a method to
obtain these calibrations, where the results of this research are used in this thesis. Tab.
3.4 lists the �xed homogeneous transformation obtainable with calibration.

Table 3.4: Fixed Homogeneous Transformations Obtained from Calibration

Annotation Description

Hg
n E-Motion 8000 neutral-frame relative to World Coordinate

Hb
r Comau Robot base-frame relative to EM 8000 body-�xed frame

Hb
c Kinect V2 Camera relative to EM 8000 body-�xed frame
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3.3.2 Stewart Platform Motion

Similar to a vessel exposed to waves at sea, the wave motion simulated by the Stewart
platform is a 6-DOF motion. As depicted in Fig. 3.9, the sway (x), surge (y) and heave
(z) are notations for the position, and roll, pitch and yaw are denoted as the rotational
angles φ, θ and ψ, respectively.

z

y

x

Roll 

Yaw

Pitch
Sway

Surge

Heave

Ф

Ѱ 

ϴ 

Figure 3.9: De�nition of Axis and Orientation for Vessel Motion

Relating the annotation of Fig. 3.9 to the con�guration of the Motion-Lab in Fig. 3.8.
The sway, surge and heave can be de�ned as a vector Pnb , which describes the translational
position of the frame {bb} given in {bn}, where {bn} is de�ned as the static frame of the
Stewart platform, and {bb} is the frame induced by wave motion.

Pnb =

xy
z

 (3.58)

Where:

x - Sway [m]
y - Surge [m]
z - Heave [m]
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The roll, pitch, and yaw can be de�ned as a vector α.

α =

φθ
ψ

 (3.59)

Where:

φ - Roll [m]
θ - Pitch [m]
ψ - Yaw [m]

The relative orientation of frame {bb} given in {bn} can be expressed as a successive
sequence of rotations.

Rnb (α) = Rz(φ)Ry(θ)Rx(ψ) (3.60)

=

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosψ − sinψ
0 sinψ cosψ



=

cosφ cos θ − sinφ cosψ + cosφ sin θ sinψ sinφ sinψ + cosφ sin θ cosψ
sinφ cos θ cosφ cosψ + sinφ sin θ sinψ − cosφ sinψ + sinφ sin θ cosψ
− sin θ cos θ sinψ cos θ cosψ


A new vector η is introduced, which is a collected vector of the sway, surge, heave vector
Pnb (Eq. 3.58) and the roll, pitch, yaw vector α (Eq. 3.59).

η =

[
P bn
α

]
=



x
y
z
φ
θ
ψ

 (3.61)

The collected vector η, can now be used to describe the Stewart platform relative trans-
lation and rotation of frame {bb} given in {bn}. The orientation vector η, together with
it's respective time derivative η̇ (velocity) and second time derivative η̈ (acceleration) are
characterized as the governing parameters for the motion of the Stewart platform.
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Stewart Platform Position and Orientation

The relative position and orientation of the Stewart platform in motion can derived as the
homogeneous transformation Hn

b (transformation of the E-Motion 8000 body-�xed frame,
given in the E-Motion 8000 neutral-frame), which is formulated by using Eq. 3.58 and Eq.
3.60.

Hn
b =

[
Rnb (α) Pnb

0 1

]
(3.62)

Using the obtained calibration data Hg
n, the position and orientation of the Stewart plat-

form relative to the world coordinate frame {bg} is given by.

Hg
b = Hg

nH
n
b (3.63)

Stewart Platform Velocity

The wave-induced motion simulated by the Stewart platform introduces translational and
rotational velocities to the equipment installed on the platform. It is therefore desired
to formulate an expression which describes the angular velocity relative to the platform's
body-�xed frame {bb}.

The time derivative of the previous de�ned η (Eq. 3.61) is equal to.

η̇ =

[
Ṗnb
α̇

]
(3.64)

The vector ωbn,b denotes the angular velocity corresponding to the time derivative of the
rotation matrix Rnb expressed relative to the body-�xed frame {bb}. The relation between
this angular velocity vector and α̇ can be found by the following equation.

η̇ = J(η)v (3.65)

Where v is de�ned as.

v =

[
Ṗnb
ωbn,b

]
(3.66)

J(η) is referred to as the ship Jacobian and is expressed as.

J(η) =

[
I 0
0 T (α)

]
(3.67)
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Where I is the identity matrix, and T (α) is a transformation matrix equal to.

T (α) =

1 (sinφ sin θ)
cos θ

(cosφ sin θ)
cos θ

0 cosφ − sinφ

0 (sinφ)
cos θ

(cosφ)
cos θ

 (3.68)

Using these formulations, Eq. 3.65 can be rewritten, and solved for the vector v, which
contains the translational velocity ṗnb , and the angular velocity vector ωbn,b.

v =

[
Ṗnb
ωbn,b

]
= J(η)−1η̇ (3.69)

The notion of skew matrices is introduced to aid in the upcoming derivations. Where the
skew matrix of an arbitrary vector β = [βx, βy, βz]

T is given by.

S(β) =

 0 −βz βy
βz 0 −βx
−βy βx 0

 (3.70)

The rotational velocity of the Stewart platform can now be expressed as the derivative
of the rotation matrix Rnb , which is derived by using the skew matrix of the body �xed
velocity vector ωbn,b.

Ṙnb = Rnb S(ωbn,b) (3.71)

Stewart Platform Acceleration

In the same manner, as the velocities, the wave motion will induce translational and
rotational accelerations to the equipment installed on the Stewart platform.

The same procedure as for the velocity formulation will be performed. The second time
derivative of Eq. 3.61 is de�ned as.

η̈ =

[
P̈nb
α̈

]
(3.72)

The time derivative of Eq. 3.65 equals.

η̈ = J̇(η)v + J(η)v̇ (3.73)

Where J̇ can be derived as.

J̇(η) =


∂(J(η)η̇1)

∂η1
. . . ∂(J(η)η̇1)

∂η6

...
. . .

...

∂(J(η)η̇6)
∂η1

. . . ∂(J(η)η̇6)
∂η6

 (3.74)
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To obtain an expression for ω̇bn,b, Eq. 3.73 is rewritten and solved for v̇, which equals

v̇ =

[
Ṗnb
ω̇bn,b

]
= J(η)−1(η̈ − J̇(η)η̇) (3.75)

The rotational acceleration of the Stewart platform can now be expressed as the time
derivative of Eq. 3.71, which equals.

R̈nb = Ṙnb S(ωbn,b) +Rnb S(ω̇bn,b)

= Rnb S(ωbn,b)S(ωbn,b) +Rnb S(ω̇bn,b) (3.76)

3.3.3 Updated Robot Tool-Point Motion

With the motion induced by the Stewart platform, the base-frame of the robot will ex-
perience a motion relative to the world coordinate. As mentioned earlier, the expressions
describing the robot's tool-point (Sec. 3.1.2) are derived relative to the internal frame coor-
dinate, which corresponds to the base-frame {br} of Fig. 3.8. Meaning that the equations
of the tool-point motion need to be updated for Stewart platform motion.

The available calibration matrix for the homogeneous transformationHb
r describes the posi-

tion and orientation of the Comau robot base-frame {br} relative to the Stewart platform's
body-�xed frame {bb} and is given on the form.

Hb
r =

[
Rbr P br
0 1

]
(3.77)

Similar, the calibration matrix for the homogeneous transformation Hg
n, which describes

the position and orientation of the Stewart platform's neutral frame {bn} relative to the
world coordinate {bg}, is given by.

Hg
n =

[
Rgn P gn
0 1

]
(3.78)

Tool-Point Position

The robot's tool-point position relative to the Stewart platform's neutral-frame {bn} can
be formulated as.

Pnt = Pnb +Rnb (P br +RbrPt) (3.79)
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Where Pnb and Rnb are the Stewart platform position and orientation, given by Eq. 3.58
and Eq. 3.60, respectively. Pt is obtained from Eq. 3.8, which describes the tool-point
position relative to the internal frame of the robot.

Using Eq. 3.78 and Eq. 3.79, the position of the robot's tool-point relative to the world
coordinate can be derived as.

P gt = P gn +RgnP
n
t (3.80)

Tool-Point Velocity

The expression of the tool-point velocity relative to the world coordinate frame {bg} is
simply the time derivative of Eq. 3.79, this is due to the calibrated homogeneous transfor-
mation Hg

n being a constant relation. Hence, the velocity of the robot's tool-point is given
by.

Ṗ gt = Ṗnt = Ṗnb + Ṙnb (P br +RbrPt) +Rnb (RbrṖt) (3.81)

Tool-Point Acceleration

The acceleration of the robot's tool-point equals the time derivative of Eq. 3.81, which is
derived as.

P̈ gt = P̈nt = P̈nb + R̈nb (P br +RbrPt)

+ 2Ṙnb (RbrṖt) +Rnb (RbrP̈t) (3.82)

3.3.4 Updated Suspended Load Motion

The expressions describing the motion of the robot's tool-point (Sec. 3.3.3) are now up-
dated to include the relative motion of the Stewart platform. The same operation is needed
for the motion of the suspended load, which is derived relative to the tool-point (Sec. 3.2).

The change of introducing the relative motion of the Stewart platform to the suspended
load is a relative easy modi�cation. The new expressions will simply use the updated
expressions of the tool-point motion (Eq. 3.80, Eq. 3.81 and Eq. 3.82).

Suspended Load Position

The updated expression of the suspended load position, previously derived as Eq. 3.49, is
given by.

P gp = P gt + Lwλ (3.83)
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Suspended Load Velocity

The same goes for the expression describing the suspended load velocity, which is previously
given by Eq. 3.50, is now given by.

Ṗ gp = Ṗ gt + Lwλ̇+ L̇wλ (3.84)

Suspended Load Equation of Motion

The expressions describing the equation of motion for the suspended load (previously given
by Eq. 3.56 and Eq. 3.57), can be updated for platform motion by introducing the new
expression of the tool-point acceleration (Eq. 3.82). The components of the tool-point's
acceleration vector equals

P̈ gt =

ẍgtÿgt
z̈gt

 (3.85)

Which yields the following updated expressions for the suspended load's equation of motion.

Lwφ̈α = ẍgt cosφα + ÿgt sinφα sinφβ

− z̈gt sinφα cosφβ − g sinφα cosφβ

− 2L̇wφ̇α − Lwφ̇2β sinφα cosφα (3.86)

Lw cosφαφ̈β = −ÿgt cosφβ − z̈gt sinφβ

− g sinφβ − 2L̇wφ̇β cosφα

+ 2Lwφ̇αφ̇β sinφα (3.87)
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3.3.5 Camera System

A camera system, capable of tracking the motion of the suspended load, is considered to
be installed and available in the motion-lab. This system can either be a camera installed
on the platform as shown in Fig. 3.8, or by making use of the motion-capture system,
described in Sec. 2.1.5.

For this type of system, the suspended load's position will be measured relative to the
camera frame {bc}. It would preferably be desired to have these measurements given
relative to the Stewart platform, hence a calibration of the homogeneous transformation
between the camera and the body-�xed frame of the Stewart platform {bb} is needed,
where this transformation is de�ned as Hb

c . The suspended load's position relative to
the body-�xed frame of the Stewart platform can then be described by Eq. 3.88, where
P bc and Rbc are the translation vector and rotation matrix, respectively, of the calibrated
transformation matrix Hb

c .

P bp = P bc +RbcP
c
p (3.88)

For the future development of the control systems, a measurement of the pendulum Euler
angles will be required. These measurements are considered to be obtainable by altering
the describing equations Eq. 3.46 and Eq. 3.47 into the following form.

xbp = xbt − Lw sinφα

⇒ φα = arcsin
(xbt − xbp

Lw

)
(3.89)

yp = yt + Lw cosφα sinφβ

⇒ φβ = arcsin
( ybp − ybt
Lw cosφα

)
(3.90)
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3.4 Control System Design

One of the main tasks in this thesis is to design and develop a controller capable of sta-
bilizing the suspended load in sideways motion, i.e., the suspended load's sway and surge
motion (see Fig. 3.9) should be minimized when the system is exposed to a wave-induced
motion. This section will present the theory behind the general state-space representation
of a dynamic system, together with the control law and state-feedback design. State-
space linearization and estimator design will also be covered, due to the state-estimator
dependency of the dynamic non-linear system of the suspended load.

3.4.1 State-Space Modelling

State-space representation of a dynamic system is based on the idea of state-variables to
describe the di�erential equations of a system. Ordinary di�erential equations (ODEs)
which describe a dynamic system can be formulated as a set of �rst-order ODEs in the
vector-valued state of the system, where the solution is visualized as the trajectory of this
state-vector in space [23].

A state-space system is described by two governing equations, given by Eq. 3.91 and Eq.
3.92. A block diagram of the general state-space system is illustrated by Fig. 3.10.

ẋ = Ax+Bu (3.91)

y = Cx+Du (3.92)

Where:

x - State vector x(t) ∈ Rn
u - Input vector u(t) ∈ Rr
y - Output vector y(t) ∈ Rm
A - System matrix A ∈ Rn×n
B - Input matrix B ∈ Rn×r
C - Output matrix C ∈ Rm×n
D - Direct feed-through term D ∈ Rm×r

∫ 

A

B C

D

u(t) x(t)· y(t)x(t)

+

+
+

+

Figure 3.10: State-Space Represented with Block Diagram
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3.4.2 State-Space Linearization

Concerning systems with smooth non-linearities and continuous derivatives, it is possible
to formulate an approximate linear model which is valid around a de�nite operation point,
this approach is known as the small-signal method [23].

Considering the non-linear system in a state-variable form, the system can be expressed
as n �rst-order di�erential equations, where the state of the system is described as [24]:

ẋ1 = f1(x1 . . . xn, u1 . . . ur)

ẋ2 = f2(x1 . . . xn, u1 . . . ur)

. . .

ẋn = fn(x1 . . . xn, u1 . . . ur) (3.93)

and the system output is described by.

y1 = h1(x1 . . . xn, u1 . . . ur)

y2 = h2(x1 . . . , xn, u1 . . . ur)

. . .

ym = hm(x1 . . . xn, u1 . . . ur) (3.94)

With x = [x1 . . . xn]>, u = [u1 . . . ur]
>, and y = [y1 . . . ym]>, the describing equations of

the non-linear system can be given by Eq. 3.95 and Eq. 3.96

ẋ = f(x, u) (3.95)

y = h(x, u) (3.96)

where f and h are non-linear functions of the system states x and the input u.

f(x, u) =


f1(x, u)
f2(x, u)

...
fn(x, u)

 (3.97)

h(x, u) =


h1(x, u)
h2(x, u)

...
hm(x, u)

 (3.98)
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Equilibrium Point

The linearization is conducted by approximating a linear model to �t the non-linear system
around an equilibrium point. The equilibrium values of x0 and u0 is chosen such that
ẋ0 = f(x0, u0) = 0. Further, new coordinates ∆x, ∆y, ∆u are denoted as [25].

∆x = x− x0 (3.99)

∆y = y − h(x0, u0) (3.100)

∆u = u− u0 (3.101)

Which leads to the linearized model of the non-linear system (Eq. 3.95 and Eq. 3.96)
around the equilibrium point x0 and u0 is given by.

∆ẋ = A∆x+B∆u (3.102)

∆y = C∆x+D∆u (3.103)

A, B, C, and D are new state-space matrices evaluated at x0 and u0 and are derived as
follows.

A =
[
∂f(x,u)
∂x

]
x0,u0

=


∂f1
∂x1

∣∣∣
x0,u0

. . . ∂f1
∂xn

∣∣∣
x0,u0

...
. . .

...
∂fn
∂x1

∣∣∣
x0,u0

. . . ∂fn
∂xn

∣∣∣
x0,u0

 (3.104)

B =
[
∂f(x,u)
∂u

]
x0,u0

=


∂f1
∂u1

∣∣∣
x0,u0

. . . ∂f1
∂ur

∣∣∣
x0,u0

...
. . .

...
∂fn
∂u1

∣∣∣
x0,u0

. . . ∂fn
∂ur

∣∣∣
x0,u0

 (3.105)

C =
[
∂h(x,u)
∂x

]
x0,u0

=


∂h1
∂x1

∣∣∣
x0,u0

. . . ∂h1
∂xn

∣∣∣
x0,u0

...
. . .

...
∂hm
∂x1

∣∣∣
x0,u0

. . . ∂hm
∂xn

∣∣∣
x0,u0

 (3.106)

D =
[
∂h(x,u)
∂u

]
x0,u0

=


∂h1
∂u1

∣∣∣
x0,u0

. . . ∂h1
∂ur

∣∣∣
x0,u0

...
. . .

...
∂hm
∂u1

∣∣∣
x0,u0

. . . ∂hm
∂ur

∣∣∣
x0,u0

 (3.107)
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3.4.3 State-Space Control

Advantages of state-space control compared to classical control design (transfer-function-
based methods), is the available technique where dynamic compensations can be design
based on working directly with the systems state-variables. An additional feature of
the state-space control is the relative simplicity of how to treat multi-input multi-output
(MIMO) systems.

The state-space control design method can be described as a sequence of four independent
steps [23].

� Finding the control law: This involves the selection of a set of pole-locations for
the closed-loop system, such that the dynamic response corresponds to the desired
characteristics. Here, an assumption is taken that all elements of the state-vector are
available.

� Estimator Design: More often than not, a full state-feedback for a system is not
available. An estimator allows for an estimation of the entire state-vector based on
available system measurements.

� Combining the control law and estimator: The control law with its full state-
feedback dependency, is combined with the designed estimator.

� Reference tracking: Introduce a reference tracking control to the system, such
that the plant will track external command signals with a satisfactory response.

3.4.4 State-Feedback Design

A dynamic system of n-th order has a total of n roots which determines the eigenbehavior
of the system. The dynamics of these n states can be changed to an appropriate system
response by modi�cation of the location of the n roots. In state-space control design, it
is desired to �nd the control law as a feedback of the linear combination of the systems
state-variables. The control law is given by.

u = −Kx = −
[
K1 K2 . . . Kn

]

x1
x2
...
xn

 (3.108)

In the state-feedback control design, an assumption is made that the full-state feedback
of the system state-vector x is available. In practice, this is not always true, but for the
feedback purpose, this assumption is made to proceed with the control design. For an
n-th order system, the feedback gain K will be of dimension (n× 1). Satisfactory system
response, is determined by the root location, manipulation of these roots are achievable by
appropriate selection of the gain values in K.
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A block diagram representation of the state-feedback design is illustrated by Fig. 3.11. For
a pure state-feedback control the input signal is considered to be equal to zero u(t) = 0.

∫ 

A

B C
u(t) x(t)· y(t)x(t)

+

+

-K

+

+

Figure 3.11: Block Diagram of a State-Feedback System

Inserting the feedback law of Eq. 3.108, into the general state-space system described by
Eq. 3.91, gives the following state equation.

ẋ = Ax−BKx (3.109)

The characteristic equation of the closed-loop system can be derived as.

det[sI − (A−BK)] = 0 (3.110)

Evaluating Eq. 3.110, gives an n-th order polynomial in the s-domain, consisting of the
feedback gains K1,K2, . . . ,Kn. Desired root locations can be achieved by assigning appro-
priate values to these gains. There exist several methods for selecting appropriate values
of K, where the manual approach is to match the values of the feedback gains with a set
of desired root locations such as

s = s1, s2, . . . , sn (3.111)

The corresponding characteristic equation of the desired roots (characteristic control equa-
tion) can be expressed as.

αc = (s− s1)(s− s2) . . . (s− sn) (3.112)

Appropriate values of K can now be found by matching the characteristic equation of the
closed-loop system in Eq. 3.110, with the characteristic control equation in Eq. 3.112.
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3.4.5 Linear Quadratic Regulator (LQR)

Opposed to the methods of manual pole placement, an e�ective and widely used technique
in system control design is the optimal linear quadratic regulator (LQR). The LQR can be
considered as an optimization problem, where the aim is to minimize the quadratic cost
function.

For a general state-space system given by Eq. 3.95, the quadratic cost function is given
by.

J =

∫ ∞
0

(
x>Qx+ u>Ru

)
(3.113)

The control law that minimizes the cost function is given by the state feedback equation of
Eq. 3.108, where Q and R are assigned weighting matrices. The solution of the minimiza-
tion problem can found by the Riccati method, where the Riccati equation is expressed
as.

A>P + PA− PBR−1B>P +Q = 0 (3.114)

Isolating and solving for P , the optimal feedback gain can be calculated by.

K = R−1B>P (3.115)

The weighting matrices Q and R are often speci�ed as diagonal matrices, where Q penal-
izes the system states, and R penalizes the control e�ort. By modifying these matrices,
the designer can alter the trade-o� between performance and control e�ort, to achieve an
acceptable outcome. As initial starting values to the LQR design, Bryson's Rule is ap-
plicable [23], where the diagonal elements of Q and R are assigned values based on the
acceptable values of x and u.

Qii = 1/maximum acceptable value of [x2i ] (3.116)

Rii = 1/maximum acceptable value of [u2i ] (3.117)

Additional in�uence of the weight matrices can be listed as.

� Increasing all Qii gives faster total system dynamics, but will require higher control
values.

� Increasing all Rii suppresses the required magnitude of the control values.

� Increasing a element of Qii gives faster eigenbehavior of the corresponding system
state.
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3.4.6 Reference Input (Pre-�lter)

A state-feedback control as described in Sec. 3.4.4, can alone not provide a steady-state
accuracy. As the reference input varies, it is desired to have the output signal to follow the
reference, and this can be achieved by adding a scale N̄ (Pre-�lter) to the input signal of
the existing state-feedback system. The block diagram of such a system is shown in Fig.
3.12.

∫ 

A

B C
u(t) x(t)· y(t)x(t)

+

+

-K

+

+

r(t)
N

Figure 3.12: Block Diagram of a State-Feedback System with a Pre-Filter

A system with a constant steady-state can be said to have the following requirements;
ẋ = 0 and y = r, combining these requirements with the relations derived from the block
diagram of Fig. 3.12, gives the following expressions.

ẋ = (N̄r −Kx)B +Ax = 0 (3.118)

y = Cx = r (3.119)

Expanding Eq. 3.118 and solving for x, gives.

x = (BK −A)−1BN̄r (3.120)

Inserting Eq. 3.120 into the output equation of Eq. 3.119, gives.

y = C
[
(BK −A)−1BN̄r

]
= r (3.121)

Solving Eq. 3.121 for N̄ , gives the an expression for deriving the pre-�lter gain.

N̄ =
[
C(BK −A)−1B

]−1
(3.122)
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3.4.7 Integral Control

The pre-�lter controller presented in Sec. 3.4.6 will yield in zero steady-state error when
exposed to a step command. Unfortunately, this type of controller is not considered to
be robust, and if there arise any parameter changes to the system plant, the steady-state
error will become non-zero. It is therefore of interest to introduce an integral controller,
which is capable of tracking signals which do not go towards zero in steady-state.

A state-space system with an external disturbance d is given by.

ẋ = Ax+Bu+Gd (3.123)

y = Cx (3.124)

The system output can be designed in a feedback structure with the reference input. Hence
the error equals e = r− y. An additional integral state z is introduced to the system, and
the system error e equals the derivative of this state.

ż = r − Cx = e (3.125)

z =

∫ t

0
e dt (3.126)

The augmented state equations describing the system can be rewritten as.

[
ż
ẋ

]
=

[
0 −C
0 A

] [
z
x

]
+

[
0
B

]
u+

[
0
1

]
r +

[
0
G

]
d (3.127)

y =
[
0 C

] [z
x

]
(3.128)

The feedback law is given by 3.129, where Ko is the original state-feedback gain and Ke is
the feedback gain related to the error states.

u = −Kox+Kez = −
[
−Ke Ko

] [z
x

]
(3.129)

or simply

u = −K
[
z
x

]
(3.130)
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A block diagram of the presented integral controller is illustrated by Fig. 3.13

∫ 

A

B C
u(t) x(t)· y(t)x(t)

+

+

-Ko

+

+

r(t)
+

G

d(t)

Ke∫ 
z(t)e(t)

-

+

Figure 3.13: Block Diagram of a State-Feedback System with an Integral Control

Assigning the extended state-feedback control gains K = [−Ke Ko] can be conducted by
normal methods, such as the LQR presented in Sec. 3.4.5. Part of the augmented state
equations of Eq. 3.127 can be formulated as Eq. 3.131, to allow for a LQR optimization.

ẋi = Aixi +Biu (3.131)

where

xi =

[
z
x

]
(3.132)

Ai =

[
0 −C
0 A

]
(3.133)

Bi =

[
0
B

]
(3.134)
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3.4.8 Controllability and Oberservability

Controllability refers to the ability of controlling a particular state of a dynamic system
by the application of a control input. A system is described to be fully-controllable if the
system's internal states can be driven into zero state by an external appropriate control
input, for any initial state and �nite time. To determine if a system plant is fully con-
trollable, the rank of Kalman's controllability matrix needs to be determined. A dynamic
system (A,B) of size n is fully controllable if and only if:

rank(C) = rank[B,AB, . . . , An−1B] = n (3.135)

Observability relates to the concept of deducing information of the internal states of a
system, by only monitoring the system's outputs. If every state of the system is observable,
the system is said to be fully-observable. To determine if a system plant if fully-observable,
the rank of Kalman's observability matrix needs to be determined [23]. A dynamic system
(A,C) of size n is completely observable if and only if:

rank(o) = rank[C,CA, . . . , CAn−1]> = n (3.136)

3.4.9 Estimator Design

As previously mentioned, the approach of state-feedback design assumes that all system
states are available. However, in a physical system, this is rarely the case. Installing sensor
equipment to measure all the states of a system can be an expensive and challenging task
and in some cases physical impossible. If a system is observable, an estimator can be
introduced to the system design, where the states of the system can be reconstructed from
the available system output.

Recalling the control law combined with a reference gain as.

u = −Kx+ N̄r (3.137)

A system where not all states are measurable, the full state-vector x is not available. Hence,
the estimated state-vector x̂ is introduced, which allows for the control law to be derived.

u = −Kx̂+ N̄r (3.138)

A common method to estimate the states is to design a full-order model of the plant
dynamics. Using the same input u, system matrix A and input vector B as for the plant,
a reasonable reconstruction is possible. To assert for small error in the knowledge of the
system, a feedback signal is constructed for the di�erence between the measured output y
and estimated output ŷ, and corrected by a gain L. A general estimator con�guration is
illustrated by the block diagram in Fig. 3.14, and is given on the form.

˙̂x = Ax̂+Bu+ L(y − ŷ) (3.139)

ŷ = Cx̂ (3.140)
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∫ 

A

B C
u(t) x(t)· y(t)x(t)

+

+

L

+

∫ 

A

B C
x(t)

+

-

+

+

+ y(t)

Model

Estimator

Plant

Figure 3.14: Block Diagram of an Estimator Con�guration

The dynamics of the error ˙̃x is given by the di�erence of the actual state dynamics ẋ and
the estimated dynamics ˙̂x.

˙̃x = ẋ− ˙̂x (3.141)

Inserting for Eq. 3.91 and Eq. 3.139, gives the following expression for the error equation.

˙̃x = [Ax+Bu]− [Ax̂+Bu+ L(y − ŷ)] (3.142)

= (A− LC)x̃ (3.143)

The characteristic equation of the error is given by.

det[sI − (A− LC)] = 0 (3.144)

The corrector gain L can be selected with standard methods of pole placement, where the
poles should be assigned further left on the left-half-plane (LHP) than the dominant poles
of the system to ensure fast and stable eigenvalues. This will force the error x̃ to decay
towards zero and remain there, i.e., the estimated states x̂ will converge towards the actual
state x.

54



CHAPTER 3. THEORY 3.4. CONTROL SYSTEM DESIGN

3.4.10 Kalman Filter

In this thesis, the Kalman Filter will be utilized as the estimator. The Kalman Filter is a
widely used �lter which is applicable in many scenarios. Using the �lter as a state-estimator
is especially favorable for systems exposed to stochastic noise, and opposed to a constant
feedback gain L the Kalman Filter utilizes a varying feedback gain and a recursive method
of estimating the states.

A system exposed to process noise w and measurement noise v is given by the general
state-space system equations.

ẋ = Ax+Bu+ w (3.145)

y = Cx+ v (3.146)

Gaussian noise w and v are independent of each other and are distributed by a zero-mean
value, and are assumed to have constant covariance matrices Q and R, respectively [26].

p(w) ∼ N(0, Q) (3.147)

p(v) ∼ N(0, R) (3.148)

The Kalman Filter estimator is given by.

˙̂x = Ax̂+Bu+ L(y − ŷ) (3.149)

Where the related estimation error e and the error dynamics ė is given by.

e = x− x̂ (3.150)

ė = (A− LC)e+ w − Lv (3.151)

The feedback (Kalman) gain L are to be chosen so that the �lter aims to minimize the
mean square error of the state estimation, described by.

P = lim
t→∞

E{e2} = lim
t→∞

E{[x− x̂][x− x̂]>} (3.152)

The optimal Kalman Gain used to minimize the error of Eq. 3.152 is expressed as.

L = PC>R−1 (3.153)

Where P is found from the solution of the matrix-Riccati-equation.

AP + PA> − PC>R−1CP +Q = 0 (3.154)
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The Kalman Filter principle can be divided into a predictor phase (time-update) and a
corrector phase (measurement-update), these aim to estimate a state x of a discrete-time
controlled process, which is governed by linear stochastic di�erential equation (Eq. 3.155),
using a measurement z (Eq. 3.156) [26]. The a priori state estimate which is based on
the previous knowledge is denoted with an super-script (x̂−), and the a posteriori state
estimate is given by the measurement. The following discrete equations will use k to denote
the current time step, and k − 1 for the previous step.

The state-vector is given by.

xk = Axk−1 +Buk−1 + wk−1 (3.155)

where:

xk - Current state (time step k)
xk−1 - Previous state (time step k)
A - Transformation xk−1 → xk (system matrix)
B - Transformation uk → xk (input vector)
wk−1 - Process noise

The measurement is given by.
zk = Hxk + vk (3.156)

where:

zk - Current measurement (time step k)
xk - Current state (time step k)
H - Transformation uk → zk (output vector)
vk - Measurement noise

Predictor Equations

During the time-update phase, the a priori estimate of the state-vector is calculated to-
gether with the error covariance matrix P .

x̂−k = Ax̂k−1 +Buk−1 (3.157)

P−k = APk−1A
> +Q (3.158)

Corrector Equations

In the measurement-update phase the Kalman gain, the a posteriori state estimate, and
error covariance matrix are calculated.

Lk = P−k H
>(HP−k H

> +R)−1 (3.159)

x̂k = x̂−k + Lk(zk −Hx̂−k ) (3.160)

Pk = (I − LkH)P−k (3.161)
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After each cycle of predictor and corrector phase, the process is repeated using the previous
a posteriori estimates to predict the new a priori estimates. An overview of the Kalman
Filter operation is illustrated in Fig. 3.15.

Predictor Phase
(Time-update)

Corrector Phase
(Measurement-update)

MeasurementModel Input

Output

Initial 
Estimates xk-1 , pk-1

x , y

yu

Figure 3.15: Overview of the Kalman Filter Operation

3.4.11 Extended Kalman Filter

As the name suggests, the Extended Kalman Filter (EKF) is an upgrade of the original
�lter presented in Sec. 3.4.10. Whereas the original Kalman Filter tries to estimate the
states of a process governed by linear functions, an EKF can handle non-linear di�erential
equations of the state transition and measurement models.

The EKF exploit methods similar to the characteristics of the Taylor series expansion,
where a linearization of the estimation is conducted around the current estimation by
utilizing the partial derivatives of the process and measurement functions. Which allows
the EKF to compute state-estimation of models with non-linear relationships [26]. The
Extended Kalman Filter estimator is based on the following equations for the state-vector
and measurement.

˙̂x = f(x, u) + w (3.162)

z = h(x) + v (3.163)

Where the process model f(x, u) and measurement model h(x) are non-linear functions of
the state-vector and control vector. The process noise w and measurement noise v shares
the same assumption made for Eq. 3.147 and Eq. 3.148, where the noise is zero-mean
Gaussian noise with covariance Q and R.

The EKF shares the same principle of operating with a predictor phase and update phase,
as presented for the standard Kalman Filter, where a superscript x̂− de�nes the a priori

state estimate, and the a posteriori state estimate is based on the measurement. The
discretized version of the EKF estimator equations Eq. 3.162 and Eq. 3.163, is derived as.

x̂k = f(xk−1, uk−1) + wk (3.164)

zk = h(xk) + vk (3.165)
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Where k and k− 1 denotes the current and previous time step, respectively. The function
of the process model f can be used to calculate the predicted state of the previous estimate,
and the measurement function h can be used to compute the predicted measurement from
the predicted state. The partial derivative of the functions f and h also referred to as the
Jacobian, are used to predict the covariance. The Jacobian matrices de�ned by Eq. 3.166
and Eq. 3.167 are computed at each time step with the current predicted states, which is
essentially the process of linearizing the non-linear function around the current estimate.

Fk =
∂f

∂x

∣∣∣
x̂k,uk

(3.166)

Hk =
∂f

∂x

∣∣∣
x̂−k

(3.167)

Predictor Equations

The time-update equations compute the a priori estimate of the state-vector and the
covariance estimate.

x̂−k = f(x̂k−1, uk−1) (3.168)

P−k = FkPk−1F
>
k +Qk (3.169)

Corrector Equations

In the update phase, the a posteriori state and covariance estimation are computed with
the use of the measurement residual ỹk, residual covariance Sk and the Kalman gain Kk.

ỹk = zk − h(x̂−k ) (3.170)

Sk = HkP
−
k H

>
k +Rk (3.171)

Kk = P−k H
>
k S
−1
k (3.172)

x̂k = x̂−k +Kkỹk (3.173)

Pk = (I −KkHk)P
−
k (3.174)

58



4 Method

This chapter will introduce the methods used to perform the simulation and control of
the anti-swing system. These are based on the fundamental theory previously derived in
Ch. 3. Models of the industrial robot, suspended load, and a full system model will be
developed. Di�erent controller schemes and their related implementation will be presented.
In the end, a simulation model of the anti-swing controller system will be introduced. The
system models and controller design are developed with the use of Matlab®and Simulink®.

4.1 Robot Model

Modelling of the industrial robot is divided into two main parts; a system representing the
forward kinematic equations (Sec. 3.1.2), and a system for the respective inverse kinematic
equations (Sec. 3.1.3). These models are all represented by a Matlab system block, which
allows for easy integration to the Simulink environment. As a simpli�cation, the robot is
considered to be a fully rigid system. Hence no dynamics will be included in the modelling
of the robot system.

4.1.1 Forward Kinematics

The forward kinematic equations for the Comau robot calculates the tool-point motion as
a function of the joint angle inputs. A Matlab system block has been developed to compute
these kinematic transformations. The block is designed by using the derived equations for
Tool-point position (Eq. 3.8), velocity (Eq. 3.11) and acceleration (Eq. 3.14). Figures of
the system block in the Simulink environment and the block con�guration is shown in Fig
4.1.

(a) System block in the Simulink Envi-
ronment

(b) System Block Con�guration

Figure 4.1: Comau Robot Forward Kinematic System Block

As Fig. 4.1a shows, the system block requires input vectors of the joint angular position
q, velocity q̇ and acceleration q̈, which corresponds to the expressions of Eq. 3.8, Eq. 3.11
and Eq. 3.14, respectively.
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q =

q1q2
q3

 =

θ1θ2
θ3

 (4.1)

q̇ =

q̇1q̇2
q̇3

 =

θ̇1θ̇2
θ̇3

 (4.2)

q̈ =

q̈1q̈2
q̈3

 =

θ̈1θ̈2
θ̈3

 (4.3)

In a simulation environment, only one of the input vectors will be assigned with values, and
the remaining two will directly be calculated through time di�erentiation or integration.
An example of a simulation con�guration is shown in Fig. 4.2, here an additional plotting
functionality has been added to visualize the 3D motion response of the model.

Figure 4.2: Comau Robot Forward Kinematic Model

Two simulation examples are conducted on the forward kinematic model, a home-position
con�guration and a custom o�set-position. Fig. 4.3 shows the 3D visualization of the
robot con�guration for the two examples. Fig. 4.3a corresponds to the home-position, and
Fig. 4.3b shows the o�set-position example. The details of the joint angle inputs and the
resulting tool-point position, are described by Tab. 4.1 and Tab. 4.2.

Table 4.1: Robot Forward Kinematic Model - Home Position

Input:

q Value Unit

θ1 0 [deg]
θ2 0 [deg]
θ3 −90 [deg]

Output:

Pt Value Unit

xt 2.619 [m]
yt 0 [m]
zt 2.240 [m]

Table 4.2: Robot Forward Kinematic Model - O�set Position

Input:

q Value Unit

θ1 −15 [deg]
θ2 −20 [deg]
θ3 −55 [deg]

Output:

Pt Value Unit

xt 1.612 [m]
yt 0.432 [m]
zt 3.426 [m]
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(a) Robot Con�guration in Home Position

-1

0

4

1

2

z-
ax

is
 [m

]

3

4

2

y-axis [m]

430

x-axis [m]

210-1

(b) Robot Con�guration in O�set Position

Figure 4.3: 3D Visualization from the Comau Robot Forward Kinematic Model

The Matlab scripts for the system block of the forward kinematic model and the 3D motion
animation, are available in App. C.1.2 and App. C.7.1, respectively.

4.1.2 Inverse Kinematics

Opposite to the forward kinematics, the inverse kinematic of the Comau robot calculates
the joint motion required to realize the desired tool-point motion. The system block
representing the inverse kinematics model, utilizes the derived equations from Sec. 3.1.3.
The joint angle vector is calculated by using Eq. 3.15, Eq. 3.27, and Eq. 3.29, the angular
velocity and acceleration are derived from Eq. 3.30 and Eq. 3.31. Figures of the system
block for the inverse kinematics and the parameters con�guration are shown in Fig. 4.4.

(a) System block in the Simulink Envi-
ronment

(b) System Block Con�guration

Figure 4.4: Comau Robot Inverse Kinematic System Block

In the same manner, as for the forward kinematic system block, only one input vector will
be assigned in a simulation environment, where the remaining can be calculated by time
di�erentiation or integration. The Matlab script for the system block is available in App.
C.1.2.
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4.2 Suspended Load Model

The system model of the suspended load is based on the equations derived in Sec. 3.2.
This section is divided into two parts, where �rstly a model of the simple pendulum (2D-
system) is made, and secondly, a full model of the 3D system is developed. The latter will
be combined with the system model of the Comau robot, where the tool-point is responsible
for the actuation of the pendulum.

4.2.1 Simple Pendulum 2D Model

A model of the simple pendulum system is developed for testing di�erent controller schemes
and will be used as a basis for the 3-dimensional pendulum. The analysis of the 2D
pendulum is presented in Sec. 3.2.1, on which the 2D model will be based on.

The kinematics of the simple pendulum is derived by Eq. 3.35, a Matlab function, seen in
Fig. 4.5a, is used to implement this equation into a simulation environment. The equation
of motion Eq. 3.45, is a second order di�erential equation which describes the pendulum
dynamics. This system can be solved by numerical integration, which is shown in Fig.
4.5b. The dynamics function requires initial values for the angular position θ0 and velocity
θ̇0, where the latter is set to zero for all simulation scenarios

(a) Kinematics Function (b) Dynamics Function

Figure 4.5: Functions Describing the Simple Pendulum System

Combining the kinematic and dynamic function gives a system model of the 2D pendulum,
this is shown in Fig. 4.6, where an additional plotting function is added to visualize the
response of the simulation.

Figure 4.6: Pendulum 2D System Model
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A 2D visualization of an example simulation is shown in Fig. 4.7, here the pendulum is
initiated with an starting angle of θ0 = 15 [deg]
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Figure 4.7: Visualization of the 2D Pendulum Model Response
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4.2.2 Suspended Load 3D Model

The system model for the 3-dimensional suspended load/pendulum aims to describe the
pendulum position as a function of the Euler-angles and tool-point position. The sets of
equations describing the 3D system are derived and presented by Sec. 3.2.2, here it can
be seen that the pendulum can be described as a coupled system of the dynamics and
kinematics.

To implement the system of the 3D pendulum into a simulation environment, the model is
constructed as a set of Matlab functions. Allowing for an easy connection with the model
describing the Comau robot Sec. 4.1.

Dynamics

The function describing dynamics of the 3D pendulum is based on the equation of motion
given by Eq. 3.56 and Eq. 3.57. This set of equations describes a coupled pair of the
second order di�erential equation for the Euler-angles, which are dependent on the tool-
point acceleration P̈t, and the wire length Lw with its corresponding rate of change L̇w.

A �gure of the Matlab functino describing the suspended load dynamics is shown by Fig.
4.8a, the related Matlab script can be found in App. C.2.1.

Kinematics

Suspended load kinematics aims to describe the payload position as a function of the Euler-
angles, wire length and tool-point position, which is given by Eq. 3.49. The model of the
pendulum kinematics designed as a Matlab function, shown in Fig. 4.8b. The related
Matlab script is found in App. C.2.2.

(a) Dynamics Function (b) Kinematics Function

Figure 4.8: Suspended Load/Pendulum System Functions
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System Model

The solution of the dynamic function describing the non-linear di�erential equations can
be solved in Simulink by numerical integration (Eq. 3.56 and Eq. 3.57). For this to be
computed, a vector of initial positions and velocities for the Euler-angles are required.
The vector φ0 containing the initial position angles describes the starting o�set of the
pendulum, and the initial velocity vector φ̇0 will be considered to be equal zeros for all
simulation scenarios. The wire length's rate of change L̇w is modelled as a simple time
derivation of the wire length Lw.

φ0 =

[
φα,0
φβ,0

]
(4.4)

φ̇0 =

[
φ̇α,0
φ̇β,0

]
= 0 (4.5)

L̇w =
d

dt
(Lw) (4.6)

Combining the dynamic and kinematic functions of the 3D pendulum yields a system
model of the suspended load, which is available for use in a simulation. A �gure of the 3D
suspended load/pendulum system is shown in Fig. 4.9.

Figure 4.9: Suspended Load/Pendulum 3D System Model

The pendulum position Pp and Euler-angles φ are calculated by inputs from the tool-point
position Pt and acceleration P̈t, wire length Lw and the initial conditions of the euler angles
φ0.
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Suspended Load and Robot System

Combing the model of the 3D pendulum system (Fig. 4.9) with the Comau robot's forward
kinematics model (Fig. 4.2) yields a system for the suspended load connected to the tool-
point of the robot. A �gure of this combined model is shown in Fig. 4.10, an animation
plot is added to visualize the motion response in 3D (the Matlab script used to visualize
the 3D pendulum is available in App. C.7.2).

Figure 4.10: Simulation Model of the Robot and Suspended Load

This system model requires inputs from the joint angles q (Eq. 4.1), wire length Lw and
the initial conditions for the euler angles φ0 (Eq. 4.4).

A 3D visualization result of the system model in home-position is shown in Fig. 4.11, the
corresponding input and output values are described in Tab. 4.3.
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Figure 4.11: 3D Visualization of the Robot and Suspended Load Model in Home Position
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Table 4.3: Robot and Suspended Load Model in Home Position

Input:

Parameter Value Unit

θ [0 , 0 ,−90] [deg]
Lw 2.0 [m]
φ0 [0 , 0] [deg]

Output:

Parameter Value Unit

Pt [2.619 , 0 , 2.240] [m]
φ [0 , 0] [deg]
Pp [2.619 , 0 , 0.240] [m]

4.3 Motion System Model

With models developed for the robot and the suspended load, the next step is to combine
these with the motion of the Stewart platform. The aim is to create a system model which
inherits the con�guration shown in Fig. 3.8.

4.3.1 Stewart Platform Motion

The system model of the Stewart platform motion is based on the theory and formulations
presented by Sec. 3.3.2. The vector η, which contains the parameters for the platform
orientation, will is used as the control input for the platform motion.

The relations between input η and the relative velocity and acceleration are computed by
the Matlab function for the Stewart platform motion, which is shown in Fig. 4.12.

Figure 4.12: Stewart Platform Motion System

This function is based on Eq. 3.69 and Eq. 3.75, where the related Matlab script can be
found in App. C.3.
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To generate a wave motion for the full system, a sinusoidal signal is used as an input to
each element of the orientation vector η. The parameters used in a simulation environment
can are listed in Tab. 4.4 for each DOF of the Stewart platform. Eq. 4.7 describes the
sinusoidal function used to generate these trajectories, where t denotes the time.

y = A sin(2πft+ σ
π

180
) (4.7)

Table 4.4: Wave Trajectory for the Stewart Platform Motion η

Parameter Amplitude A [m] Frequency f [Hz] Phase σ [deg]

x 0.1 0.1 0
y 0.2 0.1 45
z 0.2 0.1 90
θ 5π/180 0.1 0
φ 5π/180 0.15 90
ψ 5π/180 0.2 120

4.3.2 Updated Robot Tool-Point Motion

As described in Sec. 3.3.3, the Stewart platform motion will induce relative motion of the
robot base frame, hence a set of transformation equations is introduced to describe the
tool-point motion relative to the Stewart platforms neutral frame.

The updated model for the Comau Robot's forward kinematics is shown in Fig. 4.13,
where the tool-point position, velocity an acceleration are calculated using Eq. 3.79, Eq.
3.81 and Eq. 3.82, respectively.

Figure 4.13: Comau Robot Forward Kinematic System, Updated for Relative Motion

As can be seen in the �gure, the updated model requires information of the relative motion
in addition to the joint inputs. The Matlab script describing the contents of this system
is available in App. C.1.2.
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Combining the Stewart platform motion model (Fig. 4.12) and the updated system for
the forward kinematics of the robot (Fig. 4.13), yields a system model which can be used
to compute the tool-point motion relative to the neutral frame of the Stewart platform. A
�gure of this system is shown in Fig. 4.14.

Figure 4.14: Comau Robot Forward Kinematic System with Stewart Platform Motion

4.3.3 Combined Motion System Model

A full 3D system model can now be constructed by combining the Stewart platform and
Comau robot motion model (Fig. 4.14) with the suspended load system. The model of the
suspended load system will remain equal to the one de�ned earlier (Fig. 4.9), where the
tool-point motion will be given as relative to the neutral frame of the Stewart platform. A
�gure of the full system model is shown in Fig. 4.15, where the system requires inputs of
the joint angle q and the relative platform position η, the Matlab script used to animate
the full motion system is given in App. C.7.4.

Figure 4.15: Full Motion System Model
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A 3D visualization of the full motion system is shown in Fig. 4.16, the robot is in a
home con�guration, and some small initial values of η are added to visualize the o�set for
the Stewart platform relative to its the neutral frame. See Fig. 3.8, for comparison and
notation of the body frames.
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Figure 4.16: 3D Visualization of the Full System Model
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4.4 Control System Design Simple Pendulum

The following section will present the methods used to develop di�erent controller schemes
for the 2-dimensional pendulum system. It is desired to establish a control system which
can actively compensate for the swing angle and the tool-point position.

4.4.1 Non-Linear System Plant

The system plant for the non-linear pendulum system is shown in Fig. 4.17. The plant
uses the dynamics function of Fig. 4.5b to describe the equation of motion given by Eq.
3.45. The tool-point horizontal position and velocity is also given by the plant, but for
simplicity, no dynamics are added to these terms.

Figure 4.17: Non-Linear Plant Pendulum 2D

The system plant for the 2D pendulum acts as a single-input multi-output (SIMO) system,
where the respective state-vector and system input is given by.

x =


xt
ẋt
θ

θ̇

 (4.8)

u = ẍt (4.9)

An assumption is made, where the tool-point horizontal position xt and the angle θ are
considered as measurable states. The describing equations of the non-linear system can be
expressed as.

ẋ = f(x, u) =


ẋt
u

θ̇
(−u cos θ − g sin θ)/Lw

 (4.10)

y = h(x) =

[
xt
θ

]
(4.11)
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4.4.2 Linearization

The concept of state-space linearization, as presented by Sec. 3.4.2, is utilized to represent
the non-linear plant as state-space system. The equilibrium point, for which the plant is
linearized around, is found by setting the input equal to u0 = 0, corresponding to zero
acceleration. The equilibrium values for the state vector x can be calculated by setting
ẋ0 = f(x0, u0) = 0.

ẋ0 = f(x0, u0) =


ẋt
u0
θ̇

(−u0 cos θ − g sin θ)/Lw

 = 0 (4.12)

Which gives the following equilibrium state vector

x0 =


0
0
kπ
0

 , k : integer (4.13)

The pendulum is in a equilibrium state when it is pointing downwards θ = 0 or pointing
upwards θ = π, the former value is chosen as an equilibrium state for this system design.
The state-space matrices A, B, C, and D, evaluated at x0 and u0 can now be calculated
by Eq. 3.104 - 3.107.

A =
[
∂f(x,u)
∂x

]
x0,u0

=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 −g/Lw 0

 (4.14)

B =
[
∂f(x,u)
∂u

]
x0,u0

=


0
1
0

−1/Lw

 (4.15)

C =
[
∂h(x,u)
∂x

]
x0,u0

=

[
1 0 0 0
0 0 1 0

]
(4.16)

D =
[
∂h(x,u)
∂u

]
x0,u0

=

[
0
0

]
(4.17)

The wire length is considered to be of a constant length Lw = 2.0 [m], and gravity equals
g = 9.81 [m

s2
] for the simulation of the 2-dimensional pendulum.
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4.4.3 Estimator Design

In the control design of the simple pendulum, both an original Kalman Filter (KF) and
an Extended Kalman Filter (EKF) will be developed to estimate the states of the system.
This implementation is conducted due to the interest of comparing the estimation results
of the two estimators.

(a) Kalman Filter Block (b) Extended Kalman Filter Block

Figure 4.18: Simulink Representation of the Estimator Blocks

Kalman Filter

The linear Kalman Filter estimator is based on the presented theory in Sec. 3.4.10, where
the A and B matrices are found from the state-space linearization. In a simulation environ-
ment, the available Kalman Filter block (see Fig. 4.18a) will be used. This block requires
inputs for the state-space system (state-space matrices found from the linearization). In
addition to a guess on the initial states, information of the covariance matrices for the
initial state P , process noise Q and measurement noise R is also required by the Kalman
Filter block.

Extended Kalman Filter

The Extended Kalman Filter, described by Sec. 3.4.11, uses the non-linear equation of
the plant (Eq. 4.10 and Eq. 4.11) to estimate the system states. In the simulation of the
2D pendulum controller, the Extended Kalman Filter will be implemented as a Simulink
block, which is shown in Fig. 4.18b. Similar to the standard Kalman Filter, the extended
version requires inputs for the covariance matrices of the initial state P , process noise Q
and measurement noise R.

The state-transition function f(x, u) and measurement function h(x, u) are given to the
block as Matlab functions. As an optional input, the block can be supplied with the
respective Jacobian functions F andH, described by Eq. 3.166 and Eq. 3.167, respectively.
But for the relative simple problem of the 2D pendulum, these are chosen to be computed
numerically.
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Comparison

A simulation model is developed to compare standard Kalman Filter and the Extended
version. Values for the covariance matrices are found through experiments and are identical
for the two estimators. Numerical values for the process noise covariance Q, measurement
noise covariance R, and initial state covariance P is given by.

Q =


0 0 0 0
0 0.0012 0 0
0 0 0.012 0
0 0 0 0.012

 (4.18)

R =

[
0.0012 0

0 0.012

]
(4.19)

P = 1e− 3 (4.20)

Figure 4.19: 2D Pendulum Model with Kalmen Filter and Extended Kalman Filter

A �gure of the simulation model is shown in Fig. 4.19, the non-linear plant of the 2D
pendulum is given a sinusoidal acceleration input, and an initial o�set angle of θ = 20
[deg]. For this scenario, both estimators manage to give an acceptable estimation of the
pendulum angle, where the standard Kalman Filter uses a longer time period to converge
to the true value. Which is illustrated by the plot of Fig. 4.20.
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Figure 4.20: Estimator Comparison of 2D Pendulum with Sinusoidal Acceleration Input
with θ = 20 [deg]

A new scenario is tested, where the input remains the same, but the wire length of the
plant is changed to Lw = 4. The result are shown in Fig. 4.21, where it can be seen that
the standard Kalman Filter no longer give a satisfactory estimation of the pendulum angle.
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Figure 4.21: Estimator Comparison of 2D Pendulum with Sinusoidal Acceleration Input,
θ = 20 [deg] and Lw = 4

Based on these results, a decision is made to use the Extended Kalman �lter as an estimator
for the anti-swing controller.
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4.4.4 Linear Control

To compensate for the swing angle of the 2D pendulum, a linear control system is designed
based on the state-space linearization derived from Sec. 4.4.2. The linearized model can
be described by the general state-space representation.

ẋ = Ax+Bu (4.21)

y = Cx+Du (4.22)

Where the system matrices A, B, C, and D are de�ned by Eq. 4.14 - 4.17

Two di�erent controller schemes will be developed for the simple pendulum system, where
the aim is to compare their response and behavior.

State-Feedback with Pre-Filter

Firstly a state-feedback controller with a pre-�lter for reference input is constructed. The
feedback gain K is calculated by using the method of LQR described in detail by Sec.
3.4.5. Values of the weight matrix for the system states Qc is given by Eq. 4.23. These
values are found through experiments where an extra focus is made on penalizing the state
of θ. The weight matrix for the control e�ort is set to Rc = 1

Qc =


103 0 0 0
0 103 0 0
0 0 105 0
0 0 0 102

 (4.23)

The resulting feedback gain equals.

K =
[
10.00 18.10 −101.88 4.78

]
(4.24)

To enable reference tracking a Pre-Filter is added to the controller, where a detailed for-
mulation is given by Sec. 3.4.6. It should be noted that only the state of xt should be
allowed to follow a reference input, hence only the �rst row of Eq. 4.16 is used in the
computation of the pre-�lter gain N̄ calculated by Eq. 3.122. The system pre-�lter gain
equals to.

N̄ = 10 (4.25)

The state-feedback system with the added pre-�lter is given by the following describing
equations.

ẋ = (N̄r −Kx)B +Ax (4.26)

y = Cx (4.27)
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The related closed loop step response is shown in Fig. 4.22.
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Figure 4.22: Step Response of 2D Pendulum Linear System with State-Feedback and Pre-
Filter

The developed state-feedback pre-�lter controller can now be combined with the non-linear
system plant (Fig. 4.17) and the previously derived Extended Kalman Filter estimator
(Fig. 4.18b). The Simulink model of this system is shown in Fig. 4.23.

Figure 4.23: Non-Linear 2D Pendulum System with Extended Kalman Filter and State-
Feedback Pre-Filter Control
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Integral Control

Secondly, an integral control system is designed for the 2D pendulum system. This type
of controller adds additional error-states to the system, which in theory will improve the
reference tracking compared to pre-�lter control. A detailed description of the integral con-
troller is given in Sec. 3.4.7. Introducing the error-states, a new state-space representation
of the linearized system is derived.

[
ż
ẋ

]
=

[
0 −C
0 A

] [
z
x

]
+

[
0
B

]
u+

[
0
1

]
r (4.28)

y =
[
0 C

] [z
x

]
(4.29)

The state-space system description of Eq. 4.28 can be formulated as.

ẋi = Aixi +Biu (4.30)

where

xi =

[
z
x

]
(4.31)

Ai =

[
0 −C
0 A

]
(4.32)

Bi =

[
0
B

]
(4.33)

The original system matrices A, B, C, and D are derived by Eq. 4.14 - 4.17. The feedback
law is given by Eq. 3.130, and the feedback gain K = [−Ke Ko] is computed by the LQR
method (Sec. 3.4.5), where the new system matrices Ai and Bi, is used. Due to the added
error state, an update of the weight matrix for the system state Qi is required, which is
assigned the following values.

Qi =


103 0 0 0 0
0 103 0 0 0
0 0 103 0 0
0 0 0 105 0
0 0 0 0 102

 (4.34)

The weight matrix for the control e�ort is assigned as Ri = 1. The resulting feedback gain
computed by the LQR method yields the following values.

K = [−Ke Ko] (4.35)

=
[
31.62 72.38 67.02 −249.17 88.49

]
(4.36)
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The related step response of the closed loop system is given by Fig. 4.24.
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Figure 4.24: Step Response of 2D Pendulum Linear System with State-Feedback and
Integral Control

Combining the developed state-feedback integral control with the non-linear plant and
using the Extended Kalman Filter as an estimator, yields an anti-swing control system for
the 2D pendulum model. The related Simulink model is shown in Fig. 4.25.

Figure 4.25: Non-Linear 2D Pendulum System with Extended Kalman Filter and State-
Feedback Integral Control

The Matlab scripts used to develop the linear controller for the 2D pendulum together
with the state-transition and measurement functions for the Extended Kalman Filter are
available in App. C.4.
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4.4.5 Non-Linear Control

A non-linear control system is developed for the 2D pendulum system. This control design
introduces the concept of virtual damping to compensate for swing angle. Here a damping
e�ect is added to the undamped system plant, by manipulation of the input signal.

The di�erential equation describing the simple pendulum dynamics is given by Eq. 3.45,
and can be rewritten as.

θ̈ +
g sin θ

Lw
= − ẍt cos θ

Lw
(4.37)

It is desired to alter these dynamics to yield a second order di�erential equation on the
following form.

θ̈ + dθ̇ + kθ = 0 (4.38)

Where d is the damping coe�cient. By analyzing Eq. 4.37, it can be seen that the tool-
point acceleration ẍt is free to use as a virtual damping e�ect on the original system.
Hence, the following formulation is derived to express the desired acceleration needed to
dampen out the oscillations.

dθ̇ = − ẍt cos θ

Lw
(4.39)

⇒ ẍt = −Lwdθ̇
cos θ

(4.40)

To implement this virtual damper to the non-linear system plant, the extended Kalman
Filter is used to estimate the states of θ and θ̇. A PD (Proportional-Derivative) controller
is added for position control, and the Simulink model of the full system is shown in Fig.
4.26.

Figure 4.26: Non-Linear 2D Pendulum System with a Non-Linear Virtual Damper Com-
pensator and PD Position Control
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A damping coe�cient of d = 5 is selected for empirical tests, where the values assigned
to the PD controller are found by an experimental approach using the Matlab's System
Identi�cation and PID tuner toolbox. The corresponding proportional gain and derivative
gain is selected as Kp = 0.2 and Kd = 0.85, which yields the following closed-loop step
response.
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Figure 4.27: Step Response of 2D Pendulum with Non-Linear Virtual Damper and PD
Position Control

4.5 Control System Design Suspended Load

This section will present the methods used to develop the di�erent anti-swing controllers
for the system consisting of the Comau robot with the attached, suspended load. These
controllers will utilize the previously derived simulation models of the robot and suspended
load present in Sec. 4.1 and Sec 4.2.2.

The motion of the 3-dimensional pendulum is directly in�uenced by the motion of the
robot's tool-point. Hence it is desired to design a system which is capable of actuating the
tool-point. Related to the upcoming control designs, a few assumptions and considerations
are made for the suspended load and robot system.

� The Comau robot is considered as a rigid system, where no dynamics are included
for the joint actuation.

� Feedback of the tool-point position, and measurements of the suspended load's Euler-
angles are assumed to be available.

� The control system for the wire length is not considered in this thesis, and the wire
length is assumed to be a constant value of Lw = 2.0 [m].
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4.5.1 Non-Linear System Plant

Analyzing the equations of motion, given by Eq. 3.56 and Eq. 3.57, it can be seen that
the tool-point acceleration components act as the governing parameters to the dynamics of
the 3-dimensional suspended load/pendulum. Hence, a control system should be designed
such that the tool-point acceleration will operate as the system input. Since the robot is
assumed to act as a rigid system, no dynamics will in�uence the motion of the robot. This
is obliviously not the case for the physical system but is made as a simpli�cation.

The Simulink model of the non-linear system is shown in Fig. 4.28, where the suspended
load dynamics corresponds to previously de�ned function, described by Sec. 4.2.2. The
system plant requires values for the initial pendulum angles and the initial tool-point
position, and can compute the tool-point position and Euler-angles by input from to the
tool-point acceleration and wire length.

Figure 4.28: Non-Linear Plant of the Suspended Load and Robot Tool-Point

To represent the Comau robot with a full system model, it is possible to implement the
sequence of inverse kinematics (Fig. 4.4a) followed by the forward kinematics block (Fig.
4.1a), but since this is just a direct connection, it was omitted for simpli�cation.

The non-linear system describing the pendulum dynamics and the tool-point motion acts
as a multi-input multi-output (MIMO) system, where the related state-vector is given by.

x =


Pt
Ṗt
φ

φ̇

 (4.41)

and the input vector is de�ned as.

u = P̈t (4.42)
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Where:

x - State vector x(t) ∈ R10

u - Input vector u(t) ∈ R3

Pt - Tool-point position Pt(t) ∈ R3

Ṗt - Tool-point velocity Ṗt(t) ∈ R3

P̈t - Tool-point acceleration P̈t(t) ∈ R3

φ - Pendulum Euler-angles φ(t) ∈ R2

φ̇ - Pendulum Euler-angular velocity φ̇ ∈ R2

As described by the assumptions, the tool-point position and of the Euler-angles are con-
sidered to be measurable states. The describing equations for the non-linear system can
be derived as follows.

ẋ = f(x, u) =


Ṗt
u

φ̇

φ̈

 (4.43)

y = h(x) =

[
Pt
φ

]
(4.44)

Where φ̈ = [φ̈α , φ̈β] is derived from the equations of motion (Eq. 3.56 and Eq. 3.57).

4.5.2 Extended Kalman Filter Estimator

An Extended Kalman Filter is implemented to estimate the states of the non-linear system.
The non-linear estimator is based on the theory presented by Sec. 3.4.11, and uses the
derived non-linear functions for the state-transition (Eq. 4.43) and measurement function
(Eq. 4.44) to estimate the system states. The estimator is added to the system as a
Simulink block (see Fig. 4.18b). For the 3D pendulum system, the respective Jacobian
of the state-transition and measurement functions are also supplied to the estimator, the
derivation of these Jacobian functions are based on Eq. 3.166 and Eq. 3.167.

Values of the covariance matrices for the initial state P , process noise Q and measurement
noise R, are found through an experimental approach to give a satisfactory estimate of the
system state. Where the numerical values are given by.

P = 10−3 (4.45)

Q =


QPt 0 0 0

0 QṖt 0 0

0 0 Qφ 0
0 0 0 Qφ̇

 (4.46)

R =

[
RPt 0
0 Rφ

]
(4.47)
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where the elements of the process noise covariance matrix Eq. 4.46, are given by the
following diagonal matrices.

QPt = diag
( [

0.000012 0.000012 0.000012
] )

QṖt = diag
( [

0.0012 0.0012 0.0012
] )

Qφ = diag
( [

0.0012 0.0012
] )

Qφ̇ = diag
( [

0.012 0.012
] )

(4.48)

and the elements of the measurement noise covariance matrix Eq. 4.47, are given by the
following diagonal matrix.

RPt = diag
( [

0.0012 0.0012 0.0012
] )

Rφ = diag
( [

0.012 0.012 0.012
] )

(4.49)

Fig 4.29 visualizes the estimator performance of the Euler-angles. Here, a set of di�erent
sinusoidal waves has been used as a input to the non-linear dynamic system where the
initial angles equal zero (φα = 0 and φβ = 0). As the �gures shows, the Extended Kalman
Filter manages to estimate the angles with a satisfactory result.
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Figure 4.29: EKF Estimation of the Suspended Load System

A second test of the estimator is simulated with the same sinusoidal input. Now the
suspended load is initiated with a set of initial o�set values equal to φα = 15 and φβ = 20.
The result is shown in Fig. 4.30. Even though the initial estimator guess is wrong, the
Extended Kalman Filter manages to converge to the true value.
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Figure 4.30: EKF Estimation of the Suspended Load System, with Initial O�set Angles

4.5.3 Linearization

It is desired to represent the non-linear plant, described by Eq. 4.43 and Eq. 4.44, as a
state-space system. The state-space linearization, based on the presented theory of Sec.
3.4.2, approximates a linear model of the non-linear plant around an equilibrium point. A
input of zero acceleration u0 = 0 is chosen, and the following equilibrium values for the
system states are found by ẋ0 = f(x0, u0) = 0, which is derived as.

ẋ0 = f(x0, u0) =


Ṗt
u0
φ̇

φ̈

 = 0 (4.50)

which yields the following equilibrium state vector.

x0 =


Pt
0
0
0

 (4.51)

Initial angles for the pendulum is assigned to φα = 0 and φβ = 0, which corresponds to the
pendulum in a downwards position. As can be seen from Eq. 4.51, the initial tool-point
position is free, i.e., any reasonable values within the reach of the robot are available for
choosing. The state-space system matrices, A, B, C, and D evaluated at x0 and u0 can
now be computed according to Eq. 4.14 - 4.17.
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4.5.4 Linear Control

Compensation for the swing-angles is performed by utilizing the linear system model of
the suspended load and robot system. In addition to keep the Euler-angles φα and φβ as
small as possible, the controller should be designed such that the robot tool-point is able
to track a reference input. Two di�erent linear control designs will be developed, where it
is of interest to compare their responses.

With the state-space linearization, the approximated system model can now be described
by the general state space representation, as de�ned by Eq. 3.91 and Eq. 3.92.

ẋ = Ax+Bu (4.52)

y = Cx+Du (4.53)

where

x =


Pt
Ṗt
φ

φ̇

 (4.54)

u = P̈t (4.55)

State-Feedback with Pre-Filter

A state-feedback controller with a pre-�lter is the �rst linear controller to be implemented
to the 3D-pendulum and robot system. The feedback gain K is computed by using the
method of LQR, described in more detail by Sec. 3.4.5. The weight matrices for the
system states Qc and control e�ort Rc are designed by an experimental approach until a
satisfactory system is met. Extra focus is made on penalizing the state of φ, which will
force the controller to focus on minimizing the swing angle of the pendulum, the related
numerical values for Qc and Rc are given as.

Qc =


Qc,Pt 0 0 0

0 Qc,Ṗt 0 0

0 0 Qc,φ 0
0 0 0 Qc,φ̇

 (4.56)

Rc =
[
1 1 1

]
(4.57)
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where the elements of the weight matrix Qc are given by the following diagonal matrices.

Qc,Pt = diag
( [

103 103 103
] )

Qc,Ṗt = diag
( [

102 102 102
] )

Qc,φ = diag
( [

104 104
] )

Qc,φ̇ = diag
( [

103 103
] )

(4.58)

The resulting feedback gain, computed by the LQR method equals.

K =

31.62 0 0 41.07 0 0 236.32 0 25.55 0
0 10.0 0 0 34.28 0 0 −76.10 0 −4.82
0 0 31.62 0 0 12.78 0 0 0 0


(4.59)

The added feedback gain K will force the states to a zero steady-state, which is desired for
the states related to the pendulum angles. However, to enable reference tracking for the
tool-point, a pre-�lter is added accordingly to the formulation described in Sec. 3.4.6. As
Eq. 3.122 describes, the gain N̄ is computed using the output vector C. Since it is desired
to only have the states of Pt in�uenced by a pre-�lter gain, only the �rst three rows of C
will be used to compute the gain N̄ . The resulting numerical values of the pre-�lter gain
is given by.

N =

31.62 0 0
0 10.0 0
0 0 31.62

 (4.60)

The system equations describing the state-feedback system with pre-�lter are given by.

ẋ = (N̄r −Kx)B +Ax (4.61)

y = Cx (4.62)
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The closed loop step response for the state-feedback pre-�lter controller, is given for the
tool-point position by Fig. 4.31a and the related pendulum angle response can be seen in
Fig. 4.31b.
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(b) Pendulum Angle Response

Figure 4.31: Closed Loop Step Response of the Non-Linear Suspended Load and Robot
System, with State-Feedback Pre-Filter Control
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The Simulink model of the non-linear suspended load and robot system, with a state-
feedback pre-�lter control and Extended Kalman Filter estimator, can be seen in Fig.
4.32.

Figure 4.32: Simulink Model of the Non-Linear Suspended Load and Robot System, with
State-Feedback Pre-Filter Control

Integral Control

In addition to the developed state-feedback with pre-�lter control, it is desired to design an
integral controller for the 3D-pendulum system. This type of controller will add additional
error states to the system, where the aim is to improve the reference tracking. A more
detailed description of the integral control is given in Sec. 3.4.7. Similar to the pre-�lter,
only the states of the tool-point position should be designed to have a reference tracking
ability. Meaning, that only the �rst rows of the output vector C, which corresponds to the
output of Pt, should be used in Eq. 3.125. The augmented state equations describing the
system can be written as.

[
ż
ẋ

]
=

[
0 −CPt
0 A

] [
z
x

]
+

[
0
B

]
u+

[
0
1

]
r (4.63)

y =
[
0 C

] [z
x

]
(4.64)

Where CPt corresponds to the �rst rows of C, which are related to the states of Pt.
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As formulated by Eq. 3.129, the feedback law is given by.

u = −Kox+Kez

= −
[
−Ke Ko

] [z
x

]
= −K

[
z
x

]
(4.65)

The feedback gain K can be computed by the method of LQR, due to the added error
states z ∈ R3, an extension of the weighting matrix for the system state Qi is needed. The
weighting matrix Qi and the weight matrix for the control e�ort Ri is given by.

Qi =


Qi,z 0 0 0 0

0 Qi,Pt 0 0 0
0 0 Qi,Ṗt 0 0

0 0 0 Qi,φ 0
0 0 0 0 Qi,φ̇

 (4.66)

Ri =
[
1 1 1

]
(4.67)

where the elements of the weight matrix Qi are given by the following diagonal matrices.

Qi,z = diag
( [

103 103 103
] )

Qi,Pt = diag
( [

103 103 103
] )

Qi,Ṗt = diag
( [

102 102 102
] )

Qi,φ = diag
( [

104 104
] )

Qi,φ̇ = diag
( [

103 103
] )

(4.68)

The resulting feedback gain K, computed by LQR, yields the following result.

K =
[
−Ke Ko

]
(4.69)

where

−Ke =

31.62 0 0
0 31.62 0
0 0 31.62



Ko =

69.85 0 0 61.32 0 0 241.17 0 −13.45 0
0 53.95 0 0 44.43 0 0 −71.00 0 13.27
0 0 43.17 0 0 13.65 0 0 0 0


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A step response of the closed loop system is performed, where a step input is given to each
component of the tool-point position vector Pt. The tool-point position response is shown
in Fig. 4.33a, and the related response of the pendulum angles are presented in Fig. 4.33b.

0 1 2 3 4 5 6 7 8
0

0.5

1
x 

- 
[m

] x
t

0 1 2 3 4 5 6 7 8
0

0.5

1

y 
- 

[m
] y

t

0 1 2 3 4 5 6 7 8

Time [s]

0

0.5

1

z 
- 

[m
] z

t

(a) Tool-Point Position Response

0 1 2 3 4 5 6 7 8
-10

-5

0

5

 [d
eg

]

0 1 2 3 4 5 6 7 8
-4

-2

0

2

4

 [d
eg

]

(b) Pendulum Angle Response

Figure 4.33: Closed Loop Step Response of the Non-Linear Suspended Load and Robot
System, with State-Feedback Integral Control
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The Simulink model of the non-linear suspended load and robot system, with a state-
feedback integral control and extended Kalman �lter, is shown in Fig. 4.34.

Figure 4.34: Simulink Model of the Non-Linear Suspended Load and Robot System, with
State-Feedback Integral Control

The Matlab scripts used to design the functions of the Extended Kalman Filter, and the
scripts related to the control system for the state-feedback pre-�lter and integral controller
are available in App. C.5.

4.5.5 Non-Linear Control

Similar to the control system of the simple pendulum, it is desired to design a non-linear
controller for the 3-dimensional suspended load, based on the concept of virtual damping.
To compensate for the pendulum angles, a damping e�ect is added to the undamped
system, by manipulation of the input accelerations. A desired dynamics for the pendulum
angles are given on the form.

φ̈+ dφ̇+ kφ = 0 (4.70)

Where d is the is the damping coe�cient, and φ = [φα , φβ] corresponds to the pendulum
angles.

The di�erential equations describing the dynamics of the 3D pendulum are given by Eq.
3.56 and Eq. 3.57, and by using the earlier de�ned assumption of a constant wire length
L̇w = 0, these equations of motion can be rewritten as.
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φ̈α −
(
ẍt · cosφα + ÿt · sinφα · sinφβ
− z̈t · sinφα · cosφβ − g · sinφα · cosφβ

− Lw · φ̇2β · sinφα · cosφα
)
/Lw = 0 (4.71)

φ̈β −
(
− ÿt · cosφβ − z̈t · sinφβ
− g · sinφβ + 2 · Lw · φ̇α · φ̇β · sinφα

)
/
(
Lw · cosφα

)
= 0 (4.72)

It can be seen, that the describing equations of motion are a set of coupled di�erential
equations, i.e., the solution of the pendulum angles φα and φβ are dependent on each
other.

Focusing on Eq. 4.71, it is desired to add a part a virtual damper on the form dx cos φ̇α,
where dx is a damping coe�cient. Analyzing Eq. 4.71, it can be seen that the only part of
the equation not in�uenced by both angles is the part containing the parameter ẍt. Hence,
a virtual damping e�ect will be constructed by manipulating this acceleration component.
The value of ẍt is computed by the following de�ned relation.

dxφ̇α = − ẍtcosφα
Lw

⇒ ẍt = −dxLwφ̇α
cosφα

(4.73)

A similar approach is used for the virtual damping of the angle φβ , from Eq. 4.72, where
the part containing the acceleration ÿt is used to compute the virtual damping dyφ̇β . The
value of ÿt is computed as follows.

dyφ̇β =
ÿtt cosφβ
Lw cosφα

⇒ ÿt =
dyLwφ̇β cosφα

cosφβ
(4.74)

Implementation of these anti-swing compensators requires inputs for the angular position
and velocity of the pendulum angles, where the latter is not considered to be measurable.
Hence, the extended Kalman Filter will be used to feed the estimate of these states to the
virtual dampers. An updated version of the virtual dampers is given as.

ẍt = −dxLw
ˆ̇
φα

cos φ̂α
(4.75)

ÿt =
dyLw

ˆ̇
φβ cos φ̂α

cos φ̂β
(4.76)
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Eq. 4.75 and Eq. 4.76 can now be added to the original signal of the acceleration input of
ẍt and ÿt, respectively. Which will result in a damping e�ect of the 3D pendulum angles
φα and φβ .

A �gure of the anti-swing system for the non-linear system model can be seen in Fig. 4.35.
The non-linear virtual damping controllers are added as Matlab functions based on Eq.
4.75 and Eq. 4.76, where the inputs are obtained from the estimates of the Extended
Kalman Filter A cascade controller is added to enable reference tracking of the tool-point
xt and yt position. The inner velocity loop are controlled by a proportional derivative (PD)
controller, and the outer position loops are governed by a proportional integral (PI).

Figure 4.35: Simulink Model of the Non-Linear Suspended Load and Robot System, with
Virtual Damper and Cascade Control

No control of the tool-point zt position is considered for this scenario. The values of the
damping coe�cients are found by empirical tests, where the �nal values dx = 7 and dy = 5
are selected. Tuning of the cascade controllers is conducted by an experimental approach,
using Matlab's System Identi�cation and PID tuner toolbox. The corresponding values
are listed in Tab. 4.5. A closed loop step response of the system is shown in Fig. 4.36,
where the response of zt is omitted due to no control e�ort is acting on this parameter.

Table 4.5: Cascade Controller Parameters

Velocity Loop

Parameter Kp Kd

ẋt 4.786 3.324
ẏt 1.002 0.408

Position Loop

Parameter Kp Ki

xt 0.577 0.103
yt 0.788 0.072
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(b) Pendulum Angle Response

Figure 4.36: Closed Loop Step Response of the Non-Linear Suspended Load and Robot
System, with Virtual Damper and Cascade Control
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4.6 Control Design Motion System

This section will present the control design for the anti-swing system of the full motion
model described by Sec. 4.3. A control system for the 3-dimensional suspended load system
can be established by the methods described by Sec. 4.5, the next step involves extending
the system to include the motion induced by the Stewart platform while compensating for
the swing-angles. Related to the design of such a controller a few assumptions is made for
the full motion system.

� The Comau robot is considered as a rigid system, where no dynamic is included for
the joint actuation.

� Feedback of the tool-point position and velocity, together with measurements of the
wire length and the suspended load's Euler-angles and velocity are considered to be
available.

� Dynamics related to the wire length is not considered in this section, where this
problem is assumed to be solvable by an independent controller.

� Measurements of the Stewart platform's relative position and velocity are assumed
to be available.

Combining the motion of the Stewart platform with the Comau robot will give a system
where the tool-point motion is governed by both the robot joints and the relative motion
of the platform. Which leads to an expression of the tool-point motion given relative to
the neutral frame of the platform, see Sec. 3.3 for a detailed formulation.

Related to the control design, the tool-point motion relative to the robot base is desired
to act as the input to the system. Hence the combined model of the Stewart platform
and Comau robot (Fig. 4.14), is combined with the robot's inverse kinematics (Fig. 4.4a).
The resulting system is shown in Fig. 4.37, where the input is the tool-point motion given
relative to the robot base, and the system output is the wave induced tool-point motion,
given relative to the neutral frame of the platform.

Figure 4.37: System Model of the Comau Robot Kinematics with Stewart Platform Motion

The system used for the 3-dimensional suspended load/pendulum is equivalent to the
previously presented system given by Fig. 4.9, where the motion of the 3-dimensional
suspended load is directly in�uenced by the motion of the tool-point and the length of the
wire.
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4.6.1 Non-Linear System Plant

The non-linear plant for the full motion system, involves the relative motion of the Stewart
platform (Sec. 3.3.2), motion kinematics of the Comau robot (Sec. 3.3.3), information of
the wire length and related wire rate, as well as the dynamics of the suspended load (Sec.
3.2.2). The aim for the control design, is to develop a system capable of compensating
for the Euler-angles of the pendulum, by actuation the robot's tool-point, relative to its
respective base frame.

The non-linear system describing the full motion system can be identi�ed as a MIMO
system, where the state-vector is de�ned as.

x =



η
v
v̇
P rt
Ṗ rt
P̈ rt
Lw
L̇w
φ

φ̇

φ̈



(4.77)

and the input vector is given by.

u =

[
P̈ rt
Lw

]
(4.78)

Where:

x - State vector x(t) ∈ R35

u - Input vector u(t) ∈ R4

η - Stewart platform orientation η(t) ∈ R6

v - Stewart platform velocity v(t) ∈ R6

v̇ - Stewart platform acceleration v̇(t) ∈ R6

P rt - Tool-point position Pt(t) ∈ R3

Ṗ rt - Tool-point velocity Ṗt(t) ∈ R3

P̈t - Tool-point acceleration P̈t(t) ∈ R3

Lw - Wire length Lw(t) ∈ R
L̇w - Wire length rate L̇w(t) ∈ R
φ - Pendulum Euler-angles φ(t) ∈ R2

φ̇ - Pendulum Euler-angular velocity φ̇ ∈ R2

As stated by the assumptions, the orientation and velocity of the Stewart platform are
considered to be measurable. In a physical implementation, these are obtained from MRU
measurements. The feedback of the tool-point position and velocity are also considered to
be available, where the values are given relative to the robot base frame.
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Information of the wire length is assumed to be obtainable, typically as a feedback signal
from the winch. The Euler-angles and related velocities are considered to be measurable.
This data recording is assumed to be achievable by employing a vision system, capable of
tracking the suspended load, for example by the motion-capture system installed in the
motion-lab (Sec. 2.1.5) or by a camera system as illustrated in Fig. 3.8. The Euler-angles
can then be computed by the approach described by Sec. 3.3.5

The describing equations for the non-linear motion system can be derived as follows.

ẋ = f(x, u) =



J(η)v
v̇
0

Ṗ rt
P̈ rt
0

L̇w
0

φ̇

φ̈
0



(4.79)

y = h(x) =



η
v
P rt
Ṗ rt
Lw
φ

φ̇


(4.80)

Where the ship Jacobian J(η) is calculated by Eq. 3.67. φ̈ = [φ̈α , φ̈β] are derived from the
equations of motion (Eq. 3.56 and Eq. 3.57), using the updated tool-point acceleration
given relative to the Stewart platform, see Eq. 3.82.

4.6.2 Extended Kalman Filter Estimator

To estimate the states of the full motion system, an Extended Kalman Filter is imple-
mented. The non-linear estimator is designed based on the theory presented by Sec. 3.4.11,
where the state-transition function f(x, u) are directly derived from Eq. 4.79, and Eq. 4.80
is used as the measurement function. The related Jacobian matrices F (x, u) and H(x) are
computed as described by Eq. 3.166 and Eq. 3.167.

Value of the covariance matrices for initial states P , process noise Q and measurement
noise R, are found by an empirical approach to yield a satisfactory estimate of the system
states. The numerical values for these matrices are listed in Tab. 4.6, where each element
of the same state has been assigned the same value.
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Table 4.6: Numerical Values of the Covariance Matrices

State Covariance P Covariance Q Covariance R

η 0.0012 0.0012 0.012

v 0.0012 0.052 0.012

v̇ 0.0012 0.052 0.0012

P rt 0.0012 0.052 0.0012

Ṗ rt 0.0012 0.052 0.0012

P̈ rt 0.0012 0.052 0.0012

Lw 0.0012 0.0012 0.0012

L̇w 0.0012 0.052 0.0012

φ 0.0012 0.052 0.12

φ̇ 0.0012 0.12 0.12

φ̈ 0.0012 0.12 0.0012

To mimic a physical implementation, some white Gaussian noise has been added to mea-
surements of the platform motion and the suspended load's Euler-angles. Fig. 4.38 and
Fig. 4.39 visualizes the performance of the Extended Kalman Filter. For these plots, a
sinusoidal wave signal has been assigned as input to each of the elements of the platform
orientation vector, η.

Figure 4.38: Noisy Measurements and EKF Estimation of Stewart Platform Orientation
(Relative to Neutral Frame)
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Figure 4.39: Noisy Measurements and EKF Estimation of the Suspended Load's Euler-
Angles

The Matlab script used to derive the state-transition function, measurement function, and
the related Jacobian matrices for the Extended Kalman Filter can be found in App. C.6.

4.6.3 Linear Control

Compensation of the full motion system, involves the design of a controller capable of
actuation of the tool-point while minimizing the swing-angles related to the suspended
load. Compared with the system of the suspended load and robot system (Sec. 4.5),
the full non-linear motion system has an increased number of states (Eq. 4.77) due to
the relative motion induced by the Stewart platform. Also, states of the wire length and
rate have been included. However, none of these additional states will be controllable.
The design of the linear control of the full motion system will be made similar to the
earlier developed controller for the 3-dimensional suspended load system, with only a few
modi�cations. Where the e�ect of the Stewart platform and winch system, will be treated
as plant disturbance.

Hence, the state-vector is given by.

x =


P rt
Ṗ rt
φ

φ̇

 (4.81)

and the input vector is de�ned as.

u = P̈ rt (4.82)
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The describing system equations used to design the linear control, equals to Eq. 4.43 and
Eq. 4.44.

ẋ = f(x, u) =


Ṗ rt
u

φ̇

φ̈

 (4.83)

y = h(x) =

[
P rt
φ

]
(4.84)

Where φ̈ = [φ̈α , φ̈β] are computed using the equations of motion (Eq. 3.56 and Eq.
3.57) with the updated tool-point acceleration, given relative to the Stewart platform (Eq.
3.82). The updated tool-point acceleration requires information of the wire and the Stewart
platform orientation, as well as the related velocity and acceleration. Since there are no
available states for these parameters in the linear control, a simpli�cation is made, where
the wire length is considered to be a constant length of Lw = 2, resulting in L̇w = 0,
and all the values related to the motion of the Stewart platform are de�ned to equal zero
(η = 0, v = 0 , v̇ = 0).

In Sec. 4.5.3 a linearized version of the non-linear suspended load and robot system was
derived, for an equilibrium point de�ned with the pendulum in a downwards position. For
the full system motion the same linearization applies, where the input is set to u0 = 0, and
the equilibrium point equals.

x0 =


P rt
0
0
0

 (4.85)

Calculation of the state-space system matrices, A, B, C, and D evaluated at x0 and u0
can be conducted by using Eq. 4.14 - 4.17.

Integral Control

An integral control, described in Sec. 3.4.7, is chosen as the controller for the full motion
system. The state-feedback will try to keep the suspended load's Euler-angles as small as
possible, and introducing an error state vector, will enable reference tracking for the robot's
tool-point. Similar as for the 3-dimensional suspended load control, only the tool-point
should be designed to have a reference tracking capability. Hence only the �rst rows of the
output vector C, which are related to the tool-point position, should be used in creating
the error states, described by Eq. 3.125. The augmented state equations can be written
as.
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[
ż
ẋ

]
=

[
0 −CP rt
0 A

] [
z
x

]
+

[
0
B

]
u+

[
0
1

]
r (4.86)

y =
[
0 C

] [z
x

]
(4.87)

Where z is the error state, and CP rt corresponds to the �rst rows of the output vector,
which are related to the output of the tool-point position P rt . The feedback law is given
by.

u = −Kox+Kez

= −
[
−Ke Ko

] [z
x

]
= −K

[
z
x

]
(4.88)

Where the feedback gain K for the full motion system is computed by using the method
of LQR (Sec. 3.4.5). The weighting matrices for the system state Qi and for the control
e�ort Ri, is given by.

Qi =


Qi,z 0 0 0 0

0 Qi,Pt 0 0 0
0 0 Qi,Ṗt 0 0

0 0 0 Qi,φ 0
0 0 0 0 Qi,φ̇

 (4.89)

Ri =
[
1 1 1

]
(4.90)

where the elements of the weight matrix Qi are given by the following diagonal matrices.

Qi,z = diag
( [

103 103 103
] )

Qi,Pt = diag
( [

103 103 103
] )

Qi,Ṗt = diag
( [

102 102 102
] )

Qi,φ = diag
( [

104 104
] )

Qi,φ̇ = diag
( [

103 103
] )

(4.91)

102



CHAPTER 4. METHOD 4.6. CONTROL DESIGN MOTION SYSTEM

The elements of the feedback gainK, de�ned asK = [−KeKo], are calculated and contains
the following numerical values.

−Ke =

100.00 0 0
0 100.00 0
0 0 100.00


Ko =

[
104.4420 0.0003 0.1450 49.5407 0.0002 0.1216 −26.4862 −46.2177 24.6617 43.0347
0.0003 104.4420 −0.1538 0.0002 49.5407 −0.1290 46.2177 −26.4863 −43.0343 25.6623
0.1450 −0.1538 63.3342 0.1216 −0.1290 15.0564 −0.2664 −0.0639 0.2480 0.0595

]

A closed-loop step response is simulated on the system with the state-feedback integral
control. The motion of the Stewart platform is set to η = 0 for this test, and the wire
length is Lw = 2.0. Since the tool-point is now directly related to the robot kinematics,
initial values of the position are equal to the robot's home position, found in Tab. 4.12. A
step of 0.4 [m] is used as input to each axis. Fig. 4.40a shows the response of the tool-point
position, Fig. 4.40b gives the response of the pendulum Euler-angles, and Fig. 4.40c shows
the pendulum position relative to the world coordinate frame.
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Figure 4.40: Closed Loop Step Response of the Non-Linear Motion System, with State-
Feedback Integral Control
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The Simulink model of the full non-linear motion system with a state-feedback integral
control and Extended Kalman Filter can be seen in Fig. 4.41.

Figure 4.41: Simulink Model of the Non-Linear Motion System, with State-Feedback In-
tegral Control

The Matlab script used to derive the state-feedback integral controller for the motion
system is available in App. C.6.
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5 Results

In this chapter, the simulation results for developed system models and controller designs
will be presented. Here, analyses of di�erent scenarios with di�erent testing parameters
are conducted, and a comparison of the systems' performances are made.

5.1 Simulation Inputs

This section will brie�y present the di�erent input and reference signals used to test the
performance of the developed simulation models and anti-swing controllers. A set of di�er-
ent scenarios are conducted for the tool-point reference and initial position of the suspended
load. The generated wave trajectory used to simulated the motion of the Stewart platform
will also be presented.

5.1.1 Suspended Load Initial Euler-Angles

The developed simulation models are designed such that the initial values of the suspended
load's Euler-angles are required. The simulation results presented in this chapter will
consider two di�erent scenarios. One, where the suspended load/pendulum is considered
to start in a downwards position, i.e., the values of the initial Euler-angles equals zero.
The second scenario will initiate the system with a set of o�set angles. The two scenarios
are presented by Tab. 5.1 and Tab 5.2.

Table 5.1: Suspended Load Initial Euler-Angles, Downwards Position

Coordinate Value Unit

φα 0.0 [deg]
φβ 0.0 [deg]

Table 5.2: Suspended Load Initial Euler-Angles, O�set Position

Coordinate Value Unit

φα 15.0 [deg]
φβ 20.0 [deg]
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5.1.2 Robot Tool-Point Motion

Three cases are designed as input signals for the position of the reference tracking of the
tool-point position. The developed control systems are designed such that the reference
signal, should be given relative to the base frame of the robot, P rt .

Home-Position

The �rst scenario considers the robot in a home-position con�guration, i.e., no additional
position motion is used as input to the robot's tool-point. The home position of the robot,
relative to the robot base frame (P rt ) is obtained from Tab. 4.3, and can be presented as.

Table 5.3: Robot Tool-Point in Home Position Con�guration

Coordinate Value Unit

xrt 2.619 [m]
yrt 0.0 [m]
zrt 2.240 [m]

Sequence of Step-Input

The second scenario considers a sequence of step signals as a reference input to the tool-
point motion. This scenario makes use of the home-position con�guration as initial values,
and a set of di�erent step inputs are sent to each coordinate of the tool-point position.
The plot of this reference signal is shown in Fig. 5.1.
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Figure 5.1: Tool-Point Reference Signal, Sequence of Step-Input
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Sinusoidal Input

The �nal scenario for the tool-point's reference signal, involves the use of a sinusoidal input
signal to each coordinate of P rt . These signals are described by Eq. 5.1, where Tab. 5.4
lists the trajectory parameters. The related plot of the sinusoidal reference signal is shown
in Fig. 5.2

y = A sin(2πft) +B (5.1)

Where:

y - Sinusoidal reference signal [m]
A - Amplitude [m]
f - Frequency [Hz]
t - Time [s]
B - Home position bias [m]

Table 5.4: Sinusoidal Reference Trajectory for the Tool-Point Position P rt

Parameter Amplitude A [m] Frequency f [Hz] Home-Position B [m]

xrt 0.5 0.07 2.619
yrt 0.3 0.09 0
zrt 0.25 0.15 2.240
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Figure 5.2: Tool-Point Reference Signal, Sinusoidal Input
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5.1.3 Stewart Motion

The generated wave motion, simulated by the Stewart platform, is governed by the orien-
tation vector η. For the simulation experiments, the wave trajectory data of Tab. 4.4 is
used. A plot of the trajectory can be seen in Fig. 5.3.
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Figure 5.3: Simulated Wave Motion by Stewart Platform

5.1.4 Wire Length

The simulation of the full motion system requires an input value for the wire length.
In this thesis, no control system is made for the wire, but the wire length has a direct
in�uence on the suspended load dynamics. For the simulation test, two di�erent scenarios
are considered. For most of the simulation experiments, a constant wire length of Lw = 2.0
is used. A second scenario uses a sinusoidal signal for the length of the wire, where the
signal is given by.

Lw = 0.75 sin(2π0.05) + 2 (5.2)
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5.2 Simulation Results Suspended Load

In Sec. 4.5 di�erent control system were designed for the 3-dimensional suspended load
and robot system. This section will present and compare the simulation results of these
control designs. In this model, the suspended load is considered to be attached to the
robot's tool-point via a constant wire length of Lw = 2.0 [m], and an Extended Kalman
Filter is developed to estimate the system states.

A combination of scenarios is designed to test the performance of the derived control
systems, where simulation experiments are initiated with di�erent con�gurations of initial
values and signal inputs. Tab. 5.5 describes these scenarios.

Table 5.5: Simulation Scenarios of the 3D Pendulum

Scenario Tool-Point Pendulum Wire
Number Reference Position Length

1 Home Position O�set Lw = 2
2 Step-Input Downwards Lw = 2
3 Sinusoidal Downwards Lw = 2
2 Step-Input O�set Lw = 6

The abbreviations used for the upcoming result plots are listed in Tab. 5.6. It should
also be noted that no response of the zt coordinate is available for the non-linear control
system, as described by Sec. 4.5.5.

Table 5.6: Abbreviations used to describe the 3D Pendulum Results

Description Abbreviation

Reference ref
State-Feedback Pre-Filter Control FPF
State-Feedback Integral Control IC
Non-Linear Control NL

5.2.1 Scenario 1

The �rst scenario simulates the 3-dimensional suspended payload with initial angle o�sets.
Here, the tool-point position is given a constant reference input equal to the home position
of the robot. Hence, these simulations will give an indication of the controllers ability to
compensate for the pendulum o�set angles and return to a steady-state. Fig. 5.4a shows
the response of the tool-point position for the di�erent control system, and the angular
response related to the suspended load is given by Fig. 5.4b.
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Figure 5.4: Suspended Load Results for Scenario 1
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5.2.2 Scenario 2

In scenario 2, the suspended load is initialized in a downwards position, and the tool-point
position is given a sequence of step-inputs, as described by Sec. 5.1.2. The simulation
results of the di�erent control systems are presented by Fig. 5.5.
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Figure 5.5: Suspended Load Results for Scenario 2
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5.2.3 Scenario 3

Scenario 3, maintains the downwards con�guration as an initial position for the suspended
load. The tool-point position is now governed by sinusoidal reference input. The related
simulation response is presented by Fig. 5.6.
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Figure 5.6: Suspended Load Results for Scenario 3
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5.2.4 Scenario 4

In scenario 4, the tool-point position is given a sequence of step-inputs as reference signals,
and the suspended load has an angular o�set. In addition to this, a new wire length of
Lw = 6 is introduced to the system. The response of this simulation can be seen in Fig.
5.7.
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Figure 5.7: Suspended Load Results for Scenario 4
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5.3 Simulation Results Motion System

In Sec. 4.3.1 and Sec. 4.6 a simulation model and a control system for the full motion
system was developed. Here, the 3-dimensional suspended load is attached to the tool-point
of the Comau robot, where the base of the robot is experiencing relative motion simulated
by the Stewart platform. An Extended Kalman Filter is designed to estimate the states
of the full system, and a linear state-feedback with integral control is implemented as the
control system.

Testing the performance of the control system, di�erent con�gurations of simulation inputs
and initial values (see Sec. 5.1) are introduced to the system. Tab. 5.7 lists the di�erent
scenarios used to obtain these simulation results.

Table 5.7: Simulation Scenarios of the Full Motion System

Scenario Active Tool-Point Platform Pendulum Wire
Number Controller Reference Motion Position Length

1 Yes Home Position No O�set Lw = 2
2 Yes Step-Inputs No O�set Lw = 2
3 Yes Sinusoidal No Downwards Lw = 2
4 No Home Position Yes Downwards Lw = 2
5 Yes Home Position Yes Downwards Lw = 2
6 Yes Step-Inputs Yes O�set Sinusoidal
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5.3.1 Scenario 1

The �rst scenario simulates the suspended load with an initial o�set con�guration, see Tab.
5.2. The reference input of the tool-point position is to settle at the home-position. Fig.
5.8a shows the response of the tool-point position, and Fig. 5.8b plots the angles related
to the suspended load. The position of the tool-point is given relative to the base frame
of the robot ({br} in Fig. 3.8), which will also be the case for the upcoming simulation
scenarios.
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Figure 5.8: Motion System Results for Scenario 1

116



CHAPTER 5. RESULTS 5.3. SIMULATION RESULTS MOTION SYSTEM

5.3.2 Scenario 2

In Scenario 2, the suspended load is initiated with an o�set position, and the tool-point
position is given a reference trajectory equal to the earlier described scenario of a step-
input sequence (Sec. 5.1.2). The response of the tool-point position with the reference
trajectory can be seen in Fig. 5.9a, and the response of the pendulum angles is given in
Fig. 5.9b.
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Figure 5.9: Motion System Results for Scenario 2
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5.3.3 Scenario 3

Scenario 3, starts with the pendulum at rest, in a downwards position. A sinusoidal
reference signal is given to the tool-point position, as described in Sec. 5.1.2. The response
of the tool-point position and the suspended load's angles are presented by Fig. 5.10a and
Fig. 5.10b, respectively.
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Figure 5.10: Motion System Results for Scenario 3
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5.3.4 Scenario 4

In scenario 4, the Stewart platform motion is enabled, and no control system is active.
This test will serve as a benchmark, for the future simulation results. Here the suspended
load, starting in a downwards position, is disturbed by the generated wave motion. Fig.
5.11a shows the response of the angle associated with the suspended load and Fig. 5.11b
shows the position of the suspended load, relative to the world coordinate frame.
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Figure 5.11: Motion System Results for Scenario 4
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5.3.5 Scenario 5

Scenario 5, resembles the previous scenario. The Stewart platform motion is enabled,
and the suspended payload starts in a downwards position. Now the control system is
activated, where it aims to reduce the swing-angle shown in Fig. 5.11a, and the reference
signal for the tool-point is set for the home position. Fig. 5.12a shows the response of the
tool-point position, the angular response of the suspended load is given by Fig. 5.12b, and
the suspended load position relative to the world coordinate frame is shown in Fig. 5.12c.
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Figure 5.12: Motion System Results for Scenario 5

5.3.6 Scenario 6

Fig. 5.13, shows the response of the scenario where the tool-point position is given a set
of step-inputs, and the load is initiated with an o�set position. The motion of the Stewart
platform is active, and a sinusoidal input is given to the wire length (Sec. 5.1.4).
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Figure 5.13: Motion System Results for Scenario 6
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6 Discussion

In this chapter, the most signi�cant methods and results are compared and discussed,
together with suggestions for further work and improvement. The primary objective of this
thesis is to develop an anti-swing system for a suspended load attached to an industrial
robot, which is experiencing a relative motion due to 6-DOF simulated wave motion.

6.1 System Models

Industrial Robot

The modelling of the Comau robot uses the simpli�cation of treating the robot as a rigid
system, which leads to an optimal response when assigned with control values. In a real
scenario, this is not true, where both joint sti�ness and control delay will in�uence the
dynamics of the Comau robot. A suggestion for further work is to conduct an analysis of
the physical robot and implement the dynamics into the model. A possible solution is to
introduce Eq. 6.1, to add a dynamic e�ect on the robot's joints.

q̈ + 2ζrωr q̇ + ω2
rq = Krω

2
rqref (6.1)

where:

q - Joint vector angular position
q̇ - Joint vector angular velocity
q̈ - Joint vector angular acceleration
qref - Joint vector reference position
ωr - Joint vector's natural frequency
ζr - Joint vector's damping ratio

Suspended Load

As described in Sec. 3.2.2, the mathematical model of the suspended load assumes the wire
to be a massless rigid rod. In a physical implementation, this is not true, where the wire
itself will have a mass, which will increase and decrease as the length of the wire varies.
The model can be improved by treating the wire as an evenly distributed mass. Which
is also the case for the payload, which is considered as a point mass, but in reality, this
mass will have a mass moment of inertia. The elongation and de�ection of the wire is a
relatively complex problem to model, hence the simpli�cation of neglecting these features
and treating the wire as a rigid rod. The system of the suspended load is considered as
a frictionless system, which will force the system into an everlasting oscillation if exposed
to an external force. In a real scenario, the air drag and friction between the wire and
tool-point will cause a damping e�ect on the system. These e�ects are small, hence the
simpli�cation of neglecting them, but adding a small friction coe�cient could improve the
resemblance between the model and real-life system.
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6.2 Control System Design

Simple Pendulum System

Implementation of an anti-swing control system for the 2-dimensional simple pendulum
was conducted to compare the estimator performance of a Kalman Filter and an Extended
Kalman Filter. The results of Fig. 4.21 showed that by changing parameters of the system
plant, the Kalman Filter failed to yield a satisfactory estimation of the system states.
Hence the decision was made to use the Extended Kalman Filter for the control design of
the 3-dimensional systems.

Another feature tested on the simple pendulum system was the non-linear controller which
was based on the concept of virtual damping. Here the acceleration input was manipulated
to act as a damping e�ect on the system plant. An adequate anti-swing compensation was
achieved when the system was exposed for a step input. However, a considerably faster
and more robust response was given by both the linear state-feedback with pre-�lter and
by the state-feedback integral controller. An experimental approach was conducted to tune
the non-linear control. Further work with a focus on other tuning methods, could indicate
if this type of controller has the possibility to behave more responsively and robustly.

Suspended Load System

For the 3-dimensional suspended load system, the actuation of the robot tool-point was
included. Here, three di�erent control designs were implemented. Two linear controllers,
which were based on the linearization of the non-linear plant, and one non-linear con-
troller, which used the concept of virtual damping. For the latter, a cascade controller was
implemented to introduce reference tracking of the tool-point. A system identi�cation of
the anti-swing compensation plant were conducted on the system in steady-state, and the
values assigned for the inner and outer loop was obtained via empirical methods. Hence
the control parameters used for the cascade controller were based on the steady-state of
the highly non-linear plant. Further work should be made for the analysis of the virtual
damper, whereby using an experimental tuning approach, the system had a tendency to
become unstable.

Motion System

Implementing the platform motion to the 3-dimensional suspended load and robot system,
introduced several new states to the system, where many of these were uncontrollable.
Hence, consideration was made to treat these new states of the platform motion and
varying wire length as system disturbance. This consideration enabled the suspended load
and robot system's state-feedback integral control to be implemented as a linear controller
for the full motion system.
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6.3 Simulation Results

Measurements of the Swing Angles

Throughout this thesis, position measurements of the suspended load swing angles are
assumed to be available. In a real scenario, these values either has to be measured directly
by a sensor system installed at the connection point between the robot's tool-point and
wire [21], or by an indirect method of measuring the suspended load's position relative
to the Stewart platform. For further work, a measurement system of these angles should
be implemented. The Motion-Lab has several available and relevant types of measuring
equipment, where a laser tracker and marker, or a vision system can be used to both
detect and track the suspended load during operation. Implementation of such a system
will introduce noise to the measurements. Fig. 4.39 illustrates an example of such a
scenario where an Extended Kalman Filter is used to �lter this kind of noise.

Wave Motion

The generated wave motion simulated by the Stewart platform is based upon a set of
sinusoidal signals, as shown by Fig. 5.3. A better approximation for the real behavior of a
stochastic wave motion could be implemented by using Pierson-Moskowitz Spectrum [27].
Measurements of the Stewart platform motion is estimated based on the generated wave
input, which is made as a simpli�cation. Whereas an implementation to the Motion-Lab
or a real vessel con�guration, this data is only available through the measurements of the
MRU, which will contain sensor noise. Fig. 4.38, shows how an Extended Kalman Filter
can �lter this kind of noise, but for further simulations, this noise is not implemented.

Suspended Load System

Multiple scenarios were simulated for the di�erent control designs of the suspended load
and robot system. A recurring result can be seen, where the linear controllers give both
a better compensation of the pendulum angles and a preferred reference tracking of the
tool-point. In the fourth scenario, when the system plant is changed, the non-linear control
is on the verge of instability. A closer look at the overall results of the linear controllers,
shows that the pre-�lter control yields a faster response for the reference tracking, but
integral control yields a superior anti-swing compensation. Since the latter is considered
to be most important, this type of controller is chosen for the full motion system.

Motion System

For the multiple scenarios simulated on the full motion system, the anti-swing system
proves to be both capable of minimizing the swing angles and to adequately follow a
reference signal. For the situation without any control system, presented by the fourth
scenario, it can be seen that the swing angles, and load position has a higher oscillation
frequency and a larger amplitude than for scenario �ve, where the control system is active.
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6.4 Implementation to Motion-Lab

This thesis has presented di�erent control systems capable of minimizing the swing angles,
for scenarios where the industrial robot and suspended load is exposed to wave motion.
However, these results are only based on mathematical models and simulation. Further
work lies in implementing the developed control system to the physical system available in
the Motion-Lab. Instead of using simulated wave trajectories, measurements from MRU
should provide the readings of the relative motion, and a system capable of measuring the
suspended load angles should be developed and implemented.

The controllers used for the system simulations considers the response of the actuator as
in�nite fast. However, for a physical implementation the dynamics of the robot will be
in�uential, hence the response time of a physical controller is expected to be slower than
the presented simulation results.
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7 Conclusion

This thesis addresses the problem of anti-swing compensation for a system consisting of a
suspended load attached to an industrial robot, where the base of the robot is experiencing
wave-induced motion simulated by a motion platform.

Kinematic analysis is performed for the industrial robot, where the robot is simulated
to act as 3-DOF o�shore loader crane. A study of the kinematics and dynamics related
to the 3-dimensional suspended load is investigated, where the Euler-Lagrange equation
derives the equations of motion. Combining the suspended load and the industrial robot,
with the 6-DOF wave motion simulated by the motion platform, yields a full motion
system. Full system kinematics and relative motion are identi�ed, by use of homogeneous
transformations, and derivations of the platform's relative velocities and accelerations.

A set of simulations models, based on the mathematical derivations of the motion systems,
are developed in a Matlab Simulink environment. These models allow for a full simulation
of the combined motion system, where the suspended load is in�uenced by the actuation
of the robot's tool-point, where the base of the robot will experience motion due to change
of platform orientation. The 6-DOF wave motion simulated by the platform is based on a
set of sinusoidal signals. A 3D-animation feature is added to visualize the motion of the
equipment relative to a world coordinate frame.

Several control systems are developed and implemented to the system model of the sus-
pended load and robot system. For the non-linear system plant, only the position of the
robot's tool-point and the swing angles of the 3D pendulum are considered to be mea-
surable. Hence, an Extended Kalman Filter is constructed to estimate the states of the
non-linear system. A state-space linearization is performed on the non-linear system plant,
where a linear approximation of the system is computed around the equilibrium point of
the suspended load in a downwards position. The linearized system is further used to
design the two linear controllers. A state-feedback pre-�lter control is developed, where
the use of the LQR method computes the feedback gain, and a pre-�lter gain is added to
enable reference tracking of the robot's tool-point. A state-feedback integral control is also
developed for the linear plant. Here, additional state-errors are added to the system, where
the feedback and integral gain are computed by the method of LQR. A �nal non-linear
controller was also developed for the suspended load and robot system. This controller is
based on the concept of virtual damping, where the tool-point acceleration was manipu-
lated to give a damping e�ect to the original undamped system. A cascade controller was
implemented to enable reference tracking of the tool-point, where the tuning parameters
were found through an experimental approach. The non-linear control system was merely
implemented to investigate the concept of virtual damping, and to compare the response
with the linear control designs.

Simulation of the suspended load and robot system with the implemented controllers
yielded satisfactory results in anti-swing compensation and tool-point reference tracking.
It was shown that the linear controllers outperformed the non-linear control, in both ref-
erence tracking and swing compensation. A closer analysis revealed the pre-�lter control
as preferable in terms of reference tracking, but the integral control gave a more robust
compensation of the pendulum angles. It was decided that the latter case was favorable.
Hence this type of integral control was used as a basis for the full motion system.
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CHAPTER 7. CONCLUSION

Combining the suspended load and robot system with the platform motion introduces
several new states to the non-linear system. An Extended Kalman Filter is implemented
as an estimator for the states of the full system with the added platform motion. The
introduction of the new states, results in a system where the state-vector is no longer fully
controllable. With the only available actuation being the motion of the robot's tool-point,
it is not possible to control the states of the relative motion. Compensation of the swing-
angles and enabling reference tracking of the robot's tool-point, is performed by the same
procedure of linearization as for the suspended load and robot system. A linear system
model is constructed of only the robot and suspended load system, where the relative
motion and varying wire length is treated as plant disturbance. The dynamics of the 3D
pendulum is updated to be in�uenced by the tool-point motion relative to the platform
frame, and control of the tool-point is performed relative to the robot base frame. This
design yields a system where it is possible to implement the state-feedback integral control.

Simulation results of the full motion model with the implemented linear state-feedback
integral control show a system capable of reducing the swing motion of the suspended
load. The swing oscillation caused by the relative motion of the platform is decreased
in both frequency and amplitude by activating the designed state-space control system.
Reference tracking of the tool-point position can be achieved with acceptable results while
compensating for the swing-angles of the 3D pendulum.

The work conducted in this master thesis presents a method for developing a simulation
model of a full motion system, where a control system is designed and implemented to act
as an anti-swing system. Simulations results of the motion model yield an overall system
capable of both robotic tool-point reference tracking and reducing the suspended load's
swing-angles, with acceptable performance.
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A Technical Speci�cation

In this appendix the reader will be presented with extra information and speci�cation of
the equipment installed in the motion lab.

A.1 Stewart Platform

A.1.1 E-Motion 8000

Table A.1: E-Motion 8000 - Speci�cation and Capacity [6]

Description Value

Payload capacity [kg] m = 5500
Maximum inertia [kgm2] Ixx = 21274
Maximum inertia [kgm2] Iyy = 24193
Maximum inertia [kgm2] Izz = 28197

Surge [m] −1.110,+1.333
Sway [m] ±1.333
Heave [m] −0.955,+0.885
Roll [deg] ±26.10
Pitch [deg] −25.55,+33.40
Yaw [deg] ±31.10

Surge [m/s] ±0.711
Sway [m/s] ±0.711
Heave [m/s] ±0.610
Roll [deg/s] ±20.0
Pitch [deg/s] ±20.0
Yaw [deg/s] ±20.0

Surge [m/s2] ±0.60
Sway [m/s2] ±0.60
Heave [m/s2] ±0.80
Roll [deg/s2] ±100.0
Pitch [deg/s2] ±100.0
Yaw [deg/s2] ±100.0
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APPENDIX A. TECHNICAL SPECIFICATION A.1. STEWART PLATFORM

A.1.2 E-Motion 1500

Table A.2: E-Motion 1500 - Speci�cation and Capacity [6]

Description Value

Payload capacity [kg] m = 1500
Maximum inertia [kgm2] Ixx = 2023
Maximum inertia [kgm2] Iyy = 3713
Maximum inertia [kgm2] Izz = 3611

Surge [m] −0.602,+0.716
Sway [m] ±0.603
Heave [m] −0.422,+0.407
Roll [deg] ±27.45
Pitch [deg] −24.35,+27.10
Yaw [deg] ±39.20

Surge [m/s] ±0.8
Sway [m/s] ±0.8
Heave [m/s] ±0.6
Roll [deg/s] ±40.0
Pitch [deg/s] ±40.0
Yaw [deg/s] ±40.0

Surge [m/s2] ±0.65
Sway [m/s2] ±0.60
Heave [m/s2] ±0.80
Roll [deg/s2] ±300.0
Pitch [deg/s2] ±300.0
Yaw [deg/s2] ±350.0
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APPENDIX A. TECHNICAL SPECIFICATIONA.2. COMAU INDUSTRIAL ROBOT

A.2 Comau Industrial Robot

Table A.3: Comau Smart 5 NJ 110-3.0 - Technical Speci�cation [9]

Description Value

Number of axes 6
Maximum wrist payload [kg] 110
Additional load on forearm [kg] 50
Maximum horizontal reach [mm] 2980

Torque on axis 4 [Nm] 638
Torque on axis 5 [Nm] 638
Torque on axis 6 [Nm] 314
Stroke (Speed) on Axis 1 [deg/s] ±180
Stroke (Speed) on Axis 2 [deg/s] −75,+95
Stroke (Speed) on Axis 3 [deg/s] −10,−256
Stroke (Speed) on Axis 4 [deg/s] ±280
Stroke (Speed) on Axis 5 [deg/s] ±120
Stroke (Speed) on Axis 6 [deg/s] ±2700
Repeatability [mm] 0.07
Robot weight [kg] 1070
Tool coupling �ange ISO 9409 - A 125
Protection class IP65 / IP67
Mounting position Floor/Ceiling

Operating Areas A [mm] 3460
Operating Areas B [mm] 2980
Operating Areas C [mm] 2642
Operating Areas D [mm] 757
Operating Areas E [mm] 783

The full DH parameter table for the Comau Robot is listed in the table below. The
constructed DH table is corrected for the disparities of the right-hand rotation and default
home position between the provided Comau interface and Fig. 3.1.

Table A.4: Denavit-Hartenberg Table for Comau Robot (6-DOF) without extension arm

Link i θi di ai αi
1 −θ1 d1 a1

π
2

2 π
2 − θ2 0 a2 0

3 θ3 + π
2 + θ2 0 a3

π
2

4 −θ4 d4 0 −π
2

5 −θ5 0 0 π
2

6 π − θ6 d6 0 0

A - 3
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B Maple Scripts

In this appendix, the Maple script used to derive the equation of motion for the 3-
dimensional suspended load is presented.
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(1.1)(1.1)

(1)(1)

> > 

> > 

Suspended Load Kinematics

"Kinematics"
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(1.1)(1.1)

(2.1.1)(2.1.1)

> > 

(2.3)(2.3)

> > 

(2.1)(2.1)

> > 

(2.2)(2.2)

> > 

Lagrangian

"Kinetic Energy"

"Potential Energy"

"Lagrangian"

Euler Lagrange
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(1.1)(1.1)

(2.1.1)(2.1.1)

> > 
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(1.1)(1.1)

(2.1.1)(2.1.1)

> > 
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(1.1)(1.1)

(2.1.2)(2.1.2)

(2.1.1)(2.1.1)

> > 

> > 

> > 

(2.1.3)(2.1.3)

> > 

1
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C Matlab Scripts

C.1 Robot Model

This section will present the Matlab scripts related to the modelling of the Comau industrial
robot.

C.1.1 Forward Kinematics - Symbolic Derivation

The following script is used to derive the symbolic governing equations for the forward
kinematics.

1 %% Symbolic derivation of the Forward Kinematics
2 % This script is used to derive the governing equation for the
3 % forward kinematic of the Comau Robot
4

5 % Symbolic variables and Dimensions
6 syms q1 q2 q3
7 syms q1_t q2_t q3_t
8 syms q1_tt q2_tt q3_tt
9 syms d1 a1 a2 a3 L

10

11 % Variable Definitions
12 q = [q1; q2; q3];
13 q_t = [q1_t; q2_t; q3_t];
14 q_tt = [q1_tt; q2_tt; q3_tt];
15

16 % Constructing the DH-table
17 A1 = DH(-q1, d1, a1, sym(pi)/2);
18 A2 = DH(sym(pi)/2 - q2, 0, a2, 0);
19 A3 = DH(q3 + sym(pi)/2 + q2, 0, a3, sym(pi)/2);
20 A4 = DH(sym(pi), L, 0, 0);
21

22 % Transformation matrix
23 % (Robot base to tool-point {r} -> {t})
24 T04 = A1*A2*A3*A4;
25 T04 = simplify(expand(T04)); % Cleaner expression
26

27 % Rotation matrix
28 Rt = T04(1:3,1:3);
29

30 % Tool-point position
31 Pt = T04(1:3,4);
32

33 % Jacobian matrix
34 J = jacobian(Pt,q);
35

36 % Tool-point velocity
37 Pt_t = J*q_t;
38

39 % Jacobiandot
40 J_t = jacobian(J*q_t,q);
41
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42 % Tool-point acceleration
43 Pt_tt = J_t*q_tt;
44

45 %% Functions
46

47 % Transformation Matrix for Z-rotation
48 function Rz = RotZ(theta)
49 Rz = [cos(theta), -sin(theta), 0, 0;
50 sin(theta), cos(theta), 0, 0;
51 0 , 0 , 1, 0;
52 0 , 0 , 0, 1];
53 end
54

55 % Transformation Matrix for X-rotation
56 function Rx = RotX(alpha)
57 Rx = [1, 0 , 0 , 0;
58 0, cos(alpha), -sin(alpha), 0;
59 0, sin(alpha), cos(alpha) , 0;
60 0, 0 , 0 , 1];
61 end
62

63 % Transformation Matrix for Z-translation
64 function Tz = TransZ(d)
65 Tz = [1, 0, 0, 0;
66 0, 1, 0, 0;
67 0, 0, 1, d;
68 0, 0, 0, 1];
69 end
70

71 % Transformation Matrix for X-translation
72 function Tx = TransX(a)
73 Tx = [1, 0, 0, a;
74 0, 1, 0, 0;
75 0, 0, 1, 0;
76 0, 0, 0, 1];
77 end
78

79 % Denavit-Hartenberg Table Convention
80 function A = DH(theta, d, a, alpha)
81 A = RotZ(theta)*TransZ(d)*TransX(a)*RotX(alpha);
82 end
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C.1.2 Comau Robot System Block

The following script describes the Matlab system block for the Comau Robot, this in-
cludes forward kinematics con�guration, inverse kinematics con�guration and the motion
con�guration, where the latter includes disturbance from the Stewart platform.

1 classdef ComauRobotSystem < matlab.System
2

3 % Calculates the forward or inverse kinematics of the Comau Robot
4 % Calculates the motion of the Comau robot tool-point relative to the
5 % neutral coordinate system of the Stewart Platform.
6 % The Tool-point will be influenced from both the relative motion of
7 % the Stewart Platform and the actuation of the robotic joints
8 %
9 % Forward Kinematics:

10 % Input:
11 % q : Robot joint angular position (vector)
12 % q_t : Robot joint angular velocity (vector)
13 % q_tt : Robot joint angular acceleration (vector)
14 %
15 % Output:
16 % Pt : Tool-point position (vector)
17 % Pt_t : Tool-point velocity (vector)
18 % Pt_tt : Tool-point acceleration (vector)
19 %
20 % Inverse Kinematics:
21 % Input:
22 % Pt : Tool-point position
23 % Pt_t : Tool-point velocity
24 % Pt_tt : Tool-point acceleration
25 % Output:
26 % q : Robot joint angular position (vector)
27 % q_t : Robot joint angular velocity (vector)
28 % q_tt : Robot joint angular acceleration (vector)
29 %
30 % Stewart Motion:
31 % Input:
32 % q : Robot joint angular position (vector)
33 % q_t : Robot joint angular velocity (vector)
34 % q_tt : Robot joint angular acceleration (vector)
35 % eta : Stewart platform position
36 % v : Stewart platform velocity
37 % v_t : Stewart platform acceleration
38 % Output:
39 % Pt : Tool-point position (relative to world coordinate)
40 % Pt_t : Tool-point velocity (relative to world coordinate)
41 % Pt_tt : Tool-point acceleration (relative to world coordinate)
42

43 %% Properties
44

45 % Properties that can be changed during execution
46 properties
47

48 end
49

50 % Properties that can only be changed before execution
51 properties(Nontunable)
52 StringChoice = 'Forward Kinematics'; % Comau Robot Mode
53 end
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54

55 % Properties of the kinematic drop-down menu
56 properties(Hidden, Constant)
57 StringChoiceSet = matlab.system.StringSet({'Forward Kinematics', ...
58 'Inverse Kinematics', 'Stewart Motion'});
59 end
60

61 % Only accessible by class members
62 properties(Access = private)
63 % Static link lengths
64 a1 = 0.350;
65 a2 = 1.160;
66 a3 = 0.250;
67 d1 = 0.830;
68 d4 = 1.4922;
69 d6 = 0.210;
70 dt = 0.567;
71 L;
72

73 % Calibrated transformation matrices
74 Hgn; % World to EM8000 {g} -> {n}
75 Hgq; % World to EM1500 {g} -> {q}
76 Hnq; % EM8000 to EM1500 {n} -> {q}
77 Hbr; % EM8000 to Comau {b} -> {r}
78 end
79

80 %% Methods for Simulink Interface
81

82 methods (Access = protected)
83

84 %% System block input-setup
85

86 % Set number of inputs to the Simulink System object
87 function num_inputs = getNumInputsImpl(obj)
88

89 % Number of inputs to the related mode
90 switch obj.StringChoice
91 case {'Forward Kinematics'}
92 num_inputs = 3;
93 case {'Inverse Kinematics'}
94 num_inputs = 3;
95 case {'Stewart Motion'}
96 num_inputs = 6;
97 end
98 end
99

100 % Set names of the inputs to the Simulink System object
101 function varargout = getInputNamesImpl(obj)
102 n = getNumInputsImpl(obj); % Get number of inputs
103 varargout = cell(1,n); % Define function return vector
104

105 % Set name of the inputs to the related mode
106 switch obj.StringChoice
107 case {'Forward Kinematics'}
108 varargout{1} = 'q'; % Set name of input port 1
109 varargout{2} = 'q_t'; % Set name of input port 2
110 varargout{3} = 'q_tt'; % Set name of input port 3
111 case {'Inverse Kinematics'}
112 varargout{1} = 'P'; % Set name of input port 1
113 varargout{2} = 'P_t'; % Set name of input port 2
114 varargout{3} = 'P_tt'; % Set name of input port 3
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115 case {'Stewart Motion'}
116 varargout{1} = 'q'; % Set name of input port 1
117 varargout{2} = 'q_t'; % Set name of input port 2
118 varargout{3} = 'q_tt'; % Set name of input port 3
119

120 varargout{4} = 'eta'; % Set name of input port 4
121 varargout{5} = 'v'; % Set name of input port 5
122 varargout{6} = 'v_t'; % Set name of input port 6
123 otherwise
124 % Error catch
125 msg = 'ERROR unknown kinematic type is chosen';
126 error(msg);
127 end
128 end
129

130 %% System block output-setup
131

132 % Set number of output ports to the Simulink System object
133 function num_outputs = getNumOutputsImpl(~)
134 num_outputs = 3;
135 end
136

137 % Set names of the output ports to the Simulink System object
138 function varargout = getOutputNamesImpl(obj)
139 n = getNumOutputsImpl(obj); % Get number of outputs
140 varargout = cell(1,n); % Define function return vector
141

142 % Set name of the outputs to the related mode
143 switch obj.StringChoice
144 case {'Forward Kinematics'}
145 varargout{1} = 'Pt'; % Set name of output port 1
146 varargout{2} = 'Pt_t'; % Set name of output port 2
147 varargout{3} = 'Pt_tt'; % Set name of output port 3
148 case {'Inverse Kinematics'}
149 varargout{1} = 'q'; % Set name of output port 1
150 varargout{2} = 'q_t'; % Set name of output port 2
151 varargout{3} = 'q_tt'; % Set name of output port 3
152 case {'Stewart Motion'}
153 varargout{1} = 'Pt'; % Set name of output port 1
154 varargout{2} = 'Pt_t'; % Set name of output port 2
155 varargout{3} = 'Pt_tt'; % Set name of output port 3
156 otherwise
157 % Error catch
158 msg = 'ERROR unknown kinematic type is chosen';
159 error(msg);
160 end
161 end
162

163 %% System output calculation
164

165 % Initialize System object states
166 % (One-time calculations)
167 function setupImpl(obj)
168 % Dimensions
169 obj.L = obj.d4 + obj.d6 + obj.dt;
170

171 % Load calibration data
172 obj.load_calibration();
173 end
174

175 % Reset System object states
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176 function resetImpl(obj)
177

178 end
179

180 % System output and state update equations
181 function varargout = stepImpl(obj, varargin)
182

183 % Switch-statement to determine the mode
184 switch obj.StringChoice
185

186 % Forward Kinematics
187 case {'Forward Kinematics'}
188 % Define inputs:
189 q = varargin{1};
190 q_t = varargin{2};
191 q_tt = varargin{3};
192

193 % Update states
194 [Pt, Pt_t, Pt_tt] = obj.forward(q, q_t, q_tt);
195

196 % Define outputs
197 varargout{1} = Pt;
198 varargout{2} = Pt_t;
199 varargout{3} = Pt_tt;
200

201 % Inverse Kinematics
202 case {'Inverse Kinematics'}
203 % Define inputs:
204 Pt = varargin{1};
205 Pt_t = varargin{2};
206 Pt_tt = varargin{3};
207

208 % Update states
209 [q, q_t, q_tt] = obj.inverse(Pt, Pt_t, Pt_tt);
210

211 % Define outputs
212 varargout{1} = q;
213 varargout{2} = q_t;
214 varargout{3} = q_tt;
215

216 % Motion
217 case {'Stewart Motion'}
218 % Define inputs:
219 q = varargin{1};
220 q_t = varargin{2};
221 q_tt = varargin{3};
222

223 eta = varargin{4};
224 v = varargin{5};
225 v_t = varargin{6};
226

227 % Calculate relative Tool-Point motion
228 % {t}/{n} given in {n}
229 [Pt, Pt_t, Pt_tt] = obj.motion(q, q_t, q_tt, ...
230 eta, v, v_t);
231

232 % Define outputs
233 % (Tool-point relative to Stewart Platform)
234 % {t}/{n} given in {n}
235 varargout{1} = Pt;
236 varargout{2} = Pt_t;
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237 varargout{3} = Pt_tt;
238 end
239 end
240 end
241

242 %% Methods for Matlab interface
243

244 methods
245

246 % Creates an constructor of the ComauRobot class
247 function obj = ComauRobotSystem()
248 obj.L = obj.d4 + obj.d6 + obj.dt; % Horizontal length from
249 % q3 to Tool-point
250 end
251

252 % Forward Kinematics
253 function [Pt, Pt_t, Pt_tt] = forward(obj, q, q_t, q_tt)
254 % Joint angular position
255 q1 = q(1);
256 q2 = q(2);
257 q3 = q(3);
258

259 % Tool-point position (derived by "symbolic_forward")
260 Pt = [
261 -cos(q1)*(obj.L*sin(q3) + cos(q3)*obj.a3 - sin(q2)*obj.a2 - obj.a1);
262 sin(q1)*(obj.L*sin(q3) + cos(q3)*obj.a3 - sin(q2)*obj.a2 - obj.a1);
263 obj.L*cos(q3) - obj.a3*sin(q3) + cos(q2)*obj.a2 + obj.d1
264 ];
265

266 % Tool-point velocity
267 J = obj.jacobian(q);
268 Pt_t = J*q_t;
269

270 % Tool-point acceleration
271 J_t = obj.jacobian_dot(q, q_t);
272 Pt_tt = J_t*q_t + J*q_tt;
273

274 end
275

276 % Inverse Kinematics
277 function [q, q_t, q_tt] = inverse(obj, Pt, Pt_t, Pt_tt)
278

279 Pt = [Pt; 1];
280 % Position components
281 xt = Pt(1);
282 yt = Pt(2);
283 zt = Pt(3);
284

285 % Joint 1 angle
286 q1 = -atan2(yt, xt);
287

288 % Using the method of a Two-link planar robot
289 % to find the last to joint angles
290

291 % Transformation matrix {r -> j2}
292 T1 = math3d.DH(-q1, obj.d1, obj.a1, pi/2);
293 Pq2t = math3d.InvH(T1)*Pt; % TCP given in joint 2 {q2 -> t}
294 xq2t = Pq2t(1);
295 yq2t = Pq2t(2);
296

297 % Geometry calculationsyy
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298 B = sqrt(obj.a3^2 + obj.L^2);
299 C = sqrt(xq2t^2 + yq2t^2);
300 D = (C^2 - obj.a2^2 - B^2) / (2*obj.a2*B);
301

302 alpha = atan2(-sqrt(1-D^2), D); % negative sign: elbow-up
303 phi = atan2(obj.a3, obj.L);
304

305 thetaA = atan2(yq2t, xq2t);
306 thetaB = atan2(B*sin(alpha),obj.a2 + B*cos(alpha));
307

308 % Joint 2 angle
309 q2 = pi/2 - (thetaA - thetaB);
310

311 % Joint 3 angle
312 q3 = alpha - phi - q2;
313

314 % Joint angular position
315 q = [q1; q2; q3];
316

317 % Joint angular velocity
318 J = obj.jacobian(q);
319 q_t = J\Pt_t;
320

321 % Joint angular acceleration
322 J_t = obj.jacobian_dot(q, q_t);
323 q_tt = J\(Pt_tt - J_t*q_t);
324

325 end
326

327 % Calculate the motion of the system
328 % relative to Stewart Platfrom neutral coordinate
329 function [Pt, Pt_t, Pt_tt] = motion(obj, q, q_t, q_tt, ...
330 eta, v, v_t)
331

332 % Body fixed velocity and acceleration skew matrices
333 Sw = math3d.Skew(v(4:6));
334 Sw_t = math3d.Skew(v_t(4:6));
335

336 % Ship/Stewart relative to static csys {n} -> {b}
337 Rnb = math3d.Rzyx(eta(4:6));
338 Rnb_t = Rnb*Sw;
339 Rnb_tt = Rnb*Sw*Sw + Rnb*Sw_t;
340

341 % Constant offset between stewart platform and robot base
342 % {b} -> {r}
343 r = obj.Hbr(1:3,4);
344 Rbr = obj.Hbr(1:3,1:3);
345

346 % Calculate Comau Robot forward kinematics
347 % {r} -> {t}
348 [P, P_t, P_tt] = obj.forward(q, q_t, q_tt);
349

350 % Tool-point position relative to Stewart platform
351 % {t}/{n} given in {n}
352 Pt = eta(1:3) + Rnb*(r + Rbr*P);
353

354 % Tool-point velocity relative to Stewart platform
355 % {t}/{n} given in {n}
356 Pt_t = v(1:3) + Rnb_t*(r + Rbr*P) + Rnb*(Rbr*P_t);
357

358 % Tool-point acceleration relative to Stewart platform
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359 % {t}/{n} given in {n}
360 Pt_tt = v_t(1:3) + Rnb_tt*(r + Rbr*P) ...
361 + 2*Rnb_t*(Rbr*P_t) + Rnb*(Rbr*P_tt);
362 end
363

364 % Jacobian
365 function J = jacobian(obj, q)
366 % Joint angular position
367 q1 = q(1);
368 q2 = q(2);
369 q3 = q(3);
370

371 % Jacobian (derived by "symbolic_forward")
372 J11 = sin(q1)*(obj.L*sin(q3) + cos(q3)*obj.a3 ...
373 - sin(q2)*obj.a2 - obj.a1);
374 J12 = cos(q1)*cos(q2)*obj.a2;
375 J13 = -cos(q1)*(obj.L*cos(q3) - obj.a3*sin(q3));
376

377 J21 = cos(q1)*(obj.L*sin(q3) + cos(q3)*obj.a3 ...
378 - sin(q2)*obj.a2 - obj.a1);
379 J22 = -sin(q1)*cos(q2)*obj.a2;
380 J23 = sin(q1)*(obj.L*cos(q3) - obj.a3*sin(q3));
381

382 J31 = 0;
383 J32 = -sin(q2)*obj.a2;
384 J33 = -obj.L*sin(q3) - cos(q3)*obj.a3;
385

386 J = [J11, J12, J13;
387 J21, J22, J23;
388 J31, J32, J33];
389 end
390

391 % Jacobian time differentiated
392 function J_t = jacobian_dot(obj, q, q_t)
393 % Joint angular position
394 q1 = q(1);
395 q2 = q(2);
396 q3 = q(3);
397

398 % Joint angular velocity
399 q1_t = q_t(1);
400 q2_t = q_t(2);
401 q3_t = q_t(3);
402

403 % Jacobian_dot (derived by "symbolic_forward")
404 J11_t = q1_t*cos(q1)*(obj.L*sin(q3) ...
405 + cos(q3)*obj.a3 - sin(q2)*obj.a2 - obj.a1) ...
406 - q2_t*sin(q1)*cos(q2)*obj.a2 ...
407 + q3_t*sin(q1)*(obj.L*cos(q3) - obj.a3*sin(q3));
408 J12_t = -q1_t*sin(q1)*cos(q2)*obj.a2 ...
409 - q2_t*cos(q1)*sin(q2)*obj.a2;
410 J13_t = q1_t*sin(q1)*(obj.L*cos(q3) - obj.a3*sin(q3)) ...
411 - q3_t*cos(q1)*(-obj.L*sin(q3) - cos(q3)*obj.a3);
412

413 J21_t = -q1_t*sin(q1)*(obj.L*sin(q3) + cos(q3)*obj.a3 ...
414 - sin(q2)*obj.a2 - obj.a1) ...
415 - q2_t*cos(q1)*cos(q2)*obj.a2 ...
416 + q3_t*cos(q1)*(obj.L*cos(q3) - obj.a3*sin(q3));
417 J22_t = -q1_t*cos(q1)*cos(q2)*obj.a2 ...
418 + q2_t*sin(q1)*sin(q2)*obj.a2;
419 J23_t = q1_t*cos(q1)*(obj.L*cos(q3)- obj.a3*sin(q3)) ...
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420 + q3_t*sin(q1)*(-obj.L*sin(q3) - cos(q3)*obj.a3);
421

422 J31_t = 0;
423 J32_t = -q2_t*cos(q2)*obj.a2;
424 J33_t = q3_t*(-obj.L*cos(q3) + obj.a3*sin(q3));
425

426 J_t = [J11_t, J12_t, J13_t;
427 J21_t, J22_t, J23_t;
428 J31_t, J32_t, J33_t];
429 end
430

431 function load_calibration(obj)
432 % Load in calibration structure
433 motionlab = load('calib.mat');
434

435 % Transformation matrices found from calibration
436 obj.Hgn = motionlab.calib.WORLD_TO_EM8000.H; % {g} -> {n}
437 obj.Hgq = motionlab.calib.WORLD_TO_EM1500.H; % {g} -> {q}
438 obj.Hbr = motionlab.calib.EM8000_TO_COMAU.H; % {b} -> {r}
439 end
440 end
441 end
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C.2 Suspended Load System

This section introduces the Matlab scripts used to model the motion of the suspended load
system, also known as the pendulum. This includes the scripts of pendulum dynamics and
kinematics.

C.2.1 Pendulum Dynamics

1 function phi_tt = pendulumDynamics(Pt_tt, L, L_t, phi, phi_t)
2 % Calculates the dynamics of the suspended load
3 % Derives the differential equation for the euler angles
4 %
5 % Input:
6 % Pt_tt : Tool-point acceleration
7 % phi : Pendulum Angular position euler angles
8 % phit_t : Pendulum Angular velocity euler angles
9 % L : Wire length

10 % L_t : Wire velocity
11 %
12 % Output :
13 % phit_t : Pendulum Angular acceleration euler angles
14

15 % Parameters
16 g = 9.81; % Gravity
17

18 % Tool-point acceleration components
19 xt_tt = Pt_tt(1);
20 yt_tt = Pt_tt(2);
21 zt_tt = Pt_tt(3);
22

23 % Pendulum euler angles (angular position)
24 phix = phi(1);
25 phiy = phi(2);
26

27 % Pendulum euler angles (angular velocity)
28 phix_t = phi_t(1);
29 phiy_t = phi_t(2);
30

31 % Pendulum ODE of the euler angles
32 % (found from euler-lagrange equation,
33 % derived by the use of Maple)
34 phix_tt = (xt_tt*cos(phix) + yt_tt*sin(phix)*sin(phiy) ...
35 - zt_tt*sin(phix)*cos(phiy) ...
36 - g*sin(phix)*cos(phiy) ...
37 - 2*L_t*phix_t ...
38 - L*phiy_t^2*sin(phix)*cos(phix)) / L;
39

40 phiy_tt = (- yt_tt*cos(phiy) - zt_tt*sin(phiy) ...
41 - g*sin(phiy) + 2*L_t*phiy_t*cos(phix) ...
42 + 2*L*phix_t*phiy_t*sin(phix)) ...
43 / (L*cos(phix));
44

45 phi_tt = [phix_tt; phiy_tt];

C - 11



APPENDIX C. MATLAB SCRIPTS C.2. SUSPENDED LOAD SYSTEM

C.2.2 Pendulum Kinematics

1 function Pp = pendulumKinematics(Pt, phi, L)
2 % Calculates the kinematics of the suspended load
3

4 % Input:
5 % Pt_tt : Tool-point position
6 % phi : Pendulum Angular position euler angles
7 % L : Wire length
8

9

10 % Tool-point position
11 xt = Pt(1);
12 yt = Pt(2);
13 zt = Pt(3);
14

15 % Pendulum euler angles
16 phix = phi(1);
17 phiy = phi(2);
18

19 % Pendulum position
20 xp = xt - L*sin(phix);
21 yp = yt + L*cos(phix)*sin(phiy);
22 zp = zt - L*cos(phix)*cos(phiy);
23

24 Pp = [xp; yp; zp];
25 end
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C.3 Stewart Platform Motion

1 function [eta, v, v_t] = stewartMotion(eta, eta_t, eta_tt)
2 % Calculate the relative Velocity and Acceleration component
3 % of the Stewart platform
4 %
5 % Input:
6 % eta : Orientation of {b} -> {n}
7 % eta_t : Velocity of {b} -> {n}
8 % eta_tt : Acceleration of {b} -> {n}
9 %

10 % Output:
11 % eta : Orientation of {b} -> {n}
12 % v : Body fixed velocity {n}/{b} given in {b}
13 % v_t : Body fixed acceleration {n}/{b} given in {b}
14

15 % s : Angle Sequence
16 % ('zyx' is used for simulation)
17 % ('xyz' is used when motion data is obtained from MRU)
18 s = 'zyx';
19

20 % Velocity
21 J = vJacobian(eta, s);
22 v = J\eta_t;
23

24 % Acceleration
25 J_t = aJacobian(eta, eta_t, s);
26 v_t = J\(eta_tt - J_t*v);
27

28 end
29

30 function J = vJacobian(eta, s)
31 phi = eta(4);
32 theta = eta(5);
33 psi = eta(6);
34

35 if strcmp(s, 'xyz')
36 T11 = cos(psi)/cos(theta);
37 T12 = -sin(psi)/cos(theta);
38 T13 = 0;
39

40 T21 = sin(psi);
41 T22 = cos(psi);
42 T23 = 0;
43

44 T31 = -(cos(psi)*sin(theta))/cos(theta);
45 T32 = (sin(psi)*sin(theta))/cos(theta);
46 T33 = 1;
47

48 T = [T11, T12, T13;
49 T21, T22, T23;
50 T31, T32, T33];
51

52 J = [eye(3), zeros(3);
53 zeros(3), T];
54

55 elseif strcmp(s, 'zyx')
56 T11 = 1;
57 T12 = (sin(phi)*sin(theta))/cos(theta);

C - 13



APPENDIX C. MATLAB SCRIPTS C.3. STEWART PLATFORM MOTION

58 T13 = (cos(phi)*sin(theta))/cos(theta);
59

60 T21 = 0;
61 T22 = cos(phi);
62 T23 = -sin(phi);
63

64 T31 = 0;
65 T32 = sin(phi)/cos(theta);
66 T33 = cos(phi)/cos(theta);
67

68 T = [T11, T12, T13;
69 T21, T22, T23;
70 T31, T32, T33];
71

72 J = [eye(3), zeros(3);
73 zeros(3), T];
74 end
75 end
76

77 function J_t = aJacobian(eta, eta_t, s)
78 phi = eta(4);
79 theta = eta(5);
80 psi = eta(6);
81

82 phi_t = eta_t(4);
83 theta_t = eta_t(5);
84 psi_t = eta_t(6);
85

86 if strcmp(s, 'xyz')
87

88 T11 = (cos(psi)*sin(theta)*theta_t ...
89 - cos(theta)*sin(psi)*psi_t)/cos(theta)^2;
90 T12 = -(cos(theta)*cos(psi)*psi_t ...
91 + sin(theta)*sin(psi)*theta_t)/cos(theta)^2;
92 T13 = 0;
93

94 T21 = cos(psi)*psi_t;
95 T22 = -sin(psi)*psi_t;
96 T23 = 0;
97

98 T31 = -(cos(psi)*theta_t ...
99 - cos(theta)*sin(theta)*sin(psi)*psi_t)/cos(theta)^2;

100 T32 = (sin(psi)*theta_t ...
101 + cos(theta)*cos(psi)*sin(theta)*psi_t)/cos(theta)^2;
102 T33 = 0;
103

104 T = [T11, T12, T13;
105 T21, T22, T23;
106 T31, T32, T33];
107

108 J_t = [zeros(3), zeros(3);
109 zeros(3), T];
110

111 elseif strcmp(s, 'zyx')
112

113 T11 = 0;
114 T12 = (sin(phi)*theta_t ...
115 + cos(phi)*cos(theta)*sin(theta)*phi_t)/cos(theta)^2;
116 T13 = (cos(phi)*theta_t ...
117 - cos(theta)*sin(phi)*sin(theta)*phi_t)/cos(theta)^2;
118
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119 T21 = 0;
120 T22 = -sin(phi)*phi_t;
121 T23 = -cos(phi)*phi_t;
122

123 T31 = 0;
124 T32 = (cos(phi)*cos(theta)*phi_t ...
125 + sin(phi)*sin(theta)*theta_t)/cos(theta)^2;
126 T33 = -(cos(theta)*sin(phi)*phi_t ...
127 - cos(phi)*sin(theta)*theta_t)/cos(theta)^2;
128 T = [T11, T12, T13;
129 T21, T22, T23;
130 T31, T32, T33];
131

132 J_t = [zeros(3), zeros(3);
133 zeros(3), T];
134 end
135 end
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C.4 Control System Simple Pendulum

This section will include the Matlab scripts used for the development the controllers related
the 2D pendulum system

C.4.1 Extended Kalman Filter Estimator

1 function f = f_simulink(x,u)
2 % State-transition function for the Extended Kalman Filter
3 % related to the 2D Pendulum system
4

5 % Declaring system constants
6 dt = 1e-3; % Sample time [s]
7 g = 9.81; % Gravity [m/s^2]
8 L = 2.0; % Wire length [m]
9

10 % State vector
11 % x(1) : x
12 % x(2) : x_t
13 % x(3) : theta
14 % x(4) : theta_t
15

16 f = [x(1) + x(2)*dt;
17 x(2) + u*dt;
18 x(3) + x(4)*dt;
19 x(4) + (-g*sin(x(3)) - cos(x(3))*u)*dt/L];
20 end

1 function h = h_simulink(x)
2 % Measurement function for the Extended Kalman Filter
3 % related to the 2D Pendulum system
4

5 % State vector
6 % x(1) : x
7 % x(2) : x_t
8 % x(3) : theta
9 % x(4) : theta_t

10

11 h = [x(1), x(3)];
12 end
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C.4.2 Pendulum 2D Linear Control

1 %% Linear Control for the 2D Pendulum System
2 % This script contain the derivation of the linearized model,
3 % design of the Kalman Filter Estimator and the Extended Kalman Filter
4 % aswell as the controller schemes for the state-feedback pre-filter
5 % control, and the state-feedback integral control
6

7 clear all;
8 close all;
9 clc;

10

11 %% Initial Values
12

13 % Constants
14 dt = 1e-3; % Time step
15 L = 2.0; % Wire length
16 g = 9.81; % Gravity [m/s^2]
17

18 % Initial values
19 x_init = 0;
20 x_t_init = 0;
21 theta_init = 0*pi/180;
22 theta_t_init = 0;
23

24 %% Symbolic
25

26 % Parameters
27 % syms g L 'real'
28

29 x = sym('x', [4,1], 'real');
30 u = sym('u', 'real');
31

32 % State vector
33 xt = x(1);
34 xt_t = x(2);
35 theta = x(3);
36 theta_t = x(4);
37

38 % Input vector
39 xt_tt = u;
40

41 % Non-linear function of system ODE
42 % x_t = f(x,u)
43 f = [xt_t;
44 u;
45 theta_t;
46 (-g*sin(theta) - cos(theta)*xt_tt)/L];
47

48 % Non-linear function
49 % y = h(x,u)
50 h = [xt, theta];
51

52 % State-space
53 A_sym = jacobian(f, x);
54 B_sym = jacobian(f, u);
55 C_sym = jacobian(h, x);
56 D_sym = jacobian(h, u);
57
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58 % Equilibrium point
59 u0 = 0;
60 x0 = [0; 0; 0; 0];
61

62 % Update the Matrices
63 % with the linearization around at equilibrium states
64 A_sym = subs(A_sym, [x,u],[x0,u]);
65

66 A_sym = subs(A_sym, [x,u],[x0,u]);
67 B_sym = subs(B_sym, [x,u],[x0,u]);
68 C_sym = subs(C_sym, [x,u],[x0,u]);
69 D_sym = subs(D_sym, [x,u],[x0,u]);
70

71

72 %% Simulink State-space
73

74 % Update the symoblic Matrices with constant values
75 % and create numeric Matrices
76 A = double(subs(A_sym));
77 B = double(subs(B_sym));
78 C = double(subs(C_sym));
79 D = double(subs(D_sym));
80

81 % C = C(1:2:3,:) % Removing zero row entries
82 % State space system
83 G = ss(A,B,C,D);
84

85 Ob = obsv(G);
86 Cr = ctrb(G);
87 rank(Cr);
88 rank(Ob);
89

90 % Step response
91 % figure(1)
92 % step(G)
93

94 %% Estimator Design
95 % Covariance matrices
96 P = 1e-3; % Initial state covariance
97 Q = diag([0, 0.001^2, 0.01^2, 0.01^2]); % Process noise covariance
98 R = diag([0.001^2, 0.01^2]); % Measurement noise covariance
99

100 %% State-Feedback gain
101 % Weighting factor
102 w = 10;
103

104 % Weight matrix for the states
105 Q_LQR = diag([10*w, 10*w, 1000*w, 10*w]);
106

107 % Weight matrix for the control
108 R_LQR = 1;
109

110 % LQR feedback gain
111 K = lqr(A,B,Q_LQR, R_LQR);
112

113 % New State-space model
114 Ar = A - B*K;
115

116 F = ss(Ar, B, C, D);
117 % figure(1)
118 % step(F)
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119

120 %% Pre filter
121 Cm = [1, 0, 0, 0]; % Only direct output from input states
122 N = inv(Cm*inv(B*K - A)*B); % Pre-filter constant
123

124 %% Integral control
125 Ai = [zeros(size(Cm,1)), -Cm;
126 zeros(size(A,1), size(Cm,1)), A];
127 Ai_old = [zeros(size(Cm,1)), Cm;
128 zeros(size(A,1), size(Cm,1)), A];
129 Bi = [zeros(size(Cm,1), size(B,2)); B];
130 Ci = [zeros(size(Cm,1)), Cm];
131 Di = zeros(size(Cm,1),size(Bi,2));
132

133 % Weight matrix for the states
134 % width additional error state(s)
135 Q_LQR = diag([100*w, 100*w, 10*w, 10000*w, 10*w]);
136

137 % Weight matrix for the control
138 R_LQR = 1;
139

140 % Calculating gains
141 KI = lqr(Ai, Bi, Q_LQR, R_LQR);
142 Ke = -KI(1);
143 Ko = KI(2:5);
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C.5 Control System Suspended Load

This section introduces the Matlab scripts used to derive the functions related to the design
of the Extended Kalman Filter and the di�erent control systems used in the anti-swing
control of the suspended load and robot system.

C.5.1 Extended Kalman Filter Estimator

1 % Preamble
2 clear all;
3 close all;
4 clc;
5

6 % This script computes the state-transition, measurement function,
7 % and the related Jacobian matrices for the Extended Kalman Filter
8 % used for the state estimation of the 3D pendulum system
9

10 %% Symbolic Derivation
11

12 % Parameters
13 syms dt 'real' % Time step
14 x = sym('x', [10,1], 'real'); % State vector
15 u = sym('u', [3,1], 'real'); % Input vector
16

17 % Constants
18 L = 2.0; % Wire length [m]
19 L_t = 0; % Wire length rate [m/s]
20 g = 9.81; % Gravity [m/s^2]
21

22 % State vector
23 pt = x(1:3);
24 pt_t = x(4:6);
25 phi = x(7:8);
26 phi_t = x(9:10);
27

28 % Input vector
29 pt_tt = u(1:3);
30

31 % System ode
32 x_t = [pt_t;
33 pt_tt;
34 phi_t;
35 pendulumDynamics(pt_tt, L, L_t, phi, phi_t)];
36

37 % State transition function
38 % x_t = f(x,u)
39 f = x + x_t*dt;
40 f = simplify(f);
41

42 % State transition Jacobian
43 F = jacobian(f,x);
44 F = simplify(F);
45

46 % Measurement function
47 h = [pt;
48 zeros(3,1);
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49 phi;
50 zeros(2,1)];
51 h = simplify(h);
52

53 % Measurement function Jacobian
54 H = jacobian(h,u);
55 H = simplify(H);
56

57 %% Make functions
58 % State transition
59 % matlabFunction(f, 'File', 'f.m', 'Vars', {x, u, dt});
60 % matlabFunction(F, 'File', 'fJacobian.m', 'Vars', {x, u, dt});
61

62 % Measurement
63 matlabFunction(h, 'File', 'h.m', 'Vars', {x});
64 matlabFunction(H, 'File', 'hJacobian.m', 'Vars', {x});
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C.5.2 Pendulum 3D Linear Control

1 %% Linear Control for the 3D Pendulum System
2 % This scripts contains the derivation of the linarized model
3 % Selection of the Extended Kalman Filter estimator paramters
4 % aswell as different controller schemes
5

6 % Preamble
7 clear all;
8 close all;
9 clc;

10

11 %% Initial values
12

13 % Constants
14 dt = 1e-3; % Time step
15 L = 2.0; % Wire length
16 g = 9.81; % Gravity [m/s^2]
17

18 % Initial values
19 % Position
20 x_init = 2.6192*0;
21 y_init = 0;
22 z_init = 2.24*0;
23

24 phix_init = 0*pi/180;
25 phiy_init = 0*pi/180;
26

27 pt_init = [x_init, y_init, z_init];
28 phi_init = [phix_init, phiy_init];
29

30 % Velocity
31 x_t_init = 0;
32 y_t_init = 0;
33 z_t_init = 0;
34

35 phix_t_init = 0;
36 phiy_t_init = 0;
37

38 pt_t_init = [x_t_init, y_t_init, z_t_init];
39 phi_t_init = [phix_t_init, phiy_t_init];
40

41 init = [pt_init, pt_t_init, phi_init, phi_t_init];
42

43 %% Symbolic Linearization
44 % Parameters
45 x = sym('x', [10,1], 'real'); % State vector
46 u = sym('u', [3,1], 'real'); % Input vector
47

48 % Constants
49 L = 2.0; % Wire length [m]
50 L_t = 0; % Wire length rate [m/s]
51 g = 9.81; % Gravity [m/s^2]
52

53 % State vector
54 pt = x(1:3);
55 pt_t = x(4:6);
56 phi = x(7:8);
57 phi_t = x(9:10);
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58

59 % Input vector
60 pt_tt = u(1:3);
61

62 % Non-linear function of system ODE
63 % x_t = f(x,u)
64 f = [pt_t;
65 pt_tt;
66 phi_t;
67 pendulumDynamics(pt_tt, L, L_t, phi, phi_t)];
68

69 % Non-linear function
70 % y = h(x,u)
71 h = [pt; phi];
72

73 % State-space
74 A_sym = jacobian(f, x);
75 B_sym = jacobian(f, u);
76 C_sym = jacobian(h, x);
77 D_sym = jacobian(h, u);
78

79 % Equilibrium states
80 u0 = zeros(3,1); % Input vector
81 x0 = [pt; zeros(3,1); zeros(2,1); zeros(2,1)]; % State vector
82

83 % Update the Matrices
84 % with the linearization around at equilibrium states
85 A_sym = subs(A_sym, [x,u],[x0,u0]);
86 B_sym = subs(B_sym, [x,u],[x0,u0]);
87 C_sym = subs(C_sym, [x,u],[x0,u0]);
88 D_sym = subs(D_sym, [x,u],[x0,u0]);
89

90 %% Simulink State-space
91

92 % Update the symoblic Matrices with constant values
93 % and create numeric Matrices
94 A = double(subs(A_sym));
95 B = double(subs(B_sym));
96 C = double(subs(C_sym));
97 D = double(subs(D_sym));
98

99 %% Extended Kalman Filter
100

101 Nx = length(x); % Number of states
102

103 % Initial state covariance
104 P_EKF = 1e-3;
105

106 % Process noise covariance
107 Q_EKF = eye(Nx)*0.001^2;
108 Q_EKF(1:3,1:3) = eye(3)*0.00001^2; % Pt
109 Q_EKF(4:6,4:6) = eye(3)*0.001^2; % Pt_t
110 Q_EKF(7:8,7:8) = eye(2)*0.001^2; % phi
111 Q_EKF(9:10,9:10) = eye(2)*0.01^2; % phi_t
112

113 % Process noise covariance
114 R_EKF = eye(Nx)*1^2;
115 R_EKF(1:3,1:3) = eye(3)*0.001^2; % Pt
116 R_EKF(4:5,4:5) = eye(2)*0.01^2; % phi
117

118 %% State-Feedback
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119 % Weight
120 w = 10;
121

122 % Weight matrix for the states
123 Q_lqr = diag([ 100*w, 100*w, 100*w, ... % Pt
124 10*w, 10*w, 10*w, ... % Pt_t
125 1000*w, 1000*w, ... % Phi
126 100*w, 100*w]); % Phi
127

128 % Weight matrix for the control
129 R_lqr = diag([1, 1, 1]); % Size = columns of B
130

131 K = lqr(A,B,Q_lqr, R_lqr);
132

133 % New State-space model
134 Ar = A - B*K;
135 F = ss(Ar, B, C, D);
136

137 % Show step response
138 % figure(1)
139 % step(F)
140

141 %% Pre-Filter
142 % C_xyz = C(1:3,:);
143 C_xyz = C(1:3,:); % Only direct output from input states
144 N = inv(C_xyz*inv(B*K - A)*B); % Pre-filter constant
145

146 %% Integral Control
147 Ai = [zeros(size(C_xyz,1)), C_xyz;
148 zeros(size(A,1), size(C_xyz,1)), A];
149 Bi = [zeros(size(C_xyz,1), size(B,2)); B];
150 Ci = [zeros(size(C_xyz,1)), C_xyz];
151 Di = zeros(size(C_xyz,1),size(Bi,2));
152

153 % Weight matrix for the states
154 Q_lqr_IC = diag([ 100*w, 100*w, 100*w, ... % z (error states)
155 100*w, 100*w, 100*w, ... % Pt
156 10*w, 10*w, 10*w, ... % Pt_t
157 1000*w, 1000*w, ... % Phi
158 100*w, 100*w]); % Phi
159

160 % Weight matrix for the control
161 R_lqr_IC = diag([1, 1, 1]); % Size = columns of B
162

163 KI = lqr(Ai, Bi, Q_lqr_IC, R_lqr_IC);
164 Ke = KI(:,1:3);
165 Ko = KI(:,4:end);
166

167 % New State-space model
168 Ar = Ai - Bi*KI;
169 Hi = ss(Ar, Bi, Ci, Di);
170

171 % Show step response
172 % figure(2)
173 % step(Hi)
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C.6 Control System Motion System

This section includes the Matlab scripts used to derive the functions related to the design
of the Extended Kalman Filter and the control system used for the non-linear full motion
system.

C.6.1 Extended Kalman Filter Estimator

1 % This script computes the matlab functions for the state-transition,
2 % measurement function, and the related Jacobian matrices for the Extended
3 % Kalman Filter used for state estimation of the full motion system
4

5 %% Symbolic Derivation
6

7 % Parameters
8 syms dt 'real' % Time step
9 x = sym('x', [35,1], 'real'); % State Vector

10 u = sym('u', [4,1], 'real'); % Input Vector
11

12 % State vector
13 eta = x(1:6);
14 v = x(7:12);
15 v_t = x(13:18);
16 p = x(19:21);
17 p_t = x(22:24);
18 p_tt = x(25:27);
19 L = x(28);
20 L_t = x(29);
21 phi = x(30:31);
22 phi_t = x(32:33);
23 phi_tt = x(34:35);
24

25 % Input vector
26 p_tt = u(1:3);
27 L_ref = u(4);
28

29 % Tool-point motion relative to Stewart Platform neutral frame
30 % {t}/{n} given in {n}
31 [pt, pt_t, pt_tt] = toolPointMotion(eta, v, v_t, p, p_t, p_tt);
32

33 % System ODE
34 ode = [stewartJacobian(eta)*v;
35 v_t;
36 zeros(6,1);
37 p_t;
38 p_tt;
39 zeros(3,1);
40 L_t;
41 winchMotion(L_ref, L, L_t);
42 phi_t;
43 pendulum_dynamics(pt_tt, phi, phi_t, L, L_t);
44 zeros(2,1)];
45

46 % State transition function and Jacobian
47 f = x + ode*dt;
48 f = simplify(f);
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49 F = jacobian(f,x);
50 F = simplify(F);
51

52 % Measurement function and Jacobian
53 h = [eta;
54 v;
55 zeros(6,1);
56 p;
57 p_t;
58 zeros(3,1)
59 L;
60 0;
61 phi;
62 phi_t;
63 zeros(2,1)];
64

65 h = simplify(h);
66 H = jacobian(h,x);
67 H = simplify(H);
68

69 % Make state transition function
70 matlabFunction(f, 'File', 'f.m', 'Vars', {x, u, dt});
71 matlabFunction(F, 'File', 'fJacobian.m', 'Vars', {x, u, dt});
72

73 % Make measurement function
74 matlabFunction(h, 'File', 'h.m', 'Vars', {x, dt});
75 matlabFunction(H, 'File', 'hJacobian.m', 'Vars', {x, dt});
76

77 model.f = f;
78 model.F = F;
79 model.h = h;
80 model.H = H;
81

82 %% Child Functions
83

84 function L_tt = winchMotion(L_ref, L, L_t)
85 % Parameters
86 Kdc = 1.0;
87 omega = 4*2*pi;
88 zeta = 0.7;
89

90 % ODE
91 L_tt = L_ref*Kdc*omega^2 - 2*zeta*omega*L_t - omega^2*L;
92 end
93

94 function [Pt, Pt_t, Pt_tt] = toolPointMotion(eta, v, v_t, P, P_t, P_tt)
95

96 % Calibrated transformation matrix {b} -> {r}
97 Hbr = [-0.4972, 0.8676, -0.0050, -1.0820;
98 0.8676, 0.4972, 0.0012, 1.5360;
99 0.0036,-0.0037, -1.0000, -1.0245;

100 0, 0, 0, 1.0000];
101

102 % Body fixed velocity and acceleration skew matrices
103 Sw = math3d.Skew(v(4:6));
104 Sw_t = math3d.Skew(v_t(4:6));
105

106 % Ship/Stewart relative to static csys {n} -> {b}
107 Rnb = math3d.Rzyx(eta(4:6));
108 Rnb_t = Rnb*Sw;
109 Rnb_tt = Rnb*Sw*Sw + Rnb*Sw_t;
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110

111 % Constant offset between stewart platform and robot base
112 % {b} -> {r}
113 r = Hbr(1:3,4);
114 Rbr = Hbr(1:3,1:3);
115

116 % Tool-point position relative to Stewart platform
117 % {t}/{n} given in {n}
118 Pt = eta(1:3) + Rnb*(r + Rbr*P);
119

120 % Tool-point velocity relative to Stewart platform
121 % {t}/{n} given in {n}
122 Pt_t = v(1:3) + Rnb_t*(r + Rbr*P) + Rnb*(Rbr*P_t);
123

124 % Tool-point acceleration relative to Stewart platform
125 % {t}/{n} given in {n}
126 Pt_tt = v_t(1:3) + Rnb_tt*(r + Rbr*P) ...
127 + 2*Rnb_t*(Rbr*P_t) + Rnb*(Rbr*P_tt);
128 end
129

130 function phi_tt = pendulum_dynamics(Pt_tt, phi, phi_t, L, L_t)
131

132 % Constant Parameters
133 g = 9.81; % Gravity
134

135 % Tool-point acceleration components
136 xt_tt = Pt_tt(1);
137 yt_tt = Pt_tt(2);
138 zt_tt = Pt_tt(3);
139

140 % Pendulum euler angles (angular position)
141 phix = phi(1);
142 phiy = phi(2);
143

144 % Pendulum euler angles (angular velocity)
145 phix_t = phi_t(1);
146 phiy_t = phi_t(2);
147

148 % Pendulum ODE of the euler angles
149 % (found from euler-lagrange equation,
150 % derived by the use of Maple)
151 phix_tt = (xt_tt*cos(phix) + yt_tt*sin(phix)*sin(phiy) ...
152 - zt_tt*sin(phix)*cos(phiy) ...
153 - g*sin(phix)*cos(phiy) ...
154 - 2*L_t*phix_t ...
155 - L*phiy_t^2*sin(phix)*cos(phix)) / L;
156

157 phiy_tt = (- yt_tt*cos(phiy) - zt_tt*sin(phiy) ...
158 - g*sin(phiy) + 2*L_t*phiy_t*cos(phix) ...
159 + 2*L*phix_t*phiy_t*sin(phix)) ...
160 / (L*cos(phix));
161

162 phi_tt = [phix_tt; phiy_tt];
163 end
164

165 % Spherical Pendulum kinematics
166 function Pp = pendulum_kinematics(Pt, phi, L)
167 % Tool-point position
168 % {r} -> {t}
169 xt = Pt(1);
170 yt = Pt(2);
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171 zt = Pt(3);
172

173 % Pendulum euler angles
174 phix = phi(1);
175 phiy = phi(2);
176

177 % Pendulum position
178 % {r} -> {p}
179 xp = xt - L*sin(phix);
180 yp = yt + L*cos(phix)*sin(phiy);
181 zp = zt - L*cos(phix)*cos(phiy);
182

183 Pp = [xp; yp; zp];
184 end
185

186 % Calculate the jacobian of Stewart motion
187 function J = stewartJacobian(eta)
188 % Input:
189 % eta : Motion driver
190 % Output:
191 % J : Jacobian Matrix
192

193 T = Tphi(eta(4:6), 'zyx');
194

195 J = [eye(3), zeros(3);
196 zeros(3), T];
197 end
198

199 % Transformation matrix
200 function T = Tphi(phi, type)
201 rx = phi(1);
202 ry = phi(2);
203 rz = phi(3);
204

205 cx = cos(rx);
206 sx = sin(rx);
207

208 cy = cos(ry);
209 sy = sin(ry);
210

211 cz = cos(rz);
212 sz = sin(rz);
213

214 T = eye(3);
215

216 if cy ~= 0.0
217 if strcmp(type, 'xyz')
218 T = [ cz, -sz, 0;
219 cy*sz, cy*cz, 0;
220 -sy*cz, sy*sz, cy];
221

222 elseif strcmp(type, 'zyx')
223 T = [ cy, sx*sy, cx*sy;
224 0, cx*cy,-sx*cy;
225 0, sx, cx];
226 end
227 T = 1.0/cy*T;
228 end
229 end

C - 28



APPENDIX C. MATLAB SCRIPTS C.6. CONTROL SYSTEM MOTION SYSTEM

C.6.2 Motion System Linear Control

1 % Preamble
2 clear all;
3 close all;
4 clc;
5

6 % This script is used to design the state-feedback integral controller for
7 % the full motion system
8 %% Initial Values
9

10 % Constant
11 g = 9.81; % Gravity [m/s^2]
12 dt = 1e-3; % Step time
13

14 % Robot joint angles
15 q1_init = 0;
16 q2_init = 0;
17 q3_init = -pi/2;
18

19 q_init = [q1_init, q2_init, q3_init];
20

21 % Stewart Platform
22 eta_init = zeros(6,1);
23 v_init = zeros(6,1);
24 v_t_init = zeros(6,1);
25

26 % Tool point {r} -> {t}
27 p_init = [2.6192; 0; 2.24];
28 p_t_init = zeros(3,1);
29 p_tt_init = zeros(3,1);
30

31 % Winch
32 L_init = 2.0;
33 L_t_init = 0;
34

35 % Pendulum
36 phix_init = 0*pi/180;
37 phiy_init = 0*pi/180;
38 phi_init = [phix_init; phiy_init];
39

40 phi_t_init = zeros(2,1);
41 phi_tt_init = zeros(2,1);
42

43 % Tool-Point {n}->{t}
44 Pt_init = [-2.395; 3.811; -3.255];
45

46 %% Extended Kalman Filter
47 Nx = size(x,1); % Number of states
48 Nz = size(h,1); % Number of measurements
49

50 % Process noise covariance
51 Q_EKF = eye(Nx)*0.001^2;
52 Q_EKF(13:18,13:18) = eye(6)*0.05^2; % V_t
53 Q_EKF(25:27,25:27) = eye(3)*0.05^2; % P_tt
54 Q_EKF(29,29) = 0.05^2; % L_t
55 Q_EKF(32:33,32:33) = eye(2)*0.1^2; % Phi_t
56 Q_EKF(32:33,32:33) = eye(2)*0.1^2; % Phi_tt
57
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58 % Measurement noise covariance
59 R_EKF = eye(Nz)*0.001^2;
60 R_EKF(1:6,1:6) = eye(6)*0.01^2;
61 R_EKF(7:12,7:12) = eye(6)*0.01^2;
62 R_EKF(30:31,30:31) = eye(2)*0.1^2;
63 R_EKF(31:32,31:32) = eye(2)*0.1^2;
64

65 % Initial state covariance
66 P_EKF = eye(Nx)*0.001^2;
67

68 % Initial states
69 EKF_init = [eta_init;
70 v_init;
71 v_t_init;
72 p_init;
73 p_t_init;
74 p_tt_init;
75 L_init;
76 L_t_init;
77 phi_init;
78 phi_t_init;
79 phi_tt_init];
80

81 %% Symbolic Derivation Controller
82

83 % State Vector
84 x = sym('x', [10,1], 'real');
85 % Input Vector
86 u = sym('u', [3,1], 'real');
87

88 % State vector
89 p = x(1:3);
90 p_t = x(4:6);
91 phi = x(7:8);
92 phi_t = x(9:10);
93

94 % Input vector
95 p_tt = u(1:3);
96

97 % Assigning Intial values to parameters of the winch
98 L = L_init;
99 L_t = L_t_init;

100

101 % Assuming no platform motion
102 eta0 = zeros(6,1);
103 v0 = zeros(6,1);
104 v_t0 = zeros(6,1);
105

106 % Tool-point motion relative to Stewart Platform neutral frame ({n} -> {t})
107 [Pt, Pt_t, Pt_tt] = toolPointMotion(eta0, v0, v_t0, p, p_t, p_tt);
108

109 f = [p_t;
110 p_tt;
111 phi_t;
112 pendulumDynamics(Pt_tt, L, L_t, phi, phi_t)];
113

114 % Non-linear function
115 % y = h(x,u)
116 h = [p;
117 p_t;
118 phi;
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119 phi_t];
120

121 % State-space
122 A_sym = jacobian(f,x);
123 B_sym = jacobian(f,u);
124 C_sym = jacobian(h,x);
125 D_sym = jacobian(h,u);
126

127 % Equilibrium states
128

129 % Input vector
130 u0 = zeros(3,1); %; L_init];
131

132 % State vector
133 x0 = [[2.6919; 0; 2.24]; % P {r}->{t}
134 zeros(3,1); % P_t
135 zeros(2,1); % Phi
136 zeros(2,1)]; % Phi_t
137

138 % Update the Matrices
139 % with the linearization around at equilibrium states
140 A_sym = subs(A_sym, x, x0);
141 A_sym = subs(A_sym, u, u0);
142

143 B_sym = subs(B_sym, x, x0);
144 B_sym = subs(B_sym, u, u0);
145

146 C_sym = subs(C_sym, x, x0);
147 C_sym = subs(C_sym, u, u0);
148

149 D_sym = subs(D_sym, x, x0);
150 D_sym = subs(D_sym, u, u0);
151

152 %% State Space Model
153

154 % Update the symoblic Matrices with constant values
155 % and create numeric Matrices
156 A = double(subs(A_sym));
157 B = double(subs(B_sym));
158 C = double(subs(C_sym));
159 D = double(subs(D_sym));
160

161 % State space system
162 G = ss(A,B,C,D);
163

164 Ob = obsv(G);
165 Cr = ctrb(G);
166 rank(Cr);
167 rank(Ob);
168

169 %% State-Feedback
170

171 Nx = length(x); % Number of states
172

173 % Weighting factor
174 w = 10;
175

176 % Weight matrix for the states
177 Q_LQR = eye(Nx);
178

179 Q_LQR(1:3,1:3) = eye(3)*1000*w; % P
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180 Q_LQR(4:6,4:6) = eye(3)*10*w; % P_t
181 Q_LQR(7:8,7:8) = eye(2)*1000*w; % Phi
182 Q_LQR(9:10,9:10) = eye(2)*100*w; % Phi_t
183

184 % Weight matrix for the control
185 R_LQR = eye(size(B,2)); % Size = columns of B
186

187 % LQR feedback gain
188 K = lqr(A,B,Q_LQR, R_LQR);
189

190 % New State-space model
191 Ar = A - B*K;
192

193 F = ss(Ar, B, C, D);
194

195 % Show step response
196 % figure(1)
197 % step(F)
198

199 %% Integral Control
200

201 Cm = C(1:3,:); % Only direct output from input states
202

203 % New state-space system matrices with error states
204 Ai = [zeros(size(Cm,1)), Cm;
205 zeros(size(A,1), size(Cm,1)), A];
206 Bi = [zeros(size(Cm,1), size(B,2)); B];
207 Ci = [zeros(size(Cm,1)), Cm];
208 Di = zeros(size(Cm,1),size(Bi,2));
209

210 % Weight matrix for the states
211 Q_lqr_IC = diag([ 100*w, 100*w, 100*w, ... % z (error states)
212 100*w, 100*w, 100*w, ... % Pt
213 10*w, 10*w, 10*w, ... % Pt_t
214 1000*w, 1000*w, ... % Phi
215 100*w, 100*w]); % Phi
216

217 % New Intergrator state
218 Ni = size(Cm,1); % Number of states
219

220 % Weight matrix for the states
221 Q_LQR_IC = eye(Nx + Ni);
222

223 Q_LQR_IC(1:3,1:3) = eye(3)*1000*w; % Integrator States
224 Q_LQR_IC(4:6,4:6) = eye(3)*100*w; % P
225 Q_LQR_IC(7:9,7:9) = eye(3)*10*w; % P_t
226 Q_LQR_IC(10:11,10:11) = eye(2)*1000*w; % Phi
227 Q_LQR_IC(12:13,12:13) = eye(2)*100*w; % Phi_t
228

229 % Weight matrix for the control
230 R_LQR_IC = eye(size(B,2)); % Size = columns of B
231

232 % % Calculating gains
233 KI = lqr(Ai, Bi, Q_LQR_IC, R_LQR_IC);
234 Ki = KI(:,1:Ni);
235 Ko = KI(:,Ni+1:end);
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C.7 Animation and Plotting

Matlab scripts used for plotting and animation of the di�erent systems models.

1 % Plot the coordinate system in 3D plots
2 % with default rgb-colors to the related axis.
3 function plot_coordinatesystem(H)
4 % Inputs:
5 % H : Transformation-matrix (size = 4x4)
6

7 % Pre-allocate
8 axis = zeros(2,3);
9

10 % Rotation and Translation
11 d = H(1:3,4); % Translation vector
12 R = H(1:3,1:3); % Rotation matrix
13

14 % Axis colors
15 colors = {'r', 'g', 'b'};
16

17 % Length of each axis in csys
18 csys_len = 0.5;
19

20 % Plot all 3 axis
21 % (Looping through plotting one axis at a time)
22 for i = 1:3
23 axis(1,:) = d; % csys origo [x0 y0 z0]
24 axis(2,:) = d + R(:,i)*csys_len; % end point of axis [x y z]
25

26 X = axis(:,1); % Vector of the x-component
27 Y = axis(:,2); % Vector of the y-component
28 Z = axis(:,3); % Vector of the z-component
29

30 % Plot one of the axis with the related color
31 plot3(X, Y, Z, colors{i}, 'LineWidth', 1)
32 end
33 end

1 % Plot a line in 3D plots
2 function plot_line(p1, p2)
3 % Inputs:
4 % p1 : Point 1 [x1; y1; z1]
5 % p2 : Point 2 [x2; y2; z2]
6

7 % Pre-allocate
8 line = zeros(2,3);
9

10 line(1,:) = p1;
11 line(2,:) = p2;
12

13 X = line(:,1);
14 Y = line(:,2);
15 Z = line(:,3);
16

17 plot3(X, Y, Z, 'k', 'LineWidth', 1)
18 end
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C.7.1 Robot Pose

1 function plot_robotpose(q, Hr)
2 % Plot the pose of the Comau Robot
3 % This includes links and local coordinate systems
4

5 % Inputs:
6 % Hr : Transformation matrix of the robot base [4x4]
7 % q : Robot joints [3x1]
8

9 % Static link lengths
10 a1 = 0.350;
11 a2 = 1.160;
12 a3 = 0.250;
13 d1 = 0.830;
14 d4 = 1.4922;
15 d6 = 0.210;
16 dt = 0.567;
17 L = d4 + d6 + dt;
18

19 % Joint angles
20 q1 = q(1);
21 q2 = q(2);
22 q3 = q(3);
23

24 % Robot DH Table
25 T1 = math3d.DH(-q1, d1, a1, pi/2);
26 T2 = math3d.DH(pi/2 - q2, 0, a2, 0);
27 T3 = math3d.DH(q3 + pi/2 + q2, 0, a3, pi/2);
28 T4 = math3d.DH(pi, L, 0, 0);
29

30 % Relative transformation
31 Hr1 = Hr*T1; % Robot base to joint q1 {r -> q1}
32 Hr2 = Hr1*T2; % Robot base to joint q2 {r -> q2}
33 Hr3 = Hr2*T3; % Robot base to joint q3 {r -> q2}
34 Hr4 = Hr3*T4; % Robot base to tool-point {r -> t}
35

36 % Plot coordinate systems
37 plot_coordinatesystem(Hr); % Base
38 plot_coordinatesystem(Hr1); % Joint q1
39 plot_coordinatesystem(Hr2); % Joint q2
40 plot_coordinatesystem(Hr3); % Joint q3
41 plot_coordinatesystem(Hr4); % Tool-Point
42

43 % Plot links
44 plot_line(Hr(1:3,4), Hr1(1:3,4)); % Base to joint q1
45 plot_line(Hr1(1:3,4), Hr2(1:3,4)); % joint q1 to joint q2
46 plot_line(Hr2(1:3,4), Hr3(1:3,4)); % joint q2 to joint q3
47 plot_line(Hr3(1:3,4), Hr4(1:3,4)); % joint q3 to Tool-point
48 end
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C.7.2 Suspended Load Pose

1 % Plot the position of the Pendulum
2 function plot_pendulum(Pt, Pp, Hr)
3 % Inputs:
4 % Pt : Tool-point position [3x]
5 % Pp : Pendulum position [3x1]
6 % Hr : Transformation matrix of the robot base [4x4]
7

8 % Transforming the Position vector relative to world CSYS
9 Pt = Hr*[Pt; 1];

10 Pp = Hr*[Pp; 1];
11

12 % Pendulum positions
13 xp = Pp(1);
14 yp = Pp(2);
15 zp = Pp(3);
16

17 % Plot wire
18 plot_line(Pt(1:3), Pp(1:3));
19

20 % Plot Load
21 plot3(xp, yp, zp, 'ro', 'LineWidth', 5);
22 end
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C.7.3 Stewart Pose

1 % Plot the pose of the stewart platform
2 % This includes the reference world coordinate
3 function Hgb = plot_stewartplatform(eta, Hg, Hgn)
4 % Input:
5 % eta : Stewart platform orientation
6 % Hg : World coordinate system (Reference CSYS)
7 % Hgn : Transformation matrix, World to EM8000 {g} -> {n}
8 % Output:
9 % Hgb : Transformation matrix, World to EM8000 {g} -> {b}

10

11 % Motion from intial platform pose to motion
12 % {n} -> {b}
13 Hnb = eye(4);
14 Hnb(1:3,1:3) = math3d.Rzyx(eta(4:6)); % Rotation matrix
15 Hnb(1:3,4) = eta(1:3); % Translation vector
16

17 % Relative transformation
18 Hgb = Hgn*Hnb; % World to EM8000 (motion) {g} -> {b}
19

20 % Plot coordinate system
21 plot_coordinatesystem(Hg); % Reference
22 plot_coordinatesystem(Hgn); % EM8000 static
23 plot_coordinatesystem(Hgb); % EM8000 motion
24 end
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C.7.4 Full System Motion

1 function stop = SimulinkMotionPlot(q, eta, Pt, Pp)
2 % Creates a 3D-animation for the motion of the motion-lab system
3 % Requires values for the Comau Robot joints and stewart platform
4 % Input:
5 % q : Robot joint angular position
6 % eta : Stewart platform orientation
7 % Pt : Tool-point position
8 % phi : Pendulum Angular position euler angles
9 % Output:

10 % stop : Bool value to stop the anitmation
11

12 % Persistent variables, to only be initialized once
13 persistent h; % Plot
14 persistent motionlab; % Calibration structure
15 % Transformation matrices
16 persistent Hgn; % World to EM8000 {g} -> {n}
17 persistent Hbr; % EM8000 to Comau {b} -> {r}
18 persistent Hg; % World coordinate system (Reference CSYS)
19

20 stop = false;
21

22 %% Initialization
23 % One time intitialization of plotting settings
24 if isempty(h)
25 % Close previous all plots
26 close all
27

28 % Plotting setup
29 h = figure('Name','Motion Lab Animation');
30

31 xlabel('x-axis')
32 ylabel('y-axis')
33 zlabel('z-axis')
34 xlim([-5, 3])
35 ylim([-3, 5])
36 zlim([0, 8])
37

38 hold on;
39 grid on;
40 view(-30,20);
41

42 % Load in calibration structure
43 motionlab = load('calib.mat');
44

45 % Transformation matrices found from calibration
46 Hgn = motionlab.calib.WORLD_TO_EM8000.H; % {g} -> {n}
47 Hbr = motionlab.calib.EM8000_TO_COMAU.H; % {b} -> {r}
48

49 % Reference coordinate system (world coordinate)
50 Hg = eye(4);
51 end
52

53 %% Drawing
54 if ishandle(h)
55 cla;
56

57 % Plot the motion of the Stewart Platform
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58 Hgb = plot_stewartplatformpose(eta, Hg, Hgn);
59

60 % Tranformation from World CSYS to Robot Base
61 Hgr = Hgb*Hbr;
62

63 % Plot Robot pose relative to input CSYS
64 plot_robotpose(q, Hgr);
65

66 % Plot Pendulum pose relative to input CSYS
67 plot_pendulum(Pt, Pp, Hgn);
68

69 drawnow;
70 end
71

72 %% Destructor
73 if ~ishandle(h)
74 stop = true;
75 end
76

77 end
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C.8 Math3d Library

This section presents the functions related to the custom library math3d. This library is
developed by Sondre Sanden Tørdal (supervisor of this thesis), where these functions are
frequently inherited by the other scripts and functions used throughout this thesis.

1 function T = DH(theta, d, a, alpha)
2

3 T = [cos(theta),-sin(theta)*cos(alpha), sin(theta)*sin(alpha),a*cos(theta);
4 sin(theta), cos(theta)*cos(alpha),-cos(theta)*sin(alpha),a*sin(theta);
5 0 , sin(alpha) , cos(alpha) ,d ;
6 0 ,0 ,0 ,1 ];
7

8 end

1 function invH = InvH(H)
2 % Reverse homgoenous rigid motions
3 % More efficient than using inv(H)
4 %
5 % INPUTS:
6 % H : Homogeneus transformation matrix 4x4
7 %
8 % OUT:
9 % invH : Reversed rigid motion matrix 4x4

10

11

12 R = H(1:3,1:3);
13 d = H(1:3,4);
14

15 invH = eye(4,4);
16

17 invH(1:3,1:3) = R';
18 invH(1:3,4) = -R'*d;
19

20 invH(4,1:4) = [0,0,0,1];
21

22 end

1 function vSkew = Skew(v)
2

3 vSkew = [0,-v(3),v(2);
4 v(3),0,-v(1);
5 -v(2),v(1),0];
6 end
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1 function R = Rzyx(phi)
2

3 rx = phi(1);
4 ry = phi(2);
5 rz = phi(3);
6

7 R11 = cos(ry)*cos(rz);
8 R12 = cos(rz)*sin(rx)*sin(ry);
9 R13 = sin(rx)*sin(rz) + cos(rx)*cos(rz)*sin(ry);

10

11 R21 = cos(ry)*sin(rz);
12 R22 = cos(rx)*cos(rz) + sin(rx)*sin(ry)*sin(rz);
13 R23 = cos(rx)*sin(ry)*sin(rz) - cos(rz)*sin(rx);
14

15 R31 = -sin(ry);
16 R32 = cos(ry)*sin(rx);
17 R33 = cos(rx)*cos(ry);
18

19 R = [R11, R12, R13;
20 R21, R22, R23;
21 R31, R32, R33];
22 end

1 function T = Tphi(phi, type)
2

3 rx = phi(1);
4 ry = phi(2);
5 rz = phi(3);
6

7 cx = cos(rx);
8 sx = sin(rx);
9

10 cy = cos(ry);
11 sy = sin(ry);
12

13 cz = cos(rz);
14 sz = sin(rz);
15

16 T = eye(3);
17

18 if cy ~= 0.0
19 if strcmp(type, 'xyz')
20 T = [ cz, -sz, 0;
21 cy*sz, cy*cz, 0;
22 -sy*cz, sy*sz, cy];
23

24 elseif strcmp(type, 'zyx')
25 T = [ cy, sx*sy, cx*sy;
26 0, cx*cy,-sx*cy;
27 0, sy, cy];
28 end
29

30 T = 1.0/cy*T;
31 end
32

33 end
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