
Classification of Diabetes and
Cardiac Arrhythmia using Deep

Learning

Micheal Dutt

SUPERVISORS
Morten Goodwin
Vimala Nunavath

Master’s Thesis
University of Agder, 2018

Faculty of Engineering and Science
Department of ICT

UiA
University of Agder
Master’s thesis

Faculty of Engineering and Science
Department of ICT
c© 2018 Micheal Dutt. All rights reserved

Abstract

Deep Learning (DL) is a research area that has flourished significantly
in the recent years and has shown remarkable potential for artificial intelli-
gence in the field of medical applications. The reasons for success are the
ability of DL algorithms to model high-level abstractions in the data by
using automatic feature extraction property as well as significant amount of
medical data that is available for training these algorithms. DL algorithms
can learn features from a large volume of healthcare data, and then use the
procured insights to assist clinical practice. We have implement DL algo-
rithm for the classification of two diseases in the medical domain: Diabetes
and Cardiac Arrhythmia.

Diabetes is often considered as one of the world’s major health prob-
lems according to the World Health Organization. Recent surveys indicate
that there is an increase in the number of diabetic patients resulting in the
increase in serious complications such as heart attacks and deaths. This the-
sis presents a Multi-Layer Feed Forward Neural Networks (MLFNN) for the
classification of diabetes on publicly available Pima Indian Diabetes (PID)
dataset. A series of experiments are conducted on this dataset with varia-
tion in learning algorithms, activation units, techniques to handle missing
data and their impact on classification accuracy have been discussed. Fi-
nally, the results are compared with other machine learning algorithms like
Näıve Bayes, Random Forest, and Logistic Regression. The achieved clas-
sification accuracy by MLFNN (82.5%) is the best of all the other classifiers.

The term arrhythmia refers to any variation in the usual sequence of the
heartbeat. There are many types of cardiac arrhythmia ranging in severity,
including Premature Atrial Contractions (PACs), Atrial Fibrillation, and
Premature Ventricular Contractions (PVCs). This thesis focuses on the use
of DL algorithms: Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) to classify arrhythmia with minimum possible data
pre-processing on MIT-BIH Arrhythmia Database (MIT dataset). Further-
more, we study the influence of different hyperparameters like L2 regular-
ization and number of epochs on the classification accuracy of LSTM. We
achieved a classification accuracy of 99.19% and 98.40% with CNN and
LSTM models respectively. From our research, we believe that CNN model
can assist the doctors in the classification of arrhythmia.

iii

Preface

This thesis is based on the work performed for the IKT591 final year
Master’s thesis project which corresponds to 60 ECTS credits as part of
the Master program in Information and Communication Technology at the
University of Agder. The thesis work started from August 2017 and ended
in June 2018. As a result of this study, a paper based on the 1st research
question has been accepted by Eleventh International Conference on Devel-
opments in e-Systems Engineering - DeSE2018.

I would like to express my sincere thanks to my supervisor Associate
Professor Morten Goodwin for his patient guidance and support through-
out the project. His supervision leads me to open the door of doing research.
I also would like to express my gratitude to Vimala Numavath, who helped
me to understand the research questions better. Finally, I would like to
thank all my friends and family for their help and encouragement during
my Master studies.

Micheal Dutt

iv

Table of Contents Table of Contents

Table of Contents

Abstract iii

Preface iv

Glossary vii

List of Figures ix

List of Tables x

I Research Overview 1

1 Introduction 3

1.1 Motivation and Problem Statement 5

1.2 Research Questions . 5

1.2.1 Diabetes . 6

1.2.2 Arrhythmia . 7

1.3 Solution Overview . 7

1.4 Contribution . 8

1.5 Thesis outline . 8

2 Background 11

2.1 Artificial Neural Network . 12

2.2 Multi-Layer FeedForward Neural Networks 13

2.2.1 Backpropagation Algorithm 15

2.2.2 Activation Functions 15

2.2.3 Learning Algorithms 20

2.2.4 Loss Functions . 21

2.3 Convolutional Neural Networks 21

2.3.1 Convolutional Layers 22

v

Table of Contents Table of Contents

2.3.2 Pooling Layers . 24

2.3.3 Dropout Layers . 25

2.3.4 Fully Connected Layers 25

2.4 Recurrent Neural Networks 26

2.4.1 Long Short Term Memory (LSTM) Networks 27

3 Literature Review 31

3.1 Diabetes . 33

3.2 Arrhythmia . 35

II Dataset and Pre-Processing 37

4 Datasets 39

4.1 Diabetes . 39

4.2 Arrhythmia . 41

5 Data Pre-processing 45

5.1 Diabetes . 46

5.2 Arrhythmia . 48

III Experiments and Results 51

6 Experimental Setup 53

6.1 Diabetes . 53

6.1.1 Network Architecture 53

6.2 Arrhythmia . 55

6.2.1 Network Architecture 55

7 Results and Discussions 59

7.1 Diabetes . 59

7.1.1 Comparison with other classifiers 60

7.1.2 Handling Missing Data 66

7.1.3 Activation Units . 69

7.1.4 Learning Algorithms 72

7.2 Arrhythmia . 74

7.2.1 Comparison of CNN with other algorithms 74

7.2.2 Evaluation of CNN and LSTM models 76

7.2.3 Evaluation of LSTM model with Variation in Regu-
larization . 79

vi

Table of Contents Table of Contents

7.2.4 Evaluation of LSTM Model with Variation in Number
of Epochs . 83

8 Conclusion and Future Work 85

References 94

Appendices 95
A Hardware Specification . 95

IV Publications 97

vii

List of Figures

2.1 A General Multi-layer Feed Forward Neural Network with an
Input Layer, 2 Hidden layers and an Output Layer. 13

2.2 An example showing connections between the neurons and
activation units . 14

2.3 Graphical representation of ReLU Activation Function 16

2.4 Graphical representation Leaky ReLU Activation Function . . 17

2.5 Graphical representation of ELU Activation Function 18

2.6 Graphical representation of SELU Activation Function 19

2.7 Basic Architecture of Convolutional Neural Architecture . . . 22

2.8 An example of Input and Filter 23

2.9 An example of building of Feature Map (Step 1) 23

2.10 An example of building of Feature Map (Step 2) 24

2.11 An example of Max Pooling Operation 25

2.12 An example of Recurrent Neural Network (RNN) 26

2.13 An example of an Unrolled RNN 27

2.14 The repeating module in a standard RNN 28

2.15 The repeating module in LSTM 28

5.1 Figure showing correlation between the features present in
the PID dataset . 47

5.2 An ECG of Normal Sinus Rhythm 49

5.3 Waveform Plot with Annotation (10 seconds) obtained from
PhysioBank ATM [14] . 50

6.1 The MLFNN Network Architecture with Input Layer (8 Neu-
rons), Three Hidden Layers (50 neurons each) and an output
layer (1 neuron) . 54

6.2 CNN Network Architecture with Convolution Layer (50 Fil-
ters 30x1), Max-Pooling Layer (5x1), Fully Connected Layer
(100 Units) and Sigmoid Layer (1 Unit) 56

6.3 K-fold cross-validation scheme, with K=4 57

viii

List of Figures List of Figures

7.1 Confusion Matrix for Näıve Bayes 61
7.2 Confusion Matrix for Random Forest 63
7.3 Confusion Matrix for Logistic Regression 64
7.4 Figure showing change in the Loss per epoch after removing

the missing values. The figure shows one example out of 150
randomly selected test sets. 67

7.5 Figure showing change in the Loss per epoch after Replacing
the missing values with zero. The figure shows one example
out of 150 randomly selected test sets. 68

7.6 Figure showing change in the Loss per epoch after imputing
the missing values with mean. The figure shows one example
out of 150 randomly selected test sets. 68

7.7 Figure showing change in the Loss per epoch ELU activation
function. The figure shows one example out of 150 randomly
selected test sets. 70

7.8 Figure showing change in the Loss per epoch Leaky ReLU
activation function. The figure shows one example out of 150
randomly selected test sets. 70

7.9 Figure showing change in the Loss per epoch SELU activation
function. The figure shows one example out of 150 randomly
selected test sets. 71

7.10 Figure showing change in the Loss per epoch ReLU activation
function. The figure shows one example out of 150 randomly
selected test sets. 71

7.11 Figure showing change in the Loss per epoch for Adam learn-
ing algorithm. The figure shows one example out of 150 ran-
domly selected test sets. 73

7.12 Figure showing change in the Loss per epoch for SGD learning
algorithm. The figure shows one example out of 150 randomly
selected test sets. 73

7.13 Graphical representation of performance of CNN and LSTM
models . 78

7.14 Graphical representation of performance of LSTM model with
Variation in L2 Regularization Parameter 82

7.15 Graphical representation of performance of LSTM model with
variation in the number of epochs 84

ix

List of Tables

4.1 Attributes/Features of Pima Indian Data set 40
4.2 Missing Data in Pima Indian Data set 40
4.3 The standard set of annotation codes for Beat Annotations . 42
4.4 The standard set of annotation codes for Non-Beat Annotations 43

7.1 Classification Report for Näıve Bayes 61
7.2 Classification Report for Random Forest 63
7.3 Classification Report for Logistic Regression 64
7.4 Performance of different classifiers 65
7.5 Performance with variation in techniques to handle missing

data . 66
7.6 Performance with variation in activation functions 69
7.7 Performance with variation in learning algorithms 72
7.8 Comparison of classification accuracy achieved by CNN model

developed in this thesis with other algorithm developed by
researchers for ECG classification 74

7.9 Comparison of classification accuracy achieved by CNN model
developed in this thesis with other algorithm developed by
researchers for ECG classification 75

7.10 Performance of CNN and LSTM models with 4-Fold cross
validation . 76

7.11 Performance of CNN and LSTM models 77
7.12 Performance of LSTM model with Variation in L2 Regular-

ization Parameter λ . 79
7.13 Performance of LSTM model with Variation in L2 Regular-

ization Parameter λ . 80
7.14 Performance of LSTM model with Variation in L2 Regular-

ization Parameter . 81
7.15 Performance of LSTM model with variation in the number of

epochs . 83

x

Part I

Research Overview

1

Chapter 1

Introduction

Detecting a medical anomaly is usually considered to be a complex task
and comes under the domain of medical experts and physicians. There are
specific processes to detect medical abnormalities that are carried out by
physicians. These processes tends to be time consuming and subjective [73]
[60]. Classification of diabetes and arrhythmia are two such pathological
cases, which usually requires many physicians with a wide range of experi-
ence in the respective domains.

Diabetes is one of the world’s major health problems according to the World
Health Organization report(WHO) [8]. According to the report, there were
around 422 million in 2014 living with diabetes. This number had increased
dramatically from 1980 when approximately 108 million people were suffer-
ing from this disease. Diabetes alone has caused about 1.5 million deaths in
2012. The cases of diabetes have grown faster in the low and middle-income
countries as compared to high-income countries over the past decade. Dia-
betes can often be classified as type 1 or type 2. Type 1 diabetes is caused
by β-cell destruction, usually leading to absolute insulin deficiency. Type
2 diabetes is due to progressive insulin secretory defect on the background
of insulin deficiency [23]. Generally, when the amount of glucose in the
blood is high, the performance in different body organ gets affected. If the
disease in such condition is not timely classified, then it may lead to heart
attacks, kidney failures and blindness [37] [47]. In many cases, the classi-
fication is generally based on patient test results.Thus, for classifying if a
person is diabetic or non-diabetic is a complex task requiring high skills and

3

Introduction

knowledge.

Cardiac arrhythmia is also a significant healthcare problem in the developed
world [25]. The term ”arrhythmia” refers to any variation in the usual
sequence of electrical impulses. Sometimes this impulse can be too fast, too
slow, or unpredictable which can cause the heart to beat in the same order.
If the heart does not beat correctly, it can not pump the blood effectively.
If the blood is not pumped effectively then the other parts of the body
like the lungs, the brain can not function properly. Then this body parts
may shut down or get damaged causing a life-threatening situation for the
patient. The American Heart Association 2017 statistical report indicates
that the atrial fibrillation is the most common cardiac rhythm disorder [25].
It has an approximate 25% lifetime incidence and annual costs of around 26
billion dollars, whereas sudden cardiac affects fewer but has more dangerous
consequences. Early classification and medical care can significantly reduce
the problems of patients [32]. With technological advancements and a lot
of research being done in the field of Artificial Intelligence (AI), it can be
made possible to classify the disease in the early stages.

AI techniques are bringing a paradigm shift to healthcare [44]. The recent
development of the big data analytics and availability of large healthcare
data has made these AI techniques a success in the healthcare sector. Deep
learning (DL), which is a sub-domain of AI, has been an active area of re-
search in this sector. DL can save time for physicians and provide balanced,
repeatable results by automating the manual processes used by them. Ad-
ditionally, there is a significant amount of data in medicine combination
of which with a small sample size of pathological cases makes essential use
of deep learning techniques for diagnosing and classifying the disease [49].
Deep learning techniques can prove to be useful computer-based tool that
model the expert’s behaviour and can improve classification accuracy and
can become universal standard among medical practitioners.

This thesis explores the use of DL for classification of two medical anomalies:
Diabetes and Arrhythmia. We have developed a Multi-Layer Feed Forward
Neural Network (MLFNN) for classification of diabetes, and the dataset that
we have used is Pima Indian Diabetes (PID) dataset. For the classification
of Arrhythmia, we have developed a Convolutional Neural Network (CNN)
and a Long Short-Terms Memory (LSTM) network. We have used MIT-BIH
Arrhythmia Database (MIT dataset) for this task.

4

1.1. Motivation and Problem Statement Introduction

1.1 Motivation and Problem Statement

Usually, for classifying if a person is diabetic or non-diabetic, several tests
are required, out of which some are expensive and time-consuming [60] [73].
For categorizing cardiac arrhythmia, there is a need for careful analysis of
ECG signal. In both the cases, physicians are required to do the task. In
some cases, regardless of their expertise and experience, there can be some
errors [44]. Few of such mistakes that a physician can make are anchoring
bias or availability bias. In anchoring bias, the physicians are stuck on
an initial impression of the problem. There can also be some cases where
physicians take some decisions based on some recent incidents which are
called availability bias. Sometimes, the number of such physicians is not
enough, or there can be some disagreement among the experts. In a field
which requires so much of human expertise and concentration, sometimes
it becomes prone to some errors which can prove to be costly for patients
and even life-threatening.

In this thesis, deep learning models are built for the classification of diabetes
and cardiac arrhythmia at high accuracy and least error rate. We study the
impact of different activation functions and learning algorithms on MLFNN
model on the PID dataset. Furthermore, we evaluate the performance of
CNN and LSTM on the time series MIT dataset.

1.2 Research Questions

In this section, we discuss the research questions which this thesis make an
effort to answer. The first research question belongs to the classification of
diabetes, whereas the second research question is related to the classification
of arrhythmia.

1. Does MLFNN provide better classification accuracy when compared
with other machine learning algorithms for classifying diabetes on the
PID dataset?

To answer this research question, in the thesis an MLFNN model is
developed which can classify diabetes with higher accuracy rate than

5

1.2. Research Questions Introduction

other machine learning algorithms like Näıve Bayes (NB), Random
Forest (RF) and Logistic Regression (LR). The PID dataset has been
used to create MLFNN, which has eight input features and one output
(Whether diabetic or non-diabetic).

1.2.1 Diabetes

Along with the research question mentioned above, we have formu-
lated subordinated research questions for the PID dataset.

(a) Which technique will perform better to handle the missing data
and provide the highest accuracy in MLFNN for the PID dataset?

We use three techniques to handle the missing data to answer
this question. There are a large number of values that are miss-
ing from the attributes in the PID dataset. In the first technique,
we remove all the rows that have a missing value. In second, we
replace the missing values with zero. In the third technique, we
replace the missing value with the mean of all the values of the
specific attribute.

(b) Which activation function provide higher classification accuracy
in MLFNN for the PID dataset?

The activation functions chosen to answer this question are Rec-
tified Linear Unit (ReLU), Leaky ReLU, Exponential Linear Unit
(ELU) and Scaled Exponential Linear Units (SELU). We use all
these activation functions in a pre-defined architecture and com-
pare the training accuracy, testing accuracy and Mean Squared
Error (For both testing and training).

(c) Which learning algorithm provide higher classification accuracy
in MLFNN for the PID dataset?

To answer this question, we use two learning algorithms: Stochas-
tic Gradient Descent (SGD) and ADAM. Same performance met-
rics are used to compare the classification performance.

6

1.3. Solution Overview Introduction

2. Is it possible to develop different deep learning model for automated
arrhythmia detection?

To answer this question, we develop two deep learning models. We
design a CNN and LSTM networks for classification of cardiac ar-
rhythmia. Both the models use the time series data MIT dataset.

1.2.2 Arrhythmia

Along with the research question mentioned above, we have formu-
lated subordinated research question for the MIT dataset.

(a) Will LSTM perform better than the CNN model in classifying
arrhythmia for the MIT dataset?

We answer this research question by evaluating the performance
of CNN and LSTM model on classifying cardiac arrhythmia.

1.3 Solution Overview

The first task is to develop a MLFNN model which can classify if a per-
son has diabetes or not with higher accuracy. We then compare the per-
formance of MLFNN with Näıve Bayes, Logistic Regression and Random
Forests algorithm. We also determine how changing the activation units
and learning algorithms impact the testing and training accuracies. Also,
the PID dataset suffers from missing data. We continue the process further
by implementing different techniques to handle the missing data. We apply
three methods, replacing the missing value with zero, mean, and removing
the missing values from the dataset.

In the second task, we classify the different type of cardiac arrhythmia
by using CNN and LSTM models on the MIT dataset. We compare the
performance of the models developed in this research with other models
developed by researchers for the same database. We try to achieve higher
accuracy by doing minimum data pre-processing. We try to evaluate the
performance of both CNN and LSTM models. Furthermore, we study the

7

1.4. Contribution Introduction

influence of different hyperparameters like L2 regularization and number of
epochs on the classification accuracy of LSTM.

1.4 Contribution

The main contribution of the thesis are:

• A MLFNN to classify diabetes with higher accuracy than some other
models that have been implemented before.

• Proficient architectural considerations while designing the MLFNN
model to improve the accuracy.

• A CNN and LSTM network to classify arrhythmia with higher accu-
racy by doing minimum data pre-processing as compared with other
models.

• Evaluation of CNN and LSTM models on the time series MIT dataset.

The focus of this thesis is to answer all the research questions. This thesis
explain how the architectural design plays a crucial role in improving the
accuracy of the model and needs to be chosen with careful experimentation
analysis and according to the dataset. We evaluate the performance of two
deep learning models: CNN and LSTM.

1.5 Thesis outline

The rest of the thesis is structured as follows:

• Chapter 2 provides background research for Artificial Neural Net-
works (2.1), Multi Layer Feed Forward Neural Network (2.2), Convo-
lutional Neural Networks (2.3) and Recurrent Neural Networks (2.4).

• Chapter 3 presents the literature review for the previous work done in
the field of machine learning for diagnosing or classification of different
diseases, Diabetes (3.1) and Arrhythmia (3.2).

8

1.5. Thesis outline Introduction

• Chapter 4 introduces the dataset that we have used for the classifi-
cation of Diabetes (4.1) and Arrhythmia (4.2).

• Chapter 5 explains the pre-processing techniques that we have used
before feeding the data into neural network for the classification of
Diabetes (5.1) and Arrhythmia (5.2).

• Chapter 6 provides the details of the experimental setup that we have
implemented for the classification of Diabetes (5.1) and Arrhythmia
(5.2).

• Chapter 7 shows the experimental results we have achieved and the
discussion regarding the results.

• Chapter 8 concludes the thesis and provide the summary of the work
done in the thesis. We have also mentioned potential work that we
will apply to our research in future to achieve more desirable results.

9

Chapter 2

Background

Deep Learning (DL) is the sub-domain of Machine Learning (ML) which is
the sub-domain of Artificial Intelligence (AI). DL algorithms can be imple-
mented to solve any supervised learning or unsupervised learning problems.
DL algorithms try to model high-level abstractions in data by using au-
tomatic feature extraction property [11]. DL uses feature hierarchy where
each layer trains on the distinct set of features that are provided to it as
a previous layer output. The deep layers can recognize the sophisticated
features in the data as they aggregate and then again recombine the fea-
tures they receive from the last layer. This makes DL algorithms suitable
for handling the large dataset [10]. DL algorithms can discover the pattern
and structures within the datasets which are not either categorized or have
any structure. That makes DL algorithms a potent tool in today’s world as
the majority of the databases that are available are either unstructured or
unlabelled.

11

2.1. Artificial Neural Network Background

2.1 Artificial Neural Network

The structure of Artificial Neural Networks (ANNs) is inspired from the
structure of the human brain [62]. In the human brain, there is a network
of electro chemical cells called neurons which takes the input and process
it and then decide whether they will send any output or not. In this way,
this whole network of neurons works in harmony to determine the output.
Similarly, ANNs are comprised of neurons which are arranged in the layers.
These neurons take the input from either input layer or the previous layer
neurons, process them and then decides what output to send to either the
next layer or to the output layer [2]. How neurons take the decision is an
important design principle of ANNs. These neurons are connected with at
least one another neuron in the network. The connection between them has
some value assigned to it which is known as weight. Based on connection
architecture the ANNs can be either classified into feed forward networks
(in which there are no loops) and the recurrent neural network (in which
there are loops because of feedback connections). This weight decides the
importance of the connection between the neurons. In the starting, these
weights are just randomly assigned to all the connections. In the supervised
learning, we train the network on labelled data. So, the weights in such
networks are adjusted in such a way that the difference between the actual
output and the desired output is least. In unsupervised learning, the train-
ing data has no labels. In such problems, the neural network itself extract
some facts or patterns from the data during the iterations. Then neural
network becomes stable after specific iterations. In this way, ANNs can be
implemented to solve any supervised learning, unsupervised learning and
even semi-supervised learning problems [1].

12

2.2. Multi-Layer FeedForward Neural Networks Background

2.2 Multi-Layer FeedForward Neural Networks

The multi-layer feed forward neural network is a fully connected network
consisting of an input layer, one or more hidden layer(s), and the output
layer [66]. The general MLFNN network is illustrated in Figure 2.1.

Figure 2.1: A General Multi-layer Feed Forward Neural Network with an
Input Layer, 2 Hidden layers and an Output Layer.

The internal layers are called hidden layers because they are hidden from the
outside world. They receive input from the internal processing units, process
them and send the output to internal processing units in the next hidden
layer. The real-valued input feature vector is fed in fan-out arrangement to
all the neurons in the first hidden layer. Each neuron in the first hidden
layer is connected with all the neurons in the next hidden layer. The weight
coefficient characterizes the connection between two neurons. This weight
reflects the importance of the connection in the neural network. Activation
function determines the output of the neurons. The whole mechanism is
illustrated in the Figure 2.2.

13

2.2. Multi-Layer FeedForward Neural Networks Background

X

x1

f(X)

x2

x3

x4

x5

w1

w2

w3

w4

w5

Activation Unit Neuron

y1

H21

H11

H12

H13

H14

H15

Hidden Layer 1 Hidden Layer 2

Figure 2.2: An example showing connections between the neurons and ac-
tivation units

Let us see how the connections between neuron work. In Figure 2.2, we are
considering two hidden layers: Hidden Layer 1 and Hidden Layer 2. First,
hidden layer has five neurons, and we are considering only one neuron H21
in Hidden layer 2 to know how connections work. Firstly, Neuron H21 will
compute X. Neurons from Hidden layer will pass their internal output values,
which is multiplied with weight coefficient (the measure of the importance
of the connection) as can be seen in equation 2.1 [7].

X = (w1x1 ∗ w2x2 ∗ w3x3 ∗ w4x4 ∗ w5x5) (2.1)

This is the internal processing which neuron H21 will. After this process,
X will pass through activation function, and the internal output of H21 will
be created y1 as can be seen in equation 2.2.

y1 = f(X) + bias (2.2)

14

2.2. Multi-Layer FeedForward Neural Networks Background

2.2.1 Backpropagation Algorithm

In this subsection, we go through the concept of backpropagation. When
the artificial neural networks were first implemented, they were very slow to
train and does not produce the effective results. To sort out this problem,
the concept of backpropagation was introduced [3]. The backpropagation al-
gorithm comprises of two phases: propagation phase and the weight update
phase.

When a neural network receives an input, there is generally random number
weight that is assigned in the hidden layers. The neural network produces
some output based on these weights. This is called the propagation phase.
This output is then compared with the original output using loss function
and the error is calculated. This error is then propagated backwards, and
the weights are again updated in such a way that this error is reduced in
the next round [9]. This updating of weight to reduce the error is called a
weight update phase. These rounds are repeated until the error rate reduces
to minimum values.

In this way, the backpropagation algorithm calculates the gradient of loss
function using the error values with respect to the weight coefficients. After
that, the gradients are updated in such a way that loss function is minimized
in the optimization phase.

2.2.2 Activation Functions

Activation functions play a vital role while designing a neural network.
To understand activation function we have to understand what artificial
neurons do. As discussed in equation 2.2, it calculates the weighted sum of
all the inputs it receives and adds bias and then decide whether it should fire
or not [16]. So, this value can range between +∞ to −∞. Thus, activation
functions bound this value produced by neurons and decide if the external
connection is fired or not. Since artificial neurons are developed from the
idea of biological inspiration brain neurons., we are using term fire which
means neurons is active and sending a signal or in artificial neuron we say
value. There is the number of activation functions that have been proposed
to date.

We briefly discuss the activation functions we have used in this thesis for the

15

2.2. Multi-Layer FeedForward Neural Networks Background

experimentation. Below, we introduce the four kinds of activation unit: rec-
tified linear unit (ReLU), leaky rectified linear (Leaky ReLU), exponential
linear unit (ELU) and scaled exponential linear unit (SELU).

ReLU - The Rectified Linear Unit is first used in Restricted Boltzmann
Machines [54]. It is the simplest nonlinear activation function and is defined
as:

f(x) =

{
0 for x < 0
x for x > 0

ReLU activation function gives an output x if x is greater then zero and
0 if x is less than zero. ReLU is considered inexpensive function since
there are not any exponential values or other mathematical values to solve.
So, it converges faster. But, when there are negative values, then ReLU
activation function will bound it to zero and the neurons will not send any
output values and will be considered as dead. In this way, ReLU units can
die during the training process. ReLU activation can be seen in Figure 2.3.

1 3 2

2

4 -1

1

-2

-4

-3

4

3

-4 -2 -3

-1

Figure 2.3: Graphical representation of ReLU Activation Function

16

2.2. Multi-Layer FeedForward Neural Networks Background

Leaky ReLU activation was first introduced in acoustic model [51]. These
are one attempt to fix the dying ReLU problem. Mathematically, it is
defined as:

f(x) =

{
αx for x < 0
x for x > 0

where α = 0.01. Instead of function being zero for x less then zero, leaky
ReLU have a small slope. Figure 2.4 shows the graphical representation of
Leaky ReLU activation function.

1 3 2

2

4

1

-2

-4

-3

4

3

-4 -2 -3

-1

-1

Figure 2.4: Graphical representation Leaky ReLU Activation Function

17

2.2. Multi-Layer FeedForward Neural Networks Background

ELU - Exponential Linear Unit [30] with 0 < α is

f(x) =

{
α(exp(x)-1) for x < 0

x for x > 0

The hyperparameter α in ELU controls the saturation of the negative inputs.
ELU makes the learning process faster in deep neural networks as compared
with other activation units. ELU do not suffer from the dying or vanishing
gradient problem as it has negative values which allow the mean activation
to move closer to zero as can be seen in batch normalization. It does so at a
lower computational cost. ELU does not quantitatively model the degree of
absence of input but codes the degree of presence of specific characteristics
in the data.

1 3 2

2

4

1

-2

-4

-3

4

3

-4 -2 -3

-1

-1

Figure 2.5: Graphical representation of ELU Activation Function

18

2.2. Multi-Layer FeedForward Neural Networks Background

SELU - The SELU activation function [48] is given by:

f(x) = λ

{
α(exp(x)-1) for x < 0

x for x > 0

SELU allows constructing a mapping with properties that lead to Self-
Normalizing Neural Networks (SNNs). SNNs keeps normalization of ac-
tivation’s when propagating through layers. The activation’s of the neural
network is considered to be normalized if both their mean and their variance
across samples are within predefined intervals. In SNNs the activation of the
neuron automatically converges toward the zero mean and unit variance. It
propagates through many layers even in the presence of noise and pertur-
bation. In this way, SNN allows training deep neural networks with many
layers by employing this powerful regularization technique and making the
learning highly robust. If some activations are not close to zero, there is an
upper and lower bound in the variance which makes it impossible to counter
the dying and exploding gradients problems.

1 3 2

2

4

1

-2

-4

-3

4

3

-4 -2 -3

-1

-1

Figure 2.6: Graphical representation of SELU Activation Function

19

2.2. Multi-Layer FeedForward Neural Networks Background

2.2.3 Learning Algorithms

In this section, we introduce two different types of learning algorithms:
Stochastic Gradient Descent (SGD) and Adam. Both learning algorithms
are explained below.

Stochastic Gradient Descent is probably the most used learning algo-
rithm for machine learning and particularly for deep learning [36]. The
standard gradient descent algorithms update the parameters approximated
by evaluating the cost and gradient over the full training set. The SGD up-
dates and computes the gradient of parameters using single or few training
examples. Equation 2.3 gives the parameter update:

[P = P − LR ∗ gradients] (2.3)

P stands for Parameters, and LR stands for Learning Rate.

The benefit of updating the parameters based on few training examples
is, it reduces the variance in the parameter update and leads to a stable
convergence. The crucial setting of SGD is learning rate which must adjust
with a lot of trial and error. In this thesis, we have used default learning
rate which is 0.01.

Adam is an adaptive learning rate optimization algorithm which derives its
name from the phrase “adaptive moments” [36]. Adam algorithm is based
on the estimation of 1st and 2nd order moments. The algorithm estimates
“the first moment” as the mean and the “second moment” as variance. So
the update rule Adam is given by equation 2.4:

[P = P − LR ∗Means/Sqrt(V ariance)] (2.4)

Here, P stands for Parameters and LR stands for Learning Rate.

So if the variance of the gradient is high, it becomes unclear how parameter
should be changed, so algorithm chooses the small step size in update rule.
If the variance is low, the algorithm takes a more significant step.

20

2.3. Convolutional Neural Networks Background

2.2.4 Loss Functions

In most networks, the error is the difference in the desired output and the
predicted output [5] and is given by equation 2.5.

J(W) = DesiredOutput− predictedOutput (2.5)

The function which computes this error is known as Loss Function J(.).
Different loss functions affect the models in different ways. They have a
considerable impact on the performance of the model. MSE (mean squared
error) is one of the most famous loss function, which calculates the square
of the difference between desired value and the predicted value. There are
different loss functions which we can use for classification and regression
tasks [12].

Cross-entropy is most commonly used for the binary classification problem.
Equation 2.6 computes Cross-entropy:

Hy′(y) = −
∑
i

y′i log(yi) (2.6)

Cross-entropy measures the divergence between the two probabilities dis-
tribution. If the cross-entropy is significant, the difference between the two
distribution is big. If the cross-entropy is small, the distributions are some-
what similar. Cross-entropy indicates the distance between what model
believes output distribution should be, and what actual distribution is.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are the computationally efficient
neural network which can be used to process any grid-like topology data.
Some examples of such data are time series data which can be imagined as
1-D grid taking samples at the regular interval of time and images which
can be imagined as 2-D grids of the pixel [36]. CNN is a mighty and efficient
model which can achieve high accuracy by automatic feature extraction.

The architecture of CNN is modelled after the part of the brain where the
visual images are processed called the visual cortex [4]. Neurons in the brain

21

2.3. Convolutional Neural Networks Background

Input Conv Pool Conv Pool FC FC Softmax

Figure 2.7: Basic Architecture of Convolutional Neural Architecture

process images only in the layers of increasing complexity. Neurons in the
first layers only fire or send output when they are looking at a specific shape.
Suppose some neurons just fire when they see curves and some when they
look at straight lines. Neurons at the higher level recognizes the pattern
of edges and colours. In the figure 2.7, we can see there is an input of any
grid-like topology data. After that, there are several convolutions (Conv),
and Pooling (Pool) layers followed by several fully connected layers. In case
of multiclass classification, SoftMax is the output used.

2.3.1 Convolutional Layers

Convolution layer is the main feature of CNN. Convolution Layer often
comprised of filter and feature maps [4]. Convolution is applied to the input
using the filter to produce a feature map. Filter constitutes the parameter
called weights and comes in specific shape matrix. We explain this process
by taking an example.

22

2.3. Convolutional Neural Networks Background

1 0 1 1 0

0 0 1 1 0

1 0 0 0 0

1 1 1 1 0

1 0 1 0 0

1 1 0

0 1 0

1 0 1

Input Filter

Figure 2.8: An example of Input and Filter

In Figure 2.8, there is input to convolution layer on the left side and on
the right side is the filter. Due to the shape of the filter, it is known as
3x3 convolution. During the convolution operation this filter slides over the
input, and at every point, we do the element-wise matrix multiplication. In
the end, we sum the result, and this sum goes to feature map.

1x1 0x1 1x0 1 0

0x0 0x1 1x0 1 0

1x1 0x0 1x0 0 0

1 1 1 1 0

1 0 1 0 0

2

Input x Filter Feature Map

Figure 2.9: An example of building of Feature Map (Step 1)

In figure 2.9, the green area shows where the convolution operation takes
place. The convolution operation is taking place at the top left, and the
output is “2”. This result can be seen in the feature map also on the right

23

2.3. Convolutional Neural Networks Background

side. In the same way, this convolution operation repeats by sliding this
window to the right side by one step as can be seen in the figure 2.10. This
value is again updated in the feature map. This process of sliding the filter
over the input continues until the complete feature map is generated.

1 0x1 1x1 1x0 0

0 0x0 1x1 1x0 0

1 0x1 0x0 0x1 0

1 1 1 1 0

1 0 1 0 0

2 2

Input x FIlter Feature Map

Figure 2.10: An example of building of Feature Map (Step 2)

In this example convolution operation are shown in 2D. In reality, convo-
lutional layer takes the 3D volume of input and transforms it into the 3D
volume of output. In addition to height and weight, there is depth also
which corresponds to the colour channel (RGB).

2.3.2 Pooling Layers

After convolution operation, pooling is used to decrease the dimensionality
by reducing the number of parameters [38]. Pooling layers down samples the
feature maps independently by reducing the height and width, but it keeps
the depth intact which means the depth is not changed. Since convolutional
layer often generates a large number of feature maps making it slow to
process by increasing the training time. Pooling layer thereby shortens the
training time by reducing the dimensionality. Another ask of pooling is
that it often helps to combat overfitting. In overfitting, the model generally
learns the training data so well that it performs excellently on training data
but fails to produce the same result on testing data.

24

2.3. Convolutional Neural Networks Background

In contrast with convolution operation, pooling operation has no parame-
ters. The most common pooling operation that has proven to very useful is
max pooling operation. It takes maximum value by sliding a window over
the input. Max Pooling is further explained by taking an example where
input 4x4 matrix and max-pooling using 2x2 window shown in Figure 2.11.

5 7

8 2

1

2 4

11

4

9 0

0

523

59

78
Max Pool with 2x2 Window
 And Stride 2

Figure 2.11: An example of Max Pooling Operation

2.3.3 Dropout Layers

Another layer that is not necessarily one of the primary layers, but can be
categorized as important, is the Dropout layer [64]. Dropout is a common
regularization technique for deep neural networks. It is used to combat
overfitting by temporarily dropping some neurons during training time, at
each iteration.

2.3.4 Fully Connected Layers

We add a fully connected layer(s) at the end of the CNN architecture. The
convolutional and pooling layer do the feature extraction in the dataset, and
the output they produce is in the form of 3D. Since it has three different
axes each representing height, width, and the depth. The full connected
layers are used to convert these 3D outputs into 1D and process is known
as flattening [45].

25

2.4. Recurrent Neural Networks Background

2.4 Recurrent Neural Networks

Recurrent neural networks (RNN) [36] have become a prevalent choice for
solving sequence prediction or time series problems. RNNs have been suc-
cessfully implemented for the various task such as language modelling, learn-
ing word embeddings, online hand-written recognition and speech recogni-
tion. In RNNs, there are networks with loops, allowing information to
persist. RNN takes decisions by considering the current input and from the
previous inputs which it has received during the past and is in the memory.
A normal RNN has a short-term memory which can store the copy of output
it produces and loopback in into the network. Figure 2.12 illustrates the
flow of information in RNN.

Figure 2.12: An example of Recurrent Neural Network (RNN)

In figure 2.13, we can see a chain like structure when we unroll RNN. This
structure helps us to understand the concept the Backpropagation Through
Time (BPTT). In this structure the error is propagated in more than two
layers, to capture more past information. There are several timesteps each
having input, output, and a copy of network that shares same parameters.
Then the error is calculated at each time-step. After that, we roll the RNN,

26

2.4. Recurrent Neural Networks Background

and the weight is updated.

A AAA A

ht

Xt X0

h0

X1

h1

X2

h2

Xt

ht

Figure 2.13: An example of an Unrolled RNN

2.4.1 Long Short Term Memory (LSTM) Networks

LSTMs are the extension of RNNs that are capable of learning long-term
dependencies [42]. They have the extended memory which enables them to
remember their input over an extended period. In an LSTM memory, it can
read, write, and delete the information. This memory can be considered as
gated cells, where gated means that the cell takes the decision. The decision
of storing or removing the data depends on the importance it assigns to
information. This assignment is done based on the weights learned by the
algorithms. All RNNs are in shape of the chain of repeating modules of
the neural network. As can be seen in figure 2.14, In standard RNN, the
replicated module has a straightforward structure such as single tanh layer
[17].

27

2.4. Recurrent Neural Networks Background

A A

Xt-1

ht+1htht-1

Xt Xt+1

tanh

Figure 2.14: The repeating module in a standard RNN

LSTM repeating module does not have single neural network layer. There
are four layers interacting in a very special way. Figure 2.15 shows the
repeating module in an LSTM with four interacting layers.

x

x x

+

tanh

tanh

σ σσ

A A

Xt-1

ht+1htht-1

Xt+1Xt

Figure 2.15: The repeating module in LSTM

The horizontal line through the top runs straight down the entire chain
has only a few minor linear interactions. Information can flow very easily

28

2.4. Recurrent Neural Networks Background

along it without getting changed. The structure of LSTM is constructed
in such a way that it can add or remove the information to the cell state.
Gates carefully regulate it. The first step by the LSTM is to decide which
information it is going to cast out from the cell state. This is the decision
taken by the sigmoid layer called “forget gate layer”. It gives output 0 or 1
where 0 corresponds to completely get rid of the information and 1 to keep
the information completely.

The next step is to decide which information to store in the cell state. This
step has two parts. The decision to create an update to the state is taken
by the combination of the sigmoid layer called “input gate layer” and the
tanh layer. Sigmoid layer contributes by deciding which values to update
and tanh layer performs the creation of a new values vector which can be
added to the state.

Finally, the output will be based on filtered cell state. First, a sigmoid layer
will decide which parts of the cell state are going to output. Then the cell
state is passed from the tanh, which pushes the values between -1 and 1.
Then it is multiplied by the output of the sigmoid gate and only decided
parts will go as output [6]

29

Chapter 3

Literature Review

There is significant research that is going on in the areas of developing
machine learning algorithms for medical applications. In this chapter, we
discuss some of the algorithms that have been developed by researchers
in this field. In this thesis, our focus is to design such machine learning
algorithms which can classify diabetes and cardiac arrhythmia at a high
accuracy rate. So first we discuss some research done in the field of medical
science, and after that, we discuss some of the algorithms which have been
designed for diabetes and cardiac arrhythmia.

The author in [58] used Oxford Parkinson’s Disease Detection Dataset for
classification of Parkinson’s disease (PD) using Multi-Layer Feed Forward
Neural Network (MLFNN) with backpropagation algorithm. The perfor-
mance metrics used in the paper are sensitivity, specificity, and accuracy.
They achieved 83.3% for sensitivity, 63.3% for specificity, and 80% for ac-
curacy in diagnosing and detection of PD using an MLFNN.

The authors in [39] used collected database from the Cleveland database
from UCI repository and Ibn Al-Bitar Hospital Cardia Surgery and Bagh-
dad Medical City to build heart disease diagnosis system for classifying two
cases of heart conditions (Normal, Abnormal). They proposed two classi-
fiers: MLP and Support Vector Machine (SVM) on the dataset consisting
of thirteen medical factors to diagnose heart disease. The MLP classifier
achieved 98% accuracy when evaluated on collected database whereas SVM
attained an accuracy of 96%.

31

Literature Review

The authors in [70] used OASIS dataset (cross-sectional MRI data) to de-
velop Alzheimer’s disease (AD) detection system from magnetic resonance
images. The dataset included 416 right-handed men and women aged be-
tween 18 to 96 years. Out of these samples, only 126 were picked (28 Ads
and 98 HCs). They used inter-class variance criterion for selecting single
slice from 3D volumetric data. The classification system they proposed was
based on three components: wavelet entropy (WE), multi-layer perceptron
(MLP) and biogeography-base optimisation (BBO). Their approach gave
92.40% accuracy, 92.14% sensitivity and 92.47% specificity.

The authors in [22] proposed a Convolutional Neural Network (CNN) for
the classification of interstitial lung diseases (ILD). The network they rec-
ommended consist of 5 convolutional layers with 2x2 filters and activation
layer (LeakyReLU), followed pooling layer with size equal to final feature
map and three dense layers, similar to the size of the nal feature maps and
three dense layers. The last dense layer has seven outputs, equivalent to
the classes considered in the task: healthy, ground glass opacity (GGO),
micronodules, consolidation, reticulation, honeycombing and a combination
of GGO/reticulation. The dataset used for training and evaluating the pro-
posed method was made using two databases: publicly available multimedia
database of ILDs from the University Hospital of Geneva and the Bern Uni-
versity Hospital, Inselspital. For training and evaluating the CNN, they
used 1496 images from the dataset, derived from the 120 CT scans. They
achieved the classification performance of approximately 85.5% in analyzing
the lung patterns.

The authors in [20] proposed a Convolutional Neural Network (CNN) for
automated detection of coronary artery disease (CAD). The ECG signal
(Normal and CAD) were retrieved from the physionet databases: Fantasia
(Normal) and St-Petersburg Institute of Cardiology Technics 12-lead ar-
rhythmia (CAD). The ECG signal has taken from 40 healthy subjects and 7
CAD subjects segmented (2s and 5s). The CNN architecture they proposed
comprised of four convolutional. Four max-pooling layers and three fully
connected layers for diagnosis of CAD using two and five seconds duration.
The model differentiated between normal and abnormal ECG with an ac-
curacy of 94.95%, 93.72% sensitivity, and 95.18% specificity for two-second
duration and 95.11% accuracy, 91.13% sensitivity and 95.88% specificity for
five seconds ECG segment.

The authors in [27] proposed a new convolutional neural network based

32

3.1. Diabetes Literature Review

multimodal disease risk prediction (CNN-MDRP) algorithm using struc-
tures and unstructured real-time hospital data, and the data stored in the
data centre. The three-year data from 2013 to 2015 is used containing 31919
patients with 20320848 records. The latent factor model is used to construct
the missing data. The experiment is performed on the regional chronic dis-
ease of the cerebral infarction. The CNN-MDRP algorithm reaches 94.8%
prediction accuracy with convergence speed faster than CNN- based uni-
modal risk prediction algorithm.

Authors in [21] a developed a Recurrent Neural Network (RNN) to learn the
encounter of patients in Pediatric Intensive Care Unit (PICU) of a major
tertiary care centre. About 12000 patient’s data extracted from Electronic
Medical Records (EMR) who were in PICU over the period of ten years.
Authors leveraged anonymized EMR from the PICU at Children’s Hospital
Los Angeles between December 2002 and March 2016. The data for each
patient included information like demographics, diagnoses, and alive or not,
at the end of an encounter with ICU. The RNN-generated scores achieved
signicantly higher accuracy [AUROC higher than 93%] than the clinically
used systems: Pediatric Index of Mortality (PIM 2) and the Pediatric Risk
of Mortality (PRISM 3). Also, it also provided dynamic tracking of patient
condition. The RNN model also outperformed logistic regression and multi-
layer perceptron models.

In the following sections, we go through some of the algorithms developed
by researchers for the classification of diabetes and cardiac arrhythmia.

3.1 Diabetes

Substantial research has been done till now in the context of classifying
diabetes using an artificial neural network. In this section, we look into
some of these studies and get an overview of the algorithms that have been
designed. All of these studies use diabetes database either the PID dataset
or some other database.

In [46] used General Regression Neural Networks (GRNN) and Pima Indian
Diabetes data set for identifying diabetes. In this paper, GRNN model was
assumed to be four layers: input layer with eight features form data set,
two hidden layers with 32 and 16 neurons, respectively. Finally, there was

33

3.1. Diabetes Literature Review

a single neuron in output layer, which determines whether the patient has
diabetes or not. Out of total 768 samples, 75% and 25% of samples were
used for training and testing process. The accuracy achieved with training
and testing phase is 82.99% and 80.21%, respectively.

In [57] used Multilayer Artificial Neural Network with back propagation for
diagnosing diabetes. In backpropagation, neural network compares com-
puted output value with actual value and calculates the error. The weights
are adjusted in each iteration in such a way, that the estimated error to be
always less than the previous round. In this paper, the network consisted of
an input layer with eight neurons, a hidden layer with six neurons and two
neurons in output layer. The data set contains a total 768 samples out of
which 500 samples were used during training and remaining 268 during the
testing phase. The achieved diagnosis accuracy after 2000 rounds of dataset
training becomes 82%.

In [63] used Probability Neural Network (PNN) for diagnosing diabetes.
In this paper, PNN model consisted of an input layer with eight neurons
representing each feature, single hidden layer, and an output layer with two
neurons to diagnose whether a patient has diabetes or not. The dataset
which consists of 768 samples, 90% of samples are used in training and
remaining 10% during the testing phase. The achieved training, and testing
accuracy is 81.49% and 89.56% respectively after 200 rounds.

In [61] used Näıve Bayes, J48 and Radial Based Artificial Neural Network
for diagnosing diabete. Pima Indian dataset with 768 data samples out of
which 268 samples were used during the testing phase. Näıve Bayes proved
to be more efficient with 76.95% accuracy followed by J48 with 76.5% and
RBF with 74.34% accuracy’s, respectively.

In [50] used a data set with 250 data samples consisting of 27 features.
These features also include blood pressure, creatinine, urine PH, fasting
glucose. The average age of patients was between 25 to 78 years. They
used Multi-layer feed-forward artificial neural networks with backpropaga-
tion for diagnosis. Three training functions were applied in backpropa-
gation algorithm namely BFGS Quasi-Newton, Bayesian Regulation and
Levenberg-Marquardt. Bayesian Regulation function achieved highest of
88.8% accuracy more than BFGS Quasi-Newton and Levenberg-Marquardt
functions.

34

3.2. Arrhythmia Literature Review

3.2 Arrhythmia

Significant research have been done till now in the context of classifying
cardiac arrhythmia using an artificial neural network. We look into some of
the studies and get an overview of the algorithms that have been designed.
All of these studies use ECG database either the MIT dataset or ECG
dataset extracted from the various data sources.

Authors in [40] proposed a hybrid structure of fuzzy clustered neural net-
works to classify different types of ECG data with the parametric AR model
coefficients and spectral entropy as the parameters. In this study, a total
of 20 records were randomly selected from the Massachusetts Institute of
Technology- Beth Israel Hospital (MIT-BIH) arrhythmia database with dif-
ferent types of arrhythmias. Between the non-parametric strategies, the
model PNN they suggested provided a better output in the performance.
Comparison of the proposed method with the other existing approaches
revealed that PNN with the clustered features has the higher classification
accuracy as compared with the other techniques as well as in the time taken
for the classification. In the study, the PNN showed an accuracy of 99.05%,
and the MLFFN showed 97.14% respectively for classification of the eight
types of ECG beats.

The authors in [24] applied artificial metaplasticity multilayer perceptron to
classify cardiac arrhythmias. The MIT-BIH Arrhythmia Database was used
to train and test AMMLPs. From 109,871 annotated ECG beats examined
by specialists in MIT-BIH, 1000 were selected for this study, which contains
four different waveforms related to cardiac arrhythmias target. For test
results to be more valuable K-Fold cross-validation was used as minimises
the bias associated with the random sampling of the training. The obtained
AMMLP classification accuracy of 98.25%.

The authors in [69] employed a Probabilistic Neural Network (PNN) for the
classification of normal heart beat and heart beat with some type arrhyth-
mia. They have used MIT-BIH database. A lot of pre-processing was done
on the data before feeding it into the PNN. They used 150 records with
both the category to train the model and 50 records for testing the PNN
model. The achieved classification accuracy was 96.5%.

The authors in [19] proposed an automated classification system for cardiac
arrhythmia by using Artificial Neural Network (ANN). For the classification

35

3.2. Arrhythmia Literature Review

of normal and abnormal classes, ANN with backpropagation was used. Net-
works models were trained and tested on MIT-BIH arrhythmia dataset and
MIT-BIT NSR database. The mixture of arrhythmic and non-arrhythmic
data patient was trained the different structures of ANN. Since the numbers
of neurons in the hidden layer is an effective parameter for improvement in
results, the number of neurons were chosen to achieve the optimum number
based on output results. So one hidden layer had three neurons and five
neurons in the second layer. The classification performance was evaluated
using sensitivity, specificity, classification accuracy and also mean squared
error (MSE). The classification accuracy achieved on MIT database was
96.77% and on combination of MIT and NSR database was 96.21%.

36

Part II

Dataset and Pre-Processing

37

Chapter 4

Datasets

The datasets that have been used in this thesis are the PID dataset [18]
and the MIT dataset [13]. The remainder of this chapter is organized in the
following way. In the first subsection, we discuss the PID dataset and the
techniques which we have used to make data more refined before feeding
into MLFNN. In the next subsection, we discuss the MIT dataset and the
pre-processing methods we have implemented before feeding the data into
CNN and LSTM.

4.1 Diabetes

In this thesis, the PID dataset is taken from the University of California,
Irvine (UCI) repository of machine learning database [18]. This data set is
initially from the National Institute of Diabetes and Digestive and Kidney
Diseases. The test was conducted according to world health organization
criteria and woman inducted in the analysis were 21 years or older age
belonging from PIMA Indian heritage. This dataset is used by various re-
searchers to build classification system. It is the main reason for choosing
this data set as we can compare our study with various other researchers for
Pima Indian Diabetes diagnosing problem. This dataset is composed of a
total of 768 instances. Eight features characterize each instance in the data
set. All the features have numerical values as seen in Table 4.1.

39

4.1. Diabetes Datasets

Table 4.1: Attributes/Features of Pima Indian Data set

Attribute/Features Types/Values

Number of times pregnant Numerical Values

Plasma Glucose Concentration Numerical Values

Diastolic Blood Pressure Numerical Values (in mmHg)

Triceps skin fold thickness Numerical Values (in mm)

2-Hour Serum insulin Numerical Values (in µU/ml)

Body mass index Numerical Values (in kg/m2)

Diabetes pedigree function Numerical Values

Age Numerical Values (in years)

The last value is binary and is used for classification as it is divided into
two classes: Class Zero (Non-diabetic) and Class One (Diabetic). The first
eight features are used as input, and the last value is the ground truth. This
dataset also contains a large portion of missing data as shown in Table 4.2.

Table 4.2: Missing Data in Pima Indian Data set

No. Attribute/Features Types/Values

1 Number of times pregnant -

2 Plasma Glucose Concentration 5

3 Diastolic Blood Pressure 35

4 Triceps skin fold thickness 227

5 2-Hour Serum insulin 374

6 Body mass index 11

7 Diabetes pedigree function 1

8 Age 63

The total number of Diabetic cases are 268 which corresponds to 34.90% of
total cases. The number of Non-diabetic instances is 500 (65.10%).

40

4.2. Arrhythmia Datasets

4.2 Arrhythmia

First, we discuss the selection criteria for the MIT dataset [13]. The MIT
dataset database contains a total of 48 ECG records, each of which is slightly
over 30 minutes. This data was collected between 1975 and 1979 by the
Beth Israel Hospital Arrhythmia Laboratory. The information was obtained
from the patients who were under treatment in the hospital. The records
were chosen at random which included several rare phenomena which are
clinically significant.

In this part, we discuss ECG lead configuration. There are two electrodes
which are placed on the chest collecting upper signal and lower signal. Upper
signal is modified limb lead two signal, and the lower signal is V1. The
signals were reversed in record 114. Due to surgical dressing, the ML2 was
not used in the records 102 and 104, but the modified lead V5 was used to
collect the upper signal.

In this part, we discuss the annotations. Initially, all the beats were labelled
normal by a simple QRS detector. Then the 30 minutes records chart was
provided to two different cardiologists for labelling abnormal beats. After
that, any disagreement between the cardiologists was resolved by auditing
program which analysed the annotations. Initially, the MIT dataset contains
around one million beat labels, and few of the beat labels were changed with
time. Tables 4.3 and 4.4 shows the standard set of annotation codes defined
for ECGs.

41

4.2. Arrhythmia Datasets

Table 4.3: The standard set of annotation codes for Beat Annotations

Symbol Meaning

N Normal Beat

L Left bundle branch block beat

R Right bundle branch block beat

B Bundle branch block beat (unspecified)

A Atrial premature beat

a Aberrated atrial premature beat

J Nodal (junctional) premature beat

S Supraventricular premature beat

V Premature ventricular contraction

F Fusion of ventricular and normal beat

r R-on-T premature ventricular contraction

n Supraventricular escape beat (atrial or nodal)

e Atrial escape beat

j Nodal (junctional) escape beat

E Ventricular escape beat

/ Paced beat

f Fusion of paced and normal beat

Q Unclassifiable beat

? Beat not classified during learning

42

4.2. Arrhythmia Datasets

Table 4.4: The standard set of annotation codes for Non-Beat Annotations

Symbol Meaning

[Start of ventricular flutter/fibrillation

! Ventricular flutter wave

] End of ventricular flutter/fibrillation

x Non-conducted P-wave (blocked APC)

(Waveform onset

) Waveform end

p Peak of P-wave

t Peak of T-wave

u Peak of U-wave

‘ PQ junction

’ J-point

— Isolated QRS-like artifact

+ Rhythm change

s ST segment change

T T-wave change

* Systole

D Diastole

= Measurement annotation

” Comment annotation

@ Link to external data

43

Chapter 5

Data Pre-processing

The real-world databases are highly prone to missing, inconsistent and noisy
data likely due to its origin from heterogeneous sources and typically large
size [34]. Therefore data pre-processing is an important aspect that needs to
be taken into consideration before developing any machine learning model.
There are different pre-processing techniques such as data cleaning, data
integration, data transformation and data reduction. The noise and incon-
sistencies can be removed by implementing data cleaning. The data can
be merged from the various source into a single data warehouse by the use
of data integration. Data reduction can be applied to remove any correla-
tion between the features, eliminating redundancies in the data (same data
appears more than once in the file) and clustering (to make a group of
data with the same properties). Data transformation can be used to scale
between a predefined range [28] [41].

Time series data is comprised of real-valued measurements of multiple pa-
rameters at equal intervals of time. Time series prediction tasks take into
account that the future values in the series are a function of past values
of the same series. Electrocardiogram (ECG) analysis in medicine, stocks
prediction in finance, energy usage prediction in power grids, weather pre-
diction in meteorology and solar activity prediction in space weather are a
few examples of real-life applications of time series modelling and forecast-
ing.

Normalization rescales the data from the original range so that all values

45

5.1. Diabetes Data Pre-processing

are within the specified range of 0 and 1. It can be required in some ma-
chine learning algorithms when your time series data has input values with
differing scales. It needs that you can accurately estimate the minimum
and maximum observable values. You may be able to determine these val-
ues from your available data. Standardization is a process of rescaling the
dataset in which the mean of the values is 0, and the standard deviation is
1. It can be assumed by subtracting the mean value or centring the data.
It can be very efficient and is required in some machine learning algorithms
where the time series data has input values within different scales [29].

ANNs cannot interpret missing values in the data if any and when database
is highly skewed. Missing data becomes a standard issue when working
with medical databases [43]. It can be due to costly medical test which a
patient cannot afford, or the values were taken but not recorded due to time
constraints.

5.1 Diabetes

The process of training in the neural network can be made more effective
by applying some pre-processing techniques on the network inputs before
feeding them into the system. In the PID dataset, we first checked if there
are any correlated features. Correlation can be defined as a measure of how
strongly one input feature depends on another. By removing any correlated
feature, we can increase the speed of learning of an algorithm. Since dele-
tion of such feature will decrease the curse of dimensionality. It can also
reduce the bias in the neural network. Random forest and Logistic regres-
sion classifier can show a decline in performance if there are any correlation
bias [68]. We check if there are any correlated features in the data which
can impact the classification accuracy of the classifiers. Figure 5.1 indicates
that there are no correlated features in the PID dataset.

A few functions can transform inputs data into an improved form for the
usage in the network. The normalization can process the data to be ap-
propriate for the training process. In this process, the data is scaled in
some specific range for every input feature to reduce the bias in the neural
network. It also speeds up training time by starting the training process
for each feature within the same scale. It is very effective when the differ-
ence between the two input features is on the very large scale. On the PID

46

5.1. Diabetes Data Pre-processing

Figure 5.1: Figure showing correlation between the features present in the
PID dataset

dataset, we have used MinMaxScaler for the process of normalization. It
transforms all the features by scaling them into a given range.

The equation 5.1 provides the formula how normalization converts the val-
ues.

MinMaxScaler(feature range = (0, 1), copy = True) (5.1)

It transforms all the features by scaling them in to a given range. The
transformation is given by the following equations 5.2 and 5.3.

Xstd =
X −X.min

X.max−X.min
(5.2)

47

5.2. Arrhythmia Data Pre-processing

Xscaled = Xstd ∗max−min+min (5.3)

Here max and min represents the feature range.

The PID dataset suffers from a lot of missing values. They can impact
the classification accuracy of the neural network model. So, to handle the
missing the data we have used three different techniques. We first removed
all the rows which have some missing attributes. In second, we replaced
all the missing values with zero. In the third technique, we replace all the
missing values with the mean of the other values in the attribute. For this,
we have used imputer from the sklearn library [15]. We replaced all the
missing values in the attribute by mean strategy.

Imputer(missing values =′ NaN ′, strategy =′ mean′, axis = 0)

Axis here can have two values: 0 (to impute along the columns) and 1 (to
impute along the rows). When we need to predict from the finalized model,
the same imputing strategy must be implemented on the new data which
we have applied on the training dataset.

These all are the pre-processing techniques which we have implemented be-
fore feeding the PID dataset into the networks. By visualizing the data, we
have checked for any correlation among the features. There is a vast differ-
ence between the values of attributes in the PID dataset. So, we applied
normalization to rescale the values between a specific range. In the end, for
handling the missing values, we use Imputer from the skearn library to fill
them with the mean of the attribute.

5.2 Arrhythmia

The MIT dataset [13] contains 48 two channel ECG recordings, each record-
ing is little more than 30 minutes, digitized at 360 HZ per channel with
11-bit resolution over a range of 10mV. Our primary purpose is to perform
the minimum pre-processing to the data so that any algorithm can pro-
cess and classify the heartbeats in the format as they were recorded. In
the repository, the data files and annotation files are kept in the Waveform
Database (WFBD) format. There are a total of three extensions for each

48

5.2. Arrhythmia Data Pre-processing

recording. The first one is .dat extension; these are Signal Files. These are
the binary files which contain the sample of digitized signal. For the proper
interpretation of these files we need associated header files, and these files
store the waveforms. The second extension is .hea; these are header files.
These are the small files which describe the content of the related signal
files. The third extension is .ann; these are annotation files. These are the
binary files which contain the annotations referring to specific samples in
the associated files. For extracting and processing these WFDB files, we
have used WFDB software utility. The rdann and rdsamp commands from
WFDB software toolbox are used for converting signal and annotation files
into text files.

We have trained out the network with the individual heartbeats to avoid de-
pendencies between the class labels of consecutive heartbeats. If the network
is trained on original sequence, then implementing heartbeat to heartbeat
independence would not have been possible. The reason is most of the data
in the all sequences have same class label (normal or abnormal). To train
the network on randomized sequence, we need to apply normalization on
all heartbeats so that they can have the same baseline. Here randomization
corresponds to sampling each heartbeat uniformly from all heartbeats in
the original sequence.

R

RR Interval

PR
Interval

QT Interval

 P
Wave

QRS
Complex

ST
Segement

T Wave

P

Q

S

T

Figure 5.2: An ECG of Normal Sinus Rhythm

49

5.2. Arrhythmia Data Pre-processing

In Figure 5.2, we can see different intervals and waves that are present in
an ECG signal. Since all the relevant features are contained around the R
peak, so we extracted a series of samples centred around this peak of the
heartbeats. In this way, in a continuous ECG sequence, we defined and
extracted a single heartbeat.

Figure 5.3: Waveform Plot with Annotation (10 seconds) obtained from
PhysioBank ATM [14]

In Figure 5.3 we can see every heartbeat has been annotated at R peaks.
We calculate the interval between the consecutive R peaks, and it came out
as 0.75 seconds approximately. The window that we have used to extract
the sample has a size of 1 second. With this size of the window, almost all
examples contain three hundred and sixty-one samples. Some cases included
three hundred and sixty samples. In those cases, we duplicated the sample
at the end to make sure same sample size for each heartbeat. We also re-
moved some irrelevant examples such as: in which there were not complete
361 samples, in which annotation was neither normal or some type of ar-
rhythmia. In the end, we have left with around ninety-three thousand five
hundred examples approximately. Out of these around 20% examples had
an annotation with some arrhythmia.

50

Part III

Experiments and Results

51

Chapter 6

Experimental Setup

In this chapter we look into the experimental setup we have implemented for
classification of diabetes and arrhythmia. In the first section, we discuss the
experimental setup of MLFNN for classifying diabetes and explains briefly
the crucial design considerations which we have considered and evaluation
techniques we have used for the experiments. In the second section, we
have described the experimental setup of CNN and LSTM for the task
of classifying arrhythmia. After that, we have explained the evaluation
techniques we have considered for this task.

6.1 Diabetes

In this section, We discuss the network architecture and design consider-
ation of MLFNN for classification of diabetes that are considered for the
experiments. Firstly, we present the network architecture that is used. In
the second part, we discuss the evaluation metrics that are used.

6.1.1 Network Architecture

Key design consideration of a feed-forward neural network is to determine
the overall structure of the network. It includes choosing the depth of the
network and the width of each layer. The depth of network means the num-

53

6.1. Diabetes Experimental Setup

ber the hidden layer and the width corresponds to the number of neurons in
the layer [36]. A single layer feed-forward network is able to represent any
function. The problem with such network is that the layer can be infeasible
and not be able to learn and generalize correctly. In contrast, the deep
models can significantly reduce the number of units per layer and the gen-
eralization error. Another key consideration in designing the network is the
connections between the layers. If we decrease the number of connections,
we can reduce the number of parameters and the amount of computation
that is required to evaluate the network. These all architectural consider-
ations are highly problem dependent. The ideal network architecture for a
task must be found by doing repeated experimentation and monitoring the
evaluation metrics.

We have designed the network with input layer (8 Neurons), three hidden
layers with 50 neurons each and an output layer with a single neuron. The
network architecture can be seen in Figure 6.1

Times Pregnant

Glucose
Concentration

Blood Pressure

Triceps Skin Fold

2-Hour Serum
Insulin

Body Mass Index

Diabetes Pedigree

Age

Diagnosis

Figure 6.1: The MLFNN Network Architecture with Input Layer (8 Neu-
rons), Three Hidden Layers (50 neurons each) and an output layer (1 neu-
ron)

54

6.2. Arrhythmia Experimental Setup

For the MLFNN model evaluation, we have used repeated holdout validation
technique which is also known as Monte Carlo Cross-Validation.

This method can be better illustrated by the following equation 6.1.

ACCaverage =
1

k

k∑
j=1

ACCj (6.1)

We have split the PID dataset into 90% training and 10% testing. Then we
repeated this experiment 150 times with different seed and then compute
the average performance. In this way, every time the model is evaluated on
the randomly selected test set. It gives us a better idea about the model
stability and how well it can perform on random test data.

6.2 Arrhythmia

In this section, we discuss the network architecture and other design consid-
eration that are considered for the experimentation. We have developed a
CNN and LSTM for classifying cardiac arrhythmia. Firstly, we discuss the
network architectures that are used. In the second part we discuss about
the evaluation metrics are used.

6.2.1 Network Architecture

Firstly, we discuss the architectural design of CNN we have used to perform
the experimentation. Generally, a CNN is comprised of an input layer, con-
volutional layers, pooling layers and one or more dense layers. A convolu-
tional layer is specified by the number of filters it has, size, stride, padding of
each filter. CNN network usually contains one or more convolutional layer,
followed by pooling layers and a dense layer which receives the full input of
the previous layer. After a lot of experimentation, we settle down with a
final architecture of CNN. The CNN architecture we have used is comprised
of a convolutional layer with a total of 50 filters of size 30x1. Then we used
a maxpool layer, and it has a size of 5x1. Then there is a fully connected
layer with a total of hundred units followed by a sigmoid layer which has a
single unit. Figure 6.2 provides the in-depth details of the structure of the

55

6.2. Arrhythmia Experimental Setup

used CNN. We used an input layer feeding the data into the network. After
that, there is a Convolution Layer (50 Filters 30x1), Max-Pooling Layer
(5x1). In the end, there is a fully connected layer with a total of 100 units
followed by sigmoid unit presenting the output.

Convolutional Max Pooling Full Connection Full Connection

Figure 6.2: CNN Network Architecture with Convolution Layer (50 Filters
30x1), Max-Pooling Layer (5x1), Fully Connected Layer (100 Units) and
Sigmoid Layer (1 Unit)

Now we discuss the architecture of LSTM we have implemented for classify-
ing cardiac arrhythmia. The LSTM RNNs have an internal memory which
is also known as cells. They consist of three gates which control the flow
of the information through the network. At each timestep, the input and
output gates control the flow of the data, and a forget gate gives an ability
to LSTM to clear the memory. In the experimental setup we have imple-
mented, the network has an LSTM layer with a total of thirty units, and
after that, there is fully connected layer a total of hundred units. In the
end, there is a sigmoid layer with a single unit.

For CNN and LSTM model evaluation, we have used k-fold cross-validation

56

6.2. Arrhythmia Experimental Setup

techniques. In this technique, we split the data into k parts. One part of
this data is used for validation, and other remaining parts act as training
data for model evaluation. For the experiments we have used 4 -fold cross
validation which is illustrated in Figure 6.3.

Test

Test

Test

Test

Mean

Evaluation

Evaluation

Evaluation

Input Dataset

Evaluation

Figure 6.3: K-fold cross-validation scheme, with K=4

57

Chapter 7

Results and Discussions

In this chapter, we discuss the results we have achieved by conducting var-
ious experiments on the PID dataset and the MIT dataset. In the first
section, we focus on the result obtained from experiments performed for the
classification of diabetes on the PID dataset. In the second subsection, we
focus on results we achieved from the experiments conducted for the clas-
sification of arrhythmia on the MIT dataset. All the results try to provide
the answer to the research questions and subordinated research questions
we have discussed in chapter 1 in the research question section 1.2.

7.1 Diabetes

In this section, we present and discuss the results that are obtained for
answering the research question 1 (see 1.2) and subordinated research ques-
tions (see 1.2.1) by implementing MLFNN model for the PID dataset.

In the first experiment, we develop an MLFNN model and then compare
its performance with different classifiers. In the second experiment, we
present and discuss the results obtained by various techniques for handling
the missing data. In the third experiment, we discuss the result obtained by
different activation function on the classification accuracy in the MLFNN
model. In our last experiment, we discuss the results obtained by different
learning algorithm on classification accuracy the MLFNN model.

59

7.1. Diabetes Results and Discussions

7.1.1 Comparison with other classifiers

In this section, we compare the performance of different machine learning
classifier with MLFNN model proposed by us. We are using Näıve Bayes
(NB), Random Forest (RF), Logistic Regression (LR) for the classification
of diabetes. We first discuss about the classifiers we have used for evaluation
and then compare the results with MLFNN model proposed by us.

MLFNN has been explained in theoretical background 2.2. The network
architecture for the model proposed by us has been explained in the section
6.1. So here we provide the result that we achieve with MLFNN. We have
achieved the training accuracy of 80.23% and the testing accuracy of 79.05%
on the PID dataset for the classification of diabetes. This result is achieved
by imputing the missing values with the mean. More details about the
MLFNN model design and experimentation can be found in the paper which
is attached at the end of this thesis in part IV.

Näıve Bayes (NB) classifier is a very straightforward and robust algo-
rithm for the classification task [52]. To understand the NB classifier, we
need to understand the Bayes theorem. So, let’s first discuss the Bayes
theorem. Bayes theorem works on the concept of conditional probability.
Conditional probability is the probability that an event will happen, given
that another event has already occurred. Using the conditional probability,
we can calculate the probability of an event using its prior knowledge.

Equation 7.1 represents the Bayes’ theorem [35]. A and B are two events.

P (A|B) =
P (B|A)P (A)

P (B)
(7.1)

• P(A|B): The conditional probability that an event A occurs, given that
B has already happened. It is also known as the posterior probability.

• P(A) and P(B): The probability of event A and event B respectively.

• P(B|A) : the conditional probability that event B occurs, given that
A has already happened.

NB is a classifier which uses the Bayes theorem. NB predicts membership
probabilities for each class like the probability that a given data belongs to

60

7.1. Diabetes Results and Discussions

a particular class. After that, the probabilities are counted, and the class
which has the highest probability is the most likely class. This concept is
also known as Maximum A Posteriori (MAP).

For NB classifier, we have achieved the training accuracy of 75.11% and the
testing accuracy of 67.53%.

True Negative
35

False Negative
10

True Positive
17

False Positive
15

Figure 7.1: Confusion Matrix for Näıve Bayes

Table 7.1: Classification Report for Näıve Bayes

precision recall f1-score support

0 0.78 0.70 0.74 50

1 0.53 0.63 0.58 27

avg / total 0.69 0.68 0.68 77

Figure 7.1 shows the confusion matrix by NB classifier. True negative are
the cases which are not diabetes and model predicts it in the same way.
False positive are the cases which are not diabetes, but model predicts it to
be diabetes. In our test data, there are a total of 50 cases which are non-
diabetic. The NB classifier is predicting 35 of them correctly but 15 cases
which are non-diabetic it is predicting them wrong by classifying them as
diabetic. True positive are the cases which are diabetes and model predicts
it the same way. False negative which are diabetes, but model predicts it
to be not diabetes. In the same way, there are a total of 27 diabetic cases

61

7.1. Diabetes Results and Discussions

out of which NB classifier is predicting 17 cases correctly but rest 10 cases
incorrectly.

Table 7.1 shows the classification report of NB classifier. The classification
report generates statistics based on the confusion matrix values. Recall
here is the true positive rate and sensitivity. It shows how well the model is
classifying diabetes when the result is actually diabetes. For NB classifier
we achieve 63% recall. Precision is also positive predictor value. It shows
how often the patient had diabetes and model said they would. NB classifier
has a precision of 53%.

Random Forest (RF) algorithm is a type of supervised classification algo-
rithm [59]. RF create a forest with many trees. There is a direct relationship
between the number of trees in the forest and the results it can get. The
higher the number of trees, the more accurate the result. There are many
advantages of using RF. We can use it for both classification and regression
tasks. RF algorithm can counter one critical problem that can make the
results worse like by overfitting (when a model learns the training data to
such a extent that it negatively impacts the performance of the model on
test data), but for RF algorithm, if there are enough trees in the forest, the
classifier won’t overfit the model. The third advantage is RF classifier can
handle missing values, and the last advantage is that the RF classifier can
be modelled for categorical values. There are two stages in RF algorithm;
in the first stage, the creation of the random forest, the other is to predict
the random forest classifier built in the first stage.

For RF classifier, we have achieved the training accuracy of 99.42% and the
testing accuracy of 71.43%.

62

7.1. Diabetes Results and Discussions

True Negative
38

False Negative
10

True Positive
17

False Positive
12

Figure 7.2: Confusion Matrix for Random Forest

Table 7.2: Classification Report for Random Forest

precision recall f1-score support

0 0.79 0.76 0.78 50

1 0.59 0.63 0.61 27

avg / total 0.72 0.71 0.72 77

Figure 7.2 shows the confusion matrix by RF classifier. In our test data,
there are a total of 50 cases which are non-diabetic. The RF classifier is
predicting 38 of them correctly but 12 cases which are non-diabetic it is
predicting them wrong by classifying them as diabetic. In the same way,
there are a total of 27 diabetic cases out of which RF classifier is predicting
17 cases correctly but rest 10 cases incorrectly. So there is sight improvement
as compared to NB classifier in the RF classifier when it is classifying the
cases which are not diabetic.

Table 7.2 shows the classification report of RF classifier. For RF classifier
we achieves same 63% recall as we achieved for NB classifier. There is slight
improvement in the precision. RF classifier achieves 59% precision.

Logistic Regression (LR) model is a type of supervised classification
model involving a linear discriminant [56]. Given a set of inputs, LR does
not try to predict the value of a numeric variable. Instead, it predicts that

63

7.1. Diabetes Results and Discussions

the output is a probability that the given input point belongs to a particular
class. The central principle of Logistic Regression is the assumption that
the input space can be separated into two regions, one for each class, by
using a linear boundary. This dividing plane is called a linear discriminant,
because, its linear function, and it helps the model classify between points
belonging to different classes. The logistic regression models are categorized
based on the number of target classes and use the functions like sigmoid or
softmax functions to predict the target class. LR model uses the sigmoid
function when there is binary classification task and softmax function when
there is multi-classification task.

For LR classifier, we have achieved the training accuracy of 77.71% and the
testing accuracy of 72.73%.

True Negative
40

False Negative
11

True Positive
16

False Positive
10

Figure 7.3: Confusion Matrix for Logistic Regression

Table 7.3: Classification Report for Logistic Regression

precision recall f1-score support

0 0.78 0.80 0.79 50

1 0.62 0.59 0.60 27

avg / total 0.73 0.73 0.73 77

Figure 7.3 shows the confusion matrix by LR classifier. The LR classifier
is predicting 40 non-diabetic cases correctly but 10 cases which are non-

64

7.1. Diabetes Results and Discussions

diabetic it is predicting them wrong by classifying them as diabetic. In the
same way, there are a total of 27 diabetic cases out of which LR classifier is
predicting 16 cases correctly but rest 11 cases incorrectly. So there is sight
improvement in LR classifier as compared to NB and RF classifier when it
is classifying the cases which are not diabetic cases.

Table 7.3 shows the classification report of LR classifier. For LR classifier we
achieves same 59% recall which is less then from both NB and RF classifier.
There is improvement in the precision. LR classifier achieves 62% precision.

Table 7.4: Performance of different classifiers

NB LR RF MLFNN

Training Accuracy% 75.11 77.71 99.42 80.23

Testing Accuracy% 67.53 72.73 71.43 79.05

Table 7.4 shows that the MLFNN model performs better than all other
classifiers giving the highest accuracy of 79.05%. All the experiments are
performed on the PID dataset by imputing the missing values with mean.
The RF classifier gives the highest accuracy during training (99.42%), but
the testing accuracy is 71.43%. The least testing accuracy has been provided
by NB classifier (67.53%). This can be explained by the fact that MLFNN
can model the highly skewed data with its complex structure. The depth
of the neural network and backpropagation algorithm helps the model to
adjust the weights in such a way that it can provide the highest accuracy
with the testing data.

65

7.1. Diabetes Results and Discussions

7.1.2 Handling Missing Data

In this experiment, we have used three different approaches to handle the
missing data.

The first approach and easiest way to deal with the missing values are to
remove the instances with missing values. This technique may lead to the
loss of highly valuable information but is very useful when the database is
highly skewed. There is a total of 768 instances, but after removing cases
the missing values, we are left with only 392 cases.

The second approach is to replace all missing values with zeros. We fill all
the values that are missing in the dataset with zero. The problem with this
technique is that sometimes it does not make any sense when the attribute
has zero value. In this dataset, let us suppose that some data from blood
pressure attribute is missing. It does not seem natural that a person has
a zero blood pressure. Similarly, there are other attributes, replacing them
with zero does not make sense.

The third technique is to impute all missing values with mean value. In this
method, the missing value of an attribute is replaced by the average of all
the available values of the same attribute in the data. Table 7.5 shows the
classification performance of all the three approaches.

Table 7.5: Performance with variation in techniques to handle missing data

Remove
samples

Replace
(mean)

Replace
(zero)

Training
Accuracy%

83.91 80.23 81.00

Testing Ac-
curacy%

82.50 79.05 78.93

Training
MSE

0.111 0.131 0.130

Testing
MSE

0.131 0.145 0.149

66

7.1. Diabetes Results and Discussions

The testing accuracy after removing the sample (82.5%) is superior then
replacing the missing values with the mean (79.05%) followed by replacing
with zero (78.93%). The reason behind this behaviour is that sometimes
replacing values make it hard for the neural network to properly adjust the
impact of certain features which normally plays a crucial role in solving the
problem.

In Figure 7.4, it can be seen that loss is decreasing with the number of
epochs for the testing set. In Figure 7.5 we can see that after 100 epochs
there is an increase in the loss for the testing set but the model is working
well on training data. This is clear indication that the model is overfitting
the data. In Figure 7.6 it can be seen that loss on testing data becomes
stable after 100 epochs and remain almost same even after 500 epochs.

0 100 200 300 400 500
epoch

0.12

0.14

0.16

0.18

0.20

0.22

0.24

lo
ss

Model Loss ELU
Train
Test

Figure 7.4: Figure showing change in the Loss per epoch after removing the
missing values. The figure shows one example out of 150 randomly selected
test sets.

67

7.1. Diabetes Results and Discussions

0 100 200 300 400 500
epoch

0.12

0.14

0.16

0.18

0.20

0.22

0.24

lo
ss

Model Loss ELU
Train
Test

Figure 7.5: Figure showing change in the Loss per epoch after Replacing
the missing values with zero. The figure shows one example out of 150
randomly selected test sets.

0 100 200 300 400 500
epoch

0.14

0.16

0.18

0.20

0.22

0.24

lo
ss

Model Loss ELU
Train
Test

Figure 7.6: Figure showing change in the Loss per epoch after imputing
the missing values with mean. The figure shows one example out of 150
randomly selected test sets.

68

7.1. Diabetes Results and Discussions

7.1.3 Activation Units

In this experiment, we compare classification performance of four differ-
ent activation units with Adam as a learning algorithm. Table 7.6 shows
the performance results of four activation units we have considered for the
experiment.

Table 7.6: Performance with variation in activation functions

ELU SELU Leaky ReLU ReLU

Training Accuracy% 83.91 87.11 92.63 98.98

Testing Accuracy% 82.50 82.05 81.15 78.73

Training MSE 0.111 0.094 0.057 0.011

Testing MSE 0.131 0.132 0.143 0.178

The results show that the ELU gives the highest accuracy of 82.5% followed
by SELU (82.05%), Leaky ReLU (81.15%) and ReLU (78.73%). ELU
and SELU have improved learning characteristics as compared with other
two activations for the PID dataset. In contrast with ReLU, ELU does
not merely discard the neurons with negative values, which allows them to
push mean unit activation closer to zero like batch normalization. ELU
activation is more robust to noise whereas Leaky ReLU, which also consider
negative values do not ensure noise robust deactivation state. SELU allows
constructing self-normalizing neural networks. It pushes activation’s to zero
mean and unit variance, leading to the same effect as batch normalization,
avoiding exploding and vanishing gradient.

On the training set, the loss for ReLU (0.011362) is lowest followed by Leaky
ReLU (0.057298). The loss in the other two activations ELU and SELU are
0.111245 and 0.094413 respectively. Figure 7.7 shows that the loss in the
testing set is decreasing with increase in the number of epochs. Figure 7.8
indicates that the after 210 epochs the loss in testing set starts increasing.
It is a clear sign of overfitting. Figure 7.9 shows that the loss in the testing
set for SELU activation function becomes almost stable after 200 epochs.
Figure 7.10 shows the overfitting issue for ReLU activation function after
70 epochs declining the performance of the model on testing set.

69

7.1. Diabetes Results and Discussions

0 100 200 300 400 500
epoch

0.12

0.14

0.16

0.18

0.20

0.22

0.24

lo
ss

Model Loss ELU
Train
Test

Figure 7.7: Figure showing change in the Loss per epoch ELU activation
function. The figure shows one example out of 150 randomly selected test
sets.

0 100 200 300 400 500
epoch

0.075

0.100

0.125

0.150

0.175

0.200

0.225

lo
ss

Model Loss Leaky_ReLU
Train
Validation

Figure 7.8: Figure showing change in the Loss per epoch Leaky ReLU acti-
vation function. The figure shows one example out of 150 randomly selected
test sets.

70

7.1. Diabetes Results and Discussions

0 100 200 300 400 500
epoch

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

lo
ss

Model Loss SELU
Train
Validation

Figure 7.9: Figure showing change in the Loss per epoch SELU activation
function. The figure shows one example out of 150 randomly selected test
sets.

0 100 200 300 400 500
epoch

0.05

0.10

0.15

0.20

lo
ss

Model Loss ReLU
Train
Validation

Figure 7.10: Figure showing change in the Loss per epoch ReLU activation
function. The figure shows one example out of 150 randomly selected test
sets.

71

7.1. Diabetes Results and Discussions

7.1.4 Learning Algorithms

In our last experiment, we study the impact of two different learning SGD
and Adam algorithm on classification performance on the PID dataset.

Table 7.7: Performance with variation in learning algorithms

Adam SGD

Training Accuracy% 83.91 78.93

Testing Accuracy% 82.5 78.43

Training MSE 0.111 0.140

Testing MSE 0.131 0.146

Table 7.7 shows the classification performance of SGD and Adam algorithm
using ELU as an activation function on the PID dataset.

Not surprisingly, we find the performance of Adam (82.5%) is better than
SGD (78.4%). Since for the SGD, adjusting the learning rate is one of
the crucial parameters, and we are using the default learning rate, and it
is taking predefined steps to reduce the error. Whereas, Adam is cleverly
adjusting the learning rate according to the variance in gradient values it
encounters.

In Figure 7.14 it can be seen that loss in testing data is decreasing with the
increase in the number of epochs. In Figure 7.15 it can be seen that the
loss in the testing data becomes stable after 100 epochs. After 500 epochs
the loss for testing data is approximately 0.15 for Adam whereas it is 0.17
for SGD.

72

7.1. Diabetes Results and Discussions

0 100 200 300 400 500
epoch

0.12

0.14

0.16

0.18

0.20

0.22

0.24

lo
ss

Model Loss ELU
Train
Test

Figure 7.11: Figure showing change in the Loss per epoch for Adam learning
algorithm. The figure shows one example out of 150 randomly selected test
sets.

0 100 200 300 400 500
epoch

0.14

0.16

0.18

0.20

0.22

0.24

lo
ss

Model Loss ELU
Train
Test

Figure 7.12: Figure showing change in the Loss per epoch for SGD learning
algorithm. The figure shows one example out of 150 randomly selected test
sets.

73

7.2. Arrhythmia Results and Discussions

7.2 Arrhythmia

In this section, we present and discuss the results obtained by CNN and
LSTM architectures on the MIT dataset. For training the networks, we
have used stochastic gradient descent algorithm (SGD) with batch size 256.
Cross-entropy is the loss function which has been used in all the experiments.
In the first experiment, we evaluated the classification performance of CNN
and LSTM architectures. In the second experiment, we discuss, how the
L2 regularization lambda impacts the classification performance of LSTM
architecture. In the third experiment, we have discussed the impact of
the number of epochs on classification accuracy in the LSTM architecture.
All the results try to provide the answer to the research questions and
subordinated research questions (see 1.2.2) we have discussed in chapter
(see 1).

7.2.1 Comparison of CNN with other algorithms

In this section, we present the comparison of our results with existing lit-
erature. Table 7.8 and 7.9 provides the information regarding the mod-
elling techniques and performance achieved by models developed by other
researchers on the MIT dataset. Our CNN model provides the higher clas-
sification accuracy (99.19%) as compared with other models.

Table 7.8: Comparison of classification accuracy achieved by CNN model
developed in this thesis with other algorithm developed by researchers for
ECG classification

Researchers Modeling Technique
Performance
Measures

Accuracy
(%)

R.Ceylan et al.
(2008) [26]

3-layered FFNN,
T2FCNN, fuzzy clus-
tering neural network

Sensitivity,
Specificity,
Average
detection
rate

96.70
100
98.35

A.Dallali et al.
(2011) [31]

FCM and heart rate vari-
ability (HRV)

Accuracy 99.05

74

7.2. Arrhythmia Results and Discussions

Table 7.9: Comparison of classification accuracy achieved by CNN model
developed in this thesis with other algorithm developed by researchers for
ECG classification

Researchers Modeling Technique
Performance
Measures

Accuracy
(%)

M.Vijayavan an
et al. (2014) [69]

Feed forward PNN classi-
fier Trained with extracted
features

Accuracy 96.5

S.Yu et al. (2008)
[72]

PNN (radial basis layer
and competitive layer), 3-
layer FFNN with back
propagation algorithm

Sensitivity,
Specificity,
Overall
accuracy

98.508
99.906
98.710

M.Das et al.
(2014) [33]

MLPNN classi-
fier ST+MLPNN,
ST+WT+MLPNN

Sensitivity,
Accuracy

69.38
97.5

X.Tang et al.
(2014) [67]

QNN trained using gradi-
ent descent method

Accuracy 91.7

J.Nasiri et al.
(2009) [55]

Genetic algorithm-SVM Accuracy 93.46

A.Muthuchu dar
et al. (2013) [53]

Feed forward network
with back propagation
algorithm as training
algorithm

Accuracy 96

Z.Zidelmal et al.
(2013) [74]

SVM with rejection

Average
accuracy
with no
rejection,
Minimal
classifica-
tion cost

97.2
98.8

Our Work CNN Accuracy 99.19

75

7.2. Arrhythmia Results and Discussions

7.2.2 Evaluation of CNN and LSTM models

In this experiment, we present the evaluation of the performance of CNN
and LSTM model on the MIT dataset. The learning rate is initialized to
0.01 and decremented by 6 x 10−6 at each epoch. There are a total of 1500
epochs used for both LSTM and CNN model. For updating the weights,
Nesterov momentum [65] has been used.

Table 7.10 and 7.11 provides the detail of the classification accuracy and
time taken by single epoch (in seconds) for both the LSTM and CNN ar-
chitecture. As mentioned in the network architecture for Arrhythmia we
have used 4-fold cross-validation. So, the classification of all the folds are
provided and, in the end, the average has been taken. The similar proce-
dure has been followed for the time taken by single epoch. We can notice
that the classification performance of CNN architecture (99.19%) is more
than the LSTM architecture (98.41%). This variation in results shows that
CNN is performing better then LSTM for the MIT dataset. Time taken by
LSTM for single epoch is 0.19 seconds (average) which is much less than
the average time taken by CNN model for single epoch (4.5 seconds). The
performance of CNN and LSTM are mostly problem dependent. LSTM
models with their ability to store data in their memory generally perform
well in the prediction task. Also, they perform better when the input is
of arbitrary length [71]. There are also a lot of hyperparameters, tuning
them could have provided a different result. So, for the network architec-
ture and hyperparameter tuning we have used for this experiment with the
MIT dataset CNN has shown the better result as compared to LSTM.

Table 7.10: Performance of CNN and LSTM models with 4-Fold cross vali-
dation

λ = 0.0

CV1 CV2 CV3 CV4 Average

CNN Accuracy 99.48 99.1 99.19 98.98 99.19

LSTM Accuracy 98.98 98.66 98.06 97.93 98.41

CNN Time(s) 5.297 4.458 4.458 4.459 4.668

LSTM Time(s) 0.190 0.190 0.190 0.190 0.190

76

7.2. Arrhythmia Results and Discussions

Table 7.11: Performance of CNN and LSTM models

λ = 0.001

CV1 CV2 CV3 CV4 Average

CNN Accuracy 99.49 99.24 98.96 98.96 99.16

LSTM Accuracy 98.63 98.4 97.92 97.79 98.18

CNN Time(s) 4.559 4.558 4.559 4.558 4.559

LSTM Time(s) 0.192 0.192 0.192 0.192 0.192

λ = 0.002

CV1 CV2 CV3 CV4 Average

CNN Accuracy 99.58 99.3 99.03 98.8 99.18

LSTM Accuracy 98.52 98.22 97.82 97.76 98.08

CNN Time(s) 4.559 4.559 4.559 4.559 4.559

LSTM Time(s) 0.195 0.194 0.194 0.194 0.194

λ = 0.003

CV1 CV2 CV3 CV4 Average

CNN Accuracy 99.51 99.28 98.87 98.75 99.10

LSTM Accuracy 98.63 98.25 97.73 97.62 98.056

CNN Time(s) 4.559 4.558 4.558 4.558 4.558

LSTM Time(s) 0.195 0.194 0.194 0.194 0.194

λ = 0.004

CV1 CV2 CV3 CV4 Average

CNN Accuracy 99.49 99.28 98.86 98.59 99.05

LSTM Accuracy 98.64 98.27 97.89 97.69 98.12

CNN Time(s) 4.559 4.570 4.558 4.558 4.561

LSTM Time(s) 0.201 0.200 0.200 0.200 0.200

77

7.2. Arrhythmia Results and Discussions

97.40

97.60

97.80

98.00

98.20

98.40

98.60

98.80

99.00

99.20

99.40

0 0.001 0.002 0.003 0.004

A
cc

u
ra

cy

Lambda

CNN vs LSTM

CNN LSTM

Figure 7.13: Graphical representation of performance of CNN and LSTM
models

As can be seen in Figure 7.13 the performance of CNN simply outperforms
the performance of LSTM model. The variation in value L2 regularization
λ degrades the classification accuracy in both the models.

78

7.2. Arrhythmia Results and Discussions

7.2.3 Evaluation of LSTM model with Variation in Regular-
ization

In this experiment, we present the evaluation of the performance of LSTM
model with the variation in the L2 regularization coefficient λ. The regular-
ization is added to loss function which prevents the model from overfitting
the training data. L2 regularization of the parameters, encourages all the
parameters to be small, instead of being peaky [36]. So the network to pay
equal attention to all dimensions of the input vector which leads to smooth
network mapping in a neural network.

As can be seen in tables 7.12, 7.13 and 7.14 the classification performance of
the LSTM networks falls with the increase in the regularization coefficient
λ. We are performing the testing on the uniformly spaced value between
0.0 to 0.1 (0.0, 0.001, 0.002, , 0.1). We have used 4-fold cross-
validation and show the average accuracies per fold over all the values of λ.
When λ is 0.0, then the classification accuracy is maximum which is 98.4%.
After that with slight variation, it is decreasing with the increase in the
value of λ. At λ 0.1 the classification accuracy is 98.02% which is less than
the accuracy at λ 0.0. There is also not so much significant change in the
time taken for a single epoch. So we can conclude that increasing the value
of λ leads to a significant drop in the performance of the LSTM network.

Table 7.12: Performance of LSTM model with Variation in L2 Regulariza-
tion Parameter λ

λ = 0.0

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.98 98.66 98.06 97.93 98.40

LSTM Time(s) 0.190 0.190 0.190 0.190 0.190

λ = 0.001

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.63 98.4 97.92 97.79 98.18

LSTM Time(s) 0.192 0.192 0.192 0.192 0.192

79

7.2. Arrhythmia Results and Discussions

Table 7.13: Performance of LSTM model with Variation in L2 Regulariza-
tion Parameter λ

λ = 0.002

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.52 98.22 97.82 97.76 98.08

LSTM Time(s) 0.192 0.192 0.192 0.192 0.192

λ = 0.003

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.63 98.25 97.73 97.62 98.05

LSTM Time(s) 0.195 0.194 0.194 0.194 0.194

λ = 0.004

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.64 98.27 97.89 97.69 98.12

LSTM Time(s) 0.201 0.200 0.200 0.200 0.200

λ = 0.005

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.7 98.29 97.79 97.61 98.09

LSTM Time(s) 0.201 0.201 0.201 0.200 0.201

λ = 0.006

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.61 98.27 97.58 97.65 98.02

LSTM Time(s) 0.203 0.203 0.202 0.202 0.202

λ = 0.007

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.67 98.36 97.72 97.55 98.07

LSTM Time(s) 0.201 0.201 0.201 0.201 0.201

80

7.2. Arrhythmia Results and Discussions

Table 7.14: Performance of LSTM model with Variation in L2 Regulariza-
tion Parameter

λ = 0.008

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.64 98.39 97.78 97.51 98.08

LSTM Time(s) 0.201 0.201 0.201 0.201 0.201

λ = 0.009

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.64 98.25 97.71 97.53 98.03

LSTM Time(s) 0.202 0.202 0.202 0.202 0.202

λ = 0.1

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.66 98.35 97.58 97.5 98.02

LSTM Time(s) 0.202 0.201 0.201 0.201 0.201

81

7.2. Arrhythmia Results and Discussions

97.80

97.90

98.00

98.10

98.20

98.30

98.40

98.50

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

A
cc
u
ra
cy

Lambda

LSTM

Figure 7.14: Graphical representation of performance of LSTM model with
Variation in L2 Regularization Parameter

As can be seen in Figure 7.14 the performance of LSTM can be seen down-
grading with the variation in the L2 regularization λ. The best accuracy of
LSTM (98.40%) comes when λ is 0.0. After that, the classification accuracy
starts decreasing with the increase in the value of λ.

82

7.2. Arrhythmia Results and Discussions

7.2.4 Evaluation of LSTM Model with Variation in Number
of Epochs

In the last experiment, we present the evaluation of LSTM network by
changing the number of epochs. The previous analyses were performed
with a total of 1500 epochs. An epoch can be defined as one forward pass
and one backward pass for all training examples. So basically, it describes
the total number of time the algorithm has seen the entire dataset.

Table 7.15: Performance of LSTM model with variation in the number of
epochs

Epochs = 500

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.63 98.49 97.22 97.32 97.91

LSTM Time(s) 0.064 0.064 0.064 0.064 0.06

Epochs = 1000

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.64 98.38 97.8 97.76 98.14

LSTM Time(s) 0.151 0.150 0.148 0.149 0.149

Epochs = 1500

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.98 98.66 98.06 97.93 98.41

LSTM Time(s) 0.190 0.190 0.190 0.190 0.190

Epochs = 2000

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.8 98.68 98.14 98.11 98.43

LSTM Time(s) 0.257 0.256 0.256 0.256 0.256

Epochs = 2500

CV1 CV2 CV3 CV4 Average

LSTM Accuracy 98.92 98.66 98.2 98.14 98.48

LSTM Time(s) 0.384 0.383 0.382 0.382 0.383

83

7.2. Arrhythmia Results and Discussions

Table 7.15 shows the detail of classification accuracy and average time taken
by single epoch for the different number of epochs. We have achieved a
classification accuracy of 98.40% with 1500 epochs. When we check the
result from 500 to 1500 epochs by uniformly incrementing them by 500
we can to see a small margin of increase in the classification accuracy as
can be seen in Figure 7.15. At 500 epochs the accuracy was 97.91% which
increased to 98.48% at 2500 epochs. There is a significant increase in time
taken by the network to train. At 500 epoch network took an average of
0.064 seconds per epoch to train which increased to 0.383 seconds per epoch
at 2500 epochs.

97.6

97.7

97.8

97.9

98

98.1

98.2

98.3

98.4

98.5

98.6

500 1000 1500 2000 2500

A
cc
u
ra
cy

Epochs

LSTM

Figure 7.15: Graphical representation of performance of LSTM model with
variation in the number of epochs

84

Chapter 8

Conclusion and Future Work

This thesis has focused on implementing the deep learning algorithms in the
medical domain. We have built deep learning models for the classification
of the two medical anomalies: diabetes and cardiac arrhythmia.

In the first task, we present a multi-layer feed forward neural network
(MLFNN) for classification of diabetes type 2 using the Pima Indian Di-
abetes (PID) dataset. The MLFNN model outperforms Näıve Bayes (NB),
Random Forest (RF) and Logistic Regression(LR) in the classification ac-
curacy. We also discussed how different techniques to handle the missing
data plays a crucial role in improving the classification accuracy of the dia-
betes type 2. The accuracy with removing the instances with missing values
outperforms the techniques where we replaced these instances with mean or
zero. Furthermore, a comparative study is carried out using different acti-
vation units and learning algorithms, which plays a crucial role in solving
the problem in the neural network. Since activation units like ELU and
SELU do not merely discard negative outputs by neurons, they proved to
work better for the PID dataset as compared to ReLU and Leaky ReLU.
We also go through learning algorithms like Adam and SGD impact on the
performance of MLFNN for the PID dataset. Adam with its adaptive na-
ture outperforms SGD algorithm in the classification accuracy. We conclude
that the architectural design plays a crucial role in improving the efficiency
of the MLFNN model and needs to choose with careful experimentation,
analysis and according to the dataset.

85

Conclusion and Future Work

For the future work, we will try to improve accuracy by applying various
feature selection techniques. We would also like to test the model with a
larger dataset.

In the second task, we classify different types of cardiac arrhythmia us-
ing Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) models. We evaluated the performance of CNN and LSTM on clas-
sifying arrhythmia. We have avoided any extensive pre-processing in work
to gain the in-depth visions of capabilities of CNN and LSTMs. CNN has
outperformed LSTM in the classification accuracy. Furthermore, we contin-
ued our experiments by incrementing the value L2 regularization coefficient
λ from 0.0 to 0.1 at uniform intervals. This resulted in down gradation of
classification accuracy of the LSTM network. We also showed how the num-
ber of epochs in LSTM impact the classification accuracy. The model we
have developed has 1500 epochs and increasing the number increments the
performance of LSTM with a very small margin. All-over we have achieved
test accuracy that surpasses the other work done by researchers on the MIT
dataset.

Since we have implemented minimum preprocessing, for the future work, we
will try to apply various pre-processing techniques which can produce the
better results. We will also try to extend our work and see if the model can
predict any future cardiac arrhythmia. As an extension of this work, we
will try to combine CNN and LSTM layers and check if this architectural
design can produce a even more accurate result.

86

References

1. Artificial intelligence neural networks- available at -
http://www.w3ii.com/artificial intelligence/artificial intelligence -
neural networks.html.

2. Artificial neural networks-deep learning for java-available at-
https://prateekvjoshi.com/2012/08/14/artificial-neural-networks/.

3. Backpropagation - from wikipedia, available at -
https://en.wikipedia.org/wiki/backpropagation.

4. A beginner’s guide to understanding convolutional
neural networks - adit deshpande - available -
https://adeshpande3.github.io/adeshpande3.github.io/a-beginner’s-
guide-to-understanding-convolutional-neural-networks/.

5. Classification and loss evaluation - softmax and cross entropy loss, avail-
able at - https://deepnotes.io/softmax-crossentropy.

6. Essentials of deep learning : Introduction to long short term
memory - pranjal srivastava , december 10, 2017 - - avail-
able - https://www.analyticsvidhya.com/blog/2017/12/fundamentals-
of-deep-learning-introduction-to-lstm/.

7. Everything you need to know about neural networks,
https://hackernoon.com/everything-you-need-to-know-about-neural-
networks-8988c3ee4491.

8. Global report on diabetes - published by world health organization -
available at - https://www.who.int/diabetes/global-report/en/.

9. Implementation of xor gate using multi-layer perceptron/error back
propogation, http://vlabs.iitb.ac.in/vlabs-dev/labs/machine learn-
ing/labs/exp2/theory.php.

87

References References

10. Introduction to deep neural networks (deep learning) - deep learning
for java open-source, distributed, deep learning library for the jvm -
available at-https://deeplearning4j.org/neuralnet-overview.

11. Log analytics with deep learning and machine learning
- by jagreet kaur gill — may 28, 2017 - available at-
https://www.xenonstack.com/blog/data-science/log-analytics-with-
deep-learning-and-machine-learning.

12. Loss functions and optimization algorithms. demystified, available
at - https://medium.com/data-science-group-iitr/loss-functions-and-
optimization-algorithms-demystified-bb92daff331c.

13. Mit-bih arrhythmia database - moody gb, mark rg. the impact
of the mit-bih arrhythmia database. ieee eng in med and biol
20(3):45-50 (may-june 2001). (pmid: 11446209) - available at -
https://www.physionet.org/physiobank/database/mitdb/.

14. Physiobank atm - https://physionet.org/cgi-bin/atm/atm.

15. scikit learn library - sklearn.preprocessing.imputer- - available -
http://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.imputer.html.

16. Understanding activation functions in neural networks,
https://medium.com/the-theory-of-everything/understanding-
activation-functions-in-neural-networks-9491262884e0.

17. Understanding lstm networks - posted on august 27, 2015 - colah’s blog -
available - http://colah.github.io/posts/2015-08-understanding-lstms/.

18. Pima indian dataset, https://archive.ics.uci.edu/ml/machine-learning-
databases/pima-indians-diabetes, 2017.

19. MK Abhinav-Vishwa, SD Lal, and P Vardwaj. Clasification of arrhyth-
mic ecg data using machine learning techniques. International Journal
of Interactive Multimedia and Artificial Intelligence, 1(4), 2011.

20. U Rajendra Acharya, Hamido Fujita, Oh Shu Lih, Muhammad Adam,
Jen Hong Tan, and Chua Kuang Chua. Automated detection of coro-
nary artery disease using different durations of ecg segments with con-
volutional neural network. Knowledge-Based Systems, 132:62–71, 2017.

88

References References

21. Melissa Aczon, David Ledbetter, L Ho, Alec Gunny, Alysia Flynn, Jon
Williams, and Randall Wetzel. Dynamic mortality risk predictions in
pediatric critical care using recurrent neural networks. arXiv preprint
arXiv:1701.06675, 2017.

22. Marios Anthimopoulos, Stergios Christodoulidis, Lukas Ebner, Andreas
Christe, and Stavroula Mougiakakou. Lung pattern classification for in-
terstitial lung diseases using a deep convolutional neural network. IEEE
transactions on medical imaging, 35(5):1207–1216, 2016.

23. American Diabetes Association et al. Standards of medical care in
diabetes—2015 abridged for primary care providers. Clinical diabetes:
a publication of the American Diabetes Association, 33(2):97, 2015.

24. Y Benchaib, Alexis Marcano-Cedeno, Santiago Torres-Alegre, and
Diego Andina. Application of artificial metaplasticity neural networks
to cardiac arrhythmias classification. In International Work-Conference
on the Interplay Between Natural and Artificial Computation, pages
181–190. Springer, 2013.

25. Emelia J Benjamin, Michael J Blaha, Stephanie E Chiuve, Mary Cush-
man, Sandeep R Das, Rajat Deo, J Floyd, M Fornage, C Gillespie,
CR Isasi, et al. Heart disease and stroke statistics-2017 update: a
report from the american heart association. Circulation, 135(10):e146–
e603, 2017.

26. Rahime Ceylan, Yüksel Özbay, and Bekir Karlik. A novel approach
for classification of ecg arrhythmias: Type-2 fuzzy clustering neural
network. Expert Systems with Applications, 36(3):6721–6726, 2009.

27. Min Chen, Yixue Hao, Kai Hwang, Lu Wang, and Lin Wang. Disease
prediction by machine learning over big data from healthcare commu-
nities. IEEE Access, 5:8869–8879, 2017.

28. Haibin Cheng, Pang-Ning Tan, Christopher Potter, and Steven
Klooster. Detection and characterization of anomalies in multivariate
time series. In Proceedings of the 2009 SIAM International Conference
on Data Mining, pages 413–424. SIAM, 2009.

29. Bertrand Clarke, Ernest Fokoue, and Hao Helen Zhang. Principles
and theory for data mining and machine learning. Springer Science &
Business Media, 2009.

89

References References

30. Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289, 2015.

31. A Dallali, A Kachouri, and M Samet. Classification of cardiac arrhyth-
mia using wt, hrv, and fuzzy c-means clustering. Signal Processing: An
Int. J.(SPJI), 5(3):101–109, 2011.

32. Chaitrali S Dangare and Sulabha S Apte. Improved study of heart
disease prediction system using data mining classification techniques.
International Journal of Computer Applications, 47(10):44–48, 2012.

33. Manab Kumar Das and Samit Ari. Ecg beats classification using mix-
ture of features. International scholarly research notices, 2014, 2014.

34. Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The
kdd process for extracting useful knowledge from volumes of data. Com-
munications of the ACM, 39(11):27–34, 1996.

35. Dennis G Fryback. Bayes’ theorem and conditional nonindependence
of data in medical diagnosis. Computers and Biomedical Research,
11(5):423–434, 1978.

36. Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

37. UK Prospective Diabetes Study (UKPDS) Group et al. Intensive blood-
glucose control with sulphonylureas or insulin compared with conven-
tional treatment and risk of complications in patients with type 2 dia-
betes (ukpds 33). The lancet, 352(9131):837–853, 1998.

38. Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir
Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei
Cai, et al. Recent advances in convolutional neural networks. Pattern
Recognition, 2017.

39. Tabreer T Hasan, Manal H Jasim, and Ivan A Hashim. Heart disease
diagnosis system based on multi-layer perceptron neural network and
support vector machine. 2017.

40. Hassan H Haseena, Paul K Joseph, and Abraham T Mathew. Classifica-
tion of arrhythmia using hybrid networks. Journal of medical systems,
35(6):1617–1630, 2011.

90

References References

41. Douglas M Hawkins. Identification of outliers, volume 11. Springer,
1980.

42. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

43. T Jayalakshmi and A Santhakumaran. A novel classification method for
diagnosis of diabetes mellitus using artificial neural networks. In Data
Storage and Data Engineering (DSDE), 2010 International Conference
on, pages 159–163. IEEE, 2010.

44. Fei Jiang, Yong Jiang, Hui Zhi, Yi Dong, Hao Li, Sufeng Ma, Yilong
Wang, Qiang Dong, Haipeng Shen, and Yongjun Wang. Artificial in-
telligence in healthcare: past, present and future. Stroke and Vascular
Neurology, pages svn–2017, 2017.

45. Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Purdue uni-
versity, west lafayette, in 47907, usa {jhjin, adundar, euge}@ purdue.
edu. arXiv preprint arXiv:1412.5474, 2014.

46. Kamer Kayaer and Tulay Yıldırım. Medical diagnosis on pima indian
diabetes using general regression neural networks. In Proceedings of
the international conference on artificial neural networks and neural
information processing (ICANN/ICONIP), pages 181–184, 2003.

47. Mehdi Khashei, Saeede Eftekhari, and Jamshid Parvizian. Diagnos-
ing diabetes type ii using a soft intelligent binary classification model.
Review of Bioinformatics and Biometrics, 2012.

48. Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp
Hochreiter. Self-normalizing neural networks. In Advances in Neural
Information Processing Systems, pages 972–981, 2017.

49. Igor Kononenko. Machine learning for medical diagnosis: history, state
of the art and perspective. Artificial Intelligence in medicine, 23(1):89–
109, 2001.

50. Santosh Kumar and A Kumaravel. Diabetes diagnosis using artificial
neural network. International Journal of Engineering Sciences & Re-
search Technology, pages 1642–1644, 2013.

51. Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier non-
linearities improve neural network acoustic models. In Proc. icml, vol-
ume 30, page 3, 2013.

91

References References

52. Kevin P Murphy. Naive bayes classifiers. University of British
Columbia, 18, 2006.

53. A Muthuchudar and Lt Dr S Santosh Baboo. A study of the processes
involved in ecg signal analysis. International Journal of Scientific and
Research Publications, 3(3):1–5, 2013.

54. Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

55. Jalal A Nasiri, Mahmoud Naghibzadeh, H Sadoghi Yazdi, and Bahram
Naghibzadeh. Ecg arrhythmia classification with support vector ma-
chines and genetic algorithm. In Computer Modeling and Simulation,
2009. EMS’09. Third UKSim European Symposium on, pages 187–192.
IEEE, 2009.

56. Andrew Y Ng and Michael I Jordan. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes. In Ad-
vances in neural information processing systems, pages 841–848, 2002.

57. Ebenezer Obaloluwa Olaniyi and Khashman Adnan. Onset diabetes
diagnosis using artificial neural network. International Journal of sci-
entific and engineering research, 5(10), 2014.

58. Rashidah Funke Olanrewaju, Nur Syarafina Sahari, Aibinu A Musa, and
Nashrul Hakiem. Application of neural networks in early detection and
diagnosis of parkinson’s disease. In Cyber and IT Service Management
(CITSM), 2014 International Conference on, pages 78–82. IEEE, 2014.

59. Mahesh Pal. Random forest classifier for remote sensing classification.
International Journal of Remote Sensing, 26(1):217–222, 2005.

60. Sadri Sa’di, Ramin Hashemi, Arman Abdollapour, Kamal Chalabi, and
Mohammad Amin Salamat. A novel probabilistic artificial neural.

61. Sadri Sa’di, Amanj Maleki, Ramin Hashemi, Zahra Panbechi, and Ka-
mal Chalabi. Comparison of data mining algorithms in the diagnosis
of type ii diabetes. International Journal on Computational Science &
Applications (IJCSA), 5(5):1–12, 2015.

62. Robert J Schalkoff. Artificial neural networks, volume 1. McGraw-Hill
New York, 1997.

92

References References

63. Zahed Soltani and Ahmad Jafarian. A new artificial neural networks
approach for diagnosing diabetes disease type ii. International Journal
of Advanced Computer Science & Applications, 1(7):89–94, 2016.

64. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

65. Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
International conference on machine learning, pages 1139–1147, 2013.

66. Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to
multi-layer feed-forward neural networks. Chemometrics and intelligent
laboratory systems, 39(1):43–62, 1997.

67. X Tang and L Shu. Classification of electrocardiogram signals with rs
and quantum neural networks. International Journal of Multimedia and
Ubiquitous Engineering, 9(2):363–372, 2014.

68. Laura Toloşi and Thomas Lengauer. Classification with correlated fea-
tures: unreliability of feature ranking and solutions. Bioinformatics,
27(14):1986–1994, 2011.

69. M Vijayavanan, V Rathikarani, and P Dhanalakshmi. Automatic clas-
sification of ecg signal for heart disease diagnosis using morphologi-
cal features. Int. J. of Comput. Sci. and Eng. Technology (IJCSET),
5(4):449–455, 2014.

70. Shui-Hua Wang, Yin Zhang, Yu-Jie Li, Wen-Juan Jia, Fang-Yuan Liu,
Meng-Meng Yang, and Yu-Dong Zhang. Single slice based detection
for alzheimer’s disease via wavelet entropy and multilayer perceptron
trained by biogeography-based optimization. Multimedia Tools and Ap-
plications, pages 1–25, 2016.

71. Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Com-
parative study of cnn and rnn for natural language processing. arXiv
preprint arXiv:1702.01923, 2017.

72. Sung-Nien Yu and Kuan-To Chou. Integration of independent compo-
nent analysis and neural networks for ecg beat classification. Expert
Systems with Applications, 34(4):2841–2846, 2008.

93

References References

73. Behnam Zebardast, Rahim Rashidi, Taha Hasanpour, and Farhad Solei-
manian Gharehchopogh. Artificial neural network models for diagnos-
ing heart disease: a brief review. International Journal of Academic
Research, 6(3):73–78, 2014.

74. Zahia Zidelmal, Ahmed Amirou, Djaffar Ould-Abdeslam, and Jean Mer-
ckle. Ecg beat classification using a cost sensitive classifier. Computer
methods and programs in biomedicine, 111(3):570–577, 2013.

94

Appendices

A Hardware Specification

Operating System Ubuntu 17.10

Processor Intel i7-7700K

Memory 64GB DDR4

Graphics 1x NVIDIA GeForce 1080TI

95

Part IV

Publications

97

A Multi-Layer Feed Forward Neural Network
Approach for Diagnosing Diabetes

1st Micheal Dutt
Centre for AI Research (CAIR)

University of Agder
Grimstad, Norway

miched16@student.uia.no

2nd Vimala Nunavath
Centre for AI Research (CAIR)

University of Agder
Grimstad, Norway

vimala.nunavath@uia.no

3rd Morten Goodwin
Centre for AI Research (CAIR)

University of Agder
Grimstad, Norway

morten.goodwin@uia.no

Abstract—Diabetes is one of the worlds major health
problems according to the World Health Organization.
Recent surveys indicate that there is an increase in
number of diabetic patients resulting in increase in
serious complications such as heart attacks and deaths.
Early diagnosis of diabetes, particularly of type 2 dia-
betes, is critical since it is important for patients to
get insulin treatments. However, diagnoses could be
difficult especially in areas with few medical doctors.
It is therefore a need for practical methods for the
public for early detection and prevention with minimal
intervention from medial professionals.
A promising method for automated diagnosis is the

use of artificial intelligence and in particular artificial
neural networks. This paper presents an application of
Multi-Layer Feed Forward Neural Networks (MLFNN)
in diagnosing diabetes on publicly available Pima In-
dian Diabetes data set. A series of experiments are
conducted on this data set with variation in learn-
ing algorithms, activation units, techniques to handle
missing data and their impact on diagnosis accuracy is
discussed. Finally, the results are compared with other
state of arts methods reported in literature review. The
achieved accuracy is 82.5% best of all related studies.

I. Introduction
Diabetes is one of the most common metabolic disorders

in the world and prevalence of diabetes in adults has
been been rapidly increasing [7]. Diabetes can be classified
into two categories: type 1 and type 2. Type 1 diabetes
is caused due to β-cell destruction, usually leading to
absolute insulin deficiency. Type 2 diabetes is due to
progressive insulin secretory defect on the background
of insulin deficiency [1]. Generally when the amount of
glucose in the blood is high, the performance in different
body organ is defected. If the disease in such condition is
not timely diagnosed, then it may lead to heart attacks,
strokes, kidney failures and blindness [6]. In this paper,
we focus on diagnosing diabetes type 2. In many cases,
the diagnosis is generally based on patient test results and
physician’s experience. Thus, diagnosis is a complex task
requiring high skills and experience. Early diagnosis and
medical care of patients can greatly reduce the problems
of patients [19].

A lot of machine learning and AI based solutions have
been proposed for different disease so far [3, 18, 4]. In

fact, an increasing number of medical devices available
with embedded AI algorithm that are available on mar-
ket manifest this [8]. Artificial Neural Networks (ANNs)
are characterized as computational models which have
inherent massively parallel-distributed architectures. The
design of ANNs was motivated from the structure of
real brain, but processing elements (neurons) and the
architecture used in ANN have exceeded far from its
biological inspiration. When we apply ANN to identify a
disease, the main goal is to achieve high accuracy rate [19].
With the advancement in AI, a lot of activation units and
learning algorithms are proposed or are implemented to
increase the accuracy of tasks, that they need to solve.
Before starting the task of diagnosis, the ANN model
must be trained using patients data sets. After training
and testing the patients data sets using models of ANN,
the way of achieving the higher accuracy and minimum
error rate is provided [17]. In this paper, our aim is to
evaluate four different activation units and two learning
algorithms and try to achieve maximum accuracy during
training and testing phase of diagnosing diabetes type 2
using MLFNN models. The data set named Pima Indian
Diabetes with 768 samples is used. For distinguishing the
performance, we used testing and training accuracy as
a performance measure. Furthermore, we implement the
model of MLFNN for diagnosing diabetes in Keras.

The remainder of paper is organized in following way.
First, we discuss some related works in the field of ANN
which have been preciously done in diagnosing diabetes
type 2 in section 2. In section 3, we discuss about the
features, attributes and the other aspects of publicly
available Pima Indian data set.In section 4 we discuss the
experimental setup. It is further subdivided into the archi-
tecture we use, different activation functions and learning
algorithms. In section 5, we discuss the results. Since, we
have performed three different experiments, so all of the
results are provided and discussed in the subsections. In
Section 6, we conclude this paper and suggest some key
points which needs to be considered while developing any
machine learning model.

II. Literature Review

Significant researches have been done till now in the
context of diagnosis of diabetes using artificial neural
network. In this section, we study some of these studies,
and then compare them with testing and training accuracy
in the process of diagnosis of diabetes type 2.

In [9] use General Regression Neural Networks (GRNN)
and Pima Indian Diabetes data set for identifying di-
abetes. In this paper, GRNN model is assumed to be
four layers: input layer with 8 features form data set,
two hidden layers with 32 and 16 neurons, respectively.
Finally, there is single neuron in output layer, which
determines whether patient is diabetic or not. Out of total
768 samples, 75% and 25% of samples are used for training
and testing process. The accuracy achieved with training
and testing phase are 82.99% and 80.21%, respectively.

In [14] use Multilayer Artificial Neural Network with
back propagation for diagnosing diabetes. In backpropa-
gation, neural network compares computed output value
with actual value and calculates the error. The weights are
adjusted in each round in such a way that the calculated
error to be always less than the previous round. In this
paper, network consist of input layer with 8 neurons,
hidden layer with 6 neurons and 2 neurons in output layer.
The data set contains a total 768 samples out of which 500
samples are used during training and remaining 268 during
testing phase. The achieved diagnosis accuracy after 2000
rounds of data set training becomes 82%.

In [17] use Probability Neural Network (PNN) for
diagnosing diabetes. In this paper, PNN model consist
of input layer with 8 neurons representing each feature,
single hidden layer, and output layer with two neurons
to diagnose whether a patient is diabetic or not. The
data set which consist of 768 samples, 90% of samples are
used in training and remaining 10% during testing phase.
The achieved training and testing accuracy is 81.49% and
89.56% respectively after 200 rounds.

In [16] use different data mining techniques such as
Naïve Bayes, J48 and Radial Based Artificial Neural Net-
work for diagnosing diabetes type 2. They used Pima
Indian data set with 768 data samples out of which 268
samples were used during testing phase. Naïve Bayes
proved to be more efficient with 76.95% accuracy followed
by J48 with 76.5% and RBF with 74.34% accuracy’s,
respectively.

In [11] use a data set with 250 data samples consisting
of 27 features. These features also include blood pressure,
creatinine, urine PH, fasting glucose. The average age
of patients is between 25 to 78 years. They use Multi-
layer feed-forward artificial neural networks with back-
propagation for diagnosis. Three training functions are ap-
plied in backpropagation algorithm namely BFGS Quasi-
Newton, Bayesian Regulation and Levenberg-Marquardt.
Finally, backpropagation with Bayesian Regulation func-
tion achieved highest of 88.8% of diagnosing accuracy per-

forming better than BFGS Quasi-Newton and Levenberg-
Marquardt functions.

III. Dataset Description
In this study, the Pima Indian Diabetes Data set

(PIDD) is taken from University of California, Irvine
(UCI) repository of machine learning database [15].
This data set is originally from the National Institute of
Diabetes and Digestive and Kidney Diseases. All woman
in this database are of at least 21 years old of Pima
Indian heritage and was tested for diabetes according to
World Health Organization criteria. This data set is used
in various researches to build classification system. This
is the main reason for choosing this data set as we can
compare our study with various other researches for Pima
Indian Diabetes diagnosing problem. This data set is
composed of a total of 768 instances. Each instance in the
data set is characterized by 8 features. All the features
have numerical values as seen in table I.

Table I
Attributes/Features of PIMA Indian Dataset

Attribute/Features Types/Values
Number of times pregnant Numerical Values

Plasma Glucose Concentration Numerical Values
Diastolic Blood Pressure Numerical Values (in mmHg)

Triceps skin fold thickness Numerical Values (in mm)
2-Hour Serum insulin Numerical Values (in µU/ml)

Body mass index Numerical Values (in kg/m2)
Diabetes pedigree function Numerical Values

Age Numerical Values (in years)

The last feature has binary value and is used for classi-
fication as it is divided into two classes: Class Zero (Non-
diabetic) and Class One (Diabetic). The first 8 features
are used as input and the last feature is only output. This
data set also contains a significant portion of missing data
as shown in table II.

Table II
Missing Data in PIMA Indian Data set

No. Attribute/Features Types/Values
1 Number of times pregnant -
2 Plasma Glucose Concentration 5
3 Diastolic Blood Pressure 35
4 Triceps skin fold thickness 227
5 2-Hour Serum insulin 374
6 Body mass index 11
7 Diabetes pedigree function 1
8 Age 63

The total number of Diabetic cases are 268 which cor-
responds to 34.90% of total cases. The number of Non-
diabetic cases are 500 (65.10%).

IV. Approach
In this paper, we have used special type of ANN called

multi-layer feed forward neural network. The main goal of
a multi-layer feed forward network is to approximate some
function f∗. As for an example, in a classifier problem,
y = f∗(x) maps an input x to a label y.
An artificial neural network is typically specified by

following things [16]:
• An architecture: the width and depth of network.
• A learning algorithm: for updating the weight to

model a task correctly.
• An activation unit: to transform a neuron’s weighted

input to its output activation.
The same architecture is used in all experiments as

discussed below, but with variations in activation function,
learning algorithm and techniques to handle missing data.
All the activation functions and learning algorithms used
in these experiments have been formally introduced below.
We have used cross entropy loss function in all the exper-
iments. It is most commonly used in binary classification
problem. Cross entropy is computed by:

Hy′(y) = −
∑

i

y′i log(yi)

Cross entropy measures the divergence between the two
probabilities distribution. If the cross entropy is large it
means the difference between the two distribution is large.
If the cross entropy is small, it means the two distributions
are like each other. For the output layer sigmoid activation
function is used in all the experiments but for the hidden
layers activation units varies w.r.t the experiments.

A. Network Architecture
A key design consideration of a feed forward neural

network is to determine the overall structure of the net-
work. It includes choosing the depth of the network and
the width of each layer. The depth of network means
the number the hidden layer and the width corresponds
to the number of neurons in the layer. A feed forward
network with only single layer can represent any function
but the layer may be infeasible large and may fail to
learn or generalize correctly. In contrast, the deep models
can significantly reduce the number of units per layer
and the generalization error. Another key consideration
in designing the network is the connections between the
layers. If we decrease the number of connections, we can
reduce the number of parameters and the amount of
computation that is required to evaluate the network.
These all architectural considerations are highly problem
dependent. The ideal network architecture for a task
must be found by doing repeated experimentation and
monitoring the evaluation metrics.
We have designed the network with input layer (8

Neurons), three hidden layers with 50 neurons each and
an output layer with single neuron.

Figure 1. Network Architecture

B. Learning Algorithms
In this section, we introduce two different types of

learning algorithms: stochastic gradient descent (SGD)
and Adam. In the following subsections, we introduce
both learning algorithms.

1) Stochastic Gradient Descent (SGD): Stochastic Gra-
dient Descent are probably the most used learning al-
gorithm for machine learning and particularly for deep
learning [5]. The standard gradient descent algorithms
update the parameters approximated by evaluating the
cost and gradient over the full training set. The SGD
updates and computes the gradient of parameters using
single or few training examples. The parameter update is
given by:

[P = P − LR ∗ gradients] (1)

P stands for Parameters and LR stands for Learning Rate.
The benefit for updating the parameters based on

few training examples is, it reduces the variance in the
parameter update and lead to a stable convergence. The
crucial parameter of SGD is learning rate which must
adjusted with lot of trial and error. In this study, we have
used default learning rate which is 0.01.

2) Adam: Adam is an adaptive learning rate optimiza-
tion algorithm which derives its name from phrase “adap-
tive moments” [5]. Adam algorithm is based in estimation
of 1st and 2nd order moments. The algorithm estimates
“first moment” as the mean and the “second moment” as
variance. So the update rule Adam is:

[P = P − LR ∗Means/Sqrt(V ariance)] (2)

Here, P stands for Parameters and LR stands for Learning
Rate.

So if the variance of gradient is high, it becomes unclear
how parameter should be changed so algorithm chooses
the small step size in update rule. If the variance is low
the algorithm takes a larger step. Adam also includes bias
corrections to estimate both the mean and variance to
account for their initialization at the origin.

C. Activation Units
In this section, we introduce the four kinds of activation

unit: rectified linear unit (ReLU), leaky rectified linear
(Leaky ReLU), exponential linear unit (ELU) and
scaled exponential linear unit (SELU). In the following
subsections, we introduced each activation unit formally.

1) ReLU: The Rectified Linear Unit is first used in
Restricted Botlzmann Machines [13]. It is the simplest
nonlinear activation function and is defined as:

f(x) =
{

0 for x < 0
x for x > 0

2) Leaky ReLU: Leaky ReLU activation is first intro-
duced in acoustic model [12]. These are one attempt to fix
the dying ReLU problem. Mathematically, it is defined as:

f(x) =
{

αx for x < 0
x for x > 0

where α = 0.01.

3) ELU: The exponential linear unit (ELU) [2] with
0 < α is

f(x) =
{

α(exp(x)-1) for x < 0
x for x > 0

The ELU hyperparameter α controls the value to which
an ELU saturates for negative net inputs.

4) SELU: The SELU activation function [10] is given
by:

f(x) = λ

{
α(exp(x)-1) for x < 0

x for x > 0

SELU allows to construct a mapping with properties
that lead to Self-Normalizing Neural Networks (SNN).
SNN keeps normalization of activation’s when propagating
through layers. We consider activation’s of neural network
to be normalized, if both their mean and their variance
across samples are within predefined intervals.

V. Results and Discussion
This section presents a comparison of our network by

applying four different activation units, followed by an
experiment with comparison of two learning algorithms on
Pima Indian data set. Finally, we present experiment from
approaches to handle missing data.The over all aim is to
find the combination to achieve the highest classification
accuracy.

A. Activation Units
In our first experiment, we compare classification per-

formance of four different activation units with Adam
as a learning algorithm. Table III show the performance
results of four activation units we have considered for the
experiment.

Table III
Results With Variation In Activation Functions

ELU SELU Leaky ReLU ReLU
Training Accuracy% 83.91 87.11 92.63 98.98
Testing Accuracy% 82.50 82.05 81.15 78.73

Training MSE 0.111 0.094 0.057 0.011
Testing MSE 0.131 0.132 0.143 0.178

The results show that the ELU gives the highest accu-
racy of 82.5% followed by SELU (82.05%), Leaky ReLU
(81.15%) and ReLU (78.73%). ELU and SELU have
improved learning characteristics as compared with other
two activations’ for Pima Indian dataset. In contrast with
ReLU, ELU does not simply discard the neurons with
negative values, which allows them to push mean unit
activation closer to zero like batch normalization. ELU
activation is more robust to noise whereas Leaky ReLU,
which also consider negative values do not ensure noise
robust deactivation state. SELU allows to construct self-
normalizing neural networks. It pushes activation’s to zero
mean and unit variance, leading to same effect as batch
normalization, avoiding exploding and vanishing gradient.
On training set, the mean squared error of ReLU

(0.011362) is lowest followed by Leaky ReLU (0.057298).
The error of other two activations ELU and SELU are
0.111245 and 0.094413 respectively. This indicates that
both ReLU and Leaky ReLU may suffer from overfitting
issues, since the Pima Indian data set is small, and the
network is complex []. It indicates for Pima Indian dataset.
The proposed neural network produces improved effective-
ness with ELU and SELU since it is combating overfitting.

B. Learning Algorithms
In our second experiment, we study the impact of two

different learning algorithm on classification performance
on our data set.

Table IV
Results With Variation In Learning Algorithms

Adam SGD
Training Accuracy% 83.91 78.93
Testing Accuracy% 82.5 78.43

Training MSE 0.111 0.140
Testing MSE 0.131 0.146

Table IV shows the classification performance of
Stochastic gradient descent and ADAM algorithm using
ELU as an activation function on Pima Indian data set.

Not surprisingly, we find the performance of Adam (82.5%
) better then SGD (78.4%). Since for the SGD, adjusting
learning rate is one of the crucial parameter and we are
using the default learning rate and it is taking predefined
steps in order to reduce the error. Whereas, Adam is clev-
erly adjusting the learning rate w.r.t variance in gradient
values it encounters.

C. Handling Missing Data
In our last experiment, we use three different approaches

to deal with missing values in the data set and compare the
classification performances. The first approach and easiest
way to deal with missing values is to remove the instances
with missing values. This technique may lead to the loss
of highly valuable information but is very useful when the
database is highly skewed. There are total of 768 instances
but after removing instances with missing values we are
left with only 392 instances. The second approach is to
replace all missing values with zeros. The third technique
is to impute all missing values with mean. In this method
the missing value of an attribute is replaced by average of
all the available values of the same attribute in the data.

Table V
Results With Variation In Techniques To Handle Missing

Data

Remove
samples

Replace
(mean)

Replace
(zero)

Training
Accuracy%

83.91 80.23 81.00

Testing Ac-
curacy%

82.50 79.05 78.93

Training
MSE

0.111 0.131 0.130

Testing
MSE

0.131 0.145 0.149

Table V shows the classification performance of all the
three approaches. The testing accuracy after removing the
sample (82.5%) is superior then replacing the missing
values with mean (79.05%) followed by replacing with
zero (78.93%). The reason behind this behaviour is that
sometimes replacing values make it hard for the neural
network to properly adjust the impact of certain features
which normally plays crucial role in solving the problem
on the output.

VI. Conclusion
This paper introduces a neural network approach for

classification and in turn diagnoses of diabetes type 2
using the Pima Indian data set. Further, a comparative
study is carried out using different activation units and
learning algorithms, which plays crucial role in solving
the problem in neural network. Since activation units like
ELU and SELU do not simply discard negative outputs
by neurons, they proved to work better for our data
as compared to ReLU. This paper also looks through

how learning algorithms like Adam and SGD impact the
neural network for a particular data set. Adam with its
adaptive nature simply outperforms SGD algorithm for
the Pima Indian data set. Moreover, in this paper we
also discussed how different techniques to counter the
missing data are playing role in diagnosing the diabetes
type 2. The accuracy with removing the instances with
missing values simply outperforms the techniques where
we replaced these instances with mean or zero. So, this pa-
per simply concludes that every architectural design plays
crucial role in improving the accuracy of the model and
needs to choose with careful experimentation’s, analysis
and according to the data set. Our neural network is able
to correctly detect diabetes in 82.5% in the validation set
after removing samples with missing values when using
ELU activation unit and the Adam as learning algorithm.

References
[1] American Diabetes Association et al. “Standards of

medical care in diabetes—2015 abridged for primary
care providers”. In: Clinical diabetes: a publication
of the American Diabetes Association 33.2 (2015),
p. 97.

[2] Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. “Fast and accurate deep network learn-
ing by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

[3] Joseph A Cruz and David S Wishart. “Appli-
cations of machine learning in cancer prediction
and prognosis”. In: Cancer informatics 2 (2006),
p. 117693510600200030.

[4] Rahul C Deo. “Machine learning in medicine”. In:
Circulation 132.20 (2015), pp. 1920–1930.

[5] Ian Goodfellow et al. Deep learning. Vol. 1. MIT
press Cambridge, 2016.

[6] UK Prospective Diabetes Study (UKPDS) Group et
al. “Intensive blood-glucose control with sulphony-
lureas or insulin compared with conventional treat-
ment and risk of complications in patients with type
2 diabetes (UKPDS 33)”. In: The lancet 352.9131
(1998), pp. 837–853.

[7] Leonor Guariguata et al. “Global estimates of dia-
betes prevalence for 2013 and projections for 2035”.
In: Diabetes research and clinical practice 103.2
(2014), pp. 137–149.

[8] Fei Jiang et al. “Artificial intelligence in healthcare:
past, present and future”. In: Stroke and Vascular
Neurology (2017). issn: 2059-8688. doi: 10 . 1136 /
svn-2017-000101.

[9] Kamer Kayaer and Tulay Yıldırım. “Medical diagno-
sis on Pima Indian diabetes using general regression
neural networks”. In: Proceedings of the interna-
tional conference on artificial neural networks and
neural information processing (ICANN/ICONIP).
2003, pp. 181–184.

[10] Günter Klambauer et al. “Self-normalizing neural
networks”. In: Advances in Neural Information Pro-
cessing Systems. 2017, pp. 972–981.

[11] Santosh Kumar and A Kumaravel. “Diabetes Diag-
nosis using Artificial Neural Network”. In: Interna-
tional Journal of Engineering Sciences & Research
Technology (2013), pp. 1642–1644.

[12] Andrew L Maas, Awni Y Hannun, and Andrew Y
Ng. “Rectifier nonlinearities improve neural network
acoustic models”. In: Proc. icml. Vol. 30. 1. 2013,
p. 3.

[13] Vinod Nair and Geoffrey E Hinton. “Rectified linear
units improve restricted boltzmann machines”. In:
Proceedings of the 27th international conference on
machine learning (ICML-10). 2010, pp. 807–814.

[14] Ebenezer Obaloluwa Olaniyi and Khashman Adnan.
“Onset diabetes diagnosis using artificial neural net-
work”. In: International Journal of scientific and
engineering research 5.10 (2014).

[15] PIMA dataset. 2017. url: https://archive.ics.uci.
edu/ml/machine-learning-databases/pima-indians-
diabetes.

[16] Sadri Sa’di et al. “Comparison of data mining al-
gorithms in the diagnosis of type II diabetes”. In:
International Journal on Computational Science &
Applications (IJCSA) 5.5 (2015), pp. 1–12.

[17] Zahed Soltani and Ahmad Jafarian. “A New Ar-
tificial Neural Networks Approach for Diagnosing
Diabetes Disease Type II”. In: International Journal
of Advanced Computer Science & Applications 1.7
(2016), pp. 89–94.

[18] Nooritawati Md Tahir and Hany Hazfiza Manap.
“Parkinson Disease Gait Classification based on Ma-
chine Learning Approach”. In: Journal of Applied
Sciences 12.2 (2012), pp. 180–185.

[19] Behnam Zebardast et al. “Artificial neural network
models for diagnosing heart disease: a brief review”.
In: International Journal of Academic Research 6.3
(2014), pp. 73–78.

UiA University of Agder
Master’s thesis
Faculty of Engineering and Science
Department of ICT

c© 2018 Micheal Dutt. All rights reserved

106

	Abstract
	Preface
	Glossary
	List of Figures
	List of Tables
	I Research Overview
	Introduction
	Motivation and Problem Statement
	Research Questions
	Diabetes
	Arrhythmia

	Solution Overview
	Contribution
	Thesis outline

	Background
	Artificial Neural Network
	Multi-Layer FeedForward Neural Networks
	Backpropagation Algorithm
	Activation Functions
	Learning Algorithms
	Loss Functions

	Convolutional Neural Networks
	Convolutional Layers
	Pooling Layers
	Dropout Layers
	Fully Connected Layers

	Recurrent Neural Networks
	Long Short Term Memory (LSTM) Networks

	Literature Review
	Diabetes
	Arrhythmia

	II Dataset and Pre-Processing
	Datasets
	Diabetes
	Arrhythmia

	Data Pre-processing
	Diabetes
	Arrhythmia

	III Experiments and Results
	Experimental Setup
	Diabetes
	Network Architecture

	Arrhythmia
	Network Architecture

	Results and Discussions
	Diabetes
	Comparison with other classifiers
	Handling Missing Data
	Activation Units
	Learning Algorithms

	Arrhythmia
	Comparison of CNN with other algorithms
	Evaluation of CNN and LSTM models
	Evaluation of LSTM model with Variation in Regularization
	Evaluation of LSTM Model with Variation in Number of Epochs

	Conclusion and Future Work
	References
	Appendices
	Hardware Specification

	IV Publications

