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Abstract

Squeeze-and-Excitation (SE) is a technique within convolutional neural net-
works (CNN) that can be applied to existing CNNs by applying fully-
connected layers between convolutional layers and merging the outputs. SE
was the winning architecture of the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) in 2017. In this thesis, we propose a CNN using
the SE architecture for classifying images of fish. Previous work in the
field relies on applying filters to the images to separate the fish from the
background or sharpen the images by removing background noise. The im-
ages from the dataset are extracted from underwater cameras and contain
noise, which is why classifying these images is challenging. Different from
conventional schemes, this approach is divided into two classification prob-
lems. The first approach is to classify fish from the Fish4Knowledge dataset
without using image augmentation, and the second is to classify fish from
a new dataset consisting of Nordic species. We name the first approach
pre-training, and the second post-training. The weights from pre-training
are applied to post-training.
Our solution achieves the state-of-the-art accuracy of 99.27% accuracy on
the pre-training. The accuracy on the post-training is lower with an accu-
racy of 83.68%. Experiments on the post-training with image augmentation
yields an accuracy of 87.74%, indicating that the solution is viable with a
larger dataset.
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Chapter 1

Introduction

The main fields of research in this thesis are convolutional neural networks
(CNNs) and image classification, specifically classification of fish species.
CNN is a popular area of research within the field of artificial intelligence
and image classification. It can be used to detect and classify objects by
simply supplying a computer program with enough data and set up this
network to train itself in order to solve the given classification problem.
This area of research has many potential commercial usages, and includes
traffic sign recognition and object detection in autonomous transport. It can
also be used in the existing surveillance system the Norwegian Institute of
Marine Research (IMR) [18] uses in some of their research projects [10][40]
to classify the fish species, removing the need to manually classify these and
potentially increase the recognition accuracy.

The goal of this thesis is divided into two classification problems, where the
first approach is to classify fish from an existing dataset called Fish4Knowledge
[14], which consists of 23 fish species, and is further explained in Section
3.1.1. The first approach will throughout the thesis be referred to as pre-
training, because the results of the first approach will be used in the second.
The second approach is to classify the species from a dataset consisting of
Nordic fish species with the weights from pre-training, hereby referred to as
post-training.

1



1.1. Challenges Introduction

1.1 Challenges

Some previous solutions have been proposed to the pre-training using CNNs
[35][23]. The biggest challenge with these images is the noise caused by
underwater cameras. The previous solutions rely heavily on pre-processing
of the training images to remove this noise, which can negatively impact
the classification accuracy when deployed to a live scenario. The dataset
used in both articles has a very limited amount of images for some of the
species. CNNs need large amounts of training data to perform well and to
not suffer from a concept called overfitting, which will be further explained
in Chapter 2.

There are no publicly available datasets for the post-training, which means
that IMR had to extract individual fish from the video feeds for the solution
to be applicable to their surveillance system. Manually looking through
video feeds is a time-consuming process for researchers in the fish industry,
and the process can be improved significantly by applying a CNN. The
dataset given by IMR will be reviewed in Subsection 3.1.2, but the challenges
with this dataset are few images to train the CNN on, and high variation
in the data for each species.

1.2 Solution

To solve the biometric fish classification problem, a CNN with the Squeeze-
and-Excitation (SE) architecture [13] is developed and pre-trained on the
Fish4Knowledge dataset. The resulting weights from the pre-training are
then applied to the new dataset for the Nordic fish species received from
IMR. Our solution differs from previous solutions by not using filters to
manipulate the dataset. Instead, state-of-the-art technologies within CNNs
have been tested and applied to our solution. The specific goal that this
project aims to achieve is defined in Section 1.3.

2



1.3. Goals Introduction

1.3 Goals

The main goal of this thesis is to explore whether a CNN using the SE archi-
tecture can be used to classify different Nordic fish species. The approach
taken is to pre-train the network on the Fish4Knowledge dataset and apply
those weights to continue training on the new dataset containing the Nordic
fish species. Specific research questions to be answered are defined in the
next subsection, and its following subsection will introduce hypotheses to
get a clearer understanding of what this thesis aims to achieve.

1.3.1 Research Questions

The research questions defined below are the specific problems we aim to
solve throughout this thesis. The experiments and discussion will revolve
around whether the solution achieves these goals. Two research questions
are defined.

1. Is it possible to achieve state-of-the-art accuracy on the Fish4Knowledge
dataset without data augmentation?

2. Can the convolutional neural network from the pre-training and its
weights be used to classify Nordic fish species, achieving the same
accuracy as during pre-training?

1.3.2 Hypotheses

The hypotheses provide details to support the research questions. Three
hypotheses are defined.

1. A convolutional neural network can be trained to reach the state-of-
the-art accuracy for pre-training of 98.64% without data augmentation
or image denoising.

2. An accuracy of 98.64% or better can be achieved on the post-training
using the same convolutional neural network and weights from the
pre-training.

3



1.4. Contributions Introduction

3. The implementation of the Squeeze-and-Excitation architecture yields
a better accuracy than other state-of-the-art networks.

1.4 Contributions

This thesis provides the following contributions:

• We apply a convolutional neural network using the winning technology
of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2017 competition, Squeeze-and-Excitation [17], to Nordic fish recog-
nition.

• Our solution achieves the state-of-the-art on the Fish4Knowledge dataset
with a testing accuracy of 99.27%.

• The proposed solution achieves an accuracy on the Nordic species
dataset of 83.68%.

1.5 Background

Norway is one of Europe’s most important fishery nations and the world’s
second-largest seafood exporter, where 95% of its harvesting and production
is exported [1]. One of the reasons is due to Norway’s long coastline and
fjords, which provide excellent conditions for harvesting from the sea and
develop a sustainable maritime industry. Furthermore, Norway has one of
the best management systems for fisheries and agriculture combined with
its influence from nature and knowledge in these areas. In 2017, Norway
exported fish for 94.5 million Norwegian Kroner, which is an increase of 3%
from 2016, to over 140 markets all over the world.

IMR continuously researches and monitors fish species and their behavior
[19]. According to Alf Ring Kleiven, a researcher at IMR, monitoring of fish
is a manual process, and looking through a video feed can take between one
to three hours.

IMR is currently enrolled in a project called “Aktiv Forvaltning av Marine
Ressurser – Lokalt Tilpasset Forvaltning”, which aims to study the effect of

4



1.6. Report Outline Introduction

human impact on eco-systems, specifically in conservation zones [10]. The
project mainly records video of cod, but other species like coalfish, pollack
and common ling have been recorded during the project.

Another project IMR is currently working on, is “Leppefisk Biologi, Be-
stand og Bestandsstruktur” [40]. The main goal of the project is to map
the population of wrasse in different areas to better understand how to
maintain a sustainable catch rate of wrasse. Another goal of the project
is to map diseases and infection rate of wrasse. The project also includes
a sub-project which looks at the mating choices among corkwing. Videos
of wrasse and corkwing are recorded for this project, and images captured
from this project and [10] are used for the post-training. The data received
from IMR are explained in more detail in Section 3.1.2.

1.6 Report Outline

The approaches have now been defined. Chapter 2 provides the theoreti-
cal background on CNNs necessary to understand the solution to the ap-
proaches implemented in Chapter 3, and the state-of-the-art within CNNs
and fish classification. Chapter 4 contains the experiments used to verify
the solution against the goals defined in this chapter. Chapter 5 reviews
the results achieved with regards to the approaches and provides an answer
to the research questions and hypotheses. Potential further work to the
solution is also discussed.

5





Chapter 2

Theoretical Background

This chapter provides history and technical background information within
the field of CNNs and image classification, as well as state-of-the-art within
CNNs and fish classification. The background leading to the state-of-the-art
within CNNs is reviewed in Section 2.1. Section 2.2 provides the state-of-
the-art within fish classification, and some of the more recent CNNs together
with popular techniques used in these CNNs are reviewed.

2.1 Convolutional Neural Networks

The first convolutional neural network as known today was the LeNet-5
proposed by LeCun, et.al. [27] in 1998, and was used to recognize docu-
ments. The solution was based on several classification problems solved by
LeCun and others in 1989 and 1992 [31][30][29]. The articles proposed solu-
tions for classifying single digits, strings of digits and zip codes, respectively.
Those solutions did not use a CNN, but important features of CNNs like
backpropagation and softmax were used.

7



2.1. Convolutional Neural Networks Theoretical Background

Figure 2.1: Architecture of the LeNet-5 network [27].

As opposed to fully-connected neural networks that connect every neuron
in the previous layer with every neuron in the next layer, CNNs only con-
sider the closest neurons in a given range. This is achieved by extracting
the pixel information from images in specified block sizes, say 5×5, which
greatly reduces the number of connections to each neuron. By grouping the
neurons in each hidden layer in a block and use the same weights for each
block, the number of connections can be even further reduced. Grouping
the weights together is called weight-sharing [2]. We can use Aghdam and
Heravi’s example from “Guide to Convolutional Neural Networks” to show
the reduction in connections when applying weight sharing to a 16×16 pix-
els grayscale image [2, pp. 86-88]. The number of inputs is, in this case,
16×16 = 1024 neurons, and the neural network has a hidden layer with
7200 neurons. This gives a total of 1024×7200 = 7372800 connections. The
pixels in the image are grouped together in a 5×5 grid, and the neurons in
the hidden layer are grouped into 50 12×12 blocks. When applying weight-
sharing to the blocks in the hidden layer, we get a total of (5×5)×50 = 1250
connections, which is a 99.98% reduction of connections.

The techniques for reducing the number of connections is how CNNs work.
The 5×5 blocks the input image in the above example are grouped into, are
called filters [2]. The regions of the input image these filters are applied to
are called receptive fields. The process of applying a filter to a receptive
field is called convolving. The output of convolving a filter is called a feature
map. The process is illustrated in Figure 2.2. It is possible to specify the
number of units a filter can slide over an image during convolving. This is
called striding and can be specified in both x- and y-direction of the matrix.
By default, a stride of one is used. This causes some overlap between strides,
but allows for more detailed feature maps. Sometimes when striding over
an image, the border pixels may be left out as result of selection of filter-
size. The striding does not add up and potential important features may

8



2.1. Convolutional Neural Networks Theoretical Background

be excluded. This can be resolved by the use of zero-padding, where zeros
will be added around the image shown in Figure 2.3.

It can be seen from the LeNet-5 example in Figure 2.1 that the output
of the first convolving process consists of six feature maps of size 28×28.
The amount of feature maps is manually defined. The matrix in the first
convolutional layer will therefore be 6-dimensional. The input can also have
multiple dimensions, the most common is 3-dimensional. This is due to the
fact that most images use the RGB-scale, which has one value each for red,
green and blue. The number 3 in the dimension size in Figure 2.3 indicates
that it is an RGB image.

The output size of the first convolutional layer is 28×28 because a 5×5 filter
has been used, which can be applied a total of 28×28 times over the input
image. In the S2 subsampling layer, a 2×2 filter has been applied with the
sigmoid activation function, leading to six 14×14 feature maps.

Filters and activation functions can be applied as many times as desired,
and there is no single answer to how many layers should be used.

Figure 2.2: Convolving the 5×5 filter on the input image, creating one feature
map f0 [2]. Each time the filter is applied to the receptive field yields one neuron
in the feature map.

9



2.1. Convolutional Neural Networks Theoretical Background

Figure 2.3: Example of zero-padding [9].

After convolving and activation functions and pooling have been applied
through the specified amount of layers, the feature maps are merged into
fully-connected layers to produce the final output. Most often, more than
one fully-connected layer is used. LeNet-5 has two fully-connected layers,
where the output of the final layer is the different classes the input can be
classified into. In the case of LeNet-5, the final output is 10 because the
classification problem solved is single digit recognition. Figure 2.4 shows
more clearly the use of fully-connected layers. The matrix is flattened to
a 1-dimensional matrix between the last convolutional layer and the first
fully-connected layer, as can be seen by the depth of the matrix vanishing.
This represents the feature maps being merged.

Figure 2.4: Figure showing the entire process of a CNN [8]. The smaller box in
the input image is the receptive field.

10



2.1. Convolutional Neural Networks Theoretical Background

2.1.1 Activation Functions

Activation functions are used to determine if a neuron should be activated
and the output of each neuron in a layer in a neural network [2]. The
activation functions should be nonlinear and continuously differentiable.
That means that the network can learn nonlinearities in the images and
that the function has a derivative for all values in the range of neuron
values. The values are often in range 0 to 1, but can also be 0 to 255 if
using RGB directly.

Sigmoid used to be the most common choice of activation function. It is
differentiable, nonlinear and has a smooth curve as shown in the figure
below.

Figure 2.5: The sigmoid activation function and its graphs [2].

However, the sigmoid function suffers from a problem called vanishing gra-
dient. If the neuron’s value is not close to the graph’s origin, the gradient
becomes very small. When this gradient is multiplied with its children,
the gradient becomes vanishingly small, which eventually stops the learning
process for that neuron.

An often used activation function in CNNs is Rectified Linear Unit (ReLU).
Figure 2.6 shows the ReLU activation function. It is a very simple function,
which makes all negative neurons equal to zero. ReLU does not suffer from
the vanishing gradient problem, because the derivative for all positive num-
bers is always 1. The function does not approximate the identity function
near origin, but will always produce a strong gradient around origin. If a

11



2.1. Convolutional Neural Networks Theoretical Background

neuron’s weighted value is always below 0, the function will always return
0 for that neuron, causing something called dead neurons. This will stop
training for that particular neuron, and potentially cause a slightly lower
accuracy for the classification problem.

Figure 2.6: The ReLU activation function, its graph and its derivative graph [2].

2.1.2 Pooling

In between the convolving processes after applying ReLU, a technique called
pooling can be performed if desired as illustrated in Figure 2.4. After gener-
ating n-subsamples from convolving, pooling can be used for what is called
downsampling for further feature extraction. Sometimes the dimensional-
ity of the feature maps can become very large. If an image is 190×190
and 50 filters of size 7×7 are applied [2], the output after convolving will
result in 50×184×184 = 1,692,800 neurons. This number is clearly very
high and becomes even larger. One of the main purposes of pooling is to
reduce the dimensions of the generated feature maps. Pooling also uses
the same concept as filters and striding as well. To illustrate, a vector v1
= [1,3,7,2,9,10,6,12,13,20] and stride = 2 is used as example. This would
output v1 = [1,7,9,6,13], which is now half the size.

A well-known version of pooling is max pooling. Figure 2.7 shows an N×N
box of size 2 sliding over the feature map with a stride value of 2. Max
pooling takes the largest value within each N×N region for every stride,
and this value corresponds to a pixel of the newly generated feature map.
In Figure 2.7, the max value of the region is 142. An alternative to max
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pooling is average pooling, which works the same way but instead calculates
the average of the values within each N×N region. However, max pooling
is the most preferred one due to better results [38]. Another key thing to
remember is that pooling is used on every feature map individually and that
the dimensions of the last output vector are fairly lower.

Figure 2.7: Example of max-pooling with stride = 2 and size = 2 [2].

2.1.3 Dropout

Dropout is a technique often used in CNNs to prevent overfitting by ran-
domly dropping some units from the network temporarily during training
[41]. As can be seen in Figure 2.8, all incoming and outgoing connections
are also removed with the neuron. Overfitting is a problem most common
when training with small datasets, because the network trains on potential
noise or patterns in the dataset that may not exist in the test data. An-
other advantage of dropout is that it simulates multiple neural networks
because different neurons are dropped in each iteration. In CNNs, dropout
is only applied in the fully-connected layers, to prevent loss of features in
the feature maps.
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Figure 2.8: Illustration of dropout [41]. On the left: neural net without dropout.
On the right: neural net with dropout.

2.1.4 Classification Functions

There are several classification functions that can be used, but the most
common in CNNs and multiclass classification problems is softmax. Sigmoid
can be used as a classification function in binary classification problems, but
the problems in this thesis are multiclass, and sigmoid as a classification
function will therefore not be explained in further detail.

The softmax function is used in the last layer of a CNN and merges the
output of the previous layer into a vector consisting of an equal amount of
values as the number of classes in the classification problem [5]. All values
are between 0 and 1, and the sum of all values is equal to 1. The values
represent probabilities for each class, where the result of the classification
will be the class with the highest probability.

σ(z)j =
ezj∑K
k=1 e

zk
for j = 1, . . . ,K (2.1)

The z in the softmax function above is the input vector the probabilities
will be calculated from, and K is the number of output classes.

Another well-known classification function is Support Vector Machine (SVM)
[6], which can behave as a linear- or nonlinear classifier. Generally, SVM
is trying to compute a hyperplane where the intention is to maximize the
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margin between the vectors of the two classes. These vectors that are closest
to the hyperplane, are called support vectors and determine the margin. In
cases when the data points are non-linear and inseparable, SVM provides
Kernel Tricks [21] which maps the data points into a high dimensional space
so that a linear classification can be performed.

SVM is originally designed for binary classification problems. It is possible
to extend SVM to multiclass classification problems by either combining
multiple binary classifiers or combine all data in one optimization formula-
tion [12]. This is generally more computationally expensive than considering
binary classification problems, as the number of variables increases to the
number of output classes.

2.1.5 Loss Functions

The purpose of loss functions is to calculate the difference between predicted
labels in the final output and the actual label corresponding to the input
image [46]. There are several options for choosing loss function, but as stated
by [22], loss functions are highly underrepresented in research. The majority
of solutions use logarithmic loss or cross-entropy loss. Other options for loss
functions are hinge loss, Tanimoto loss, Cauchy-Schwarz Divergence and
expectation loss. Other alternatives exist, but they focus more on linear
models.

C = − 1

n

∑
x

[y ln a+ (1 − y) ln(1 − a)] (2.2)

The cross-entropy loss function is shown in Equation (2.2) [34]. n is the
number of images in the batches, and the sum goes over all training inputs. y
is the desired output. The cross-entropy loss function operates with positive
values, and results close to 0 indicate a result close to the desired output.

In the next section, the current state of research within CNNs will be ex-
plained with focus on image classification of fish.
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2.2 State-of-the-Art

Image classification is becoming an increasingly important part of research,
industries and also commercial solutions. A well-known benchmark test
for large scale image classification is the ILSVRC competition [37]. The
ILSVRC uses 1.2 million images from 1000 categories from the ImageNet
database [7]. CNNs are a newer type of neural networks, and became a pop-
ular algorithm for solving image classification after AlexNet won ILSVRC
2012 [16]. Since then, countless numbers of CNNs have been created, and
ILSVRC is a common benchmark test for these networks. CNNs have been
applied to automatically perform many tasks, such as document recognition
[39] for recognizing numbers and letters, face detection [33][44] and object
recognition [36].

The area of interest in this thesis is fish related to the Norwegian fish indus-
try, as it is a very large industry and automatic classification in this market
has not yet been fully researched. Classification of fish in marine research is
still performed manually. A study performed by Aursand, Mabon and Mar-
tin [3], uses a combination of fatty acids, different isotope ratios and molar
fractions of isotopomeric deuterium clusters in wild and farmed salmons’
muscle tissue and fish oil. The numbers are used to classify between wild
and farmed salmon and whether it was a Norwegian, Scottish or Atlantic
fish. The experiment achieves 100% accuracy when combining all the fac-
tors, but does not work in a live scenario, because muscle tissue needs to be
extracted.

Another more recent study [4] uses a C nuclear magnetic resonance (C
NMR) machine in combination with both a probabilistic neural network
(PNN) and an SVM. The C NMR machine is used to determine molecular
structures and individual compounds, and examine kinetics of specific re-
actions using magnetism [32]. The experiments achieve accuracies of 98.5%
with PNN and 100% with SVM when recognizing species. The fish used orig-
inate from Norway, Scotland, Canada, Iceland, Ireland, the Faroe Islands
and Tasmania, and the classification of origins achieves 82.2% accuracy with
PNN and 99.3% with SVM. This experiment use muscle tissue from the fish
as well, which does not conform well with a live fish ecosystem.

There has been an increase in solutions within artificial intelligence to clas-
sify different types of fish [28][35][23]. All of these use the dataset from
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the Fish4Knowledge project [14], consisting of 27370 images of exotic fish
categorized into 23 species.

A CNN called Fast R-CNN is one of the earlier models tested on the
Fish4Knowledge dataset [28]. The experiments performed in the article
use a subset of Fish4Knowledge, limiting the number of classes to those
with more than 600 images. Object detection is used to extract only the
fish from the images. The approach taken starts by pre-training an AlexNet
[26], which is illustrated in Figure 2.11, on the ImageNet database. Then the
AlexNet is modified to train on the subset of Fish4Knowledge and apply the
weights to Fast R-CNN. The Fast R-CNN takes the pre-trained weights and
region proposals made by AlexNet as input, and achieves a mean average
precision of 81.4%.

A solution proposed by Leilei and Liang [23], pre-trains a CNN similar
to AlexNet with five convolutional layers and three fully-connected layers,
using 1000 images from 1000 categories from the ImageNet dataset, and
applies the weights to the Fish4Knowledge dataset, using only 50 images
per category and 10 categories from the Fish4Knowledge dataset during
training. The images from the Fish4Knowledge dataset are pre-processed
using image de-noising. The accuracy achieved on the 1420 test images is
85.08% using very small amounts of data.

The highest achieved accuracy on this dataset is 98.64% using a CNN with
an SVM classifier function after applying filters to the original images to
extract the shape of the fish and remove the background [35]. This network
is called DeepFish, and is shown in Figure 2.9. DeepFish consists of three
standard convolutional layers and three fully-connected layers, and does not
utilize any of the state-of-the-art networks described in Section 2.2.1.

Figure 2.9: The DeepFish architecture [35].

A commercial product somewhat similar to what this thesis aims to solve
does exist. The system is called CatchMeter [45] and consists of a conveyor
belt with a camera that photographs the fish using a light box to detect and
classify fish, as well as provide a length estimate. The fish are fed through
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the conveyor belt and photographed, and the fish are recognized by utilizing
a threshold for detecting the outline of fish in the images. If one pixel is
outside the threshold, a 10×10 region is further analyzed. If 40% of these
pixels are outside the threshold, the process is repeated two centimeters
further along the image. This process is shown in Figure 2.10. If that process
passes, a fish is assumed to be present and the rest of the image is scanned
for an outline of the fish. If no fish is found, a new image is scanned for
the end of the fish and merged together if a fish is found. The classification
accuracy is 98.8%. The length measurements deviate with around 1-2 mm.
The accuracy achieved is higher than what [35] achieved, but does not utilize
artificial intelligence. The fish are photographed in a relatively structured
environment, as opposed to the images in the Fish4Knowledge dataset.

Figure 2.10: The process of detecting a fish with CatchMeter [45].

The following subsection explains some algorithms leading to the state-
of-the-art within CNNs today, including Squeeze-and-Excitation. A brief
review of common techniques and algorithm principles included in state-of-
the-art CNNs is included towards the end of this chapter.

2.2.1 Convolutional Neural Networks

The next paragraphs review the state-of-the-art within CNNs and some of
the CNNs leading to the state-of-the-art. The last paragraphs explain some
common techniques used in state-of-the-art CNNs.
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AlexNet

One of the more well-known CNNs is AlexNet [26]. AlexNet outperformed
the winning network from ILSVRC 2010 [15] and was the winner of ILSVRC
2012 [16].

Figure 2.11: The AlexNet architecture [26].

When comparing AlexNet in Figure 2.11 with LeNet-5 from Figure 2.1, it is
clear that AlexNet is far more complex than LeNet-5. The ReLU activation
function was not used in LeNet-5, as well as dropout, and the ImageNet
classification problem has 1000 categories compared to the 10 categories
LeNet-5 was designed to solve.

GoogLeNet

Other more recent CNNs are VGGNet and GoogLeNet. They both com-
peted in ILSVRC 2014 where GoogLeNet was the winner [46]. GoogLeNet
introduced inception modules, which run several convolving processes in
parallel and merges the results in the next layer [43]. This leads to faster
computation time and better extraction of higher-level features. Inception-
V4 is GoogLeNet’s latest version, as of May 2018.
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ResNet

ResNet, proposed by He, et.al. [11], was the winner of ILSVRC 2015. It
uses a technique called deep residual learning, where the desired mapping
of a layer is a combination of the identity mapping and weighted mappings
as shown in Figure 2.12. The network is designed to prevent the vanishing
gradient problem and degradation of the network, which is when a network’s
accuracy gets lower after it has converged in a deep neural network. ResNet
uses batch normalization without dropout. The argument for this is that the
original paper on batch normalization [20] states that batch normalization
regularizes the model and removes the need for dropout.

Figure 2.12: The design principle of ResNet [11].

Inception-ResNet is an extension of Google’s Inception net and ResNet, and
achieved great results when testing on the ILSVRC 2012 dataset [42]. Two
solutions were proposed, where Inception-ResNet-v2 had the best perfor-
mance. Figure 2.13 below shows one of the Inception-ResNet-v2 modules.
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Figure 2.13: Inception-ResNet-v2 module A [42].

Squeeze-and-Excitation

Inception-ResNet was a common foundation for many of the contributions to
the ILSVRC 2017 competition [17]. The winner of that competition was one
of the Squeeze-and-Excitation networks (SENets) [13] and can be considered
state-of-the-art within image classification, at least on large datasets with
many output classes. Several versions of SENet were developed and tested
by applying Squeeze-and-Excitation on several existing networks, including
Inception-Resnet-v2, ResNet-50, ResNet-152 and ResNeXt-50. The squeeze
operation flattens the input and applies global average pooling on each chan-
nel in the input to prevent the network from becoming channel-dependent
and unable to exploit contextual information outside of the receptive fields.
The output of the squeeze operation is then fed to a fully-connected layer,
followed by ReLU activation and another fully-connected layer. Finally, a
sigmoid activation function is applied. The squeeze and excitation opera-
tions combined are called SE blocks. The SE blocks are combined with the
identity branch to form the final output of the layer, as shown in Figure
2.14. SE can be applied to any number of layers and can be applied to any
existing neural network.
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Figure 2.14: A Squeeze-and-Excitation block [13].

The next paragraphs take a further look at the most common techniques
and parameters to use in CNNs, including different activation functions
popularly used in successful networks.

Activation Functions

Pooling is normal to include in CNNs. GoogLeNet uses max pooling be-
tween most of its layers as well as average pooling in the last layer [43].
ResNet also uses average pooling in the last layer. The classifier function
softmax can be seen as an activation function and is commonly used to
return the probabilities in the last fully-connected layer. Both ResNet and
GoogLeNet use softmax as the classifier function [11][43]. SENet uses global
average pooling in the SE blocks.

Dropout

Dropout is still commonly used in CNNs, including GoogLeNet, which uses
a dropout rate of 40%. Dropout is most important to use when dealing
with small datasets to prevent overfitting. ResNet utilizes a more modern
alternative to dropout called batch normalization [20]. It normalizes mini-
batches of SGD using two extra trainable parameters to prevent the activa-
tion functions from working in the linear plane. This process is implemented
in the architecture itself. The main goal of using batch normalization is to
prevent what is called covariate shift, where the nonlinearities saturate, and
to drastically increase the training speed.

The background information necessary to understand the solution has now
been explained. The proposed solution to the problem is presented in the
next chapter. The solution differs from the ones described in Section 2.2
by using a CNN without any use of muscle tissue or machines that have a
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physical impact on the fish. No filters are applied to the images used in
the solution. The proposed convolutional neural network implements the
winning network from ILSVRC 2017, Squeeze-and-Excitation. Additionally,
the solution is tested on the new dataset of Nordic fish species. The results
are discussed throughout the next chapters.
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Chapter 3

Approach and
Implementation

The proposed solution to the problem is presented in this chapter. The
solution uses a CNN with SE blocks described in Section 2.2. The CNN is
inspired by the DeepFish architecture [35]. However, the hyperparameters
and the depth of the network have been changed. SE was added to the
solution because the network can be implemented in any existing network,
and was the winner of the ImageNet classification competition in 2017 [17].
As opposed to some of the deeper networks like Inception-ResNet, the pro-
posed solution is more shallow and therefore has a faster execution time,
which is useful if the solution is to be implemented in a live environment.
The proposed solution with the SE extension will throughout the rest of
this thesis be referred to as CNN-SENet.

All tests leading to the solution is performed on the Fish4Knowledge dataset,
before applying the model with pre-trained weights from this dataset to the
dataset consisting of Nordic fish species. The approach when training on
the Fish4Knowledge dataset is referred to as pre-training for the remainder
of this thesis, and the approach when training on the Nordic species dataset
with the weights from pre-training is referred to as post-training. The solu-
tion is implemented in Keras, which is a high-level API for building neural
networks and runs on top of Tensorflow [24].

This chapter starts with an introduction to the datasets used for testing,
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followed by the pre-processing done with the datasets. Then CNN-SENet is
explained in detail, as well as tests leading to the final solution. The chapter
is concluded with a comparison between CNN-SENet and DeepFish.

3.1 Datasets

There are two datasets used in the solution. The first is the Fish4Knowledge
dataset [14], which is used in the pre-training process. The dataset used for
post-training is the Nordic fish species dataset. A common feature for these
two, is that each fish species has their own folder with the corresponding
images, and all these folders are under a root folder as illustrated in Figure
3.1.

Figure 3.1: File structure of the datasets.

3.1.1 Fish4Knowledge Dataset

The Fish4Knowledge dataset consists of 23 different exotic species. From
Figure 3.2, the species and their corresponding distribution are illustrated.
The difference between some of the species in terms of quantity, is relatively
big and therefore provides an imbalanced collection of data. An example
is between species 1 with their 12112 samples, and species 23, holding only
25 samples. In addition, each image usually consists of one individual fish,
but there are occasions where the image is crowded with other individuals.
Some images per species have similar backgrounds and environment, but

26



3.1. Datasets Approach and Implementation

there are also some variations.

Figure 3.2: Distribution of the Fish4Knowledge dataset [14].

3.1.2 Nordic Fish Species Dataset

The dataset used for post-training is distributed from the Institute of Marine
Research (IMR) [18] in Flødevigen (Norway) and consists of 4 typical Nordic
fish species with a total of 1019 samples. As mentioned in Chapter 1, the
images have been extracted mainly from the underwater video cameras used
in the projects [10][40]. Furthermore, the data was extracted this year,
which means no one has tested this dataset yet. The distribution is not
significantly imbalanced as in the dataset from Fish4Knowledge, but the
number of samples for each species is less. Noise in the background is
more dominant in this dataset, as Figure 3.4 shows. Some species have
images with a similar background, other species have images with a variety
of backgrounds. As a result of the low amount of images per species, the ones
with the most sample data have been chosen to include in the experiments.
The species included are Pollack, Corkwing wrasse male, Corkwing wrasse
female combined with a morph of males that mimics females (sneakers), and
Coalfish, which is shown below in Figure 3.3.
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Figure 3.3: Distribution of the second dataset.

Figure 3.4: Four images of wrasse female and sneakers.

The information necessary to understand the datasets have now been ex-
plained, and the next section describes how the datasets are pre-processed
before the architecture of CNN-SENet is explained.
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3.2 Pre-processing

One of the research questions is whether the state-of-the-art accuracy on
the Fish4Knowledge can be achieved without data augmentation. No filters
have been applied when training CNN-SENet, as opposed to the previous
state-of-the-art solutions. The images are re-sized to 200×200 pixels, be-
cause all images need to have the same dimensions for the CNN to work,
and some of the CNNs tested in Chapter 4 require the images to be a min-
imum of 200×200 pixels in order for all filters to be applied to the input
images. The images are also re-scaled from RGB values between 0 and 255,
to values between 0 and 1 to prevent too much variation in output between
the CNN layers.

29



3.3. CNN-SENet Architecture Approach and Implementation

3.3 CNN-SENet Architecture

Figure 3.5: The architecture of CNN-
SENet.

The architecture of the CNN used
to solve the problem is based on
the SE architecture described in
Section 2.2.1. The architecture of
CNN-SENet is shown in Figure 3.5,
where W and H are input width
and height, respectively. F is the
number of filters, B is batch size
and S is filter size. The default
batch size is 16. The C in the fi-
nal layers is the number of output
classes corresponding to the amount
of fish species to be classified. The
input to the first convolutional layer
is 200×200×3, because the image
size is 200×200 pixels and the 3
channels represent the RGB color
scheme. The first CNN layer cre-
ates 32 filters with 5×5 receptive
fields, giving an output dimension
of 196×196×32. The output of the
first layer is batch normalized be-
fore a SE block is applied to the
output. The output of the batch
normalization and the SE block is
merged together by multiplication.
ReLU is applied to the multiplied
output, which has the same out-
put dimensions as the batch nor-
malized output. Max pooling is ap-

plied to the multiplied output with a filter of size 2×2, giving an output
of 98×98×32, because the max pooling operation only outputs half of the
input width and height. The network consists of five convolutional layers
with a SE block between each layer. The first one is described above. The
two next layers use 64 filters with 3×3 receptive fields. The fourth layer
outputs 128 filters of size 2×2, and the last convolutional layer outputs 256
filters of size 2×2. The stride on all layers is 1.
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The network has three fully-connected layers. The output of the final con-
volutional layer is flattened and fed to a fully-connected layer consisting
of 256 neurons. The outputs of all three fully-connected layers are batch
normalized. ReLU activation is applied to the first two fully-connected lay-
ers after batch normalization. The second fully-connected layer has 128
neurons, and the last fully-connected layer is the final output layer, which
contains as many neurons as there are classes in the datasets. The softmax
classifier function is used to get the probability distribution for each class
per input image. A 50% dropout is applied before the final softmax layer.

The loss function used is categorical cross-entropy with the Adam optimizer
[25].

3.3.1 Dropout

A dropout of 50% is applied between the two last fully-connected layers of
CNN-SENet to create variation in the dataset during training and to pre-
vent overfitting. Dropout values of 0.1, 0.5 and 0.8 have been tested, and
figures 3.6, 3.7 and 3.8 illustrate the training and validation accuracies per
epoch from the pre-training with these dropout values, respectively. While
10% and 50% dropout have very similar graphs, 80% dropout converges at
a lower training accuracy than the other two. The validation accuracy with
80% dropout remains high, but is still slightly lower than 10% and 50%.
The higher the dropout, the more information is lost during training be-
cause forward- and backpropagation is done only on the remaining neurons
after dropout is applied [41].

Figure 3.6: 10%
Dropout.

Figure 3.7: 50%
Dropout.

Figure 3.8: 80%
Dropout.

Dropout values of 10% and 50% give an identical accuracy on the testing set
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of 99.27%. The losses on the testing set for both 10% and 50% are almost
identical, with 50% dropout having a loss of 0.03567 and 10% dropout a loss
of 0.03846. 80% dropout gives a testing accuracy of 99.03%. These factors
led to 50% dropout being the one implemented in the final solution.

Applying dropout after each fully connected layer similar to what DeepFish
[35] does has also been tested, but results in a slightly lower testing accuracy
than using one dropout activation in CNN-SENet.

3.3.2 Batch Normalization

Batch normalization has been tested and results in a slightly better per-
formance than not applying it. It is said to increase the performance due
to the normalization of each previous output layer. Batch normalization is
applied in addition to the 50% dropout, although both techniques regular-
ize the model. However, batch normalization aims to reduce the covariate
shift and increase performance, so the two techniques work well together.
The figures 3.9 and 3.10 below illustrate the pre-training process without
and with batch normalization, respectively. The training accuracy is very
similar in both cases, but slightly more stable when using batch normaliza-
tion, and the validation accuracy is higher and more stable. This is due to
the means and variances of the layer inputs being normalized, causing less
variation in the data [20].

Figure 3.9: 0.5 dropout without
batch normalization

Figure 3.10: 0.5 Dropout with
batch normalization

The accuracy on the testing set without batch normalization is 98.35%,
while the accuracy with batch normalization is 99.27%.
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3.3.3 Learning Rate

The learning rates when using the Adam optimizer can be tuned to further
optimize the network. Adam has four tunable parameters: learning rate,
learning rate decay and two exponential decay rates for moment estimates.
The experiments performed have only focused on the learning rate and
decay. The default values for the four parameters in the original paper
on Adam proposed by Kingma and Ba [25] uses a learning rate of 0.001,
decay rates of 0.9 and 0.999 and no learning rate decay. The experiments
in the figures below use the default exponential decay values. Figure 3.11
shows CNN-SENet with a learning rate of 0.1 with a decay of 0.001, and
the experiment from Figure 3.12 uses a learning rate of 0.01 and a decay
of 0.0001. The decay was added in these experiments because the learning
rates are 100 and 10 times higher than the default learning rate, respectively,
which can cause very large variations in the weights during training. The
training and validation accuracy from Figure 3.13 comes from training with
the default values proposed in [25]. Even though a low learning rate is used,
the training stabilizes after about 30 epochs with a training accuracy close
to 100%.

Figure 3.11: Learning
rate of 0.1 with a decay
of 0.001.

Figure 3.12: Learning
rate of 0.01 with a decay
of 0.0001.

Figure 3.13: Learning
rate of 0.001 without de-
cay.

When comparing the training and validation accuracies in the figures above,
there are no significant differences in the results, even though the experiment
on the left has a learning rate 100 times larger than the one on the right. The
highest learning rate seems to have the slowest learning curve. This may
be because the learning rate is too high and the adjustment of the weights
become too large to approximate the optimal weights in the beginning.
After about 40 epochs, the learning rate has decayed enough for the training
process to converge. With a learning rate of 0.001, as seen in Figure 3.12,
the graph for the training accuracy converges earlier and has a higher y-
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value. When evaluating the two models on the testing set, 0.1 learning
rate gets an accuracy of 99.15%, while 0.001 learning rate achieves 98.98%
accuracy. By using the default values seen in Figure 3.13, the accuracy on
the testing set is 99.27%. These values are the ones that have been used
when testing different dropout values and batch normalization. The model
trains faster and has a higher validation accuracy than the other two, which
makes it the final model used in the pre-training process.

The fine-tuning of the learning rate concludes the architecture of CNN-
SENet, and the next section discusses the differences between CNN-SENet
and the previous state-of-the-art solution on the Fish4Knowledge dataset,
DeepFish.

34



3.4. CNN-SENet vs. DeepFish Approach and Implementation

3.4 CNN-SENet vs. DeepFish

The architecture of CNN-SENet has now been discussed. CNN-SENet is
based on DeepFish, and the table below illustrates the significant differences
between CNN-SENet and DeepFish.

CNN-SENet DeepFish

Image Size 200×200 47×47

Testing Samples 4126 3098

Network
Architecture

Basic with SE blocks Basic

Classifier Softmax SVM

Convolutional
Layers

5 3

Table 3.1: Differences between CNN-SENet and DeepFish.

The biggest difference between CNN-SENet and DeepFish is the network
architecture. CNN-SENet has five convolutional layers with more filters and
SE blocks, while DeepFish only uses three convolutional layers. The image
size used during testing in this thesis is larger, which can lead to more
details being captured. However, the details might be stretched slightly
with larger image sizes. DeepFish trains their solution over 65000 iterations,
while CNN-SENet trains for 59800 iterations. As seen in Figure 3.13, the
network has already stabilized after the 50 epochs CNN-SENet is trained
for, which means that there should not be any gains in accuracy by training
for 65000 iterations instead.

Even though DeepFish trains longer and uses an image size more similar to
the actual dataset, the CNN-SENet achieves a better testing result.

The approach and implementation of CNN-SENet have been discussed in
this chapter. The next chapter shows experiments on the pre-training and
post-training approaches with some of the other state-of-the-art CNN ar-
chitectures. The results with these networks are compared to the results of
CNN-SENet.
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Chapter 4

Experiments and Numerical
Results

This chapter will compare and discuss CNN-SENet and its results against
other state-of-the-art solutions presented in Section 2.2. The networks cho-
sen for comparison are Inception-V3, ResNet-50 and Inception-ResNet-V2,
as well as CNN-SENet without the Squeeze-and-Excitation blocks.

Section 4.1 describes the configurations made prior to the experiments on
the two approaches, pre-training and post-training, which has been defined
in Chapter 3. A third experiment using image augmentation on post-
training is added, because the post-training dataset is small and image
augmentation adds size and variation to the dataset. The different augmen-
tations added are explained in the next section.

Finally, the numerical results along with graphs showing the accuracies are
discussed for all three experiments in Section 4.2.

4.1 Configurations

There are some similarities in the configurations of the experiments men-
tioned above. The datasets in both approaches are divided into 70% train-
ing data, 15% validation data and 15% testing data. All networks train for
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50 epochs and use an image size of 200×200 pixels, except for Inception-
ResNet-V2, which uses an image size of 299×299 pixels. The final fully-
connected layer is altered from 23 to 4 neurons in all CNNs between pre-
training and post-training to account for the different number of species in
the two datasets.

The subsections below describe configurations specifically for the given ex-
periments.

4.1.1 Pre-training

The specific configurations for the pre-training experiments are described
in this subsection.

• 19149 images for training, 4126 images for testing.

• One run of 50 epochs.

• Batch size of 16

• Evaluated on the testing set using weights from the epoch with the
highest validation accuracy. The weights are therefore not necessarily
from the 50th epoch.

4.1.2 Post-training

The specific configurations for the post-training experiments are described
in this subsection.

• 712 images for training, 155 images for testing.

• The weights from pre-training are loaded before each run on post-
training.

• Ten runs of 50 epochs.

• Batch size of 8

• Evaluated with the weights from the 50th epoch.
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On post-training, the model and weights from pre-training are loaded. The
reason for using the weights from pre-training, is that the network is able to
learn common features of fish before starting the training process, making
it easier for the network to learn features on the small dataset used in post-
training. To adapt the loaded model to post-training, the last dense layer
with 23 neurons is changed to a dense layer with four neurons to get the
correct number of output classes.

The images from the Fish4Knowledge dataset have less variation per species
than the Nordic species dataset, in addition to having more samples in
training, testing and validation. These factors make it viable to draw a
conclusion on one run on the pre-training, while the post-training results
are based on the average of ten runs.

4.1.3 Post-training with Image Augmentation

The configurations and dataset in the experiment on post-training with
image augmentation are the same as the one used in the post-training ex-
periments. The images are rotated randomly from 0 to 40 degrees, vertically
and horizontally shifted a random fraction of the image size between 0 and
0.2, shearing transformations are randomly applied, a zooming fraction of
0.2 is randomly applied, and half of the images are flipped horizontally. This
is done to create more variation in the dataset, so that the networks can
learn features regardless of the position, size or orientation of the features
in the images.
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4.2 Results

This section will present and discuss the results and experiments obtained
from both pre-training and post-training, as well as post-training with image
augmentation.

4.2.1 Pre-training

In this subsection, the results for the pre-training approach are discussed.
Table 4.1 shows the accuracies achieved when evaluating the networks on
the testing subset of the dataset, as well as the time it takes for one training
epoch to finish for each network.

Network Testing Accuracy Time One Epoch

Inception-V3 99.18% 923 s

ResNet-50 98.86% 646 s

Inception-ResNet-V2 98.59% 2221 s

CNN-SENet 99.27% 197 s

CNN-SENet without
Squeeze-and-Excitation

99.15% 159 s

Table 4.1: Testing accuracy and time per epoch on pre-training.

The graphs below show the training and validation accuracy per epoch for
the CNNs tested.

Figure 4.1: Inception-V3. Figure 4.2: ResNet-50.
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Figure 4.3: Inception-Resnet-
V2.

Figure 4.4: CNN-SENet.

Figure 4.5: CNN-SENet With-
out Squeeze-and-Excitation.

Table 4.1 shows that most of the CNNs achieve a higher accuracy than the
previous state-of-the-art on the testing data. However, the execution time
for each epoch varies greatly between the networks. One can see that the
bigger and deeper the network is, the longer it takes per epoch. CNN-SENet
is approximately ten times faster in terms of execution time than Inception-
ResNet-V2, and about three times faster than ResNet-50. When removing
the SE blocks from the proposed CNN, the execution time is lower due to
the removal of several fully-connected layers. However, when enabling SE
blocks, the testing accuracy is higher.

Inception-ResNet-V2 achieves the lowest testing accuracy of the CNNs tested.
One of the reasons for this can be due to the image size being 299×299, as
opposed to 200×200 pixels in the other networks. The images in the pre-
training dataset vary in size but are much smaller than 299×299. The
images become more stretched when the image size is this big. Inception-
ResNet-V2 has so many layers and so many reductions in dimensions, that
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the network causes a negative dimension size when using 200×200 images,
which is why 299×299 pixels are chosen. Another reason for Inception-
ResNet-V2’s lower accuracy might be the depth of the network. Inception-
ResNet-V2 was built for the ImageNet database described in Section 2.2.1,
which consists of 1000 categories to classify. Both Inception-V3 and ResNet-
50 were created for ImageNet, but Inception-ResNet-V2 combines both the
Inception and ResNet architecture, leading to a deeper network. The sig-
nificant difference in time per epoch when comparing Inception-ResNet-V2
to the other solutions is also a result of the increased image size and the
depth of the network. The total amount of pixels per image is more than
doubled, 40000 pixels in a 200×200 pixel image compared to 89401 with an
image size of 299×299.

The graphs in the figures 4.1 and 4.2 show that Inception-V3 and ResNet-
50 have a more stable validation accuracy throughout the training process
than the other networks. ResNet-50 fluctuates a little until epoch 20, before
it stays stable throughout the rest. Inception-ResNet-V2 is highly unstable
throughout the whole training process, which is not the case for any of the
other networks. This indicates that even though Inception-ResNet-V2 is a
newer network than both Inception-V3 and ResNet-50, it does not perform
as well as its predecessors on the pre-training dataset. CNN-SENet with
and without SE fluctuate to some extent in the validation accuracy, as seen
in graphs 4.4 and 4.5, but remains high and fairly stable.

CNN-SENet achieves 99.27% testing accuracy with only five convolutional
layers and three fully-connected layers, with SE blocks between the convo-
lutional layers. To be able to implement a CNN in a live video feed, it is
important that the network is fast. CNN-SENet is the second fastest among
the networks tested, only beaten in execution time by CNN-SENet without
SE blocks. The addition of the SE blocks leads to an increase of 0.12%
compared to not including them.
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Figure 4.6: Confusion matrix for pre-training with CNN-SENet.

Figure 4.6 shows a confusion matrix of the predictions from pre-training
with CNN-SENet. The y-axis represents the actual species, and the x-axis
is the predicted species. CNN-SENet mostly predicts the correct species,
with some random wrong classifications. Fish 21 stands out with only three
images in the testing set, where one of these is classified as fish 1, giving an
accuracy on fish 21 of 66.67%. This is due to the uneven distribution of the
dataset, meaning that the network may overfit on fish 1 because there are
way more images of that species than the others. Most wrong predictions
are predicted as fish 1 because of this. Some species like fish 1 and fish
3 are similar, which may be the cause of some predictions on fish 1 being
classified as fish 3. Another factor for wrong classifications could be noise
in the images.
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4.2.2 Post-training

This subsection discusses the results from training with the weights from
pre-training on the post-training dataset.

Network Average Testing Accuracy Time One Epoch

Inception-V3 85.42% 33 s

ResNet-50 82.39% 47 s

Inception-ResNet-V2 78.84% 91 s

CNN-SENet 83.68% 9 s

CNN-SENet without
Squeeze-and-Excitation

82.32% 7 s

Table 4.2: Average testing accuracy over 10 runs and time per epoch on post-
training.

Figures 4.8 to 4.12 below contain two graphs per network tested. The graph
on the left of each figure is the average training and validation accuracy
per epoch during training. The graph on the right is the testing accuracy
achieved on each of the ten runs. Figure 4.7 summarizes the right-hand side
graphs for all networks as a boxplot. The first column in Table 4.2 is the
average of these values.
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Figure 4.7: Boxplot showing the testing accuracies over ten runs with the different
networks.

Figure 4.8: Inception-V3. Average training, validation and testing accuracies
over 10 runs.
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Figure 4.9: ResNet-50. Average training, validation and testing accuracies over
10 runs.

Figure 4.10: Inception-ResNet-V2. Average training, validation and testing ac-
curacies over 10 runs.
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Figure 4.11: CNN-SENet. Average training, validation and testing accuracies
over 10 runs.

Figure 4.12: CNN-SENet without Squeeze-and-Excitation. Average training,
validation and testing accuracies over 10 runs.

The testing accuracies on post-training are generally lower than on pre-
training, as can be seen when comparing the results from Table 4.2 and
Table 4.1. Inception-ResNet-V2 still has the lowest testing accuracy, but
trains and evaluates at a more stable rate than during pre-training. This
shows evidence that it is not the size of the dataset that is the leading
factor in Inception-Resnet-V2 performing worse than the others during pre-
training. The training accuracy of Inception-ResNet-V2 is actually higher
than CNN-SENet with and without SE blocks. The deviation in training
and validation accuracy measured on Inception-ResNet-V2 could be a sign
of overfitting. However, Inception-ResNet-V2 uses a dropout of 80%, which
should counter overfitting, while ResNet-50 only uses batch normalization
without any dropout. A more likely reason that all networks have a lower
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validation and testing accuracy, is the large variation in the images per
species, as seen in Section 3.1.2.

CNN-SENet performs better than most of the CNNs tested, only beaten by
Inception-V3. When comparing the boxplot of CNN-SENet and Inception-
V3 from Figure 4.7, it can be observed that although Inception-V3 has
a higher average testing accuracy, the variation in achieved testing accu-
racy is greater. The lowest achieved accuracy is slightly lower than CNN-
SENet’s lowest accuracy, but the median shown by the green line is higher
for Inception-V3.

The boxplot of ResNet-50 shows low variations in testing accuracy, except
for one outlier indicated by the blue dot in the figure. ResNet-50 trains fast
and stabilizes at a high training accuracy, but does not manage to achieve
a similar validation accuracy, which is the general observation made on all
networks from post-training.

Figure 4.11 shows that CNN-SENet has the slowest training progress during
post-training, and has still not converged after 50 epochs. The validation
accuracy seems to have converged, which means that more epochs would
likely not improve the testing accuracy. An interesting observation when
looking at the training and validation graph of CNN-SENet, is that the val-
idation accuracy starts higher than the training accuracy. This is probably
caused by some similar features being taught during the pre-training pro-
cess. The training increases much slower than during pre-training, but it
increases at a stable rate. CNN-SENet still has the second-best performance
when it comes to testing accuracy, and the boxplot indicates more stable re-
sults than Inception-V3. The boxplot for CNN-SENet is evenly distributed
around the median, while Inception-V3’s accuracies are skewed downwards.
The greatest advantage with CNN-SENet over Inception-V3 is the time used
per epoch. CNN-SENet trains about 3.6 times faster than Inception-V3 on
post-training, making it advantageous to use in a live scenario.

When removing the SE blocks, the boxplot is slightly skewed upwards, but
generally lower than with the SE blocks, and with a lower median. The
training is faster without the SE blocks, but does not fully converge after
50 epochs. The validation accuracy increases somewhat towards the end
of training, meaning that the CNN could probably benefit from training
further.
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Figure 4.13: Confusion matrix for post-training with CNN-SENet.

Figure 4.13 above shows the confusion matrix for CNN-SENet for post-
training. Although the Nordic species dataset has great variations in the
data per species, there are similarities between species. Corkwing wrasse
female and male has some similarities, which is indicated by the wrong clas-
sifications from the confusion matrix. No images of corkwing wrasse are
classified as pollack or coalfish, because there are clear differences between
those species. Pollack and coalfish also share similarities, and the back-
ground and color spectrum in the images for these species are very similar.
Many of the images of coalfish have noisy backgrounds and several individ-
uals in the images. Some images are taken at an angle where the fins do
not show, making coalfish look very similar to pollack. These may be some
of the reasons why some images of coalfish are classified as pollack. Figure
3.3 shows these similarities more clearly.
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4.2.3 Post-training with Image Augmentation

The results for post-training with the addition of image augmentation are
discussed below. The experiments are the same as in post-training, except
the time per epoch is not taken into account in Table 4.3, because there is
only a slight difference in the time used per epoch when compared to the
post-training results without image augmentation.

Network Testing Accuracy

Inception-V3 88.45%

ResNet-50 90.20%

Inception-ResNet-V2 82.39%

CNN-SENet 87.74%

CNN-SENet without
Squeeze-and-Excitation

83.55%

Table 4.3: Average testing accuracy over 10 runs and time per epoch on post-
training with image augmentation.

Figure 4.14: Boxplot showing the testing accuracies when using image augmen-
tation over ten runs.
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Figure 4.15: Inception-V3 with augmentation. Average training, validation and
testing accuracies over 10 runs.

Figure 4.16: ResNet-50 with augmentation. Average training, validation and
testing accuracies over 10 runs.
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Figure 4.17: Inception-ResNet-V2 with augmentation. Average training, valida-
tion and testing accuracies over 10 runs.

Figure 4.18: CNN-SENet with augmentation. Average training, validation and
testing accuracies over 10 runs.
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Figure 4.19: CNN-SENet without Squeeze-and-Excitation with augmentation.
Average training, validation and testing accuracies over 10 runs.

Table 4.3 illustrates that data augmentation does have a positive effect on
the performance, and all networks achieve a higher accuracy. The difference
between CNN-SENet and CNN-SENet without SE in terms of testing accu-
racy is higher now. CNN-SENet SE achieves a 4.06% higher accuracy, while
CNN-SENet without SE only increases by 1.23%. Additionally, ResNet-
50 now outperforms the other networks with a testing accuracy of 90.20%.
Inception-V3 still performs better than CNN-SENet, and Inception-ResNet-
V2 still has the lowest average testing accuracy.

The boxplot from Figure 4.14 shows that there is less variation in the ac-
curacies from the different runs for all networks. Inception-V3, ResNet-50,
and Inception-ResNet-V2 all have outliers, which indicate abnormalities.
The difference in Inception-V3’s lowest and highest outlier is at about 6%,
meaning Inception-V3 generally has a low spread in accuracy. ResNet-50
has some outliers below 85% with its highest achieved accuracy of 95%,
while Inception-ResNet-V2 has one abnormality that largely contributes to
a lower total average accuracy than the other networks.

The results from the experiments have now been discussed, and the next
chapter will conclude this thesis with a summary of the results and provide
an answer to the research questions and hypotheses defined in Chapter 1.
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Chapter 5

Conclusion and Further
Work

This chapter summarizes the solution and results with regards to the re-
search questions and hypotheses defined in Chapter 1. The thesis will be
concluded with potential future work and improvements to the solution,
targeted at biometric classification of fish.

5.1 Conclusion

In this thesis, we propose a CNN with the implementation of the SE archi-
tecture. The network is specifically tuned and trained for biometric classifi-
cation of fish. The results show that CNN-SENet achieves the state-of-the-
art accuracy of 99.27% on the Fish4Knowledge dataset without any form
for data augmentation or image de-noising, beating DeepFish’s accuracy of
98.64% [35]. This shows that the SE architecture can be considered state-of-
the-art in other problems than ImageNet. With a more evenly distributed
dataset, this accuracy could increase, indicated by most wrong classifica-
tions in Figure 4.6 being classified as fish 1, which is the species with the
most images.

For post-training, CNN-SENet achieves an accuracy of 83.68%. On this
dataset, CNN-SENet is not the winning network, with Inception-V3 achiev-

55



5.2. Future Work Conclusion and Further Work

ing an average accuracy of 85.42%, showing evidence that SE is not the
best suited to all problems. The best performing CNN on one single run is
Inception-V3 with an accuracy of 89.03%. Due to the small size of the
dataset and high variation in data, CNN-SENet performs worse on the
Nordic species dataset than on Fish4Knowledge. When applying image
augmentation on the post-training, we see that the general accuracy in-
creases, showing evidence that it is the limited dataset size that causes the
low performance on post-training. With the addition of more images and
image augmentation, the accuracy could potentially increase to the same
level as pre-training. CNN-SENet is not the highest performing network
when applying image augmentation, with ResNet-50 achieving the highest
average accuracy of 90.20%.

For both approaches, CNN-SENet with SE blocks has a higher accuracy
than without the SE blocks, indicating that SE has a positive effect on
accuracy.

5.2 Future Work

The results achieved show that CNN-SENet performs well, and could poten-
tially be used in marine research provided more data for training. This sec-
tion lists out potential future work for CNN-SENet and other areas within
marine research CNN-SENet could be applied to.

• Getting more images of Nordic fish species for CNN-SENet to train
on.

• Perform further experiments on the CNN-SENet architecture and pa-
rameters to fine-tune the network further.

The list below indicates the areas where IMR sees the potential of deep
learning and our solution, as stated by Alf Ring Kleiven.

• Otolith-reading of fish. This is work that takes years for IMR because
they have to know the fish’s age when making population assessments
and advice on quota with regards to management. This is an im-
portant area within marine research, but not an area our solution is
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directly applicable to. Our solution could be altered to work for this
particular problem.

• Individual recognition of fish that the human being’s eyes cannot dis-
tinguish between. Our solution could be extended to replace the pro-
cess of recognizing individual fish instead of manually marking indi-
viduals.

• Species identification from fish eggs and other marine animals. Today,
this is performed manually for identifying species from egg tests.

• Species identification of animal- and plant plankton. This is mostly
done manually and our solution could support the work and perform
the task more effectively.
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Appendices

A CNN-SENet Source-code

A.1 cnn senet.py

import h5py, keras

from keras import backend as K

from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout,

Flatten, Dense, BatchNormalization, Input

from keras.models import Model

from se import squeeze_excite_block

channel_axis = 1 if K.image_data_format() == "channels_first" else -1

def se_net(input_shape, preorpost):

x = Conv2D(32, (5,5))(input_shape)

x = BatchNormalization(axis=channel_axis)(x)

x = squeeze_excite_block(x)

x = Activation('relu')(x)

x = MaxPooling2D(pool_size=(2,2))(x)

x = Conv2D(64, (3,3))(x)

x = BatchNormalization(axis=channel_axis)(x)
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x = squeeze_excite_block(x)

x = Activation('relu')(x)

x = MaxPooling2D(pool_size=(2,2))(x)

x = Conv2D(64, (3,3))(x)

x = BatchNormalization(axis=channel_axis)(x)

x = squeeze_excite_block(x)

x = Activation('relu')(x)

x = MaxPooling2D(pool_size=(2,2))(x)

x = Conv2D(128, (2,2))(x)

x = BatchNormalization(axis=channel_axis)(x)

x = squeeze_excite_block(x)

x = Activation('relu')(x)

x = MaxPooling2D(pool_size=(2,2))(x)

x = Conv2D(256, (2,2))(x)

x = BatchNormalization(axis=channel_axis)(x)

x = squeeze_excite_block(x)

x = Activation('relu')(x)

x = MaxPooling2D(pool_size=(2,2))(x)

x = Flatten()(x)

x = Dense(256)(x)

x = BatchNormalization(axis=channel_axis)(x)

x = Activation('relu')(x)

x = Dense(128)(x)

x = BatchNormalization(axis=channel_axis)(x)

x = Activation('relu')(x)

x = Dropout(0.5)(x)

if preorpost == "pre":
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x = Dense(23)(x)

elif preorpost == "post":

x = Dense(4)(x)

else:

print("Invalid input")

x = BatchNormalization(axis=channel_axis)(x)

x = Activation('softmax')(x)

model = Model(input_shape, x)

return model

A.2 se.py

from keras.layers import GlobalAveragePooling2D, Reshape, Dense,

multiply, Permute

from keras import backend as K

#https://github.com/titu1994/keras-squeeze-excite-network

def squeeze_excite_block(input, ratio=16):

''' Create a squeeze-excite block

Args:

input: input tensor

filters: number of output filters

k: width factor

Returns: a keras tensor

'''

init = input

channel_axis = 1 if K.image_data_format() == "channels_first"

else -1

filters = init._keras_shape[channel_axis]

se_shape = (1, 1, filters)

se = GlobalAveragePooling2D()(init)

se = Reshape(se_shape)(se)

se = Dense(filters // ratio, activation='relu',

kernel_initializer='he_normal', use_bias=False)(se)

se = Dense(filters, activation='sigmoid',
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kernel_initializer='he_normal', use_bias=False)(se)

if K.image_data_format() == 'channels_first':

se = Permute((3, 1, 2))(se)

x = multiply([init, se])

return x
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