
A Generative Adversarial Approach for Packet
Manipulation Detection

by

Åsmund Kamphaug

Master Thesis in
Information and Communication Technology

FINAL VERSION 5

The University of Agder

Grimstad, June 4, 2018

Abstract

Over the years, machine learning has been used together with intrusion detection
systems to protect networks against different threats. The evolution of machine
learning has exploded and there are new types of of machine learning algorithms
being studied on different fields. Networks security is not one these fields that
have the most research, and with the continuous change in the way attacks are
appearing, machine learning in network security is more alluring than ever. The
intention of this thesis is to present a solution that shows that using machine learn-
ing in intrusion detection domain is a way to enhance network security.

Several different generative techniques have emerged from the latest years of deep
learning research. One particular that stands out is The Generative Adversarial
Network (GAN), that is largely used in the field of image generation. These tech-
niques is based on the idea of two networks competing against each other and
trying to be superior than the other. This thesis follows a quantitative methodol-
ogy and a combination of experimentation and engineering research.

The study focuses on how well the developed solution performs on detecting
networks attacks and how well it can learn to recreate networks packets. This
approach implements a modified version of the generative adversarial network,
by implementing an optimisation training step to the regular algorithm. The re-
sults shows that with this new type of generative adversarial network the accuracy
increases from 2 % to 100 % when detecting DARPA99 labelled attacks. The
results also shows that the solution experiences mode collapse when creating new
network packets, but the model is able to create real network packets that are ap-
proved by Wiresharks syntax check and also for the human eye looks like normal
network packets.

Acknowledgements

I would like to thank my thesis supervisor, Prof. Ole-Christoffer Granmo for his
guidance and helpful directions throughout the duration of this study. Further-
more, I would like to thank my friends and family for their good conversations
and support over these two years, and to thank my girlfriend Mia Therese Formo
Selte, for all the continuous support and immense tolerance for the past two years,
without which it would not have been possible to finalize my studies and this
work.

I

Contents

Contents II

List of Figures IV

List of Tables V

1 Introduction 1
1.1 Introduction . 1
1.2 Goal . 2
1.3 Thesis definition . 2
1.4 Limitations . 3
1.5 Thesis Organization . 3

2 Literature Review 4
2.1 Intrusion Detection . 5
2.2 IDS Datasets . 8
2.3 Generative Adversarial Network 9

2.3.1 Mode Collapse . 11
2.3.2 Image Generation With Generative Adversarial Network . 12

2.4 Research Questions . 15

3 Methodology 16
3.1 Quantitative method . 16

II

CONTENTS

3.2 Potential error factors . 18
3.3 Guidelines . 19

3.3.1 Research Question Guidelines 19
3.4 Data Collection Guidelines . 20
3.5 Analysis Guidelines . 21

4 Proposed Solution 22
4.1 Proposed solution / algorithm . 22

4.1.1 The Generative Adversarial Network 23
4.1.2 Algorithmic Enhancements 26
4.1.3 Discussion of the Parameter Space 27

4.2 Prototype . 28
4.2.1 Pre-processing . 28
4.2.2 Network Models . 31
4.2.3 Post-processing . 35

4.3 Justification of Claim to Originality 37

5 Experiments and Results 38
5.1 Experiment Setup . 38
5.2 Data Gathering & Prepossessing 38
5.3 Experimental Result . 39

5.3.1 Discriminator Based Intrusion Detection System 39
5.3.2 Network Packets Creation With Generator Network 41

6 Conclusion and further work 44
6.1 Summary of Results . 44
6.2 Conclusion . 47
6.3 Further Work . 47

Bibliography 49

A Source Code 1

III

List of Figures

2.1 A typical misuse/signature based detection system 5
2.2 A typical anomaly detection system 6
2.3 Illustration of GAN architecture 10
2.4 This figure illustrates the mode collapse problem on a two-dimensional

fictive dataset. 12
2.5 Architecture of the generator in DCGAN from this paper [21] . . 13
2.6 Result of generated images of Hotel Room using DCGAN 14

4.1 The flow of of the proposed solution is illustrated here 23
4.2 Dataset explored with Wireshark 29
4.3 Tcpdump syntax formated to bit string 29
4.4 Generative Adversarial Network Model 32
4.5 Weights distribution over time. 36

5.1 Capture of generated packets in Wireshark 42
5.2 Loss over network when detection in focus 43
5.3 Loss over network when generation in focus 43
5.4 Accuracy on real attacks of between the optimised and not optimised 43

IV

List of Tables

2.1 Intrusion detection systems datasets 9

5.1 Accuracy of packet manipulation detection of Discriminator net-
work after 2 epochs not using optimisation dataset 40

5.2 Accuracy of packet manipulation detection of Discriminator net-
work after 2 epochs using optimisation dataset 40

5.3 Accuracy of packet manipulation detection of Discriminator net-
work after 10 epochs focused on generation 41

V

Abbreviations

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

DL Deep Learning

ML Machine Learning

GAN Generative Adversarial Network

CNN Convolutional Neural Network

DCGAN Deep Convolutional Generative Adversarial Network

VI

Chapter 1

Introduction

1.1 Introduction

Internet and computer networking is now a part of our daily life. New platforms
that uses computer networks has been developed more and more over these past
years. Now everything is connected to your network and to the internet, from
your computers to telephones, tablets, cars and all the way down to your fridge
and electric doors. But what are protecting all of these things?(Today there are
more and more cyber attacks happening worldwide than we can imagine. It’s
not only companies that are targeted for these attacks. Recently it was discov-
ered a hacker group that had taken control over 500 000 devices on the internet.
These devices was not only the devices of companies, but also private persons
telephones, fridges, microwaves and computers.

1

CHAPTER 1. INTRODUCTION

As we can see, the more our life gets online, the more important it is to have good
networks security. This is where intrusion detection systems comes into play.
These are systems that protect people and their networks by detecting malicious
data that flows in the network. Enterprises deploy different security measures on
their network, but still security breaches is a major concern.

Machine learning can be a powerful tool to help improve network security. It
has been attempted before to use different machine learning techniques in intru-
sion detection systems with varied result. In the past years there have not been so
many attempts on this task, while the breakthroughs on machine learning is hap-
pening often. Meaning that there are new techniques haven’t been used for this
task. One of them being the Generative Adversarial Network.

1.2 Goal

By using the state of the art machine learning techniques, this thesis presents a
solution that uses a modified Generative Adversarial Network. Proves that it can
be used as an intrusion detection system with very high detection accuracy on real
life attacks, as well as creating new network packets.

1.3 Thesis definition

In Chapter 2 an in-depth research concerning intrusion detection systems was
contocted and it was discovered that machine learning had been used earlier to
enhance different intrusion detection systems. The most recent years machine
learning have evolved, but these new breakthroughs has not been used for this
task. This thesis will make use the state of the art techniques to try to solve this
growing problem on how to solve network security in this modern age.

2

CHAPTER 1. INTRODUCTION

1.4 Limitations

This project aims on how to create an solution for a generative adversarial net-
work as an intrusion detection system(IDS). It will not however try to solve every
problem that a final product may have. The main priority is to make a solution
that uses a Generative Adversarial network as an intrusion detection system. This
solution will be trained on the DARPA99 dataset, and different experiments will
be performed to measure the solutions ability to detect attacks and if it can create
genuine networks packets.

1.5 Thesis Organization

The rest of the thesis presents an in-depth review of previous research work in the
area of generative adversarial machine learning and its application in information
security in Chapter: 2 and the definitions of the research questions. Followed by
the research methodology in Chapter: 3. Chapter: 4 is including the detailed pro-
cess and structure of the the solution. The experiments and the result is reported
in Chapter: 5. The thesis closes with the critical review of the results and the final
conclusions and proposed future work in Chapter: 6.

3

Chapter 2

Literature Review

In this section of the study it was conducted an in-depth research on the back-
ground as well as the current state of the art of intrusion detection systems and ma-
chine learning techniques. It also to explore different intrusion detection dataset.
In this study, the purpose of the review was to identify missing research gaps that
allowed the formulation of the research questions, that this thesis tried to answer.
As well as choose what kind of dataset was going to be used in this study.

4

CHAPTER 2. LITERATURE REVIEW

2.1 Intrusion Detection

When it comes to categorisation of techniques and methodologies used in NIDS,
the vast majority of the literature agrees on the following categorisation.

• Misuse-based or signature based are the systems that use signatures or
indicators extracted from previous documented attacks. These signatures
are manually generated by security experts, and they have to updated every
time a new attack type of is discovered and the system needs to detect it. So
since this process is manual, the maintenance of these types are frequent,
especially with the increased rate of attacks we see today, is becoming a
concern.

• Anomaly based system are system that tries to model normal behaviour in
a network in contrast to what is anomalous and potential malicious. While
these type of system promise the ability to adapt to new attacks. One of the
major concerns is how to define whenever the behaviour are anomalous or
not..

• Hybrid systems are the different combination of the above approaches

Figure 2.1: A typical misuse/signature based detection system

5

CHAPTER 2. LITERATURE REVIEW

In Figure 2.1 an typical architecture of misuse based detection system is il-
lustrated. The model consist of four components, data collection, system profile,
misuse detection and response. The data can be collected from many data sources
including audit trails, network traffic and system call trace. The collected data are
transferred to an understandable format for the other components of the system.
The system profile is used to characterise normal and abnormal behaviours. This
is done by setting rules to see what a normal user behaviour is and what kind of
operations that user typical would perform or not on different objects. The profiles
are matched with the actual system activities and if it matches it is flagged as an
intrusion and the system sends a response to a security expert. [7]

Figure 2.2: A typical anomaly detection system

In Figure 2.2 an typical architecture of anomaly based detection system is
illustrated. This model also consist of four components, but instead of misuse
detection it has anomaly detection. Normal data and network activity is obtained
and saved by the data collection. Then normal system profiles are created using
different techniques.

6

CHAPTER 2. LITERATURE REVIEW

The anomaly detection compares the similarity of the system profiles and the cur-
rent activities and decides what percentage these activities should be flagged as
abnormal traffic. Then a response are send to a security expert. Anomaly detec-
tion addresses the biggest limitation of misuse detection, since it can find novel
attacks. However the false alarm rate is general very high since there are much
assumptions to these models. This is where machine learning can be a tool to help
mitigate this problem. [7]

One of the most recent survey on intrusion detection system and machine learn-
ing was made by Anna L. Buczak and Erhan Guven in their article A Survey
of Data Mining and Machine Learning Methods for Cyber Security Intrusion
Detection[3]. In their work they took quite a comprehensive look and examines a
large number of different machine learning algorithms like Artificial Neural Net-
works, Association Rule Mining, Bayesian Networks, Clustering, Decision Trees,
Ensemble Learning, Evolutionary Computation, Hidden Markov Models, Naive
Bayes and Support Vector Machines. In this paper there was many different ma-
chine learning used as intrusion detection systems, but the authors of the paper
choose only to include papers where high number of citation was used. Meaning
ignoring the work that had been performed in recent years. For example most of
the papers that was used to gather information about Artificial Neural Networks
was from the years 1998-2002. While some of the papers about Deep learning
was from later years (2013-2014)

It was again made a new survey on machine learning in intrusion detection system
by Monowar H. Bhuyan and is coleeges in 2014 that included not only classifiers
as the article before, but also pure anomaly detection techniques like; clustering,
statistical methods,computing, knowledge based and combination learners.

7

CHAPTER 2. LITERATURE REVIEW

2.2 IDS Datasets

One of the most known dataset is the DARPA dataset[17]. This dataset was the
first standard corpora for evaluation of computer network intrusion detection sys-
tems. This was created by The Cyber Systems and Technology Group (formerly
the DARPA Intrusion Detection Evaluation Group) of MIT Lincoln Laboratory,
under Defense Advanced Research Projects Agency (DARPA ITO) with the spon-
sorship of the Air Force Research Laboratory (AFRL/SNHS). These people cre-
ated the first formal repeatable and statistically evaluation of different IDS. This
evaluation was carried out in 1998 and 1999. These evaluation measured the prob-
ability of the detection and false alarms for every system tested on. Furthermore
the dataset this thesis will focus on is the newest of does two, the 1999 dataset. In
the 1999 dataset there was two parts, the first one was an offline evaluation and a
real-time.

The main reason DARPA dataset was used instead of one of the more common
ones like KDD’99 is that unlike the KDD’99 dataset data does not contain the ac-
tually packet that made this attack, instead only using features extracted from the
the data. The DARPA dateset data uses the raw networks packets together with
labelling of these to classify which packets contains attacks. And since this thesis
will try to recreate network packets, this is essential. This change did not address
all issues that DARPA has and more importantly it did not erase the fact that it is
quite outdated. The Table: 2.1 contains different IDS dataset that can be used.

8

CHAPTER 2. LITERATURE REVIEW

Table 2.1: Intrusion detection systems datasets
Source Type Labelled Reference

DARPA NIDS Yes* [17]

KDD’99 NIDS Yes [10]

UNB NIDS (flows) Yes [19]

CTU-13 Botnet Yes* [6]

LANL Multi-source Yes [12]

Uni of Victoria Botnet Yes [22]

2.3 Generative Adversarial Network

Ian Goodfellow together with colleagues at the University of Montreal published
a paper in 2014 that introduced Generative Adversarial Network’s to the word.
Through the combination of computational graphs and game theory. It was shown
through their research that given enough computational power, it was possible to
make two models that fought against each other to co-train through backpropoga-
tion.

These two models has two very distinct roles. Given some real dataset R, G
the generator, is trying to create some fake data that looks alike as the the real
data. While the other part of this architecture, D the discriminator would get fed
either data from the genuine dataset or from the generated data and classify them
between fake or real. Goodfellow’s metaphor was that the generator was like a
team of forgers that was to match real paintings with their output, while the dis-
criminator was the team of detectives trying to tell the difference as illustrated in
Figure: 2.3 Except in this particular case where the forgers (the generator) never
gets to see the original data, but only the detectives (the discriminator) judgement
of the data, meaning that they are blind forgers.

9

CHAPTER 2. LITERATURE REVIEW

In other words does the discriminator learn the boundaries between the classes
while the generator learns the distribution of the classes. In the ideal case is when
the discriminator and the generator would get better over time until the genera-
tor created so alike sample as the real data so the discriminator was not able to
differentiate between does two samples.[9]

Figure 2.3: Illustration of GAN architecture

For the Generator to learn the distribution, pg over data x, the input noise of the
generator should be defines such as pz(z). Then G(z, θg) maps z from a latent
spaceZ to a data space andD(x, θd) outputs a probability to choose if x originated
from the real data or of the generators distribution pg

10

CHAPTER 2. LITERATURE REVIEW

The Discriminator would be trained to maximise the probability of predicting the
right label to the real data and the generated sample. The generator on the other
hand would be trained to minimise the probability of the discriminator’s correct
answer, with mathematical terms: log(1−D(G(z))). So this architecture training
task can be seen as is a minmax games between the generator and discriminator
with the function V (G,D):[18]

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

Meaning that the Generator tries to fool the discriminator and the discriminator
becomes better to not be fooled by the generator, that’s where the Aaversarial prts
comes in. In the best case scenario the training of these network would stop if the
discriminator is not able to distinguish pg and pdata, i.e. D(x, θd) =

1/2. This is
very hard to obtain.[18]

2.3.1 Mode Collapse

One of the problem GANs experience is Mode Collapse also know as the Hevet-
ica scenario. Mode collapse is a commonly cause of failure for GANs where the
generator learns to reproduce samples with very little variety. This problem apears
when the generator learns to map different input noise values to the same output
point. In the article realeased by Goodfellow[9] he explains mode collapse and
one of the example he used is shown in Figure: 2.4

11

CHAPTER 2. LITERATURE REVIEW

Figure 2.4: This figure illustrates the mode collapse problem on a two-
dimensional fictive dataset.

The first row shows the target distribution. In the lower row there are different
distribution that the generator has learned over the training process. Instead of
converging to a distribution that contains all modes, the generator only produces
a single mode that is different each time, and the discriminator learns the features
of each one. There are several people that work on solving mode collapse, since
this is the biggest problem GAN’s have.

2.3.2 Image Generation With Generative Adversarial Network

Generative adversarial Networks (GAN’s) are mainly used for images Generat-
ing. In earlier days of GAN’s the vanilla GAN architecture, that consisted of only
fully connected layers, was used to create new images so alike the real dataset that
the discriminator could not longer differentiate between the real and from fake
images. [8] Meaning that the generator could create new types of images from
that dataset. This was the first stepping stone for the generative adversarial net-
work. Later in 2016 Alec Radford, Luke Metz and Soumith Chintala published an
article that introduced a new type of GAN, the Deep Conditional Generative Ad-
versarial Nets(DCGAN).[21] DCGAN is one of the most popular types of GANs
today. Instead of the network containing fully connected layers, Convolutional
Nets (CNN’s) was used in it’s place.

12

CHAPTER 2. LITERATURE REVIEW

CNNs was first introduced by Yann LeCun[16] and was a class of biologically
inspired neural networks that solved a supervised learning task through a series of
convolutional filters and simple non-linearity’s. They are remarkable result in a
wide variety of machine learning problems.[15].

The architecture for the DCGAN is different from the vanilla GAN, but the objec-
tive is the same. In Figure 2.5 the architecture of the generator of the DCGAN is
shown. The discriminator is almost the just opposite of the generator meaning that
the discriminator takes in an image and then produces a probability if that image
is real or fake.

Figure 2.5: Architecture of the generator in DCGAN from this paper [21]

In the paper [21] the Generator in has four convolutional layers, followed by batch
normalization and Rectified Linear Unit(ReLU) as the non-linearity’s.[1]. The
generator is fed a vector z that are drawn from a normal distribution that are re-
shaped to a 4D shape. Next each network up-sample the 4D tensor by performing
transposed convolution operation on it. The difference of a transposed convolu-
tion from a regular one is that a regular one typically goes from wide and shallow
layers to narrower and deeper. Meanwhile the transposed goes from a deep and
narrow layer to a shallow and wide.

13

CHAPTER 2. LITERATURE REVIEW

The generator start with a very deep and narrow input vector and after the vector
goes through a transposed convolution z using a 5x5 kernel size then the depth of
the picture are reduced from 512 to 3 that represents a RGB colour image. The
final shape the generator produces is a 32x32x3 vector.[21]

The discriminator in their method is feed 32x32x3 images tensor, that the gen-
erator created and returns 1 shaped output. Instead of the performing transposed
convolutions, the discriminator performs normal convolutions. There each is re-
ducing the feature vector dimensions by half. After these convolutionss, it returns
a probability by using Logistic Sigmoid as the activation function in the last layer.
The generator and discriminator is trained at the same time using backpropoga-
tion where the training steps is written more in detail section 2.3 explaining the
minmax game.

As of the result of the DCGAN the architecture was able to generate images that
looked alike real images, but some of them was not as good as shown in figure:
2.6

Figure 2.6: Result of generated images of Hotel Room using DCGAN

14

CHAPTER 2. LITERATURE REVIEW

2.4 Research Questions

Based on the research made in Chapter 2 it come to light that machine learning has
been used in different forms in intrusion detection system, with different results.
But the latest years it has not been that many approaches to use machine learning
with network intrusion detection systems. The generative adversarial network has
been deployed in later years to different problems, but mainly on image problems.
Through the research made in chapter 2 shows that generative adversarial network
has not been used in a intrusion detection system. This thesis will explore the
possibilities this generative architecture has as an intrusion detection system. So
based on all the gathered data and research the following research questions was
created.

• To what degree can a completely trained GAN detect real attacks in com-
puter network?

• To what degree can a Generative Adversarial Network’s generate network
packets that passes as normal packets?

• To what degree can a Generative Adversarial Network’s produce abnormal
packets, that passes as normal ones?

15

Chapter 3

Methodology

3.1 Quantitative method

Quantitative research deals in numbers, logic, and an objective stance. Quantita-
tive research also focuses on numeric and unchanging data and detailed, conver-
gent reasoning rather than divergent reasoning. An essential thing with the quan-
titative method is classification and categorisations of a problem. Quantitative
methods have primary value for research which aims to acquire general knowl-
edge. [2]. A differen way to see research methods, is in the field of computer
science. In computer science there are three mayor paradigms which are used to
provide a context when writing work in the discipline of computing. These three
paradigms all consist of four steps.[5]

16

CHAPTER 3. METHODOLOGY

The first paradigm theory is rooted in mathematics and follows in development of
coherent, valid theory. When errors or inconsistencies are discovered, Mathemati-
cians iterates though these steps.

1. Characterise object of study (definition);

2. Hypothesise possible relationships among them (theorem);

3. Determine whether the relationships are true (proof);

4. interpret results;

Experimental scientific method is the root of the second paradigm, Explanatory

modeling. An other name for this paradigm is ”experimentation”, but ”abstrac-
tion” is used for this paradigm since it is the most common used paradigm in this
discipline. This method is used when investigating a phenomenon. A scientist has
to go though the following steps, when for example a model’s prediction does not
mach with experimental evidence.

1. Form a hypothesis;

2. Construct a model and make a prediction;

3. Design an experiment and collect data;

4. Analyze results;

17

CHAPTER 3. METHODOLOGY

The third and final paradigm design has its root in engineering and follows these
steps when constructing a system to solve a given problem. The engineers have
to iterate these steps when for example test reveals that the requirements for latest
version of the system is not met.

1. State requirements;

2. State specifications;

3. Design and implement the system;

4. Test the system

3.2 Potential error factors

During research, there will be some sort of error factors. In this section, these er-
ror factors will be explained and how they may occur during research. Intentional
errors with misleading results and values is an ethical challenge. This involves the
researcher with hasty, ill-informed conclutions that there are no scientific foun-
dations to. The emotional involved researcher can represent an risk factor for
these wrong end projection. But constructive contributors will often have a strong
engagement for his research field and they will both take care of enthusiasm and
objectivity. While accidental errors can occur through the whole research process,
and it is errors that can attributable to shortfall of competence to used appropriate
methods.[2]

18

CHAPTER 3. METHODOLOGY

3.3 Guidelines

3.3.1 Research Question Guidelines

• Theoretical Triangulation: The research questions were formulated after
a thorough Background chapter. 2 and are based on research gaps that were
discovered during said review.

• Research Approach The nature of the underlying ML model goes under
a design research approach. The main purpose of the model is produce a
classifier that can predict anomalous network packets. But this thesis also
explains the data and generate hypotheses, that are in-depth talked about in
section 2.4. It will also be conducted examinations on how well the ML
model is able to predict. And by doing these things, it uses an experimental
scientific approach on the problem. By this it goes under this abstraction
paradigm since one makes an prediction that a generative adversarial ap-
proach is possible as a NIDS. [2] [5]

This thesis is mainly focused about creating a new generative adversarial
method, but also on exploring the question on if a GAN can be can be em-
ployed as a NIDS in a computer network. Since thesis will not focuses on
the robustness of predictive algorithms, but still explore it, we treat the work
as an combination of explanatory and predictive research.[5]

19

CHAPTER 3. METHODOLOGY

• Iterative process: The methodology in this thesis can be divided into sev-
eral steps. Several of these steps are iterative in nature, for example the

Several of these steps are iterative in nature, for example the pre-process
step. The whole process is also iterative in the sense that some steps might
circle back to a previous step. During this study, several iterations occurred,
especially after the result evaluation which led back to experiments, then to
the solution and so on to pre-processing.

3.4 Data Collection Guidelines

Following section will define and explain what kind of guidelines this thesis has
followed for data collection.

• Discuss the nature of data in terms of its variability and reliability:
Network traffic data is the primary source used for this study. In terms of
variability, the dataset covers a lot of different attack scenarios as well as
background traffic, however as discussed earlier in section 2.2, it might not
be representative of newer attacks and therefore not as reliable as a newer
dataset. However, since the the solution is a proof of concept on if this type
of architecture can be used as an detection system. And given the lack of
other dataset that uses raw network flow as data, it as reliable enough for
the purpose of this study.[2][5]

• Document the data collection in detail: The data collection has been de-
scribed in depth in Chapter 4.

• Provide access to the data used: The dataset used is a publicly available
dataset which can be downloaded from the authors site [17]

20

CHAPTER 3. METHODOLOGY

Algorithms evolve, ensure their validity based on disciplines such as computer
science and machine learning: All machine learning algorithms used are based in
well known Python libraries which are widely used in Machine Learning research.

3.5 Analysis Guidelines

• Document the data pre-processing steps in detail: The data preprocessing
steps are documented in full detail in chapter 4

• Algorithms evolve, ensure their validity based on disciplines such as com-
puter science and machine learning: All machine learning algorithms used
are based in well known Python libraries which are widely used in Machine
Learning research.

• All pre-processing was preform with a combination of the module dpkt[11],
numpy[23] and native python. The deep learning adversarial methods were
based on the paper Generative Adversarial Networks with some modifica-
tion by Goodfellow [8], and this was created by using Pytorch[20].

21

Chapter 4

Proposed Solution

4.1 Proposed solution / algorithm

As seen in the information that was gathered in the Literature Review that DL
is not as commonly used in IDS, but it has some usages. Upon that, there are
no earlier mentioned about using a GAN architecture as an IDS. This thesis will
focus on this specific problem, by explore if its possible to use the characteristic
of the GAN as a working IDS. To better understand the possibilities the GAN
architecture and possibilities to improve open existing IDS solution. So this thesis
presents a solution that uses a Generative adversarial approach on an IDS solution.
The main solution is based around a GAN, this neural network is a modified neural
network that is made by combine two neural network that competing against each
other.

22

CHAPTER 4. PROPOSED SOLUTION

4.1.1 The Generative Adversarial Network

One of these network is the Generator (G) and the second one is the Discriminator
(D). For more in depth on how the GAN work see chapter 2. For this solution the
DL network will be fed with a network packet presented as a binary string, as the
forward pass of the network occurs, the generator network; instead of generating
pictures, it will try to create a new binary string from noise that represent a new
network packet that will be uses to trick the discriminator. Following is showing
on how the generator network work mathematical. Where the batch size is b, the
number of input nodes is shown as n and is the length of one network packet and
number of hidden nodes as h. Where this process is illustrated in Figure 4.1

Figure 4.1: The flow of of the proposed solution is illustrated here

Generator Network

The generator takes summation of a randomly created matrix X with the shape of
bxn and multiplies it with a weight W1 with a shape of number of (n x h) over the
number of batches. Then an bias is added to this equation to make the network
able to shift the activation function on the x-axix.

23

CHAPTER 4. PROPOSED SOLUTION

This is illustrated in the first line of in the following equation: 4.1.1. This func-
tion will return a new matrix with the shape b x h, this matrix is send though a
ReLU activation function. Where it will return as the same shaped matrix where it
returns the max number of ”0” or the number in the matrix illustrated in line two.
This matrix f(X) will be multiplied with a new weight matrix W2 where the shape
is h x n summarised over batches, followed by a new bias added. This step will
get repeated the number of hidden layers the generator uses. A Sigmoid function
is appended to The matrix z where each value is squeezed to a number between 0
or 1 since network packets is a long bit string containing 0 and 1. The returned
matrix will be the same shape as the first input layer meaning batch size times the
length of the packet size; being 100 × 1104. This was done because the gener-
ated network packets had to be the same shape and format as the genuine network
packets, that was going to be fed the discriminator.

X =
b∑
i=0

(Xi
(b×n)

×W1i
(n×h)

) + bias
(h)

f(x) = max(0, X
(b×h)

)

H =
b∑
i=0

(Xi
(h×n)

×W2i
(n×h)

) + bias
(h)

f(H) = max(0, H
(b×h)

)

z =
b∑
i=0

(f(x)
(b×h)

×W3i
(h×n)

) + bias
(n)

Y
(b×n)

= θ(z) = 1
1+e−z

24

CHAPTER 4. PROPOSED SOLUTION

Discriminator Network

The discriminator in the DL network is also trained at the same time as the gen-
erator, this network will be trained as typical supervised problem. The D is fed
real network packets in the form as binary strings from the data set, as well as
network packets created from the G. The D then classify the packets as ”real” or
”fake” and update the whole network using propagation. And so by using a GAN
architecture it trains a classifier to protect the network as well as a generator to
create new attack on the network.

Following is the mathematics operations of the discriminator network where the
number of batches is specified as b. Packet size is the same as number of input
nodes that are defined as n and the number of hidden nodes in the network as
h. The discriminator network’s input will be the matrix created from the genera-
tor network that contains 100 different generated network packets, with the same
shape as the generator. Both the generator and the discriminator use the same
formulas the first layer. Matrix X (100 x 1104) is multiplied with a weight matrix
W1 (1104 x 50), then summed over the number of batches, as in this thesis 100. A
random generated bias vector of 50 is then added to this matrix, that returns a ma-
trix that are as the same as the generator send though a ReLU activation function.
The next layer is identical as the previous except for the shape of the weight W4
that is 50 x 50. The last layer, also known as the prediction layer, consist of the
last layers input matrix times the last weight. That is of the shape 50 x 1, where
the last output is a vector of one single dimension, for prediction of a network
packets are real or fake.

25

CHAPTER 4. PROPOSED SOLUTION

X =
b∑
i=0

(Xi
(b×n)

×W4i
(n×h)

) + bias
(h)

f(x) = max(0, X
(b×h)

)

H =
b∑
i=0

(Xi
(h×n)

×W5i
(n×h)

) + bias
(h)

f(H) = max(0, H
(b×h)

)

z =
b∑
i=0

(f(x)
(b×h)

×W6i
(h×1)

) + bias
(1)

Y
(b×1)

= θ(z) = 1
1+e−z

4.1.2 Algorithmic Enhancements

After experimenting with a solution, a new technique was implemented, called the
optimiser dataset. This dataset was created by extracting 26 (25 %) of the packets
with labelled real attacks, where this dataset was used to optimise the training of
the discriminator network. By using this dataset it allowed the discriminator to
learn the features of real attacks. By doing so the discriminator was able to use
these features to optimise the training for detecting unseen attacks. The optimisa-
tion step is explained in detail in Algorithm 4.1

26

CHAPTER 4. PROPOSED SOLUTION

4.1.3 Discussion of the Parameter Space

• batch size = 100 is the parameter that specify how many examples are fed
into the network at the same time. In this theses the batch size is 100,
meaning that 100 network packets are fed into to network each iteration.

• g hidden size = 50 This parameter is to specify how many hidden nodes
the generator has in it’s layer. This makes the hidden layer in the generator
has 50 inputs nodes as well has 50 output.

• d hidden size = 50 This parameter has the same usage as the generators
hidden nodes, meaning that the discriminator also has 50 hidden nodes in it
hidden layer.

• d output size = 1 This parameter is to specify the number of output nodes
the discriminator has. In this thesis will this parameter be static, since it will
only predict if the packets are real or fake.

• d learning rate = 2e-4 This is to specify the learning rate that the discrim-
inator are using for gradient decent.

• g learning rate = 2e-4 This is the learning rate for the generator used in
gradient decent.

• new data bytes This parameter is a true false statement that controls if the
data should be pre-possessing again with new parameters set by the user.

• num databytes = 100 This parameter is a limit on how many data bytes
that are included in the pre-possessing. Meaning that the code limit on how
large the packets is padded to and fed into the network.

• num packets limit = None This is also a limit. This limits how many pack-
ets of the data set is taken into the pre-possessing. In this thesis it set to
None, meaning that every packets how the training set is included to pos-
sessing.

27

CHAPTER 4. PROPOSED SOLUTION

• pcap path path = ”./data/training.pcap” This string parameter is for speci-
fying where the training set capture file is located on disk.

• save location = ”logs/” This string parameter is to specify where the log
files for Tensorboard would be saved.

• epochs = 2 Number of epochs is specify how many times the network is
to see the whole dataset. So in this thesis the number of times the notwork
would the whole dataset is 2 times. Epochs is also used here to take the
measurement of the performance over this whole network, as well as using
the generator to generate sample packets.

• d steps = 5 This is ’k’ steps in the original GAN paper.[8] This is a integer
parameter that determent’s how frequent the discriminator is trained.

• g steps = 1 This is also a integer parameter, that determent’s how frequent
the generator is trained.

4.2 Prototype

4.2.1 Pre-processing

In this section the pre-processing of the solution will be explained. When it comes
to working with Neural Networks or machine learning in general, pre-processing
is very important. This is because a Neural network is a type of supervised ma-
chine learning, meaning that the network needs to be told what is wrong and what
is right. So by this the data that are fed into the network needs to be right and
pre-processed in a way that the network can ”understand” it. Since the GAN ar-
chitecture is a combination of supervised and unsupervised learning, this is also
the case for this architecture.

28

CHAPTER 4. PROPOSED SOLUTION

The data used in this thesis is gathered from the DARPA dataset mentioned in
section 2.2. DARPA 1999 dataset was downloaded from their site, only one week
of data was downloaded, and since this solution occurs inside a computer net-
work, only the inside capture file was downloaded and used. After the dataset was
downloaded it was extracted and open in Wireshark[4] to check if it was possible
to make it readable for the human eye as well as if it was the type of data needed
for this study as shown in figure 4.2.

Figure 4.2: Dataset explored with Wireshark

After the data was extracted and explored, the next part was to read the data and
format it in Python, so that the network could work with it. For this task the
Python package dpkt[11] was used. dpkt is a pcap parser and creator. This pack-
age was then used to read the pcap file (tcpdump) to split the time and data packets
into a iterative. In this solution the time of the packets was not going to be used
so it got dumped. Further the packets was then converted from tcpdump syntax
to a long binary string shown in figure 4.3, since the network could not work with
characters. The data was then saved to the drive as a binery string for easier usage
of the untrimmed data.

Figure 4.3: Tcpdump syntax formated to bit string

29

CHAPTER 4. PROPOSED SOLUTION

Since the neural network can’t be fed with data that are not the same length,
one known technique used in this solution to overcome this, was padding. Padding
means that adding some type of value that would be added to the bit string to make
them of same length. So for this solution the padding was done by adding ”0” at
the end of each string to match the longest packet. It was also important to check
if the chosen padding didn’t interfere interfere with the data used. Here is the ar-
gument num databytes used in this part of the solution, as explained in the section.
4.1.3. Further is the now trimmed data converted to a numpy array and saved to
the disk for faster easier pre-prossesing later. This part of the pre-prossesing will
then return a numpy array with the shape of the batch size x packets size, both
explained in the 4.1.3 section.

The last part of the pre-possessing for the data used for training, was the matrix
from earlier sent into a class that would use the matrix together with the chosen
batch size specified in 4.1.3. To split the data into mini batches. First the data
are split into a training/testing set with the last 1000 packets being the testing
set. The larger part of the data was then split into smaller batches, as this was
the format the data was going to be fed into the network. A pointer variable was
also created to hold control on which of the batches was active. Later on was a
function of this class called to return the next part of the data in the form as a new
batch as wall as add to the pointer variable. So when this class was called the next
batch was returned. There was also a function for the generator that created the
random noise the generator used to create it’s packet, this was a lambda function
lambdam, n : torch.rand(m,n). This function just takes in to parameters that
makes a matrix that is populated of random numbers from a uniform distribution.

30

CHAPTER 4. PROPOSED SOLUTION

The next part of the pre-processing is the gathering and creation of the validation
data, this data was used to rate how good the discriminator network was able to
detect real attack that was discovered and labels in the DARPA dataset. The data
that was going to be used in the validation was also downloaded from the DARPA
website. The training dataset consisted of one day in the first week of the time
the dataset was created. The validation set was consisted of two whole weeks (4th
and 5th week). As explained in section 2.2, these two week had 201 instances of
about 56 types of attacks distributed among them. All of the .tcpdump files was
downloaded and converted to .pcap files, then from the same site every instance
of the different attacks was converted to a .csv file. With the time of the attacks
in the .csv file, it was used to go through every .pcap file and look for the correct
time stamp. When the time stamp of the attacks match with the packets of the
.pcap files it would add it to a list, and follow the same procedure as the training
data.

4.2.2 Network Models

The Network Model is the most central section of the machine learning of this
thesis. The following section contains all specification and all the connection of
the different layers defined in the network. First will the architecture of the first
part of the GAN neural network be describe, as it is the first part where the pro-
cessed data are used. It will describe of the architecture is specified using pytorch
API. Secondly will the discriminator network be described on how the data flow
though this network after it as gone tough the generator, as well as how data is
classified as real or fake data.

31

CHAPTER 4. PROPOSED SOLUTION

Figure 4.4: Generative Adversarial Network Model

The architecture of the whole the solution is shown in figure 4.4, while a more
graphical presentation of the flow of the network is shown in Figure 4.1 and ex-
plained in more detail in section 4.1.1. This makes it so that the flow of the
network is easier to apprehend. The whole process starts with the generator gets
a type of noise, then it tries to generate a packet, that are send to the discriminator
alternate with a real packet, to classify it as real or fake. Then the loss is calcu-
lated, here binary Cross Entropy is used to calculate the losses explained in the
background chapter: 2. Then Using Adam Optimiser [13] to minimize that loss
by calculating the gradients and backpropocate. In the training time, the network
would also train a small part of the real attacks to utilise fully supervised learn-
ing. This was done because the network would have a much faster learning on
what kind of packets was real attack, since the discriminator knows what a packet
looks like without attacks,and the other way around. Instead of relying fully on
the generator model, to generate packet that looks like packets with attacks and
so every 10th training step, the model will update the gradients based optimiser
dataset from section 4.1.2. The networks training operation is shown in Algorithm
4.1

32

CHAPTER 4. PROPOSED SOLUTION

Algorithm 4.1 Minibatch stochastic gradient decent training of a generative ad-
versarial net [8]. The number of steps to apply to the discriminator and generator,
d steps, g steps are hyper-parameters as explained in section: 4.1.3. d steps=5
and g steps=1 when focusing on training discriminator.

for k number of minibatches do
for d steps do

• Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior
pg(z)

• Sample minibatch of m examples {x(1), ..., x(m)} from data distribu-
tion pdata(x).

• Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

(
x(i)
)
+ log

(
1−D

(
G
(
z(i)
)))]

.

end for
for g steps do

• Sample minibatch of m noise examples {z(1), ..., z(m)} from data gen-
erating distribution pg(z).

• Update the generator by ascending its stochastic gradient:

∇θg

1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)
)))

.

end for
if k mod 10 == 0 then

• Sample minibatch of m examples {y(1), ..., y(o)} from optimising
dataset pdata(y).

• Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

(
y(i)
)
+ log

(
1−D

(
G
(
z(i)
)))]

.

end if
end for
The gradient-based updates can use any standard gradient-based learning rule.
In this thesis momentum was used.

33

CHAPTER 4. PROPOSED SOLUTION

In algorithm 4.1 the training steps taken by the network are written in a math-
ematical terms. To explain in more detail, the training consist of three main part.
The discriminator step, the generator step and the optimisation step. First in the
discriminator step, it sample a batch of m numbers of network packets from the
real dataset, where m are 100 numbers of packets. It also samples the same num-
ber of generated network packets from the generators distribution. With each of
these samples it updates using stochastic gradient decent by minimising the loss.
Where the discriminators choice is regarded higher then the generator specified
in algorithm. This will be repeated as many times as the parameter d steps is
specified.

The second part is the training of the generator network. The network samples m
number of noise examples from a random distribution. Then uses this to update
the generator by ascending its stochastic gradient by minimising the loss where
the generator decision is high regarded. This step is repeated as many times as the
parameter g steps is specified.

The last step in the training process is new for normal generative adversarial net-
work, where the details of are in section 4.1.2. This step will only happens once
per tenth iteration. An sample of packets where real attack occured extracted
from the optimising dataset also specified in section 4.1.2. Then in this step it will
again update as the first step by minimising it’s loss. These three steps would be
repeated the number of batches in the dataset also 14 913 number of batches.

34

CHAPTER 4. PROPOSED SOLUTION

4.2.3 Post-processing

As explained in the previous section pre-processing is important, but so are the
post-processing. In this thesis the post-processing consists of the creation of the
metrics that are for measuring the accuracy of the network. The logging of the
different values used to score the network and also the post-processing of the gen-
erated packet from the generator network.

Since the pytorch API not yet has a implementation of visualisation of graphs, a
community made implementation of tensorboard to pytorch was used. The syntax
of tensorbordX[14] was almost identical to the normal tensorboard. This made it
easier for to implement this into the code. First two writers was created, one that
would monitor all the values from the training time, and a writer for the values
for the testing time. Both of them was saved to the two folders, with slightly
different names. The name itself was generated by the ”day,month, year −
hour,minutes”. and the same, only with ” test” behind.

After every training step, the writer added three scalars, that contained the dif-
ferent losses of the network; d real, d fake and g that are explained in section:
4.1.3. The next writer the prediction on how well the discriminator can predict
real packet and generated packets. This is where the accuracy comes into play. As
seen in the following function, that defines how the accuracy for all the different
test are made.

Accuracy1 =
np.sum(np.equal((np.around(predictions)), np.zeros like(predictions)))

len(predictions)

Accuracy1 =
np.sum(np.equal((np.around(predictions)), np.ones like(predictions)))

len(predictions)

35

CHAPTER 4. PROPOSED SOLUTION

These two equations, are used multiple times in this thesis and both of them
compares two arrays. The fist is a rounded array of the prediction the discrimi-
nator network, and its compared with a array like the shape filled with zeroes or
one, to what is needed.In this thesis so was these function used to calculate for
prediction on real and generated packets, as well on prediction on training set and
the prediction on the non seen before attacks. Lastly the writer monitored the
distribution of the weights and biases of the network, shown in figure: 4.5. This
show the weights and bias values distribution over time.

Figure 4.5: Weights distribution over time.

Lastly of the post-processing the conversion of the generated packets to human
readable file to open in analyse. After each epoch the generator makes a prediction
and tries to create a packet that are alike the real data, since this a bit string it
needed to be converted to bytes. Since the output of the generator was between
one and zero, it was rounded to its closet. After every bit string was converted to
bytes, the module dpkt was used to write the bytes to a .pcap file for later be open
in Wireshark.

36

CHAPTER 4. PROPOSED SOLUTION

4.3 Justification of Claim to Originality

As seen in background of this thesis, this type of approach to and IDS is not tried
before, as well as using a generative adversarial network to train a IDS on newly
generated packets combined with regular supervised learning and optimisation of
the algorithm. This thesis explores new possibilities in network security as well
as challenging the ability of the generative adversarial network.

37

Chapter 5

Experiments and Results

5.1 Experiment Setup

Is has been used a wide range of parameter settings and data set configurations to
evaluate this approach. In this section, the representative results on the generative
adversarial networks reported.

5.2 Data Gathering & Prepossessing

The dataset used in this thesis was gathered from the DARPA web site as explained
in 4. The training dataset contained 1.491.300 network packets and the validation
dataset contained 105 packets of attacks. The validation set was split into two
smaller dataset, the validation dataset containing 75 % of the packets used for
validating on of well the network performed. The optimisation dataset containing
26 of the packets or 25 % to optimise the learning of the discriminator that are
explained in the solution Chapter 4. The network will only be trained using the
training set, and validated using the validation set.

38

CHAPTER 5. EXPERIMENTS AND RESULTS

5.3 Experimental Result

The DARPA dataset was used with its 1.491.300 networks packets, the attacks
spanning was over 105 to evaluate the ability of a generative adversarial network
to predict and detect malicious network traffic in the form as binary strings. The
generators ability to recreate network packets similar the real data. The network
was tested without the optimisation techniques using real attacks and with. With
the focus was on the generator network, the optimisation dataset was used.

In the discriminator experiments all the networks was trained for 2 epochs (the
algorithms were allowed to pass over the training dataset 2 times). The reason
that number of epochs here is so low is because of the network converges be-
fore the 2 epochs are done. However the experiments focusing on generating new
network packets, was trained with 10 (the algorithms were allowed to pass over
the training dataset 10 times) epoch, since the training of the generator is unsu-
pervised learning, therefore does the training need more time to converge. After
training, the performance of the two types of network was validated using a dedi-
cated validation dataset that contained 75% of the labelled attacks

5.3.1 Discriminator Based Intrusion Detection System

In the first experiment, documented in Table 5.1, was not using the optimisa-
tion dataset, since this was the first of experiments as well to compare those two.
Further network packets with with the number of bits being 1104 was fed into
the network in batches of 100 packets each training step. This setup trained the
discriminator 5 times more than the generator, for ensure that the discriminator
ability was focused in the training. It was observed that this architecture scores
significantly high on several of the tests. As shown in the table, this approach
provides the highest accuracy on the validation set (100%) in both of the training
set and predicting what real packets was, but also in the newly generated packets.

39

CHAPTER 5. EXPERIMENTS AND RESULTS

Meanwhile the test it didn’t score well in, was the detection of real attacks. This
model was not able to detect what a packets that was real attacks. This is where
the validation dataset fed fed into the network all at once, then the network tried
to classify which of them was packets with and without attacks. This problem was
solved in the next experiment, by using the optimisation step in the training.

Table 5.1: Accuracy of packet manipulation detection of Discriminator network
after 2 epochs not using optimisation dataset

Training Accuracy Test Real Data Generated Accuracy Real Attacks Accuracy

100% 100% 100% 2%

In the next setup was also trained on the same training set, but also the optimi-
sation technique used, to mitigate the low score of the detection of attacks. This
small dataset consisted of 26 real attacks extracted from the validation dataset.
Also as the previous experiment, the discriminator was trained for 5 times more
often than the generator. The result is reported in Table 5.2. In this experiment
the accuracy the training match the previous experiment with a high accuracy on
detection on packets real packets, but also on the generated packets, meaning that
this setup also had a very high accuracy to detect what was real data and what was
generated data. As seen in the table, the accuracy of real attacks went up from 2 %
to 100%. Meaning that by introducing the network for data that was labelled real
attacks, and trained on this data, the network was able to detect 100 % of all the
attacks in the validation set. This shows that this setup was able to detect packet
manipulation with a certainty of 100%.

Table 5.2: Accuracy of packet manipulation detection of Discriminator network
after 2 epochs using optimisation dataset

Training Accuracy Test Real Data Generated Accuracy Real Attacks Accuracy

100% 100% 100% 100%

40

CHAPTER 5. EXPERIMENTS AND RESULTS

5.3.2 Network Packets Creation With Generator Network

For the next experiment, the focus shifted from the discriminator ability to detect
attacks, over to the generative part of the network; the generator. This was done by
changing the number of times the generator and discriminator was trained. Unlike
the previous experiments, this time the generator was trained 1 times as often as
the discriminator to set the training focus more on the generator. The number of
epochs in the training was also heighten from 2 to 10, since the generator is only
learning from the discriminator, meaning that training would take longer time.
The result of the discriminator is shown in Table 5.3. Since this experiment also
uses the optimisation dataset, the detection of real attacks also converges as 100
%. meanwhile the accuracy of the generated packets has fallen all the way down to
0 % meaning that the packets the generator is creating is tricking the discriminator
to classify them as real packets.

Table 5.3: Accuracy of packet manipulation detection of Discriminator network
after 10 epochs focused on generation

Training Accuracy Test Real Data Generated Accuracy Real Attacks Accuracy

99.9% 100% 0% 100%

To analyse the result in this experiment, there was 10000 packets created by
the trained generator. These packets was crated by the generator to look as alike
as the real data as possible. Some of the packets created is shown in Figure 5.1,
As seen there, all the packets are alike. This concerns all of the rest of the gener-
ated packets. This is a very known problem when working with GAN’s, is mode
collapse. Meaning that the generator, was able to learn what kind of packets that’s
tricks the discriminator every time, and sticks to this packet. Since it will get
a lower loss, by tricking the discriminator every time with this type of packet.
Further analysing generated data, shows that out of the 10000 packets created,
everyone passed Wireshark’s syntax check, meaning that the packets are defines
as real.

41

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.1: Capture of generated packets in Wireshark

To conclude Figure 5.2 shows the accuracy of the model when the detection
was in focus, while Figure 5.3 shows the loss of the generator when the generator
training was in focus. As seen in figure 5.2 the loss of both the discriminator and
generator is very unstable at the beginning. This is because of the nature of the
GAN, meaning that both of them is trying to lower its loss and at the same time
heighten the loss of the other part. So this min/max game is the reason that the
loss are so unstable. In figure 5.3 the discriminators loss over the fake data has sky
rocketed while the generator loss as fallen to a very low value, showing that the
generator is creating packets that are tricking the discriminator. Is was observed
that the losses of these to converges at the end of the training time.

In the final Figure 5.4 it is observed that when focusing on detection and with
the use of the optimisation techniques, the accuracy of the models ability to detect
real attacks are much higher (blue graph) compared to the model not using this
technique (light blue graph). Here its also observed that the network don’t need
any more training then 2 epochs, since the network converges before 2 epochs has
gone pass.

42

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.2: Loss over network when detection in focus

Figure 5.3: Loss over network when generation in focus

Figure 5.4: Accuracy on real attacks of between the optimised and not optimised

43

Chapter 6

Conclusion and further work

6.1 Summary of Results

The problem of using a generative adversarial network as an intrusion detection
system is hard but still plausible. This is because the when using an generative
adversarial network as an IDS the network has to learn how to detect any known
attacks. But also be able to use the generator to create new types of packets to trick
detection. In this thesis it was proposed an advanced deep learning model, based
on generative adversarial networks, that have a very high detection rate of attacks
in a computer network. In particular, the experiments that have been reported in
this thesis shows that a deep learning network more specifically, a fully connected
generative adversarial, performs surprisingly well on the task on detect packet
manipulations in a computer network.

44

CHAPTER 6. CONCLUSION AND FURTHER WORK

It can possible be explained by the capability of the GAN to be able to extract
and learn the unique features of the real network packets as well being optimised
by learning of packets that are libelled as attacks. Together with the generators
ability to created new types of packets based on the discriminators choice, that
simply trying to predict if the packet is real or fake. Indeed, this solution is able
when using a optimiser dataset to score the highest possible on detection task by
achieving a converged accuracy of 100%

The generator on the other hand. The overall detection rate dropped a little but
over time because of the optimisation step the detection peeked at 100 % also.
While the detection rate of generated packets fell down to 0%. The experiments
had the focus on how well the generator was able to generate network packets
similar to them found in a real computer network. On this task the this solution
was able to created packets that was similar to the packets found in a real com-
puter network. All the packets created by this solutions generator was all validated
by Wiresharks’s syntax detection. But even if every packets created, passed that
test, the generator experienced mode collapse, meaning that its only created exact
the same packets each time. This was because the generator at learned that these
packets always slipped pass the detection of the discriminator. Mode collapse is
a known problem for this type of generative adversarial network, this problem is
handled in other types of GAN’s. Since this thesis was to explore the possibility
to use a GAN as a intrusion detection system and this problem was not attempted
before, therefor was this problem not tackled in this thesis.

This solution has both strengths and weaknesses. It has some great results in
these experiment and are able to converge at a 100 % detection rate. But this re-
sult was achieved in a controlled environment with specific rules and experiments.
In a real life scenario it would properly have different results. Since in a real-life
scenario unexpected factors could occur, and play a part in the real network. One
of these factors can occur while training the network. Since this solution is trained

45

CHAPTER 6. CONCLUSION AND FURTHER WORK

using the normal network traffic to learn what how normal packets look like. If the
computer network is attacked under this learning process, the solution could have
learned that this attack was part of the network normal traffic. Also for the optimi-
sation dataset, this dataset contains real attacks that are used to optimise training in
this solution. Meaning that this dataset need to be populated with real attacks that
already is documented and labelled by security experts. The DARPA99 dataset is
an old dataset that doesn’t contain the newer attacks that are seen today.

These weaknesses can be solved using different methods. The problem that the
DARPA99 dataset is old, is not a very strong weakness. Since there are other
newer dataset out there, but in this study the task was to explore the possibilities
of a GAN as a IDS, so choosing the DARPA99 dataset was most convenient since
it is publicly available on the internet and the concept stay the same. About the
weakness where it is hard to get hold of updated label attacks, can also be solved.
This is where the generator can be used to solve this problem. This thesis has
already shown that the generator as the ability to create packets that looks so alike
normal packets that it can trick detection. If the problem of mode collapse is ad-
dress the generator could be used for generating vast different and new packets
that the discriminator could learn from. With other word take away the require-
ment on always having security experts constantly updating databases of known
attack.

46

CHAPTER 6. CONCLUSION AND FURTHER WORK

6.2 Conclusion

So based on the research and the experiments done in this thesis. This novel
architecture, and the results is a significant step toward building better intrusion
detection systems that are based on machine learning. Or more specific a Gen-
erative adversarial Network based detection system. Since this model was able
to detect wide range of real computer networks attacks, with a confidence of a
100 %, despite its simple deep learning architecture. This solution was also able
to trick the discriminator despite the generator was experiencing mode collapse,
by creating computer network packets similar to real data. Meaning that if this
problem is solved, this solution as the ability to create even more abstract and
new packets. And this could address the problem of creating a intrusion detec-
tion dataset, since a trained generator could create thousands of network packets
that was alike real attacks so it was no longer needed to capture enormous data to
create good dataset of attacks and help train the discriminator detecting attacks.
Perhaps even discovering to this date unknown attacks.

So to conclude this, with the abilities of generative adversarial networks has, used
in a intrusion detection systems, will make machine learning to a very powerful
tool that can help revolutionise the way network security is managed in the future.

6.3 Further Work

In the future, it is intended to train the model on different dataset to see how well
this solution is able to detect attacks in a new environment. Also try to solve the
mode collapse problem that this solution experienced. By doing so, it may result
the generator becoming better at creating different networks packets. This will
help with networks security in the form of either training the discriminator by
generating large amount of data, that can be used in training.

47

CHAPTER 6. CONCLUSION AND FURTHER WORK

Or in the form of the generator creating packets, that can help networks ana-
lysts discovering new vectors of attacks and how to prevent them. Since network
packets are a sequence of bits, that are coherent to the bits around, it may be a
good idea to implement a recurrent neural network in both the generator and the
discriminator, since this will give the model the ability to remember abstract con-
cepts over the sequence, making it better at creating network packets as well as
detecting manipulation of them. At last it is possible to use and other type of
generative network for the creation of network packets. Instead of using GAN
architecture it can be change to an auto encoder networks instead, to see which of
the two models is better at creating network packets.

By doing further work and try to solved these problems that occurred during this
study. It will be safe to say that it will have a heavily impact on the way network
security is done in the future.

48

Bibliography

[1] A. F. Agarap, “Deep learning using rectified linear units (relu),” CoRR, vol.
abs/1803.08375, 2018. [Online]. Available: http://arxiv.org/abs/1803.08375

[2] E. Befring, Forskingsmetider i utdanningsvitenskap, 1st ed. Cappelen
Damm AS, 2015.

[3] A. L. Buczak and E. Guven, “A survey of data mining and machine learn-
ing methods for cyber security intrusion detection,” IEEE Communications
Surveys Tutorials, vol. 18, no. 2, pp. 1153–1176, Secondquarter 2016.

[4] G. Combs. Wireshark go deep. [Online]. Available: https://www.wireshark.
org/

[5] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R.
Young, “Computing as a discipline,” Commun. ACM, vol. 32, no. 1, pp. 9–
23, Jan. 1989. [Online]. Available: http://doi.acm.org/10.1145/63238.63239

[6] S. Garcı́a, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison
of botnet detection methods,” Comput. Secur., vol. 45, pp. 100–123, Sept.
2014. [Online]. Available: http://dx.doi.org/10.1016/j.cose.2014.05.011

[7] A. Ghorbani, W. Lu, and M. Tavallaee, Network Intrusion Detection and
Prevention - Concepts and Techniques, 01 2010, vol. 47.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Networks,”
ArXiv e-prints, June 2014.

[9] I. J. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
CoRR, vol. abs/1701.00160, 2017. [Online]. Available: http://arxiv.org/abs/
1701.00160

49

http://arxiv.org/abs/1803.08375
https://www.wireshark.org/
https://www.wireshark.org/
http://doi.acm.org/10.1145/63238.63239
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160

BIBLIOGRAPHY

[10] Information and I. Computer Science University of California. (1997)
Kdd cup 1999 data. [Online]. Available: http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html

[11] kbandla. (2017) dpkt. [Online]. Available: https://github.com/kbandla/dpkt

[12] A. D. Kent, “Comprehensive, Multi-Source Cyber-Security Events,” Los
Alamos National Laboratory, 2015.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/
1412.6980

[14] lanpa. (2018) dpkt. [Online]. Available: https://github.com/lanpa/
tensorboard-pytorch

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” vol. 521, pp. 436–44,
05 2015.

[16] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, “Handwritten digit recognition
with a back-propagation network,” in Advances in Neural Information
Processing Systems 2, D. S. Touretzky, Ed. Morgan-Kaufmann,
1990, pp. 396–404. [Online]. Available: http://papers.nips.cc/paper/
293-handwritten-digit-recognition-with-a-back-propagation-network.pdf

[17] M. I. O. T. LINCOLN LABORATORY. (2017) Darpa intrusion detec-
tion evaluation. [Online]. Available: https://www.ll.mit.edu/ideval/data/
1999data.html

[18] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative
adversarial networks,” CoRR, vol. abs/1611.02163, 2016. [Online].
Available: http://arxiv.org/abs/1611.02163

[19] U. of New Brunswick. (2017) Intrusion detection evaluation dataset
(cicids2017). [Online]. Available: http://www.unb.ca/cic/datasets/ids-2017.
html

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in py-
torch,” in NIPS-W, 2017.

50

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/kbandla/dpkt
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://github.com/lanpa/tensorboard-pytorch
https://github.com/lanpa/tensorboard-pytorch
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
https://www.ll.mit.edu/ideval/data/1999data.html
https://www.ll.mit.edu/ideval/data/1999data.html
http://arxiv.org/abs/1611.02163
http://www.unb.ca/cic/datasets/ids-2017.html
http://www.unb.ca/cic/datasets/ids-2017.html

[21] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” CoRR, vol.
abs/1511.06434, 2015. [Online]. Available: http://arxiv.org/abs/1511.06434

[22] S. Saad, I. Traore, A. A. Ghorbani, B. Sayed, D. Zhao, W. Lu,
J. Felix, and P. Hakimian. (2011) Detecting p2p botnets through network
behavior analysis and machine learning”, proceedings of 9th annual
conference on privacy, security and trust (pst2011). [Online]. Available:
https://www.uvic.ca/engineering/ece/isot/datasets/

[23] O. Travis E, “A guide to numpy,” 2006. [Online]. Available: http:
//www.numpy.org/

51

http://arxiv.org/abs/1511.06434
https://www.uvic.ca/engineering/ece/isot/datasets/
http://www.numpy.org/
http://www.numpy.org/

Appendix A

Source Code

.5

1 # -*- coding: utf-8 -*-

2 import torch

3 import torch.nn as nn

4 import torch.nn.functional as F

5 import torch.optim as optim

6 from torch.autograd import Variable

7

8 import numpy as np

9

10 import time

11 import requests

12 from os import path,scandir

13 import datetime

14

15

16 import dpkt

1

17 from tqdm import tqdm

18 import tarfile

19 import logging

20 import pickle

21 from tensorboardX import SummaryWriter

22 import pandas as pd

23

24 # ##### Pre-prossesing:

25

26 def logging_start():

27

28

29 # create logger

30 logger = logging.getLogger(__name__)

31 logger.setLevel(logging.DEBUG)

32 logging.basicConfig(level=logging.DEBUG)

33

34 # create console handler and set level to debug

35 ch = logging.StreamHandler()

36 ch.setLevel(logging.DEBUG)

37

38 # create formatter

39 formatter = logging.Formatter('%(asctime)s:

%(levelname)s: %(message)s')↪→

40

41 # add formatter to ch

42 ch.setFormatter(formatter)

43

44 # add ch to logger

45 logger.addHandler(ch)

2

46 return logger

47

48 logger = logging_start()

49

50 class Data_preporation():

51 def __init__(self,data,batch_size):

52 self.data=data

53 self.batch_size=batch_size

54 self.pointer = 0

55

56 self.data=self.data[:-1000]

57 self.test_data=self.data[-1000:]

58 self.batch_creation()

59

60 def batch_creation(self):

61 self.num_batches = self.data.shape[0] //

self.batch_size↪→

62 #print(self.num_batches)

63

64 self.x_train = self.data[:self.num_batches *

self.batch_size]↪→

65 self.x_batches = np.split(self.x_train,

self.num_batches)↪→

66 #print(x_train.shape)

67 #print(x_batches)

68

69 def next_batch(self):

70 #x,y = db.next_batch()

71 self.x_batch = self.x_batches[self.pointer]

72 self.pointer += 1

3

73 # #x_test, y_test =

self.x_test_batches[self.pointer],

self.y_test_batches[self.pointer]

↪→

↪→

74 # return x, y, self.x_test, self.y_test

75 return self.x_batch,self.test_data

76

77 def reset_batch_pointer(self):

78 self.pointer = 0

79

80 def get_num_batches(self):

81 return self.num_batches

82

83

84 def

data_to_bitstream(num_packets_limit=None,num_databytes=None,new_number_data_bytes=False,↪→

85

pcap_file="./data/training.pcap"):↪→

86 if num_databytes is None:

87 packet_size = None

88 else:

89 packet_size = 304 + (num_databytes*8)

90

91 if path.isfile("./data/preprocessed_bits.pkl")and

new_number_data_bytes==False:↪→

92

93 logging.info("Using saved processed data...")

94 trimmed_bits_numpy =

np.load(open("./data/preprocessed_bits.pkl",

"rb"))

↪→

↪→

4

95 return

trimmed_bits_numpy,trimmed_bits_numpy.shape[1]↪→

96 elif (path.isfile("./data/untrimmed_bytes.pkl")):

97

98 logging.info("Using saved untrimmed processed

data...")↪→

99 untrimmed_bytes_list =

np.load(open("./data/untrimmed_bytes.pkl",

"rb"))

↪→

↪→

100

101 else:

102 logger.info("Reading Packets from pcap file

%s" % pcap_file)↪→

103

104 pcap = dpkt.pcap.Reader(open(pcap_file, 'rb'))

105 TCP_packets = []

106 count = 0

107

108

109

110 untrimmed_bytes_list=[]

111 for ts, buf in tqdm(pcap):

112 bit_string=""

113 # print(type(buf))

114 for bytes in list(buf):

115

116 bit_string += '{0:08b}'.format(bytes)

117

118 #print("packet size",len(bit_string))

119 untrimmed_bytes_list.append(bit_string)

5

120 count+=1

121

122 if count ==num_packets_limit and

num_packets_limit is not None:↪→

123 break

124 pickle.dump(untrimmed_bytes_list,

open("./data/untrimmed_bytes.pkl", "wb"),

protocol=4)

↪→

↪→

125

126

127 max_bytes =

int(len(max(untrimmed_bytes_list,key=len)))↪→

128 if packet_size is None:

129 packet_size=max_bytes

130

131 #print(packet_size > max_bytes)

132 #print()

133 assert packet_size <= max_bytes, "The packets size

cant extend maximum bytes, found %s > %s"% (↪→

134 packet_size,max_bytes,)

135

136

137 print("\rLimit on Number of Packets: {}, Limit on

Data Bytes: {}, Packet Size:

{}".format(num_packets_limit,

↪→

↪→

138

num_databytes,packet_size))↪→

139 #logging.info()

140 trimmed_bits_list=[sublist[:packet_size] for

sublist in untrimmed_bytes_list]↪→

6

141 #print(trimmed_bits_list[:2])

142

143 #print(len(max(trimmed_bits_list, key=len)))

144 #print(len(trimmed_bits_list[0]))

145 #print((untrimmed_bytes_list[0]))

146

147 trimmed_bits_list = [[(x + "0" * (packet_size -

len(x)))] for x in tqdm(trimmed_bits_list)]↪→

148 # print(trimmed_bits_list[:2])

149 assert len(trimmed_bits_list) ==

len(untrimmed_bytes_list), "Trimmed bits must

be the same len as untrimmed, " \

↪→

↪→

150 "found

%s

>

%s"

%

(len(trimmed_bits_list),

len(untrimmed_bytes_list),)

↪→

↪→

↪→

↪→

↪→

↪→

151

152 #print(len(max(trimmed_bits_list, key=len)))

153 #print(len(max(trimmed_bits_list, key=len)))

154

155 trimmed_bits_numpy =

np.asanyarray([list(map(int,string)) for lists

in tqdm(trimmed_bits_list)

↪→

↪→

156 for string in

lists])↪→

157 print(trimmed_bits_numpy)

158

7

159 assert trimmed_bits_numpy.shape ==

(num_packets_limit,packet_size) or

num_packets_limit ==None, "" \

↪→

↪→

160 "Trimmed data

dont match

origanal

data,

found %s >

%s" % (

↪→

↪→

↪→

↪→

↪→

161 trimmed_bits_numpy.shape,

(num_packets_limit,packet_size))↪→

162

163

#trimmed_bits_numpy.dump("./data/preprocessed_bits.pkl")↪→

164

pickle.dump(trimmed_bits_numpy,open("./data/preprocessed_bits.pkl","wb"),protocol=4)↪→

165

166 return

trimmed_bits_numpy,trimmed_bits_numpy.shape[1]↪→

167

168

169 def get_generator_input_sampler():

170 return lambda m, n: torch.rand(m, n)

171

172

173 def create_attack_packets(packet_size):

174 if path.isfile("./data/preprocessed_attacks.pkl"):

175

176 logging.info("Using saved processed data...")

8

177 trimmed_bits_numpy =

np.load(open("./data/preprocessed_attacks.pkl",

"rb"))

↪→

↪→

178 return trimmed_bits_numpy

179 else:

180

181 pcap =

dpkt.pcap.Reader(open("./data/inside.pcap",

'rb'))

↪→

↪→

182 attack_list = ["080101"]

183

184 df =

pd.DataFrame(pd.read_csv(open("./data/attacks.csv",

"r"), sep=";", encoding="UTF-8"))

↪→

↪→

185 attack_list.extend(["".join(x[1].split(":"))

for x in df["Start_Time"].iteritems()])↪→

186 print(attack_list)

187 print(len(attack_list))

188 untrimmed_bytes_list = []

189 count = 0

190

191 attack_packets = []

192 for ts, buf in tqdm(pcap):

193

194 ts =

str(datetime.datetime.utcfromtimestamp(ts)

- datetime.timedelta(hours=5))

↪→

↪→

195 date, time = str(ts)[:10], str(ts)[11:]

196 # print(date,time)

9

197 time_long_string =

"".join(time.split(":"))↪→

198

199 # print(time_long_string[:6],attack_list)

200

201 if time_long_string[:6] in attack_list:

202 bit_string = ""

203 # print("Found attack")

204 # eth=dpkt.ethernet.Ethernet(buf)

205 # print(repr(eth))

206

207 for bytes in list(buf):

208 # print(bytes)

209 bit_string +=

'{0:08b}'.format(bytes)↪→

210

211 # print(bit_string)

212 # break

213 attack_packets.append(bit_string)

214 # print(attack_packets)

215 # print("%s Attacks found" % count)

216 count += 1

217 if time_long_string[:6] ==

attack_list[-1]:↪→

218 break

219 # if count >= 10000:

220 # break

221

222 trimmed_bits_list = [sublist[:packet_size] for

sublist in attack_packets]↪→

10

223 # print(trimmed_bits_list)

224 trimmed_bits_list = [[(x + "0" * (packet_size

- len(x)))] for x in

tqdm(trimmed_bits_list)]

↪→

↪→

225 # print(trimmed_bits_list[:2])

226 trimmed_bits_numpy = np.asanyarray(

227 [list(map(int, string)) for lists in

tqdm(trimmed_bits_list) for string in

lists])

↪→

↪→

228 # print(trimmed_bits_numpy)

229 pickle.dump(trimmed_bits_numpy,

open("./data/preprocessed_attacks.pkl",

"wb"), protocol=4)

↪→

↪→

230 return trimmed_bits_numpy

231

232 #print('Timestamp: ',))

233

234 def process_attacks(packet_size):

235 if path.isfile("./data/week_4.pkl"):

236

237 # logging.info("Using saved processed data...")

238 trimmed_bits_numpy =

np.load(open("./data/week_4.pkl", "rb"))↪→

239 return trimmed_bits_numpy

240 else:

241

242

11

243 df =

pd.DataFrame(pd.read_csv(open("./data/week_4.csv",

"r",encoding="utf-8"), sep=";",

encoding="UTF-8"))

↪→

↪→

↪→

244

245 #print(df.head())

246 #print(df["id"])

247 match_dict={}

248 for entry in scandir("./data/testing"):

249 attack_list=[]

250

251 if entry.is_file() and entry.name is not

None:↪→

252 #pcap =

dpkt.pcap.Reader(open("./data/week_4.pcap",

'rb'))

↪→

↪→

253 name= entry.name[:2]

254 #print()

255 test =[tuple(y.split(".")) for x,y

in df["id"].iteritems()]↪→

256 # print(test)

257 for x in test:

258 # print(x[0],name)

259 if x[0] == name:

260 print("match")

261

262 # print(x[1])

263 attack_list.append(x[1])

264 #print(attack_list)

265 match_dict[entry.name[:2]]=attack_list

12

266

267 attack_packets = []

268 for k,v in match_dict.items():

269 pcap =

dpkt.pcap.Reader(open("./data/testing/%s.pcap"%k,

'rb'))

↪→

↪→

270 attack_list = v

271 #print(v)

272 untrimmed_bytes_list = []

273 count = 0

274

275

276 # for ts, buf in tqdm(pcap):

277 for ts, buf in tqdm(pcap):

278

279 if not attack_list:

280 break

281

282 else:

283

284 ts =

str(datetime.datetime.utcfromtimestamp(ts)

- datetime.timedelta(hours=5))

↪→

↪→

285 date, time = str(ts)[:10],

str(ts)[11:]↪→

286 # print(date,time)

287 time_long_string =

"".join(time.split(":"))↪→

288

13

289 print(time_long_string[:6],

attack_list)↪→

290

291 if time_long_string[:6] in

attack_list:↪→

292 bit_string = ""

293 print("Found")

294 # attack_list.pop()

295 print(attack_list)

296 for bytes in list(buf):

297 #print(bytes)

298 bit_string +=

'{0:08b}'.format(bytes)↪→

299

300 #print(bit_string)

301 #break

302

attack_packets.append(bit_string)↪→

303 attack_list.pop(0)

304

305 trimmed_bits_list = [sublist[:packet_size] for

sublist in attack_packets]↪→

306 # print(trimmed_bits_list)

307 trimmed_bits_list = [[(x + "0" * (packet_size

- len(x)))] for x in

tqdm(trimmed_bits_list)]

↪→

↪→

308 # print(trimmed_bits_list[:2])

309 trimmed_bits_numpy = np.asanyarray(

14

310 [list(map(int, string)) for lists in

tqdm(trimmed_bits_list) for string in

lists])

↪→

↪→

311 # print(trimmed_bits_numpy)

312 pickle.dump(trimmed_bits_numpy,

open("./data/week_4.pkl", "wb"),

protocol=4)

↪→

↪→

313 return trimmed_bits_numpy

314

315

316 # ##### Post-processing:

317

318 def sample_to_bytes(sample_array):

319 bytes_list=[]

320 logger.info(("Formatting {} samples of {} bits to

bytes".format(sample_array.shape[0],sample_array.shape[1])))↪→

321 print(("Formatting {} samples of {} bits to

bytes".format(sample_array.shape[0],sample_array.shape[1])))↪→

322

323 sample_list = sample_array.astype(int).tolist()

324 #print("sample_list",sample_list)

325 bit_strings = ["".join(map(str, lists)) for lists

in tqdm(sample_list)]↪→

326 #print(bit_strings)

327 for x in tqdm(bit_strings):

328 bytes_list.append(bytes([int(x[i:i+8],2) for i

in range(0,len(x),8)]))↪→

329 logging.debug(bytes_list[:2])

330 print(len(bytes_list[1]))

331 return bytes_list

15

332

333

334 def

write_bytes_to_pcap(list_of_bytes,file_path="./data/gan_packets.pcap"):↪→

335 logging.info("Writing %s packets to

file"%len(list_of_bytes))↪→

336 with open(file_path, "wb") as f:

337 fd= dpkt.pcap.Writer(f)

338 for packet in tqdm(list_of_bytes):

339 #print(packet)

340 fd.writepkt(packet, time.time())

341 #f.flush()

342

343 def metric(d_attack,zeroes):

344 if zeroes:

345 d_attack = np.around(np.sum(

346

np.equal((np.around(d_attack.cpu().data.numpy())),

np.zeros_like(d_attack.cpu().data.numpy()))

/ len(

↪→

↪→

↪→

347 d_attack.cpu().data.numpy())),6)

348

349

350 else:

351

352 d_attack = np.around(np.sum(

353

np.equal((np.around(d_attack.cpu().data.numpy())),

np.ones_like(d_attack.cpu().data.numpy()))

/ len(

↪→

↪→

↪→

16

354 d_attack.cpu().data.numpy())),)

355 return d_attack

356

357

358 # ##### MODELS: Generator model and discriminator

model↪→

359

360 class Generator(nn.Module):

361 def __init__(self, input_size, hidden_size,

output_size):↪→

362 super(Generator, self).__init__()

363 self.map1 = nn.Linear(input_size, hidden_size)

364 self.map2 = nn.Linear(hidden_size,

hidden_size)↪→

365 self.map3 = nn.Linear(hidden_size,

output_size)↪→

366

367 def forward(self, x):

368 x = F.elu(self.map1(x))

369 x = F.sigmoid(self.map2(x))

370 return F.sigmoid(self.map3(x))

371

372

373 class Discriminator(nn.Module):

374 def __init__(self, input_size, hidden_size,

output_size):↪→

375 super(Discriminator, self).__init__()

376 self.map1 = nn.Linear(input_size, hidden_size)

377 self.map2 = nn.Linear(hidden_size,

hidden_size)↪→

17

378 self.map3 = nn.Linear(hidden_size,

output_size)↪→

379

380 def forward(self, x):

381 x = F.elu(self.map1(x))

382 x = F.elu(self.map2(x))

383 return F.sigmoid(self.map3(x))

384

385

386 # Data params

387

388 # Model params

389 g_hidden_size = 50 # Generator complexity

390

391 d_hidden_size = 50 # Discriminator complexity

392 d_output_size = 1 # Single dimension for 'real' vs.

'fake'↪→

393 minibatch_size = 100

394

395 d_learning_rate = 2e-4 # 2e-4

396 g_learning_rate = 2e-4

397 optim_betas = (0.9, 0.999)

398 num_epochs = 2

399 print_interval = 200

400 d_steps = 5 # 'k' steps in the original GAN paper.

Can put the discriminator on higher training freq

than generator

↪→

↪→

401 g_steps = 1

402

403 new_number_data_bytes = False

18

404 num_databytes=None

405 num_packets_limit=None

406 pcap_path="./data/training.pcap"

407 torch.set_default_tensor_type('torch.cuda.FloatTensor')

408

409

410 bitstream, packet_size =

data_to_bitstream(num_packets_limit=num_packets_limit,

num_databytes=num_databytes,

↪→

↪→

411

new_number_data_bytes=new_number_data_bytes,↪→

412

pcap_file=pcap_path)↪→

413 print(packet_size)

414 create_attack_packets(packet_size)

415 g_input_size = packet_size

416

417

418 data_class = Data_preporation(data=bitstream,

batch_size=minibatch_size)↪→

419

420 data_class.reset_batch_pointer()

421

422

423 gi_sampler = get_generator_input_sampler()

424

425

426

19

427 G = Generator(input_size=packet_size,

hidden_size=g_hidden_size,

output_size=packet_size)

↪→

↪→

428 G.cuda()

429 D = Discriminator(input_size=packet_size,

hidden_size=d_hidden_size,

output_size=d_output_size)

↪→

↪→

430 D.cuda()

431

432 print(G)

433 print(D)

434 criterion = nn.BCELoss() # Binary cross entropy:

http://pytorch.org/docs/nn.html#bceloss↪→

435 d_optimizer = optim.Adam(D.parameters(),

lr=d_learning_rate, betas=optim_betas)↪→

436 g_optimizer = optim.Adam(G.parameters(),

lr=g_learning_rate, betas=optim_betas)↪→

437

438

439 timestr = time.strftime("%d%m%Y-%H%M")

440 writer =

SummaryWriter("C:\\tensorboard\\pytorch\\%s"%timestr)↪→

441 test_writer =

SummaryWriter("C:\\tensorboard\\pytorch\\%s_test"%timestr)↪→

442

443 for epoch in range(num_epochs):

444 data_class.reset_batch_pointer()

445 attacks = create_attack_packets(packet_size)

446 seed=len(attacks)//4

447 print(seed)

20

448 testing,validate = attacks[:seed*3],attacks[seed:]

449 new_attack_data = process_attacks(packet_size)

450 for batches in range(data_class.num_batches):

451 tick =

(epoch*data_class.get_num_batches())+batches↪→

452

453 d_real_data,test = data_class.next_batch()

454 d_real_data=torch.from_numpy(d_real_data)

455 d_real_data =d_real_data.float()

456 #test =)

457

458 d_real_data_tensor =

Variable(d_real_data.cuda())↪→

459 #print(d_real_data_tensor)

460 # print(x)

461 for d_index in range(d_steps):

462 # 1. Train D on real+fake

463 D.zero_grad()

464

465 # 1A: Train D on real

466

467 d_real_decision = D(d_real_data_tensor)

468 #print(d_real_decision)

469 d_real_error = criterion(d_real_decision,

Variable(torch.ones(100).cuda())) #

ones = true

↪→

↪→

470 # print(d_real_error)

471 d_real_error.backward() # compute/store

gradients, but don't change params↪→

472

21

473

474 # 1B: Train D on fake

475 d_gen_input = Variable(

torch.rand(minibatch_size,

g_input_size))

↪→

↪→

476 d_fake_data = G(d_gen_input).detach() #

detach to avoid training G on these

labels

↪→

↪→

477 d_fake_decision = D(d_fake_data)

478 d_fake_error = criterion(d_fake_decision,

Variable(torch.zeros(100).cuda())) #

zeros = fake

↪→

↪→

479

480 d_fake_error.backward()

481 # d_optimizer.step()

482

483 d_optimizer.step()

484

485

486

487 for g_index in range(g_steps):

488 # 2. Train G on D's response (but DO NOT

train D on these labels)↪→

489 G.zero_grad()

490

491 gen_input =

Variable(gi_sampler(minibatch_size,

g_input_size))

↪→

↪→

492 g_fake_data = G(gen_input)

493 dg_fake_decision = D(g_fake_data)

22

494 g_error = criterion(dg_fake_decision,

495

Variable(torch.ones(100).cuda()))

we want to fool,

so pretend it's

all genuine

↪→

↪→

↪→

↪→

496

497 g_error.backward()

498 g_optimizer.step() # Only optimizes G's

parameters↪→

499 writer.add_scalar('loss/d_real',

d_real_error, tick)↪→

500 writer.add_scalar('loss/d_fake',

d_fake_error, tick)↪→

501 writer.add_scalar('loss/g', g_error, tick)

502

503

504

505

506

507

508

509

510

511 if tick % 10 ==0:

512 d_attack_data = torch.from_numpy(testing)

513 d_attack_data = d_attack_data.float()

514 d_attack_test =

Variable(d_attack_data.cuda())↪→

515 d_attack = D(d_attack_test)

23

516 running_attack_ac = metric(d_attack,

zeroes=True)↪→

517 d_attack_error = criterion(d_attack,

Variable(torch.zeros_like(d_attack.data)))↪→

518 # print(running_attack_ac)

519 d_attack_error.backward()

520 d_optimizer.step() # Only optimizes D's

521

522

523

524 if tick % 10 == 0:

525

526

527 print(tick)

528

529

530 running_fake_ac =

metric(d_fake_decision,zeroes=True)↪→

531

running_real_ac=metric(d_real_decision,zeroes=False)↪→

532

533

534

535

writer.add_scalar('Prediction/real',running_real_ac

, tick)

↪→

↪→

536 writer.add_scalar('Prediction/fake',

running_fake_ac, tick)↪→

537 for name, param in D.named_parameters():

24

538 writer.add_histogram(name,

param.clone().cpu().data.numpy(),

tick)

↪→

↪→

539

540

541

542 d_real_data = torch.from_numpy(test)

543 d_real_data = d_real_data.float()

544 d_real_test = Variable(d_real_data.cuda())

545 d_test = D(d_real_test).detach()

546 running_test_ac =

metric(d_test,zeroes=False)↪→

547

548 writer.add_graph(D, d_real_test)

549

550 d_gen_input =

Variable(torch.rand(minibatch_size,

g_input_size))

↪→

↪→

551 d_fake_data = G(d_gen_input).detach() #

detach to avoid training G on these

labels

↪→

↪→

552 d_test_fake_decision = D(d_fake_data)

553 running_fake_test_ac =

metric(d_test_fake_decision,zeroes=True)↪→

554

555 writer.add_graph(G, d_gen_input)

556

557

test_writer.add_scalar('Prediction/Test/real',

running_test_ac, tick)

↪→

↪→

25

558

test_writer.add_scalar('Prediction/Test/fake',

running_fake_test_ac, tick)

↪→

↪→

559

560

561

562

563 d_attack_data =

torch.from_numpy(new_attack_data)↪→

564 d_attack_data = d_attack_data.float()

565 d_attack_test =

Variable(d_attack_data.cuda())↪→

566 d_attack = D(d_attack_test).detach()

567 running_attack_ac =

metric(d_attack,zeroes=True)↪→

568

569

570

test_writer.add_scalar('Prediction/attacks',

running_attack_ac, tick)

↪→

↪→

571

572

573 print("%s/%s: D: %s/%s G: %s (Real: %s,

Fake: %s), Test Real: %s, Test Fake:

%s " % (

↪→

↪→

574 batches, data_class.num_batches,

d_fake_error.item(),

d_real_error.item(),

↪→

↪→

26

575 g_error.item(), running_real_ac,

running_fake_ac, running_test_ac,

running_fake_test_ac))

↪→

↪→

576

577 print("Real attack from

dataset:",running_attack_ac)↪→

578

579

580

581

582 new_attack_data_numpy =

torch.from_numpy(new_attack_data)↪→

583 new_attack_data_numpy =

new_attack_data_numpy.float()↪→

584 new_attack_variable =

Variable(new_attack_data_numpy.cuda())↪→

585 new_attack_prediction =

D(new_attack_variable).detach()↪→

586

587 running_bob =

metric(new_attack_prediction,zeroes=True)↪→

588

589 print(new_attack_prediction.data)

590 print(running_bob,"Of DARPA Week 4 & 5 Real Attack

Detected!",)↪→

591

592

593 if epoch % 1 == 0:

594 gen_input = Variable(gi_sampler(10000,

g_input_size).cuda())↪→

27

595 gen_sample = G(gen_input).detach()

596 print(gen_sample)

597 gen_sample=gen_sample.cpu().data.numpy()

598 gen_sample=np.around(gen_sample)

599 print(gen_sample)

600 sample_bytes = sample_to_bytes(gen_sample)

601

602 # print()

603

write_bytes_to_pcap(list_of_bytes=sample_bytes,

file_path="./data/gen/gan_packets.pcap")

↪→

↪→

28

	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Goal
	Thesis definition
	Limitations
	Thesis Organization

	Literature Review
	Intrusion Detection
	IDS Datasets
	Generative Adversarial Network
	Mode Collapse
	Image Generation With Generative Adversarial Network

	Research Questions

	Methodology
	Quantitative method
	Potential error factors
	Guidelines
	Research Question Guidelines

	Data Collection Guidelines
	Analysis Guidelines

	Proposed Solution
	Proposed solution / algorithm
	The Generative Adversarial Network
	Algorithmic Enhancements
	Discussion of the Parameter Space

	Prototype
	Pre-processing
	Network Models
	Post-processing

	Justification of Claim to Originality

	Experiments and Results
	Experiment Setup
	Data Gathering & Prepossessing
	Experimental Result
	Discriminator Based Intrusion Detection System
	Network Packets Creation With Generator Network

	Conclusion and further work
	Summary of Results
	Conclusion
	Further Work

	Bibliography
	Source Code

