M| UNIVERSITY OF AGDER

Development, Deployment &

Evaluation of Wireless 10T
Devices with Energy Harvesting

Rolf Arne Kjellby
Svein Erik Lagtveit
Thor Eirik Johnsrud

SUPERVISORS
Linga Reddy Cenkeramaddi

Geir Jevne

Master’s Thesis
University of Agder, 2018
Faculty of Engineering and Science
Department of ICT

UiA
University of Agder
Master’s thesis

Faculty of Engineering and Science
Department of ICT

© 2018 Rolf Arne Kjellby

Svein Erik Lgtveit

Thor Eirik Johnsrud. All rights reserved

Abstract

Automation of indoor climate is becoming increasingly popular for both household and indus-
trial use. Through automation, comfort increases and power consumption decreases. In order
to deploy an automation system, sensors are required. This project proposes two wireless
sensor nodes based on ATmega328p along with the nRF24101+ transceiver and nRF52840
with various capabilities in both star and multi-hop network configurations. The designed
nodes are fully self-powered through energy harvesting and these nodes are completely self
sustainable with no wires, no user intervention during the lifetime of the components. In
addition, these nodes do not require any maintenance and can be deployed in remote places.
The wireless sensor nodes can be deployed anywhere as long as they are in range of a gate-
way or nodes that can forward towards a gateway, and as long as there is sufficient light
levels for the solar panel, such as indoor lights. Fully functional wireless sensor nodes are
designed and tested, and the performance compared of both star and multi-hop topologies.
The developed nodes consume less power than what is harvested in both indoor and outdoor

environments.

Preface

We appreciate the support and guidance provided by our supervisor Associate Professor
Linga Reddy Cenkeramaddi and co-supervisor Geir Jevne. We would also like to thank
Wisenet for their support of our project, and Charly Berthod for access to the PV-Lab, as

well as assistance with characterization of the solar panels.

The group consists of the following three members:

T 5. oltve WMZ@ C i

Thor Eirik Johnsrud Rolf Arne Kjellby Svein Erik Lgtveit

Grimstad, June 3, 2018

Contents

Abstract i
Preface ii
List of Figures v
List of Tables ix
Abbreviations xi
1 Introduction 2
1.1 Background 2
1.2 Problem Statement 2
1.3 Project Goals 4
1.4 Report Outline 6
2 Overview of Technology and Processes
2.1 Emnergy Harvesting 7
2.2 WSN . . e 10
2.3 Wireless Communication Technologies 13
2.4 Communication Protocols 14
2.5 Arduino Environment 16
2.6 Software and Tools 17
3 System Design 20
3.1 Energy Harvesting 20
3.2 SENSOTS . . . v v v e 28
3.3 WSN Communication Protocols 35
34 ATmega328p Node 41
3.5 ATmegad28p Gateway 57
3.6 nRF52840 Node 59
3.7 nRF52840 Gateway 7
3.8 nRF52840 Gateway Hardware 7

11

3.9 nRF52840 Gateway Firmware 78

3.10 ToT Server e 79
Testing 80
4.1 Energy Harvesting Testing, 80
4.2 ATmega3d28p Node Test 87
4.3 nRF52840 Node Test 98
Discussion 111
5.1 MGI - Develop ATmega328p WSN 111
5.2 MG2 - Develop nRF52840 WSN 112
5.3 MGS3 - Energy Harvestingo 114
54 MG4 - Research Sensors 116
5.5 MG5 - Wireless Network Topologies 117
5.6 MGO6 - Test and Compare the WSNs 118
5.7 SGI1 - 1.8V Supply for nRF52840 121
5.8 SG2 - Supercapacitor 122
59 Future Work oL 122
Conclusion 125
Arduino Code 132
A1l Star Code e 132
A.2 Multi-hop Code 139
A.3 ESP32 with nRF24101 Gateway 147
A4 ESP32 with nRF52840 gateway 151
nRF52840 Code 155
B.1 Star Node 155
B.2 Multi-hop 167
B.3 nRF52840 Gateway 183
B.4 BMEGSO 190
Soldering Method 198
Altium Designs 202
D.1 ATmega328p Node Schematicand PCB. 202
D.2 nRF52840 Node Schematicand PCB 210
D.3 nRF52840 PDK Brekout Board Schematic and PCB 218
D.4 nRF52840 Gateway Schematic and PCB 226

v

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

Spectral response of silicon cell [1] o Lo
Spectrum of different lightsources [2]
IV and power graph of generic Si-panel

Star and multi-hop topologyo 10
0.15W solar panel 20
Characterization of 0.15W rated polycrystalline panel 21
Front and back of the 0.36W solar panel 21
Characterization of 0.36WW rated monocrystalline panel 21
BQ25570 power management schematic 22
BQ25570 charging efficiency vs input current with 2V input 23
BQ25570 buck efficiency vs output current with 1.8V output 23
Overview of sensors supported by the nodes. Prices are for one sensor on

Digikey 15.03.2018 . . .\ o o 28
Battery level sensing schematic L. 34
Payload of data message with nRF52840 in star 37
Payload of ACK message with nRF52840 instar 37
Payload of data message with ATmega3d28p instar 37
Payload of ACK message with ATmega328p instar 37
Multi-hop protocol flowchart 38
multi-hop protocol scenario oo 39
Payload of data message L 40
Payload of wake ping message Lo 40
Payload of ACK message 40
nRF24L01+ data frame 41
Schematic of the ATmega328p 42
Speed grade of the ATmega328p [3] 43
Energy consumption at different voltages and frequencies [4] 43
Supported sensors of the ATmega328p node 43
ATmega328p node PCB 44

3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.3
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

ATmega3d28p node enclosure L 46

Bracket for larger solar panelo 47
Printed enclosure oo 47
ATmega328p PCB top 48
ATmega328p PCB bottom 48
Flowchart of i2c_scanner() 49
Flowchart of get sensor data() 51
Flowchart of send_data() 54
Flowchart of wait_for response() 55
Flowchart of wait_to send() 56
Gateway prototype for ATmega328p nodes 57
Gateway functionality flowchart for ATmega328p nodes 58
nREF52840-PDK [3] o 59
BMD-340 59
nRF52840 data frame 60
Protective enclosure for nRF52840 PDK 61
Schematic of the nRF52840 node 61
USB battery charger schematic 63
nRF52840 node PCB oo 64
nRF52840 PDK breakout PCB 65
nRF52840 PDK in the 3D printed enclosure with breakout board installed . 65
Flowchart of send data() 74
Flowchart of wait_for ack(). 76
nRF52840 gateway PCB 7
Flowchart of nRF52840 gateway 78
Node 17 group in Home Assistant 79
Temperature history of node 17 in Home Assistant 79
Test location L 80
PV panel testbed 80
Charging Li-Ton battery with monocrystalline panel 81
Charging Li-Ion battery with polycrystalline panel 81
Charging a 5F supercapacitor from 0.5V with monocrystalline panel 82
Charging a 5F' supercapacitor from 2.8V with monocrystalline panel 83
Charging a 5F' supercapacitor from 2.7V with polycrystalline panel 83
Dark room test locationo 84
Dark room testbed 84
Monocrystalline and battery in low light conditions 84

vi

4.11
4.12
4.13
4.14

4.15
4.16

4.17

4.18

4.19
4.20
4.21

4.22
4.23
4.24

4.25
4.26
4.27
4.28
4.29

4.30
4.31

4.32

4.33
4.34

4.35
4.36

Polycrystalline and battery in low light conditions
ATmega328p sleep current measurement with BME680
ATmega328p sleep current measurement with HDC2010.
ATmega328p oscilloscope measurement in star topology with LOW transmis-
sion level and BME6G80
ATmega328p oscilloscope measurement of the BMEG8O heater
Average power consumption of ATmega328p in star topology with different
transmission intervalso o oo
ATmega328p oscilloscope measurement with HDC2010 and LOW transmis-
sion power level
Average power consumption of ATmegad28p with LOW transmission power
and HDC2010
Overview of the multi-hop functionality
Oscilloscope measurement of ATmega3d28p multi-hop wake ping
Oscilloscope measurement of ATmega3d28p multi-hop with sensor read, trans-
mit and wake ping Lo
Figure 4.21 zoomed
Oscilloscope measurement of ATmega3d28p multi-hop while relaying data

Average power consumption with different wake ping intervals with the AT-
megald28p node
Drone with a sensor node placed on the bottom side
Map of test location and result
nRF52840 sleep current consumption
nRF52840 sleep current consumption with HDC2010 and 1.9V operation

nRF52840 oscilloscope measurement in star topology with +8dBm transmis-
sion power and BME680
nRF52840 oscilloscope measurement of the BMEG80 heater
Average power consumption of nRF52840 in star topology with different trans-
mission intervals
nRF52840 measurement in star topology with -40dBm transmission power
and BMEG80
nRF52840 measurement in star topology with 8dBm retransmissions
Average power consumption of nRF52840 with 8dBm transmission power and
failed transmissions
nRF52840 measurement in star topology with 8dBm and HDC2010

Average power consumption of nRF52840 with 8dBm transmission power and

HDC2010 o

vil

4.37

4.38

4.39
4.40
4.41
4.42
4.43
4.44

4.45

4.46
4.47
4.48

5.1
5.2

C.1
C.2
C.3
C4
C.5
C.6

nRF52840 measurement in star topology with 8dBm, HDC2010 and 1Mb/s

non-coded transmissionso L0 103
Average power consumption of nRF52840 with 8dBm, HDC2010 and 1Mb/s

non-coded transmissionso 103
Oscilloscope measurement of nRF52840 multi-hop wake ping 104
Oscilloscope measurement of nRF52840 multi-hop data transmission 105
Oscilloscope measurement of nRF52840 multi-hop data relay 106
Figure 4.41 zoomed in before "Wait to send" 106
Figure 4.41 zoomed in after "Wait tosend" 106
Average power consumption with different wake ping intervals with the

nRF52840 node L 108
nRF52840 oscilloscope measurement in star topology with 8d Bm transmission

power, 3.3V supply and BME680 108
Logic-level threshold of TPS22860 [5] 109
nRF52840 range test with 8d Bm transmission power and coded transmissions 109

nRF52840 range test with 8dBm transmission power and non-coded trans-

MISSIONS v v v e e e e 110
PV efficiency in low light conditions [6] 115
Awake period when not waiting for BME680 data with nRF52840 123
Cutting stencils with the Snapmaker 198
Applying solder paste tothe PCB 199
Manual pick and place machine 200
PCB with solder paste during the pick and place process 200
Reflow oven 201
After reflow solderingo 201

viil

List of Tables

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

Goals 4
Key differences in BT4.2 and BT5[7] 14
MQTT QoS types o 16
Supercapacitor and voltage comparisono L. 27
Key features of BME680 29
BMEGSO I?C registers 30
HDC2010 characteristics 31
HDC2010 registers 31
HDC2010 configuration register 32
HDC2010 measurement configuration register 32
MAX44009 characteristicso 33
MAX44009 registers 33
MAX44009 configuration register L. 33
Expected worst case on-state energy consumption of ATmega3d28p node . . . 45
Expected worst case sleep energy consumption of ATmega328p node 45
Expected worst case on-state energy consumption of nRF52840 node 60
Expected sleep energy consumption of nRF52840 node 60
ATmega328p consumption with LOW and BMEGS80 in star topology 89
ATmega328p wake ping measurements 93
ATmega3d28p read and transmit measurements 94
ATmega3d28p read and transmit measurements 95
nRF52840 consumption with +8dBm and BMEGS0 in star topology 100
nRF52840 wake ping measurements0 104
nRF52840 data transmission measurements 105
nRF52840 data transmission measurements 107
Comparison of battery lifetime from full charge in star with 55s transmission

interval with no energy harvesting 119

1X

5.2

5.3

5.4

Comparison of 5F' supercapacitor lifetime from full charge in star with 55s
transmission interval with no energy harvesting 119
Comparison of battery lifetime from full charge in multi-hop with no energy
harvesting L 120
Comparison of 5F' supercapacitor lifetime from full charge in multi-hop with

no energy harvesting Lo 121

Abbreviations

Abbreviation Explanation

ACK Acknowledgement

ADC Analog-to-Digital Converter

API Application Programming Interface
BLE Bluetooth Low Energy

BSD Berkeley Software Distribution

CCA Clear Channel Assessment

CMSIS Cortex Microcontroller Software Interface Standard
CNC Computer Numerical Control

CO Carbon Monoxide

CO, Carbon Dioxide

EH Energy Harvesting

I2C Inter-Integrated Circuit

HFCLK High Frequency Clock

IAQ Indoor Air Quality

IC Integrated Circuit

IDE Integrated Development Environment
IR Infrared Radiation

IRQ Interrupt Request

LED Light Emitting Diode

LFCLK Low Frequency Clock

LSB Least Significant Bit

MCU Microcontroller Unit

MISO Master In Slave Out

MSB Most Significant Bit

MOSI Master Out Slave In

MPPT Maximum Power Point Tracking
MQTT Message Queuing Telemetry Transport

OTA Over-the-Air

X1

ABSTRACT

PCB Printed Circuit Board

PDK Preview Development Kit
PoC Proof-of-Concept

PV Photovoltaic

QoS Quality of Service

RAK Rolf Arne Kjellby

RAM Random Access Memory

RH Relative Humidity

RSSI Received Signal Strength Indicator
RTC Real-Time Clock

SCK Serial Clock

SCL Serial Clock Line

SDA Serial Data Line

SDK Software Development Kit
SEL Svein Erik Lgtveit

SMD Surface-Mount Device

SoC System on Chip

SPI Serial Peripheral Interface Bus
SS Slave Select

SSH Secure Shell

TEJ Thor Eirik Johnsrud

TWI Two Wire Interface

UART Universal Asynchronous Receiver-Transmitter
UiA University of Agder

USB Universal Serial Bus

ULP Ultra-Low Power

[OAY Ultraviolet

VOC Volatile Organic Compounds
WSN Wireless Sensor Network

Chapter 1

Introduction

1.1 Background

This project is given by Assoc. Prof. Linga Reddy Cenkeramaddi as part of the IKT590
course at University of Agder (UiA) in the Embedded Systems specialization, and will be
developed by Rolf Arne Kjellby (RAK), Thor Eirik Johnsrud (TEJ) and Svein Erik Lgtveit
(SEL).

The motivation for the project is to develop Wireless Sensor Networks (WSN) with Energy
Harvesting (EH), and to conduct extensive tests of the various networks in order to present

a detailed comparison.

1.2 Problem Statement

Surveillance and automation of homes and industry is becoming increasingly popular in
order to obtain a higher level of comfort and potentially reduce energy consumption for
heating and ventilation. Several sensor nodes and WSNs exist, however requires recharging

or replacement of batteries, or wired power supply.

This report describes sensor nodes with Photovoltaic (PV) EH for indoor and outdoor use,
eliminating the need for human intervention throughout the lifetime of the components
included in the nodes. The use cases for such a system are many, including smart homes,
smart cities and smart agriculture.

Two different sensor nodes are developed and tested in order to determine the optimal solar
panel size, transmission interval and communication protocol. Additionally, energy con-
sumption is tested with regard to transmission range, and different network topologies are

evaluated.

INTRODUCTION

If time permits, the sensor nodes will be designed for use with supercapacitors, and their
performance will be evaluated in order to find the best use-case. Supercapacitors may be
required in areas with extreme weather conditions, as common batteries have a drastically
lowered voltage and capacity in sub-zero temperatures. They may not, however, be suitable

for indoor applications due to a higher leakage current compared to common batteries.

INTRODUCTION

1.3 Project Goals

Main goals and secondary goals associated with this project are outlined in table 1.1.

Table 1.1: Goals

Goal Explanation

MG1 Develop ATmega328p WSN
MG2 Develop nRF52840 WSN
MG3 Energy harvesting

MG4 Research sensors

MG5 Wireless network topologies
MG6 Test and compare the WSNs
SG1 1.8V supply for nRF52840

SG2 Develop the system with supercapacitor, and verify functionality

1.3.1 MG1 - ATmega328p WSN

Develop a WSN based on ATmega328p along with the nRF24101+ transceiver for wireless
communication in the 2.4G H z band. The transceiver may be used with Nordic Semiconduc-
tor proprietary communication protocol, or with a custom protocol. Printed Circuit Boards

(PCB) will be designed and produced, and firmware will be developed.

1.3.2 MG2 - nRF52840 WSN

Develop a WSN based on the nRF52840 Preview Development Kit (PDK). The PDK has
an on-board antenna for wireless communication in the 2.4G Hz band, and can use either
Bluetooth 5, Nordic Semiconductor proprietary or a custom communication protocol. If time
permits, a PCB will be designed and constructed for the nRF52840 nodes. The Integrated
Circtuit (IC) is however recently released and has a long lead time, so the construction of

the node may not be achievable during the course of the project.

1.3.3 MGS3 - Energy Harvesting

Develop EH circuits for the WSNs. Previous research has been conducted in order to de-
termine the feasibility of various EH sources such as radio frequency and solar, with the
conclusion that solar panels are the most viable source of energy for both indoor and out-
door use. Therefore, the EH circuits are designed for use solely with a solar panel. A battery

should be implemented, along with a battery charging circuit and a step down voltage con-

INTRODUCTION

verter to obtain stable voltages of the necessary levels. The EH circuit must be able to drive

the sensor nodes with no requirement for manual charging or other manual intervention.

1.3.4 MG4 - Sensors

Various sensors should be researched in order to find the most suitable ones for the WSNs.
The sensors must be Ultra-Low Power (ULP) and require as little on-time as possible in

order to further reduce the energy consumption. The environmental values of interest are:

e Temperature

Relative Humidity (RH)
Visible light

Atmospheric pressure
Indoor Air Quality (IAQ)

1.3.5 MGH5 - Wireless Network Topologies

The WSNs will be configured and tested in both one-hop and multi-hop topologies. Custom

firmware will be developed for both topologies, and for both nodes.

1.3.6 MG6 - Testing & Comparison

The WSNs created will undergo extensive testing to determine the indoor and outdoor
ranges, as well as energy consumption with various environmental sensors and network
topologies. A line of sight range test will be conducted for various configurations of the
systems, and for the nRF52840 nodes, both the high bitrate mode and long range mode will
be tested. The results will be compared in order to determine the best use-case for each

system.

1.3.7 SG1 - 1.8V Operation for nRF52840

The nRF52840 PDK has a supply voltage of 3.3V, however 1.8V should be kept in mind
throughout the design process in order to allow for reduced power consumption. This will

be developed and tested if time permits.

1.3.8 SG2 - Supercapacitor

By using a supercapacitor instead of a battery, the nodes will achieve a lower cost and may
operate better in harsh and cold environments. If time permits, a supercapacitor will be
implemented in one or both of the nodes, and its performance will be compared to that of

the battery based nodes.

INTRODUCTION

1.4 Report Outline

Chapter 1 - Introduction

— Chapter 1 introduces the reader to the problem and describes the background for
the project. The goals are stated and elaborated with brief descriptions. The

goals describe the main requirements for this project

Chapter 2 - Theoretical Background

— Chapter 2 gives a detailed description of the concepts utilized during the project.
Theory on photovoltaic harvesting, energy storage, wireless sensor network topolo-
gies and communication protocols and technologies are described. Additionally,

the software and tools used throughout the project are described briefly.

Chapter 3 - System Design

— Chapter 3 presents the solutions researched and developed. This includes a de-
tailed and technical description of the hardware components, design of circuits

and PCBs, as well as the firmware for the nodes and gateways.

Chapter 4 - Testing

— Chapter 4 gives a detailed overview of the tests conducted during the project, as

well as a comparison of the different WSNs and topologies.

Chapter 5 - Discussion

— Chapter 5 discusses technical issues and results based on chapter 3 and 4. The
discussion is focused on each goal individually, and possible future work and

improvements are described.

Chapter 6 - Conclusion

— Chapter 6 presents a conclusion of the development process and the performance

of the WSNss.

Chapter 2

Overview of Technology and Processes

2.1 Energy Harvesting

The sensor nodes are to rely on energy harvested from ambient sources in order to avoid,
or eliminate, the need for manual replacement or recharging of the power cell, effectively
reducing the cost of maintenance. Energy harvested from light by the use of PV elements

has through previous research proved to be the most viable source.

2.1.1 PV Energy

Converting energy from light to electrical energy is done with a PV cell. The most common
type of PV cell consists of two layers of silicon substrate, much like in common semicon-
ductors. Photons absorbed by the silicon may excite electrons from their current atomic
orbit through the band-gap of the two materials, resulting in the generation of a charge that
can run current through an auxiliary circuit. Only photons with appropriate wavelength
will produce current, and the wavelengths that produce current in silicon cells range from

approximately 400nm to 1100nm, as can be seen in spectral response chart in figure 2.1.

141 :
10
09
08 [
07
06 [
05 [
04 [.

03

Response (mV per W m-2)

02
01

0.0

T T T T
300 400 500 600 700 80O 00 1000 1100 1200

Wavelength (nm)

Figure 2.1: Spectral response of silicon cell [1]

The use of PV cells in an indoor environment poses a major challenge, as common artificial

7

OVERVIEW OF TECHNOLOGY AND PROCESSES

indoor lighting has a lower intensity and emit a more narrow spectrum compared to that
of the sun. Figure 2.2 shows the wavelengths emitted from common indoor light sources,
as well as the sun. By comparing this to the spectral response in figure 2.1, it is clear that
artificial light sources emit wavelengths in the lower efficiency region of the silicon cells.
PV cells which yield higher efficiency at the lower wavelengths exist, however their cost-
to-performance ratio renders them unusable for the purpose of this project. Therefore, low
current outputs from the PV modules used for the sensor nodes is a restraint which has to

be considered throughout the project.

Solar Spectrum
\ (AM1.5G)

White LED

Intensity (a.u.)

] I ‘ \ |ncandescent bulb /\
1 A

400 600 800 1000 1200 1400 1600 1800
Wavelength (nm)

Figure 2.2: Spectrum of different lightsources |2]

PV cells are considered as a high impedance source, and require load balancing to output
the highest possible amount of power. This load regulation is referred to as Maximum Power
Point Tracking (MPPT), and is usually done in a dynamic manner to ensure that the system
performs optimally at all times, as light and temperature is changing through the course of
the day. A common method of MPPT is to measure the open circuit voltage of the PV
module, and regulate the load such that the voltage is equal to a preset percentage of open
circuit voltage. For this method, the maximum power point of the cell has to be known. This
is found by exposing a cell to constant lighting, and regulating the load from short circuit
to open circuit while measuring voltage and current output. This measurement produce
an IV curve, such as can be seen in figure 2.3. As seen in the figure, the power peaks at
approximately 4.7V, which is 78% of the open circuit voltage of 6V. Most silicon PV cells

have their maximum power point at approximately 76% [8].

OVERVIEW OF TECHNOLOGY AND PROCESSES

(=]
=2 B
2 -
- w

Current (A)
(=] (=] (=]
S o 2 o 2 B
=1 = [=] = (=] w
A B bR & &b

=
=]
=]
o

=
=
=]
(]
w
IS
w
=]

Voltage (V)

Figure 2.3: IV and power graph of generic Si-panel

2.1.2 Energy Storage

In many indoor environments, the energy available solely from light sources may be inade-
quate for powering the node directly, such as during nighttime or during the dark periods
of the year, however excess amounts may occur during daytime. Energy storage is therefore
required, where both supercapacitors and rechargeable batteries are viable options. Super-
capacitors can store enough energy for a few transmissions up to a few days of operation,
while rechargeable batteries such as lithium ion button cells can store enough energy for
weeks to years of operation [9]. Both options do however have their drawbacks. Lithium
cells perform poorly in cold conditions and may completely cease to function below —15°C'.
Supercapacitors on the other hand may function very well in cold conditions, but generally
have a high self discharge current, often in the range of several A, which also increase with
temperature. This discharge rate of supercapacitors differ between different manufacturers
and technologies, but is generally highly dependent on maximum capacitance. The 5F, 6V
SCMS32H505MRBBO0 supercapacitor from AVX, as an example, has a rated leakage current
of 36pA in 25°C' [10]. The rechargeable lithium ion button cell battery LIR2450 from Mul-
ticomp on the other hand, supposedly loses 20% of its rated capacity of 120mAh over the
course of 3 months at 20°C, giving a leakage current of approximately 11.1uA [11].

Energy storage elements usually require conditioning of both input and output power in
order to charge in the correct manner, and to supply the circuit with the correct voltage.
For low power applications, voltage regulation is usually sufficient, although a combination
of constant current and constant voltage based on charge levels is preferable for lithium
batteries. Capacitors require overvoltage protection, while lithium batteries require both
overvoltage and undervoltage protection to maintain functionality. Output voltage is com-
monly regulated to a predefined level with a Buck-, Boost-, or Buck/Boost-module to the

voltage levels required by the system.

OVERVIEW OF TECHNOLOGY AND PROCESSES

2.2 WSN

2.2.1 WNSN Topologies

Two fundamentally different topologies are normally considered in wireless networks, namely
multi-hop topology and star topology. A graphical representation of the two topologies is
depicted in figure 2.4. Low power wireless communication standards allow for communica-
tion between battery powered sensor nodes and gateways with both topologies. The gateway
may include both low power radio to communicate with the nodes, as well as handle other
communication technologies such as Wi-Fi in order to connect the WSN to the local network

or global Internet.

Star Topology Multi-hop Topology
' Gateway Gateway

Th &

Figure 2.4: Star and multi-hop topology

Star topology is a purely one-hop based topology, where the nodes communicate directly
with a gateway [12]. The design and deployment of a star network is straightforward due to
its structural simplicity. The one-hop based structure is the main advantage of star topology
as no node is required to relay data. No synchronization between nodes is necessary, and
higher sleep durations are allowed, resulting in a lower energy consumption. The nodes
must, however, be in range of a gateway in order to transmit data, which limits the coverage
of the network. Additionally, each cluster of nodes must have at least one gateway which is

always active.

On the other hand, in multi-hop topology, nodes are able to relay data from neighboring
nodes [12|. In a network, multiple nodes must be on until the data has been sent, resulting
in a higher energy consumption due to reduced sleep periods. The relaying of data does,
however, permit large areas to be covered as each added node increases the range. Imple-
menting multi-hop topology is difficult compared to star topology. When using timer-based
wakeup, all nodes must be synchronized periodically, partly because oscillators generally
have poor accuracy and have temperature dependent frequency variations. As a cause of

this, a time overlap should be implemented in addition to the periodic synchronization, in

10

OVERVIEW OF TECHNOLOGY AND PROCESSES

order to guarantee that the required nodes are awake at the time of transmission. Con-
sequently, more energy is consumed. The issue called the "energy hole problem" is also a
concern regarding network design, which occurs when a single node has to forward pack-
ages from multiple neighbors. This results in higher energy consumption in some nodes,
and therefore shorter battery life compared to the neighboring nodes, leading to a hole in
the transmission line if the battery is depleted. This issue can be avoided in a number of

ways, such as increasing the battery capacity of the problematic nodes after identifying them.

Wake-up radios may be introduced to wireless sensor networks in order to avoid unnecessary
wake-ups, allowing nodes to dynamically wake up neighbors when data is ready for trans-
mission. More components and possibly more radios are however required, as well as the

added complexity to the nodes and the network design [13].

2.2.2 Sensing of Environmental Data
2.2.2.1 Relative Humidity

RH is a measure, represented as a percentage, of the amount of water vapor that exists in
the air, relative to amount of air needed for saturation at a given temperature. Warm air
can hold more water vapor than cold air, and temperature fluctuations therefore affects the
RH. As for indoor climate control, people, buildings and furniture will benefit from having
a properly adjusted level of RH. RH regulated from 40% to 60% is considered the most
beneficial for human health as it improves general comfort, and may reduce the probability
of catching colds, dry skin and irritated eyes [14]. As for buildings and furniture, the correct

levels of RH may hinder structural shrinkage, mold and rot.

RH can be measured with a Hygrometer, which can be found in the form of digital ICs.
Key figures when selecting such a device is power consumption both during sleep and during
measurement, measuring time, as it will contribute to the total on-time of the sensor node,

as well as cost and complexity of the IC and its necessary auxiliary circuit.

2.2.2.2 Temperature

Temperature is an important measure when it comes to human comfort in a work environ-
ment. Being able to measure temperature accurately enables better control on cooling and
heating systems, which may improve health and comfort, while reducing power consumption.
What is considered as optimal temperature highly depends on the tasks that are performed,
in addition to clothing, RH and other environmental data. Recommended temperature for

an office environment may range from 20°C' to 28°C' [15]. Environments with more physical

11

OVERVIEW OF TECHNOLOGY AND PROCESSES

labour may benefit from temperatures as low as 16°C'.
Measurement of temperature is straightforward, and temperature is one of the most common
parameters to measure with environmental sensing equipment. There are several digital IC’s

that include temperature measurement.

2.2.2.3 Indoor Air Quality

[AQ is a measure that relies on several parameters. Common influencers of TAQ with re-
gards to human health and comfort include gases such as Carbon Monoxide (CO), Carbon
Dioxide (C'O3) and a collection of Volatile Organic Compounds (VOC), in addition to some

particulates and microbial contaminants such as animal dandruff, mold and bacteria.

CO is a product of incomplete combustion. High levels of C'O deprives the brain of oxy-
gen and can cause nausea, unconsciousness and in worst case, death. Common sources of
CO are tobacco smoke, fossil and wood fueled heat sources and car exhaust. Mitigation
methods include removing C'O sources, air filtering and proper ventilation. C'Oy found in
indoor environments is usually a product of human breath. High levels of CO; may lead
to headaches, drowsiness, mental fatigue and general discomfort [16]. Sufficient ventilation

should eliminate issues with C'O,.

VOC gases is a term that covers a wide range of gases emitted from certain liquids and
solids, where many of them have adverse short- and long-term health effects ranging from
light headaches, skin irritation, damage to nervous system, increased risks of cancer and
more. Common sources of VOC gases include paints, solvents, wood preservatives, aerosol
sprays, disinfectants, cleaners, air fresheners, glue, hobby supplies and office equipment. The
concentration of VOC’s in the air is therefore often several times higher inside offices and
homes than outside. Mitigation methods include removing sources of VOC where possible,
and increasing ventilation to get a sufficiently low concentration of VOC where the sources

can not be eliminated. [17]

Measuring gas concentrations is usually quite costly both in hardware and in power-
consumption. Most sensors require a heating period to get reliable readings, and some
require complex calculations to compensate for humidity, temperature and historical val-
ues to get accurate, easily readable values. The selection of TAQ sensors and measurement

intervals greatly rely on the amount of energy that is available from the EH system.

12

OVERVIEW OF TECHNOLOGY AND PROCESSES

2.2.2.4 Atmospheric Pressure

Atmospheric Pressure usually have little or no direct effects on human health or comfort. It
can however be used to ensure that a ventilation system is performing optimally, in addition
to predicting weather changes and estimate elevation. Atmospheric pressure sensors are

included in some environmental sensor IC’s.

2.2.2.5 Light Intensity

Light levels in a work environment may have a great effect on performance and general
comfort of workers. Too much light consumes unnecessary amounts of power and may be
distracting, while too little light may cause drowsiness and headaches, among other things.
Sensing light levels can improve automated lighting systems by providing a feedback system.

18]

2.3 Wireless Communication Technologies

2.3.1 Bluetooth 5 Stack

Bluetooth is one of the most widely used communication technologies for short range, low
bandwidth applications. It is immensely popular for mobile devices and commonly used for
a multitude of multimedia applications. When Bluetooth Low Energy (BLE) was adopted
in 2010, Bluetooth also became a viable option for ULP applications being powered by
coin cell batteries. While this is most commonly used for smart watches and body sensors,
utilization of Bluetooth in WSN applications has become more viable. Short range has
however been a limiting factor for the implementation of BLE in battery powered sensor
nodes, but that has been greatly improved in the BT5 core specification |7]. BT5 is the next
generation Bluetooth technology. It enhances several key features such as range and speed
with generally decreased power consumption, although this is device dependent. BT5 also
greatly enhances broadcasting abilities and enables mesh-networking. Many of these new
features can be used to improve functionality or add new functionality to a WSN. The key
differences between BT5 and previous iteration Bluetooth 4.2 (BT4.2) can be seen in table
2.1.

13

OVERVIEW OF TECHNOLOGY AND PROCESSES

Table 2.1: Key differences in BT4.2 and BT5]7]

Parameter | BT4.2 LE | BT5

Bitrate ‘ 1Mbps ‘ 1Mbps or 2Mbps

Max throughput' | 0.8Mbps | L4Mbps

Typical range ‘ 10m indoors, 50m line of sight ‘ 40m indoors, 200m line of sight
Long range mode ‘ n/a ‘ 125kbps /500kbps™ up to 1.6km't
Mesh-enabled ‘ No ‘ Yes

! Application throughput without the Bluetooth overhead
i Long Range mode uses 1Mbps with high level coding.

il Distance measured by Texas Instruments with 5dBm transmit power [19]

BT5 long range mode utilizes high level coding in order to increase sensitivity of the receiver.
Even though bitrate is stated to be 500kbps or 125kbps in the long range modes, bits are
actually transmitted at 1Mbps with 2 or 8 symbols per data bit. These high level coding
schemes enables the receiver to perform error detection and correction based on received
symbols, enabling communication on what is usually considered lossy links without increas-
ing transmitting power. Power consumed while transmitting a set of bits will however still

increase, as the transmission will require more time due to the lower bitrate.

The BT5 specification defines a mesh profile [20]. The specified mesh functionality is however
based on managed flooding. This means that messages are broadcast from the origin node,
and re-broadcast by all the relaying nodes. The flooding of a packet is limited by a "time
to live" indicator and a mechanism that hinders re-transmission of previously transmitted
packages. Additionally, BT5 mesh also requires some relaying nodes to be active at all times,

implying that at least parts of the network will drain large amounts of energy.

2.4 Communication Protocols

2.4.1 Universal Asynchronous Receiver-Transmitter

Universal Asynchronous Receiver-Transmitter (UART) provides full-duplex serial communi-
cation between two devices with two signals; Tx and Rx [21]. As UART transmits data in an
asynchronous manner, no clock synchronization is required. Instead, the transmitting UART
utilizes start and stop bits in transmitted data packets in order to define the beginning and

end of each packet. When the receiver reads a start bit, it begins reading incoming bits at a

14

OVERVIEW OF TECHNOLOGY AND PROCESSES

frequency known as baud rate, which is expressed in bits per second (bps). The maximum

deviation in baud rate between transmitter and receiver is 10%.

2.4.2 Inter-Integrated Circuit

Inter-Integrated Circuit (I?C) is a synchronous two-wire interface, using the signals Serial
Clock Line (SCL) for clock and Serial Data Line (SDA) for data [22]. Multiple devices can
be connected to a single I2C bus, and as both SCL and SDA are open drain drivers, they
require pullup resistors in order to allow high signals. All devices on an I?C bus is either a
master or a slave, where SCL is usually driven by the masters. Both slaves and masters can
transfer data on the bus, however the slaves only initiate transfers after being commanded

by a master. I2C has a common clock speed of 100kH z in embedded systems.

I2C has two predefined sequences to indicate the start and stop of a packet. The start
sequence occurs when SDA goes LOW while SCL is HIGH, and the stop sequence when
SDA goes HIGH while SCL is HIGH. During data transmission, SDA may only change
when SCL is LOW. Each sequence of data is 8 bits, and upon reception of an entire package,
the receiver sends an Acknowledgement (ACK) bit. A LOW ACK bit indicates that the
receiver is ready to receive 8 new bits, while HIGH indicates that the transmission is to be

terminated, and the master should send a stop sequence.

2.4.3 Serial Peripheral Interface Bus

Serial Peripheral Interface Bus (SPI) is a full-duplex synchronous 4-wire interface, using the
signals Master In Slave Out (MOSI), Master Out Slave In (MISO), Serial Clock (SCK) and
Slave Select (SS) [23]. The SPI bus has one master and at least one slave, where the master
can communicate with all slaves, and slaves can only communicate with the master. SS is
used by the master to select which slave to communicate with, and therefore, each slave

must have a unique SS signal connection.

2.4.4 Message Queuing Telemetry Transport

Message Queuing Telemetry Transport (MQTT) is a lightweight messaging protocol which is
based on publish and subscribe for communication between devices [24]. MQTT is designed
to be efficient, open-source and simple. Due to its lightweight nature and low bandwidth
requirements, it is ideal for use in constrained IoT systems. A WSN gateway can publish
sensor values to a topic, for example "uia/room10/sensor value". The topic is not pre-
configured in the MQTT server, allowing any host to create a new topic at any time by

simply publishing data to it. A host, in this case the IoT server, can subscribe to said topic

15

OVERVIEW OF TECHNOLOGY AND PROCESSES

in order to gather the sensor data.

MQTT has three levels of Quality of Service (QoS), all of which are described in short in
table 2.2 [25].

Table 2.2: MQTT QoS types

QoS Type ‘ Function

QoS 0 ‘ At most once: No ACK from receiver, often referred to as "fire and forget"

QoS 1 At least once: Sender stores the message until ACK is received. If no
ACK is received, the message is published again. The publish message
can be transmitted multiple times.

oS 2 Exactly once: Guarantees that each message is received once by the re-
y g Yy
ceiver. This is the safest and slowest QoS type.

The publish and subscribe messaging pattern of MQTT requires a message broker. Mosquitto
is an MQT'T broker commonly used in Linux systems, and can be installed and run on low-

cost embedded systems such as Raspberry Pi [26].

2.5 Arduino Environment

Arduino is a simple open-source platform for both hardware and software. Its easy-to-use
structure provides a highly convenient tool for Proof-of-Concept (PoC) design and pro-
totyping. Arduino provides an Integrated Development Environment (IDE), which is a
cross-platform application written in Java. It supports both C and C++, with the addition
of some Arduino specific syntax [27]. An Arduino code must contain a minimum of two
functions, namely the setup() and loop() functions. setup() is called only once, when the
Microcontroller Unit (MCU) is turned on or when reset. It is commonly used for initializa-
tion of variables and other settings. loop() is run repeatedly until the MCU is powered off,

or enters deep sleep.

In order to utilize the functionality of Arduino, the MCU must be flashed with a boot-
loader. The Arduino bootloader is a program which permits the uploading of code without
additional hardware, simplifying the flashing process. Additionally, the IDE incorporates
"avrdude", which converts executable code to hexadecimal encoding, which is then flashed
onto the MCU [27].

The Arduino environment offers pre-written libraries for most of the commonly used sensors,

16

OVERVIEW OF TECHNOLOGY AND PROCESSES

wireless radios and other external devices. The libraries are written either by manufacturers,

retailers or community members, and can be used free of charge.

2.6 Software and Tools

The various software and tools used throughout the development and testing during the

project are outlined below.

2.6.1 Software

e Altium Designer 17.1

— Altium Designer is a powerful and efficient schematic and PCB layout tool devel-
oped by Altium Limited [28].

e Segger Embedded Studio V3.34

— Segger Embedded Studio is an all-in-one solution for managing, building, testing
and deploying embedded applications [29]|. It offers a simple project generator,
a project manager, source code editor, C/C++ compiler, an integrated debug-
ger and direct J-Link integration. Separate versions exist for ARM and RISC-V
MCUs. Segger Embedded Studio requires no license for development with micro-

controllers from Nordic Semiconductors

Arduino Software 1.8.5

— The Arduino Software is an open-source IDE written in Java. It is used to write

and upload code to the hardware.

Autodesk Inventor 2017

— Inventor 2017 from Autodesk is a program used for 3D modelling and visual-
ization, simulation and documentation of 3D models [30]. Autodesk provides a

student licence that makes it free to use for academic purposes.

Autodesk Fusion 360

— Fusion 360 from Autodesk is a all-in-one environment for 3D modelling, simulation
and documentation, in addition to supply tools for milling of parts, e.g. PCB and
solder stencils [31]. As with Inventor, Fusion 360 is free to use for academic

purposes.

Tera Term 4.97

17

OVERVIEW OF TECHNOLOGY AND PROCESSES

— Tera Term is a free software terminal emulator with support for serial port com-
munication and TCP/IP protocols such as telnet and Secure Shell (SSH) [32]. The

software is open source under the Berkeley Software Distribution (BSD) License.
e Eclipse Mosquitto 1.5

— Eclipse Mosquitto is a lightweight MQTT broker suitable for most hardware,

ranging from low power embedded devices to powerful servers.
e Hass.io
— Hass.io is an open source home automation environment powered by Home As-

sistant, and is suitable for use on a Raspberry Pi [33].

2.6.2 Tools and Instruments

e nRF5 SDK v14.2.0

— Nordic Semiconductor provides a software development kit which provides drivers,
libraries, example codes and more for the nRF52 and nRF51 Series of microcon-

trollers.

Segger J-Link EDU

— The J-Link is a debugger used to flash compiled application code into the MCU
memory. It interfaces to the MCU via the JTAG serial protocol.

Fluke 115 Multimeter

— The Fluke 115 Multimeter is a hand-held instrument that can measure AC and

DC voltage, AC and DC current, resistance and indicate short-circuits [34].

Keithley 2110 5 1/2 digit Multimeter

— The Keithley 2110 Multimeter is a benchtop instrument that can measure AC and
DC voltage, AC and DC current, resistance, frequency, capacitance, temperature
and diodes, and can also log data in .CSV format via a Universal Serial Bus (USB)
interface [35].

Keysight InfiniiVision DSOX2002A Digital Storage Oscilloscope

— The Keysight InfiniiVision DSOX2002A is a benchtop digital 2 channel oscillo-
scope with frequency range up to 70M H z [36].

Keysight B2985A Electrometer/High Resistance Meter

18

OVERVIEW OF TECHNOLOGY AND PROCESSES

— Keysight B2985A is a benchtop electrometer which measures small currents with
0.01fA (0.01-107'°A) resolution [37].

e CEL Robox Dual

— CEL Robox Dual is an easy-to-use 3D printer utilizing the cartesian coordinate
system with X, Y and Z axes [38|. The printer uses dual filament extruders and
nozzles, allowing for the use of two different materials or filament colors with the
DualMaterial”™ head, or quicker infill with the QuickFill”™ head. It has a heated
printer bed with good adhesive features, and proprietary software for slicing 3D

models and controlling the printer.
e Snapmaker

— Snapmaker is a 3-in-1 prototyping machine with the ability to print 3D models,
engrave with laser and carve or engrave with Computer Numerical Control (CNC)
[39]. It utilizes the cartesian coordinate system, and has a heated bed for 3D print-
ing. The laser module uses a 0.2 blue laser. Snapmaker provides proprietary
software for both 3D printing and CNC/laser engraving, namely Snapmaker3D

and Snapmaker;js.
e Mooshimeter

— Mooshimeter is a multimeter developed by Mooshim, which uses BLE technology
for connecting with smartphones or tablets [40]. It can measure up to 600V and
10A with 24 bit resolution. Voltage and current can be measured simultaneously,
with power calculation built into the smartphone application. It also allows for

logging to a microSD memory card for up to 6 months.

19

Chapter 3

System Design

3.1 Energy Harvesting

3.1.1 PV Harvesting

A generic polycrystalline solar panel is used for testing the sensor nodes. The panel has a
rated peak power of 0.15W and a voltage of 5V, and physical dimensions of 53x30mm. The

solar panel is depicted in figure 3.1

Figure 3.1: 0.15W solar panel

In order to obtain the necessary characteristics of the solar panel, a characterization of the
panel has been conducted with the Neonsee AAA Sun Simulator at the UiA PV-Lab [41].
Figure 3.2 shows the characterization with 1000 /m? irradiance, equivalent to that received

from the sun. Voltage is represented by the x-axis, while current and power are represented

20

SYSTEM DESIGN

by the y-axis.

0.045
0.04

0.035

0.03

0.025

0.02

Current (A)

0.015
0.01

0.005

Voltage (V)

Figure 3.2: Characterization of 0.15W rated polycrystalline panel

Should the 0.15W panel prove to be insufficient, a larger, generic monocrystalline solar panel
is available for use. The panel, which is depicted in figure 3.3 has a rated peak power of

0.36WW and a voltage of 4V, and measures 63z63mm.

Figure 3.3: Front and back of the 0.36W solar panel

Figure 3.4 shows that the panel outputs well above the rated power of 0.361.

0.2
0.18
0.16
0.14
0.12

0.1
0.08

Current (A)

0.06
0.04
0.02

0 1 2 3 4 5 6
Voltage (V)

Figure 3.4: Characterization of 0.36W/ rated monocrystalline panel

21

SYSTEM DESIGN

As can be seen in the figures, the maximum power point is at approximately 80%, as described

in section 2.1.1. The MPPT is therefore designed according to these values.

3.1.2 Power Management

Figure 3.5 depicts the power management circuit using the BQ25570 IC, which has features
such as MPPT, a Buck/Boost converter for charging lithium ion cells with a PV input,
output voltage conditioning and battery voltage security measures. All of these features
are programmable through resistor networks [42]. Additionally, it has a cold start voltage
of 330mV and a quiescent current of 900nA, making it highly suitable for a solar panel in
an indoor environment. Solar panels with voltages up to 5.1V and power output of up to
510mW can be used with the BQ25570. The circuit depicted is from the ATmega328p node,
and the designators of the components may differ from the nRF52840 node.

< _WETOR

e
T 47F | 0.0uF
GND
VEAT
a5
VOC_SAMP i:g El
< VOC SP 4 A J—T ;
- HU 243003-1
Gh 13) VeC
H ot Lo Lo
co C10
=| = 2uF Cap|Sem
i w 100pF
' BQISTORGRT = =
E g § GMD GND oxd
2 =2 B - Header 2
21 v pe 4 GD
S VOC_SAME VBAT OE {— VEAT OK -

VREF_SAMP vour seT |12

& rroc{-1
=

—_——
<. _VEDIY

GND D

Figure 3.5: BQ25570 power management schematic

HU 2450N-1, B1 in figure 3.5, is a battery holder for the rechargeable lithium-ion battery
LIR2450. This is a small 120mAh lithium-ion coin cell battery with a nominal voltage of

22

SYSTEM DESIGN

3.6V meaning it can supply a total of approximately 432mW h from fully charged at 4.2V
to fully discharged at 2.75V as specified by the datasheet [11].

The BQ25570 is efficient in both battery charging and output voltage regulation. Figure 3.6
shows the efficiency with a 2V input voltage from the solar panel at different input current
levels, while figure 3.7 shows the efficiency of the output buck converter at different output
current levels with an 1.8V output. The output voltage is programmed to 3.3V when used

in the sensor nodes.

100.00 100
90.00 p A /:.7//_4—— | | | T \1\.{_‘5] 90 gl I ==
Al N/ w“ Al
g 8000 Y ViN=2V g 7
> / > ,/ /
g 7000 s 70 VOUT = 1.8V, Tp = 25°C
1ery) 37
= =
W 60.00 w0
50.00 —\VSTOR=22V 50 / —VSTOR =21V
’ —\VSTOR=30V —— VSTOR = 3.6V
40.00 —VSTOR=55V 40 / — VSTOR = 5.5V
0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Input Current (mA) Output Current (mA)

Figure 3.6: BQ25570 charging efficiency vs in- Figure 3.7: BQ25570 buck efficiency vs out-
put current with 2V input put current with 1.8V output

Following the theory presented in section 2.1, the MPPT is set to 80%, which is obtained
by connecting the VSTOR pin to the VOC _SAMP pin.

3.1.2.1 Battery Overvoltage Protection

In order to prevent the battery from being overcharged, the resistors R3 and R7 are used
as a voltage divider to program the BQ25570. According to the datasheet, the sum of the
resistors should be as close to 13M) as possible [42]. The datasheet specifies R3 = 7.5M)
and R7 = 5.76M(), giving a sum of R3 + R7 = 13.26M(). Equation 3.1 is given by the

datasheet to determine the maximum battery voltage.

3 R3
BAT =—.VBIA 14+ — 1
%4 oV 5 Vv 5’(+ R?) (3.1)
Where:

e VBIAS is the internal reference for the programmable voltage thresholds, ranging from
1.205V to 1.217V, typically 1.21V

e R7is 5.76 M2
e R3is 7.56M(2

23

SYSTEM DESIGN

With ideal component values, the maximum charge voltage is given by equation 3.2.

7.5MSQ2
5. 76 M2

3
VBAT OV = R 1.21vV (1 +) =4.18V (3.2)
However, considering the VBIAS voltage range as well as resistor tolerances of 1%, the
VBAT OV value can range from 4.16V to 4.21V. These values are within the maximum

voltage specifications of a lithium-ion battery.

3.1.2.2 Battery Voltage Threshold

The BQ25570 includes a VBAT _OK pin which can be used by an MCU or switch to shut
down when the battery is discharged below a set threshold. Two pins are included to program
threshold values, namely the VBAT OK PROG, which sets the voltage threshold while
discharging, and VBAT OK HYST, which sets the threshold while charging. R2, R4 and
RS are used as voltage dividers in order to program the threshold values. The datasheet
states that the sum of the resistors should be as close to 13M2 as possible. Equations 3.3
and 3.4 are given by the datasheet to calculate the threshold voltages.

VBAT OK PROG =VBIAS (1 + %) (3.3)
VBAT OK HYST = VBIAS (1 + %) (3.4)

The BQ25570 output voltage buck converter has a maximum dropout voltage of 0.2V. There-
fore, VBAT OK _ PROG should be minimum 3.5V to safely output 3.3V to the circuit. The
VBAT OK_ HYST should be high enough to allow sufficient charge for transmitting data.

Based on this, the following values are used:

e VBIAS is the internal reference for the programmable voltage thresholds, ranging from
1.205V to 1.217V, typically 1.21V

o R2 is 470kS2

e R4 is 8.25M¢)

e R8is 4.32M¢)

With ideal component values, the VBAT OK thresholds are given by equations 3.5 and 3.6.

8.25M)
4.32M2

VBAT OK PROG =121V (1 + > = 3.52V (3.5)

8.25M) + 470kS2
4.32M Q2

VBAT OK HYST =121V <1 +) = 3.65V (3.6)

24

SYSTEM DESIGN

The VBAT OK pin will be high until the battery voltage goes below 3.521V while discharg-
ing, which will set the pin low. When the battery is recharged to 3.65V, the pin returns
to a high state. The VBAT OK pin is connected to the VOUT EN pin, which enables or
disables the output of the buck converter supplying the node with power. By doing this, the

system is ensured to be supplied with the correct voltage at all times.

3.1.2.3 Output Voltage

The datasheet gives equation 3.7 to calculate the output voltage of the BQ25570. The
example circuit is however designed for 1.8V output, and must therefore be recalculated.

(3.7)

VOUTzvqﬂAS(EEif@>

R9
Where:

e VBIAS is the internal reference for the programmable voltage thresholds, ranging from
1.205V to 1.217V, typically 1.21V
e R5 is unknown

e R9 is unknown

R5 and R9 are used as a voltage divider to give the correct voltage to the VOUT SET pin.
In order to find the resistor values for the required 3.3V output, equation 3.7 is rearranged
as shown in equation 3.8, where the specified sum of R5 + R9 = 13M<) is used.

VBIAS(R5+ R9) 1.21V -13MQ
B VoUT R
R5 is then found to be R5 = 13M Q2 — 4.7TMQ = 8.23MS2. The closest available values are
R5 =8.2MSQ and R9 = 4.7M(), resulting in VOUT = 3.32V

R9

= 4.TTMQ (3.8)

25

SYSTEM DESIGN

3.1.3 1.8V Operation

The nRF52840 supports 1.8V operation, further reducing the energy consumption of the
node. As mentioned in section 1.3.2, this will be implemented and tested if time permits.
With 1.8V operation, more of the stored energy in the battery can be utilized with modifi-

cations of the circuit.

The output voltage is reduced to 1.8V by using the resistor values proposed in the BQ25570
datasheet, where R5 = 4.22M €2, and R9 = 8.66M 2. This results in VOUT = 1.8V. These
resistor values are, however, not available at UiA at the time of assembly. Therefore, the
VOUT is programmed to 1.9V by using R5 = 4.7M€) and R9 = 8.25M€2. resulting in
VOoUT =19V

As previously stated, the LIR2450 battery can operate safely down to 2.75V. In order to
reduce the battery threshold voltages to utilize more of the available energy, VBAT OK -
PROG and VBAT OK_ HYST are modified. By using R2 = 887k}, R4 = 6.98C2 and
R8 = 5.36 M (), the resulting values are calculated in equations 3.9 and 3.10.

6.98M (2

VBAT_OK_PROGLE;V =1.21V (1 + m

) =279V (3.9)

6.98 M) + 887K
5.36M2

VBAT OK_ HYST gy =121V (1 + > = 2.99V (3.10)

3.1.4 Operation with Supercapacitor

A design for operation with supercapacitors has been developed. In order to obtain the
highest amount of energy with any given capacitance value, supercapacitors with a voltage
rating of 6V are used, as the BQ25570 has a maximum charging voltage of 5.5V. The
resistor networks are modified to better suit the higher voltages. The BQ25570 datasheet

specifies that the initial charge time may be significant with a large, depleted supercapacitor.

The maximum charge voltage is modified by changing the resistor values of R3 and R7 to
9.31M Q) and 3.74 M respectively. This results in R3+ R7 = 13.05M 2, which is sufficiently
close to the 13M¢ specified by the BQ25570 datasheet. Equation 3.11 shows the calculated

maximum charge voltage.

8.25M¢€)
4.32M€)

The resistor network for VBAT OK PROG and VBAT OK_ HYST are modified to oper-
ate at 3.64V and 4.11V respectively. The increased hysteresis voltage is modified to ensure

VBAT OViupercap = ; 121V (1 + > = 5.28V (3.11)

26

SYSTEM DESIGN

that the supercapacitor has sufficient energy for multiple transmissions. These voltages are
obtained by using the resistor values R2 = 1.5M$2, R4 = 7.68M¢) and R8 = 3.83M¢), as
shown in equations 3.12 and 3.13. The resistor values result in R2 + R4 + R8 = 13.01 M€,
which is sufficiently close to the 13M (2 specified by the BQ25570 datasheet.

7.68MQ

BAT OK P =121V (14
174 _OK_PROG sypercap V(+3.83MQ

) = 3.64V (3.12)

7T.68MQ+ 1.5M€2
3.83M€2

VBAT OK HY STypercap = 1.21V (1 +) — 411V (3.13)

The amount of energy in a supercapacitor in joules is given by equation 3.14

E== Vi — Viin)*-C (3.14)

N | —

Where:

E is the energy in joules

Vinaz 18 the maximum voltage to which the supercapacitor will charge

Vinin is the minimum voltage to which the supercapacitor will discharge

e (C is the capacitance of the supercapacitor in farads

By assuming the above values, as well as a 1.5F" supercapacitor which is tested during the

project, the total stored energy is found in equation 3.15

E==-(528V —3.64V)? - 1.5F = 2.02J (3.15)

| —

This corresponds to 2.02.J - (1/3600s) = 560uW h. Table 3.1 shows the amount of available
power with different capacitance values and for both 1.8V and 3.3V operation based on the
maximum voltage of supercapacitor voltage of 5.28V. For 1.9V, a VBAT OK _ PROG value
of 2V is used, while the calculated 3.64V is used for 3.3V operation. 6V supercapacitors

from AVX are used, as they provide a low self discharge current compared to other providers.
Table 3.1: Supercapacitor and voltage comparison

Capacitance ‘ 1.9V Operation ‘ 3.3V Operation ‘ Leakage

1.5F | 2.24mWh | 560uWh | 18uA
2.5F | 3.74mWh | 934uWh | 3004
5F | TATMWh | L87TmWh | 3614

In comparison, the LIR2450 battery has a total capacity of 120mAh - 3.6V = 432mWh in

optimal conditions.

27

SYSTEM DESIGN

3.2 Sensors

Various sensors have been researched, evaluated and tested throughout the project. The
finalized nodes mainly use the BMEGS0, described in section 3.2.1, because of its features
of temperature, RH, TAQ and atmospheric pressure sensing. Support for the HDC2010,
described in section 3.2.2, is added in both firmware and hardware because of their lower
price and power consumption in case less environmental values are required. Additionally,
the ULP MAX44009, which is described in section 3.2.3, is used to sense visible light levels.

Figure 3.8 shows an overview of the supported sensors along with information on which

environmental values they can sense.

BMEG80 | HDC2010 | MAX44009

$13.21 $3.75 $3.57
Temperature Temperature Visible light
RH RH
Pressure
IAQ

Figure 3.8: Overview of sensors supported by the nodes. Prices are for one sensor on Digikey
15.03.2018

3.2.1 BMEG680

The BMEGS0 is an integrated environmental sensor developed by Bosch Sensortec [43]. It
can be used to measure temperature, RH, atmospheric pressure and IAQ, and supports
communication via both I?C and SPI. With readings of temperature and RH every 1s,
the BMEG680 consumes 3.7uA average as specified by the datasheet. Measuring IAQ con-
sumes much more power, as the heater has a current consumption of maximum 15mA. In
many cases, [AQ and atmospheric pressure measurements are superfluous, in which case the
cheaper HDC1010 can be used instead.

Apart from the high cost of the BME680, it is excellent for use in ULP sensor nodes due to

its extremely low current consumption. The key specifications from the datasheet are listed
in table 3.2 [43].

28

SYSTEM DESIGN

Table 3.2: Key features of BMEG80

Parameter | Symbol | Typical Value | Max Value
Supply Voltage | Voo |18V | 3.6V

Sleep Current | Ippst [0.15uA | 1uA
Standby Current | Ippss | 0.291A | 0.8uA
Start-up Time | tstartup | | 2ms
Dimensions | B-D-H 13.0-3.0-0.93mm |

Slave address | 0x77

Measurement Current | Symbol | Typical Value | Max Value
RH | Ippu | 340pA | 45014
Pressure | Ippp | T14pA | 84944
Temperature | Ippr | 35014 |

Air Quality Heater | Ipp | 12mA | 15mA
Range | Symbol | Min Value | Max Value
RH | Ha 0% | 100%
Pressure P | 300hPa | 11007Pa
Temperature | Ty | —40°C | 85°C

Air Quality | TAQy, 0 | 500
Accuracy | Symbol | Typical Value | Max Value
RH | An | £3% |

Pressure (300-1100bPa) | A, run | £0.6hPa |
Temperature (0-65°C) A7 fun | £1°C |

Air Quality | AX1aq | £15% |

Table 3.3 shows the addresses of the registers used to configure and read sensor data from

the BMEG680.

29

SYSTEM DESIGN

Table 3.3: BMEG680 I?C registers

Name ‘ Address
Measurement Status ‘ 0x1D
Pressure ‘ 0x1F - 0x21
Temperature ‘ 0x22 - 0x24
Humidity | 0x25 - 0x26
Gas | 0x2A - 0x2B
Config ‘ 0x75
Calibration Regl ‘ 0x89
Chip ID | 0xD0
Reset | 0xE0
Calibration Reg2 ‘ OxE1

3.2.2 HDC2010

The HDC2010 from Texas Instruments is used to sense both temperature and RH [44]. With
its ULP friendly energy consumption and sufficiently accurate readings, it is suitable to the
WSN in every aspect. The HDC2010 uses I?C for communication with the MCU.

The RH sensor is vulnerable to being offset by high temperatures or long exposures of high
RH. To assist in removing the offset, the HDC2010 has an internal heater that increases
the temperature, effectively removing unwanted condensation. This is, however, not imple-
mented in the design, as this is not likely to occur in an indoor environment, and would

consume more energy. Table 3.4 outlines the relevant characteristics of the HDC2010.

30

SYSTEM DESIGN

Table 3.4: HDC2010 characteristics

Parameter

Value ‘ Unit

Supply voltage 1.62 — 3.6 ‘ %

Sleep 50 ‘ nA
Average @ 1 measurement/second, RH(11bit) + temp(11 bit) 550 ‘ nA
RH Accuracy +2 ‘ %RH

Temperature conversion time (9/11/14 bit) 225/350/610 ‘ s

RH conversion time (9,/11,14 bit) 275/400/660 | ps

Dimensions 1.5-1.5-0.675 ‘ mm

|
|
|
|
Temperature accuracy ‘ +0.2 ‘ °C
|
|
|
|
|

Slave address ‘ 0x41

Table 3.5 shows the addresses of the registers used to configure and read sensor data from
the HDC2010.

Table 3.5: HDC2010 registers

Name ‘ Address
Temperature ‘ 0x00 - 0x01
Humidity | 0x02 - 0x03
Configuration Register ‘ 0x0E
Measurement Configuration Register ‘ 0xOF

The configuration register with the address 0XO0E has 8 bits which can be used to configure
the HDC2010. The different bits, with their functions, are outlined in table 3.6

31

SYSTEM DESIGN

Table 3.6: HDC2010 configuration register

BIT ‘ Description

7 ‘ Reset

6:4 ‘ Data rate

3 ‘ Heater

2 ‘ Interrupt

1 ‘ Interrupt polarity
0 ‘ Interrupt mode

In addition to the configuration register, a measurement configuration register of 8 bits is
located at OXOF. The bits, with their functions, are outlined in table 3.7.

Table 3.7: HDC2010 measurement configuration register

BIT ‘ Description

7:6 ‘ Temperature resolution

5:4 ‘ Humidity resolution

3 ‘ Reserved

2:1 ‘ Measurement configuration

0 ‘ Measurement trigger

3.2.3 MAX44009

The MAX44009 from Maxim Integrated is used to sense ambient light levels. It can sense
between the range of 0.045—188000LU X with 22-bit dynamic range, making it ideal for both
indoor and outdoor use. It uses I?C for communication with the MCU. Its on-chip photodiode
is optimized to mimic the ambient light perception of the human eye, and incorporates
Infrared Radiation (IR) and Ultraviolet (UV) blocking capability.

32

SYSTEM DESIGN

Table 3.8: MAX44009 characteristics

Dimensions

Parameter ‘ Value ‘ Unit
Supply voltage ‘ 1.7—3.6 ‘ V
Minimum signal integration time ‘ 6.25 ‘ ms
Continuous current consumption ‘ 650 ‘
Total error ‘ 15 ‘ %
2
|

Slave address

Table 3.9 shows the addresses of the registers used to configure and read sensor data from
the MAX44009.

Table 3.9: MAX44009 registers

Name ‘ Address
Configuration register ‘ 0x02
Lux | 0x03-0x04

The configuration register located at 0x02 contains 8 bits for configuring the M AX44009.
The bits and their functions are described in table 3.10.

Table 3.10: MAX44009 configuration register

BIT ‘ Description

7 ‘ Continuous mode

6 ‘ Manual mode

5:4 ‘ Reserved

3 ‘ Current division ratio

2:0 ‘ Integration time

3.2.4 Battery Level Sensing

The sensor nodes are supplied with 1.9V or 3.3V, while a Li-Ion battery has a maximum
charge of 4.2V, and a supercapacitor charged by the BQ25570 has a maximum charge of
5.281V. Therefore, in order to measure and monitor the battery voltage level without dam-

aging the MCU or other connected devices, a voltage divider is required to obtain tolerable

33

SYSTEM DESIGN

values for the Analog-to-Digital Converter (ADC). A voltage divider does, however, consume
high amounts of constant energy relative to the requirements of the sensor nodes. Therefore,
an ultra low leakage switch, the TPS22860, is implemented to turn the supplied battery
voltage on only when taking measurements, and otherwise off [5]. The TPS22860 has a
maximum V;,, leakage current of 50nA, and a maximum V};,s leakage current of 100nA at

3.3V, and supports loads of up to 200mA.

Figure 3.9 shows the schematic of the battery level sensing. The capacitors are the recom-
mended value from the TPS22860 datasheet. When the battery level is to be read by an
ADC, the "batSensorSwitch" signal is switched to HIGH by the MCU, causing the switch
to close and allow the "VBAT" signal, which is connected directly to the battery, to pass
through to the Vout pin of the TPS22860. The voltage divider then halves the voltage to
the ADC, which is the "BatLvl" signal, following equation 3.16.

10£€2 1

ﬂ = ut s ————— = — Vout
R6 + R10 10kQ + 10kQ 2

The current consumption of the voltage divider when the switch is on is at most Iy 4, =
(4.2V) /(10k2 4 10kQ) = 210pA

BatLvl = Vout - (3.16)

| batSensorSwitch

U3

R6 A
BatLvl VAV 21 Vout ON g VA
Res3 = GND Vbias 1
10k — NC Vin
R10 TPS22860
Res3
10k —Cl4 —Cl15
TIOOH Lu
GND

Figure 3.9: Battery level sensing schematic

For the nRF52840, the ADC voltage reference used is 0.6V. Therefore, the "BatLvl" signal
should never be higher than 0.6V. In order to facilitate for the possible maximum voltages of
4.2V and 5.281V, the voltage must be divided by a factor of at least 8.8. Changing the value
of R6 to the commonly used value of 82k€2, while keeping R10 at 10k(2, ensures a maximum
"BatLvl" voltage of 0.574V. When using R6 = 82k(2, the maximum current consumption is

Iy = (5.281V)/(82k2 + 10kQ) = 57.4pA.

34

SYSTEM DESIGN

3.3 WSN Communication Protocols

Two different communication protocols have been designed, one for multi-hop topology, al-
lowing communication between nodes, and one for star topology with communication directly
between nodes and a gateway. The designs include mechanisms to detect and correct failed

transmissions, avoid collision and adjust transmission power dynamically.

3.3.1 Medium Access Mechanisms
Failed Transmission Detection

ACK messages are implemented to ensure that transmitted messages are received. This
allows for retransmission of broken or lost packages. It improves the reliability of the network
at the cost of a small increase in power consumption, since the transceiver and microcontroller
on both ends have to be awake for an increased amount of time. This mechanism can be

deactivated for applications where packet loss is of less importance.

Collision Avoidance

Each retransmission of a package consumes extra power. In order to reduce failed trans-
missions due to collisions, the functionality for random backoff and carrier sensing is imple-
mented. The random backoff functionality is particularly useful for the multi-hop protocol
described in 3.3.3, as data transmissions are initiated by a broadcast message. When receiv-
ing this broadcast, all nodes which have data to be transmitted waits for a short random
interval before performing a carrier sensing to check if the medium is idle or not. The node
that drew the shortest interval will be able to transmit its data, while other nodes adjacent
to the relaying node need to wait for the next round. As for the one-hop protocol in star
topology, only carrier sensing is used, as transmissions are not controlled by an external

event and may happen at any time.

Power Level Adjustment

Transmitting data with higher power level than necessary consumes excessive amounts of
power and creates more interference for other devices. Dynamic power level adjustment
mechanisms have been implemented for both the ATmega328p node and the nRF52840
node in order to automatically change the power level based on the range and noise in the
channel. Due to the two transceivers having different properties, two different mechanisms
are required, where both rely on the use of ACK messages. For the purpose of this project,
dynamic power level adjustment is implemented only in star topology due to the increased

complexity of the multi-hop protocol.

35

SYSTEM DESIGN

The mechanism for the nRF52840 node is based on a Received Signal Strength Indicator
(RSSI). When a node transmits a data package, the receiver senses RSSI and adds it as a
payload in the ACK package. Additionally, the node senses RSSI while receiving the ACK,
and adjusts transmit power according to the lowest value of the two RSSI values and sen-
sitivity in the receivers. The power level is also included in each data package so that the

receiver can return an ACK with equal power.

The nRF24101+PA+LNA transceiver on the ATmega328p node can not measure RSSI, which
limits the possibilities of dynamically adjusting the power level. Therefore, the power level
adjustment is based on packet loss. If a node attempts transmission a given number of times
without receiving an ACK, it enters a power adjustment phase. The power level is set to
the lowest value, and incremented per given number of failed transmissions until an ACK is
received. This is a costly process with regards to power consumption, and a relatively high

number of unsuccessful transmissions should be accepted before entering this phase.

3.3.2 Star Protocol

Star topology has a low level of complexity as a gateway is always on and listening on the
channel, and each node communicates directly with the gateway. Therefore, surrounding
nodes are able to wake up, gather data and transmit the data to the gateway in a short
amount of time. Despite the short transmission times, the mechanism for collision avoidance
by channel sensing has been implemented in order to further reduce the risk of failed trans-
missions due to collision. Additionally, the protocol utilizes ACK messages to ensure reliable
data gathering, as well as power level adjustment for minimizing energy consumption and

interference on the channel.

The steps to the communication protocol for star topology are as follows:
e Gateway is always on and listening for messages
e The node which has data to send performs carrier sensing
e If the channel is busy, the node will wait until it is idle

e If or when the channel is sensed as idle, the node will transmit its data message to the

gateway and start listening for an ACK message
e The gateway returns an ACK message with the same power level

e If the node does not receive ACK, it will return to the second step and attempt

retransmission of the original message

36

SYSTEM DESIGN

e If the node receives ACK, the transmission is considered finished and the node can

return to sleep.

Figure 3.10 shows the payload structure of the data messages with data from all sensors
grouped in field Sensor data, and figure 3.11 the payload of the ACK messages used in the
star protocol for the nRF52840 WSN.

Payload data message Payload ACK message
Content D Power level Packetnr. Sensordata| |Content 1D Measured RSSI
i i 1 1 2 8-15 Number of bytes 1 1
0- 255 0-10 0- 65535 Data Range 0- 255 0-128

Figure 3.10: Payload of data message with nRF52840 Figure 3.11: Payload of ACK mes-
in star sage with nRF52840 in star

Figure 3.12 shows the payload structure of the data messages with data from all sensors
grouped in field Sensor data, and figure 3.13 the payload of the ACK messages used in the
star protocol for the ATmega328p WSN.

Payload data message Payload ACK message
Content D Power level Packetnr. Sensordata| |Confent D
Number of bytes 1 1 2 8-15 Number of bytes 1
Range 0-255 0-2 0-65535 Data Range 0-255

Figure 3.12: Payload of data message with AT- Figure 3.13: Payload of ACK mes-
megald28p in star sage with ATmega328p in star

3.3.3 Multi-hop Protocol

Multi-hop topology enables extended range with less infrastructure. BT5 supports mesh
topology, but due to topology requirements mentioned in section 2.3.1, it can not run on
a network of battery powered nodes with limited energy harvesting. Therefore, a protocol
that enables multi-hop communication for both the ATmega328p node and nRF52840 node

has been developed.

With this protocol, a network of nodes is able to route messages towards a dedicated gateway,
which forwards the received data to an MQTT broker via Wi-Fi. The protocol is designed so
that only the gateway needs to be constantly on and awake. Implementation of the protocol
somewhat differs between the two different nodes as the transceivers have different abilities,
however the core functionality remains the same. Implementation for both the ATmega328p
node and nRF52840 node is described in section 3.4.2.10 and 3.6.2.9 respectively.

37

SYSTEM DESIGN

Figure 3.14 shows the basic concept of
Initialization

the nodes in the multi-hop network. At

startup of each node, the radio is ini-

Count++

tialized with the necessary registry modifi-

cations. A timer is then initiated, and Wake ping

No—» Wait for data

éﬂl

the node enters sleep state for a given in-

terval of time. After this interval, the
node wakes up and checks the state of the Got Sonsor Data

timer. If less than a programmed pe-

riod of time has passed, the node broad- “

myHops
=1?

L

casts an wake ping message, and waits

for replies from nodes that want to relay

data via itself. If no neighboring node

No
A4
wants to relay data, the node goes back No

to sleep. If a neighboring node trans- NO’YES
yake ping

mits data, the node forwards this data
Yes

to the first node that transmits an wake
ping message with number of hops to gate-
way lower than that of the relaying node.
The node also updates its hops to gate-
way equal to that of the next hop node

plus one before going back to sleep. If

the timer is above the set level, the node

will attempt transmission of its own sensor

data in the same manner as when relaying
data.

) Figure 3.14: Multi-hop protocol flowchart
The gateway(s) broadcast wake ping messages

with hops to gateway set to zero. Adjacent nodes identifies this as a gateway node, and
sets their hops to gateway to one. Routes to the gateway will then propagate throughout
the network. As any node that broadcasts hops to gateway = 0 is identified as a gateway,
several gateways can be placed in the same network, and surrounding nodes will simply

transmit towards the nearest one in terms of hops.

Figure 3.15 depicts a scenario where 5 nodes are communicating with the multi-hop protocol.
The yellow nodes in tile 1 and 2 want to transmit data towards gateway, and waits for a wake
ping message with hops to gateway lower than their own. As can be seen in the first and

second tile, the wake ping message with hops equal to three is ignored by both the yellow

38

SYSTEM DESIGN

nodes as they have previously used a route with 2 and 3 hops to gateway. In tile 2, both
yellow nodes receive a wake ping message with hops to gateway equal to one. To minimize
the risk of collisions, both nodes wait for a short random amount of time before performing
a carrier sensing. The node that selects the shortest waiting interval senses the channel as
idle, and starts to transmit its data. Upon successful transmission, it will also update its
hops to gateway to 2, as it has discovered a shorter route. The other node lost its chance to
transmit and waits for the next wake ping message. The green node in tile 6 sends a new
wake ping message after it has finished forwarding the previous message. This behaviour

continues until there are no more messages to forward. It will then return to sleep.

(8. s IO o 2@ s

wake _Ping(}
hops=3 wait_to_send() sleeping wait_to, send()
1 hops =3 hops =3
1 \
1 \
\ \ Wait for rand. backoff

@ ' OSense channel
_ \

wait_to_send() wait_to_send() T =~ _ _ \
hops=2 . hops =2
wake_ping() wait_for_response()

o Ik ® v Qi\z/

N\ AN)\
(o QS“sh:‘;i;:?;r:ﬁm /® ° 5/ ® ° D

{ransmitting data \yake_ping{} No reply,
\ hops=2 , hops=2 sleeping
s

\ ’

4

/

C ‘ @ <

\ -

Lost backoff, wait_to_send() hops = 1 wait_to_send-{‘}‘- R P
return to @ Hops=2 %ediumidle Hops =2 h.

wait_to_send() Receiving data Transmitting data wake_ping()
hops =2 Hops=1
\
\ / \ Rece“’ingy \ /
O Has data to send Receiving/waiting to * Gateway, Data message
receive data always ready to receive
- . Acknowledgement
T tting dati .Sleem _———y Po— o

. ransmitting data ping > “wake_ping” message > message

Figure 3.15: multi-hop protocol scenario

Figure 3.16 shows the payload of the data message used in the multi-hop protocol.

39

SYSTEM DESIGN

Payload data message
Content Message type DestinationlD My ID SourcelD Hops traveled Packetnr. Sensor data
Number of bytes 1 1 1 1 1 7 8-15
Range 0-2 0-255 0-255 0- 255 0-255 0- 685535 Data

Figure 3.16: Payload of data message

Figure 3.17 depicts the payload of the wake ping broadcast message, while figure 3.18 shows
the payload of the ACK message as implemented in the multi-hop topology.

Payload wake ping Payload ACK message
Message type My ID Hopsto gateway| |Content Message type YourlD Packet nr.
1 1 1 Number of bytes 1 1 2
0-2 0- 255 0- 255 Range 0-2 0- 255 0- 65535

Figure 3.17: Payload of wake ping message Figure 3.18: Payload of ACK message

40

SYSTEM DESIGN

3.4 ATmega328p Node

3.4.1 ATmega328p Hardware

The ATmega328p is a low-cost MCU with support for the Arduino bootloader, making rapid
prototyping possible. Additionally, by using Arduino, readymade development boards such
as the Arduino Nano, which requires 5V supply, or Arduino Pro Mini, which can run at
3.3V, can be used for testing new sensors and features in a simple and efficient manner
[45][46]. Most peripherals, such as transceivers and sensors, have libraries written by the

Arduino community, which can be installed through the Arduino IDE.

3.4.1.1 Wireless Transceiver for ATmega328p

One of the radios commonly used with Arduino is the low-cost, highly integrated nRF24101+,
which is based on a proprietary protocol and offers modification of all necessary parameters,
such as transmission power [47|. It operates in the 2.4GHz ISM band. The nRF24101+ is
available in various modules, from tiny, low-range modules with on-board antenna to bigger,
long-range modules with external antenna. Based on its simplicity when used with Arduino
libraries, alterability and possibility for long ranges, the nRF24101+ is used. SPI is used
for communication between the ATmega328p and nRF24101-+, where specific values can be
written to the nRF24101+ register in order to change its configuration. The nRF24101+
can be set to four different power levels represented from lowest to highest as; MIN, LOW,
HIGH and MAX. The range is, as claimed by vendors, up to 100m in line-of-sight, however
unofficial tests have proven the range to be approximately 30m. The range is reduced in

urban or indoor environments.

Modules based on the nRF24101+ IC with higher power amplification and external anten-
nas exist. One of these modules, the nRF24101+PA-+LNA, is used for the purpose of this
project in order to obtain a higher range. The module is obtained at a very low cost, and
therefore lacks a proper datasheet, however tests will be conducted in order to determine its

characteristics.

Figure 3.19 depicts the data frame used with nRF241.01+ transceiver modules.

nNRF24L01+ frame
Content Preamble Address Payload CRC
Number of bytes 1 3-5 1-32 0-2

Figure 3.19: nRF24L01+ data frame

41

SYSTEM DESIGN

3.4.1.2 Schematic and PCB Design

vCe 1551
T £ vee ADce (o1
J—c1 vee ADCT ==
100pF |18 | svec PCO (ADCO/PCINTS) s -
=— B0 PC1 (ADC1/PCINT9) <u§5— 1 vee —;_
o ~=~— AREF PC2 (ADC2/PCINTI0) (5= =l 1
- PC3 (ADC3/PCINTI1) (<= R1 [en 2
PC4 (ADC4/SDA/PCINTI12) - TXO — 3
PCS (ADCS/SCLPCINT13) (s 10k CII RXI — 4
PC6 (RESET/PCINT14) =i I DTR DTR — s
PDO (RXD/PCINTI6) QC%T_ RXI 100nF Header 5
PDI (TXD/PCINT17) ’2 TXO -
PD2 (INTO/PCINTIS) (<= D2 ReT
PD3 (PCINT19/0C2B/INT1) t=k5— & BY 10060
PD4 (PCINT20/XCK/TO) (<ts— |— e
PDS (PCINT21/OCOB/T1) (<0 9 I
PD6 (PCINT22/0C0A/ATNG) (<t T A
PD7 (PCINT23/AINI) f«rs— e 5— VDD
12 D9 T CE
PBO (PCINT0/CLKO/ICP1) e batSensorSwitch _ D10/SS 7 C8
PBI (PCINTL/OCIA) <t] D9 o 1, [[DBsck — SCK
; PB2 (PCINT2/SS/OCIB) (== DI0/SS T 1oue| DLUMOSL |- MosI
— GND PB3 (PCINT3/0C2A/MOSI) o] D11/MOSI DIZMISO _—=— MISO
57| GND PB4 (PCINT4/MISO) [<t+ DIZ/MISO D2 - IRQ
GND PBS (SCK/PCINTS) (<=~ DI3/SCK GND
=[5 PB6 (PCINT6/XTALL/TOSCI) <tz =i
omp — DAP PB7(PCINT7/XTALYTOSC2) [§ yah 4 ==

ATmega328P-MU i GND
2 4

GND GND
—=C4 ABM3B-8MHz =0C5
20pF 20pF

Figure 3.20: Schematic of the ATmega328p

2]
o
o

|

Figure 3.20 depicts part of the final design of the ATmega3d28p sensornode with the MCU
(U1) and its supporting components, as well as the nRF24101+. In order to flash the Arduino
bootloader onto the MCU, the SCK, MOSI and MISO pins are used. Subsequent to this,
the firmware can be uploaded directly to the MCU by connecting a USB to UART converter
to the "P1" pin header. Additionally, a reset switch (RST) is included for simple resetting
of the MCU. All schematics for the ATmega328p node, as well as the PCB, can be found in
appendix D.1.

The ATmega328p supports oscillators of up to 20MHz with supply voltages of 4.5V and
higher, as shown in figure 3.21, however by reducing the oscillator frequency and supply
voltage, the energy consumption is greatly reduced. Figure 3.22 shows a comparison of the
power consumption of the ATmega328p with different voltages and oscillator frequencies
with a generic, blinking Light Emitting Diode (LED) example code. Based on this, an
oscillator of 8M Hz (X1) and a supply voltage of 3.3V from the BQ25570 is utilized in the

sensornode.

42

SYSTEM DESIGN

ATMEGA32EP P U Power Consumption(miV)

%00
818
T 80.0
2Nz 70.0 =
800
500
200
I0MHz f-=-==========
; 00
Safe Operating Area o
200
ANH= 12.3
100 —m
> 00 :
" o v 35V 33v.8MlE 3.3V, 16Mnz sV, shih 5V, 16MIE

Figure 3.21: Speed grade of the ATmega328p Figure 3.22: Energy consumption at differ-
3] ent voltages and frequencies [4]

Figure 3.23 shows the I?C sensors supported by the node. As the BME680 (U7) measures
the same values as the HDC2010 (U4), temperature and RH, with the addition of TAQ
and atmospheric pressure, only one of them is installed per node depending on the energy
requirements and physical placement of the nodes. The MAX44009 (U5) is used for visible
light measurements. The sensors are supplied with 3.3V from the buck converter of the
BQ25570, and to SCL and SDA on the MCU with pullup resistors on both signal lines (R11,
R12). All sensors have decoupling capacitors (C16, C18, C19) from VCC to ground in order

to shunt noise.

Us
VCC = 5 - — 4
T U4 =5p SCL INT ——
AT A2 5t SDA
| 21 VDD sDA —==—{ sDA . A0 ?
16 Bl e |_B2 = T 1 e
100pF ADDR SCL SCL VCC GND
| €l | oxp Nt €2 MAX44009EDT+
1 HDC2010 C19
= ||
GND 1 1
100pF =
GND
ui
T SCK
== SDI
——— SDO
t+—i= CSB
= vDD GND |
———— VDDio GND
VCC BMEGS0
—_—CI18
100pF

GNI

()

Figure 3.23: Supported sensors of the ATmega328p node

43

SYSTEM DESIGN

Figure 3.24 depicts the final PCB design of the sensornode, measuring a total of 49.5230mm.
All physically tall and easily hand soldered components are placed on the bottom side in
order to fascilitate for a smaller box for the nodes. The bottom side components are the
battery holder, pin headers and the MAX44009 light sensor along with the light pipe. All
Surface Mount Device (SMD) components, with the exception of the MAX44009, are placed
on the top side of the PCB to allow for simple application of solder paste by using a stencil,
simple placement of SMD components and to fascilitate for soldering by the use of a reflow
oven. The antenna of the nRF24101+ is placed as far away from traces and pads as possible
to avoid interference and attenuation of the 2.4GHz radio signals. Additionally, the FR4
dielectric substrate is removed in the surroundings of the antenna. The unused areas of the

PCB contain grounded planes in order to remove unwanted noise.

ﬂ—
O

2 . NetC9_1

AR ||||||£| lm

3) TVUDD
Nw N RO gy

Figure 3.24: ATmega328p node PCB

44

SYSTEM DESIGN

3.4.1.3 Expected Energy Consumption

Table 3.11 presents the worst case current and power consumption of each component in the

ATmega3d28p design.

Table 3.11: Expected worst case on-state energy consumption of ATmega328p node

Component ‘ Current ‘ Power
ATmega328p [48] | 358mA | 11.8mW
BMEG680 TAQ 15mA 49.5mW
BMEG680 Temperature 350 A 1.2mW
BME680 RH 450 A 1.5mW
BMEG80O Pressure 8491 A 2.8mW
HDC2010 Temperature 730pA 2.4mW
HDC2010 RH 890uA 2.9mW
nRF24101+PA+LNA High | 115mA | 379.5mW
Battery level ‘ 210pA ‘ 693uW
MAX44009 | 650nA 2.1

Table 3.12 presents the expected worst case sleep current and power consumption of each

component in the design, as well as the total consumption of the entire node when using

BME680 or HDC2010.

Table 3.12: Expected worst case sleep energy consumption of ATmega328p node

Component ‘ Current ‘ Power
ATmega3d28p watchdog timer enabled ‘ 15uA ‘ 49.5uW
BMEGS0 | 1uA | 3.3uW
HDC2010 | 100nA | 3300 W
nRF24101+PA+LNA | 4.2uA | 13.9uW
Battery level ‘ 100nA ‘ 330nW
MAX44009 | 650nA 210w
Total with HDC2010 | 20.1pA | 6620
Total with BMEGS0 | 21.014 | 69.1uW

45

SYSTEM DESIGN

3.4.1.4 Enclosure

The enclosure for the sensor nodes are designed with the 3D modeling tool Autodesk Inventor
2017. It is composed of a backlid with standoffs and screw holes for mounting the PCB,
and a shell that snaps onto the backlid. The front of the shell is made so that a 53x30mm
panel can be snapped into place. The panel should be secured with glue, as there are small
deviations in size of the panels. The shell has air vents on both sides near environmental
sensors, a hole for the light pipe protruding from the PCB, and a notch on the bottom
to enable detachment from the backlid. Multiple shells with different heights have been
designed to accommodate for both button cell batteries and supercapacitors with different
dimensions and capacities. The enclosure is designed to be produced on fused deposition
modelling 3D printers without the need for supports. Figure 3.25 depicts an exploded view
of the enclosure with panel and PCB. The external dimensions of the finished enclosure
configured for a LIR2450 button cell battery is (H x W x D) 51.5mm x 31.5mm x 19mm.

Figure 3.25: ATmega328p node enclosure

Figure 3.26 displays the enclosure with a bracket that supports a larger solar panel. The
bracket snaps into place instead of the small solar panel. The bigger panel is glued onto the
bracket.

46

SYSTEM DESIGN

L X
L

vo9
L 4

»

roveee
1"’

Il”’
rrr

"y e
l”’)

»

AN
:\
N

r 4
77
22252

Figure 3.26: Bracket for larger solar panel

3.4.1.5 Finished Node

Figure 3.27 shows the assembled enclosure with the polycrystalline PV panel and the PCB
inside. The enclosure is printed with polylactic acid with the Snapmaker with a 200um layer

height.

Figure 3.27: Printed enclosure

Figure 3.28 depicts the top side of the finished ATmega328p node. The top side is soldered
by applying solder paste with a stencil, placing the components and heating the PCB up in

a reflow oven. The entire process is described in appendix C.
The bottom side of the PCB is shown in figure 3.29, where the components are soldered by

hand.

47

SYSTEM DESIGN

24 R

do @
;nnﬂ & ﬂl]l[l!

5’!, ® ﬂm\:l

<Q12

Figure 3.28: ATmega328p PCB top Figure 3.29: ATmega328p PCB bottom

3.4.2 ATmega328p Firmware

Two firmwares are created for the ATmega328p nodes; one for star topology and one for
multi-hop topology. The two firmwares are for the most part identical regarding sensor

readings, however differ in data communication methods.

3.4.2.1 Battery Level Sensing

In order to sense the battery voltage level, the sensing circuit consisting of a voltage divider
and a switch, described in section 3.2.4, is turned on. The ON-pin of the TPS22860 switch
is connected to the the digital pin 8 on the ATmega328p, which is pulled HIGH. The voltage
after the voltage divider is sampled ten times, then averaged, in order to increase the precision
of the reading. After sampling is completed, the ON-pin of the switch is returned to LOW
state, cutting the voltage to the voltage divider, effectively saving power. The built-in ADC

in the ATmega328p has a resolution of 10 bit, and uses VCC as a reference, allowing for

48

SYSTEM DESIGN

voltages to be read in the range of 0V to 3.3V, resulting in each step having a value of
~ 0.003V. Therefore, the voltage measured by the ADC can be calculated by equation 3.17.

_ SAMPLE v 10k + 102
Vear = 1024 -3.3V - o (3.17)
Where:
o SAMPLE v is the average of the 10 samples
e 1024 is the resolution of the ADC
e 3.3V is the voltage reference of the ADC

102 + 10k€2
(;> is used to multiply the divided voltage in the voltage divider

10k$2

3.4.2.2 I2C Scanner

The node is designed for the ability to handle var-

i2c_scanner()

ious types of I?’C sensors, namely the BME680,
HDC2010 and MAX44009. It can automatically de-
tect which sensors are connected by utilizing an 12C

scanner, the functionality for which is shown in figure Countrr @ ves

3.30. :

‘Q

No

Check slave at
addr=Count

I<

The I?C scanner checks every I2C address in the range

from 0 to 127 at startup in order to see if any devices

Slave
detected?

¢

respond. If a response is received, it compares the

responding address with a list of sensor addresses. If Yf
the address is recognized, the sensor is enabled in the

code, meaning it will be utilized by the node. Devices

not detected in the I?C scanner will not be utilized by o Known

sensor?

z

4

the node. This is done by enveloping the correspond-

Yes

ing code in an if statement, as shown below, so that

Enable sensor

i

unused sensor code is not run.

1 if (i2c_devicel[sensorname_i2c][1]) { Figure 3.30: Flowchart of i2¢c_ scan-
2 sensor code... ner’() -
3 }

49

SYSTEM DESIGN

3.4.2.3 BMEG80

Interfacing the BME680 on the ATmega328p is done with the help of the ClosedCube_ -
BMEG680.h library, available on github [49]. The code for BMEG80 can be found in appendix
A.1.1, and an overview of its register addresses in section 3.2.1. Two main functions are
called to configure the BME680. bme680.setOversampling() decides how many samples
will be taken for humidity, temperature and pressure. If set to zero, the measurement
will be skipped. If set to a high number, more samples are taken for increased accuracy,
but also with increased response time. (Gas measurement is enabled separately with the
function bme680.setGasOn() which is configured with user defined temperature and duration
for the gas heater. bme680.setIIRFilter() is used to suppress anomalies and give a more
stable output. Enabled measurements will consecutively be performed one single time when
bme680.setForcedMode() is called. Data is then stored in corresponding registers, and the
BMEG680 returns to sleep.

3.4.2.4 HDC2010

Four different functions are created to interface with the HDC2010. hdc2010 init() is used
at startup, writing 0x00 to the configuration register O0xOE, which keeps the heater off and
enables data measurements on trigger only. hdc2010 ask_data() writes 0xAl to the mea-
surement configuration register OxOF, which starts measurements for both temperature and
humidity values, both at a 9 bit resolution, for the fastest conversion time. 11 bit and 14
bit can also be set, however this will increase the conversion time, resulting in higher energy
consumption. hdc2010 _read() reads four consecutive bytes from register 0x00 through 0x03.
0x00 and 0x01 contain the Most Significant Bit (MSB) and Least Significant Bit (LSB) of the
temperature measurement, while 0x02 and 0x03 contain the MSB and LSB of the humidity
measurement. The full code can be seen in appendix A.1.2, and register addresses of the
HDC2010 in section 3.2.2.

3.4.2.5 MAX44009

The default configurations of MAX44009 are originally configured to continuous read mode
and 100ms integration time, which are the preferred settings. Therefore, no additional
configuration is needed. max_read() is therefore the only function used, which reads two
bytes from register 0x03, containing the data required in order to calculate the LUX value.
The code for MAX44009 can be found in appendix A.1.3, and its register addresses in section
3.2.3.

90

SYSTEM DESIGN

3.4.2.6 get sensor data()

The get sensor data function, which is de-

get_sensor_data()

scribed in the flowchart in figure 3.31, is used

gas counter Enable gas
Yes gas_counter =0
No

Ask BME680 data, |
Start BME680 timer |

to obtain sensor data and sense battery level.
The sensors detected from the I1?°C scan de-
scribed in section 3.4.2.2 determines which

sensors will be enabled in the firmware, and

therefore read with this function. When ask-

ing for sensor data from each of the I?C sen- S
Ask HDC2010 data,

sors, a measurement and conversion time pe- Start HDC2010 timer

riod is required before the data are available
to be read by the MCU. Therefore, the sensor

. . . Read MAX44009 data
which has the longest measurement period is

asked first, and read last to allow other tasks
to be performed while the sensor is generat-
ing data. The BMEGSO takes approximately

12 milliseconds to measure and convert tem-

bat_count--

Read battery voltage

Y

perature, pressure and humidity, which is the
slowest, and is therefore asked for data first. e
A timer is simultaneously started, which is N
used to make sure the new value is completed
before reading the data register. On every

tenth call of get sensor data(), gas measure-

Read HDC2010 data

200ms, and it will therefore take longer for the y

BMEG680 to measure and convert data. Bat- =\@

tery level sensing is done in between asking the

ment is also performed. This will increase the
total measurement time of the BMEGS80 by No
the duration of the heating period, which is

enabled? &&
Data read

o o ' Figure 3.31: Flowchart of get sensor -
sensors for data and reading it, utilizing time ;.. ()

where the MCU would otherwise have been

idle and waiting for data.

3.4.2.7 Sleep

Sleep mode on the ATmega328p is accomplished by using the watchdog timer, which runs
on a separate, low power 128k H Z oscillator. This allows the MCU to power down, and let

the watchdog timer wake it back up. The watchdog timer is however limited to a maximum

51

SYSTEM DESIGN

interval of 8s for a timed wake interrupt. This means that for sleep intervals longer than 8s,
the clock must be restarted in order for the MCU to return to sleep.

To interface the watchdog timer, the library LowPower.h available on github is used [50].
It supports continuous sleep times up to 8s while also turning off brown-out detection and
ADC, which further reduces power consumption in sleep. Brown-out detection is a feature
implemented in many MCUs which senses a sudden voltage drop in the power supply. This
lets the MCU reset so that no unforeseen lockups can occur because of a voltage drop
[51]. The brownout detection is however not necessary for the ATmega328p node, as the
BQ25570 is programmed to disable its buck converter whenever the battery or supercapacitor
is discharged to levels where it is unable to supply sufficiently high voltage. The watchdog
timer is constrained by a set of available timers. For values from one second and above,
these are 8s, 4s, 2s and 1s, however the range goes all the way down to 15ms. A function is
designed which allows any chosen sleep value to be represented by these whole second values

as shown in code 3.1

Code 3.1: Sleep function

1 void rtc_sleep(uintl6_t sleeptime) {

2 uintl6_t remainder = sleeptime;

3 uint8_t cycles;

4 while (remainder != 0) {

5 if (remainder >= 8) {

6 cycles = remainder / 8;

7 remainder = remainder J, 8;

8 for (uint8_t i = 0; i < cycles; i++) {

9 LowPower . powerDown (SLEEP_8S, ADC_OFF, BOD_OFF);
10 }

11 }

12 else if (remainder >= 4) {

13 cycles = remainder / 4;

14 remainder = remainder 7, 4;

15 for (uint8_t i = 0; i < cycles; i++) {

16 LowPower . powerDown (SLEEP_4S, ADC_OFF, BOD_OFF);
17 }

18 }

19 else if (remainder >= 2) {

20 cycles = remainder / 2;

21 remainder = remainder %, 2;

22 for (uint8_t i = 0; i < cycles; i++) {

23 LowPower .powerDown (SLEEP_2S, ADC_OFF, BOD_OFF);
24 }

25 }

26 else if (remainder >= 1) {

27 cycles = remainder / 1;

28 remainder = remainder % 1;

29 for (uint8_t i = 0; i < cycles; i++) {

30 LowPower . powerDown (SLEEP_1S, ADC_OFF, BOD_OFF);
31 }

32 }

33 else {

34 remainder = 0;

52

SYSTEM DESIGN

35 ¥
36 }
37}

3.4.2.8 nRF24101-+

Interfacing the nRF24101+ is done using the RF'24.h library, available on github [52]. This
library contains functions that simplifies nRF24101+ operations. Code 3.2 shows the param-
eters which are set for the ATmega328p nodes.

Code 3.2: nRF24101+ Parameters

1 void radio_init() {

2 radio.begin();

3 radio.setCRCLength (RF24_CRC_16) ;
4 radio.setPALevel (RF24_PA_LOW) ;

5 radio.setDataRate (RF24_1MBPS) ;

6 radio.setChannel (0x76) ;

7 radio.enableDynamicPayloads() ;

8 radio.setRetries(0, 0);

9

radio.setAutoAck(false);

10 radio.openWritingPipe(pipe);

11 radio.openReadingPipe(1, pipe);
12 radio.powerDown() ;

13}

The parameters in code 3.2 control how the radio operates. setChannel(), setDataRate() and
setPayloadSize() should be the same for all transceivers in order for them to communicate
with each other. Both setPALevel(), which determines how much power the radio is allowed
to use, and setRetries(), which determines how many retries the transceiver will make after
failed transmissions, can be modified to meet the desired performance. openWritingPipe()
decides to which address data will be sent. This can only be one address at a time, and
must be changed in order to transmit to a new node. There are, however, 8 pipes in which
the transceiver can store packages from, meaning that it can receive packets on 8 different
channels, although not at the same time as this would cause collisions. Finally, powerDown()

is set to turn the radio off while not used.

3.4.2.9 Star topology

The star topology loops the three functions in code 3.3. get sensor data() and rtc_sleep()
are explained in section 3.4.2.6 and 3.4.2.7 respectively.

Code 3.3: Star

1 void loop() {
2 get_sensor_data();

3 send_data();

93

SYSTEM DESIGN

4 rtc_sleep(SLEEP_TIME) ;

5 1}

Transmitting data is done with the following four

functions, where send data() initiate the transmis-
sion:

Turn radio ON

e carrier_sense() I
e send_data()

Count=0

o wait_for ack

—)

e adjust_pa()

/

r

carrier_sense()

send_ data(), shown in figure 3.32 is called whenever

data should be transmitted. The function powers up

the radio and calls carrier sense() to see if the chan-

L——No— channel idle?
nel is idle before attempting to transmit data to re-
duce collision probability. After transmitting, wait - Count++ Yes

for_ack is called, which waits for up to three millisec- o do
onds for an ACK from the gateway. If an ACK is not wait_for_ack()

received, it will retransmit the packet. A maximum °
of four retransmissions are attempted before the data No—eened AR Yes
is discarded, and the node goes back to sleep. If a
transmission fails to be sent for more than four con- ves
]

Yes:
\J \
the gateway. The power level is set to the minimum
Turn radio OFF

secutive transmission intervals, however, the function
FailedNR++

adjust_pa() is called, which automatically adjusts the

power level until it is able to transmit successfully to

adjust_pa()

power value, and is incremented for each unsuccessful

transmission until a packet is successfully sent. This
GD

is because the nRF24101+ can be sensitive to high

power signals, thus a lower power level may be bene-

Figure 3.32: Flowchart of
ficial. Finally the radio is powered off before exiting ¢.p4 data ()

the function. A description of the gateway can be

seen in section 3.5.

3.4.2.10 Multi-hop topology

The multi-hop topology main loop loops the code shown in 3.4. The nodes are generally in
sleep state, but every 2 seconds, either wake ping() or get sensor data() and wait to -
send() is called. The user defined number SEND INTERVAL determines the interval of

o4

SYSTEM DESIGN

the nodes own data transmission, which occurs after a set number of wake ping() intervals.
When this number is reached, the node will call get sensor data() instead of wake_ping().
get_sensor data() reads sensor data before it enters the wait to send() function. The full

multi-hop code can be found in appendix A.2.

Code 3.4: Multi-hop

1 void loop() {

2 if (send_counter < SEND_INTERVAL) {
3 wake_ping();

4 }

5 else {

6 get_sensor_data() ;

7 wait_to_send();

8 send_counter = 0;

9 }

10 send_counter++;

11 radio.powerDown() ;

12 LowPower . powerDown (SLEEP_2S, ADC_OFF, BOD_OFF);
13 radio.powerUp() ;

14}

The multi-hop topology code is based on five main functions;

o wak:e_ pmg () wait_for_reponse()
e wait_for response()

[send_ CLC]C() Start timeout timer

e wait to_send()

] Y
e wait for ack

timeout? H>—Yes.

The wake_ ping() function broadcasts a packet containing its

own ID and number of hops to the gateway in a struct. Y

After a broadcast message is transmitted, the node en-

d
correct
packet?

ters the wait for response() function as shown in figure
3.33, which causes it to wait for up to 10ms for anyone ves

to transmit a data packet to it. If a data packet is re-

increment hops in
data_msg

ceived with its own ID attached, the data message will be

stored in the data_ msg struct and the hops variable will
be incremented by one, and an ACK is sent back to the
sender. The node will then call the function wait to - Figure 3.33: Flowchart of
send() in order to relay that message toward the gateway wait_for_ response()

node.

wait_to_send() function shown in figure 3.34 is called when the node is either send-
ing its own data, or relaying received data. If the node is adjacent to the gate-

way, hops_to gateway is equal to one, and it does not have to wait for a wake

95

SYSTEM DESIGN

ping to send the data as the gateway node is always on and ready to receive data.
It will however perform carrier sensing in order to determine if the channel is idle

before sending the packet, and wait for up to 3ms for an ACK after transmission.

If no ACK is received after six consec-
utive transmission attempts, its hops_ -
to_gateway will be incremented by one,
and it will wait for a wake ping instead
of attempting to send directly to the

gateway.

Nodes with hops to gateway larger
than one will wait for wake ping
messages with hops to gateway lower
than itself.

should be received within a max-

Since a wake ping

imum of 2s, a timeout is imple-

mented at 2.2s if no wake pings
are received. FEach time wait to_ -

send() times out, the nodes my_ -

wait_to_send())

/

y_hop!

==12 Yes

No

Start timout timer

my_hops++ }—»

attempt = 0

o

‘ O '
ws@«m@
4 Yes
hops <
No

Yes

Rand backoff,
carrier_sense()

attempt++

il
M

A

carrier_sense()

i

channel

idlez —NoO—

®

Yes

v
send data,
wait_for_ack()

[o]

hops_to gateway variable is incre-

mented, increasing the probability of

Yes
l

Figure 3.34: Flowchart of wait to send()

finding an adjacent node to relay
its data,
ability of relaying data from other

and decreasing the prob-

nodes.

Whenever a wake ping is received with

a hops to gateway value lower than its own, the node will set its my_hops_to gateway equal
to the received hop count plus one, and store the ID of the wake ping source in next_hop.
Before transmitting its data to the relaying node, a random backoff is performed prior to
executing a single 128us carrier sense in order to reduce the probability of collision at the
receiver. If the channel is idle after the backoff, the data packet is transmitted, and the
node calls the wait_for ack() function. If an ACK is received with the correct ID, the node
breaks the loop and exits the function. However, if the channel is busy or if no ACK is

received, the node will keep waiting for a wake ping, to be able to send its data.

o6

SYSTEM DESIGN

3.5 ATmega328p Gateway

The gateway for the ATmega328p consists of an ESP32 MCU, which is developed by Espressif
[53]. The ESP32 offers a dual core processor and built-in Wi-Fi, and is supported by the
Arduino environment. An nRF24101+PA-+LNA is connected to the ESP32 in order to gather
data from the nodes. Transmissions from the node are received by the nRF24101-+PA-+LNA,
and forwared via Wi-Fi to an IoT server in order to log and display the sensor data. The
gateway is powered by USB in order to have sufficient power for constant operation as the
current consumption is in the order of hundreds of mA. Figure 3.35 depicts the prototype

of the gateway.

Figure 3.35: Gateway prototype for ATmega328p nodes

o7

SYSTEM DESIGN

3.5.1 ATmega328p Gateway firmware

nRF24101+

The nRF24101+ is initialized in the same way on the gateway node as it is on any other

node, which is shown in code 3.2, except the power level is set to MAX. The gateway does

however responds to incoming messages with the same power level as the transmitting node.

In the gateway main loop, the radio is always waiting for
packets, as seen fig 3.36. Only packets with a correct packet
size will be stored. If a duplicate packet is received, which is
identified by receiving the same packet number for the same
node twice, it will be discarded, however an ACK is sent
to let the node know that the packet is received previously.
An ACK is also sent upon receival of new data packets. The
send_ ack() function checks the received packet power level,
and sets its own power level to the same value before re-
sponding with the ACK, effectively reducing interference.
Finally, the packet number is stored in an array in order to
allow for duplicate checks for new data packets before pub-
lishing to MQTT. Full code for the ATmega328p Gateway

can be found in appendix A.3.

MQTT

Before attempting to publish to the MQTT broker, the Wi-
Fi and MQTT connection is first verified. If Wi-Fi is not
connected, setup wifi() is called, and if MQT'T client is not
connected, reconnect() is called. The data is then published
to the MQTT broker. The full gateway code is found in ap-
pendix A.3. MQTT functions are from PubSubClient library
available on GitHub [54].

o8

{ Initialize gateway

eceive
No. correct
acket?

Yes
A

send_ack()]

L—Yes Duplicate?

No
Y

‘ Publish_MQTT

I

Figure 3.36: Gateway func-
tionality flowchart for AT-
mega328p nodes

SYSTEM DESIGN

3.6 nRF52840 Node

3.6.1 nRF52840 Hardware

The nRF52840 is a System on Chip (SoC) developed by Nordic Semiconductor, which is
developed for ULP wireless performance with Bluetooth 5 support, and is built around a
32-bit Cortex-M4F processor [55].

At the time of the project, the IC for the nRF52840 is still in production and is therefore
unattainable, however the nRF52840-PDK is available. As a result, the PDK is used for
development and evaluation. A PCB is however designed and ready to be ordered. The
PCB contains the BMD-340 module developed by Rigado, which is based on the nRF52840
SoC [56]. It is selected because of its on-board antenna, its small footprint and the possibility
of programming directly via a USB connection, UART or Over-the-Air (OTA).

Figure 3.37: nRF52840-PDK |3] Figure 3.38: BMD-340

3.6.1.1 Expected Energy Consumption

Table 3.13 presents the worst case current and power consumption of each component in the
design. Since the operation with 1.9V supply proved superior to 3.3V, 1.9V is used for the

nodes, and tables 3.13 and 3.14 are based on current and power consumption with 1.9V

99

SYSTEM DESIGN

Table 3.13: Expected worst case on-state energy consumption of nRF52840 node

Component Current | Power
BMD-340 CPU at 64M H z 6.5mA 12.4mW
BMD-340 +8dBm TX 27.6mA | 52.4AmW
BMD-340 +8dBm RX 11.7mA | 22.2mW
BMEGS0 TAQ 15mA 28.5mW
BMEG80 Temperature 350 A 665uW
BME680 RH 450 A 855uW
BMEG680 Pressure 849 A 1.6mW
HDC2010 Temperature 730 A 1.4mW
HDC2010 RH 890uA 1.7TmW
Battery level ‘ 57.4uA ‘ 109.1uW
MAX44009 | 650nA | 1.20W

Table 3.14 presents the expected worst case sleep current and power of each component in

the design

Table 3.14: Expected sleep energy consumption of nRF52840 node

Component ‘ Current ‘ Power
BMD-3401 | 3.2uA | T20nWV
BME680 | 1uA 61w
HDC2010 | 100nA | 180nW
Battery level ‘ 100nA ‘ 180nW
MAX44009 | 650nA | 1.2uWW
Total with HDC2010 4dpA | 7T
Total with BMEGS0 | 5.0uA | 9.4uW

I With RAM retention of 64 - 4K B blocks

Figure 3.39 depicts the on-air message frame for the built in transceiver.

nRF52840 frame
Content Preamble Base Prefix S0 Length S1 Payload CRC
Number of bytes 1-10 4 1 0- 2 (bit) 1 0 - 1 (bit) 1- 255 0-2

Figure 3.39: nRF52840 data frame

60

SYSTEM DESIGN

Figure 3.40 displays the enclosure for the nRF52 PDK evaluation node, which has been

designed to protect the PCB during handling and testing.

Figure 3.40: Protective enclosure for nRF52840 PDK

3.6.1.2 Schematic and PCB Design

Debug IN Connector USB Connection
vee| e VBUS
— 11 2 =vDio i i
i 4 TEwpak VBUS | R} 2
s 6l— Pois D- — R4 27
—7 sl D+ |
& 1o — FOIT] = GHD
K 4
| PinHeader 25, 1 27mm E D = . VBUS
i T 1 ; 5
101 vee
MicroUSB-B) on we L2 -
> epios L €16
E— Cap Semi
TEDIEGDIDRYE. Ta?prm
UlA BMD-340-A-ES i
0 BMD-300 Footprint Pins s =
GND onp [GND
L e Gip [
— @D SWDIO (a4 { SWHIo
= = o SWCLE |-t | SWDCLE i
GFD + & F024 [- -
=—| G¥D P03 Lerp BMD-340 Specific Pins
—Er| PO.25 P22 (s i3 45
DA }ge PO26 RESETP01S (- R 35 PLOs PLO4 fore
SCL |3 PO.27 BO20 (Ees ST PLOS PLO3 gy
Sailnl |p1-| PO2EATN P0I19 [21 PLOT PLOD |ag—
c17 Tpe| BO.28AINS 2021 [l 51l BLOS PLOL fae
12 ;ﬁ PO30/AING PO.1T i 22| TRACED[2)PL0S TRACED[O]}P1.00
5 BOSLAINT P06 [
= 317 PO.OBLL - o, POLS =ES
cis By s POOLAL 5 T8 P04 [x
12 = 2L2r:{ Po.ovAIND £ ZE POl 2
= S
e zEZ 5 ==
o 825 & Z:288
GND e PN = e
Egccoeéacﬁggg g
FEEEEECEEEEES B

| }i GND

i
_1%!?
2

7
B
h
2

30

GND 5n GADGED

=

0

0
|

—C 14
Cap Semi
OuF

GKD

Figure 3.41: Schematic of the nRF52840 node

61

SYSTEM DESIGN

Figure 3.41 shows part of the circuit for the nRF52840 sensor node. The BMD-340 (U1) has
an internal high frequency clock. A low frequency Real-Time Clock (RTC) can be synthe-
sized from the high frequency clock, however an oscillator should be connected externally for
optimal stability. Therefore, a 32.768kHz (X1) clock is implemented with suitable decou-
pling capacitors. A 2-row, 10-pin header with 1.27mm pitch is included for interfacing with
the Segger J-Link debugger. Additionally, the BMD-340 is programmed with the Rigado
RigDFU bootloader at the factory, allowing for programming via UART, or directly via
USB. Therefore, a MicroUSB connector is included, along with the electrostatic discharge
protection IC and passive components according to the recommendations in the BMD-340
datasheet. All schematics for the nRF52840 node, as well as the PCB, can be found in
appendix D.2.

The energy harvesting circuit and sensor circuits are identical to the ones in the ATmega328p
node design seen in section 3.4.1.2 with different resistors for programming the BQ25570,
however as the nRF52840 node already has a USB connection, the possibility of charging the
battery via USB is added, the circuit for which is depicted in figure 3.42. As the BQ25570
does not allow for simultaneous charging from an external source, a transistor (Q1) is added
as a security measure. VBUS is connected to the base of the transistor, so whenever a USB
connection is made, voltages of up to 5.5V is applied, turning on the transistor. The battery
is connected to the collector, and when the transistor is on, the BQ25570 EN pin (BQ EN)
is pulled high, disabling the BQ25570 IC entirely as soon as the USB is connected to a power
source. The VBAT pin of the BQ25570 is connected through a MOSFET internally, so no

additional security is required.

The low-cost MCP73831T battery charger (U9) is implemented [57]. Its maximum output
current is limited to 83.3mA by using a 12k resistor between its PROG pin and ground,
as calculated by equation 3.18 given by the datasheet.

1000V 1000V
Rproc 12kQ

Additionally, the MCP73831T implements a status pin, which is HIGH while charging, and
LOW when finished. Therefore, a red LED (LED1) is added with a current limiting resistor

(R14). Red LEDs commonly have a forward voltage of 21/ and a maximum forward current

Inpe = = 83.3mA (3.18)

of 20mA. Maximum brightness is however not needed, and so the current is set to 12mA.
As such, the resistance is calculated by R14 = (5.5V — 2V)/12mA = 291Q ~ 300€2. As the
power dissipated by the resistor will be Pgiy = (5.5 —2V) - 12mA = 147mW, a 1206 resistor
is used, with a power rating of 250mW.

62

SYSTEM DESIGN

VEAT
-
VBUS -
T R16)
Lok ha MMBT3904
El4 i
™ o
— JEDL
Us 0603FED
w1l
FROG - STAT 1 VBAT SRI7
4 ViS5 3 10k
VDD VBAT
—C2 Battery Charger 83 3maA
10uF %Rli
12k
. —i—
GND

Figure 3.42: USB battery charger schematic

Figure 3.43 depicts the final PCB design of the nRF52840 sensor node. The design is similar
to the that of the ATmega328p node, as described in 3.4.1.2. All SMD components, with
the exception of MAX44009, are placed on the top side of the PCB. The antenna of the
BMD-340 is placed according to the datasheet, with no copper on either side of the PCB
for its entire width. The dimensions and mounting holes are the same as the ATmega328p
node so the same enclosure can be used. Additionally, improvements have been made on the
PCB surrounding the HDC2010. The ground plane is removed on both sides of the PCB,

and notches are created on both sides in order to maximize the precision of the sensor.

63

SYSTEM DESIGN

L

Figure 3.43: nRF52840 node PCB

As the nRF52840 IC is not released during the project, the PDK is used for testing. A
simple breakout board, shown in figure 3.44, is designed based on the ATmega328p node
circuit with the same pin layout as the PDK, allowing for simple connection. The breakout
board contains the EH circuit as well as all the sensors, and the full design can be found in

appendix D.3

64

SYSTEM DESIGN

00000000OOCHD| 000COCOCOCOD
0o000Q0Q00Q0OQOOOm|OOCOOOOOND

% 2) & L AR O S A8 5 & Y=’y Q)
Ry);,7, S Q’\r.,\. 'L?‘Q RIS @ S DS SCe SN S Lpo QO

o
Ty
+
N
(84
—
-

1 Netl2_1

2 NetC6_1

X : 48 Bmm

Figure 3.44: nRF52840 PDK breakout PCB

Figure 3.45 depicts the finished shield installed on the nRF52 PDK.

Figure 3.45: nRF52840 PDK in the 3D printed enclosure with breakout board installed

65

SYSTEM DESIGN

3.6.2 nRF52840 Firmware

Two firmwares are created for the nRF52840 nodes; one for star topology and one for multi-
hop topology. The two firmwares are for the most part identical regarding sensor readings,

however differ in data communication methods.

3.6.2.1 System Clocks and Interrupt Timers

When not using the SoftDevice provided by Nordic Semiconductor, which is a precompiled
and linked binary software implementing a wireless protocol, the low frequency clock (LF-
CLK) and high frequency clock (HFCLK) need to be initialized. The HFCLK is used for fast
processing and radio operations when the node is active, while the LFCLK runs continuously
for application timer interrupts. The LFCLK runs on an external, low power 32.768k H z os-
cillator. Whenever there are no pending processes, the nRF52840 calls the power manage()
function, shown in code 3.5, which turns off the HFCLK and clears any pending interrupts
which may keep the nRF52840 awake.

Code 3.5: Power manage

1 static void power_manage(void) {

2 NRF_CLOCK->TASKS_HFCLKSTOP = 1;

3 NVIC_ClearPendingIRQ(SAADC_IRQn) ;

4 __set_FPSCR(__get_FPSCR() & ~(0x0000009F));
5 (void) __get_FPSCR();

6 NVIC_ClearPendingIRQ(FPU_IRQn) ;

7 __SEVQ);

8 __WFEQ;

9 __WFEQ;

The SEV() function detects if there are any pending interrupts as to make sure that the
node is not immediately woken up. Following the SEV/() function are two _ WFE(),
the first of which responds to the ~ SEV/() call, which may then wake the node up, and the

second returns the node to low power mode.

The application timers are created on startup with the following structure:
app_timer_create(ID, MODE, TIMEOUT HANDLER);

The ID is defined for each application timer in order to differentiate between them. MODE
can be set to either repeat or to only run once. TIMEOUT HANDLER specifies the desired
functionality to run at timeout. app timer start(ID, INTERVAL, POINTER); is used
to start the timer. ID selects the associated timer, INTERVAL sets the number of ticks
before the timer expires and POINTER is a general purpose pointer that points to the
TIMEOUT HANDLER. Whenever the application timer interrupt is called, it will break
the power manage() function and execute the TIMEOUT HANDLER.

66

SYSTEM DESIGN

3.6.2.2 Battery Level Sensing

The ADC of the nRF52840 is configured with the internal 0.6V voltage reference and an
internal gain of 1. Battery level sensing on the nRF52840 is performed by using the same
battery level sensing circuit as the ATmega328p as seen in 3.4.2, however with resistor values
suitable for the 0.6V reference. The batSensorSwitch signal is connected to pin P1.08, and
is pulled high to enable battery sensing. The ADC voltage sensing is, however, performed
in a different manner. The ADC has to be initialized before every use, as it needs to be
uninitialized for the MCU to enter sleep. When initialized, the analog read pin is set to AIN4
which is connected to the BatLvl pin from the voltage divider. nrf drv_saadc_sample() is
used to start a battery measurement. When the sample is completed, a callback function is

called, which retrieves and calculates the correct voltage from the ADC sample.
Equation 3.19 presents the calculation used in order to determine the battery voltage.

(3.19)

REFERENCE 10k€2 + 82k€)
Vaar = Vin - GAIN - QRESOLUTION | 105Q

Where:

Vpar is the measured voltage

Vin is the measured voltage represented in a 10b resolution
GAIN is the selected gain setting, here 1
REFERENCE is the selected reference voltage, here 0.6V

RESOLUTION is the resolution of the ADC, here 10b
(10kQ + 82kS2

10kS2

> is the multiplier for the divided voltage in the external voltage divider

By inserting the above values in equation 3.19, the battery voltage can be found by the

result presented in equation 3.20

0.6V 10k$2 + 82K
T AN

— -3
ot o) = Vi - 5.3902625 - 10 (3.20)

3.6.2.3 I°C

I?C communication is executed by the use of drivers provided with the Nordic Semiconductor
SDK, however the name of the provided I2C examples and functions is Two-Wire Interface
(TWI). Initialization is done at startup by declaring which pins to be used for SDA and

SCL, as well as other settings as seen in code 3.6.

Code 3.6: I2C Configuration

[un

nrf_drv_twi_config_t twi_config;

67

SYSTEM DESIGN

twi_config.sda = 26;

twi_config.scl = 27;
twi_config.frequency NRF_TWI_FREQ_100K;
twi_config.interrupt_priority = APP_IRQ_PRIORITY_HIGH;

twi_config.clear_bus_init = false;

© 0 9 O U e W

nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL);

In order to communicate with the I?C slave devices, two functions are used. nrf drv_twi -
tr(ID,ADDR,DATA,LENGTH,NO STOP); is used to write data to the slave device. ID
selects which I?C connection is used for a given slave. ADDR is the main address of the slave
with which the master wants to communicate. DATA contains the data to be written to the
slave. This can either be one byte for selecting a register to be read from the slave, or it can
be multiple bytes to write new register values to the slave. LENGTH is the transmission
length in bytes from the master to the slave. NO _STOP can either be true or false. When
false, the connection ends with a stop condition. When true, the stop condition is suppressed

so the I?C connection does not go idle.

3.6.2.4 I?C Scanner

The I?C scanner for the nRF52840 is designed with the same functionality as the I*C
scanner for the ATmega328p, but with different code. See figure 3.30 in section 3.4.2.2 for a
flowchart of the functionality, and appendix B.1.1 for the full code.

3.6.2.5 BMEG680

The BMEG680 code for the nRF52840 is based on data from the datasheet, and some function
properties from the ClosedCube BME680.h library are used [43][49]. When initializing the
BMEGS0, calibration data needs to be retrieved in order to correctly calibrate the data from
the sensor. The calibration data is located in two different memory registers; 0x89 and 0xEl.
Combined, these registers contain 36 bytes used for calibration, where 5 are allocated for
temperature, 8 for humidity, 16 for pressure and 7 for gas. The full code can be seen in

appendix B.4.

IIR filter coefficients are also set when initializing the BME680. The IIR filter helps suppress
anomalies and gives a more stable output. There are 8 different levels to which the coefficient
can be set. Higher values will increase the strength of the filter, however this also increases
the response time of the sensor inputs. The coefficient is set to 4 to limit some anomalies,

but still have a low response time.

The BME680 has two different operation modes; sleep mode and forced mode. When the

sensor is in sleep, no measurements are performed, and the sensor uses minimal power. In

68

SYSTEM DESIGN

forced mode, a single measurement of the different types of environmental sensors is carried
out before returning to sleep. When initializing forced mode, oversampling is also configured
to a value from 0 to 5, which allows for more precise measurements, as well as the option
to enable or disable measurements of specific environmental data. If oversampling is set to
a low value, the measurement will be completed quickly, however may be less accurate as
when fewer samples are used. If set to a high value, the accuracy is higher, however each
measurement execution takes longer, consuming more energy. The oversampling value is
set separately for humidity, temperature and pressure, with the respective values of 2, 1
and 2 for the purpose of the project. Humidity oversampling is written to register 0x72,
while temperature and pressure are written to register 0x74. Activating a single sensor read
can therefore be written as seen in code 3.7. The bme680_ask_ data() function tells the
BMEG680 to sense and convert the environmental values. The data can then be retrieved
from the corresponding registers when ready. bme680 ask_data() retrieves all sensor data
except gas. A total of 8 bytes are read consecutively, starting with the pressure registers, fol-
lowed by temperature and humidity for convenient and efficient retrieval. These values are,

in turn, calibrated with calibration data from the initialization in order to get the real results.

Code 3.7: BMEG80 sensor read activation

1 void bme680_ask_data(void){

2 uint8_t forced_reg[2] = {0x72,0x74};

3 uint8_t forced_data;

4 forced_data = 0x02 & 0b00000111; //hum oversampling

5 forced_reg[l] = forced_data;

6 nrf_drv_twi_tx(&m_twi,BME_ADDR,forced_reg,2,false);

7 forced_data = (0x01 << 5) & 0b11100000; // temp oversampling
8 forced_data |= (0x02 << 2) & 0b00011100; // pres oversampling
9 forced_data |= 0x01 & 0b00000011; // operation mode

10 forced_reg[0] = 0x74;

11 forced_reg[l] = forced_data;

12 nrf_drv_twi_tx(&m_twi,BME_ADDR,forced_reg,2,false);
13}

Gas measurement is enabled in a separate register, where heater temperature and duration
can be configured. For the purpose of the project, the temperature is configured to 300 o C'
with a period of 200ms. Measuring gas consumes high levels of energy compared to the
other measurements, and for that reason, the measuring interval is longer than that of the
others. The BMEGS0 outputs resistance values in the range from 0€2 to 500k€2, where higher
values indicate better TAQ.

HDC2010
Even though the code is different for the nRF52840 node compared to the ATmega328p

node, the functionality of the code is the same, and the same registers are written to and

69

SYSTEM DESIGN

read from. The explanation of HDC2010 communication can be seen in section 3.4.2, and
the full code for nRF52840 in appendix B.1.2.

MAX44009

The default configurations of the MAX44009 are the preferred settings. Therefore, max -
read() is the only function used for the nRF52840. The maz_read() function reads two bytes
from register 0x03, which contains the necessary data to calculate the LUX value. The full

code can be seen in appendix B.1.3.

3.6.2.6 get sensor data()

The get sensor data() function for nRF52840 is similar to that of the ATmega328p, with
two main exceptions; battery level sensing, which is described in section 3.6.2.2, and the
method for adding data to the radio buffer before transmission. The radio mem buffer is
designed to dynamically change with the length of the payload. This functionality can be
seen in code 3.8. The first byte, radio_mem/[0], is used to set the number of payload bytes.
The second byte, radio mem/1], is designated for the SO bit, where the LSB of that byte
is set as SO. The first payload byte is therefore the third byte, located in radio_mem/[2].
A variable is set to two and incremented for each new payload byte, and is used in the
radio_mem element numerator to declare each payload location in radio mem. Lastly,
radio_mem[0] is set to be equal to byte — 2, as this will be the total number of payload
bytes. The full code for get sensor data() is located in appendix B.1.4.

Code 3.8: radio_mem/|z|

uint8_t byte = 2;
radio_mem[byte++] = Payload_data;
radio_mem[byte++] = Payload_data;

radio_mem[byte++] = Payload_data;
radio_mem[0] = byte - 2; // IR payload bytes
radio_mem[1] = 0; // Unused

© 0 N O U s W N =

3.6.2.7 nRF52840 Radio

Radio communication is based on the "radio" example and on the NRF RADIO Type
struct in the nrf52840.h file, which contains the control registers for the radio, both of which
can be found in the SDK. The full code for the nRF52840 radio is presented in appendix
B.1.6. The following five functions interface directly with the radio by writing to, and reading

from, its registers:

e radio_setup()

70

SYSTEM DESIGN

e send_packet()
e start listening()
e stop radio()

e carrier sense()

The radio_setup() function contains the operation parameters of the radio. Two different
packet structures are necessary in order to support both normal and coded communication.
The main difference is the preamble which is 1 byte long for 1Mb and 2Mb proprietary mode,
and 10 bytes for 125kb BLE coded mode.

Code 3.9 shows the parameters which are configured in radio setup().
Code 3.9: radio setup() parameters

NRF_RADIO->BASEO = (uint32_t) (base0);

NRF_RADIO->BASE1 = (uint32_t) (basel);

NRF_RADIO->PREFIXO = (uint32_t) (pre_addr0);
NRF_RADIO->PREFIX1 = (uint32_t) (pre_addrl);
NRF_RADIO->TXADDRESS = 0;

NRF_RADIO->RXADDRESSES = 0b00000001;
NRF_RADIO->PACKETPTR = (uint32_t)&radio_mem;
NRF_RADIO->SHORTS |= RADIO_SHORTS_ADDRESS_RSSISTART_Msk;
NRF_RADIO->FREQUENCY = 7UL;

NRF_RADIO->TXPOWER = powerLVL[currentPL];

© o N o o« = W N -

=
[=}

BASE and PREFIX are the address values which are used. Different parts of these addresses
are used, which is determined by the values in TXADDRESS and RXADDDRESSES. TX-
ADDRESSES can be values between 0-7, which are the number of channels available. RX-
ADDDRESSES consists of 8 bits which can enable or disable listening on the corresponding
channel. The LSB is channel 0 and the MSB is channel 7. PACKETPTR is a pointer to where
the radio will store incoming packets, and also where data that is going to be sent should
be located before transmission. PACKETPTR stores the pointer to radio mem, which is
an wint8_t array with 20 elements. RADIO _SHORTS ADDRESS RSSISTART Msk is a
shortcut operator which takes an RSSI sample on ADDRESS match, which lets the receiver
automatically sample RSSI of each incoming packet with address match. FREQUENCY
takes values between 0 to 100MHz and sets the radio frequency equal to 2400MHz + the
number in that register. TXPOWER sets the transmitting dBm with values ranging from
—40dBm to +8dBm. In order to dynamically change this value, an array containing 11

different power levels is created, as shown in code 3.10
Code 3.10: Power level array

1 uint8_t powerLVL[11] = {
2 0xD8UL, // -40 dbm

71

SYSTEM DESIGN

3 OxECUL, // -20 dbm
4 0xF4UL, // -12 dbm
5 0xFCUL, // -4 dbm
6 0xOUL, // 0 dbm

7 0x2UL, // 2 dbm

8 0x4UL, // 3 dbm

9 0x5UL, // 5 dbm
10 0x6UL, // 6 dbm
11 0x7UL, // 7 dbm
12 0x8UL // 8 dbm
13}

14 uint8_t currentPL = 10;

TXPOWER is initially configured at +8dbm. It can however be lowered automatically if

the sensed RSSI of the receiver is unnecessarily high.

The send_ packet() function ensures that the receiver is completely turned off, and the trans-
mitter completely turned on before the packet is sent. When the send packet command is
sent to the radio, it will check the first byte in radio_mem to ascertain the payload length

of the transmission before transmitting the correct number of elements.

start_listening() sets the receiver in listening mode. While listening, successfully received

packets will be stored in the radio mem array.

stop _radio() is used to turn the radio off. For sensor nodes, this function is called after each
transmitted packet, as well as after each received ACK or timeout in order to reduce energy
consumption. Turning off the radio before changing the radio register, such as changing the

power level, is required.

The carrier_sense() function shown in code 3.11 turns on the receiver and initiates TASKS -
EDSTART, which detects the energy levels on the channel for a period of 128us. The
detected energy levels range from 0 to 255, where 0 is at most 10dBm higher than the
sensitivity of the receiver. In other words, as the receiver has a sensitivity of —95dBm, the
sensed value is 0 in the range of —95dBm to —85dBm. The result can then be retrieved

from EDSAMPLE, where any value above 0 indicates traffic on the channel.

Code 3.11: carrier_sense() function

bool carrier_sense() {
NRF_RADIO->TASKS_RXEN = 1U;

while (NRF_RADIO->EVENTS_READY == 0U) {
// wait

1

2

3

4

5 }
6 NRF_RADIO->TASKS_EDSTART = 1;
7 nrf_delay_us(130);

8 if (NRF_RADIO->EDSAMPLE < 1) {

72

SYSTEM DESIGN

9 return 1;
10 } else {

11 return O;
12 }

13}

3.6.2.8 Star topology

When the sleep timer interrupt wakes the node from sleep, the wakeup() function is called,
which starts the HFCLK before calling get sensor data() and send_data() as shown in
code 3.12. The functionality of get sensor data() is described in section 3.6.2.6.

Code 3.12: Star wakeup() function

1 static void wakeup(void *p_context) {
2 UNUSED_PARAMETER (p_context) ;

3 start_HFCLKQ) ;

4 get_sensor_data();

5 send_data() ;

6 1}

The nRF52840 star topology communication is similar to the ATmega328p communication,
with the exception of a different dynamic transmission power level adjustment method. The
RSSI is transmitted in the ACK message from the gateway, and the wait _for ack() function
adjusts the transmission power accordingly. Therefore, the star topology is performed with
only three main functions instead of the four in the ATmega328p firmware. The send_ data()

function is used to initiate transmission.

e carrier_sense()
e send_data()

e wait_for ack()

73

SYSTEM DESIGN

Figure 3.46 shows the structure of a transmission.
The data packet contains the transmitting nodes
power level in order to allow for the gateway to re-
spond with an ACK at the same power level, effec-
tively reducing channel interference. Before trans-
mitting, the carrier sense() function is called, which
senses the channel and determines if the channel is
free to use. After transmitting the packet, the wait -
for_ack() function is called. When waiting for ACK,
the node first calls the start listening() function,
causing it to wait for up to 1500us for an ACK from
the gateway with the correct ID. When an ACK is
received, the RSSI is automatically stored in NRF -
RADIO->RSSISAMPLE, and is used to change the
power level. The value is a positive integer in the
range of 0 to 128, however the actual number it rep-
resents is a negative d Bm value of the RSSI. The ACK
message contains the RSSI from the packet received
at the gateway, and the lowest RSSI value of the mes-
sages communicated between the node and gateway
is used to adjust the power level. An upper and lower
limit is set to —7bdBm and —85dBm accordingly in
order to maintain a good signal strength while lim-
iting interference. If the RSSI is below —85dBm,
the power level is increased, unless it is already at
the highest power level. If higher than —75dBm, the
power level is decreased unless it is already at the low-
est setting. If no ACK is received from the gateway,

the power level is increased.

74

(send_data() ’
\/

set power level

Y

carrier_sense()

e

Yes
send packet,
wait_for_ack()

Yes-> Check RSSI
No
v Y

/

adjust power level

v
&

No.

adjust power level

Figure 3.46: Flowchart of
send_ data()

SYSTEM DESIGN

3.6.2.9 Multi-hop topology

When the sleep timer interrupt wakes the node from sleep, the wakeup() function shown in
code 3.13 is called. The function operates similarly to the main loop of the ATmega328p, as
can be seen in section 3.4.2.10. When waking up, the function either sends its own sensor
data first before calling relay data(), or only calls relay data(), depending on the send_ -
counter variable. If the node receives a response, the function will return 1 and the node will
attempt to forward the data towards the gateway. After forwarding the data, the relay -
data() function is called once more. This process continues until no response is received
during relay data().

Code 3.13: multi-hop wakeup() function

1 void wakeup(void *p_context) {
2 UNUSED_PARAMETER (p_context) ;
3 start_HFCLK(Q) ;

4 if ((send_counter >= SEND_INTERVAL) || (my_hops_to_sink > 199)) {
5 get_sensor_data();

6 wait_to_send();

7 while (relay_data()) {

8 ¥

9 send_counter = 0;

10 } else {

11 while (relay_data()) {

12 }

13 }

14 app_timer_start(wakeping_timer, WAKEPING_INTERVAL, NULL);
15 send_counter++;

16}

17 bool relay_data() {

18 wake_ping() ;

19 if (wait_for_response()) {
20 wait_to_send();

21 return 1;

22 }

23 return 0;

24}

The multi-hop functionality is for the most part the same for nRF52840 as it is for AT-
megad28p. The protocol is explained in section 3.3.3, and the implementation for AT-
mega3d28p in section 3.4.2.10. The nRF52840 radio does however have additional features
which improves the system. For communication, three pipes are used for each node; wake
pipe, next hop pipe and node ID pipe. Wake pipe is used for transmitting and receiving
wake pings, next hop pipe is used for sending data to a specific node and node ID pipe is
used for receiving packets sent specifically to itself.Only one pipe is open at a time in order
to limit any undesired traffic when sending or receiving. The three pipes represent three
different addresses which the node will listen for, where wake pipe address is identical for all

nodes and node ID pipe address is unique for each node. The next hop pipe address at the

75

SYSTEM DESIGN

sender will correspond with the node ID pipe address of the receiver, and can initially only

be set after a wake ping is received.

When waiting to transmit data, the node will listen on the
wake pipe and wait for wake pings with hops to gateway
lower than its own. If such a message is received, the node
will automatically set its next hop pipe to to match the
ID of the wake ping, before sending the data message. Im-
mediately after, it will start listening on its node ID pipe
for an ACK. The benefit of using this method is that the
nRF52840 radio has a function that lets the receiving node
know when a message with a recognized address is incom-
ing. This means that the radio can identify an incoming
message immediately after the preamble and address part
of the packet, even before the payload is received. This
is beneficial because while waiting for an ACK, or more
importantly a response, where the payload contains sensor
data, the duration the node has to wait can be greatly re-
duced. The process of waiting for ACK is shown in figure
3.47. Waiting for ACK is set to 800us and wait for re-
sponse is set to 1000us. Wait for response is 2005 longer
because a random backoff from to 0 — 80us and a carrier
sense of 128us is performed prior to sending. If an ad-
dress is recognized withing these durations, it will wait for
the whole packet to be received. The code for nRF52840

multi-hop can be found in appendix B.2.

76

Wait_for_ack()

Listen on node ID
pipe

start_listening()

H

Start timeout timer

T ‘

_NOYeH

Figure 3.47: Flowchart of
wait_ for _ack()

SYSTEM DESIGN

3.7 nRF52840 Gateway

The nRF52840 gateway utilizes an nRF52840 MCU along with the ESP32. The nRF52840
communicates wirelessly with the nodes and sends relevant data to the ESP32 via UART.
The ESP32 forwards the data via Wi-Fi to an MQTT broker.

3.8 nRF52840 Gateway Hardware

Figure 3.48 shows a PCB designed for the gateway. The ESP32 is programmed by using a
USB to Transistor-Transistor Logic converter, while the BMD-340 can be programmed by
using either USB or J-Link. The supporting components are used according to the datasheets
of the ESP32 and BMD-340 [56] [53]|. The antennas are placed on opposite edges of the PCB
in order to minimize interference between them. The gateway is supplied with 3.3V. All

schematics for the nRF52840 gateway, as well as the PCB, can be found in appendix D.4.

Figure 3.48: nRF52840 gateway PCB

77

SYSTEM DESIGN

3.9 nRF52840 Gateway Firmware

nRF52840

A nRF52840 is used with the ESP32 to receive data from multi-hop
and star nodes. Its main function is to relay data using UART to
the ESP32, which will publish this data to MQTT. When used in
star topology, it will only wait for data packets, and send an ACK
back to the node. When the packet is received it will first check
if it is an already received packet, and discard it if is a duplicate.
Either way an ACK is sent back to the node with the same power
level. The power level of the node is sent with the data packet,
which is used by the nRF52840 gateway to adjust its own. The
ACK message contains the senders ID and the RSSI of the received
data packet. The RSSI is used by the node to adjust its power level
to reduce interference. Finally the data is sent through the UART
to the ESP32. When used with multi-hop topology, a wake ping is

sent every two seconds so neighbouring nodes can find it.

ESP32

The ESP32 gateway for the nRF52840 system is similar to the
ESP32 gateway for the ATmega328p system. Instead of reading
from the nRF24101+ radio, the ESP32 reads from UART connected

Initialize gateway

Yes

No
send to ESP32

Figure 3.49: Flowchart
of nRF52840 gateway

_NO@
v

by wire to the nRF52840. Full code for the ESP32 nRF52840 gateway can be found in ap-

pendix A.4.
Code 3.14: Main loop

void loop()
{
if ((Serial2.available() > 7)) {
if (Serial2.read() == 155) {
datal[0] = Serial2.read();
for (int i = 1; i < datal0] + 2; i++) {
datali] = Serial2.read();
}
while (Serial2.available()) {
Serial2.read();
}
publish_mqtt();
for (int i = 0; i < 20; i++) {
datal[i] = 0;
}
}
}
}

© 0 N O Ut s W N =

e s T =
0 N O O ke W N = O

78

SYSTEM DESIGN

3.10 IoT Server

In order to gather, log and display the data from the sensor nodes,

a Raspberry Pi is used along with Hass.io and Mosquitto. Hass.io is powered by Home As-
sistant, an open source software developed for simple home automation. For the purpose of
the project, however, only the integrated MQTT support is utilized, which requires minimal
setup. Hass.io can subscribe to any topic on the MQTT broker and present the received
data in a graphical interface, as well as create graphs, both of which are utilized throughout

the development and testing of the system.

Figure 3.50 depicts all received data from Node 17, which is an ATmega328p node with
BMEG680, while figure 3.51 shows the graphical representation of its temperature reading
history. A power level of 1 indicates LOW on the nRF24101+PA-+LNA.

Node 17 X Nodel17 Temperature
A Node17 Temperature 25.20°C
& Node17 Temperature 25.88°C
@) Nodel7 Humidity A47.00 % B e ago
@) Nodel7 Pressure 1019 hPa 6.0
@ Nodel71AQ 4
255
@ Nodel7 Lux 134 LUX
250
@ Nodel7 Voltage 423V
@) Nodel7 Power Level 1 245

1:00 AM 1:00 PM

Figure 3.50: Node 17 group in Home Assis- Figure 3.51: Temperature history of node 17
tant in Home Assistant

Additionally, a separate Raspberry Pi is configured with an MQTT broker, namely
Mosquitto, in addition to a python script which logs published data in all topics.

79

Chapter 4

Testing

4.1 Emnergy Harvesting Testing

The energy harvesting circuit is tested with both configurations described in section 3.1.2,
with the 120mAh battery and the 5F supercapacitor. Both solar panels described in section
3.1.1 are tested with the energy harvesting circuit. The tested system is placed in the same
location throughout all the tests, in a room with multiple windows and a desk LED light on
at all times. The energy harvesting tests are conducted with the Mooshimeter, which can
measure and log the voltage on and current to the energy storage element. The Mooshimeter

a highly portable app controlled multimeter with BLE.

Figure 4.1 shows the room in which the nodes are tested, while figure 4.2 shows the PV

panels while undergoing testing.

Figure 4.1: Test location Figure 4.2: PV panel testbed

4.1.1 Battery and Monocrystalline Panel

The 120mAh Li-Ion battery is tested along with the 0.36//' monocrystalline panel. Figure
4.3 depicts the resulting values over a period of approximately 2.5 days, where the blue line

represents power in uWW with a running average of 20 measurements, and the orange line

80

TESTING

voltage. The average power by which the battery was charged during the test was 941.94uWV.

Monocrystalline & Lithium lon Battery
2000,00

1800,00
1600,00 3,65
1400,00 3,60

1200,00

-

£ 8 & ¢
g8 B 8 B

s Power (W)

Power (WW)

e\ 0| tEEE

200,00

25 e 2 EN Y 2 2
S 0, Jv‘,er,‘,%o)v‘foee‘fa)sv‘?d’{,’@j%”xe& e %o\? £ SQ’%.)J*’%%‘

Time

Figure 4.3: Charging Li-Ion battery with monocrystalline panel

4.1.2 Battery and Polycrystalline Panel

The 120mAh Li-Ton battery is tested along with the 0.15W polycrystalline panel. Figure
4.4 depicts the resulting values over a period of approximately 9 days, where the blue line
represents power in uW with a running average of 20 measurements, and the orange line
voltage. The average power by which the battery was charged during the test was 213.96 1V .

Polycrystalline & Lithium lon battery

800,00 3,80
700,00
3,7
600,00
500,00 3,60
400,00
|~ 3 o
2 Ty
= =
o 300,00 = Power [pW)
H
s 3.40 "/ Oltage
200,00
100,00 .
0,00
3,2
-100,00
T o D T O, &
s*’s&fe%z%\" 33%%9J 3%0%@93 \%\%7 o de\ a%sogvbzq,
-200,00 3,10

Time

Figure 4.4: Charging Li-lon battery with polycrystalline panel

TESTING

4.1.3 Supercapacitor and Monocrystalline Panel

The 5F supercapacitor was tested along with the 0.361/ monocrystalline panel over a period
of approximately 9 days. Figure 4.5 depicts the charging from a near depleted state, where
the blue line represents power in uWW with a running average of 20 measurements, and the
orange line voltage. As can be seen in the figure, the BQ25570 is unable to charge a near
depleted supercapacitor of 5F as the voltage nears 1.3V. This is due to the self discharge
and to the initial charge issue of the BQ25570, as explained in section 3.1.4, where a very

low charging current is obtained. The average charging power was 11.34uW

5F Supercapacitor from 0.5V
50,00

40,00

30,00
20,00 l e
|] 080 g
4] Power (W)
10,00 q 080 = ——Voltage
v

Power (UW)

0,00

-10,00

%, R s, G, i, B, Y8, %, 0, %,

o <@
Y ., 2.

S S o <y Oy o 3
o R Op e T T TG Np Ny Ty T e T3 T TG T e

-20,00 0,40
Time

Figure 4.5: Charging a 5F supercapacitor from 0.5V with monocrystalline panel

After cancelling the initial charge test, the supercapacitor was pre-charged to approximately
2.8V before continuing the test. Figure 4.6 shows the period from 2.8V to full charge at
5.28V. The blue line represents power in ulV, while the orange represents the supercapacitor
voltage. As can be seen, the test started at 11:35, and the supercapacitor reached the
programmed maximum voltage at 05:45 the next day, resulting in a total charging period
of 18 hours and 10 minutes. The average charging power was 1249.5uW between 2.8V and
5.28V.

82

TESTING

Monocrystalline & 5F supercapacitor

Power [uW)

1500,00 S ——Pouer (uw)

— Ol tEEE

0,00

JJ/JJJJJ?«’?? 0 05 0
EACI v).j‘sifj. &0?.90 0%’@"16&90%9 2o % 3?%{95%%?) J,?ef%

Time

Figure 4.6: Charging a 5F supercapacitor from 2.8V with monocrystalline panel

4.1.4 Supercapacitor and Polycrystalline Panel

As the BQ25570 was unable to charge the supercapacitor from the depleted stage, as de-

scribed in section 4.1.3, the supercap was pre-charged to approximately 2.7V for before
testing with the 0.15W polycrystalline panel.

Figure 4.7 shows the period from 2.7V to full charge at 5.281V. The blue line represents
power in W, while the orange represents the supercapacitor voltage. Due to unknown errors
in the Mooshimeter, a gap of 5 hours occured on the second day of testing. The results are
therefore not completely accurate, however provides an indication of the performance. As
can be seen, the test started at 13:45, and the supercapacitor reached the programmed

maximum voltage after 56 hours. The average charging power was 303.9ulV .

Polycrystalline & 5F supercapacitor

Power (uW)

PO wET (W)

m— /Dl taEE

J.fa-’.:: % .. 4> Jo %)a s, b, B %,
T L A AR AN A A

Time

Figure 4.7: Charging a 5F supercapacitor from 2.7V with polycrystalline panel

83

TESTING

4.1.5 Low Light Energy Harvesting

A test was conducted with the 120mAh battery as storage medium with both the 0.15W
polycrystalline and the 0.361 monocrystalline panels in a room with no windows to the
outside and overall low lighting. Figure 4.8 depicts the room in which the test was conducted,

and figure 4.9 shows the EH PCBs while undergoing testing.

Figure 4.8: Dark room test location Figure 4.9: Dark room testbed

Figure 4.10 depicts the test conducted with the monocrystalline panel and battery in low light
conditions over a period of approximately 24h. The average power obtained was 212uW. A
slight battery voltage increase is observed from 3.421V to 3.469V .

Battery & Monocrystalline in Low Light Conditions

3.43
370.00 3.47
320,00 3.6

3.45

270.00
3.44

Power (HW)
Vaoltage

220.00 3.43 —Power p\W

3.42 —\/oltage
170.00 s s

34
120.00
3.40

70.00

w
o

Zp g Vs Yo T D O O Q. O @ I Vs %
w6, 0 Yo o ., % 2. % %, D %, %, %,

Time

Figure 4.10: Monocrystalline and battery in low light conditions

As for the test with polycrystalline and battery in low light conditions, the power measure-
ment was unstable as a cause of too low values for the Mooshimeter. Therefore, only the
battery voltage is presented in figure 4.11. The increase in voltage during the measurement
period of 24h was from 3.442 to 3.447

84

TESTING

Battery & Polycrystaline in Low Light Conditions

3.448
3.447
3.446

3.445

Voltage

3.444
3.443

3.442

D G O O G O G O Go dp o o o o g I 4 oy o <
< 07, 2,0 U & [B
o G o "y ‘Yo Gy (d’ \:’J; "Yo OJ) w/cp ’:_r" ‘?) 0\);. () \)’3 T Q, g I

Time

Figure 4.11: Polycrystalline and battery in low light conditions

4.1.6 Comparison of Polycrystalline and Monocrystalline

During the battery testing in a well-lit room, the polycrystalline panel provided an average
of 231.96uW , while the monocrystalline panel provided 941.94pW. Equation 4.1 is used to

calculate the efficiency of the polycrystalline PV panel relative to the monocrystalline panel.

o [Plavg]poy ' Plrated]mono '
Ef ficiency = <—P[mted]poly —P[avg]mono 100% (4.1)

Where:

e Efficiency is the efficiency of the polycrystalline panel relative to the monocrystalline
panel
e Plavgl,ey is the average obtained power from the polycrystalline panel
o P[rated],oy is the rated maximum power of the polycrystalline panel
avg|mono 1s the average obtained power from the monocrystalline panel

Plav
o Plrated)mono is the rated maximum power of the monocrystalline panel

By inserting the values obtained during the tests, the efficiency can be found as shown in

equation 4.2

o 231.96 W 0.36WW
Eff . —] - 100% = 54.5% 4.2
aency (015W) (94194#”) 00 ¢ 5 5 ¢ ()

During the testing of the supercapacitor in a well-lit room, the average power obtained from

the polycrystalline panel was 303.9uWW, while the monocrystalline panel provided 1249.5u1V .

85

TESTING

The relative efficiency is calculated in equation 4.3.

0.15W

303.9uW 0.36W
Ef ficiency = (a) : (

86

1249.5uW

) -100% = 58.5%

(4.3)

TESTING

4.2 ATmega328p Node Test

4.2.1 Energy Consumption

The measurements of energy consumption in the ATmega328p nodes are conducted by the
use of the Keysight InfiniiVision DSOX2002A digital oscilloscope [36]. In order to obtain
a the current values, the voltage over a 5{) resistor is measured in series with the system.

Therefore, the current is found by calculating I = V,,eqsurea/52-

4.2.2 Sleep Consumption

Figure 4.12 shows the sleep current of the ATmega328p node with BMEG680. The sleep
current is measured with the precision electrometer Keysight B2950A over 20s, during which
the average current was 5.47uA, and the average power 18.1uWW. The peaks observed in the
sleep measurements are caused by the MCU waking up after a set sleep interval of up to 8s,

only to return to sleep.

ATmega328p Node Sleep Current Consumption
with BMEG680

6.00E-06
5.90E-06
5.80E-06
5.70E-06
5.60E-06
5.50E-06
5.40E-06
5.30E-06
5.20E-06
5.10E-06
5.00E-06

Figure 4.12: ATmega328p sleep current measurement with BMEG80

Figure 4.13 shows the sleep current of the ATmega328p node with HDC2010. The average
current was 5.4 A, and the average power 17.8uW

87

TESTING

ATmega328p Node Sleep Current Consumption
with HDC2010
5.B0E-06
5.70E-06
5.60E-06
5.50E-06
5 40E-06
5.30E-06
5.20E-06
5.10E-06
5.00E-D6

B R L N T . S N N A N
VRS TRG h L B 2w

Figure 4.13: ATmega328p sleep current measurement with HDC2010

4.2.2.1 Star

Figure 4.14 shows the measurement of the full on-time of one transmission from the AT-
mega3d28p node in star topology. Cursors X1 and X2 indicate the total on-time of the node,
while Y1 and Y2 indicates the peak voltage measured over the 5¢) resistor. As seen in the
figure, the total on-time of the node is 24.9ms, which consists of a 22.82ms sensor read,

420us transmission and 1.66ms carrier sensing and ACK receival period.

(150 20024, MYBE273312 Mon May 25 (124300 2013
11008 ¢

Channels
10.0:1
10.0:1

Figure 4.14: ATmega328p oscilloscope measurement in star topology with LOW transmis-
sion level and BMEG80

Table 4.1 presents the current and power consumption based on figure 4.14, where power is

calculated based on 3.3V operation.

88

TESTING

Table 4.1: ATmega328p consumption with LOW and BMEG80 in star topology

Period Measured Current Power
Voltage
Sensor read ‘ 22.82ms ‘ 21mV ‘ 4.2mA ‘ 13.86mW
Transmission ‘ 420us ‘ 360mV ‘ 72mA ‘ 237.6mW
ACK | 1.66ms | 128mV | 25.6mA | 84.48mW

Every 10th interval, the IAQ is read from the BME680. Prior to each TAQ reading, the
internal heater in the sensor is on for approximately 200ms. This process is shown in figure
4.15.

DS0-X 20028, MYSE273312: Mon May 28 0216:21 2018

-170.0%

Units
~p-

Figure 4.15: ATmega328p oscilloscope measurement of the BMEG80 heater

As seen in figure 4.15, a short peak voltage of 102.5mV is measured with a period of 10ms,
followed by a linear increase from 27.5mV to 87.5mV over a period of 193ms. In order to

calculate the average measured voltage during the linear increase, equation 4.4 is used.

1 193ms (875mV — 27.5mV

Veae’r ramp avg — 1o . . 27.5mV | d
heater_ramp_avg = g3 Jo 193ms v etom) ‘

(4.4)

193ms

+ 27.5mV - x} = 57.5mV
0

y 1 60mV - 2
heater _ramp _avg — 193ms 193ms - 2

Equation 4.5 finds the average measured voltage over the entire 203ms period.

102.5 - 10ms + 57.5mV - 193ms
Vi eater avg — = 59.TmV 4.5
heater_avg 10ms + 193ms m (45)

Following the result from equation 4.5, the average current of the heater is I = 59.7mV/5Q =

89

TESTING

11.94mA, and the average power P = 11.94mA - 3.3V = 39.4mW for a period of 203ms.

Equation 4.6 is used to calculate the average power of the entire node while active.

Psensor : Tsensor + Pt:t : Ttm + PACK : TACK + PBM680 heater * TBME680 heater
Pactive = = = (46>

Tactive

Where:

o P, e is the average power during on-state of the node

o P .s0r is the power consumed during sensor reading, here 13.86mW

® T.nsor is the period for sensor readings, here 22.82ms

e P, is the power consumed during transmission, here 237.6mW

e T, is the period for transmission, here 42 + us

e Pick is the power consumed during ACK receival, here 84.48mW

e T, ck is the period for ACK receival, here 1.66ms

® PBrrE6so heater 18 the power consumed by the BME680 heater, here 39.4mV

® TBME680 heater 18 the period for the BME680 heater. The period is 203ms, however
as this only occurs on every 10th transmission interval, the value used for calculating
Pctive 1s 203ms/10 = 20.3ms.

By inserting the above values in equation 4.6, the average power consumption in awake state

is found in equation 4.7.

13.86mW - 22.82ms + 237.6mW - 420us + 84.48mW - 1.66ms + 39.4mW - 20.3ms
45.2ms

P, active —

= 30mW
(4.7)

Equation 4.8 presents the method for calculating the average power consumption of the

entire node with different transmission intervals.

Paverage -

Pactive : Tactive + Psleep : Tsleep o 30mW - 45.2ms + 181,UW : Tsleep

4.8
Tactive + Tsleep 45.2ms + Tsleep ()

By ranging Ty, from 10s to 300s, a graph is plotted as shown in figure 4.16. At 55s
interval, the power consumption is 42.7uW, while it goes below 20uW at 714s. The graph
presented is based on LOW transmission power, as well as the use of BMEG680 while reading

temperature, RH and pressure on every interval, and TAQ on every 10th interval.

90

TESTING

ATmega328p Total Power at Different Transmission
with BMEG680

Figure 4.16: Average power consumption of ATmega328p in star topology with different
transmission intervals

Figure 4.17 depicts the measurement of one transmission interval with HDC2010 in star
topology and a transmission power level of LOW. Based on the measurements, the graph in

figure 4.18 is plotted, where an average power of 24.8uWW is obtained at a 55s transmission

interval

I3 0DA NG Sl T T BB B0 _] ATmega328p Total Power at Different Transmission
‘ with HDC2010

Power

v Yo dp B B o Y o e e fa o th. T Th. o Th. T D
R R T R I i - - IR - T

Seconds

Figure 4.17: ATmega3d28p oscilloscope mea- Figure 4.18: Average power consumption of AT-
surement with HDC2010 and LOW trans- mega328p with LOW transmission power and
mission power level HDC2010

91

TESTING

4.2.2.2 Multi-Hop

Figure 4.19 depicts an oscilloscope measurement of the general functionality with 2s/div
horizontally and 50mV/div vertically. As can be seen, a wake ping is broadcast every 2s

during testing, and the nodes data is transmitted on every 3rd wakeup.

Figure 4.19: Overview of the multi-hop functionality

Figure 4.20 shows a single wake ping, with the subsequent 10ms period of waiting for data.

The total on-time of the node was measured at 16.8ms

D50 20028, MYBEZ73312: Wied May 30 06:22:44 2018

2 0002/ Stop 230%

KEYSIGHT

Units

Figure 4.20: Oscilloscope measurement of ATmega328p multi-hop wake ping

92

TESTING

Table 4.2 outlines the energy consuming elements of one wake ping. When using a wake
ping period of 2s and disregarding all other elements of the multi-hop protocol such as data

transmission and relaying, the average power consumption is 861uWV .

Table 4.2: ATmega328p wake ping measurements

Period Measured Current Power
Voltage
MCU on | 7.16ms | 23.5mV | 4.7mA | 15.51mW
Carrier sense ‘ 3605 ‘ 204.5mV ‘ 40.9mA ‘ 135mW
Wake ping transmit ‘ 280us ‘ 248.5mV ‘ 49.7mA ‘ 164mW
Wait for data | 9ms | 2495mV | 49.9mA | 164.7mW

Figure 4.21 depicts a transmission of the nodes sensor data where the total measured period
was 1.61s. Figure 4.22 shows the end of figure 4.21 with a lower ms/div in order to present
the transmission of data as well as the wake ping and wait for data period. It is worth
noting that even though the wait to send period is 1.57s in the measurement, the worst case

scenario is a period of 2s.

[S0-X 20024 MYBE273312: Wed May 30 07:27:30 2018

1 50%

Figure 4.21: Oscilloscope measurement of AT- Figure 4.22: Figure 4.21 zoomed
mega3d28p multi-hop with sensor read, trans-
mit and wake ping

93

TESTING

Table 4.3 outlines the consumption and period of each element in figures 4.21 and 4.22.

Table 4.3: ATmega328p read and transmit measurements

Period Measured Current Power
Voltage
MCU on | 25.8ms | 25mV | 5mA | L.65mW
Wait to send | 1.57s | 253.3mV | 50.7mA | 16TmW
Carrier sense x2 | 600ps | 204.5mV | 40.9mA | 135mW
Transmit data | 300ps | 285mV | 57TmA | 188mW
Wait for ACK | 3ms | 254mV | 50.8mA | 168mW
Wake ping transmit | 280us | 254mV | 50.8mA | 168mW
Wait for data | 9.6ms | 254mV | 50.8mA | 168mW

Figure 4.23 shows the measurement of a data relay. The depicted measurement is near worst

case, where the wait to send period is equal to 1.918s

DS0-X 20024, MYEE273312: Wied May 30 08:38:15 2016
1508 2

0.0:1
10.0:1

Figure 4.23: Oscilloscope measurement of ATmega328p multi-hop while relaying data

Table 4.4 outlines the values measured in figure 4.23.

94

TESTING

Table 4.4: ATmega328p read and transmit measurements

Period Measured Current Power
Voltage

MCU on | 7.16ms | 23.5mV | 4.7mA | 15.51mW
Carrier sense x2 | 600ps | 204.5mV | 40.9mA | 135mW
Wake ping transmit | 280us | 254mV | 50.8mA | 168mW
Wait for data | 9.6ms | 254mV | 50.8mA | 168mW
Send ACK | 280ps | 285mV | 5TmA | 168mW
Wait to send | 1.57s | 253.3mV | 50.7mA | 16TmW
Transmit data | 300ps | 285mV | 57mA | 188mW
Wait, for ACK | 3ms | 254mV | 50.8mA | 168mW
Wake ping transmit | 280us | 285mV | 5TmA | 168mW
Wait for data | 9.6ms | 254mV | 50.8mA | 168mW

Based on the measurements above, a graph is plotted as seen in figure 4.24 in order to
present the average power consumption at different wake ping intervals. In order to present
the worst case values, Wait to send is set to one wake ping period. The graph is based on
data transmission for every 150th wake ping interval, and data relaying every 100th. This
results in a 5 minute data transmission interval at the tested 2s wake ping interval. As can
be seen, the average power of the ATmega328p with the custom multi-hop protocol at the

2s interval used for testing purposes is 5.34mW.

95

TESTING

Average Power of ATmega328p Node with
Different Wake Ping Intervals

1E-02

9E-03

Average Power
[=)] ~J [+2}
m m m
& & &
w w w

SE-03

4E-03
O, 2,0, 8, 2,9, @ @ by o o < < < < < <

Seconds

Figure 4.24: Average power consumption with different wake ping intervals with the AT-
mega3d28p node

When using a constant 5 minute interval for data transmission, and assuming that 3 relays
are performed for each transmission, the optimal average power of 2.78mW was found at a

1.2s wake ping interval.

4.2.3 nRF24101+PA+LNA
4.2.3.1 Range

The range of the nRF24101+PA+LNA transceiver is tested by the use of a drone. The test
is conducted in the municipality of Grimstad. Therefore, interference is to be expected,
leading to a slightly shortened range. It is also unknown to what degree the radio signals
from drone and controller have any impact on achieved range. A gateway is placed at the

launch location of the drone, and a node is placed on the drone as shown in figure 4.25.

96

TESTING

Figure 4.25: Drone with a sensor node placed on the bottom side

Figure 4.26 shows the approximate locations and result of range test for the ATmega328p
node with transceiver nRF24101+PA+LNA on both ends with PALevel set to LOW. At
228.5m distance 40m above ground level, approximately 50% of transmitted packages were

lost. Test was conducted near University of Agder campus Grimstad.

v Devoteam telecom AS

i , T Q
! - T 200,00 m 228,51m
T 100,00 m Ung,,
o

Figure 4.26: Map of test location and result

97

TESTING

4.3 nRF52840 Node Test

It was discovered early in the project that 1.8V operation is far superior to 3.3V. The current
consumption of 3.3V is higher than that of 1.8V. Therefore, 3.3V was discarded completely,
and all nodes were configured with 1.9V. A test showing the energy consumption at 3.3V is

presented in section 4.3.1.4

4.3.1 Energy Consumption

The energy consumption tests of the nRF52840 are conducted in the same manner as de-
scribed in section 4.2.1 with the Keysight InfiniiVision DSOX2002A oscilloscope and a 5¢)
resistor. All transmission tests are conducted with 1.9V supply and 8dBm coded transmis-

sions unless other values are specified.

4.3.1.1 Sleep Consumption

Figure 4.27 shows the sleep current of the nRF52840 node with BMEG680 measured with
the Keysight B2950A electrometer. The measurement was conducted over a 20s with 1.9V
supply, during which the average current was 6.69uA, and the average power 12.7uW.

nRF52840 Node Sleep Current Consumption with
BMEGS0

7.40E-06
7.20E-06
7.00E-06
6.80E-06
6.60E-06
6.40E-06
6.20E-06
6.00E-06
5.80E-06
7 S g s vhy T, oy e T Ty T, D, B O D, B, B, B

Figure 4.27: nRF52840 sleep current consumption

Figure 4.28 shows the sleep current of the nRF52840 node with HDC2010 with 1.9V supply.
The average current was 3.651.A, and the average power 6.94uW .

98

TESTING

nRF52840 Node Sleep Current Consumption with
HDC2010

3.90E-06
3.80E-06
3.70E-06
3.60E-06
3.50E-06
3.40E-06

3.30E-06
3 P o o . W . o oS " X 3 . =
M O R R T B e B RE A R TN

Figure 4.28: nRF52840 sleep current consumption with HDC2010 and 1.9V operation

4.3.1.2 Star

Figure 4.29 shows the measurement of the full on-time of one transmission from the nRF52840
in star topology. Cursors X1 and X2 indicate the total on-time of the node, while Y1 and
Y2 indicates the peak voltage measured over the 5 resistor. As seen in the figure, the total
on-time of the node is 19.9ms, which consists of a 16.5ms sensor read, 2ms transmission and

1.4ms ACK receival period.

12082018

DS0-X 20028, MYSG273312: Sat May 26 23
Joes 2

__

10.0:1
1.00:1

Figure 4.29: nRF52840 oscilloscope measurement in star topology with +8dBm transmission
power and BME680

Table 4.5 shows the current and power consumption based on figure 4.29, where power is

calculated with the assumption of 1.9V operation

99

TESTING

Table 4.5: nRF52840 consumption with +8dBm and BMEG80 in star topology

Period Measured Current Power
Voltage
Sensor read ‘ 16.5ms ‘ 34.5mV ‘ 6.9mA ‘ 13.1mW
Transmission | 2ms | 156mV | 31.2mA | 59.3mW
ACK | Ldms | 79.5mV | 15.9mA | 30.2mW

Figure 4.30 depicts the measurement of the 10th interval, where the BMEGSO heater is
enabled for 200ms in order to get accurate IAQ readings. The current measured was 15mA,
and the power with 1.9V was 28.5mW.

DS0-X 20024, MYSE273312: Mon May 28 D0:00:12 2018
T Bows 2 -132.0% Stop 170y

KEYSIGHT
TECH =1

10.0:1
10.0:1

Figure 4.30: nRF52840 oscilloscope measurement of the BMEG80 heater

Equation 4.6 presented in section 4.2.1 is used to calculate the average power of the node

while active, where:

o P,.ive is the average power during on-state of the node

o P, .50 is the power consumed during sensor reading, here 13.1

® Tnsor is the period for sensor readings, here 16.5ms

e P, is the power consumed during transmission, here 59.3mW

e T,, is the period for transmission, here 2ms

e P,ck is the power consumed during ACK receival, here 30.2mW

e Tk is the period for ACK receival, here 1.4ms

® PBrrE6so heater 18 the power consumed by the BME680 heater, here 28.5mWV

® T'BME680 heater 15 the period for the BMEGSO heater. The period is 200ms, however

as this only occurs on every 10th transmission interval, the value used for calculating

100

TESTING

Pctive 18 200ms/10 = 20ms.

By inserting the measured values into equation 4.6, the average power while active is found

in equation 4.9.

13.1mW - 16.5ms + 59.3mW - 2ms + 30.2mW - 1.4ms + 28.5mW - 20ms
39.9ms (4.9)

Pactive =

= 23."mW

By assuming a perfect transmission where the message arrives on the first attempt, and
no retransmission is required, the average power consumption with different transmission

intervals is found based on figures 4.27, 4.29 and 4.30 by using equation 4.10

23.TmW - 39.9ms + 12.7uW - Tgieep
399m3 + Tsleep

(4.10)

Paverage =

By ranging Ty, from 10s to 300s, a graph is plotted as shown in figure 4.31. At 55s
interval, the power consumption is 29.9uW while it goes below 20uW at 130s. The graph
presented is based on 4+8dBm transmission power, as well as the use of BME680 while

reading temperature, RH and pressure on every interval, and IAQ on every 10th interval.

nRF52840 Total Power at Different Transmission
Intervals with BMEG80

80w
70uW
60pW

50pW

Power

40pW
30uW

20pW

10pwW
b O T Sp B G o O o Ye Yo O o T D D Yo T T %
0% " H V0 QPULLBYHORDY DD R

Seconds

Figure 4.31: Average power consumption of nRF52840 in star topology with different trans-
mission intervals

Figure 4.32 depicts the measurements with —40dBm transmission power. The measured

power consumption during transmission is 18.2mW while the average power with 55s trans-

mission interval is 28.4uW

101

TESTING

-900.0% 5.000%/

0.0:1
1.00:1

Figure 4.32: nRF52840 measurement in star topology with -40dBm transmission power and
BMEG680

In the case of a failed transmission, the node attempts to transmit its data three more times.
This process is depicted in figure 4.33, where a transmission power level of 8dBm is used,
as well as the BMEG80. Figure 4.34 presents a graph of the average power consumption at
different transmission intervals in the worst case possible, with transmission power level of
8dBm and four failed transmissions on every transmission interval. The average power at
555 is 38.7uW.

e AL bl R nRF52840 Total Power at Different Transmission
Intervals with BME680 and Retransmissions

Figure 4.33: nRF52840 measurement in star Figure 4.34: Average power consumption of
topology with 8dBm retransmissions nRF52840 with 8dBm transmission power and
failed transmissions

Figure 4.35 depicts the oscilloscope measurement of the nRF52840 node with 8dBm and
the HDC2010 sensor. The transmission and ACK characteristics remain the same, however
Piensor and Tyepsor are measured at 11.2mW and 2.3ms respectively. Additionally, as shown
in figure 4.28, Py, is 6.94puW . Considering these values, the graph in figure 4.36 is plotted.

The average power consumption at 55s is 10.3uIV .

102

TESTING

03 024 UVEEZTS12 Sy 2763421201 _] nRF52840 Total Power at Different Transmission with

HDC2010

Figure 4.35: nRF52840 measurement in star Figure 4.36: Average power consumption of
topology with 8dBm and HDC2010 nRF52840 with 8dBm transmission power and
HDC2010

A test was conducted in order to establish the practical differences between coded and non-
coded transmissions where a transmission rate of 1Mb/s was used. Figure 4.37 shows the
oscilloscope measurements of the test, where the transmission time was 280us and the ACK
time 580us. Figure 4.38 shows the graph of average power consumption of the node at

different transmission intervals, where a power of 8.1uW was obtained at a 55s interval.

D50 20024, MYEB273312 Mo ey 28 2001462018 nRF52840 Total Power at Different Transmission with
Ts06 2 01 5 .
HDC2010 and 1Mb/s

Figure 4.37: nRF52840 measurement in star Figure 4.38: Average power consumption of
topology with 8dBm, HDC2010 and 1Mb/s nRF52840 with 8dBm, HDC2010 and 1Mb/s
non-coded transmissions non-coded transmissions

103

TESTING

4.3.1.3 Multi-Hop

Figure 4.39 shows a single wake ping measured by an oscilloscope with a total period of
1.93ms. All tests are conducted with BMEG680, 1.9V supply and 8dBm transmission power,
with the exception of wake pings which are transmitted at one power level lower. Addition-

ally, a wake ping interval of 2s is used.

DS0-X 20028, MYS5273312; Thu May 31 06:56:42 2018

[EI LT

BO0.0&

Channels
10.0:1
10.0:1

Figure 4.39: Oscilloscope measurement of nRF52840 multi-hop wake ping

Table 4.6 outlines the energy consuming elements of a single wake ping.

Table 4.6: nRF52840 wake ping measurements

Period Measured Current Power
Voltage
MCU on | 22005 | 34.5mV | 6.9mA | 13.1mW
Wake ping transmit | 860us | 159mV | 31.8mA | 60.3mW
Wait for data | 850ps | 83.8mV | 16.8mA | 31.8mW

Figure 4.40 shows the energy consumption while transmitting data, where the total measured

period was 32.2ms

104

TESTING

5.000%/

1001
1001

Figure 4.40: Oscilloscope measurement of nRF52840 multi-hop data transmission

Table 4.7 outlines the energy consuming elements of the measured transmission period.
Carrier sense and random backoff were not successfully measured, however their maximum
periods are known and the power consumption based on the peak of the measurement within

their respective time period.

Table 4.7: nRF52840 data transmission measurements

Period Measured | Current Power
Voltage
MCU on | 16.3ms | 35mV | TmA | 13.3mW
Wait to send | 12.7ms | 82.3mV | 16.5mA | 31.3mW
Carrier sense | 128ps | 83.5mV | 16.7mA | 31.7mW
Random backoff | 80ps | 83.5mV | 16.7mA | 3L 7TmW
Transmit data | 1.9ms | 163mV | 32.6mA | 61.9mW
Wait for ACK | 900us | 82.3mV | 16.5mA | 31.3mW
Wake ping transmit | 860us | 159mV | 31.8mA | 60.3mW
Wait for data | 850ps | 83.8mV | 16.8mA | 31.8mW

Figure 4.41 shows the energy consumption while transmitting data, where the total measured
period was 2.03s. The figure presents a worst case scenario, where the Wait to send period

was equal to a wake ping interval.

105

TESTING

DS0-X 20028, MYSE273312: Thu May 31 06:26:13 2018

1001
1001

Figure 4.41: Oscilloscope measurement of nRF52840 multi-hop data relay

Figure 4.42 shows a zoomed image of before the "Wait to send" period in figure 4.41, while

figure 4.43 shows a zoomed image of what happens after.

4, MYSEZ73312: Thu May 31 06:33.01 2018 WVEE273312 Thu May 31 05:42.03 2018

Figure 4.42: Figure 4.41 zoomed in before Figure 4.43: Figure 4.41 zoomed in after
"Wait to send" "Wait to send"

Table 4.8 outlines the energy consuming elements of the measured transmission period. As

in table 4.7, the period and voltage measurement of carrier sense and random backoff are

estimated.

106

TESTING

Table 4.8: nRF52840 data transmission measurements

Period Measured Current Power
Voltage
MCU on | 23.1ms | 35mV | TmA | 13.3mW
Carrier sense | 128ps | 83.5mV | 16.7mA | 3L.7TmW
Random backoff | 80ps | 83.5mV | 16.7mA | 31.7TmW
Wake ping transmit | 860us | 159mV | 31.8mA | 60.3mW
Wait for data | 850ps | 83.8mV | 16.8mA | 31.8mW
Transmit ACK | T40ps | 83.8mV | 16.8mA | 31.8mW
Wait to send | 25 | 82.3mV | 16.5mA | 31L.3mW
Transmit data | 300ps | 163mV | 32.6mA | 61.9mW
Wait for ACK | 900ps | 82.3mV | 16.5mA | 31.3mW
Wake ping transmit | 860us | 159mV | 31.8mA | 60.3mW
Wait for data | 850ps | 83.8mV | 16.8mA | 31.8mW

Based on the measurements above, a graph is plotted as seen in figure 4.44 in order to
present the average power consumption at different wake ping intervals. In order to present
the worst case values, Wait to send is set to one wake ping period. The graph is based on
data transmission for every 150th wake ping interval, and data relaying every 100th. This
results in a data transmission interval of 5 minutes at the tested 2s wake ping interval As
can be seen, the average power of the nRF52840 with the custom multi-hop protocol at the
2s interval used for testing purposes is 892uW .

107

TESTING

Average Power of nRF52840 Node with Different
Wake Ping Intervals

Figure 4.44: Average power consumption with different wake ping intervals with the
nRF52840 node

When using a constant 5 minute interval for data transmission, and assuming that 3 relays
are performed for each transmission, the optimal average power of 267ulV was found at a

0.6s wake ping interval.

4.3.1.4 1.8V Operation

Measurements have been conducted with 3.3V operation as shown in figure 4.45. Based
on the values presented in the figure, an average power with 55s transmission intervals of
48.2uW was calculated by using the method described in section 4.3.1.2. In comparison,
the node with 1.9V supply, but otherwise identical configurations of transmission power and

sensors, consumed 29.9uW

DS0-X 20024, MYSE273312; Sun May 27 04:52:37 2018

50002/

0.0: l.
10.0:1

Figure 4.45: nRF52840 oscilloscope measurement in star topology with 8d Bm transmission
power, 3.3V supply and BME680

108

TESTING

As all components are rated for voltage supply of less than 1.9V, everything worked accord-
ingly when changing the output voltage of the BQ25570 buck converter with the exception
of the TPS22860 switch, which is used for battery level sensing, with the use of a superca-
pacitor. Whenever the supercapacitor was charged to approximately 5V, the switch would
not turn on. This is caused by the logic level voltage being dependent on Vg;ag, which is
connected directly to the supercapacitor or battery. As the graph in figure 4.46 from the
TPS22860 datasheet shows, the voltage required to turn on the switch with Vgyag = 5V is
Vig = 2.1V while the actual ON-signal is 1.9V".

25

2.0 A
Yo

1.0

0.5

Logic Level Threshold (nA)

0.0

0 1 2 3 4 5 6

Vaias (V)
Figure 6. Logic-Level Threshold vs Vgjas

Figure 4.46: Logic-level threshold of TPS22860 [5]

4.3.1.5 Range

The nRF52840 range is tested in the same manner as the nRF24101+PA+LNA as described
in section 4.2.3 by the use of a drone. Achieved range with transmission power set to 8dBm
and bitrate to 125kb/s coded with line of sight was approximately 1.8km. The test was

conducted near University of Agder campus Grimstad.

&
Universiteet I

i Agder,

it 5

Figure 4.47: nRF52840 range test with 8d Bm transmission power and coded transmissions

Figure 4.48 depicts the range test of the nRF52840 node with 8dBm transmission power
and non-coded 1Mb/s transmissions. The range obtained during testing was approximately
775m.

109

TESTING

7 .
Jon)Lilletunsiveil AS'E T

(S;_a‘tt Grimstad @ =

Universitetet
i'Agder,

Figure 4.48: nRF52840 range test with 8d Bm transmission power and non-coded transmis-
sions

110

Chapter 5

Discussion

5.1 MGI1 - Develop ATmega328p WSN

MGT1 in section 1.3.1 states that a WSN should be developed with a design based on the
ATmega328p MCU along with the nRF24101+ for wireless communication. Firmware should
be programmed, and a PCB designed.

5.1.1 Hardware

A PCB has been designed as presented in section 3.4.1.2. The design includes an EH circuit,
the MCU, the nRF24101+PA-+LNA transceiver and the necessary sensors. The schematics
and PCB design are found in appendix D.1.

The PCB has support for all the sensors used throughout the project, namely MAX44009,
HDC2010, BMEG680 as well as the battery level sensing circuit. The voltage supply from the
BQ25570 buck converter is 3.3V, and the BQ25570 is programmed to ensure that the buck
converter is disabled before the output voltage can fall below 3.3V as a cause of low battery
voltage. By doing this, the BQ25570 is able to recharge the battery to a programmed value
hysteresis value above the cutoff. During testing, the PCB was found to work as expected,

with no detectable errors or faults.

The nRF24101+PA+LNA modules used for this project did however prove unstable as ex-

plained in section 5.6.

5.1.2 Firmware

Developing code for the ATmega328p node proved, as expected, to be an uncomplicated

task. Libraries, good documentation and easy to use Arduino functions helps expedite the

111

DISCUSSION

developing process. Most of the components used for the nodes had pre-written libraries
by the Arduino community with the exception of HDC2010 and MAX44009 as these are
recently released on the consumer market. Therefore, the code for these had to be developed

by using the values and registers specified by their associated datasheets.

In order to allow for a single firmware to support the various sensors used for the nodes,
an I?C scanner is implemented. The scanner allows the node to identify which sensors are
attached on startup from a list of known I2C slave addresses. The connected sensors are

enabled for operation, while those not connected are never attempted to be read by the MCU.

Low power mode is attained by using the ATmega328ps watchdog timer. This allows the
MCU to sleep while the 128kH z crystal runs, creating a wake interrupt after a maximum

continuous period of 8s. This duration can be looped to extend the sleep duration.

Wireless communication was achieved using the nRF24101+PA-+LNA radio module. With
the help of libraries and simple operation, this module is an easy introduction to wireless
communication. However, when trying to optimize there some functionalities missing such

as RSSI and coded transmissions that would improve the WSN considerably.

5.2 MG2 - Develop nRF52840 WSN

MG?2 in section 1.3.2 states that a WSN should be developed with a design based on the
nRF52840 MCU. Firmware should be programmed, and a PCB designed. The nRF52840
IC may however not be on the market during the course of the project, so the PDK may be

used instead.

5.2.1 Hardware

A PCB has been designed based on the BMD-340 module containing the nRF52840 IC as
well as an on-board antenna. This is, however, not released during the course of the project,
and has therefore not been produced or tested. The PDK is therefore used in order to de-
velop a proof-of-concept nRF52840 node, and a breakout board containing the EH circuit as
well as all the sensors has been designed and used during testing. The circuit and PCB is

described in section 3.6.1, and the full schematics and PCB design can be found in appendix
D.2 and D.3.

Two different generations of nRF52840 PDK have been used for the project. During testing,

it was discovered that the older generation consumed an added constant 2mA of current.

112

DISCUSSION

The same behaviour was discovered when powering the on-board Segger I1C used to program
the PDK via USB, leading to the assumption that the Segger IC was always powered on
despite turning its voltage supply off with the on-board switch. Therefore, the old genera-
tion was not used for energy consumption tests. Additionally, the two different generations
have radio and SDK compatibility issues that were not discovered until late in the project,
resulting in misspent time. In the initial phase of the project, nRF52840 PDK v0.9.2 was
used for testing, while using SDK v14.2.0. Additional nRF52840 PDKs with the version
number 0.11.0 were obtained during the course of the project. These worked successfully
for all operations in the star topology firmware. When using the nRF52840 v0.11.0 PDKs
for the multi-hop system, however, they were not able to communicate with each other,
using the exact same code as with the nRF52840 v0.9.2 PDKs. It was later identified that
SDK 15.0.0 had been released, which supports nRF52840 v0.11.0, after the new PDKs were
obtained, however the firmware was finished and testing was initiated, leaving no time to
rewrite the code for the new SDK. Multi-hop was nonetheless tested successfully with the
nRF52840 v0.9.2 PDKs.

As the nRF52840 gateway designed for the project, which is described in section 3.8, contains
two separate radios, unwanted interference may occur between them. Appendix D.4 presents
the full schematics and PCB design. The gateway has not been built and tested due to the
nRF52840 IC not being released at the time of the project. Therefore, no tests have been
conducted in order to establish whether or not there is interference between the antennas.
If, however, interference should prove to be a problem, the following measures may be taken

to reduce or avoid it:

e Enlarge the PCB design in order to move the antennas further apart
e Install an interference shield between the two radios
e Separate ground planes with filter between them

e Discard Wi-Fi completely in favor of ethernet

5.2.2 Firmware

Bluetooth 5 is not used for the nodes as it leads to more overhead in the transmissions.
Additionally, no connections are to be made with other Bluetooth enabled devices, making
the protocol superfluous for use with the nodes. Therefore, a custom protocol is designed,

which utilizes features provided by the Bluetooth 5 stack, such as coded transmissions.

113

DISCUSSION

In order to obtain the highest possible ranges of the nRF52840 nodes, coded transmissions
are implemented. By doing this instead of using regular transmissions, the theoretical max-
imum range of the nodes in line of sight is increased from 200m to 1.6km, as presented in
section 2.3.1. The tests showed, however, that the actual obtainable ranges in line of sight
were much higher, and by using a drone, ranges of 775m and 1.8km were measured. With a
transmission time of 2ms and average power consumptions as low as 10.3uWW at 55s trans-
mission intervals when using coded and 8.1uW with non-coded 1Mb/s transmissions, the
additional power consumption when using coded is not considered an issue when considering

the range gain.

Developing with the Nordic Semiconductors SDK environment proved to have a steep learn-
ing curve since no member of the group had any prior experience with the platform. This
combined with unfamiliar coding methods made the process time consuming. During the
project however, the environment became more familiar, and developing new functionality
became less time consuming. Developing I?C code for the sensors proved to be one of the
major tasks, particularly for the BMEG680 which required multiple different I?C interactions.
No libraries with the TWI structure were available for any of the sensors implemented in
the node, and the TWI example provided with the SDK gave limited insight of how to de-
sign custom I2C code. Code for all the sensors was however successfully developed, giving

accurate control over the functionality of each sensor.

Low power mode on the nRF52840 node was achieved by using the application timers, and
utilizing the low power LFCLK whenever no events are running. Application timers running

on the LFCLK will then generate an interrupt, and perform the desired event.

5.3 MG3 - Energy Harvesting

MGS3 in section 1.3.3 states that an EH circuit should be designed for the use of a PV panel.
The EH circuit should include a battery, battery charger and step down converter to obtain

the correct voltage for the nodes.
The EH circuit presented in section 3.1 proved functional for indoor and outdoor use. The

circuit has been tested with both a 0.15W polycrystalline and a 0.361/ monocrystalline PV
panels, as well as both a 120mAh Li-lIon battery and a 5F', 61 supercapacitor.

114

DISCUSSION

5.3.1 PV Harvesting

Preliminary testing with a monocrystalline PV panel with a size of 63x63mm, rated to 0.36W
max, produced power in abundance. A decision was therefore made to implement a smaller
panel in the design, namely a 53x30mm panel rated to 0.15W advertised as monocrystalline.
Upon the arrival and inspection of the small PV-panels, it was however discovered that they
were composed of polycrystalline cells. At first, this was not regarded as a big problem,
as most sources stated that there were only a few percentages of difference in efficiency
between mono- and polycrystalline cells. The characterization of the polycrystalline panel
also yielded results comparable to that of the specification. After conducting a full scale test
of the energy harvesting and storage system, however, it was found that the panels proved
insufficient. Finding reliable sources proved difficult, as most of the research in the field of
photovoltaics are focused on outdoor applications in direct sunlight or clouded skies. Test
results described in article [6] however, states that the low light efficiency of mono- and
polycrystalline cells produced with conventional methods might differ with as much as 500%
in efficiency in common indoor lighting, making it reasonable to conclude that migrating to a
monocrystalline panel is required to have a fully functional system for indoor usage. Figure
5.1 depicts the difference in efficiency in light levels commonly found indoors with different

PV technologies.

> GalnP h -
14 . -
| monocrystalline Silicon
12 1 + polycristalline Silicon ‘
v CIGS A *
'—=— amorphous Silicon ¥
10 > :
;; | CdTe N > x *
< ®— Dye >
2 81 A v _—
@ | A =
g or S M
£ | g o
w 4 [v -
I +
2 r rs 9
ks
0 PR aaaal " s aaal a e a2 s sl
1 ‘ s 10 100
Intensity (W/m®)

Figure 5.1: PV efficiency in low light conditions [6]

As described in section 4.1, the difference between monocrystalline and polycrystalline PV
panels is substantial when tested under similar conditions indoors in a bright room. While
testing with the battery, the polycrystalline panel provided 213.96uWW average, while the

monocrystalline panel provided 941.94W . Taking into account the difference in power rat-

115

DISCUSSION

ings of the PV panels, the polycrystalline panel has an efficiency of 54.5% relative to the
monocrystalline panel. As for supercapacitor charging, the relative efficiency is 58.5%. It
can therefore be concluded, by using the worst-case results, that the polycrystalline panel
used for this project has approximately 54.5% the efficiency of the monocrystalline panel

while used indoors in a well-lit room.

As for the low light test, the Mooshimeter was unable to correctly measure the low current
levels from the polycrystalline panel. A voltage rise on the battery of 0.005V was however
observed. The monocrystalline panel provided an average of 212uW, and the test showed a
total battery voltage increase of 0.047V. An approximated relative efficiency can be calcu-
lated based on the voltages as the voltage range is sufficiently narrow, and hence the voltage
curve versus charge current is close to linear. The efficiency of the polycrystalline panel is

25.5% relative to the monocrystalline panel in low light conditions.

The tests conducted with a 5F supercapacitor as storage medium proved partially successful.

This is further discussed in section 5.8.

5.4 MG4 - Research Sensors

MG4 in section 1.3.4 states that ULP sensors should be researched in order to find the most
suitable sensors for the nodes. The environmental values of interest are temperature, RH,

visible light, atmospheric pressure and IAQ.

Several sensors have been researched throughout the project. The BMEG680 measures all the
values of interest except for visible light in a low power manner, with the exception of TAQ
which requires 13mA for extended periods in order to heat up to sufficient temperatures. It
is, however, monetarily costly. Therefore, the most likely sensor to be implemented in most
nodes is the HDC2010, which is offered at a much lower cost than and BMEG80. It has an
extremely low energy consumption during both sleep and measurement periods, making it
a viable option for low light environments. The datasheet specifies a consumption of 550nA
with a measurement interval of 1s while measuring both temperature and RH. TAQ and
atmospheric pressure are oftentimes superfluous in well ventilated office- or household envi-

ronments.

For measuring visible light, the MAX44009 is selected, as it offers sufficient precision at a

low cost, while consuming extremely low amounts of power.

116

DISCUSSION

5.5 MG5 - Wireless Network Topologies

MGS5 in section 1.3.5 states that the WSNs should be configured and tested with both one-
hop and multi-hop topologies.

Disregarding hardware issues with the nRF24101+PA+LNA transceiver on the Atmega328p
node, the one-hop star topology has worked well. Long wake-up intervals, few wake-ups and
short transmissions have ensured low power consumption. Collision mitigation mechanisms
such as carrier sensing have proven to be somewhat superfluous for star topologies, as the
probability of two or more nodes trying to transmit at the same time is very small. Using
transmission time for the nRF52840 node with coded 125kb/s including waiting for and
receiving ACK, one node with a transmission interval of 55s take up only % ~ 0.006 %0
of on-air time. This functionality may however prove more useful in future deployments
with higher network density, shorter intervals and larger payloads. Dynamic transmission
power adjustment has worked well with the nRF52840 nodes, effectively reducing power
consumption and interference caused by the nodes. As for the Atmega328p node, due to
issues and limitations with the transceiver, adjustment of transmission power had little or

no effect.

As for the multi-hop topology, a higher level of complexity proved to be a challenge, both
in terms of implementation and testing. The dynamic nature of the self-designed protocol
and the unpredictable range of transceivers indoors makes it difficult to predict where pack-
ages are routed. As for the functionality of the multi-hop protocol, the results have been
good. Packages are successfully routed to the gateway and nodes can be introduced into
the network and freely moved around while still finding routes to the gateway. Medium ac-
cess mechanism with random backoff followed by channel sensing is more important for the
multi-hop topology, as transmissions are initiated by an external event instead of just the
internal clock as in the star protocol. There are however some aspects that can and should
be optimized for future implementations. Frequent wake-ups to broadcast the wake ping
messages consume a high amount of power. This wake-up interval should be adaptive to
each network deployment. Additionally, scaling the wake-up interval with energy storage
levels may help mitigate issues with energy holes in the network, where the energy storage
medium the nodes that forward a large number of messages are depleted, leaving a hole in
the topology. Scaling the interval may however lead to less optimal routes or higher latency
in the network. Less frequent wake_ping messages may also lead to longer wake periods
when nodes attempt data transmission, which also consumes energy. The density of the
network has a large impact on this waiting period, as there are more nodes that can forward

messages within range as the networks get denser.

117

DISCUSSION

5.6 MG6 - Test and Compare the WSNs

MG6 in section 1.3.6 states that extensive testing should be conducted in order to compare

the two WSNs with various sensors and topologies.

During testing of the ATmega328p node, it was discovered that the nRF24101+PA+LNA
transceiver used for the project was highly unstable, likely due to poorly matched antennas
and RF filters. As a result of this, the transceivers were unable to transmit at power levels
higher than LOW, and even then, many transmissions were lost. This is likely an issue
with the specific module obtained for the project, and not all nRF24101+PA+LNA modules.
Nevertheless, tests with transmission power level of LOW were conducted and treated as if

the modules were in perfect order as to present results with a functional module.

5.6.1 Star Topology

The average power of the nRF52840 node in star topology with BME680 and 8dBm trans-
mission power at 55s was 29.9uW, while the power at —40dBm is 28.4uW. The difference
in the average power consumption with the maximum and minimum transmission power
levels are therefore considered to be insignificant, which is due to the short transmission
interval of the nodes. With HDC2010 and 8d Bm transmission power on the other hand, the
average power consumption was measured to be 10.3uW with a 55s transmission interval.
As stated in section 2.1.2, the leakage of the LIR2450 battery is approximately 11.1uA, or
11.1uA - 3.6V = 40uW at its nominal voltage. Therefore, the power consumption with the
use of HDC2010 is approximately 20% of the total consumption of the system.

The ATmega328p node on the other hand, which was tested with LOW transmission power
level, measured an average power of 42.7uW at a 55s interval with BMEG80, while the av-
erage power with HDC2010 was 24.8uWV.

Table 5.1 presents a comparison of the battery lifetime with each node as well as both the
BMEG680 and HDC2010. The values are calculated by using equation 5.1 with the assumption
of a fully charged battery with 120mAh - 3.6V = 432mW h of available energy.

Pbattery 1 432mW h 1

Pbatteryileakage + Pnodeiconsumption 24h/day B 4OMWh + Pnodeiconsumption 24h/day
(5.1)

Tdays =

118

DISCUSSION

Table 5.1: Comparison of battery lifetime from full charge in star with 55s transmission
interval with no energy harvesting

‘ Node power ‘ Days

nRF52840 8dBm BMEGSO | 20.9u1W | 257.5
nRF52840 8dBm HDC2010 | 10.3uW | 357.9
ATmega328p LOW BMEGS0 | 42.7uW | 217.7
ATmega328p LOW HDC2010 | 24.8uW | 277.8

Table 5.2 presents the same comparison as table 5.1, however with the use of a supercapacitor
instead of a battery. The worst case self discharge rate of 36uA - 5.28V = 190.1uW as
described in section 2.1.2, as well as the capacities of 7.47mWh and 1.87mWh for 1.8V and

3.3V respectively presented in section 3.1.4, are used.

Table 5.2: Comparison of 5F supercapacitor lifetime from full charge in star with 55s trans-
mission interval with no energy harvesting

Power ca- | Node power | Days
pacity
nRF52840 84Bm BMEGSO | 747TmWH | 20.9uW | 141
nRF52840 8dBm HDC2010 | 74ATmWH | 10.3uW | 1.5
ATmega328p LOW BMEGSO | 1.8TmWH | 42.7uW | 0.33
ATmega328p LOW HDC2010 | 1.8TmWH | 24.8uW | 0.36

5.6.2 Multi-Hop Topology

Both the ATmega328p and the nRF52840 node have been tested in multi-hop topology with
success. A graph has been plotted in order to present the average worst case power con-
sumption of each node at various wake ping intervals, where the nodes data is transmitted
on every 150th wake ping interval, and an assumed interval for relaying data at every 100th

wake ping interval. The BMEGS0 sensor was used during testing.

The nRF52840 node proved successful during multi-hop testing, both for indoor and out-
door use, with some limitations. For indoor use, the location of the nodes should be suf-
ficiently well-lit, such as near a window or an incandescent light, and the node should use
a monocrystalline panel of sufficient power rating. The test showed an average worst case
power consumption of 892uW with a 2s wake ping interval, which is lower than the av-

erage harvested energy of 1.25mW in a well-lit room. When considering a 5 minute data

119

DISCUSSION

transmission interval, the optimal wake ping interval is 0.6s, at which the node consumes
an average worst case power of 267uW, effectively meaning that the harvested energy is
1.26mW/267uW = 4.68 times higher than the power consumption.

The test of the ATmega328p node proved partially successful, however it is not plausible
for indoor use. With a 2s wake ping interval, the average worst case power consumption
was measured to be 5.34mW | which is much higher than the harvested energy indoors. For
the ATmega328p node, the optimal wake ping interval with 5 minute transmission intervals
was found to be 1.2s, at which the node consumes an average of 2.76mW . Compared to the

nRF52840, the ATmega3d28p therefore consumes 10.4 times as much power.

Similar to the star topology comparison in section 5.6.1, two tables are created in order to
determine the lifetime of the node with battery and supercapacitor where the same capacities
and self discharge values are used. Table 5.3 presents the lifetime in days with the use of
the 120mAh battery with a total power capacity of 432mW h, while table 5.4 presents the
lifetime in hours with the use of the 5F supercapacitor, which has a power capacity of
7.4TmW h for 1.9V operation and 1.87mWh for 3.3V. Both the 2s wake ping values and the
optimal wake ping interval at 5 minute transmission intervals are presented, which is 0.6s
for nRF52840 and 1.2s for ATmega328p.

Table 5.3: Comparison of battery lifetime from full charge in multi-hop with no energy
harvesting

2s Wake ping ‘ Node power ‘ Days
nRF52840 | 892uW | 37.6
ATmega328p | 5.34mW 6.9

Optimal wake ping interval ‘ ‘

nRF52840 | 267UV | 58.6

ATmega328p | 2.76mW 6.4

120

DISCUSSION

Table 5.4: Comparison of 5F' supercapacitor lifetime from full charge in multi-hop with no
energy harvesting

2s Wake ping ‘ Power Capacity ‘ Node power ‘ Hours
nRF52840 | TATMWH | 892u W 6.9
ATmega328p | 1L8TmWH | 5.34mW | 0.34

Optimal wake ping interval ‘ ‘ ‘

nRF52840 | TATMWH | 267 | 16.34
ATmega328p | L8TmWH | 2.76mW | 0.63
5.6.3 Range

As presented in section 4.26, the ATmega328p node achieved a line of sight range of 228.5m
with LOW transmission power level. Meanwhile, the nRF52840 node achieved 1.8km with

coded transmissions, and 775m with non-coded.

5.6.4 Reliability

Both the star and multi-hop topologies utilize ACK messages in order to ensure the reception

of data. Therefore, the probability of a packet loss is both considered and observed as low.

5.7 SGI1 - 1.8V Supply for nRF52840

As the nRF52840 supports 1.8V operation, effectively resulting in a reduced energy con-
sumption, the peripheral components chosen throughout the project should also support

1.8V to avoid the need for two separate voltage converters, as stated by SG1 in section 1.3.7.

The BQ25570 was successfully programmed for 1.9V operation with both supercapacitor
and battery as storage element, as the resistors for 1.8V were not available at the time of
construction. The end result was partially successful, as the entire system worked as in-
tended with the exception of the TPS22860 switch used for voltage level sensing when using
a supercapacitor at high voltage, as described in section 4.3.1.4. A different switch with
a more suitable logic level threshold needs to be implemented in the nodes with 1.9V sup-

ply and a supercapacitor as energy storage. Alternatively, a transistor or mosfet may be used.

Besides the TPS22860 issue, a lower energy consumption was obtained. At a 55s transmission

interval, the node with 3.3V supply and BME680 consumed an average of 48.2uW while

121

DISCUSSION

the node with 1.9V consumed 29.9uW. As a result of these findings, the BQ25570 output
voltage was programmed to 1.9V on all nRF52840 nodes.

5.8 SG2 - Supercapacitor

SG2 in section 1.3.8 states that a supercapacitor should be implemented and tested as an

alternative to a battery.

During the brief testing of supercapacitors, the results were mixed. The supercapacitors have
a much higher self discharge compared to Li-Ion batteries. Additionally, when completely
depleted, the BQ25570 is unable to charge the supercapacitors with a charge current higher
than the leakage current of the supercapacitors in an indoor environment. Therefore, the
supercapacitors must be pre-charged via the USB charger on the nRF52840 node design, or

via an external source such as a regular, variable power supply.

With that in mind, the supercapacitor design proved viable in areas with sufficient lighting.
When the supercapacitor is pre-charged, the BQ25570 delivers sufficient charging current in
normal, indoor lighting. The BQ25570 ensures that the buck converter powering the nodes
is turned off when the supercapacitor voltage falls below a programmed value, effectively

preventing depletion.

5.9 Future Work

5.9.1 Security

Very little security has been added in the WSNs developed throughout the project, which
means that they may be easily hacked and the channels may be overheard. As the nodes do
not have any actuators and simply read sensor values, this is not considered critical, however

can be implemented as an improvement at a later point.

5.9.2 Optimize nRF52840 RAM Retention

Each 4K B RAM block in the nRF52840 consumes 30nA in sleep. There is a total of 256k B
RAM, and therefore 64 blocks, which can be disabled if unused.

5.9.3 Alternative BMEG680 Operation

Figure 5.2 depicts measurements of the nRF52840 node with BME680 while not waiting
for the sensor to measure and convert data. Instead, the MCU tells the BMEGS0 to gather

122

DISCUSSION

data while not collecting it until the next awake period. By doing this instead of the design
presented and tested in the project, the awake period is significantly shortened, however
the data measured by the BMEGS80 is read by the MCU on the next transmission interval,
effectively resulting in the environmental data having a delay of one transmission interval.

This is a viable improvement where real-time measurements are of little importance.

DS0-X 200248, MYSEZ73312: Sat May 26 235645 2018

1T 50w/ 2

50002/ Stop

Channels
10.0:1
1.00:1

Figure 5.2: Awake period when not waiting for BMEG80 data with nRF52840

5.9.4 OTA Firmware Update

Updating each node manually in a deployed sensor network that may consist of several
hundreds of nodes would require an unreasonable amount of man-hours, and could prove to
be impossible for some installations. The ability to perform OTA firmware updates would

provide great advantages for a WSN.

5.9.5 Wake-up Radio

Multi-hop networks require several nodes to be on at the same time. This can be resolved
with several methods, such as synchronous wake up based on a timer on each node, or with
a Wake-up Radio. With Wake-up Radio, the nodes necessary to complete a transmission
can be woken up only when there is something to send or forward, reducing power wasted.

Wake-up radio may be useful in the WSNs for specific use-cases.

5.9.6 Research Alternative Energy Harvesting Sources

This far, EH with PV modules has proven to be sufficient in well lit office environments. If

the nodes are to be placed in environments absent of light, other harvesting sources has to be

123

DISCUSSION

further researched. Thermoelectric generators may provide power for in-wall installations,
and development in triboelectric nanogenerators may improve harvestable energy available

from vibrations.

124

Chapter 6
Conclusion

Two wireless sensor nodes based on different MCUs, namely the ATmega328p from Atmel
and nRF52840 from Nordic Semiconductor, have been successfully developed and tested in
both star and mesh topologies. The sensor nodes contain energy harvesting capabilities with
the use of solar panels, allowing for continuous operation with no intervention for the entire

lifetime of the components.

Two wireless network topologies are used, namely star and multi-hop topology, and cus-
tom protocols are developed for both. With star topology, both nodes consume less power
than what is harvested even in a poor indoor light environment when using a 0.36W rated
monocrystalline solar panel, and are able to operate for 7 to 12 months while using a recharge-
able coin cell battery without any harvested energy. As for multi-hop topology, the results
are mixed, as the ATmega328p consumes twice the amount of the energy harvested in a good
light conditions in indoor environment. The nRF52840 in multi-hop topology, on the other
hand, has proven functional for indoor use, assuming that it is not positioned in an environ-

ment with poor lighting. Both nodes needs to be tested thoroughly for outdoor environment.

The range of the ATmega328p node was measured to 228.5m, while the nRF52840 obtained
1.8km while using coded transmissions. Considering this, as well as the lower power con-
sumption of the nRF52840, it is concluded that the nRF52840 is superior to ATmega328p
in all aspects with the exception of simplicity in firmware development. While the Arduino
community provides libraries for a wide range of peripheral components, such as sensors and
transceivers, the Nordic environment only provide simple examples on base designs, and no

libraries for specific sensors are provided.

The nRF52840 node has been tested with both 1.9V and 3.3V supply. In star topology with
the same peripheral components and firmware, the power consumption of the node with 1.9V
was only 62% of the node with 3.3V. Therefore, all nRF52840 based nodes were configured

125

CONCLUSION

with 1.9V supply.

Testing proved that operation with supercapacitors instead of Li-Ion batteries is feasible to
some extent. The supercapacitors have a higher self discharge rate and generally much lower
capacities. The EH circuit is unable to charge the supercapacitors in good light conditions
in indoor room when depleted, however after pre-charging the supercapacitor to 2V, the
node worked well. Compared to the 7 to 12 months of operation with the battery and no
energy harvesting, a fully charged 5F low leakage supercapacitor will last for 8 to 37 hours.
Based on these findings, it is concluded that using a supercapacitor as energy storage is
feasible for rooms equipped with good light while using the nRF52840 node. However, usage
of supercapacitors are only recommended for outdoor use as the added benefit of sub-zero

centigrade temperatures is not applicable for indoors.
In order to facilitate for IoT applications, gateways are developed for both WSNs. The

gateways use ESP32 by Espressif, which has built-in Wi-Fi capabilities, in order to publish
the sensor data via MQTT.

126

Bibliography

[1] “Normalized spectral response of a typical c-si solar cell,” last Accessed: 2018-06-
03. [Online|. Available: https://www.researchgate.net/figure/232277326 figl Fig-3-

Normalized-spectral-response-of-a-typical-c-Si-solar-cell-pyranometer-courtesy-of

[2] “Representative spectra of a white led, compact fluorescent vfl
and incandescent bulbs,” last Accessed: 2018-06-03. [Online|. Avail-
able: https://www.researchgate.net/figure/263530987 figl Fig-1-Representative-
spectra-of-a- White- LED-Compact-Fluorescent- CFL-and-Incandescent

[3] Atmel, “ATmega328p Datasheet,” last Accessed: 2018-06-03. [Online].
Available: http://www.atmel.com /images/Atmel-8271-8-bit- AVR-Microcontroller-
ATmegad8A-48PA-88A-88PA-168A-168PA-328-328P datasheet Complete.pdf

[4] “Arduino’s atmega328 power consumption,” last Accessed: 2018-06-03. [Online|. Avail-
able: https://www.gadgetmakersblog.com /power-consumption-arduinos-atmega328-

microcontroller/

[5] T. Instruments, “Ultra low leakage switch,” last Accessed: 2018-06-03. [Online].
Available: http://www.ti.com/lit/ds/symlink/tps22860.pdf

[6] K. R. M. Kasemann, L. M. Reind], “Photovoltaic en-
ergy harvesting under low lighting conditions,” last Accessed:
2018-06-03. [Online|. Available: https://www.researchgate.net /publication/

257757787 Photovoltaic_Energy Harvesting under Low Lighting Conditions

[7] “Bluetooth 5 core specifications,” last Accessed: 2018-06-03. [Online|. Available:
https: //www.bluetooth.com /specifications

[8] Z. Yu and K. Ogboenyira, “Renewable energy through micro-inverters,” last Accessed:
2018-06-03. [Online|. Available: http://www.powerelectronics.com/discrete-power-

semis/renewable-energy-through-micro-inverters

127

https://www.researchgate.net/figure/232277326_fig1_Fig-3-Normalized-spectral-response-of-a-typical-c-Si-solar-cell-pyranometer-courtesy-of
https://www.researchgate.net/figure/232277326_fig1_Fig-3-Normalized-spectral-response-of-a-typical-c-Si-solar-cell-pyranometer-courtesy-of
https://www.researchgate.net/figure/263530987_fig1_Fig-1-Representative-spectra-of-a-White-LED-Compact-Fluorescent-CFL-and-Incandescent
https://www.researchgate.net/figure/263530987_fig1_Fig-1-Representative-spectra-of-a-White-LED-Compact-Fluorescent-CFL-and-Incandescent
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
https://www.gadgetmakersblog.com/power-consumption-arduinos-atmega328-microcontroller/
https://www.gadgetmakersblog.com/power-consumption-arduinos-atmega328-microcontroller/
http://www.ti.com/lit/ds/symlink/tps22860.pdf
https://www.researchgate.net/publication/257757787_Photovoltaic_Energy_Harvesting_under_Low_Lighting_Conditions
https://www.researchgate.net/publication/257757787_Photovoltaic_Energy_Harvesting_under_Low_Lighting_Conditions
https://www.bluetooth.com/specifications
http://www.powerelectronics.com/discrete-power-semis/renewable-energy-through-micro-inverters
http://www.powerelectronics.com/discrete-power-semis/renewable-energy-through-micro-inverters

BIBLIOGRAPHY

[9] J. Jessen, M. Venzke, and V. Turau, “Design considerations for a universal smart energy
module for energy harvesting in wireless sensor networks,” last Accessed: 2018-06-03.

[Online|. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6086015

[10] “Avx scm series supercapacitors,” last Accessed: 2018-06-03. [Online|. Available:

http://www.avx.com/products/supercapacitors/scm-series/

[11] “Lir2450 datasheet,” last Accessed: 2018-06-03. [On-
line]. Available: http://www.farnell.com/datasheets/1475807.pdf? _ga=
2.175044267.845474401.1493834626-1387139467.1487680439

[12] A. Shrestha and L. Xing, “A performance comparison of different topologies
for wireless sensor networks,” last Accessed: 2018-06-03. [Online|. Available:

http:/ /ieeexplore.ieee.org/stamp /stamp.jsp?arnumber—4227822

[13] L. Gu and J. A. Stankovic, “Radio-triggered wake-up for wireless sensor networks,”
Real-Time Systems, vol. 29, no. 2, pp. 157-182, Mar 2005, last Accessed: 2018-06-03.
[Online|. Available: https://doi.org/10.1007/s11241-005-6883-z

[14] “Indirect health effects of relative humidity in indoor environments,” last
Accessed: 2018-06-03. [Online|. Available: https://www.ncbi.nlm.nih.gov/pmec/
articles/PMC1474709/

[15] “Offices: Temperature and humidity - what are the 'rules’?” last Accessed: 2018-
06-03. [Online|]. Available: http://www.ohsrep.org.au/hazards/call-centres/offices-

temperature-and-humidity-what-are-the-rules

[16] T. Vehvildinen et al., “High indoor CO2 concentrations in an office environment
increases the transcutaneous CO2 level and sleepiness during cognitive work,” last
Accessed: 2018-06-03. [Online]. Available: https://www.tandfonline.com/doi/full/
10.1080/15459624.2015.10761607src=recsys&

[17] “Volatile Organic Compounds’ Impact on Indoor Air Quality,” last Accessed:
2018-06-03. [Online]. Available: https://www.epa.gov/indoor-air-quality-iaq/volatile-

organic-compounds-impact-indoor-air-quality# Health Effects

[18] “Human factors: Lighting, thermal comfort, working space, noise and vibration,”
last Accessed: 2018-06-03. [Online|. Available: http://www.hse.gov.uk/humanfactors/
topics/lighting.htm+#/lighting

[19] “Bluetooth 5 range test with ti cc2640r2f,” last Accessed: 2018-06-03. [Online|. Available:
https://e2e.ti.com/blogs_/b/connecting wirelessly/archive/2017,/01/30/how-does-

bluetooth-5-increase-the-achievable-range-of-a-bluetooth-low-energy-connection#

128

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6086015
http://www.avx.com/products/supercapacitors/scm-series/
http://www.farnell.com/datasheets/1475807.pdf?_ga=2.175044267.845474401.1493834626-1387139467.1487680439
http://www.farnell.com/datasheets/1475807.pdf?_ga=2.175044267.845474401.1493834626-1387139467.1487680439
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4227822
https://doi.org/10.1007/s11241-005-6883-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474709/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474709/
http://www.ohsrep.org.au/hazards/call-centres/offices-temperature-and-humidity-what-are-the-rules
http://www.ohsrep.org.au/hazards/call-centres/offices-temperature-and-humidity-what-are-the-rules
https://www.tandfonline.com/doi/full/10.1080/15459624.2015.1076160?src=recsys&
https://www.tandfonline.com/doi/full/10.1080/15459624.2015.1076160?src=recsys&
https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality#Health_Effects
https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality#Health_Effects
http://www.hse.gov.uk/humanfactors/topics/lighting.htm#lighting
http://www.hse.gov.uk/humanfactors/topics/lighting.htm#lighting
https://e2e.ti.com/blogs_/b/connecting_wirelessly/archive/2017/01/30/how-does-bluetooth-5-increase-the-achievable-range-of-a-bluetooth-low-energy-connection#
https://e2e.ti.com/blogs_/b/connecting_wirelessly/archive/2017/01/30/how-does-bluetooth-5-increase-the-achievable-range-of-a-bluetooth-low-energy-connection#

BIBLIOGRAPHY

[20] “Bluetooth 5 mesh specification,” last Accessed: 2018-06-03. [Online|. Available:

https://www.bluetooth.com /specifications/mesh-specifications

[21] “Basics of uart communication,” last Accessed: 2018-06-03. [Online]. Available:

http://www.circuitbasics.com /basics-uart-communication/

[22] “Using the i2c¢ bus,” last Accessed: 2018-06-03. [Online|]. Available: http:

/ /www.robot-electronics.co.uk /i2c-tutorial

[23] “Serial peripheral interface (spi),” last Accessed: 2018-06-03. [Online|. Available:
https://embeddedmicro.com/blogs/tutorials/serial-peripheral-interface-spi

[24] “Mqtt documentation,” last Accessed: 2018-06-03. [Online]. Available: http:
/ /mqtt.org/documentation

[25] “Hivemq - mqtt essentials part 6: Quality of service 0, 1 and 2, last Accessed:
2018-06-03. [Online|. Available: http://www.hivemq.com/blog/mqtt-essentials-part-6-

mqtt-quality-of-service-levels

[26] “Mosquitto documentation,” last Accessed: 2018-06-03. [Online|. Available: https:

/ /mosquitto.org/documentation/
[27] “Arduino.” |Online|. Available: https://www.arduino.cc/

[28] “Altium Designer,” last Accessed: 2018-06-03. [Online]. Available: http://

www.altium.com /altium-designer/

[29] “Segger Embedded Studio,” last Accessed: 2018-06-03. [Online|. Available:
https://www.segger.com /products/development-tools/embedded-studio/

[30] “Autodesk Inventor,” last Accessed: 2018-06-03. [Online|. Available: https:

/ /www.autodesk.com /products/inventor/overview

[31] “Autodesk Fusion 360,” last Accessed: 2018-06-03. [Online]. Available: https:

/ /www.autodesk.com /products/fusion-360/overview

[32] “Tera Term,” last Accessed: 2018-06-03. [Online|. Available: https://ttssh2.osdn.jp/

manual /en/

[33] “Hass.io,” last Accessed: 2018-06-03. [Online|. Available: https://www.home-

assistant.io/hassio/

[34] “Fluke 115 multimeter datasheet,” last Accessed: 2018-06-03. [Online].
Available: http://en-us.fluke.com/products/digital-multimeters/fluke-115-digital-

multimeter.html#techspecs

129

https://www.bluetooth.com/specifications/mesh-specifications
http://www.circuitbasics.com/basics-uart-communication/
http://www.robot-electronics.co.uk/i2c-tutorial
http://www.robot-electronics.co.uk/i2c-tutorial
https://embeddedmicro.com/blogs/tutorials/serial-peripheral-interface-spi
http://mqtt.org/documentation
http://mqtt.org/documentation
http://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
http://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://mosquitto.org/documentation/
https://mosquitto.org/documentation/
https://www.arduino.cc/
http://www.altium.com/altium-designer/
http://www.altium.com/altium-designer/
https://www.segger.com/products/development-tools/embedded-studio/
https://www.autodesk.com/products/inventor/overview
https://www.autodesk.com/products/inventor/overview
https://www.autodesk.com/products/fusion-360/overview
https://www.autodesk.com/products/fusion-360/overview
https://ttssh2.osdn.jp/manual/en/
https://ttssh2.osdn.jp/manual/en/
https://www.home-assistant.io/hassio/
https://www.home-assistant.io/hassio/
http://en-us.fluke.com/products/digital-multimeters/fluke-115-digital-multimeter.html#techspecs
http://en-us.fluke.com/products/digital-multimeters/fluke-115-digital-multimeter.html#techspecs

BIBLIOGRAPHY

[35] “Keithley digital — multimeter,” last Accessed: 2018-06-03. [Online].
Available: http://www.tek.com/sites/tek.com /files/media/media/resources/2110%
20DMMY%20DataSht HR.pdf

[36] “Keysight infiniivision dsox2002a oscilloscope specifications,” last Accessed: 2018-06-03.
[Online|. Available: https://www.keysight.com/en/pdx-x201827-pn-DSOX2002A /
oscilloscope-70-mhz-2-analog-channels?pm=spc&nid=-32542.1150180&cc=NO&lc=

eng
[37] “Keysight b2950a,” last Accessed: 2018-06-03. [Online|. Avail-
able: https://www.keysight.com /en/pd-2441132-pn-B2985A /electrometer-high-

resistance-meter-001fa?cc=CZ&lc=eng

[38] “CEL Robox Dual,” last Accessed: 2018-06-03. [Online|. Available: http:
//cel-uk.com/3d-printer /rbx02.html

[39] “Snapmaker,” last Accessed: 2018-06-03. [Online|. Available: https://snapmaker.com/
product

[40] “Mooshimeter,” last Accessed: 2018-06-03. [Online|. Available: https://moosh.im/

mooshimeter/

[41] “Neonsee AAA Sun Simulator,” last Accessed: 2018-06-03. [Online]. Available:

http://www.neonsee.com/en/iv-measurement /

[42] T. Instruments, “Bq25570 nano power boost charger and buck converter for energy
harvester powered applications,” last Accessed: 2018-06-03. [Online|. Available:
http://www.ti.com/lit /ds/symlink /bq25570.pdf

[43] “Bme680 datasheet,” last Accessed: 2018-06-03. [Online|. Available: https://ae-
bst.resource.bosch.com/media/ _tech/media/datasheets/BST-BMEG680-DS001-00.pdf

[44] “Hdc2010 datasheet,” last Accessed: 2018-06-03. [Online]. Available: http:
//www.ti.com/lit /ds/symlink /hdc2010.pdf

[45] Arduino, “Arduino Nano User Manual,” last Accessed: 2018-06-03. [Online|. Available:
https://www.arduino.cc/en/uploads/Main/ArduinoNanoManual23.pdf

[46] ——, “Arduino Pro Mini User Manual,” last Accessed: 2018-06-03. |Online|. Available:
https://learn.sparkfun.com/tutorials/using-the-arduino-pro-mini-33v/all.pdf

[47] N. S. ASA, “Single chip 2.4 ghz transceiver,” last Accessed: 2018-
06-03. [Online|. Available: https://www.sparkfun.com/datasheets/Components/
nRF241.01 prelim prod spec_1 2.pdf

130

http://www.tek.com/sites/tek.com/files/media/media/resources/2110%20DMM%20DataSht_HR.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/2110%20DMM%20DataSht_HR.pdf
https://www.keysight.com/en/pdx-x201827-pn-DSOX2002A/oscilloscope-70-mhz-2-analog-channels?pm=spc&nid=-32542.1150180&cc=NO&lc=eng
https://www.keysight.com/en/pdx-x201827-pn-DSOX2002A/oscilloscope-70-mhz-2-analog-channels?pm=spc&nid=-32542.1150180&cc=NO&lc=eng
https://www.keysight.com/en/pdx-x201827-pn-DSOX2002A/oscilloscope-70-mhz-2-analog-channels?pm=spc&nid=-32542.1150180&cc=NO&lc=eng
https://www.keysight.com/en/pd-2441132-pn-B2985A/electrometer-high-resistance-meter-001fa?cc=CZ&lc=eng
https://www.keysight.com/en/pd-2441132-pn-B2985A/electrometer-high-resistance-meter-001fa?cc=CZ&lc=eng
http://cel-uk.com/3d-printer/rbx02.html
http://cel-uk.com/3d-printer/rbx02.html
https://snapmaker.com/product
https://snapmaker.com/product
https://moosh.im/mooshimeter/
https://moosh.im/mooshimeter/
http://www.neonsee.com/en/iv-measurement/
http://www.ti.com/lit/ds/symlink/bq25570.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
http://www.ti.com/lit/ds/symlink/hdc2010.pdf
http://www.ti.com/lit/ds/symlink/hdc2010.pdf
https://www.arduino.cc/en/uploads/Main/ArduinoNanoManual23.pdf
https://learn.sparkfun.com/tutorials/using-the-arduino-pro-mini-33v/all.pdf
https://www.sparkfun.com/datasheets/Components/nRF24L01_prelim_prod_spec_1_2.pdf
https://www.sparkfun.com/datasheets/Components/nRF24L01_prelim_prod_spec_1_2.pdf

BIBLIOGRAPHY

[48] “Arduino low power - how to run atmega328p for a year
on coin cell battery,” last Accessed: 2018-06-03. [Online|. Avail-
able: http://www.home-automation-community.com /arduino-low-power-how-to-run-

atmega328p-for-a-year-on-coin-cell-battery /

[49] “Closedcube bme680.h,” last Accessed: 2018-06-03. [Online]. Avail-
able: https://github.com/closedcube/ClosedCube BMEG680 Arduino/blob/master/
src/ClosedCube BMEG680.h

[50] “Lowpower.h,” last Accessed: 2018-06-03. [Online|. Available: https://github.com/

rocketscream /Low-Power

[51] “Brown-out detection,” last Accessed: 2018-06-03. [Online|. Available: https:

/ /scienceprog.com /microcontroller-brown-out-detection/

[52] “Rf24.h,” last Accessed: 2018-06-03. [Online|. Available: https://github.com/
maniacbug/RF24

[53] “Esp32 datasheet,” last Accessed: 2018-06-03. [Online|. Available: https://

www.espressif.com /sites/default/files/documentation/esp32 datasheet en.pdf

[54] “Mqtt pubsubclient by knolleary,” last Accessed: 2018-06-03. |[Online|. Available:
https://github.com /knolleary/pubsubclient

[55] “nrf52840 preview development kit.” [Online|. Available: http:
//infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52%

2Fdita%2Fnrf52%2Fdevelopment%2Fnrf52840 pdk%2Fintro.html

[56] “Bmd-340 datasheet,” last Last Accessed: 2018-06-03. [Online|. Available: https:
/ /no.mouser.com/datasheet /2/883/BMD-340-DS v0.8-1223159.pdf

[57] “Mcp73831t datasheet,” last Accessed: 2018-06-03. [Online|. Available: https:
/ /no.mouser.com/datasheet /2 /268 /20001984¢g-846362.pdf

131

http://www.home-automation-community.com/arduino-low-power-how-to-run-atmega328p-for-a-year-on-coin-cell-battery/
http://www.home-automation-community.com/arduino-low-power-how-to-run-atmega328p-for-a-year-on-coin-cell-battery/
https://github.com/closedcube/ClosedCube_BME680_Arduino/blob/master/src/ClosedCube_BME680.h
https://github.com/closedcube/ClosedCube_BME680_Arduino/blob/master/src/ClosedCube_BME680.h
https://github.com/rocketscream/Low-Power
https://github.com/rocketscream/Low-Power
https://scienceprog.com/microcontroller-brown-out-detection/
https://scienceprog.com/microcontroller-brown-out-detection/
https://github.com/maniacbug/RF24
https://github.com/maniacbug/RF24
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://github.com/knolleary/pubsubclient
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52%2Fdita%2Fnrf52%2Fdevelopment%2Fnrf52840_pdk%2Fintro.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52%2Fdita%2Fnrf52%2Fdevelopment%2Fnrf52840_pdk%2Fintro.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52%2Fdita%2Fnrf52%2Fdevelopment%2Fnrf52840_pdk%2Fintro.html
https://no.mouser.com/datasheet/2/883/BMD-340-DS_v0.8-1223159.pdf
https://no.mouser.com/datasheet/2/883/BMD-340-DS_v0.8-1223159.pdf
https://no.mouser.com/datasheet/2/268/20001984g-846362.pdf
https://no.mouser.com/datasheet/2/268/20001984g-846362.pdf

Appendix A

Arduino Code

A.1 Star Code

Code A.1: Star Code

1 VESZEZZ 2333 T LTELTEELTELTTELTELEEESTEEETES

2 HERRERERE Star Node HEAKAKKRABAAAAAAAHHHERY
3 HERBABBAABHRARIHARBARRHARRARRHARRA RS/
4 #define MY_ID 17

5 #define DEBUG

6

7 #define GAS_HEAT_DURATION 200

8 #define GAS_HEAT_TEMNP 300

9

10 #define ADC_SAMPLES 10

11 #define MAX_I2C_DEVICES 5

12

13 #define BME680_ADDR 0z77

14 #define HDC2010_ADDR 0Oz41

15 #define MAX_ADDR Oz4B

16

17 #ifdef DEBUG

18 #define SLEEP_TINE 2

19 #define GAS_READ_RATIO 1

20 #define DEBUG_SERIAL_BEGIN(z) Serial.begin (z)
21 #define DEBUG_PRINT(z) Serial.print (z)

22 #define DEBUG_PRINThexz(z) Serial.print (z,HEX)
23 #define DEBUG_PRINTln(z) Serial.println (z)
24 #define DEBUG_FLUSH(z) Sertial.flush (z)

25 #else

26 #define SLEEP_TIME 10

27 #define GAS_READ_RATIO 10

28 #define DEBUG_SERIAL_BEGIN(z)

29 #define DEBUG_PRINT(z)

30 #define DEBUG_PRINThex (z)

31 #define DEBUG_PRINTLn(z)

32 #define DEBUG_FLUSH(z)

33 #endif

34

35 #include <Wire.h>

36 #include <SPI.h>

132

APPENDIX

37 #include "nRF24L01.h"

38 #include "RF24.h"

39 RF24 radio(9, 10);

40 #include "printf.h"

41 #include "LowPower.h"

42 #include "ClosedCube_BME680.h"
43 ClosedCube_BME680 bme680;

44

45 //nRF2j Variables

46 byte pipeNo;

47 uint64_t pipe = O0xf0f0f0fOel;
48 bool ack = false;

49 uint64_t ackID32;

50 uint8_t radio_status, ackID = 0, ack_num;
51 bool channel_idle = false;

52

53 //I2C scan Variables

54 enum {

55 HDC2010_i2c,

56 MAX44009_i2c,

57 BME680_i2c

58 };

59 uint8_t i2c_device[MAX_I2C_DEVICES][2] = {
60 {HDC2010_ADDR, falsel},

61 {MAX_ADDR, false},

62 {BME680_ADDR, false}

63 };

64 uint8_t devices[10];

65 uint8_t error;

66

67 //BME680 Variables

68 #ifdef BME680_ADDR

69 uint16_t bmedelay;

70 unsigned long bmeTime;

71 static uint8_t pres_msb, pres_lsb, pres_xlsb, temp_msb,
72 temp_lsb, temp_xlsb, hum_msb, hum_lsb;
73 uintl16_t bmePres;

74 float bmeTemp, bmeHum;

75 uint32_t bmeGas;

76 uint8_t bmeGasLvl;

77 bool GAS_ON = false;

78 uint8_t gas_counter = 10;

79 #endif

80

81 //HDC2010 Variables

82 unsigned long hdcTime;

83 #ifdef HDC2010_ADDR

84 float hdc2010_tempF, hdc2010_humF;
85 uint8_t hdc2010_datal4];

86 const double powl6 = pow(2, 16);
87 #endif

88

89 // MAX44009 Variables

90 uint8_t lux[2], lux_exponent;

91 uint32_t maxLux;

92

93 //Other Variables

133

APPENDIX

94

95 uint32_t wake_time, on_time, ack_time;
96 float bat;

97 uint16_t temp16[2], huml6[2];

98 boolean negative;

99 uint8_t failedTrans = 0;

100 uint8_t paAdjust = 0;

101 uintl6_t pingCounter = 1;

102

103 struct mydata {

104 uint8_t iddata;
105 float tempdata;
106 float humdata;
107 uint32_t lightdata;

108 }; mydata data;
109 struct compData {

110 uintl16_t idLight;
111 uint32_t humTemp;
112 uintl6_t bat;
113 uintl6_t pres;
114 uintl6_t gas;

115 }; compData compData;
116 struct sendData {

117 uint8_t id;

118 uint8_t power_level;
119 uint16_t light;

120 uint16_t hum;

121 intl6_t temp;

122 uintl6_t bat;

123 uintl6_t pres;

124 uintl6_t gas;

125 uint16_t packetNR;

126 }; sendData sendData;
127 void setup() {

128 sendData.id = MY_ID;

129 sendData.packetNR = O;

130 DEBUG_SERIAL_BEGIN(115200);

131 pinMode (8, OUTPUT) ;

132 pinMode (A0, INPUT);

133 DEBUG_PRINT("Startup Node: ");

134 DEBUG_PRINT1n(MY_ID);

135 #ifdef DEBUG

136 printf_begin();

137 #endif

138 radio_init();

139 scan_i2c_devices();

140 if (i2c_device[BME680_i2c][1]) {

141 bme680.init (BME680_ADDR); // I2C address: 0z76 or 0z77
142 bme680.reset () ;

143 bme680 . setOversampling (BME680_OVERSAMPLING_X1,
144 BME680_OVERSAMPLING_X2, BME680_OVERSAMPLING_X16);
145 bme680.setIIRFilter (BME680O_FILTER_1); // 3

146 delay(50);

147 }

148 if (i2c_device[HDC2010_i2c] [1]) {

149 hdc2010_init();

150 }

134

APPENDIX

151
152
153
154
155
156

158
159

161
162

if (i2c_device[MAX44009_i2c][1]) {

max_read();

}

void loop() {
on_time = millis();
get_sensor_data();
print_all();
send_data();

DEBUG_PRINT("On time = "); DEBUG_PRINT1n((millis() - on_time));

rtc_sleep(SLEEP_TIME) ;

A.1.1 BMEG680

[

(<

© 0w N O

10
11
12
13
14
15
16
17

Code A.2: BMEG680

void bme680_read() {
bmeTemp = bme680.readTemperature() ;
bmeHum = bme680.readHumidity() ;
bmePres = bme680.readPressure();
if (GAS_ON) {
// wait for measurment bit
delay (GAS_HEAT_DURATION + 5);
bmeGas = bme680.readGasResistance();
bme680.setGas0ff () ;

//bmeGasLvul = bme680_calc_taq();
gas_counter = 0;
GAS_ON = false;

A.1.2 HDC2010

© 0 N O Uk W N =

e e e e e
D TR W N = O

Code A.3: HDC2010

void hdc2010_init() {
Wire.beginTransmission(HDC2010_ADDR) ;
Wire.write(0xOE);
Wire.write(0x00) ;
Wire.endTransmission();

}

void hdc2010_ask_data() {
Wire.beginTransmission(HDC2010_ADDR) ;
Wire.write (0xOF) ;
Wire.write(OxA1);
Wire.endTransmission();

}

void hdc2010_read_hum() {
Wire.beginTransmission(HDC2010_ADDR) ;
Wire.write(0x02);

135

APPENDIX

17
18
19
20
21
22
23
24
25

27
28
29
30
31
32
33
34
35
36
37

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Wire.endTransmi
Wire.requestFro
hdc2010_datal[2]
hdc2010_datal[3]
Wire.endTransmi
hdc2010_humF =
hdc2010_humF =

}

void hdc2010_heat

for (uint8_t i

ssion();
m(HDC2010_ADDR, (uint8_t)2);
= Wire.read();
= Wire.read();
ssion();
hdc2010_datal[3] << 8 | hdc2010_datal[2];
(hdc2010_humF / powl6) * 100;

er (uint8_t duration) {
=0; i< 3; i) {

Wire.beginTransmission(HDC2010_ADDR) ;

Wire.write(Ox
Wire.write(Ox
Wire.endTrans

delay(duratio:

0E);
08);
mission() ;

n) ;

Wire.beginTransmission(HDC2010_ADDR) ;

Wire.write(0x
Wire.write(0x

Wire.endTrans

}

void hdc2010_read
Wire.beginTrans
Wire.write (0x00
Wire.endTransmi
Wire.requestFro
hdc2010_data[0]
hdc2010_datal[1]
hdc2010_data[2]
hdc2010_datal[3]
Wire.endTransmi
hdc2010_tempF =
hdc2010_tempF =

hdc2010_humF
hdc2010_humF =

0E);
00);

mission();

O {
mission(HDC2010_ADDR) ;
)s
ssion();
m(HDC2010_ADDR, (uint8_t)4);

= Wire.read();

= Wire.read();

= Wire.read();

= Wire.read();
ssion();

hdc2010_datal[1] << 8 | hdc2010_datal0];
((hdc2010_tempF / powl6) * 165 - 40);

hdc2010_data[3] << 8 | hdc2010_datal[2];
(hdc2010_humF / powl6) * 100;

A.1.3 MAX44009

void max_read() {
Wire.beginTrans
Wire.write(0x03

Wire.requestFro

Code A.4: MAX44009

mission(MAX_ADDR);
)
m(MAX_ADDR, (uint8_t)2);

lux[0] = Wire.read();
lux[1] = Wire.read(Q);

Wire.endTransmi
lux_exponent
1lux[0]

lux[1]

//luz_value

ssion();

((lux[0] >> 4) & 0x0F);
((Qux[0] << 4) & 0xF0);
&= 0xO0F;

= 0.045 * (luz_high + luz_low) * (1<< lux_exponent);

136

APPENDIX

15 maxLux = 45L * (lux[0] | lux[1]) * (1 << lux_exponent);
16 maxLux = maxLux / 1000;

17}

18

=

void rtc_sleep(uint16_t sleeptime) {

2 DEBUG_PRINT("Going to sleep for: ");

3 DEBUG_PRINT (sleeptime) ;

4 DEBUG_PRINT1n(" seconds\n");

5 //delay(3);

6 DEBUG_FLUSH() ;

7 uint16_t remainder = sleeptime;

8 uint8_t cycles;

9 while (remainder != 0) {

10 if (remainder >= 8) {

11 cycles = remainder / 8;

12 remainder = remainder J, 8;

13 for (uint8_t i = 0; i < cycles; i++) {
14 LowPower .powerDown (SLEEP_8S, ADC_OFF, BOD_OFF);
15 }

16 }

17 else if (remainder >= 4) {

18 cycles = remainder / 4;

19 remainder = remainder J, 4;

20 for (uint8_t i = 0; i < cycles; i++) {
21 LowPower . powerDown (SLEEP_4S, ADC_OFF, BOD_OFF);
22 }

23 }

24 else if (remainder >= 2) {

25 cycles = remainder / 2;

26 remainder = remainder 7 2;

27 for (uint8_t i = 0; i < cycles; i++) {
28 LowPower .powerDown (SLEEP_2S, ADC_OFF, BOD_OFF);
29 }

30 }

31 else if (remainder >= 1) {

32 cycles = remainder / 1;

33 remainder = remainder %, 1;

34 for (uint8_t i = 0; i < cycles; i++) {
35 LowPower . powerDown (SLEEP_1S, ADC_OFF, BOD_OFF);
36 }

37 }

38 else {

39 remainder = 0;

40 }

41 }

42 }

43 void get_sensor_data() {

44 digitalWrite(8, HIGH);

45 sendData.packetNR++;

46 if (i2c_device[BME680_i2c][1]) {

47 bmedelay = 14;

48 gas_counter++;

49 if (gas_counter >= GAS_READ_RATIO) {

50 GAS_ON = true;

51 bmedelay = bmedelay + GAS_HEAT_DURATION + 5;
52 }

137

APPENDIX

53 if (GAS_ON) {

54 bme680.setGasOn (GAS_HEAT_TEMP, GAS_HEAT_DURATION);
55 }

56 bme680.setForcedMode () ; bmeTime = millis();

57 }

58 if (i2c_device[HDC2010_i2¢c][1]) {

59 hdc2010_ask_data(); hdcTime = micros();

60 }

61 if (i2c_device[MAX44009_i2c][1]) {

62 max_read();

63 sendData.light = maxLux;

64 }

65 #ifdef ADC_SAMPLES

66 for (int i = 0; i < ADC_SAMPLES; i++) {

67 bat = bat + analogRead(A0);

68 }

69 bat = bat / ADC_SAMPLES;

70 bat = ((bat / 1024) * 3.3);

71 bat = bat * 2;

72 sendData.bat = bat * 100;

73 digitalWrite(8, LOW);

74 #endif

75 if (i2c_device[HDC2010_i2¢c][1]) {

76 while ((hdcTime + 600) > (micros())) {} //wait for hdc data
77 hdc2010_read () ;

78 hdc2010_tempF = hdc2010_tempF * 100;

79 sendData.temp = hdc2010_tempF;

80 hdc2010_humF = hdc2010_humF * 100;

81 sendData.hum = hdc2010_humF;

82 }

83 if (i2c_device[BME680_i2c][1]) {

84 while ((bmeTime + bmedelay) > (millis())) {3} //wait for bme data
85 bme680_read () ;

86 bmeTemp = bmeTemp * 100;

87 sendData.temp = bmeTemp;

88 bmeHum = bmeHum * 100;

89 sendData.hum = bmeHum;

90 sendData.gas = bmeGas / 10000; //bmeGas;// on_time;
91 sendData.pres = bmePres;

92 }

93 print_all();

94 }

95 void scan_i2c_devices() {

96 DEBUG_PRINT1n("I2C scan:");

97 for (uint8_t address = 0; address < 125; address++) {
98 Wire.beginTransmission(address) ;

99 error = Wire.endTransmission();

100 if (error == 0) {

101 for (uint8_t i = 0; i < MAX_I2C_DEVICES; i++) {
102 if (address == i2c_device[i][0]) {

103 i2c_device[i] [1] = true;

104 }

105 }

106 DEBUG_PRINT(F("Found device: 0x"));

107 DEBUG_PRINThex (address) ;

108 DEBUG_PRINT1n();

109 }

138

APPENDIX

110 }
111 DEBUG_PRINT1n();
112}

A.2 Multi-hop Code

Code A.5: Multi-hop Code

1 VAT 1T 3 3233 TTI23TTTITTITTILTIZTI 2T T34

2 ######E Nulti-hop Node #A#AAHHHHKAAARERIIAAE
3 REHBHABABHRRARA BRI RARRARRBRRRRIRRL SRR/
4 #define NODE 50

5 #define DEBUG

6 #define SEND_INTERVAL 3 // Multiples of 2s

7 #define GAS_HEAT_DURATION 200 // 200 // in millisec. from 63-4032
8 #define GAS_HEAT_TENP 300 //200 // from 200-400c
9 #define GAS_READ_RATIO 10

10 #define ADC_SAMPLES 10

11 #define MAX_I2C_DEVICES 5

12 #define BME680_ADDR 0z77

13 #define HDC2010_ADDR 0z41

14 #define MAX_ADDR Oz4B

15

16 #ifdef DEBUG

17 #define DEBUG_SERIAL_BEGIN(z) Serial.begin (z)
18 #define DEBUG_PRINT(z) Serial.print (z)

19 #define DEBUG_PRINThez(z) Serial.print (z,HEX)
20 #define DEBUG_PRINTln(z) Serial.println (z)
21 #define DEBUG_FLUSH(z) Serial.flush (z)

22 #else

23 #define DEBUG_SERIAL_BEGIN(z)

24 #define DEBUG_PRINT(z)

25 #define DEBUG_PRINThez(z)

26 #define DEBUG_PRINTIn(z)

27 #define DEBUG_FLUSH(z)

28 #endif

29

30 #include <Wire.h>

31 #include <SPI.h>

32 #include "nRF24L01.h"

33 #include "RF24.h"

34 RF24 radio(9, 10);

35 #include "printf.h"

36 #include "LowPower.h"

37 #include <Adafruit_Semsor.h>

38 #include "ClosedCube_ BME680.h"

39 ClosedCube_BME680 bme630;

40

41 //following is used as ID's and "pipes”

42 #define master 0z00

43 #define br_addr Ozff //Broadcast address

44 #define max_neighbors 10

45

46 //I2C scan Variables

47 enum {

48 HDC2010_i2c,

139

APPENDIX

94
95
96
97
98
99
100
101
102
103
104
105

MAX44009_i2c,
BME680_i2c
};
uint8_t i2c_device [MAX_I2C_DEVICES] [2]
{HDC2010_ADDR, false},
{MAX_ADDR, false},
{BME680_ADDR, false}
};
uint8_t devices[10];

uint8_t error;

//BME680 Variables
#ifdef BME680_ADDR
uint16_t bmedelay;
unsigned long bmeTime;
uintl16_t bmePres;
float bmeTemp, bmeHum;
uint32_t bmeGas;
uint8_t bmeGasLvl;
bool GAS_ON = false;
uint8_t gas_counter = 10;
#endif

//HDC2010 Variables

#ifdef HDC2010_ADDR

unsigned long hdcTime;

float hdc2010_tempF, hdc2010_humF;
uint8_t hdc2010_datal4];

const double powl6 = pow(2, 16);
#endif

// MAX4{4009 Variables

#ifdef MAX_ADDR

uint8_t lux[2], lux_exponent;
uint32_t maxLux;

#endif

//0ther Variables

float bat;

uint16_t temp16[2], humi6[2];
boolean negative;

uint8_t failedTrans = 0;
uint8_t paAdjust = 0;
uint16_t pingCounter = 1;

typedef struct data_msg {
uint8_t destID;
uint8_t sourcelD;
uint8_t hops;
uint16_t packetNR;
uintl6_t light;
uint16_t hum;
uintl6_t temp;
uintl6_t bat;
uintl6_t pres;
uintl6_t gas;

}; data_msg msg;

140

APPENDIX

106 typedef struct br_msg {

107 uint8_t id;

108 uint8_t hops;

109 }; br_msg wake_msg;

110

111 unsigned long current_millis, timeout_millis, relaytime_millis, sink_timer = 0;
112 unsigned long ack_micros;

113

114 // Radio wvariables

115 uint64_t pipe = O0xf0f0f0f0Oel;
116 uint16_t packetNR = O;

117 uint8_t my_hops_to_sink = 254;
118 uint8_t send_counter = 0;

119 bool channel_idle = false;

120 bool ack = false;

121

122 void setup() {

123 DEBUG_SERIAL_BEGIN(57600) ;

124 initRadio();

125 pinMode (8, OUTPUT);

126 pinMode (A0, INPUT);

127 scan_i2c_devices();

128 if (i2c_device[BME680_i2c]1[1]) {

129 bme680.init (BME68O_ADDR) ; // I2C address: 0z76 or 0z77
130 bme680.reset () ;

131 bme680. setOversampling (BME680_OVERSAMPLING_X1, BME680_OVERSAMPLING_X2, BME680_OVERSAMPLING_X16);// 1,2,16
132 bme680.setIIRFilter (BMEGSO_FILTER_1); // 3
133 delay(50);

134 }

135 if (i2c_device[HDC2010_i2¢c][1]) {

136 hdc2010_init () ;

137 //hdc2010_heater();

138 }

139 if (i2c_device[MAX44009_i2c][1]1) {

140 max_read() ;

141 }

142 DEBUG_FLUSH() ;

143}

144 void loop() {

145 if (send_counter < SEND_INTERVAL) {

146 wake_ping() ;

147 }

148 else {

149 get_sensor_data();

150 wait_to_send();

151 send_counter = 0;

152 }

153 radio.powerDown() ;

154 LowPower .powerDown (SLEEP_2S, ADC_OFF, BOD_OFF);
155 radio.powerUp();

156 send_counter++;

157 X

158 void wake_ping() {

159 DEBUG_FLUSH() ;

160 wake_msg.id = NODE;

161 wake_msg.hops = my_hops_to_sink;

162 radio.stopListening() ;

141

APPENDIX

163
164
165
166
167
168

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

186
187

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219

carrier_sense();
radio.write(&wake_msg, sizeof (wake_msg));
radio.startListening();
wait_for_response();
}
void send_ack() {
radio.stopListening() ;
delay(1);
radio.write(&msg.sourcelD, sizeof (msg.sourcelD));
radio.startListening();
}
void wait_for_ack(uint8_t sourceID) {
ack = false;
uint8_t recByte;
ack_micros = micros();
while (micros() - ack_micros < 3000) {
if (radio.available()) {
if (radio.getDynamicPayloadSize() == sizeof (recByte)) {
radio.read(&recByte, sizeof (recByte));
if (recByte == sourceID) {

ack = true;

}
void send_packet() {
radio.stopListening();
if (!radio.write(&msg, sizeof(msg))) {
DEBUG_PRINT1n("TX failed...");
DEBUG_FLUSHQ) ;
}
radio.startListening();
}
void carrier_sense() {
channel_idle = false;
radio.startListening();
delayMicroseconds(128) ;
radio.stopListening();
if (!radio.testCarrier()) {
DEBUG_PRINT1n("Channel IDLE");
channel_idle = true;
}
else {
DEBUG_PRINT1n("BUSY");

}

void print_data() {
DEBUG_PRINT("Message received with source: "); DEBUG_PRINT1n(msg.sourcelD);
DEBUG_PRINT("Hops = "); DEBUG_PRINT1n(msg.hops);
DEBUG_PRINT ("Temperature = "); DEBUG_PRINT1n(msg.temp);
DEBUG_PRINT("Humidity = "); DEBUG_PRINT1ln(msg.hum);
DEBUG_PRINT("Battery = "); DEBUG_PRINT1n(msg.bat);
DEBUG_FLUSHQ) ;

}

void bme680_read() {
bmeTemp = bme680.readTemperature() ;

142

APPENDIX

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

bmeHum
bmePres
if (GAS

delay

= bme680.readHumidity();
= bme680.readPressure();
_on) {
(GAS_HEAT_DURATION+5) ;

bmeGas = bme680.readGasResistance();

bme68
gas_c
GAS_O

}

void hdc2
Wire.be
Wire.wr
Wire.wr
Wire.en

}

void hdc2
Wire.be
Wire.wr
Wire.wr
Wire.en

}

void hdc2
Wire.be

Wire.wr

0.setGas0ff();
ounter = 0;
N = false;

010_init) {
ginTransmission(HDC2010_ADDR) ;
ite (0x0E) ;

ite(0x00);

dTransmission() ;

010_ask_data() {
ginTransmission(HDC2010_ADDR) ;
ite (0x0F) ;

ite(0xA1);

dTransmission();

010_read_hum() {
ginTransmission(HDC2010_ADDR) ;
ite(0x02);

Wire.endTransmission();

Wire.re
hdc2010
hdc2010

questFrom(HDC2010_ADDR, (uint8_t)2);
_data[2] = Wire.read();
_datal[3] = Wire.read();

Wire.endTransmission();

hdc2010
hdc2010

}
void hdc2
for (ui
Wire.
Wire.
Wire.

Wire.

_humF = hdc2010_data[3] << 8 | hdc2010_datal[2];
_humF = (hdc2010_humF / powl6) * 100;

010_heater() {

nt8_t i = 0; 1 < 3; i++) {
beginTransmission(HDC2010_ADDR) ;
write (0x0E) ;

write (0x08);

endTransmission();

delay(10);

Wire
Wire
Wire
Wire.
hdc20

.beginTransmission(HDC2010_ADDR) ;
.write (0x0E);
.write (0x00);

endTransmission();
10_ask_data();

delay(30);

hdc20

10_read();

//hdc2010_read_hum() ;
DEBUG_PRINT (F("HDC2010Temp: "));
DEBUG_PRINT1n (msg. temp) ;
DEBUG_PRINT(F ("HDC2010Hum: "));
DEBUG_PRINT1n(msg.hum) ;
delay(1000) ;

}
void hdc2

Wire.be

010_read() {
ginTransmission(HDC2010_ADDR) ;

143

APPENDIX

277
278
279
280
281
282

284
285

287
288
289
290
291
292
293
294
295
296
297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

Wire.write(0x00)

Wire.endTransmission();
Wire.requestFrom(HDC2010_ADDR, (uint8_t)4);
hdc2010_datal[0] = Wire.

hdc2010_datal[1]
hdc2010_data[2]
hdc2010_datal[3]

Wire.
Wire.

Wire.

Wire.endTransmission();
hdc2010_data[1] << 8 | hdc2010_datal0];
hdc2010_tempF = ((hdc2010_tempF / powl6) * 165 - 40);

hdc2010_tempF =

read();
read();
read();
read();

hdc2010_humF = hdc2010_data[3] << 8 | hdc2010_datal[2];
hdc2010_humF = (hdc2010_humF / powl6) * 100;

}

void scan_i2c_devices() {

DEBUG_PRINTIn("I2C scan:");

for (uint8_t address =

0; address < 125; address++) {

Wire.beginTransmission(address);

error = Wire.endTransmission();

if (error == 0) {
for (uint8_t i = 0; i < MAX_I2C_DEVICES; i++) {
if (address == i2c_device[i][0]) {

i2c_device[i] [1] = true;

}

DEBUG_PRINT(F("Found device: 0x"));
DEBUG_PRINThex (address) ;
DEBUG_PRINT1n() ;

}
DEBUG_PRINT1n() ;
}

void max_read() {

Wire.beginTransmission(MAX_ADDR) ;

Wire.write(0x03)

Wire.requestFrom(MAX_ADDR, (uint8_t)2);
1lux[0] = Wire.read();
lux[1] = Wire.read();

Wire.endTransmission();

lux_exponent
1lux[0]

((lux[0] >> 4) & 0x0F);
((lux[0] << 4) & 0xFO0);

lux[1] &= 0xOF;
//luz_value = 0.045 # (luz_high + luz_low) * (1<< luz_ezponent);
maxLux = 45L * (lux[0] | lux[1]) * (1 << lux_exponent);

maxLux = maxLux / 1000;

}

void get_sensor_data() {

packetNR++;

digitalWrite(8, HIGH);
msg.packetNR = packetNR;

msg.sourceID = NODE;

msg.hops = 0;

if (i2c_device[BME680_i2c][1]) {

bmedelay = 14;

gas_counter++;

144

APPENDIX

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

if (gas_counter >= GAS_READ_RATIO) {
GAS_ON = true;
bmedelay = bmedelay + GAS_HEAT_DURATION + 5;
}
if (GAS_ON) {
bme680 . setGasOn(GAS_HEAT_TEMP, GAS_HEAT_DURATION);
}
bme680.setForcedMode () ; bmeTime = millis();
}
if (i2c_device[HDC2010_i2c]1[1]) {
hdc2010_ask_data(); hdcTime = micros();
}
if (i2c_device[MAX44009_i2c]1[11) {
max_read();
msg.light = maxLux;
}
#ifdef ADC_SAMPLES
for (int i = 0; i < ADC_SAMPLES; i++) {
bat = bat + analogRead(A0);
}
bat = ((bat / ADC_SAMPLES) / 1024) * 3.3 * 2;
msg.bat = bat * 100;
digitalWrite(8, LOW);
#endif
if (i2c_device[HDC2010_i2c]1[1]) {
while ((hdcTime + 300) > (micros())) {} //wait for hdc data
hdc2010_read () ;
hdc2010_tempF = hdc2010_tempF * 100;
msg.temp = hdc2010_tempF;
hdc2010_humF = hdc2010_humF * 100;
msg.hum = hdc2010_humF;
}
if (i2c_device[BME680_i2c][1]) {
while ((bmeTime + bmedelay) > (millis())) {} //wait for bme data
bme680_read() ;
msg.temp = bmeTemp * 100;
msg.hum = bmeHum * 100;
msg.gas = bmeGas / 10000; //bmeGas;// on_time;

msg.pres = bmePres;

}

void initRadio() {
radio.begin();
radio.setCRCLength (RF24_CRC_16) ;
radio.setPALevel (RF24_PA_MIN);
radio.setDataRate (RF24_1MBPS) ;
radio.setChannel(124);
radio.enableDynamicPayloads() ;
radio.setRetries(0, 0);
radio.setAutoAck(false);
radio.openWritingPipe (pipe);
radio.openReadingPipe(1, pipe);
radio.powerDown() ;

}

void wait_for_response() {
current_millis = millis();

while (millis() - current_millis < 10) { // 7 lowest working

145

APPENDIX

391
392
393
394
395
396
397
398
399

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

436
437
438
439
440
441
442
443
444
445
446
447

if (radio.available()) {

if (radio.getDynamicPayloadSize() == sizeof(msg)) {

radio.read(&msg, sizeof (msg));

send_ack();

DEBUG_PRINT("Message received with source: "); DEBUG_PRINT1n(msg.sourcelD);
DEBUG_PRINT("Hops = "); DEBUG_PRINT1n(msg.hops);

DEBUG_PRINT("Temperature = "); DEBUG_PRINT1n(msg.temp);

DEBUG_PRINT ("Humidity = "); DEBUG_PRINT1n(msg.hum);

DEBUG_PRINT("Battery = "); DEBUG_PRINT1ln(msg.bat);

DEBUG_FLUSHQ) ;
msg.hops++;
wait_to_send();
break;

}

if (!(radio.getDynamicPayloadSize() == sizeof(msg))) {

radio.flush_rx();

}
radio.stopListening();
}
void wait_to_send() {

timeout_millis = millis();

if (my_hops_to_sink == 1) { // Sink is my nezt hop, send now

radio.stopListening();
channel_idle = false;
ack = false;
uint8_t retry = 6;
while (lack) {
while (!channel_idle) {
carrier_sense();
}
send_packet () ;
wait_for_ack(msg.sourcelD);
retry--;
if (lretry) {
my_hops_to_sink++;

break;

}
while (my_hops_to_sink > 1) {
if (radio.available()) {

if (radio.getDynamicPayloadSize() == sizeof (wake_msg)) {

radio.read(&wake_msg, sizeof (wake_msg));

DEBUG_PRINT("ID = ");

DEBUG_PRINT1n(msg.sourcelD);

DEBUG_FLUSH() ;

if (wake_msg.hops < my_hops_to_sink) {
my_hops_to_sink = wake_msg.hops + 1;
msg.destID = wake_msg.id;
delayMicroseconds (100 * random(1l, 4));
DEBUG_PRINT("Waited: ");

//random delay to avoid collisions

DEBUG_PRINT1n(millis() - timeout_millis);

DEBUG_FLUSHQ) ;
DEBUG_PRINT("Sending data to ");
DEBUG_PRINThex (msg.sourcelD) ;

146

APPENDIX

448
449
450
451
452
453
454
455
456
457
458
459

461
462
463
464
465
466
467
468
469

471
472

474
475

477
478
479
480
481

DEBUG_PRINT1n();
DEBUG_FLUSHQ) ;
radio.stopListening();
carrier_sense();
if (channel_idle) {
send_packet();
wait_for_ack(msg.sourcelID);
if (ack) {
break;
¥
else {

timeout_millis = millis();

}
else {

timeout_millis = millis();

}
else if (radio.getDynamicPayloadSize() != sizeof (wake_msg)) {

radio.flush_rx();

¥
if ((millis() - timeout_millis > 2200) && (my_hops_to_sink < 254)) {
my_hops_to_sink++;
send_counter++;
timeout_millis = millis();
DEBUG_PRINT("Timeout! Hops = ");
DEBUG_PRINT1n(my_hops_to_sink) ;
DEBUG_FLUSH() ;

}
wake_ping();
}

A.3 ESP32 with nRF24101 Gateway

© 00 N O U W N

_ e
= o

12
13
14
15
16
17

Code A.6: ESP32 with nRF24101 Gateway

VAT I T2 R T d s R T TLFTITILTLZEITITTIFTIZTLTIZTIZITTLE

ESP32 W/nRF24101+ Star/Multi-hop Gateway ########E

EEE S E ST E S FEETETEEEEEEEEEEIE ST S EEETEEETE ST LT T ETEE ST 2V
#include <WiFi.h>
#include <PubSubClient.h>
#include "RF24.h"
RF24 radio(16, 17);
//#define MULTIHOP_GATEWAY
//#define DEBUG

#ifdef DEBUG
#define DEBUG_SERIAL_BEGIN(z) Serial.begin (z)
#define DEBUG_PRINT(z) Serial.print (z)
#define DEBUG_PRINTln(z) Serial.println (z)
#else

#define DEBUG_SERIAL_BEGIN(z)

#define DEBUG_PRINT(z)

147

APPENDIX

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

74

#define DEBUG_PRINTln(z)

#endif

#define mqtt_server "192.168.0.10"

#define mqtt_user "pi"

#define mqtt_password "raspberry

"

uint16_t lastpacket[60];

uint8_t recArray[20];

struct recData {
uint8_t destID;
uint8_t sourcelD;
uint8_t PA_OR_HOPS;
uint16_t packetNR;
uintl16_t light;
uint16_t hum;
intl6_t temp;
uintl6_t bat;
uintl6_t pres;
uintl6_t gas;

}; recData recData;

typedef struct br_msg {

uint8_t id;
uint8_t hops;
}; br_msg wake_msg;
//nRF2/ Variables
byte pipeNo;

uint64_t pipe = O0xf0f0f0f0el;

bool ack = false;

uint8_t radio_status, ackID = 0, ack_num;

char *topicBuf = (char*)malloc(10);

char *varBuf = (char*)malloc(35);

const char *topicConst;

const char *varConst;
const char* ssid

const char* password

WiFiClient espClient;

"dlink-8410";
"vkwix58592";

PubSubClient client(espClient);

uintl6_t templ16, huml6, lux16;

uint8_t datal[20];
uint8_t bytelNR;
long lastMsg = 0;
float temp = 5;
float hum = 5;
float bat = 5;

unsigned long wake_ping_timer;

void setup_wifi() {
delay(10);
WiFi.mode (WIFI_STA)

>

WiFi.begin(ssid, password);

DEBUG_PRINT("Wi-Fi");

while (WiFi.status()

delay(500) ;
DEBUG_PRINT(".");

!= WL_CONNECTED)

148

APPENDIX

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

DEBUG_PRINT1n("Connected");

}

void setup()

{

DEBUG_SERIAL_BEGIN(115200);

DEBUG_PRINT1n("start");

delay(10);
setup_wifi();

client.setServer(mqtt_server,

reconnect () ;

radio_init();

wake_msg.id = 0;

wake_msg.hops = 0;
#ifdef MULTIHOP_GATEWAY

wake_ping_timer = millis();
#endi f

}

void loop()

{

if (radio.available()) {
if (!(radio.getDynamicPayloadSize()

}

radio.flush_rx();

1883) ;

else { // Received data packet

radio.read(&recArray, sizeof(recData));

}

== sizeof(recData))) {//not correct packet

if (lastpacket[recData.sourceID] == recData.packetNR) {

}

//Dont publish duplicate

send_ack();
else {

send_ack();

lastpacket [recData.sourceID] =

publish_mqtt();

#ifdef MULTIHOP_GATEWAY
if ((wake_ping_timer + 1500) < millis()) {

radio.stopListening();

recData.packetNR;

radio.write(&wake_msg, sizeof (wake_msg));

radio.startListening();

wake_ping_timer = millis();

}

#endif

}

void publish_mqtt() {

DEBUG_PRINT (" ######Sensor:

")

DEBUG_PRINT (String(recData.id) .c_str());

DEBUG_PRINTLn ("######") ;
DEBUG_PRINT ("Power level:

")

DEBUG_PRINT1n(recData.power_level);

temp = recData.temp;

temp = temp / 100;

hum

hum

lux16

bat
bat

1]

recData.hum;
hum / 100;

= recData.light;
recData.bat;

bat / 100;

149

APPENDIX

DEBUG_
DEBUG_PRINT1n(String(recData.light).c_str());

PRINT("New lux: ");

DEBUG_PRINT("New temperature: ");

DEBUG_PRINT1n(String(temp).c_str());

DEBUG_PRINT("New humidity: ");
DEBUG_PRINT1n (hum) ;
DEBUG_PRINT("New bat: ");

DEBUG_
DEBUG_
DEBUG_

PRINT1n(recData.bat);
PRINT("Packet NR: ");
PRINT1n(recData.packetNR) ;

if (WiFi.status() !'= WL_CONNECTED)
setup_wifi();

}

if (!client.connected()) {

reconnect () ;

}

client.loop();
delay(10);

sprintf (topicBuf, "node’i/", recData.sourcelD);
sprintf (varBuf, "%i,%.2f,%.2f,%i,%.2f,%1,%1,%1,%1",

recData.sourcelID, temp, hum, recData.light, bat, recData.pres,
recData.gas, recData.packetNR, recData.PA_OR_HOPS);

topicConst = topicBuf;

varConst = varBuf;

client.publish(topicConst, varConst, true);

}

void reconnect() {

// Loop until we're reconnected

DEBUG_

while
/7

PRINT("MQTT") ;

('client.connected()) {

DEBUG_PRINT("Attempting MQTT connection...");
if (client.connect("ESP8266Client", mqtt_user, mqtt_password)) {

DEBUG_PRINT1n("connected");
} else {
DEBUG_PRINT(client.state());

}

void radio_init() {

radio.

radio.

radio

radio.

radio.

radio

radio

radio.

radio

radio.

radio.

}

begin();
setCRCLength (RF24_CRC_16) ;

.setPALevel (RF24_PA_MAX);

setDataRate (RF24_1MBPS) ;
setChannel (0x76) ;

.enableDynamicPayloads();
.setRetries(0, 0);

setAutoAck(false);

.openWritingPipe(pipe) ;

openReadingPipe(1, pipe);

startListening();

void send_ack() {
#ifndef MULTIHOP_GATEWAY

if ((recData.PA_OR_HOPS >= 0) && (recData.PA_OR_HOPS <= 3)) {
radio.setPALevel (recData.PA_OR_HOPS) ;

150

APPENDIX

189
190
191
192
193
194

196
197

DEBUG_PRINT("ack PA level: ");
DEBUG_PRINT1n(recData.PA_OR_HOPS);
#endif
delayMicroseconds (2500) ;
radio.stopListening();
radio.write(&recData.sourcelID, sizeof (recData.sourceID));

radio.startListening();

A.4 ESP32 with nRF52840 gateway

© o N O U e W N e

R W W W W W W W W W W NN NN NN NN NN e e e e e e e e
H O © 0 N O O ks W NN = O © 0 N O O ok WD H O © 0N o0 ok W N = O

Code A.7: ESP32 with nRF52840 gateway
VAT EZEZE 25T TETTETEETEEETETETTTEEETSTEEETEES
#H#HHHHESP32 /w nRF52840 Gateway #HE###A#LY
HERBHABABARRARABHGRABARARRARABHERARRRAR RS F/
#include <WiFi.h>
#include <PubSub(Client.h>
#include "HardwareSerial.h"
HardwareSerial Serial2(2);
#define DEBUG

#ifdef DEBUG

#define DEBUG_SERIAL_BEGIN(z) Serial.begin (z)
#define DEBUG_PRINT(z) Serial.print (z)
#define DEBUG_PRINTln(z) Serial.println (z)
#else

#define DEBUG_SERIAL_BEGIN(z)

#define DEBUG_PRINT(z)

#define DEBUG_PRINTLln(z)

#endif

#define mqtt_server "m23.cloudmgtt.com"”
#define mqtt_user "qqzzyeqz"
#define mqtt_password "9P_dFROEu3JP"

char *topicBuf = (char*)malloc(20);
char *varBuf = (char*)malloc(40);
const char *topicConst;

const char *varConst;

const char* ssid = "dlink-8410";

const char* password = "vkwix58592";

WiFiClient espClient;

PubSubClient client(espClient);

unsigned long client_timer;

uintl6_t light16, huml6, batl6, presl6, gasl6, packetNR;
int16_t templ6;

float tempF, humF, batF;

uint8_t bat;

uint8_t discard;;

uint8_t datal[20];

uint8_t bytelNR;

151

APPENDIX

42 long lastMsg = 0O;
43 float temp = 5;

44 float hum = 5;

45 int id = 1;

46 int lux;

47 byte firstByte;

48

49 void setup_wifi() {

50 delay(10);

51 WiFi.mode (WIFI_STA);

52 WiFi.begin(ssid, password);

53 DEBUG_PRINT("Wi-Fi");

54 while (WiFi.status() !'= WL_CONNECTED) {

55 delay(500) ;

56 DEBUG_PRINT(".");

57 }

58 DEBUG_PRINT1n("Connected");

59 //Serial2. flush();

60 }

61 void setup()

62 {

63 DEBUG_SERIAL_BEGIN(115200) ;

64 Serial2.begin(115200, SERIAL_8N1, 16, 17);
65 DEBUG_PRINT1n("start");

66 delay(10);

67 setup_wifi();

68 client.setServer(mqtt_server, 12039); // 1883
69 reconnect () ;

70}

71 void loop()

72 o

73 if ((Serial2.available() > 7)) { // wait for 6 bytes or timeout
74 if (Serial2.read() == 155) {

75 data[0] = Serial2.read();

76 for (int i = 1; i < data[0] + 2; i++) {
77 datal[i] = Serial2.read();

78 }

79 while (Serial2.available()) {

80 Serial2.read();

81 }

82 publish_mqtt();

83 for (int i = 0; i < 20; i++) {

84 datal[i] = 0;

85 }

86 }

87 }

88 }

89 void publish_mqtt() {

90 DEBUG_PRINT1n("Got data!");

91

92 datal[3] = datal3]; //ID

93 datal4] = datal4l; // PLVL for star / hops for multihop
94 packetNR = data[5] << 8 | datal6];

95 bat16 = datal[7] << 8 | datal[8];

96 batF = batl6;

97 batF = batF / 1000;

98 light16 = data[9] << 8 | datal[10];

152

APPENDIX

99 templ6 = datal[11] << 8 | datal[12];

100 tempF = templ6;

101 tempF = tempF / 100;

102 hum16 = data[13] << 8 | datal[14];

103 humF = humil6;

104 humF = humF / 100;

105 pres16 = data[15] << 8 | data[16];

106 gas16 = datal[17] << 8 | datal18];

107 // Send sensor data to Raspberry Pi server //
108

109 DEBUG_PRINT ("####Sensor: ");

110 DEBUG_PRINT (data[3]);

111 DEBUG_PRINTL1n ("####") ;

112 DEBUG_PRINT("Power Level: ");

113 DEBUG_PRINT1n(datal4]);

114 DEBUG_PRINT ("PacketNR: ");

115 DEBUG_PRINT1n (packetNR) ;

116 DEBUG_PRINT("Battery: ");

117 DEBUG_PRINT1n(bat16) ;

118 DEBUG_PRINT("Light: ");

119 DEBUG_PRINT1n(light16);

120 DEBUG_PRINT("Temperature: ");

121 DEBUG_PRINT1n(temp16 / 100);

122 DEBUG_PRINT ("Humidity: ");

123 DEBUG_PRINT1n (humi16 / 100);

124 DEBUG_PRINT("Pressure: ");

125 DEBUG_PRINT1n(pres16) ;

126 DEBUG_PRINT("Gas: ");

127 DEBUG_PRINT1n(gas16) ;

128

129 if (WiFi.status() != WL_CONNECTED) {

130 setup_wifi();

131 }

132 if (!client.connected()) {

133 reconnect();

134 }

135 client.loop();

136 delay(10);

137 if ((pres16 != 0) && (gasi6 != 0)) {

138 sprintf (topicBuf, "nodeli/", datal3]);

139 sprintf (varBuf, "%i,%.2f,%.2f,%1,%.2f,%1i,%1,%1,%1", datal[3],
140 tempF, humF, light16, batF, presl16, gas16, packetNR, datal[4]);
141 topicConst = topicBuf;

142 varConst = varBuf;

143 client.publish(topicConst, varConst, true);
144 } else {

145 sprintf (topicBuf, "node%i/", datal[3]);

146 sprintf (varBuf, "%i,%.2f,%.2f,%i,%.2f,%s,%s,%i,%1i", datal3],
147 tempF, humF, lightl6, batF, "N/A", "N/A", packetNR, data[4]);
148 topicConst = topicBuf;

149 varConst = varBuf;

150 client.publish(topicConst, varConst, true);
151 }

152}

153 void reconnect() {
154 // Loop until we're reconnected
155 DEBUG_PRINT ("MQTT");

153

APPENDIX

156 while (!client.connected()) {

157 // DEBUG_PRINT("Attempting MQTT connection...");

158 if (client.connect("ESP8266Client", mqtt_user, mqtt_password)) {
159 DEBUG_PRINT1n("connected") ;

160 } else {

161 }

162 }

163}

154

Appendix B

nRF52840 Code

B.1 Star Node

Code B.1: Star Code

1 JRERRRERBRRRARARAR AR RRLRERRARA BB HAE

2 ##### Star Node #AHA#HHAHAXAHAARHAREHARHAAY

3 RELBHARARERRARA BRI RLR R E BRI RR LR/
4 #define NRF_LOG_ENABLED 1 // enable/disable prints
5 #define NODE 112

6 #define START_PA 10 // Initial power level

7 #define ENABLE_PIN NRF_GPIO_PIN_MAP(1, 8) // Battery sensing enable pin
8 #define SEND_INTERVAL APP_TIMER_TICKS(60 * 1000)
9 #define GAS_READ_RATIO 10

10 #define HDC2010_ADDR (0xz41)

11 #define MAX_ADDR (0z4b)

12 #define RSSI_LOWER_LIMIT 85

13 #define RSSI_UPPER_LIMIT 75

14 #define SAMPLES_IN_BUFFER 1

15 #define ADC_FACTOR 5390.625 // Precalculated ADC factor
16

17 #include "app_error.h”

18 #include "app_timer.h"

19 #include "boards.h"

20 #include "bsp.h"

21 #include "mordic_common.h"

22 #include "nrf_bme680.h"

23 #include "nrf_delay.h"

24 #include "nrf_drv_clock.h"

25 #include "nrf_drv_ppi.h"

26 #include "nrf_drv_saadc.h”

27 #include "nrf_drv_twi.h"

28 #include "nrf_error.h”

29 #include "nrf_gpio.h"

30 #include "nrf_log.h"

31 #include "nrf_log_ctrl.h"”

32 #include "nrf_log_default_backends.h”

33 #include <math.h>

34 #include <stdbool.h>

35 #include <stdint.h>

36 #include <stdio.h>

155

APPENDIX

37 #include <string.h>

38

39 #ifndef TWI_INSTANCE_ID

40 #define TWI_INSTANCE_ID 0

41 static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);
42 #endif

43 //Battery Sense Varaibles

44 static nrf_saadc_value_t m_buffer [SAMPLES_IN_BUFFER];

45 float batF;

46 uintl6_t batl6;

47 bool ADC_DONE;

48

49 // Time wariables

50 uint32_t tot_sleep, bme_start, bme_wait,

51 hdc2010_start, hdc2010_wait, gas_start, gas_wait, start_time, stop_time;
52 //i2c scan variables

53 enum {

54 HDC2010_i2c,

55 MAX44009_i2c,

56 BME680_i2c,

57 LAST_I2C

58 };

59 uint8_t i2c_device[LAST_I2C][2] = {

60 {HDC2010_ADDR, false}, //HDC2010 65 in dec
61 {MAX_ADDR, false}, //MAX44009 75 in dec
62 {BME_ADDR, false} //BME680 119 in dec
63 };

64

65 //BME680 Variables

66 bool GAS_ON = false;

67 uint8_t gas_counter = GAS_READ_RATIO - 2;
68 uint8_t bme_read_time = 12; //millis

69 uint8_t gas_read_time = GAS_HEAT_DURATION + 1;
70

71 //HDC2010 Variables

72 uint16_t hdc2010_read_time = 600; //micros
73 uintl16_t hdc2010_humil6;

74 int16_t hdc2010_templ6;

75 float hdc2010_tempF, hdc2010_humF;

76 uint8_t hdc2010_datal4];

77 uint8_t hdc2010_temp_data[2], hdc2010_hum_datal[2];
78 static double powl6;

79

80 //MAX wariables

81 uint8_t max_lux[2];

82 uint8_t max_lux_exponent;

83 uint8_t max_reg = 0x03;

84 uint32_t max_light;

85 uint16_t max_light16;

86

87 //Radio Variables

88 enum radio_mode {

89 CODED,
90 Mbit_1,
91 Mbit_2
92 };

93 enum data_type {

156

APPENDIX

94 WAKE_TYPE,

95 DATA_TYPE,

96 ACK_TYPE

97 };

98 uint8_t powerLVL[11] = {
99 0xD8UL, // -40 dbm
100 0xECUL, // -20 dbm
101 0xF4UL, // -12 dbm
102 0xFCUL, // -4 dbm
103 0xOUL, // 0 dbm
104 0x2UL, // 2 dbm
105 0x4UL, // 3 dbm
106 0x5UL, // 5 dbm
107 0x6UL, // 6 dbm
108 0x7UL, // 7 dbm
109 0x8UL // 8 dbm
110 };

111 uint8_t currentPL = START_PA;

112 bool channel_idle = false;

113 uint16_t packetNR = O;

114 uint8_t radio_mem[20];

115 uint8_t dataArray[25];

116 uint8_t RSSI;

117 uint8_t pre0[4], prell4];

118 uint32_t pre_addr0O, pre_addrl, baseO, basel;
119 uint64_t ack_timer;

120 bool ack;

121 uint8_t ack_num;

123 APP_TIMER_DEF (wakeup_timer) ;
124 APP_TIMER_DEF (sleep_timer) ;

126 //Function declarations

127 static void wakeup(void *p_context);

128 void radio_setup(uint8_t mode);

129 void start_HFCLKQ);

130 void delay_sleep_ms(uint32_t sleep_time);
131 void start_listening();

132 void stop_radio();

133 void send_data();

134 void wait_for_ack();

135 void flush_radio_mem() {

136 for (int i = 0; i < sizeof(radio_mem); i++) {

137 radio_mem[i] = O;

138 }

139}

140 uint32_t millis() {

141 return (app_timer_cnt_get() / 32.768);

142}

143 uint32_t micros() {

144 return (app_timer_cnt_get() / 0.032786);

145 }

146 void saadc_callback(nrf_drv_saadc_evt_t const *p_event) {
147 if (p_event->type == NRF_DRV_SAADC_EVT_DONE) {

148 ret_code_t err_code;

149

150 err_code = nrf_drv_saadc_buffer_convert (p_event—>data.done.p_buffer,

157

APPENDIX

151
152
153
154
155
156

158
159

161
162

164
165
166
167
168
169
170
171
172

174
175

177
178
179
180
181
182
183
184
185
186
187
188

190
191
192
193

SAMPLES_IN_BUFFER) ;
APP_ERROR_CHECK (err_code) ;
int i;
batF = 0;
for (i = 0; i < SAMPLES_IN_BUFFER; i++) {
batF = batF + p_event->data.done.p_buffer[i];
}
batF = batF * ADC_FACTOR;
batl6 = batF;
NRF_LOG_INFO("battery voltage is %d", batF);
nrf_gpio_pin_clear (ENABLE_PIN);
ADC_DONE = true;

}

void saadc_init(void) {

ret_code_t err_code;

nrf_saadc_channel_config_t channel_config =
NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE (NRF_SAADC_INPUT_AIN4);

channel_config.gain = SAADC_CH_CONFIG_GAIN_Gainl;

err_code = nrf_drv_saadc_init(NULL, saadc_callback);
APP_ERROR_CHECK (err_code) ;

err_code = nrf_drv_saadc_channel_init (0, &channel_config);
APP_ERROR_CHECK (err_code) ;

err_code = nrf_drv_saadc_buffer_convert(m_buffer, SAMPLES_IN_BUFFER);
APP_ERROR_CHECK (err_code) ;

}

void i2c_init(void) {

nrf_drv_twi_config_t twi_config;

twi_config.sda ARDUINO_SDA_PIN;

twi_config.scl = ARDUINO_SCL_PIN;
twi_config.frequency = NRF_TWI_FREQ_100K;
twi_config.interrupt_priority = APP_IRQ_PRIORITY_HIGH;

twi_config.clear_bus_init = false;

nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL);

nrf_drv_twi_enable(&m_twi);

B.1.1 I2C scanner

=

S

© o N O

Code B.2: I?C scanner

void i2c_scanner(void) {
ret_code_t err_code;
uint8_t sample_data;
NRF_LOG_INFO("Scanning for i2c devices...\n");
for (uint8_t address = 0; address <= 127; address++) {
err_code = nrf_drv_twi_rx(&m_twi, address, &sample_data, sizeof (sample_data));
if (err_code == NRF_SUCCESS) {
NRF_LOG_INFO("TWI device detected at address OxYx.", address);

158

APPENDIX

10
11
12
13
14

for (uint8_t i = 0; i < LAST_I2C; i++) {
if (address == i2c_device[i][0]) {

i2c_device[i] [1] = true;

}
NRF_LOG_INFO("\n");

B.1.2 HDC2010

© 0 N O U W N =

BOR R W W W W W W W W W W NN NN NN NN NN R e e e e e e e
N = O © 0 N U W N O © O U R WY H O © 0N g kR W N = O

Code B.3: HDC2010

void hdc2010_init(void) {
uint8_t hdc2010_reg_data[2] = {0xOe, 0x00};
nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, hdc2010_reg_data, 2, false);
}
void hdc2010_heater(void) {
uint8_t hdc2010_heater_data[2] = {0x0Oe, 0x08};
nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, hdc2010_heater_data, 2, false);
hdc2010_heater_datal[1] = 0x00;
delay_sleep_ms(10);
nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, hdc2010_heater_data, 2, false);
}
void hdc2010_ask_data(void) {
uint8_t hdc2010_ask_datal[2] = {0x0f, Oxall}; //Ozal
nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, hdc2010_ask_data, 2, false);
}
void hdc2010_read_temp(void) {
powl6 = pow(2, 16);
uint8_t hdc2010_data_reg = 0x00;
nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, &hdc2010_data_reg, 1, true);
nrf_drv_twi_rx(&m_twi, HDC2010_ADDR, hdc2010_temp_data, sizeof (hdc2010_temp_data));
hdc2010_temp16 = hdc2010_temp_data[1] << 8 | hdc2010_temp_datal[0];
hdc2010_temp16 = (hdc2010_templ6 / powl6) * 165 - 40;
}
void hdc2010_read_hum(void) {
powl6 = pow(2, 16);
uint8_t hdc2010_data_reg = 0x02;
nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, &hdc2010_data_reg, 1, true);
nrf_drv_twi_rx(&m_twi, HDC2010_ADDR, hdc2010_hum_data, sizeof (hdc2010_hum_data));
hdc2010_hum16 = hdc2010_hum_data[1] << 8 | hdc2010_hum_datal[0];
hdc2010_hum16 = (hdc2010_humi6 / powl6) * 100;
}
void hdc2010_read(void) {
powl6 = pow(2, 16);
uint8_t hdc2010_data_reg = 0x00;
nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, &hdc2010_data_reg, 1, true);
nrf_drv_twi_rx(&m_twi, HDC2010_ADDR, hdc2010_data, sizeof(hdc2010_data));
hdc2010_tempF = hdc2010_datal[1] << 8 | hdc2010_datal0];
hdc2010_tempF = (hdc2010_tempF / powl6) * 165 - 40;
hdc2010_humF = hdc2010_data[3] << 8 | hdc2010_datal[2];
hdc2010_humF = (hdc2010_humF / powl6) * 100;
hdc2010_temp16 = hdc2010_tempF * 100;

159

APPENDIX

43 hdc2010_hum16 = hdc2010_humF * 100;
44}
45

B.1.3 MAX44009

Code B.4: MAX44009

[N

2 uint32_t max_read(void) {

3 nrf_drv_twi_tx(&m_twi, MAX_ADDR, &max_reg, 1, false);
4 nrf_drv_twi_rx(&m_twi, MAX_ADDR, max_lux, sizeof (max_lux));
5

6 max_lux_exponent = ((max_lux[0] >> 4) & O0xOF);
7 max_lux[0] = ((max_lux[0] << 4) & 0xF0);

8 max_lux[1] &= O0xOF;

9

10 max_light = 45L * (max_lux[0] | max_lux[1]) * (1 << max_lux_exponent);
11 max_light = max_light / 1000;

12 return max_light;

13}

14

1

2 void send_packet() {

3 // send the packet:

4 NRF_RADIO->TASKS_RXEN = 0;

5 NRF_RADIO->EVENTS_READY = 0U;

6 NRF_RADIO->TASKS_TXEN = 1;

7

8 while (NRF_RADIO->EVENTS_READY == 0U) {

9 // wait

10 }

11 NRF_RADIO->EVENTS_END = 0U;

12 NRF_RADIO->TASKS_START = 1U;

13

14 while (NRF_RADIO->EVENTS_END == 0U) {

15 // wait

16 }

17

18 stop_radio();

19}

20 void stop_radio() {

21 NRF_RADIO->EVENTS_DISABLED = 0U;

22 // Disable radio

23 NRF_RADIO->TASKS_DISABLE = 1U;

24

25 while (NRF_RADIO->EVENTS_DISABLED == 0U) {
26 // wait

27 }

28 }

29 void start_listening() {

30 //Start Listening

31 NRF_RADIO->EVENTS_READY = 0U;

32 // Enable radio and wait for ready

33 NRF_RADIO->TASKS_RXEN = 1U;

160

APPENDIX

34

35 while (NRF_RADIO->EVENTS_READY == 0U) {

36 // watit

37 }

38 NRF_RADIO->EVENTS_END = 0U;

39 // Start listening and wait for address received event
40 NRF_RADIO->TASKS_START = 1U;

41}

42 static void power_manage(void) {

43 nrf_drv_saadc_uninit();

44 NRF_CLOCK->TASKS_HFCLKSTOP = 1;

45 NVIC_ClearPendingIRQ(SAADC_IRQn);

46 __set_FPSCR(__get_FPSCR() & ~(0x0000009F));

47 (void) __get_FPSCRQ);

48 NVIC_ClearPendingIRQ(FPU_IRQn) ;

49 __SEVQ);

50 __WFEQ;

51 __WFEQ;

52}

53 void sleep_wake(void *p_context) {

54 UNUSED_PARAMETER (p_context) ;

55 start_HFCLK(Q) ;

56)

57 void delay_sleep_ms(uint32_t sleep_time) {

58 if (sleep_time > 20) {

59 tot_sleep = tot_sleep + (sleep_time - 1);

60 app_timer_start(sleep_timer, sleep_time - 2, NULL);
61 NRF_CLOCK->TASKS_HFCLKSTOP = 1;

62 } else {

63 nrf_delay_ms(sleep_time);

64 }

65 T

66 void start_LFCLK() {

67 /* Start low frequency crystal oscillator for app_timer(used by bsp)*/
68 NRF_CLOCK->LFCLKSRC = (CLOCK_LFCLKSRC_SRC_Xtal << CLOCK_LFCLKSRC_SRC_Pos);
69 //NRF_CLOCK->LFRCMODE = 1;

70 NRF_CLOCK->EVENTS_LFCLKSTARTED = O;

71 NRF_CLOCK->TASKS_LFCLKSTART = 1;

72

73 while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) {

74 // Do nothing.

75 }

76}

77 void start_HFCLK(void) {

78 NRF_CLOCK->EVENTS_HFCLKSTARTED = O;

79 NRF_CLOCK->TASKS_HFCLKSTART = 1;

80 /* Wait for the ezternal oscillator to start up */
81 while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) {

82 // Do nothing.

83 }

84}

85

B.1.4 get sensor data()

161

APPENDIX

Code B.5

1

2 static void get_sensor_data(void) {

3 packetNR++;

4 gas_counter++;

5 nrf_gpio_pin_set (ENABLE_PIN) ;

6 ADC_DONE = false;

7 nrf_drv_saadc_sample();

8 i2¢c_init ()

9 if (i2c_device[BME680_i2c]1[1]) {

10 if (gas_counter >= GAS_READ_RATIO) {

11 gas_counter = 0;

12 GAS_ON = true;

13 bme680_gas_on() ;

14 ¥

15 bme680_ask_data() ;

16 bme_start = millis();

17 }

18 if (i2c_device[HDC2010_i2¢c][1]) {

19 hdc2010_ask_data();

20 hdc2010_start = micros();

21 }

22 if (i2c_device[MAX44009_i2c][1]) {

23 max_light = max_read();

24 max_light16 = max_light;

25 }

26 if (i2c_device[HDC2010_i2¢c][1]) {

27 while ((hdc2010_start + hdc2010_read_time) > micros()) {
28 // wait for hdc2010 data

29 }
30 hdc2010_read();
31 }
32 if (i2c_device[BME680_i2c][1]) {
33 while ((bme_start + bme_read_time) > millis()) {
34 // wait for bme680 data
35 }
36 bme680_get_data() ;
37 if (GAS_ON == true) {
38 while ((bme_start + bme_read_time + gas_read_time) > millis()) {
39 // wait for bme680 data
40 }
41 GAS_ON = false;
42 bmeGas = bme680_gas_read() ;
43 bmeGas = bmeGas / 10000;
44 bmeGas16 = bmeGas;
45 bme680_gas_off () ;
46 }
a7 humD = bme680_hum_calc() * 100;
48 bmeHum16 = humD;
49 bmePres16 = presD = bme680_pres_calc();
50 tempD = bme680_temp_calc() * 100;

51 bmeTempl6 = tempD;

52 }

53 nrf_drv_twi_disable(&m_twi);

54

55 uint8_t byte = 2;

56 radio_mem[byte++] = DATA_TYPE; // Data type;

162

APPENDIX

57 radio_mem[byte++] = 0; // destID;

58 radio_mem[byte++] = NODE; // myID;

59 radio_mem[byte++] = NODE; // sourcelD;

60 radio_mem[byte++] = currentPL; // currentPL

61 radio_mem[byte++] = (uint8_t) (packetNR >> 8);

62 radio_mem[byte++] = (uint8_t) (packetNR);

63 radio_mem[byte++] = (uint8_t) (batl6 >> 8);

64 radio_mem[byte++] = (uint8_t) (batl6);

65

66 if (i2c_device[MAX44009_i2c]1[11) {

67 radio_mem[byte++] = (uint8_t) (max_lightl6 >> 8);
68 radio_mem[byte++] = (uint8_t) (max_light16);

69 NRF_LOG_INFO("\n\rmax_light = %d\n",

70 max_light16);

71 }

72 if (i2c_device[BME680_i2c][1]) {

73 radio_mem[byte++] = (uint8_t) (bmeTempl6 >> 8);
74 radio_mem[byte++] = (uint8_t) (bmeTemp16) ;

75 radio_mem[byte++] = (uint8_t) (bmeHum16 >> 8);

76 radio_mem[byte++] = (uint8_t) (bmeHum16) ;

77 radio_mem[byte++] = (uint8_t) (bmePresi6 >> 8);
78 radio_mem[byte++] = (uint8_t) (bmePres16);

79 radio_mem[byte++] = (uint8_t) (bmeGasl16 >> 8);

80 radio_mem[byte++] = (uint8_t) (bmeGas16);

81

82 NRF_LOG_INFO("\n\rBME680:\n\rTemp = %d\n\rHum = %d\n\rPres = %d\n\rGas = %d\n\r",
83 bmeTempl6,

84 bmeHum16,

85 bmePresi6,

86 bmeGasi16) ;

87 }

88 if (i2c_device[HDC2010_i2¢c][1]) {

89 radio_mem[byte++] = (uint8_t) (hdc2010_templ6 >> 8);
90 radio_mem[byte++] = (uint8_t) (hdc2010_templ6) ;
91 radio_mem[byte++] = (uint8_t) (hdc2010_humi6 >> 8);
92 radio_mem[byte++] = (uint8_t) (hdc2010_humi6) ;

93 NRF_LOG_INFO("\n\rHDC2010:\n\rTemp = %d\n\rHum = %d\n",
94 hdc2010_temp16,

95 hdc2010_humi6) ;

96 }

97 radio_mem[0] = byte - 2; // NR of payload bytes

98 radio_mem[1] = 0; // Unused

99

100 for (int i = 0; i < radio_mem[0] + 2; i++) {

101 NRF_LOG_INFO("%d", radio_mem[i]);

102 }

103 while (ADC_DONE = false) {

104 //wait for adc

105 }

106 }

107 bool carrier_sense() {

108 NRF_RADIO->TASKS_RXEN = 1U;

109 while (NRF_RADIO->EVENTS_READY == 0U) {
110 // watit

111 }

112 NRF_RADIO->TASKS_EDSTART = 1;

113 nrf_delay_us(130);

163

APPENDIX

114
115
116
117
118
119
120

if (NRF_RADIO->EDSAMPLE < 1) {
return 1;
} else {

return 0;

B.1.5 send data()

© 00 N O Uk W N

AR R R R W oW W W W oW oW oW oW oW NNNN NN NN NN R R R e e
=W N O © 0N OO REWN O Y oUW O © U W N = O

Code B.6: send datal()

void send_data() {

ack = false;

ack_num = 0;

NRF_LOG_INFO("Sending packet!");

while (ack == false) {
radio_mem[6] = currentPL;
while (carrier_sense() == false) {
¥
send_packet();
NRF_LOG_INFO("Waiting for ack...");
wait_for_ack();
if (ack_num >= 4) {

NRF_LOG_INFO("No ack received!!!!");

break;

}
NRF_LOG_INFO("Current Power level: %d", currentPL);
}
void wait_for_ack() {
start_listening();
ack_num++;
ack_timer = micros() + 1500;
while (NRF_RADIO->EVENTS_END == 0U) {
// wait
if (ack_timer < micros()) {

break;

}
if (NRF_RADIO->CRCSTATUS == 1U) {
if ((radio_mem[2] == ACK_TYPE) && (radio_mem[3] == NODE)) {
RSSI = NRF_RADIO->RSSISAMPLE;
NRF_LOG_INFO("RSSI = -%d", RSSI);
NRF_LOG_INFO("Received ack after J%d microsec", micros() - (ack_timer - 1500));
ack = true;
stop_radio();
for (int i = 0; i < radio_mem[0] + 2; i++) {
NRF_LOG_INFO0("%d", radio_mem[i]);
}
if (RSSI < radio_mem[4]) // Check the lowest RSSI
RSSI = radio_mem[4];
if ((RSSI < RSSI_UPPER_LIMIT) && (currentPL > 0)) {
currentPL--;
NRF_RADIO->TXPOWER = powerLVL[START_PAl; //currentPL

164

APPENDIX

45 NRF_LOG_INFO("Current Power level changed to: %d", currentPL);
46 } else if ((RSSI > RSSI_LOWER_LIMIT) && (currentPL < 10)) {

47 currentPL++;

48 NRF_RADIO->TXPOWER = powerLVL[START_PA];

49 NRF_LOG_INFO("Current Power level changed to: %d", currentPL);
50 }

51 }

52 stop_radio();

53 //flush_radio_mem() ;

54 start_listening();

55 }

56 stop_radio();

57 if ((ack == false) && (currentPL < 10)) {

58 currentPL++;

59 NRF_RADIO->TXPOWER = powerLVL[START_PA];

60 }

61}

1 static void wakeup(void *p_context) {
UNUSED_PARAMETER (p_context) ;

start_HFCLK();

start_time = millis();
get_sensor_data();

send_data();

2
3
4
5
6 saadc_init();
7
8
9 NRF_LOG_INFO("\n\rOn-time = %d\n\n", (millis() - start_time));

B.1.6 Radio

Code B.7: radio_setup()

1

2 void radio_setup(uint8_t mode) {

3

4 if (mode == CODED) {

5 NRF_LOG_INFO("Using Coded!");

6 uint32_t preamble_mask = (RADIO_PCNFO_PLEN_LongRange << RADIO_PCNFO_PLEN_Pos) |
7 (2 << RADIO_PCNFO_CILEN_Pos) |

8 (3 << RADIO_PCNFO_TERMLEN_Pos);

9

10 NRF_RADIO->PCNFO = (1UL << RADIO_PCNFO_S1LEN_Pos) |

11 (2UL << RADIO_PCNFO_SOLEN_Pos) |

12 (8UL << RADIO_PCNFO_LFLEN_Pos) |

13 preamble_mask;

14

15 NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_ Disabled << RADIO_PCNF1_WHITEEN_Pos) |
16 (RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |

17 (3UL << RADIO_PCNF1_BALEN_Pos) |

18 (0 << RADIO_PCNF1_STATLEN_Pos) |

19 (250 << RADIO_PCNF1_MAXLEN_Pos) ;

20 } else {

N
—_

NRF_RADIO->PCNFO = (0 << RADIO_PCNFO_S1LEN_Pos) |

165

APPENDIX

22 (0 << RADIO_PCNFO_SOLEN_Pos) |

23 (8 << RADIO_PCNFO_LFLEN_Pos);

24

25 NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_ Disabled << RADIO_PCNF1_WHITEEN_Pos) |
26 (RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |
27 (4 << RADIO_PCNF1_BALEN_Pos) |

28 (0 << RADIO_PCNF1_STATLEN_Pos) |

29 (200 << RADIO_PCNF1_MAXLEN_Pos);

30 }

31 NRF_RADIO->CRCCNF = (RADIO_CRCCNF_LEN_Two << RADIO_CRCCNF_LEN_Pos); // checksum bits
32 if ((NRF_RADIO->CRCCNF & RADIO_CRCCNF_LEN_Msk) ==

33 (RADIO_CRCCNF_LEN_Two << RADIO_CRCCNF_LEN_Pos)) {

34 NRF_RADIO->CRCINIT = OxFFFFUL; // Initial value

35 NRF_RADIO->CRCPOLY = 0x11021UL; // CRC poly: z°16 + z~12°z"5 + 1

36 } else if ((NRF_RADIO->CRCCNF & RADIO_CRCCNF_LEN_Msk) ==

37 (RADIO_CRCCNF_LEN_One << RADIO_CRCCNF_LEN_Pos)) {

38 NRF_RADIO->CRCINIT = OxFFUL; // Initial walue

39 NRF_RADIO->CRCPOLY = 0x107UL; // CRC poly: =8 + z"2°z"1 + 1

40 }

41

42 if (mode == CODED) {

43 NRF_RADIO->CRCCNF = (RADIO_CRCCNF_SKIPADDR_Skip << RADIO_CRCCNF_SKIPADDR_Pos) |
44 (RADIO_CRCCNF_LEN_Three << RADIO_CRCCNF_LEN_Pos);

45 NRF_RADIO->MODE = (RADIO_MODE_MODE_Ble_LR125Kbit << RADIO_MODE_MODE_Pos);
46 } else if (mode == Mbit_1) {

47 NRF_RADIO->MODE = (RADIO_MODE_MODE_Nrf_1iMbit << RADIO_MODE_MODE_Pos);

48 } else if (mode == Mbit_2) {

49 NRF_RADIO->MODE = (RADIO_MODE_MODE_Nrf_2Mbit << RADIO_MODE_MODE_Pos);

50 }

51

52 pre0[0] = 0x02;

53 preO[1] = Ox11;

54 pre0[2] = 0x22;

55 pre0[3] = 0x01;

56

57 prel[0] = 0x02;

58 prel[1] = 0x16;

59 prel[2] = Ox2a;

60 prel[3] = 0Ox3e;

61

62 pre_addr0 = ((preO[3] << 24) | (preO[2] << 16) | (preO[1] << 8) | (pre0[0]));
63 pre_addrl = ((prel[3] << 24) | (prei[2] << 16) | (prei[1] << 8) | (preil[0]));
64 base0 = 0x11111111;

65 basel = 0x22222222;

66 NRF_RADIO->BASEO = (uint32_t) (base0);

67 NRF_RADIO->BASE1 = (uint32_t) (basel);

68 NRF_RADIO->PREFIX0 = (uint32_t) (pre_addro0);

69 NRF_RADIO->PREFIX1 = (uint32_t) (pre_addri);

70 NRF_RADIO->TXADDRESS = 0;

71 NRF_RADIO->RXADDRESSES = 0b00000001;

72 NRF_RADIO->PACKETPTR = (uint32_t)&radio_mem;

73 NRF_RADIO->SHORTS |= RADIO_SHORTS_ADDRESS_RSSISTART_Msk;

74 NRF_RADIO->FREQUENCY = 7UL;

75 NRF_RADIO->TXPOWER = powerLVL[currentPL];

76}

1 void turn_ram_off (uint8_t RAM) {
2 if (RAM < 2) { // dont turn off first 2 RAM blocks

166

APPENDIX

3 } else {

4 NRF_POWER->RAM[RAM] .POWERSET = 0b0000000000000000;
5 }

6

7 int main(void) {

8 //Setup

9 start_HFCLK(Q) ;

10 start_LFCLK();

11 NRF_LOG_INIT(NULL);

12 NRF_LOG_DEFAULT_BACKENDS_INIT();

13 NRF_LOG_INFO ("\n\r#####ai i Star Node Start!########H########\n") ;
14 app_timer_init();

15 app_timer_create (&wakeup_timer, APP_TIMER_MODE_REPEATED, wakeup) ;
16 app_timer_create(&sleep_timer, APP_TIMER_MODE_SINGLE_SHOT, sleep_wake);
17 app_timer_start (wakeup_timer, SEND_INTERVAL, NULL);
18 radio_setup(Mbit_1);

19 i2¢c_init);

20 i2¢c_scanner();

21 if (i2c_device[BME680_i2c][1]) {

22 bme680_calib();

23 bme680_reset () ;

24 bme680_iir_filter();

25 }

26 if (i2c_device[HDC2010_i2¢c][1]) {

27 hdc2010_init();

28 }

29 nrf_drv_twi_disable(&m_twi);

30 nrf_gpio_cfg_output (ENABLE_PIN) ;

31 //for (int 4 = 3; 4 <= 8; i++) {

32 // turn_ram_off(i);

33 //}

34 for (53) {

35 if (NRF_LOG_PROCESS() == false) {

36 power_manage () ;

37 }

38 }

39}

B.2 Multi-hop

Code B.8: Multi-hop Code
VAT 2 EEEEEETTEEEEEIEETTEEEEITETTEEEETEETEEEEES
Multi-hop Node HEHRAAAHHHARAAARERILS
EEEFE S EEFEEEEFEEEEEFEEEEEE TS TS EEEE TS 552V

[N

#define NRF_LOG_ENABLED 1 // enable/disable prints

#define START_HOPS 100

#define NODE 115

#define START_PA_LEVEL 10 // Initial power level

#define BROADCAST_ADDR Ozff

#define GAS_READ_RATIO 10

#define WAKE_INTERVAL 1 * 2000 // node wake_ping interval

#define SEND_INTERVAL 3 // Intervals of wake_ping before sending sensor data
#define ENABLE_PIN NRF_GPIO_PIN_MAP(1, 8)

#define HDC2010_ADDR (0z41)

© 00 N O U s W N

e e e
=W N = O

167

APPENDIX

15 #define MAX_ADDR (0z4b)

16 #define SAMPLES_IN_BUFFER 1

17 #define ADC_FACTOR 5390.625 // Precalculated ADC factor
18 #define WAKEPING_INTERVAL APP_TIMER_TICKS(WAKE_INTERVAL)
19

20 #include "app_error.h”

21 #include "app_timer.h"

22 #include "app_uart.h”

23 #include "boards.h"

24 #include "bsp.h"

25 #include "nordic_common.h"

26 #include "nrf_bme680.h"

27 #include "nrf_delay.h"”

28 #include "nrf_drv_clock.h”

29 #include "nrf_drv_saadc.h”

30 #include "nrf_drv_twi.h"”

31 #include "nrf_error.h”

32 #include "nrf_gpio.h"

33 #include "nrf_log.h"

34 #include "nrf_log_ctrl.h”

35 #include "nrf_log_default_backends.h"
36 #include <math.h>

37 #include <stdbool.h>

38 #include <stdint.h>

39 #include <stdio.h>

40 #include <string.h>

41

42 //Radio Variables

43 enum radio_mode {

44 CODED,
45 Mbit_1,

46 Mbit_2

Y

48 enum data_type {

49 WAKE_TYPE,

50 DATA_TYPE,

51 ACK_TYPE

52 };

53 uint8_t powerLVL[11] = {
54 0xD8UL, // -40 dbm
55 0xECUL, // -20 dbm
56 O0xF4UL, // -12 dbm
57 0xFCUL, // -4 dbm
58 0xOUL, // 0 dbm
59 0x2UL, // 2 dbm
60 0x4UL, // 3 dbm
61 0x5UL, // 5 dbm
62 0x6UL, // 6 dbm
63 0x7UL, // 7 dbm
64 0x8UL // 8 dbm
65 };

66 uint8_t currentPL = START_PA_LEVEL;
67 uint8_t my_hops_to_sink = START_HOPS;
68 uintl6_t packetNR = 0;

69 uint8_t radio_mem[20];

70 uint8_t wake_mem[10];

71 uint8_t data_mem[25];

168

APPENDIX

72 uint8_t ack_mem[10];

73 uint8_t dataArray[25];

74 uint8_t pre0[4], prell4];

75 uint32_t pre_addrO, pre_addrl, baseO, basel;
76 uint64_t ack_timer;

77 bool timeout;

78 uint8_t ack_num;

79 uint8_t send_counter;

80 uint32_t timeout_time, current_time, relay_time, start_time;
81 uint8_t next_hop;

82 uint8_t temp_hops;

83

84 //BME680 Variables

85 bool GAS_ON = false;

86 uint8_t gas_counter = GAS_READ_RATIO - 8;

87 uint8_t bme_read_time = 12;

88 uint16_t hdc2010_read_time = 600;

89 uint8_t gas_read_time = GAS_HEAT_DURATION + 1;
90

91 // i2c scan vartables

92 enum {

93 HDC2010_i2c,

94 MAX44009_i2c,

95 BME680_i2c,

96 LAST_I2C

97 };

98 uint8_t i2c_device[LAST_I2C][2] = {

99 {HDC2010_ADDR, false}, //HDC2010 65 in dec
100 {MAX_ADDR, false}, //MAX44009 75 in dec
101 {BME_ADDR, false} //BME680 119 in decl
102

103

104 //Battery Sense Varaibles

105 static nrf_saadc_value_t m_buffer [SAMPLES_IN_BUFFER];
106

107 uintl6_t batl6;

108 uint8_t bat8;

109 bool ADC_DONE;

110

111 //HDC2010 Variables

112 uint16_t hdc2010_temp16, hdc2010_humi6;

113 uint8_t hdc2010_datal[4];

114 uint8_t hdc2010_temp_datal[2], hdc2010_hum_datal[2];
115 static double powl6;

116

117 //MAX wvariables

118 uint8_t max_lux[2];

119 uint8_t max_lux_exponent;

120 uint8_t max_reg = 0x03;

121 uint32_t max_light;

122 uintl6_t max_light16;

123

124

125 uint32_t tot_sleep, tsl_start, tsl_wait, bme_start, bme_wait,
126 hdc2010_start, hdc2010_wait, stop_time, gas_start, gas_wait;
127

128

uint8_t teller

APPENDIX

129
130
131
132
133
134

136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169

171
172

174
175
176
177
178
179
180
181
182

184
185

APP_TIMER_DEF (m_wakeping_timer) ;
APP_TIMER_DEF (wakeping_timer) ;
APP_TIMER_DEF (sleep_timer) ;

bool relay_data();

void change_next_hop_addr(uint8_t new_next_hop);
void send_ack();

bool wait_for_ack();

bool carrier_sense();

void print_received_data();

void wait_to_send();

void send_packet();

void send_data();

void wake_ping();

void get_sensor_data();

static void wakeup(void *p_context);
void start_listening();

void stop_radio();

bool wait_for_response();

void delay_sleep_ms(uint32_t sleep_time);

void uart_error_handle(app_uart_evt_t *p_event) {

if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR) {
APP_ERROR_HANDLER (p_event->data.error_communication) ;
} else if (p_event->evt_type == APP_UART_FIFO_ERROR) {

APP_ERROR_HANDLER (p_event->data.error_code) ;

}
void flush_radio_mem() {
for (int i = 0; i < sizeof(radio_mem); i++) {

radio_mem[i] = 0;

}
void flush_wake_mem() {
for (int i = 0; i < sizeof(wake_mem); i++) {

wake_mem[i] = 0;

}
void flush_data_mem() {
for (int i = 0; i < sizeof(data_mem); i++) {

data_mem[i] = 0;

}
void flush_ack_mem() {
for (int i = 0; i < sizeof(ack_mem); i++) {

ack_mem[i] = 0;

}
uint32_t millis() {
return (app_timer_cnt_get() / 32.768);
}
uint32_t micros() {
return (app_timer_cnt_get() / 0.032786);
}

void saadc_callback(nrf_drv_saadc_evt_t const *p_

if (p_event->type == NRF_DRV_SAADC_EVT_DONE) {

170

event) {

APPENDIX

186
187
188
189
190
191
192
193
194

196
197
198
199
200
201
202
203
204
205
206
207

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236
237
238
239
240
241
242

ret_code_t err_code;

err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer,
SAMPLES_IN_BUFFER) ;
APP_ERROR_CHECK (err_code) ;
int i;
batF = 0;
for (i = 0; i < SAMPLES_IN_BUFFER; i++) {
batF = batF + p_event->data.done.p_buffer[i];
}
batF = batF * ADC_FACTOR;
batl6 = batF;
nrf_gpio_pin_clear (ENABLE_PIN);
ADC_DONE = true;

void saadc_init(void) {

ret_code_t err_code;

nrf_saadc_channel_config_t channel_config =
NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN4);

channel_config.gain = SAADC_CH_CONFIG_GAIN_Gainl;

err_code = nrf_drv_saadc_init(NULL, saadc_callback);

APP_ERROR_CHECK (err_code) ;

err_code = nrf_drv_saadc_channel_init(0, &channel_config);
APP_ERROR_CHECK (err_code) ;

err_code = nrf_drv_saadc_buffer_convert(m_buffer, SAMPLES_IN_BUFFER);
APP_ERROR_CHECK (err_code) ;

}

void i2¢c_init(void) {

nrf_drv_twi_config_t twi_config;

twi_config.sda = ARDUINO_SDA_PIN;

twi_config.scl = ARDUINO_SCL_PIN;
twi_config.frequency = NRF_TWI_FREQ_100K;
twi_config.interrupt_priority = APP_IRQ_PRIORITY_HIGH;

twi_config.clear_bus_init = false;

nrf_drv_twi_init(&m_twi, &twi_config, NULL, NULL);
nrf_drv_twi_enable(&m_twi);
}
void i2c_scanner(void) {
ret_code_t err_code;
uint8_t sample_data;
NRF_LOG_INFO("Scanning for i2c devices...\n");
for (uint8_t address = 0; address <= 127; address++) {
err_code = nrf_drv_twi_rx(&m_twi, address, &sample_data, sizeof (sample_data));
nrf_delay_us(5);
if (err_code == NRF_SUCCESS) {
NRF_LOG_INFO("TWI device detected at address Oxx.", address);
for (uint8_t i = 0; i < LAST_I2C; i++) {
if (address == i2c_device[i][0]) {

i2c_device[i] [1] = true;

171

APPENDIX

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

266
267

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

288
289
290
291
292
293
294
295
296

298
299

}
NRF_LOG_INFO("\n");
}
void hdc2010_init(void) {
uint8_t hdc2010_reg_data[2] = {0xOe, 0x00};

nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, hdc2010_reg_data, 2,

}
void hdc2010_heater(void) {
uint8_t hdc2010_heater_data[2] = {0x0Oe, 0x08};

nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, hdc2010_heater_data,

hdc2010_heater_datal[1] = 0x00;
delay_sleep_ms(10);

nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, hdc2010_heater_data,

}
void hdc2010_ask_data(void) {

uint8_t hdc2010_ask_datal[2] = {0x0f, Oxall}; //Ozal

nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, hdc2010_ask_data, 2,

}

void hdc2010_read_temp(void) {
powl6 = pow(2, 16);
uint8_t hdc2010_data_reg = 0x00;

false);

2, false);

2, false);

false);

nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, &hdc2010_data_reg, 1, true);

nrf_drv_twi_rx(&m_twi, HDC2010_ADDR, hdc2010_temp_data, sizeof (hdc2010_temp_data));

hdc2010_temp16 = hdc2010_temp_data[i1] << 8 | hdc2010_temp_datal0];

hdc2010_temp16 = (hdc2010_templ6 / powl6) * 165 - 40;

}

void hdc2010_read_hum(void) {
powl6 = pow(2, 16);
uint8_t hdc2010_data_reg = 0x02;

nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, &hdc2010_data_reg, 1, true);

nrf_drv_twi_rx(&m_twi, HDC2010_ADDR, hdc2010_hum_data, sizeof (hdc2010_hum_data));

hdc2010_hum16 = hdc2010_hum_data[1] << 8 | hdc2010_hum_datal[0];

hdc2010_hum16 = (hdc2010_humi6 / powl6) * 100;
}
void hdc2010_read(void) {

powl6 = pow(2, 16);

uint8_t hdc2010_data_reg = 0x00;

nrf_drv_twi_tx(&m_twi, HDC2010_ADDR, &hdc2010_data_reg, 1, true);

nrf_drv_twi_rx(&m_twi, HDC2010_ADDR, hdc2010_data, sizeof(hdc2010_data));
hdc2010_temp16 = hdc2010_data[1] << 8 | hdc2010_datal[0];

hdc2010_temp16 = (hdc2010_templ6 / powl6) * 165 - 40;

hdc2010_hum16 = hdc2010_data[3] << 8 | hdc2010_datal2];

hdc2010_hum16 = (hdc2010_huml6 / powl6) * 100;
}

uint32_t max_read(void) {

nrf_drv_twi_tx(&m_twi, MAX_ADDR, &max_reg, 1, false);

nrf_drv_twi_rx(&m_twi, MAX_ADDR, max_lux, sizeof (max_lux));

max_lux_exponent = ((max_lux[0] >> 4) & O0xOF);
max_lux[0] = ((max_lux[0] << 4) & 0xFO0);
max_lux[1] &= O0xOF;

//luz_value = 0.045 * (luz_high + luz_low) * (1<< luz_ezponent);

max_light = 45L * (max_lux[0] | max_lux[1]) * (1 << max_lux_exponent);

max_light = max_light / 1000;

172

APPENDIX

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

return max_light;
}
void delay_sleep_ms(uint32_t sleep_time) {
if (sleep_time > 50) {
tot_sleep = tot_sleep + (sleep_time - 1);

app_timer_start(sleep_timer, sleep_time - 2, NULL);

NRF_CLOCK->TASKS_HFCLKSTOP = 1;
} else {
nrf_delay_ms(sleep_time);

}

void print_radio_config() {

NRF_LOG_INFO("\n\rPrefix0 = %u\n\rPrefixl = %u\n\rBaseO =

NRF_RADIO->PREFIXO,
NRF_RADIO->PREFIX1,
NRF_RADIO->BASEO,
NRF_RADIO->BASE1);
}
void print_msg() {
NRF_LOG_INFO("Size: %d", radio_mem[0]);
NRF_LOG_INFO("From: %d", radio_mem[2]);
NRF_LOG_INFO("Hops: %d", radio_mem[3]);

for (int i = 4; i < radio_mem[0]; i++) {

NRF_LOG_INFO("datal%d] = %d", i - 4, radio_mem[i]);

}
NRF_LOG_INFO("");
}
void get_sensor_data() {
//NRF_LOG_INFO("get_sensor_data");
saadc_init();
packetNR++;
gas_counter++;
nrf_gpio_pin_set (ENABLE_PIN) ;
ADC_DONE = false;
nrf_drv_saadc_sample();
i2c_initQ;
if (i2c_device[BME680_i2c]1[1]) {
if (gas_counter == GAS_READ_RATIO - 1) {
bme680_gas_on() ;
} else if (gas_counter >= GAS_READ_RATIO) {
gas_counter = 0;
GAS_ON = true;
}
bme680_ask_data() ;
bme_start = millis(); //milliseconds
}
if (i2c_device[HDC2010_i2¢c][1]) {
hdc2010_ask_data();
hdc2010_start = micros(); //microseconds
}
if (i2c_device[MAX44009_i2c¢][1]) {
max_light = max_read();
max_light16 = max_light;
}
if (i2c_device[HDC2010_i2¢c]1[1]) {

while ((hdc2010_start + hdc2010_read_time) > micros()) {

173

%u\n\rBasel

A s

APPENDIX

357 // wait for hdc2010 data

358 }

359 hdc2010_read();

360 }

361 if (i2c_device[BME680_i2¢c][1]) {

362 //NRF_LOG_INFO("waiting bme");

363 while ((bme_start + bme_read_time) > millis()) {
364 // wait for bme680 data

365 }

366 bme680_get_data();

367 if (GAS_ON == true) {

368 GAS_ON = false;

369 bmeGas = bme680_gas_read();

370 bmeGas = bmeGas / 10000;

371 bmeGas16 = bmeGas;

372 bme680_gas_off () ;

373 }

374 humD = bme680_hum_calc() * 100;

375 bmeHum16 = humD;

376 bmePres16 = presD = bme680_pres_calc();

377 tempD = bme680_temp_calc() * 100;

378 bmeTempl6 = tempD;

379 }

380 nrf_drv_twi_disable(&m_twi);

381 uint8_t byte = 2;

382 dataArray[byte++] = DATA_TYPE;

383 dataArray[byte++] = 0; //destID;

384 dataArray[byte++] = NODE; //myID;

385 dataArray[byte++] = NODE; //sourcelD;

386 dataArray[byte++] = 0; // hops

387 dataArray[byte++] = (uint8_t) (packetNR >> 8);
388 dataArray[byte++] = (uint8_t) (packetNR);

389 dataArray[byte++] = (uint8_t) (batl16 >> 8);

390 dataArray[byte++] = (uint8_t) (bat16);

391

392 if (i2c_device[MAX44009_i2c¢][1]) {

393 dataArray[byte++] = (uint8_t) (max_lightl6 >> 8);
394 dataArray[byte++] = (uint8_t) (max_light16);
395 //NRF_LOG_INFO("\n\rmaz_light = Jd\n",

396 // maz_light16);

397 }

398 if (i2c_device[BME680_i2c][1]) {

399 dataArray[byte++] = (uint8_t) (bmeTempl6 >> 8);
400 dataArray[byte++] = (uint8_t) (bmeTemp16);

401 dataArray[byte++] = (uint8_t) (bmeHum16 >> 8);
402 dataArray[byte++] = (uint8_t) (bmeHumi16) ;

403 dataArray[byte++] = (uint8_t) (bmePresi6 >> 8);
404 dataArray[byte++] = (uint8_t) (bmePresi6);

405 dataArray[byte++] = (uint8_t) (bmeGas16 >> 8);
406 dataArray[byte++] = (uint8_t) (bmeGas16) ;

407

408 NRF_LOG_INFO("\n\rBME680:\n\rTemp = %d\n\rHum = %d\n\rPres = %d\n\rGas = %d\n\r",
409 bmeTempl6,

410 bmeHum16,

411 bmePresi6,

412 bmeGas16) ;

413 }

174

APPENDIX

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

437
438

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

456
457

459
460
461
462
463
464
465
466
467

469
470

if (i2c_device[HDC2010_i2c][1]) {

dataArray[byte++] = (uint8_t) (hdc2010_templ6 >> 8);
dataArray[byte++] = (uint8_t) (hdc2010_temp16) ;

dataArray [byte++] = (uint8_t) (hdc2010_huml6 >> 8);

dataArray[byte++] = (uint8_t) (hdc2010_humil6);

// NRF_LOG_INFO("\n\THDC2010:\n\rTemp = Jd\n\rHum

// hdc2010_temp16,
// hdc2010_huml1é6) ;
}
dataArray[0] = byte - 2;
dataArray[1] = 0;

for (int i = 0; i < dataArray[0] + 2; i++) {
//NRF_LOG_INFO("%d", datadrrayl[i]);

while (ADC_DONE = false) {
// waiting for adc
}
//NRF_LOG_INFO("adc done");
}
void send_packet() {

// send the packet:
NRF_RADIO->TASKS_RXEN = O;

NRF_RADIO->EVENTS_READY = 0U;
NRF_RADIO->TASKS_TXEN = 1;

while (NRF_RADIO->EVENTS_READY == 0U) {
// wait

}

NRF_RADIO->EVENTS_END = OU;

NRF_RADIO->TASKS_START = 1U;

while (NRF_RADIO->EVENTS_END == 0U) {
// wait

}

void stop_radio() {
NRF_RADIO->EVENTS_DISABLED = 0U;
// Disable radio
NRF_RADIO->TASKS_DISABLE = 1U;

while (NRF_RADIO->EVENTS_DISABLED == 0U) {
// wait

}

void start_listening() {
//Start Listening
NRF_RADIO->EVENTS_READY = 0U;
// Enable radio and wait for ready
NRF_RADIO->TASKS_RXEN = 1U;

while (NRF_RADIO->EVENTS_READY == 0U) {
// wait

175

Ad\n",

APPENDIX

471 NRF_RADIO->EVENTS_END = 0U;

472 // Start listening and wait for address received event
473 NRF_RADIO->TASKS_START = 1U;

474}

475

476 void power_manage() {

477 nrf_drv_saadc_uninit();

478 NRF_CLOCK->TASKS_HFCLKSTOP = 1;

479 NVIC_ClearPendingIRQ(SAADC_IRQn);

480 __set_FPSCR(__get_FPSCR() & ~(0x0000009F)) ;

481 (void) __get_FPSCRQ);

482 NVIC_ClearPendingIRQ(FPU_IRQn);

483

484 __SEVQ);

485 __WFEQ;

486 __WFEQ;

487 '}

488 void start_LFCLK() {

489 /* Start low frequency crystal oscillator for app_timer(used by bsp)*/
490 NRF_CLOCK->LFCLKSRC = (CLOCK_LFCLKSRC_SRC_Xtal << CLOCK_LFCLKSRC_SRC_Pos);
491 //NRF_CLOCK->LFRCMODE = 1;

492 NRF_CLOCK->EVENTS_LFCLKSTARTED = O;

493 NRF_CLOCK->TASKS_LFCLKSTART = 1;

494

495 while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) {

496 // Do nothing.

497 }

498 }

499 void start_HFCLK(void) {

500 NRF_CLOCK->EVENTS_HFCLKSTARTED = O;

501 NRF_CLOCK->TASKS_HFCLKSTART = 1;

502 /* Wait for the ezternal oscillator to start up */
503 while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) {

504 // Do mothing.

505 }

506)

507 void wake_ping() {

508 //NRF_LOG_INFO("wake_ping");

509 NRF_RADIO->TXPOWER = powerLVL[START_PA_LEVEL - 1];
510 NRF_RADIO->TXADDRESS = 0;

511 NRF_RADIO->PACKETPTR = (uint32_t)&wake_mem;
512 uint8_t byte = 2;

513 wake_mem[byte++] = WAKE_TYPE;

514 wake_mem[byte++] = NODE;

515 wake_mem[byte++] = my_hops_to_sink;

516 wake_mem[0] = byte - 2;

517 wake_mem[1] = 0;

518 send_packet () ;

519 flush_wake_mem() ;

520 stop_radio();

521 NRF_RADIO->TXPOWER = powerLVL[START_PA_LEVEL];
522 //wait_for_response();

523 }

524 bool wait_for_response() {

525 //NRF_LOG_INFO("wait_for_response”);
526 timeout_time = micros();
527 timeout = false;

176

APPENDIX

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

while (1) {
NRF_RADIO->RXADDRESSES = 0b00000100;
NRF_RADIO->PACKETPTR = (uint32_t)&data_mem;
NRF_RADIO->EVENTS_ADDRESS = 0;
NRF_RADIO->EVENTS_END == O;
start_listening();
while (!NRF_RADIO->EVENTS_ADDRESS) { // Wait for received address
if (micros() > timeout_time + 1000) {
timeout = true;
NRF_LOG_INFO("timeout");
stop_radio();
flush_data_mem();

return O;

¥
if (timeout == false) {
//NRF_LOG_INFO("Received address after Jd micros”, micros() - timeout_time);

while (NRF_RADIO->EVENTS_END == 0U) { // wait for packet received
if (micros() > timeout_time + 5000) {
timeout = true;
NRF_LOG_INFO("timeout");
NRF_RADIO->EVENTS_ADDRESS = 0;
NRF_RADIO->EVENTS_END = 0;
stop_radio();
flush_data_mem();

return O;

}
if ((NRF_RADIO->CRCSTATUS == 1U) && (NRF_RADIO->RXMATCH == 2)) {
if ((data_mem[2] == DATA_TYPE) && (data_mem[3] == NODE)) {

stop_radio();

send_ack();
//NRF_LOG_INFO("Relaying for /d after Jd micros ", data_mem[{], micros() - timeout_time);
data_mem[6]++; // increase hops

data_mem[4] = NODE; // change packet ID

for (int i = 0; i < data_mem[0] + 2; i++) {
dataArray[i] = data_mem[i];

}

return 1;

}

void send_ack() {
change_next_hop_addr(data_mem[4]);
NRF_RADIO->PACKETPTR = (uint32_t)&ack_mem;
NRF_RADIO->TXADDRESS = 1;
uint8_t byte = 2;
ack_mem[byte++] = ACK_TYPE;
ack_mem[byte++] = data_mem[4]; // ID
ack_mem[0] = byte - 2;
ack_mem[1] = 0;
nrf_delay_us(10);
send_packet () ;

flush_ack_mem() ;

177

APPENDIX

585 stop_radio();
586 }
587 bool send_to_gateway() {

588 next_hop = 0x00;

589 for (int i = 0; i < dataArray[0] + 2; i++) {
590 data_mem[i] = dataArray[i];

591 }

592 data_mem[3] = next_hop;

593 uint8_t retry = 5;

594 while (1) {

595 NRF_LOG_INFO("send_to_gateway") ;

596 nrf_delay_us (900 + (2 * (rand() 7% 40)));
597 NRF_RADIO->TXADDRESS = 1;

598 NRF_RADIO->PACKETPTR = (uint32_t)&data_mem;
599 change_next_hop_addr (next_hop) ;

600 retry--;

601 if (carrier_sense()) {

602 send_packet () ;

603 stop_radio();

604 if (wait_for_ack()) {

605 my_hops_to_sink = 1;

606 flush_data_mem() ;

607 return 1;

608 } else {

609 NRF_LOG_INFO("no ack received");
610 }

611

612 } else {

613 NRF_LOG_INFO("Channel is busy");
614 }

615 if (retry <= 0) {

616 flush_data_mem() ;

617 return 0;

618 }

619 }

620 }

621 void wait_to_send() {

622 //NRF_LOG_INFO("wait_to_send");

623 if (my_hops_to_sink == 1) {

624 send_to_gateway() ;

625 }

626 timeout_time = millis();

627 while (my_hops_to_sink != 1) {

628 NRF_RADIO->PACKETPTR = (uint32_t)&wake_mem;
629 NRF_RADIO->RXADDRESSES = 0b00000001;
630 start_listening();

631 while (NRF_RADIO->EVENTS_END == 0U) {
632 //wait

633 if ((millis() > timeout_time + 2200) && (my_hops_to_sink < 253)) {
634 NRF_LOG_INFO("timeout");

635 //NRF_LOG_FLUSH() ;

636 //my_hops_to_sink++;

637 timeout_time = millis();

638 }

639 }

640 NRF_RADIO->EVENTS_END = 0;

641 stop_radio();

178

APPENDIX

642 if ((NRF_RADIO->CRCSTATUS == 1U) && (NRF_RADIO->RXMATCH == 0)) {
643 if ((wake_mem[2] == WAKE_TYPE) && (wake_mem[4] < my_hops_to_sink)) {
644 if (wake_mem[4] == 0) {

645 if (send_to_gateway()) {

646 break;

647 }

648 } else {

649 temp_hops = wake_mem[4] + 1;

650 //NRF_LOG_INFO("got wake ping from }d",wake_mem[3]);
651 next_hop = wake_mem[3];

652 for (int i = 0; i < dataArray[0] + 2; i++) {
653 data_mem[i] = dataArrayl[i];

654 }

655 data_mem[3] = next_hop;

656 nrf_delay_us(10 + (2 * (rand() % 40)));

657 if (carrier_sense()) {

658 change_next_hop_addr (next_hop) ;

659 NRF_RADIO->PACKETPTR = (uint32_t)&data_mem;
660 NRF_RADIO->TXADDRESS = 1;

661 NRF_LOG_INFO("sending data");

662 send_packet () ;

663 stop_radio();

664 if (wait_for_ack()) {

665 my_hops_to_sink = temp_hops;

666 NRF_LOG_INFO("ACK received, my hops = Jd", my_hops_to_sink) ;
667 break;

668 } else {

669 NRF_LOG_INFO("no ACK received");

670 //flush_data_mem() ;

671 ¥

672

673 } else {

674 NRF_LOG_INFO("channel busy");

675 //flush_data_mem() ;

676 }

677 }

678 }

679 }

680 flush_wake_mem() ;

681 flush_data_mem();

682 }

683 }

684

685 bool wait_for_ack() {

686 //NRF_LOG_INFO("wait_for_ack");

687 timeout_time = micros();

688 timeout = false;

689 while (!timeout) {

690 NRF_RADIO->RXADDRESSES = 0b00000100;

691 NRF_RADIO->PACKETPTR = (uint32_t)&ack_mem;

692 NRF_RADIO->EVENTS_ADDRESS = 0;

693 NRF_RADIO->EVENTS_END == 0;

694 start_listening();

695 while (NRF_RADIO->EVENTS_ADDRESS == 0) { // Wait for received address
696 if (micros() > timeout_time + 800) { //800

697 timeout = true;

698 stop_radio();

179

APPENDIX

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

flush_ack_mem() ;

return O;

}
if (timeout == false) {
//NRF_LOG_INFO("Received address after /d micros"”, micros() - timeout_time);
while (NRF_RADIO->EVENTS_END == OU) { // wait for packet received
if (micros() > timeout_time + 1500) {
timeout = true;
stop_radio();
flush_ack_mem() ;

return O;

}
if ((NRF_RADIO->CRCSTATUS == 1U) && (NRF_RADIO->RXMATCH == 2)) {
if ((ack_mem[2] == ACK_TYPE) && (ack_mem[3] == NODE)) {
stop_radio();
//NRF_LOG_INFO("Received ack after /d micros"”, micros() - timeout_time);
flush_ack_mem() ;

return 1;

}
bool carrier_sense() {
NRF_RADIO->RXADDRESSES = 0b00000111;
NRF_RADIO->TASKS_RXEN = 1U;
while (NRF_RADIO->EVENTS_READY == 0U) {
// wait
}
NRF_RADIO->TASKS_EDSTART = 1;
nrf_delay_us(130);
if (NRF_RADIO->EDSAMPLE < 1) {
return 1;
} else {

return 0;

void wakeup(void *p_context) {

UNUSED_PARAMETER (p_context) ;

start_HFCLK();

//NRF_LOG_INFO("wakeup!");

if ((send_counter >= SEND_INTERVAL) || (my_hops_to_sink > 199)) {
get_sensor_data();
wait_to_send();
while (relay_data()) {

}
send_counter = 0;
} else {
while (relay_data()) {
}

}
app_timer_start(wakeping_timer, WAKEPING_INTERVAL, NULL);

send_counter++;

180

APPENDIX

756 bool relay_data() {

757 wake_ping() ;

758 if (wait_for_response()) {
759 wait_to_send();

760 //NRF_LOG_FLUSH();

761 return 1;

762 }

763 return O;

764 }

765 void radio_setup(uint8_t mode) {
766

767 if (mode == CODED) {

768 NRF_LOG_INFO("Using Coded!");

769 uint32_t preamble_mask = (RADIO_PCNFO_PLEN_LongRange << RADIO_PCNFO_PLEN_Pos) |
770 (2 << RADIO_PCNFO_CILEN_Pos) |

771 (3 << RADIO_PCNFO_TERMLEN_Pos) ;

772

773 NRF_RADIO->PCNFO = (1UL << RADIO_PCNFO_S1LEN_Pos) |

774 (2UL << RADIO_PCNFO_SOLEN_Pos) |

775 (8UL << RADIO_PCNFO_LFLEN_Pos) |

776 preamble_mask;

T

778 NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
779 (RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |

780 (3UL << RADIO_PCNF1_BALEN_Pos) |

781 (0 << RADIO_PCNF1_STATLEN_Pos) |

782 (200 << RADIO_PCNF1_MAXLEN_Pos);

783 } else {

784 NRF_RADIO->PCNFO = (0 << RADIO_PCNFO_S1LEN_Pos) |

785 (0 << RADIO_PCNFO_SOLEN_Pos) |

786 (0 << RADIO_PCNFO_LFLEN_Pos);

787

788 NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
789 (RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |

790 (4 << RADIO_PCNF1_BALEN_Pos) |

791 (5 << RADIO_PCNF1_STATLEN_Pos) |

792 (200 << RADIO_PCNF1_MAXLEN_Pos);

793 }

794 NRF_RADIO->CRCCNF = (RADIO_CRCCNF_LEN_Two << RADIO_CRCCNF_LEN_Pos); // Number of checksum bits
795 if ((NRF_RADIO->CRCCNF & RADIO_CRCCNF_LEN_Msk) ==

796 (RADIO_CRCCNF_LEN_Two << RADIO_CRCCNF_LEN_Pos)) {

797 NRF_RADIO->CRCINIT = OxFFFFUL; // Initial value

798 NRF_RADIO->CRCPOLY = 0x11021UL; // CRC poly: z~16 + z~12°z~5 + 1

799 } else if ((NRF_RADIO->CRCCNF & RADIO_CRCCNF_LEN_Msk) ==

800 (RADIO_CRCCNF_LEN_One << RADIO_CRCCNF_LEN_Pos)) {

801 NRF_RADIO->CRCINIT = OxFFUL; // Initial walue

802 NRF_RADIO->CRCPOLY = 0x107UL; // CRC poly: z°8 + z"27x"1 + 1

803 }

804

805 if (mode == CODED) {

806 NRF_RADIO->CRCCNF = (RADIO_CRCCNF_SKIPADDR_Skip << RADIO_CRCCNF_SKIPADDR_Pos) |
807 (RADIO_CRCCNF_LEN_Three << RADIO_CRCCNF_LEN_Pos);

808 NRF_RADIO->MODE = (RADIO_MODE_MODE_Ble_LR125Kbit << RADIO_MODE_MODE_Pos) ;

809 } else if (mode == Mbit_1) {

810 NRF_RADIO->MODE = (RADIO_MODE_MODE_Nrf_iMbit << RADIO_MODE_MODE_Pos);

811 } else if (mode == Mbit_2) {

812 NRF_RADIO->MODE = (RADIO_MODE_MODE_Nrf_2Mbit << RADIO_MODE_MODE_Pos);

181

APPENDIX

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

}

}

//channel 0 - base0 + prel
//channel 1 - basel + prel
//channel 2 - basel + pre2
//channel 3 - basel + pred
//channel 4 - basel + prej
//channel 5 - basel + preb
//channel 6 - basel + preé6
//channel 0 - basel + pre7

pre0[0] = BROADCAST_ADDR;
preO[1] = 0x00;
pre0[2] = NODE;
pre0O[3] = 0x01;

prel[0] = 0x02;
prel[1] = 0x16;
prel[2] = Ox2a;
prel[3] = Ox3e;

pre_addrO = ((pre0[3] << 24) | (pre0[2] << 16) | (preO[1] << 8) | (pre0[01));
pre_addrl = ((pre1[3] << 24) | (prell[2] << 16) | (prel[1] << 8) | (pre1[01));
base0 = 0x11111111;

basel = 0x11111111;

NRF_RADIO->BASEO = (uint32_t) (base0);

NRF_RADIO->BASE1 = (uint32_t) (basel);

NRF_RADIO->PREFIXO = (uint32_t) (pre_addr0);

NRF_RADIO->PREFIX1 = (uint32_t) (pre_addri);

NRF_RADIO->RXADDRESSES = 0b00000000;

NRF_RADIO->TXADDRESS = 0;

NRF_RADIO->PACKETPTR = (uint32_t)&wake_mem;

NRF_RADIO->SHORTS |= RADIO_SHORTS_ADDRESS_RSSISTART _Msk;

NRF_RADIO->FREQUENCY = 7UL;

NRF_RADIO->TXPOWER = powerLVL[currentPL]; // 0-10 from -40dbm to 8dbm

void change_next_hop_addr(uint8_t new_next_hop) {

}

pre0[1] = new_next_hop;
pre_addrO = ((pre0[3] << 24) | (pre0[2] << 16) | (preO[1] << 8) | (pre0[01));
NRF_RADIO->PREFIXO0 = (uint32_t) (pre_addr0);

int main(void) {

uint32_t err_code = NRF_SUCCESS;

//Setup

start_HFCLK(Q) ;

start_LFCLKQ) ;

NRF_LOG_INIT(NULL);

NRF_LOG_DEFAULT_BACKENDS_INIT();

app_timer_init();

NRF_LOG_INFO("######### Multi-hop sensor node start #########");

radio_setup (CODED) ;

nrf_gpio_cfg_output (ENABLE_PIN) ;

i2¢c_init();

i2¢c_scanner();

if (i2c_device[BME680_i2c][1]) {
bme680_calib();
bme680_reset () ;
bme680_iir_filter();

182

APPENDIX

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

if (i2c_device[HDC2010_i2¢c][1]) {

hdc2010_init Q) ;
}
nrf_drv_twi_disable(&m_twi);
APP_ERROR_CHECK (err_code) ;
NRF_LOG_INFO("\n\rWake interval = %d \n", WAKE_INTERVAL);
app_timer_create(&wakeping_timer, APP_TIMER_MODE_SINGLE_SHOT, wakeup);
app_timer_start(wakeping_timer, WAKEPING_INTERVAL, NULL);
send_counter = SEND_INTERVAL;
// Enter main loop.
for (5;) {

if (NRF_LOG_PROCESS() == false) {

power _manage () ;

}

B.3 nRF52840 Gateway

© 00 N O U R W N

Wow oW W W oW NN NN NN NN NN R R e e e
QR X RN~ O © XN OO A W N R O © KN oA W N PO

Code B.9: nRF52840 Gateway Code
JARBRRRBBHRRBRARBHRARBARERARIRBRRABBHRRRRRRRAA Y
Star/Multihop Gateway HEA#AAKAHA#AY
HERRABHARBRARBHRARRARBRARRABRRARRARRR AR R AR/

#define NRF_LOG_ENABLED 1
#define UART_ON
#define MULTIHOP_GATEWAY

#define START_PA_LEVEL 10
#define BROADCAST_ADDR Ozff
#include "app_error.h”
#include "app_timer.h"
#include "app_uart.h"
#include "boards.h"
#include "bsp.h"

#include "nmordic_common.h"
#include "nrf_delay.h"
#include "nrf_drv_clock.h”
#include "nrf_error.h”
#include "nrf_gpio.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>

#include "nrf_log.h"
#include "nrf_log_ctrl.h"”
#include "nrf_log_default_backends.h"

// Radio Variables

uint8_t powerLVL[11] = {
0xD8UL, //0: -40 dbm
0xECUL, //1: -20 dbm
0xFAUL, //2: -12 dbm
0xFCUL, //3: -4 dbm
0xOUL, //4: 0 dbm

183

APPENDIX

36 0x2UL, //5: 2 dbm
37 0x4UL, //6: 3 dbm
38 0x5UL, //7: 5 dbm
39 0x6UL, //8: 6 dbmS
40 0x7UL, //9: 7 dbm
41 0x8UL //10: 8 dbm
2 };

43 uint8_t currentPL = START_PA_LEVEL;
44 uint8_t radio_mem[20];

45 uint8_t data_mem[25];

46 uint8_t ack_mem[10];

47 uint8_t wake_mem[10];

48 uint8_t dataArray[20];

49 uint8_t recRSSI;

50 uint8_t next_hop;

51 enum radio_mode {

52 CODED,

53 Mbit_1,

54 Mbit_2

55 };

56 enum data_type {
57 WAKE_TYPE,

58 DATA_TYPE,

59 ACK_TYPE

60 };

61 uint8_t pre0[4], prell4];

62 uint32_t pre_addrO, pre_addrl, baseO, basel;
63 bool send_wake_ping = false;

64 bool check_wake_timer = true;

65 uint32_t wake_ping_timer;

66

67 //UART wariables

68 uint8_t prebyte = 155;

69 #define MAX_TEST_DATA_BYTES (15U)

70 #define UART_TX_BUF_SIZE 256

71 #define UART_RX_BUF_SIZE 256

72 #if defined (UART_PRESENT)

73 #include "nrf_uart.h”

74 #endif

75 #if defined (VARTE_PRESENT)

76 #include "nrf_uarte.h"

7 #endif

78 APP_TIMER_DEF (clock_timer);

79 uint8_t teller = 0;

80 void change_next_hop_addr(uint8_t new_next_hop);
81 void wake_ping();

82 void send_ack();

83 void start_listening();

84 void send_packet();

85 void stop_radio();

86 /#x@brief Function for initialization oscillators.
87 */

88 void flush_radio_mem() {

89 for (int i = 0; i < sizeof(radio_mem); i++) {
90 radio_mem[i] = 0;

91 }

92 }

184

APPENDIX

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149

void flush_data_mem() {
for (int i = 0; i < sizeof(data_mem); i++) {

data_mem[i] = 0;

}
void flush_ack_mem() {
for (int i = 0; i < sizeof(ack_mem); i++) {

ack_mem[i] = 0;

}
uint32_t millis() {
return (app_timer_cnt_get() / 32.768);
}
uint32_t micros() {
return (app_timer_cnt_get() / 0.032786);
}

void uart_error_handle(app_uart_evt_t *p_event) {

if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR) {
APP_ERROR_HANDLER (p_event->data.error_communication) ;
} else if (p_event->evt_type == APP_UART_FIFO_ERROR) {

APP_ERROR_HANDLER (p_event->data.error_code) ;
}
}
void start_LFCLK() {

/* Start low frequency crystal oscillator for app_timer(used by bsp)*/
NRF_CLOCK->LFCLKSRC = (CLOCK_LFCLKSRC_SRC_Xtal << CLOCK_LFCLKSRC_SRC_Pos);

NRF_CLOCK->EVENTS_LFCLKSTARTED = O;
NRF_CLOCK->TASKS_LFCLKSTART = 1;

while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) {
// Do mothing.

}

void start_HFCLK(void) {
NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
NRF_CLOCK->TASKS_HFCLKSTART = 1;

/* Wait for the external oscillator to start up */

while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) {
// Do mothing.

/**@brief Function for reading packet.
*/
void start_listening() {

//Start Listening
NRF_RADIO->EVENTS_READY = 0U;

// Enable radio and wait for ready
NRF_RADIO->TASKS_RXEN = 1U;

while (NRF_RADIO->EVENTS_READY == 0U) {
// watit

}

NRF_RADIO->EVENTS_END = 0U;

// Start listening and wait for address received event

NRF_RADIO->TASKS_START = 1U;

185

APPENDIX

150
151
152
153
154
155

157
158

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

176
177

179
180
181
182
183
184
185
186
187

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

void wake_ping() {

stop_radio() ;

NRF_RADIO->TXPOWER =
NRF_RADIO->TXADDRESS
NRF_RADIO->PACKETPTR

NRF_LOG_INFO("wake
uint8_t byte = 2;
wake_mem[byte++] =
wake_mem[byte++] =
wake_mem[byte++] =
wake_mem[0] = byte
wake_mem[1] = 0;
send_packet () ;

wake_ping_timer =

wake_ping_timer
check_wake_timer
}

stop_radio() ;

NRF_RADIO->TXPOWER

ping %d", millis());

WAKE_TYPE; // MY_ID (sink)
// MY_ID (sink)
// my_hops_to_sink

0;
0;

-2

millis() + 1000;
if (wake_ping_timer > 511995) {

NRF_RADIO->EVENTS_END

start_listening();

start_listening();

while (NRF_RADIO->EVENTS_END == 0U) {

// wait

wake_ping();

void wait_for_data() {
NRF_RADIO->PACKETPTR = (uint32_t)&data_mem;
NRF_RADIO->RXADDRESSES = 0b00000100;

#ifdef MULTIHOP_GATEWAY
if (wake_ping_timer < millis()) {

NRF_LOG_FLUSHQ) ;

}

#endif

}

NRF_RADIO->EVENTS_END

stop_radio();

if ((NRF_RADIO->CRCSTATUS

if ((data_mem[2]

send_ack();

}

for (int i = 0; i < data_mem[0] + 2; i++) {
NRF_LOG_INFO("%d", data_mem[i]);

}

#ifdef UART_ON

app_uart_put (155);

for (int i = 0; i < data_mem[0] + 2; i++) {

app_uart_put (data_mem[i]);

}

#endif

flush_data_mem() ;

powerLVL[START_PA_LEVEL - 1];

(uint32_t)&wake_mem;

powerLVL [START_PA_LEVEL] ;
NRF_RADIO->PACKETPTR = (uint32_t)&data_mem;
NRF_RADIO->RXADDRESSES = 0b00000100;

1U) && (NRF_RADIO->RXMATCH
== DATA_TYPE) && (data_mem[3]

APPENDIX

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

void send_ack() {

#ifdef MULTIHOP_GATEWAY
change_next_hop_addr (data_mem[4]) ;
NRF_RADIO->PACKETPTR = (uint32_t)&ack_mem;
NRF_RADIO->TXADDRESS = 1;

#endif
uint8_t byte = 2;
ack_mem[byte++] = ACK_TYPE;
ack_mem[byte++] = data_mem[4]; // ID

#ifndef MULTIHOP_GATEWAY
radio_mem[byte++] = recRSSI;

#endif
ack_mem[0] = byte - 2;
ack_mem[1] = 0;
nrf_delay_us(10);
send_packet () ;
flush_ack_mem() ;
stop_radio();

}

void stop_radio() {
NRF_RADIO->EVENTS_DISABLED = 0U;
// Disable radio
NRF_RADIO->TASKS_DISABLE = 1U;

while (NRF_RADIO->EVENTS_DISABLED == 0U) {
// wait

}

void send_packet() {
// send the packet:
NRF_RADIO->TASKS_RXEN = 0;
NRF_RADIO->EVENTS_READY = 0U;
NRF_RADIO->TASKS_TXEN = 1;

while (NRF_RADIO->EVENTS_READY == 0U) {
// wait

}

NRF_RADIO->EVENTS_END = 0U;

NRF_RADIO->TASKS_START = 1U;

while (NRF_RADIO->EVENTS_END == 0U) {
// wait

void radio_setup(uint8_t mode) {

if (mode == CODED) {
NRF_LOG_INFO("Using Coded!");
uint32_t preamble_mask = (RADIO_PCNFO_PLEN_LongRange << RADIO_PCNFO_PLEN_Pos) |
(2 << RADIO_PCNFO_CILEN_Pos) |
(3 << RADIO_PCNFO_TERMLEN_Pos) ;

NRF_RADIO->PCNFO = (1UL << RADIO_PCNFO_S1LEN_Pos) |
(2UL << RADIO_PCNFO_SOLEN_Pos) |
(8UL << RADIO_PCNFO_LFLEN_Pos) |

preamble_mask;

187

APPENDIX

264

265 NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
266 (RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |

267 (3UL << RADIO_PCNF1_BALEN_Pos) |

268 (0 << RADIO_PCNF1_STATLEN_Pos) |

269 (250 << RADIO_PCNF1_MAXLEN_Pos);

270 } else {

271 NRF_RADIO->PCNFO = (0 << RADIO_PCNFO_S1LEN_Pos) |

272 (0 << RADIO_PCNFO_SOLEN_Pos) |

273 (8 << RADIO_PCNFO_LFLEN_Pos);

274

275 NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
276 (RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |

277 (4 << RADIO_PCNF1_B