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Abstract

Semantic segmentation of images is of increasing interest in the field of
computer vision and machine learning. Accurate and efficient segmentation
methods is required for many of todays modern applications. This the-
sis provides a review of deep learning methods for semantic segmentation
of satellite images. Firstly, we compare different state-of-the-art methods.
Next, we explore the benefits of using multiple spectral bands of data as
compared to the traditional RGB bands. Finally, a look at future possibil-
ities with segmentation using capsule networks.
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v





Table of Contents

Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

I Research Overview 1

1 Introduction 3

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Report Outline . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Background 7

2.1 Digital image processing . . . . . . . . . . . . . . . . . . . . . 7

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 8

3 State-of-the-Art 11

3.1 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 DenseNet . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 Inception . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Semantic segmentation . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Fully Connected Networks (FCN) . . . . . . . . . . . . 16

3.2.2 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 Tiramisu . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.4 PSPNet . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.5 DeepLab v3+ . . . . . . . . . . . . . . . . . . . . . . . 21

vii



3.3 Capsule network (CapsNet) . . . . . . . . . . . . . . . . . . . 22

3.3.1 Capsules for Object Segmentation . . . . . . . . . . . 25

3.4 Aerial imagery approaches . . . . . . . . . . . . . . . . . . . . 27

II Contributions 29

4 Approach 31

4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Cross-entropy Loss . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.3 Jaccard Index . . . . . . . . . . . . . . . . . . . . . . . 38

III Experiments and Results 39

5 Experiments 41

5.1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Spectral Bands . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Data Amount . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 CapsNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion and Future Work 49

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 U-Net with Capsnet . . . . . . . . . . . . . . . . . . . 50

6.2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . 50

References 55

viii



List of Figures List of Figures

List of Figures

1.1 Result of classifying a region within an image[1] . . . . . . . . 4

2.1 Overview over different technologies[7] . . . . . . . . . . . . . 8

3.1 Identity function with both shallow and deep network[14] . . 12
3.2 Residual block compared to a plain block[15] . . . . . . . . . 13
3.3 A dense block. Each layer takes all preceding feature map as

input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Inception module with dimension reduction . . . . . . . . . . 15
3.5 The schema for 35x35 grid module of Inception-ResNet net-

work[12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Fully Convolutional Network Architecture[22] . . . . . . . . . 17
3.7 U-Net Structure[23] . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 PSPNet Structure[26] . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Depthwise Separable Convolution[29] . . . . . . . . . . . . . . 21
3.10 Dilation Rate Comparison . . . . . . . . . . . . . . . . . . . . 22
3.11 CapsNet’s encoder architecture[31] . . . . . . . . . . . . . . . 25
3.12 SegCaps architecture for object segmentation[36] . . . . . . . 26

4.1 Multispectral bands (400-1040nm) . . . . . . . . . . . . . . . 33
4.2 Short-wave infrared bands (1195-2365nm) . . . . . . . . . . . 34
4.3 Dataset Class Distribution . . . . . . . . . . . . . . . . . . . . 35

5.1 Predictions on different network architectures . . . . . . . . . 42
5.2 Predictions on different spectral bands . . . . . . . . . . . . . 43
5.3 Predictions with different amount of data . . . . . . . . . . . 44
5.4 CapsNet Model . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 CapsNet CIFAR Model . . . . . . . . . . . . . . . . . . . . . 46
5.6 CapsNet CIFAR Model Predictions . . . . . . . . . . . . . . . 46
5.7 CapsNet Segmentation Model . . . . . . . . . . . . . . . . . . 47
5.8 CapsNet Segmentation Model Predictions . . . . . . . . . . . 47

ix





List of Tables

3.1 Overview of popular models . . . . . . . . . . . . . . . . . . . 16
3.2 Building blocks of fully convolutional DenseNets. From left

to right: layer used in the model, Transition Down and Tran-
sition Up[25] . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Overview of semantic segmentation algorithms . . . . . . . . 22

4.1 Wavelengths and resolution for different bands . . . . . . . . 32
4.2 Segmentation Classes . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Adam Hyperparameters . . . . . . . . . . . . . . . . . . . . . 36

5.1 Performance (Insersection over Union) with different network
architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Performance with different bands of data . . . . . . . . . . . 43
5.3 Performance with different amount of data . . . . . . . . . . . 44

xi





Part I

Research Overview

1





Chapter 1

Introduction

The amount of satellite launches increases each year containing commu-
nication devices, cameras and sensors. Used by governments and private
companies to do multiple tasks. In context to the development of the way
humans work it will be useful to utilize these satellites in a manner that
would benefit the users even more than it is today.

The development in the field of artificial intelligence and deep learning has
grown exponentially the last years. More computational power and data
available than ever before creates opportunity to evolve our knowledge and
usage of this field. Earlier both artificial intelligence and deep learning was
just ideas that could not be implemented in a proper manner to be used
in an industrial way. Now it has changed and is already being used in the
industry. Deep learning is proven to solve multiple problems efficiently and
will a be crucial technique in the future for problem solving and automation.

Representation and identification of objects from satellites with high speed
and accuracy would make an impact on large and important industries. The
current systems deliver a good accuracy based on the methods being used.
However, the limitation of the algorithms is that they classify and detect
regions of interests and mark these by the result of classification. This will
only be a limitation when working with high resolution images that have
small details. To achieve a even greater result and a pixel-perfect accuracy,
a more advanced approach is needed.

This thesis explore the possibilities of deep learning in image segmenta-
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1.1. Problem statement Introduction

Figure 1.1: Result of classifying a region within an image[1]

tion and compare state-of-the-art algorithms in semantic segmentation using
satellite images with multiple spectral bands of data. There will be multiple
tests to evaluate the different approaches and modifications of algorithms
are also going to be discussed.

1.1 Problem statement

Semantic segmentation is a relatively new area of research and is still being
further developed. A result of this is a myriad of solutions to the same
problems and that all try to outperform each other. There are as of today
no blueprint of what is the best approach.

Usually when testing image classification algorithms, normal images pic-
turing items in normal perspective are being used. Every experiment done
in this thesis use aerial satellite imagery because we will like to see how
these approaches perform in an environment that could be a reality. The
consequence of this could be a lower accuracy and performance than in the
original papers.

Solving problems like image classification and semantic segmentation re-
quires data. The used dataset is delivered by Defence Science and Technol-
ogy Laboratory owned by the Ministry of Defence of the United Kingdom. It
includes normal 3-bands and extraordinary 8-bands imagery. This dataset is
available on kaggle.com[2], after being a competition in 2017. Every image
has however a dimension of 1km x 1km which makes the objects smaller
compared to objects from other popular datasets such as Cityscapes[3],
VOC2012[4] and CamVid[5].
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1.1. Problem statement Introduction

The primary goal of this thesis is to examine the best state-of-the-art al-
gorithm regarding semantic segmentation used on satellite imagery. The
results will show the differences on using 3-band and 8-band and potential
flaws in the current solutions.

Due to the fact that almost all approaches on semantic segmentation does
not experiment with dataset of satellite imagery, we want to find the most
appropriate approach for this specific usage. We will experiment with dif-
ferent approaches, multiple number of spectrum bands and trying to modify
these to fit our data.

Research questions

1. Which state-of-the-art deep learning image segmentation algorithm
has the best accuracy on satellite images?

2. Does increasing the number of spectrum bands from 3 to 8 increase
classification accuracy?

3. Does a out-of-the-box implementation of CapsNet work for semantic
segmentation?

Hypotheses

1. Newer approaches will give higher accuracy than older ones.

2. An increased amount of spectral bands will increase accuracy, but
training time will be increased.

3. Semantic segmentation with CapsNet should work, but the accuracy
will decrease.

1.1.1 Contributions

This thesis explores the current state-of-the-art for semantic segmentation
of satellite images. In addition it explores the performance benefits of using
several spectral bands of data.
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1.1. Problem statement Introduction

1.1.2 Report Outline
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Chapter 2

Theoretical Background

2.1 Digital image processing

Computer vision started in the late 1960’s at universities and institutes
that are trying to achieve artificial intelligence. At that time this field of
study was trying to replicate the human visual system as a step toward to
implement intelligence into robots. The plan was to finish in the end of
summer in 1966, as a summer project with the idea of attaching a camera
to a computer and get it to describe what it saw.[6] Computer Vision has
since that time been forked into many new areas of artificial intelligence.

Digital image processing is the topic of this thesis and it allows algorithms to
process digital images. When the work on digital image processing started
there was developed applications to satellite imagery, medical imaging and
character recognition amount other things. The cost of processing was high
compared to the hardware available in the beginning but changed in the
1970’s and cheaper computer was released and dedicated hardware became
available. The algorithms at that time was simple and basic mathematics,
and are not classified as artificial intelligence. In digital image processing
there are several different tasks that can be made such as classification,
localization, object detection and segmentation.

Depending on the task there are different approaches. Often, the more com-
plex the tasks are the longer time it takes to run. Therefore it is important

7



2.2. Convolutional Neural Networks Theoretical Background

Figure 2.1: Overview over different technologies[7]

to choose the most fitting method for each specific task.

Classification The goal is to classify a single object in the input image.
”Is there a cat in this image?”

Classification + Localization This combination result in not only can
the algorithm say if it is an object in the image, but can also localize
the single object.

Object Detection Makes it possible to find multiple objects in an image
and classify them to correct classes.

Segmentation Doing the same job as object detection, but gives a much
more accurate pixel-perfect result. These algorithms classify each
pixel

The approaches of digital image processing has changed and deep neural
networks are being used in all of the best performing algorithms available.

2.2 Convolutional Neural Networks

Convolutional neural networks is a class of deep feed-forward neural net-
works that has been applied to analyzing visual imagery. Being able to
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2.2. Convolutional Neural Networks Theoretical Background

extract features throughout the network makes them an essential part of
image and video recognition algorithms and as of now is the most viable
option for this operation. Being integrated in almost every solution for
solving the classification problem

The networks were designed by the core principles equal to the biological
processes. The functionality allows the algorithms to connect patterns be-
tween neurons that resembles the organization of the animal visual cortex.
A individual neuron responds to stimuli only in a restricted region of the
visual field. The visual fields of various neurons overlap in a way that it
covers all of the visual field.

Various different neural network consist of three different types of layers,
input layer, output layer and a number of hidden layers. Typically the
hidden layers consists of a series of convolutional layers, pooling layers, fully
connected layers and normalization layers. It will vary from algorithm to
algorithm because the architecture that the algorithms use and its purpose.

Convolutional Make a convolution operation on the input and sends it to
the next layer. The operation matches the response of an individual
neuron to visual stimuli[8]. This layer is also the core building block
of a CNN with its parameters consist of a set of kernels/filters.

Pooling Both local and global pooling exists. Combine outputs from mul-
tiple neurons in a layer and sends it to one neuron in the next layer[9].
The pooling is a kind of a non-linear down-sampling with max pooling
as a popular example.

Fully Connected Connects every neuron in one layer with every neuron
in the next.

Because CNN perform with good accuracy, it makes CNN obvious choice for
most algorithms within the field of image and video recognition. Popular
choices such as ResNet[10], VGG[11] and Inception[12] are being well used
and deliver acceptable performance. The development has increased by the
years but some problems and limitations the the solutions are still there,
which hinders the system to carry out the core ideas of being a replication
of the human visual system.

CNNs operates on complex tasks. The computational cost are therefore high
and to make a real-time object detection require sacrifices on the algorithms.
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2.2. Convolutional Neural Networks Theoretical Background

Due to the complexity of the neural network and the way the neurons learn
gradually training data is essential to have large amounts of. The algorithms
are being used in applications as they are today, but reducing the necessary
amount of data could potentially make room for new applications and field
of use.
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Chapter 3

State-of-the-Art

Working with such a popular field as deep neural network, results in a
massive development ratio compared to other areas of research. Semantic
segmentation is a relatively new method of deep learning and computer
vision. Therefore not only one approach leads the way. Multiple methods
have state-of-the-art performance.

3.1 Architectures

This sub-chapter contains a listed structured overview over the state-of-the-
art deep learning architectures. They are sorted by the age of the archi-
tecture with the oldest coming first. ResNet being the first, with DenseNet
right after and the sub-chapter ending with Inception. These are all popular
choices among deep learning approaches. Ending with an overview of the
architectures.

3.1.1 ResNet

In earlier stages of image classification using convolutional networks, AlexNet
and VGG were two popular networks. The publication of AlexNet was seen
as a massive breakthrough in the field at that time. From the release of
AlexNet in 2012 and until 2015 those two were the ones who delivered the
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3.1. Architectures State-of-the-Art

best accuracy and performance.[11][13]

Developed by a team from Microsoft Research, they published an approach
Deep Residual Learning for Image Recognition with the intention to over-
come the underlying problems of VGG and AlexNet. The obstacles that
AlexNet and VGG have difficulties with, are scalability within the network.
When deeper networks started converging, degradation problems were ex-
posed. With the network depth increasing, accuracy gets saturated and
then degrades rapidly.[11][13][10]

Figure 3.1: Identity function with both shallow and deep network[14]

ResNet’s core idea was to implement residual blocks ”identity shortcut con-
nection” that skips one or more layers. Figure 3.1 shows the complexity
with multiple layers without this approach. Instead of having a network
learning a direct mapping of x → y using a function H(x), which is a few
stacked non-linear layers[10]. ResNet defines the residual function using:

xι = Hι(xι−1) + xι−1 (3.1)

When the identity mapping reaches optimum it pushes the residuals to zero
and fits an identity mapping.

With these actions and modifications the ResNet outperforms the current
state-of-the-art convolutional networks. Since the publication the approach
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3.1. Architectures State-of-the-Art

Figure 3.2: Residual block compared to a plain block[15]

has been well used and even replaced VGG in the object detection algorithm
Faster R-CNN[16].

3.1.2 DenseNet

Facebook AI Research developed a convolutional network architecture named
DenseNet which in 2017 won the best paper award at Computer Vision and
Pattern Recognition(CVPR)[17]. Their architecture did as ResNet did be-
fore them and introduced a new block, Dense Block. [10][18]

DenseNet connects each layer to every other layer in a feed-forward fashion.
Traditional convolutional networks with N layers also has N connections
going from one layer to another. In this network the number of direct
connections is N(N + 1)/2. In every layer the feature maps of all the
previous layers are being used as inputs and their own feature maps are
used as inputs to all subsequent layers.[18]

As a direct result of the architecture and the dense patterns this approach
requires fewer parameters than traditional convolutional networks hence it
is no need to relearn redundant feature maps. While ResNet has a large
amount of parameters because every layer has its own weights. DenseNet
explicitly differentiates between added information and preserved informa-
tion. The layers are very narrow compared to other networks which adds
a small set of feature maps to the collective knowledge of the network and
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3.1. Architectures State-of-the-Art

Figure 3.3: A dense block. Each layer takes all preceding feature map as
input

lets the remaining maps unchanged. The final classifier makes a conclusion
based on all feature maps in the network.[18]

A big advantage of DenseNet is the improved information and gradient flow
throughout the network. Each layer has access to the gradients using the
loss function and input signal which makes it implicit deep supervision.[19]

A major difference to ResNet, this network introduces concatenation of
feature maps where ResNet has a skip-connection with identity function.
This is why this architecture is named Densely Connected Convolutional
Networks(DenseNet).[10][18]

xι = Hι([x0, x1, ..., xι−1]) (3.2)

3.1.3 Inception

The first version of Inception, at that time named GoogLeNet, was released
in 2014. The hallmark of this architecture is the improved streamlining of
the computing resources within the network. In the way they designed the
architecture allowed a more deeper and wider network without effecting the
computing resources and keeps it constant.[12][20]

Google managed this by introducing Inception modules, a new type of block
into the network. These modules have multiple and small convolutions to
reduce the number of parameters compared to other state-of-the-art ap-
proaches while still having a deeper architecture. [12]

Multiple versions of Inception have been released, with the latest called
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3.1. Architectures State-of-the-Art

Figure 3.4: Inception module with dimension reduction

Inception-v4. The Inception architecture is highly tunable and that which
was utilized by tuning the layer sizes carefully to balance the computation
between sub-network models. The introduction of TensorFlow in Inception-
v4 did that the most recent models was trained without partitioning the
replicas. This is possible due to optimization of memory used by back-
propagation and carefully considering what tensors are needed for compu-
tation and structuring to reduce the number such tensors[12].

In the same paper as Inception-v4, Google introduced Inception-ResNet. An
architecture based on the combination of previous Inception and residual
blocks. By doing this the training time was heavily reduced[10].
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3.2. Semantic segmentation State-of-the-Art

Figure 3.5: The schema for 35x35 grid module of Inception-ResNet net-
work[12]

Architecture Developed by Released

AlexNet SuperVision Group w/ Geoffrey Hinton 2012

ResNet Microsoft Research 2015

Inception v4 Google Research 2016

DenseNet Facebook AI Research 2017

Table 3.1: Overview of popular models

3.2 Semantic segmentation

There are multiple approaches of semantic segmentation and the most recent
and popular methods are written about in this chapter. There will be
explanations of the algorithms with models. At the end of the sub-chapter
there are a overview of who developed them and when it was released.

3.2.1 Fully Connected Networks (FCN)

CNNs is not only superior for image classification, but also making way
for other local tasks with a more structured output. Object detection is

16



3.2. Semantic segmentation State-of-the-Art

an example of a network who use a convolutional neural network and has
structured output with their bounding boxes[1][21].

As being seen as the first useful semantic segmentation algorithm, Fully
Connected Networks for Semantic Segmentation by J. Long, E. Shelhamer
and T. Darrell[22], used findings and research on CNNs as their foundation
of the work. They developed an approach that predicted each pixel in the
input image. This was the first approach that worked with trained end-to-
end for pixel-wise prediction and from supervised pre-trained.

Before this algorithm was released the other approaches used fixed-sized
inputs and the fully connected layers of these networks had fixed dimensions
and throw away spatial coordinates. In FCN these layers are viewed as
convolutions with kernels that cover the whole input region and casts them
into fully convolutional networks. This lets the input be any size and output
a classification map.

Figure 3.6: Fully Convolutional Network Architecture[22]

The segmentation architecture casts classifiers into fully connected network
then increase them for dense prediction with pixel-wise loss and train for
segmentation by fine-tuning[22].

When this paper was released in November 2014 the algorithm outperformed
the current state of the art performance and in the aftermath considered as
the first real segmentation algorithm and more recent algorithms has used
their ideas and principles.

17



3.2. Semantic segmentation State-of-the-Art

In our thesis FCN is being used and experimented with to give a baseline
for the results.

3.2.2 U-Net

Based on the previous approaches like FCN, a more elegant architecture
was built. U-Net made modifications and extended the FCNs architecture
so that the network would need fewer training images and yield more precise
segmentation[22][23].

The motivation and idea behind this approach was to supplement a usual
contracting network by successive layers, such that pooling operators was
replaced by upsampling operators because these layers increases the resolu-
tion of the outputs. One of the largest modifications in U-Net’s architecture
is in the upsampling. Here there are a large number of feature maps that
gives the network the opportunity to propagate context information to a
higher resolution layer. This is why the architecture model is shaped like
an U[23].

U-Net was developed for bio-medical image segmentation tasks and won
ISBI cell tracking challenge 2015[24], by training the network on transmitted
light microscopy imagery[23].

Figure 3.7: U-Net Structure[23]

3.2.3 Tiramisu

A fairly new approach used DenseNet(section 3.1.2) and FCN together for
better performance. DenseNet has proven it self with image recognition

18



3.2. Semantic segmentation State-of-the-Art

and the developers wanted to see how the architecture would perform when
dealing with the problem of semantic segmentation[18][25].

In the architecture of DenseNet the down-sampling is already there. To
recover from the input spatial resolution, the FCNs give an upsampling path
including of convolutions, upsampling operations and skip connections. In
this new solution, FC-DenseNet, the convolution operations are replaced
with the known dense blocks and the upsampling is referred to as transition
up[22][25].

A transition up module is a set of transposed convolutions that upsamples
the previous feature maps. These features maps are to be concatenated
to the ones coming from the skip connection to create a new dense block.
Hence the upsampling path has a higher spatial resolution. The growth in
number of features is too memory consuming and is a limitation[25].

This limitation is overcome by not concatenating its output with the dense
block input. Thus, the transposed convolution is applied only to the feature
maps obtained by the last dense block and not to all feature maps concate-
nated so far [25]. All information contained by previous block is summarized
by the last dense block.

The main semantic segmentation architecture, FC-DenseNet103, consists
mainly by three blocks of operations, layer, transition down and transition
up[25].

Layer

Batch Normalization

ReLU

3 x 3 Convolution

Dropout p = 0.2

Transition Down

Batch Normalization

ReLU

1 x 1 Convolution

Dropout p = 0.2

2 x 2 Max Pooling

Transition Up

3x3 Transposed
Convolution
stride = 2

Table 3.2: Building blocks of fully convolutional DenseNets. From left to
right: layer used in the model, Transition Down and Transition Up[25]

This architecture are seen as very deep(103 layers) and with other ap-
proaches very slow. But hence the 10 fold reduction of parameters compared
to other state-of-the-art architecture the network depth is not an issue.
It is proven better performance on urban scene understanding datasets as
CamVid and Gatech without further post-processing, temporal information
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3.2. Semantic segmentation State-of-the-Art

and pre-training[5][25].

3.2.4 PSPNet

Scene parsing is based on semantic segmentation and is a fundamental topic
in computer vision. The goal of scene parsing is to provide a complete
understanding of the scene by predicting the label, location and shape of the
objects. The previous state-of-the-art scene parsing frameworks are in most
times based on the FCN. The usage of CNNs comes with some challenges, it
having a hard time to consider diverse scenes and unrestricted vocabulary.
To overcome the challenges, a paper called Pyramid Scene Parsing Network
(PSPNet) was released[22][26].

PSPNet are based on FCN for pixel prediction. On top of that they have
extended the pixel-level feature to a designed global pyramid pooling, where
the local and global values combined makes the final prediction more reli-
able. In addition to that they have included an optimization strategy with
deeply supervised loss[26].

Figure 3.8: PSPNet Structure[26]

To address the challenge of reducing context information loss between dif-
ferent sub-regions they introduce Pyramid Pooling Module for global scene
prior construction upon the final-layer-feature-map of the neural network.
This module has operations under four different pyramid stages. Figure
3.8 shows the structure of the pyramid pooling module. The pooling high-
lighted with red is global pooling to generate a single bin output. The next
pyramid level, labeled with orange, separates the feature map to different
regions and forms pooled representation for different locations. The output
of these four levels contains a feature map with varied sizes. The four levels
in the pyramid pooling module has bin size of 1x1, 2x2, 3x3 and 6x6, from
to to bottom illustrated in the figure above[26].
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3.2. Semantic segmentation State-of-the-Art

PSPNet is a proven and an effective pyramid scene parsing network for
complex scene understanding[26].

3.2.5 DeepLab v3+

The most recent version of Google’s DeepLab series was released the 7th
of February 2018 and is called DeepLab v3+. The success of the previ-
ous versions and of what they call depthwise separable convolution, was
their motivation to extend this feature even further. DeepLab has a novel
encoder-decoder structure using Xception as feature map. Modification was
done on the Xception to adapt it for segmentation tasks[27][28][29].

Figure 3.9: Depthwise Separable Convolution[29]

Depthwise Separable Convolutions consists of a convolution over each chan-
nel separately (as opposed to a standard convolution where every filter is
used on every channel). This is followed by a 1x1 convolution that com-
bines the output channels into a single output layer. This method reduces
the number of parameters while still keeping the performance good. They
are primarily used in real-time and mobile applications[28][29].

Example: Number of parameters with 16 input channels and 32 output
channels
Normal convolution: 16 ∗ 32 ∗ 3 ∗ 3 = 4608
Depthwise separable: 16 ∗ 3 ∗ 3 + 16 ∗ 32 ∗ 1 ∗ 1 = 656

This seems to work very well if you look at the performance of Xception
and DeepLab with Xception architecture[27][29].

In the proposed encoder-decoder structure, one can control the resolution of
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Figure 3.10: Dilation Rate Comparison

extracted encoder features by dilated convolutions. Also known as Atrous
Convolutions [30]. Dilated Convolutions introduces another parameter in
addition to the standard convolutional parameters, dilation rate. Dilation
rate specifies a spacing between the values in a kernel (see figure 3.10).
Dilated Convolutions allows the convolutional layer to get a larger field
of view while keeping the computational cost the same. This is useful in
real-time applications which segmentation often is a part of[29].

DeepLab is the most recent approach published that achieves state-of-the-
art performance on segmentation tasks[29]. Using convolutional neural
network with atrous convolution they can extract the encoder features at
an arbitrary resolution depending on the available computation resources.
DeepLab shows through experiments that they sat new state-of-the-art per-
formance on PASCAL VOC 2012 benchmark dataset[4].

Algorithm Developed by Released

FCN UC Berkeley 8 Mar 2015
U-Net University of Freiburg 18 May 2015
SegNet University of Cambridge 10 Oct 2016
Tiramisu Multiple contributors 31 Oct 2017

PSPNet
The Chinese University of Hong Kong,
SenseTime Group Limited

27 Apr 2017

DeepLab v3+ Google Research 8 Mar 2018

Table 3.3: Overview of semantic segmentation algorithms

3.3 Capsule network (CapsNet)

The idea of a capsule network has been worked on for decades by Geoffrey
Hinton and in November 2017 a paper was released of the subject, Dynamic
routing between capsules. Capsule Net(CapsNet) is a neural network based
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on a system of capsules where a capsule is a group of neurons that recog-
nize visual aspects that traditional convolutional neural networks do not.
Regular CNN has its challenges, i.e using pooling layers makes you lose
information and will not be able to see combinations. CNN also requires
large datasets which is not efficient, due to the use of backpropagation.
Hinton who first introduced CNN has tried to solve the challenges CNN
contains.[31][32][33] [34].

In 2011 CapsNet was first introduced as a concept. In that paper back-
propagation it was not used although it being used successfully by most of
the best performing algorithms. Back-propagation is a method that adjusts
weights so the algorithms can be trains with minimum errors[32].

A capsule encapsulate what is seen as important information about the state
of the feature they are detecting in vector form as opposed to a scalar that a
neuron outputs in traditional CNNs. It encodes the probability of detection
of a feature equal to the length of the output vector, and the direction the
vector points to is encoded by the state of the detected feature. This makes
it possible to keep the probability unchanged while its orientation does,
while the detected feature state varies[31].

Algorithm 1 Dynamic routing algorithm

1: procedure Routing(ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0.
3: for r iterations do
4: for all capsule i in layer l: ci ← softmax(bi)
5: for all capsule j in layer (l + 1): sj ←

∑
i cij ûj|i

6: for all capsule j in layer (l + 1): vj ← squash(sj)
7: for all capsule i in layer l and capsule j in layer (l + 1): bij ←
bij + ûj|i · vj

8: end for
9: return vj

10: end procedure

In order to properly train a capsule network this paper proposes a dynamic
routing algorithm. A capsule needs to decide how to send its output to a
high-level capsule. It makes its decisions is by changing the scalar weight
that will multiply its output vector, to be treated as input to the next higher-
level capsule. Each weight is a non-negative scalar and for each lower-level
capsule the sum of all weights equals to 1. These weights are determined
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by the iterative dynamic routing algorithm[31].

Based on the pseudocode of Dynamic routing algorithm, this is the expla-
nation line by line:

1. Takes all lower-level capsules l together with output û and amount of
routing iterations r.

2. Coefficient bij represent a temporary value that later will be updated
iteratively. After procedure is complete this value will be located in
cij . Initiated as zero.

3. The for-loop indicates that the following steps will be repeated r times.

4. Calculates the vector value of ci that represent all weights for lower-
level capsules i. Softmax ensures that each weight cij has a non-
negative value. After all weights cij is calculated for every lower-level
capsule, it moves to line five.

5. Calculate a linear combination of vector inputs, weighted and deter-
mined in the previous step. This is done for all capsules in the higher-
level.

6. Vector from previous steps are passed to the squash non-linearity
makes sure the vector direction is preserved and produces the out-
put vector vj for all capsules of higher-level.

7. Looks at each higher-level capsule j and examines the input for so to
update the corresponding weight bij .

In the original paper they tested their new approach by using the MNIST
dataset. All architecture are therefore tailored to that specific task[31][35].

The CapsNet architecture can be split into two parts, encoder and decoder.
The encoder part of the network processes the input and learns to encode
it into a vector. This is where the capsules are located and consists of three
layers. One convolutional layer for detection of features, a PrimaryCaps
layer for producing combinations of the features from layer one and DigitCap
layer(Digit because of MNIST dataset) transform the tensor input to a
matrix[31].

24



3.3. Capsule network (CapsNet) State-of-the-Art

Figure 3.11: CapsNet’s encoder architecture[31]

Part two of the architecture is the decoder. These last three layers are
fully connected layers where all three uses the previous output as input
to increases its output and parameters. In each fully connected layer the
calculation is the same: number of parameters = (number of inputs + bias)
x number of neuron in layer.[31]

This new approach shows great potential to replace the traditional convo-
lutional neural nets by performing well on the MNIST dataset[35][31].

3.3.1 Capsules for Object Segmentation

There is not much work done on object segmentation using capsule networks
and when we started working on this thesis no work had been published or
released. On the 11th of April a paper called Capsules for Object Segmen-
tation were released. They propose an approach, SegCaps, who is the first
to use capsules instead of CNNs for object segmentation[36].

The authors extended the ideas of capsule networks. The original CapsNet
architectures and dynamic routing algorithm is very computational expen-
sive for memory and run-time. The number of parameters quickly escalates
even for small inputs as MNIST and also CIFAR10 datasets[31][35][37].

SegCaps solves this by rewriting the dynamic routing algorithm in two ways.

1. Children are only routed to parents within a defined spatially-local
kernel.

2. Transformation matrices are shared for each member of the grid within
a capsule type but are not shared across capsule types.
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Figure 3.12: SegCaps architecture for object segmentation[36]

To make up for the lack of global connectivity due to the introduction of
locally-constrained routing, they propose ”deconvolutional” capsules that
using transposed convolutions routed by the locally-constrained routing al-
gorithm. The SegCaps architecture contains 95,4% fewer parameters than
U-Net and 38.4% fewer than Tiramisu[36].

Algorithm 2 Locally-Constrained Dynamic Routing

1: procedure Routing(ûxy|tli
, d, l, kh, kw)

2: for all capsule types tli within a kh × kw kernal centered at position
(x, y) in layer l and capsule xy centered at position (x, y) in layer (l+1):
btli|xy

← 0.
3: for d iterations do
4: for all capsule types tli in layer l: ctli

← softmax(btli
)

5: for all capsule xy in layer (l + 1): pxy ←
∑

n rtli|xy
ûxy|tli

6: for all capsule xy in layer (l + 1): vxy ← squash(pxy)
7: for all capsule types tli in layer l and capsules xy in layer (l+ 1):
btli|xy

← btli|xy
+ ûxy|tli

· vxy
8: end for
9: return vxy

10: end procedure

Experimentally, SegCaps shows it results using LUNA16 dataset containing
lung segmentation. They outperform the state-of-the-art algorithms slightly
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and provides evidence that capsules can be better than CNNs on object
segmentation[36].

3.4 Aerial imagery approaches

Approaches have been created for specific tasks using satellite imagery.
Some of these tasks have a very specific target which would not be us-
able for others. These methods are developed using various technologies
and all works well on their tasks.

An approach had as a goal to automatically extract road networks from
aerial images. Using high-resolution images to compare their model to other
pure segmentation algorithms. The observations shows that the pure seg-
mentation methods have high error rates due to their noisy CNN output
are hard to correct. They propose a solution named RoadTracer which uses
an iterative search process by the help of CNN-based decision function to
graph the road network directly from the output. According to the findings
RoadTracer captures 45% more junctions in cities than other methods[38].

More traditional approaches have been done with datasets from unmanned
aerial vehicles (UAVs) in order to detect airplanes in real-time from UAV
applications. The well-used algorithm YOLO[39] was first tested on this
dataset with positive results, performing a detection and classification ac-
curacy on 84%. The authors proposed another CNN architecture with 24
convolution layers followed by two fully-connected layers at the end. This
self composed network is more computationally efficient and deliver a accu-
racy of 97.8% at the chosen dataset[40].
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Chapter 4

Approach

The following chapter is about our apporoach and how we received the
results and with what methods. The is information about the dataset such
as which classes it contains, channels and distribution. Implementation
details contains explaination of loss functions, which algorithms are being
tested and how accuracy being calculated.

4.1 Data

Data used in this thes is gathered from the DSTL kaggle competition[2].
It features 450 images gathered from the WorldView-3 satellite[41]. Every
image has 16 channels of data. 8 channels from the multispectral band
(400-1040nm) with a resolution of 1.24m and 8 channels from the short-
wave infrared band (1195-2365nm) with a resolution of 7.5m1(table 4.1).

25 images from the full set of 450 are labeled into 10 classes (see Table 4.2).
The remaining 425 are without annotations and are only used for testing
without ground truth.

The dataset is heavily unbalanced as can be seen in figure 4.3. In addition
there is almost no data on certain classes. We have therefore decided to re-
move both vehicle classes and combine Flowing Water with Still Water.

1WorldView-3 has a resolution of 3.7 m, but the data provided have reduced it to 7.5m.
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Name Wavelength Resolution

Panchromatic 450-800nm 0.31m
Coastal 400-450nm 1.24m
Blue 450-510nm 1.24m
Green 510-580nm 1.24m
Yellow 585-625nm 1.24m
Red 630-690nm 1.24m
Red Edge 705-745nm 1.24m
Near-IR1 770-895nm 1.24m
Near-IR2 860-1040nm 1.24m
SWIR-1 1195-1225nm 7.5m
SWIR-2 1550-1590nm 7.5m
SWIR-3 1640-1680nm 7.5m
SWIR-4 1710-1750nm 7.5m
SWIR-5 2145-2185nm 7.5m
SWIR-6 2185-2225nm 7.5m
SWIR-7 2235-2285nm 7.5m
SWIR-8 2295-2365nm 7.5m

Table 4.1: Wavelengths and resolution for different bands

Buildings Misc. Manmade structures
Road Dirt Road / Trail
Trees Crops
Flowing Water Still Water
Large Vehicle Small Vehicle

Table 4.2: Segmentation Classes

This results in a split of 22 training images, 2 validation images and 1 test
image. The classes also get reduced to a total of 7.
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Coastal (400-450nm) Blue (450-510nm) Green (510-580nm)

Yellow (585-625nm) Red (630-690nm) Red Edge (705-754nm)

Near-IR1 (770-895nm) Near-IR2 (860-1040nm) Ground Truth

Figure 4.1: Multispectral bands (400-1040nm)
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4.1. Data Approach

SWIR-1 SWIR-2 SWIR-3

SWIR-4 SWIR-5 SWIR-6

SWIR-7 SWIR-8 Ground Truth

Figure 4.2: Short-wave infrared bands (1195-2365nm)
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Figure 4.3: Dataset Class Distribution
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4.2 Implementation Details

Adam[42] has been used as optimization function for all of the different net-
works and algorithms. It is an extension to the classic Stochastic Gradient
Descent[43]. Adaptive learning rate reduces the need for tuning another
hyperparameter while also generalizing better to sparse data like ours.

Adam is initialized with the default hyperparameters provided in the orig-
inal paper (see Table 4.3) except for ε which uses the TensorFlow default.

α (Learning Rate) 0.001
β1 0.9
β2 0.999
ε 10−7

Table 4.3: Adam Hyperparameters

Sigmoid (equation 4.1) has been used as the last activation function. Using
the sigmoid activation function we generate a separate prediction map for
each class. These are then combined in order to generate a full prediction.

S(x) =
1

1 + e−x
=

ex

ex + 1
(4.1)

Input size is set to 320x320xchannels for all models unless otherwise is
noted.

4.2.1 Algorithms

In this paper we are using all of the current state-of-the-art semantic seg-
mentation algorithms to test and evaluate their performance on satellite
imagery. Looking at the leaderboard from the DSTL Kaggle competition,
we will find that most of the solution are U-Net based. Therefore it is
important to include the approach in the experiments.

U-Net is mostly built up like the original paper with 4 downsampling and
upsampling layers. We have however added zero padding in order to get
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output predictions which are the same size as the input data. The Up
Convolution (Deconvolution) has been replaced by a Upsamling and Con-
volution in order to avoid potential artifacts[44].

Regarding the Tiramisu, PSPNet, FCN and DeepLab, we used premade
repositories and tweaked it to our advantage. A dynamic data loader was
created that works with all the algorithms. All of the repositories delivers
a code based on Keras.

4.3 Evaluation Metrics

4.3.1 Cross-entropy Loss

Cross-entropy loss is used in cases where a model outputs probabilities be-
tween 0 and 1. The loss increases when the prediction diverges from the
ground truth.

− (ylog(p) + (1− y)log(1− p)) (4.2)

−
M∑
c=1

yo,clog(po,c) (4.3)

We train our model to predict a separate prediction map for each class and
then combining it into one prediction. With this method we can use binary
cross entropy loss.

4.3.2 Accuracy

Accuracy is simply the number of correctly classified pixels out of every
single pixel. This is not a good measurement for segmentation tasks. If
it predicts everything as farmland it will get a excellent accuracy, but the
result is not usable.
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Accuracy =
TP + TN

TP + FP + TN + FN
2 (4.4)

4.3.3 Jaccard Index

Jaccard Index, also known as Intersection over Union (IoU), was developed
by Paul Jaccard in 1901[45]. It gives more weighting to correct classification
and calculates an individual score for each class. Jaccard Index is useful
both as a metric and a loss function because it gives equal weighting to
every class. This mitigates some of the problems with unbalanced data.

Jaccard Index =
TP

TP + FP + FN
(4.5)

The mean IoU is simply the mean of all individual class IoUs:

Mean IoU = 1
M

M∑
c=1

IoU(c)

2TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative
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Chapter 5

Experiments

This chapter contains results and thoughts of the experiments done in the
thesis. Under each experiment there is an explanation of why the specific
experiment is conducted, the results is represented with a table or graph
and some reflection of the result. Some of these experiments are directly
linked to the research questions.

5.1 Networks

To find the most accurate semantic segmentation algorithm for satellite
imagery we had to do extensive research of the state-of-the-art algorithms
in this field. Each of these was implemented and tested to get an overview
over which one has best performance.

It has to be mentioned that due to the amount tests and with different
algorithms we did not optimize the hyper parameters on each approach.

The results in Table 5.1 shows a clear sign of which approach has the best
performance. The U-Net algorithm delivers a performance of 26.77 mIoU
which is much better than the others and has also balanced performance on
the different classes. The newer algorithms such as Tiramisu, PSPNet and
DeepLab shows that the old algorithm U-Net perform a higher accuracy
even if its older.
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Network Buildings Structures Road Trail Trees Crops Water mIoU

U-Net 59.35 0.32 44.77 2.45 40.53 39.93 0.02 26.77
Tiramisu 49.42 0.00 0.02 0.00 25.85 0.00 0.00 10.74
FCN 51.84 0.29 0.00 0.01 28.23 4.18 0.00 12.45
PSPNet 15.00 0.00 27.20 0.00 0.33 70.40 0.00 16.55
Deeplab v3+ 38.12 0.00 0.00 0.00 11.94 0.07 0.00 7.16

Table 5.1: Performance (Insersection over Union) with different network
architectures

Most of the algorithms manage to classify buildings except PSPNet, which
on the other hand has very good performance on crops.

Based on these results the following experiments are only tested on the best
performing algorithm, U-Net.

U-Net Tiramisu PSPNet

FCN Deeplab v3+ Ground Truth

Figure 5.1: Predictions on different network architectures
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5.2 Spectral Bands

Satellites are capable of capturing light in other spectrums than visible light.
Different elements like water and metal have different reflective properties
and will probably be easier to classify using more channels. Experiments
have therefore been run on 3-channel data (RGB) and 8-channel data.

Network Buildings Structures Road Trail Trees Crops Water mIoU

RGB 59.35 0.32 44.77 2.45 40.53 39.93 0.02 26.77
8-Band 59.08 0.00 49.15 0.51 37.60 59.30 63.27 38.42

Table 5.2: Performance with different bands of data

The results in Table 5.2 shows that using 8 spectral bands instead of 3
improves performance in certain aspects. RGB-bands have trouble finding
water because in these images it has almost the same color and shape as
trees. 8-band on the other hand use information from the bands we cannot
see to find water with a greatly improved performance as can be seen in
Figure 5.2. Training time using only 3 bands was 9 hours on a single K80
core compared to 13 hours for 8 bands of data.

U-Net U-Net 8 Channels Ground Truth

Figure 5.2: Predictions on different spectral bands

5.3 Data Amount

Machine learning algorithms are dependent on having lots of data to gen-
eralize from. Some algorithms are better at coping with this than others.
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This experiment will test the performance degradation of U-Net when it has
to work without data augmentation.

Network Buildings Structures Road Trail Trees Crops Water mIoU

With Augmentation 59.35 0.32 44.77 2.45 40.53 39.93 0.02 26.77
No Augmentation 52.79 1.00 50.93 0.00 33.23 15.95 33.04 26.71

Table 5.3: Performance with different amount of data

There is little difference in runs with or without data augmentation as shown
in Table 5.3. The discrepancies between classes is probably due to random
weight initialization.

U-Net No Augmentation Ground Truth

Figure 5.3: Predictions with different amount of data

5.4 CapsNet

One of our research questions was ”Does a out-of-the-box implementation
of CapsNet work for semantic segmentation?”. A basic CapsNet model was
implemented in Keras (Figure 5.4. This model was tested on MNIST with
great results.

The model was then slightly modified to fit CIFAR-10 data (Figure 5.5.
Input size was changed from 28x28x1 to 32x32x3 and the number of pa-
rameters was increased in order to process the increased number of input
data.

The model was then modified to remove the classification part and only
contain the decoder / segmentation part (Figure 5.7). The model got stuck
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Figure 5.4: CapsNet Model

in a place where it predicts the same classes for every input image as can
be seen in Figure 5.8.
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Figure 5.5: CapsNet CIFAR Model

Figure 5.6: CapsNet CIFAR Model Predictions
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Figure 5.7: CapsNet Segmentation Model

Figure 5.8: CapsNet Segmentation Model Predictions
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Chapter 6

Conclusion and Future Work

In the conclusion there will be mentions of results and research questions.
What the findings are and how this is relevant. The last sub-chapter include
the future work and what could be done in the future for better performance.

6.1 Conclusion

We present an overview of semantic segmentation algorithms and their re-
sults tested on satellite images. Further we explored the effects of increasing
the number of spectrum bands 3(RGB) to 8 bands. The leaderboard in the
Kaggle competition that delivered the dataset we used, all of top ten used
U-Net as their algorithm. Experiments shows that U-Net is still the overall
most accurate algorithm dispite being 1-2 years old than the other state-of-
the-art

6.2 Future Work

The following sections proposes a number of ways in which our current
implementations may be improved.
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6.2.1 U-Net with Capsnet

Segmentation using the standard convolution methods shows very promising
results. They do however suffer from no rotation variance among other
shortcomings. This means the network will have to be trained for many
different rotations in order to generalize better. A basic attempt to use U-
Net with CapsNet[36] has been implemented by someone else and it shows
very promising results for further research.

6.2.2 Dataset

As discussed in Chapter 4 the used dataset delivered by DSTL contains
multi-band satellite images. They are all square with a size of 1000m x
1000m. Every images is taken in Uganda and has a very distinct look based
on farmland, small roads and brick houses. This means that the model
will be better suited to predict images from this specific region. Training
the algorithms using a dataset with different climates would give positive
results. Our dataset is also very limited in size and increasing the data
amount will help significantly.

Some of the tested methods are proven to be good in urban environments.
Testing with an urban dataset and a different perspective than satellite
images would be something to look at. A dataset such as CamVid are
already tested on some of the algorithms and a comparison could most
likely give a different result than in this thesis with top-down perspective.

6.2.3 Hyperparameters

Many of the network architectures tested have a lot of different hyperparam-
eters which can be tuned. All of our experiments are run with the default
parameters and architectures specified in the respective papers. Perfor-
mance will probably be improved if these are tuned for the specific dataset
at hand.
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