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Abstract

In this thesis, three BIPV-installations has been simulated, the simulated results of each system

have been compared to actual production for the real system. The parameters which are assessed

in this thesis are production, performance ratio and different system losses. The

BIPV-installations which are simulated, are Skarpnes, Solsmaragden and Brynseng located in

Arendal, Drammen and Oslo respectively. The simulations are done by obtaining weather data,

such as global horizontal irradiance and temperature. The weather data was retrieved in different

ways. PVsyst was used to generate synthetic data, real measured data on site was used and

weather stations located in close proximity was also used. A hypothesis has been carried out in

this thesis, regarding facade installations are more beneficial for northern latitudes, compared to

southern latitudes. This thesis simulated the same photovoltaic system mounted on the rooftop

and on the facade. Installation located in northern latitudes had more similar production for

facade compared to rooftop installations than installations for southern latitudes. South oriented

facade installations are more productive compared to other orientations. The results of this thesis

are in compliance with the literature for this professional area.

The simulations estimated a production deviation within a range of 0.24% - 10.69%. Performance

results showed values within the range of 65.2% - 81.5%. Losses with regard to these deviations

were examined and irregularities in irradiation on-site measuring and shading showed most

critical for the installations. Due to huge losses with regards to shading, a partial shading model

was used to illustrate the losses for the Brynseng installation. The thesis found the performance

of the systems as expected, however the Brynseng system being an installation with improvement

potential.

The simulations display deviation in production and discovers issues regarding losses for the

chosen systems. This information may be used to achieve more accurate evaluation and

understanding of BIPV systems located in Norway.
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Symbols

αc Albedo component

β Plane tilt

η Efficiency

γ Diode quality factor
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Earray Energy output of the array

EGrid Energy injected into grid

G Effective irradiance

GEff Global irradiance considering soiling- and shading losses
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Gref Reference irradiance

GII Global incident irradiance

H Solar insolation

Hp Sun height on PV plane

Hp Sun height on horizontal PV plane

I Current

Id Diode current

k Boltzmann’s constant

Kb Clearness index of beam

Lc Collection losses

Ls System losses

muISC Temperature coefficient to the short circuit current

Nes Number of cells in series

P0 Installed PV capacity

q Charge of electron

RL Load

Rs Series resistance

Rsh Shunt resistance

Spr Specific production

T Temperature

Tc Cell temperature

Tamb Ambient temperature

Tcoe Temperature coefficient

Tcref Reference temperature

V Voltage

Yr reference yield
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Yt Specific yield

Abbreviations

CO2 Carbon dioxide

H2O Water

O2 Oxygen

sc− Si Single crystal silicon

AC Alternating current

AM Air Mass

BAPV Building applied photovoltaic

BIPV Building integrated photovoltaic

CdTe Cadium telluride

CIGS Copper-indium-gallium-diselenide

CIS Copper-indium-diselenide

CPV Concentrator photovoltaic

DC Direct current

DHI Diffuse horizontal irradiance

DNI Direct normal irradiance

GHI Global horizontal irradiance

IAM Incident angle modifier

MPP Maximum Power Point

MPPT Maximum Power Point Tracker

NREL National renewable energy laboratory

PI Performance index

POA Plane of array

PR Performance ratio

PV Photovoltaic
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PVPS Photovoltaic power system program

PVSS Photovoltaic system simulation program

RMSE Root mean square error

SAM System advisor model

SAPM Sandia array performance model

SAPV Stand-Alone Photovoltaic

SAPV Stand-alone photovoltaic

Si-Poly Silicon poly crystalline
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5.3.2 Measured data from Ås and Blindern . . . . . . . . . . . . . . . . . . . . . . 56

5.3.3 Shading impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Facade versus roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

X



5.5 Partial shading model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Discussion and Conclusion 62

6.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References 65

7 Appenix 71

XI



LIST OF FIGURES University of Agder

List of Figures

1 Spectral distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Direct and Diffuse radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Motion of the sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Overview of MPP and more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Illustration of cell, module, string and array . . . . . . . . . . . . . . . . . . . . . . . 7

6 Effect of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7 Fixed and tracking PV array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 PR, PRSTC and PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

9 Illustration of the one diode model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10 Solsmaragden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 Overview of Skarpnes BIPV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

12 Zero emission house at Skarpnes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

13 Illustration of BIPV system for houses at Skarpnes . . . . . . . . . . . . . . . . . . . 28

14 Illustration of the Horizon surrounding Skarpnes. . . . . . . . . . . . . . . . . . . . . 28

15 Illustration of 3Dmodel of zero emission houses at Skarpnes . . . . . . . . . . . . . . 29

16 Overview of the 2 inverters of interest for this thesis. . . . . . . . . . . . . . . . . . . 30

17 Horizon at Solsmaragden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

18 On the left side is the 3D model of Solsmaragden, which is shown on the right side. . 33

19 Brynseng skole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

20 Brynseng horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

21 3D model of Brynseng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

22 Solsmaragden with roof mounted PV field for hypothesis testing. . . . . . . . . . . . 38

23 Partial shading model used for the Brynseng case. . . . . . . . . . . . . . . . . . . . 39

24 Normalized energy production for orientation for orientation 48◦. . . . . . . . . . . . 42

25 Normalized energy production for orientation −51◦ . . . . . . . . . . . . . . . . . . . 43

26 Performance ratio at Skarpnes for the zero emission house oriented with an azimuth

angle of 48◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

27 Performance ratio at Skarpnes for the zero emission house oriented with an azimuth

angle of −51◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

28 Arrow loss diagram obtained from the simulation . . . . . . . . . . . . . . . . . . . . 45

29 Arrow loss diagram obtained from the simulation . . . . . . . . . . . . . . . . . . . . 46

30 Solsmaragden result for synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

31 Solsmaragden PR result for synthetic data. . . . . . . . . . . . . . . . . . . . . . . . 49

32 Solsmaragden losses for synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

33 Normalized production results for measured data. . . . . . . . . . . . . . . . . . . . . 51

34 Solsmaragden results for measured data. . . . . . . . . . . . . . . . . . . . . . . . . . 52

35 Solsmaragden losses for measured data. . . . . . . . . . . . . . . . . . . . . . . . . . 53

36 Production and losses for Brynseng . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

XII



37 Performance ratio for Brynseng. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

38 Arrow loss diagram for Brynseng. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

39 1000 W/m2 irradiance applied on all modules. . . . . . . . . . . . . . . . . . . . . . . 59

40 25% shading is applied to the string . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

41 50% shading applied on the string. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

42 Various shading has been applied on modules. . . . . . . . . . . . . . . . . . . . . . . 60

XIII



List of Tables

1 Albedo coefficient values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Algorithms which can be used in SAM for solar radiation, array and inverter perfor-

mance [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Information regarding location of all BIPV systems included in this thesis. Latitude

is north positive, longitude is east positiv and elevation is height above sea level. . . 21

4 Information regarding measuring error at Skarpnes for 2016. Kjøita data has been

used to replace the missing data retrieval, which is shown in the second column. . . 22

5 Information regarding measuring error at Solsmaragden for 2017. PVsyst synthetic

data has been used to replace the missing data retrieval, which is shown in the second

column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Global horizontal irradiance data used in PVsyst for Solsmaragden. PVsyst values

are an average monthly value measured from 1991 to 2010. All values are given in

monthly [kWh/m2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Global horizontal irradiance data used in PVsyst for Brynseng. All values are given

in monthly [kWh/m2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Table of modules used at Solsmaragden for inverter 7 and 8. . . . . . . . . . . . . . . 31

9 Table of inverters and their positioning at the BIPV system of Brynseng school and

the planned power for each inverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 All locations for the assessment of the hypothesis. . . . . . . . . . . . . . . . . . . . 39

11 Balance and main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

12 Balance and main result for Solsmaragden synthetic data . . . . . . . . . . . . . . . 47

13 Balance and main result for Brynseng synthetic data . . . . . . . . . . . . . . . . . . 54

14 South facade compared with roof for differnt locations. . . . . . . . . . . . . . . . . . 57

15 North, West and East facade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

16 ε bins intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

17 ε bins coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

XIV
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1 Introduction

With the shift towards green energy, different renewable energy sources are under development.

The electricity produced in Norway is based on hydro-power[2], with solar energy being a growing

competitor for renewable energy. As a result of existing electricity contribution from renewable

energy sources, PV systems are usually installed on residential and commercial buildings. The

Norwegian climate makes solar energy, a source worth expanding and investing in, as

substantiated by the growing photovoltaic (PV) sector in Norway. Due to the cold climate and

northern latitudes, with low sun angles, facade installations make a suitable option.

There is an ongoing survey of building Integrated photovoltaics (BIPV) in Norway, which is a

nationwide project for BIPV and building applied photovoltaic (BAPV) installations [3]. This

thesis will conduct a simulation of BIPV systems constructed in Norway, evaluate the results in

comparison with actual production results for these installations and evaluate rooftop mounted

PV system productions in comparison with facade mounted PV systems. The systems included in

this thesis are the zero-emission houses at Skarpnes south of Arendal, the office building

Solsmaragden located in Drammen and Brynseng school in Oslo.

There are several software packages for simulating and modeling a Photovoltaic system. A model

used for PV performance aims to calculate the power output of a PV system. This system usually

contains PV panels, inverters, charge controllers and other components. A simulation of a PV

system is based on models. During the development of the renewable branch, lots of models and

simulation tools have been developed. In order to evaluate a simulated PV system, loss

parameters are important to address.

Sandia National Laboratories has been a contributor to these modeling and simulation software

packages [1]. This thesis will use the PV software PVsyst, which will be used to simulate three

different BIPV systems, evaluate production and loss results for the systems and cover a

hypothesis for PV performance. Simulated losses can be an indicator of which improvements are

required for PV systems. Facades experience more losses due to incident in collector plane in

comparison to roof installations. Where rooftop installations may experience soiling losses due to

snow, in Northern latitudes, facade installations experience shading due to objects nearby. To

address shading losses, the software Simulink has been used to create a partial shading model.

This model is based on a string installed at the Brynseng system, in order to inspect power loss

due to shading.

For the hypothesis, a literature review has been conducted for facades being an advantage for

northern latitude compared to southern latitudes. For this hypothesis, simulation in PVsyst is

done to compare facade and roof installation in order to validate the hypothesis. The thesis will

inspect if there are considerable differences for PV on roofs and facades for the same location.

1
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2 Theory

In this chapter, some theoretical background will be given on solar radiation, PV- module, system

performance characteristics and PV software used for PV performance modeling and simulation.

Section 2.1 until 2.3 contains information gathered from [4], and other sources will be listed. This

thesis focuses on BIPV system performance, and for this task, it is essential to know how a PV

system works and what factors that have an impact on the system.

2.1 Solar radiation

The radiation from the sun’s surface is equivalent to that of a 6000K blackbody1. As the

radiation enters the earth’s atmosphere, parts of the radiation are scattered in the atmosphere,

illustrated in Figure 2. Sunlight is typically reduced by 30% before it reaches the Earth’s surface

due to Rayleigh scattering by molecules, dispersed by dust particles and aerosols and absorption

by atmospheric gases like CO2, H2O, ozone and O2. This scattering gives diffuse radiation,

sunlight which has been dispersed in the atmosphere but reaches the Earth’s surface. As the

atmosphere reflects, absorbs and scatters the radiation, the earth surface absorbs and reflects it.

Direct radiation is the sunlight coming directly from the sun. The sum of direct and diffuse

radiation equals the global radiation. The path length this radiation must pass through to get to

earth’s surface is known as the Air-mass (AM), which calculated approximately as:

AM =
1

cosφz
(1)

Where φz is the Solar zenith angle, the angle between the sun and the point directly overhead.

The path length, for the radiation, increases with increased zenith angle.

Before entering earth atmosphere, the spectral distribution of sunlight is defined as Air mass zero

(AM0). The spectrum of the solar radiation is close to the blackbody at 6000K. At different

wavelength and temperature, the energy distribution varies as illustrated in figure 1.

1An ideal absorber, and emitter, of radiation
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Figure 1: Spectral distribution [5].

Figure 1 shows a typical energy distribution for AM of 1.5 spectrum, which is the one under

standard solar cell testing [4].

The power density at earth orbit is known as the solar constant. This value can vary slightly

because of the elliptic shape, but is accepted to be:

Gsc = 1366 W
m2

Figure 2: Radiation scattered in the atmosphere [4].
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Figure 3: Motion of the sun for an observer [4].

Figure 3 gives an illustration of the motion of the sun for an observer at latitude 35◦N , and ε is

the inclination of the earth’s axis of rotation relative to its plane of revolution about the sun (=

23.45°) [4]. The variation of ε causes the Earth’s seasons and can be found [4]:

ε = 23.45◦sin
360

365
· (d− 81) (2)

Here d is the day number, which means d=1 is January 1st.

2.1.1 Albedo coefficient

The content in Section 2.1.1 is retrieved from the software PVsyst and [6]. Albedo coefficient is

the part of global incident irradiation which is reflected by the ground in front of the tilted plane.

As the horizontal irradiation is computed onto the tilted plane, the albedo effect takes place. Due

to the horizontal irradiation component, the albedo component seen by the plane is zero for a

horizontal plane but will increase with tilt. The albedo component is part of the Hay

transposition model, which applies differently to various components of the irradiance. The

Albedo component can be described as:

αc = ac ·GHI · (1 − cos(β)/2) (3)

Where αc is the albedo component, ac is the albedo coefficient, GHI is the global horizontal

irradiance and β is the plane tilt. The (1 − cos(β)/2) part of the equation is a result of constant

irradiance coming from all directions, seen by the plane. This means larger contribution for the

albedo component with increased tilt up until 180(◦).
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As seen in Table 1 different albedo coefficient values are given according to PVsyst and the

National Laboratory collaborative [1].

Urbane situation 0.14 - 0.22

Grass 0.15 - 0.25

Fresh grass 0.26

Fresh snow 0.82

Wet snow 0.55 - 0.75

Dry asphalt 0.09 - 0.15

Wet asphalt 0.18

Concrete 0.25 - 0.35

Red tiles 0.33

Aluminium 0.85

New galvanised steel 0.35

Very dirty galvanised steel 0.08

Table 1: Albedo coefficient values

For obtaining the most accurate albedo value, direct measurement on the site is required. The

measurement is a ratio of irradiance measured by a pyranometer oriented towards the ground,

and another pyranometer measuring the global horizontal irradiance.

2.2 PV module performance characteristics

Usually, cells with similar characteristics are connected to form modules. Several modules can be

connected to form solar arrays. The module’s output is decided by the cell with the lowest output,

due to every single cell has its unique characteristics. If there are cells which are not operating

properly, either in series or parallel, it is called a mismatched cell. This mismatch can lead to

some of the cells generating and others dissipating power. The difference between actual output

power and the maximum achievable output for component cells is called the mismatch loss.

2.2.1 Efficiency of PV materials

Section 2.2.1 is based on the annual trend report from IEA-pvps [7]. The report divides solar cells

into these categories: wafer-based crystalline2, compound semiconductor (thin-film), or organic.

With more than 94% of cell production in IEA-pvps countries to be crystalline silicon. The single

crystal silicon cells(sc-Si) has a commercial efficiency between 16% and 25%. The mulitcrystalline

silicon cells(mc-Si) have an average conversion efficiency around 14-18%. The compound

semiconductor PV cell is used in concentrator PV (CPV) systems with tracking systems, with a

2Single crystal and multicrystalline silicon
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conversion efficiency of 40% and higher. Thin-film uses materials such as cadmium telluride

(CdTe), and copper-indium-(gallium)-diselenide (CIGS and CIS). The CdTe material has reached

efficiency up to 22% in labs. The organic thin-film PV cells, based on dye or organic

semiconductors are new technology and still in the development and research phase.

The report also inspects PV module efficiency. The wafer-based crystalline modules have an

efficiency between 14 and 22,8%. Encapsulated PV cells in thin-film modules, either fixed or

flexible module, can reach an efficiency within a range of 7% to 16.8%. CPV modules can reach

an efficiency of 38%. PV modules are usually rated in the range of 50 W up to 350 W, products

for building integrated photovoltaic are rated even higher.

2.2.2 Photovoltaic cell and operation

Solar cells are produced from a semiconductor material, usually silicon-based. When a cell is

exposed to light, it produces an electric current; this is called the photovoltaic effect. For

characteristic of solar cells/module output, maximum power point can be used, which is the

maximum value of the product Vmp · Imp. As seen in Figure 4, the maximum power is the largest

fitting rectangle under the IV curve, and illustrates the cell/module characteristic IV curve:

Figure 4: IV Curve [4].

When illuminated with sunlight, a single solar cell can generate approximately 600 mV. To get

the desired voltage, the cells are connected in series, usually 36 cells in series. The desired current

is obtained by paralleling the cells, as the single cell only can generate approximately 30 mA/cm2.

The PV module is a construction of solar cells connected to a string, in series and parallel.

Modules can then be connected in series to create a string. Connecting strings in parallel will

result in an array. Figure 5 illustrates the difference between cell, module, string and array.
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Figure 5: Illustration of cell, module, string and array.[8]

2.2.3 Effect of temperature

The temperature is significant when talking about the performance of a PV system. The total

effect is a minor increase in current and a significant reduction in voltage, fill factor and cell

output.

Figure 6: Effect of temperature on solar cell [4]

In Figure 6, one can see that an increase from T1 to T2 shifts the IV curve to a lower voltage

output. Operating temperature of cells is affected by ambient air temperature, wind velocity, the

intensity of sunlight on the module. −0.45%/K is a typical change in power output for a silicon

solar cell based on temperature.

7



Theory University of Agder

2.2.4 Standard test condition and efficiency of PV module

Under sunlight of 1 kW/m2, the power output at maximum power point (MPP) is called the

”peak power” of the cell. In photovoltaic terms, this is rated, as the panels ”peak” watts, Wp.

The watt peak (Wp) is used when rating the PV, in terms of output power (Pmpp) under standard

test conditions (STC) [9]:

• 1000 W/m2 (1 sun)

• Tc = 25° cell temperature

• Spectral distribution AM1.5

The parameters used to calculate the efficiency of the PV module [10]:

ηSTC =
Pmpp

1000 ·A
(4)

Here A is the area of the PV module.

2.3 PV system

A PV system consists of one or more PV modules, and all components required for the cells to be

able to deliver electricity to load or grid. The system is either connected to a series of loads

(off-grid) or an electricity network (grid-connected PV)

2.3.1 Grid connected PV system

Grid-connected systems contain an inverter converting direct current (DC) into alternating

current (AC), which is supplied into an electrical network. The conversion efficiency is usually in

the range of 95 % up to 99 %. Most inverters contain a Maximum Power Point Tracker (MPPT),

which constantly changes the load impedance to gain maximum power from the PV array.

The grid-connected system can be divided into two main alternatives, PV arrays installed at the

end user site or as the utility for generation stations. The first alternative is the type of system

installed on rooftops and integrated into buildings.

There is one case that can cause several damages to the utility grid. This problem is known as

Islanding, that is if the grid-connected system continues to operate when the grid shuts down.

Mostly this is handled by the inverter or at the distribution network.

2.3.2 Fixed and tracking

It is possible to install a PV system fixed or with different tracking orientation. The fixed PV

arrays are mounted on location in a specific orientation and angle. A Fixed installed PV system is

the most common type. The tilt angle is chosen based on seasonal power requirement, and the

orientation is based on the installation being located in the northern or southern hemisphere. The
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tilt angle should be low at summer and high at winter or the tilt could be annually optimized. It

is possible to change the array angle for example seasonally or monthly manually.

Contrary to the fixed system, a tracking system is a system orientates itself towards the sunlight.

This type of systems can be either 1-axis or 2-axis, see Figure 7.

A 1-axis tracking system typically follows the sun from east to west, and the output can increase

up to 20% compared to a fixed array. A 2-axis system has the same function as 1 axis system but

can as well follow the sun from east to west. The 2-axis provide a power output increase as high

as 40 % higher than the fixed array.

Figure 7: Illustration fixed and tracking PV array [11].

2.4 PV performance assessment method

Several methods and metrics have been proposed for evaluating a PV system, and they are

essential for analyzing the performance of the system. These methods and metrics are means to

verify the system performance under a range of conditions [12]. Yield is one of the most common

metrics which is used to analyze PV systems [13, 14, 15]. For system comparison, it is also

necessary to have some information regarding the installation site, the kind of system, building

integrated photovoltaic or building attached photovoltaic, PV area, type, installation angle and

year of the commission. James et al. [16] stated that BIPV systems experience reduced

performance (i.e., electricity generation) compared to BAPV PV systems due to it being mounted

directly on building surfaces. Which co-relates to high temperature in some cases due to the little

air gap, and can cause overheating [17].

According to the international energy agency (IEA) [18], system performance is usually analyzed

by specific yield (kWh/kWp) installed and performance ratio. An article published by Imenes

[13], states that yield is strongly dependent on efficiency. Efficiency depends on factors like

spectrum and intensity as well as temperature.

There are several metric calculations for analyzing PV systems, and this paper will elaborate on:

• Specific yield
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• Performance ratio

• Temperature corrected performance ratio

• Performance index

As well as methods/models used in PV system analysis:

• PVsyst

• PVSOL

• Solar advisor model

2.4.1 Specific Yield

Specific yield is proposed for analyzing PV system of different sizes [14]. The main reason for

monitoring a system is to evaluate the yield, which can be used to analyze the system performance

and to identify design flaws and malfunctions. Specific yield Yt is the net electrical energy output

(E) divided by the installed PV capacity (P0). Specific yield is represented by the equation:

Yt =
E

P0
=

Energy production [kWh]

Installed PV capacity [kWp]
(5)

According to Jardine et al. [15], energy production and peak power output are related. However,

due different technologies, the different response to temperature, insolation, and spectral quality,

specific yield show variation.

For further evaluating an installation, reference yield (Yr) is introduced. The reference yield is the

total in-plane solar insolation (H) divided by the array reference irradiance (Gref ); therefore, the

reference yield is the number of peak sun-hours. Reference yield is used when calculating PR.

Yr =
H

Gref
=
Solar insolation [kWh/m2]

1 [kW/m2]
(6)

As yield is commonly used, it leads to lots of research regarding system performance based on

yield, and this report will give some examples. An example of yield being used to analyze the

performance of PV system is given in a paper by Ayompe et al. [19]. The paper evaluated a

grid-connected PV system in Dublin, Ireland. The data was collected between November 2008

and October 2009. It was compared to systems installed in Germany, Poland and Northern

Ireland. The installation in Dublin had higher performance compared to the other installations,

due to high wind speed and low ambient temperature. Another study was done by Jahn and

Nasse [20], for evaluating installation with low yield and performance. The paper concluded with

shading from trees and structures had a major impact, 34%, on the reduction in the yield.

Another example is the paper written by Jardine et al. [15], where specific yield is used to

evaluate installations located in UK and Spain, based on the PV material used. Both installations
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had lower performance than predicted, due to lower insolation during the test period. However,

the result also gave an indication of crystalline silicon technologies performed better under colder

operating temperature.

2.4.2 Performance ratio and temperature corrected performance ratio

Evaluating systems performance after a PR model is by far the most widely used today [21].

Leloux et al. argued that PR is used because of the thorough energy production assessment that

is crucial for economic analysis.

The difference between 1 and PR are all types of energy losses. These losses are for example

mismatch, shading, wiring, dust, thermal, DC/AC conversion, failures and PV module power

lower than nominal rating.

The performance ratio PR is the actual yield divided by the reference yield. By normalizing with

respect to irradiance, it quantifies the overall effect of losses on the rated output due to inverter

inefficiency, wiring, mismatch, and other losses when converting from DC to AC power [22]. The

effect of losses is also affected by PV module temperature, incomplete use of irradiance by

reflection, soiling or snow. System downtime and component failures also make an impact. PR is

represented by the following equation:

PR =
Yt
Yr

=
Production energy

Expected energy
=
Production energy[kWh]∑

[I[ W
m2 ] ∗ Peak Power[W ]

1000[ W
m2 ]

]
(7)

Here production energy is the measurement of the site output in kWh, and the expected energy is

found by multiplying the sensor readings by the rated peak power of the PV system. This metric

is highly sensitive to temperature variation. Systems do not always operate at STC therefore

thermal losses may be taken into account. Calculating a temperature corrected PR, referring to

STC conditions is represented by the following equation:

PRSTC =
Production energy

[Expected energy] ∗ [1 + (T [◦C] − 25◦C) ∗ Tcoe[ %
◦C ]]

(8)

Here production energy is divided by the expected energy, measured temperature and

temperature coefficient. Where T is the measured module temperature in [◦C].

Tcoe is the temperature coefficient, given in percent, per degree difference. The temperature

coefficient is the module’s Mmpp temperature coefficient.

Thermal losses occur when PV cell temperature differs from STC.

If the temperature of the PV cell is lower than 25[◦C], the output increases. Using temperature

corrected PR will neglect thermal losses but it requires measuring or estimating the solar cells

operation temperature.

Leloux et al.[21], stated that thermal losses are site-dependent, which means a climatic impact on

the system. This makes it inconvenient for qualifying the systems technical quality. According to

Kurtz et al.[12], sensors can become loose which leads to reflect the true module temperature
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poorly. Instead of sensor measuring module temperature, it is possible to measure the module

temperature directly. When using direct measurement, there is no need to define a model for

module temperature. Direct measurement is more accurate for use in small systems. Temperature

changes related to passing clouds and gusts of wind are better quantified when using this direct

measurement.

2.4.3 Performance index

Even a high-quality system, which is properly maintained, endures losses due to inverter DC/AC

conversion. Performance Index (PI) is a method that gives the possibility of comparing PV

system under different climatic and installation conditions, same as PR. The difference is when

using PI, DC/AC losses can be subtracted, which gives a more accurate performance evaluation

of the PV system itself. According to Leloux et al. [21] PI value equal to 1 corresponds a system

free of shading, dust, wiring losses and free of failures for its inverter and PV generator.

When using PI, the actual PI value is compared to the desired PI value of 1. The difference

between these two values can be explained as preventable energy losses.

PI can therefore be used as an performance indicator, and can be defined as [21]:

PI =
Yt

HSTC
GSTC

∫
G(1 − ∆HSTC)(1 − ∆HDC/AC)dt

(9)

From the equation, the term (1 − ∆HDC/AC) perform the task of subtracting DC/AC conversion

losses.

Figure 8: Comparison between PR, PR at STC and PI for a typical system in France, 2010 [21]

An example of PI is given, in Figure 8 [21]. A PI value of 0.85 means the system operates 15
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percent inferior to the reference system, which has the PI value of 1. The Figure gives an

overview of what can be expected when comparing the performance of a system regarding PR,

PRSTC and PI. PR gives lowest system performance(%), due to losses. Temperature corrected

PR neglects thermal losses and gives better system performance. Due to a more comprehensive

analysis, PI gives higher performance values than PR. These values are indicating that the

systems operate on an acceptable level.

2.5 PV software

This section will mainly present theory regarding PVsyst and models which are used for the

software in order to evaluate PV systems. PVSOL and system advisor model will also be

presented.

2.5.1 PVsyst

PVsyst is a software used to simulate, study, sizing and analyze [6, 23, 24, 25], as well as

predicting energy yield photovoltaic systems [26]. PVsyst simulates grid-connected- stand alone-,

pumping- and DC Grid PV systems [23]. PVSOL is also a software which provides dynamic

simulations for design and optimization of PV systems, with storage systems [27, 28]. PVSOL

also provides wiring design, shading analyses and full component selection [25]

For simulating a PV site, in PVsyst, data have to be imported. These meteorological data are:

global irradiation and temperature [29, 30], these inputs play the main role in the simulation. In

addition, horizontal diffuse irradiation and wind velocity are optional data inputs. PVsyst is also

able to work with measured ambient temperature and compute the module temperature, which is

done using a thermal model [29]. Directly measured module temperature can also be used.

Simulations are often performed in hourly steps [29, 31]. The software can be used to optimize a

PV installation, based on parameters like tilt-, pitch- and azimuth angle [31]. PVsyst is often

used to optimize PV installations related to yield [31], and detection of failure on module, string

and inverter level [29]. Using models in simulation software, (Isc, Voc,Wmp, Imp) parameters are

determined by the manufacturer’s specification [32]. This may lead to errors related to

parameter’s uncertainty due to the simulated module will not be an exact representation of actual

module. In order to obtain reliable energy yield simulations, it is important to have an accurate

module model [26].

2.5.2 models and parameterization

Important models on irradiance level are Hay and Perez is applied for irradiance determined on

the module. In PVsyst incidence angle modifier (IAM) is a loss parameter due to the reflection of

beam component on cover glass [32].

Global incident in collector plane is the irradiance viewed from the collector plane, and plays a

major role in evaluating system losses in PVsyst[33]. PVsyst uses 2 transposition models:
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1. Hay’s model which is a robust model, and can handle diffuse irradiation when the knowledge is

not perfect.

2. Perez model which is a more sophisticated model, but requires well-measured data.

2.5.3 Hay’s model

Hay transposition model can be applied to different components of the irradiance.

1. Beam component on the tilted plane as a function of tilt angle and the incidence angle, which

makes this a pure geometrical transformation.

Bc = DNI · Hp

Hhp
(10)

Where Bc is the beam component [W/m2], DNI is the direct normal irradiance [W/m2], Hp is the

sun height on the plane and Hhp is the sun height on the horizontal plane.

2. Diffuse component is an isotropic distribution.

Dc = DHI · [(1 −Kb) · (1 + cos(θT )/2) +Kb · Hp

Hhp
] (11)

Where Dc is the diffuse component, DHI is diffuse horizontal irradiance, θT is the tilt angle of the

array and Kb clearness index of the beam.

3. Albedo component as described in Section 2.1.1

2.5.4 Perez’s model

This model is an advancement of diffuse sky models and used in PVsyst. Information regarding

this model is obtained from [33, 34] and is described in Appendix E.

2.5.5 PVSOL

PVSOL also requires global irradiation, temperature and may also require wind velocity [35]. All

data used in PVSOL requires being in an hourly format. PVSOL is able to simulate storage

systems, which gives the possibility of calculating self-consumption of a PV system more precisely

[27]. PVSOL evaluates system parameters such as: total energy produced, PV array surplus,

energy not converted by the system, system efficiency, solar fraction, optimum tilt angle of solar

panel etc [28] PVSOL may work with a maximum of 100 000 modules, simulating systems by the

minute with any module arrays in various orientations. This software also gives the possibility of

combining multiple inverters, even when they are equipped with different MPP trackers [27].

PVSOL has the complexity to model partial system shading and bypass diode effects unlike other

commercial PV software [36, 37].
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2.5.6 System Advisor Model

System Advisor Model (SAM) is a financial and performance model designed to assist in the

decision making process for people working in the renewable energy industry [38, 39]. SAM is also

an electric power generation model and estimates power delivery to a grid-connected building and

an electric grid [40]. SAM also compare energy production between multiple renewable energy

technologies [25]. SAM also provides sophisticated and tightly integrated analysis tools for solar

energy. PV performance models are used to make an assumption or predict how much energy a

chosen system is able to produce, being subject to weather conditions at a given location [41, 40].

SAM is developed by the National Renewable Energy Laboratory in collaboration with Sandi

National Laboratory through the DOE Solar Energy Technologies Program [42, 1]. SAM has a

useful feature that it provides access to different array performance models [39]. SAM takes lots

of input, enabling SAM to do an in-depth performance modeling [25]. Algorithms used in the

models are described in table 2.

Solar Radiation Array Performance Inverter

Isotropic sky Sandia PV array performance model (empirical) Sandia inverter performance model

Hay and Davies 5-parameter performance model (semi-empirical) Single point efficiency

Reindl PVWatts

Perez et al. Simple efficiency model

Table 2: Algorithms which can be used in SAM for solar radiation, array and inverter performance

[1]

SAM has the ability to download data from online databases such as: NREL National Solar

Radiation Database, NREL WIND Toolkit and METEONORM [38, 1]. All PV performance

models rely on ambient air temperature and solar radiation [41]. SAM’s performance model can

be applied to the following technologies: PV systems, Battery storage for PV systems, wind

power and other technologies such as grid-connected PV systems, which consists of inverter and

PV array [42]. The array may be fixed, single or dual axis deployed. SAM requires data of the

installation performance characteristics of the equipment in the system and meteorological data

[40]. It is also possible to simulate the system degradation due to equipment aging. Stein et al.

stated the major elements for model validation [41]:

1. The first step is to develop data sets, including weather data, system description and

performance data (technologies, applications, and climates).

2. The next step is to model the system and provide results.

3. Then apply a unified statistical/mathematical approach for analyzing the modeled and

measured quantities and document it.

4. Identify improvements to the model.
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2.5.7 Standard one-diode model

PVsyst use Shockley’s simple ”one diode” model, for describing the operation of a PV module

[43]. The model is illustrated in Figure 9. The model is primarily designed for one single cell, used

as a module implies that all cells are identical. Usually implying 2 different diodes is proposed for

very accurate modeling of a single cell, however this one-diode model is used in this thesis.

Figure 9: Illustration of the one diode model.

The one-diode model can be expressed as:

I = IL − Io(exp · (
q · (V + IRs)

Ncs · γ · kTc
) − 1) − V + IRs

Rsh
(12)

Where the parameters refer to:

I = Current supplied by the module [A].

V = Voltage [V]

IL = Photocurrent [A] which is proportional to the irradiance and corrected by Tc which is

explained below.

Id = Diode current [A]. Io = Saturation current [A]

Rs = Series resistance [ohm]

Rsh = Shunt resistance [ohm]

RL = Load [ohm]

q = Charge of the electron

k = Boltzmann’s constant [J/K]

γ = Diode quality factor

Ncs = Number of cells in series

Tc = Temperature of the cells [K]

IL varies with the irradiance and temperature, and the model assumes it is proportional to the

irradiance. Therefore IL can be determined with respect to reference conditions:

16



Theory University of Agder

IL =
G

Gref
· (ILref +muISC · (Tc − Tcref ) (13)

Where: G = Effective irradiance [W/m2]

Gref = Reference irradiance [W/m2]

Tc = Effective cell temperature [K]

Tcref = Reference temperature [K]

muISC = temperature coefficient to the photocurrent (short-circuit current).
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3 State of the art

This chapter contains a literature review of PV performance, which includes methods and metrics

for analyzing a PV installation. First a few metrics will be discussed and then a few software

programs, for analyzing the performance of an installation, will be presented.

3.1 PV performance modeling

Many models and software have been developed in recent times. Sandia National Laboratories

has played a major part in developing these software, such as The Photovoltaic System

Simulation Program (PVSS), SOLCELL, Evans and Facinelli Model, PVForm and more [1]. This

thesis will focus on PVsyst, but this chapter will also take a look at two other common models,

PVSOL and SAM, where examples of PV systems evaluated by using PVsyst, PVSOL and SAM.

3.1.1 PVsyst and PVSOL

A performance analysis of a 100 kWp grid-connected PV system conducted by Kumar et al. [44].

The system was simulated in PVsyst. The study was done to evaluate practicability of

constructing a PV system for supplying the electric load of an educational institute. The

simulation was done by using Meteonorm 7.1 weather data consisting of solar radiation and

ambient temperature. The annual PR value was found to be approximately 0.8.

Malvoni et al. [45] conducted a study in Italy which explored the degradation of a grid-connected

PV system. The study is composed of a comparative analysis of theoretical and actual output

power, over a period of five years by using actual meteorological data. This is done by using the

software PVsyst. The study concluded with the reliability of the PV system depends on operating

conditions, that is not related to weather conditions. The result showed a reliability of 85%

between theoretical and actual power output. A degradation of 1.12%/year can be expected

according to Malvoni et al. This degradation rate is higher than the degradation rate which was

found in a study conducted by Jordan et al. [46]. This study was done for 200 PV systems and

found the degradation rate to be 0.8% annually.

A Stand-Alone Photovoltaic (SAPV) system has been simulated in PVsyst [30]. SAPV is a

system which supplies electricity to a load without being connected to the grid. The study found

the sizing system to be dependent on geographical site location.

Another study of BIPV mounted on an office building, as an alternative fuel source for fossil fuel,

was carried out by Gindi et al. [47]. A feasibility analysis of the building has been done through

the simulation modeling software PVSOL. Different types of mounting structures and varies type

of PV modules were used to complete the analysis. The system output capacity has been

calculated, annual energy output and the initial project cost for the different systems have been

found. The result showed higher production for the roof and south oriented mounted PV

modules, compared with other orientations. Where the PR value of 0.752 and 0.743 respectively.
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The article concluded that PV modules can contribute to reducing electric energy consumption

by choosing appropriate orientation, tilt angles and module types.

A study carried out by Babatunde et al. [48], compares the performance of PV systems under the

influence of dust, different orientations and various tilt angles in Cyprus. PVSOL was used for

this task and Meteonorm provided meteorological data. Babatunde et al. found that the

mathematical models, used in this study, was more reliable than the simulation done in PVSOL.

The accuracy of the simulation is strongly dependent on the quality of meteo data used. The

average variance of energy output on an inclined surface, was approximately 0.3% between

calculated and measured energy by implementing the mathematical method. The reason for this

may be that the simulation used data consisting of an average of 20 years measuring, while the

mathematical model used real-life meteorological data. The study also concluded with an average

of 2.5% variance of specific yield after implementing the cleaning procedure for cleaning dust.

Also, installation with same tilt yield less deviation for installations oriented closer to the south.

MacAlpine et al. [36] also found deviation in PVSOL compared to an evaluation method due to

partial shading, reducing energy output. Whereas Patarau et al. [28] found that simulation in

PVSOL agrees strongly with the calculations.

3.1.2 System Advisor Model

A study done by Stein et al. using SAM, evaluated the use of 2 performance models for a PV

system in Albuquerque [41]. The Sandia Array Performance Model (SAPM) and the CEC

5-parameter model were used to solve this task. Stein et al. found that the models could be

improved by adjusting the module temperature coefficient or cell temperature model. Cameron et

al. [49] used several submodels within SAM: radiation models, module performance models and

an inverter model, PVWATTS and PVMod were also used. The study found disagreement

between models while using non-crystalline technologies including thin-film modules. Choudhury

[50] evaluated the energy performance of BIPV roof tiles in the United States. Using SAM, the

net energy savings were analyzed in correlation to temperature and different climate types

(location). A technical report was done to validate SAM’s ability to predict performance, where 9

PV systems were analyzed [39]. Freeman et al. found annual errors to be 3% or less for all

systems when comparing SAM predicted production to measured production. The report found

SAM to underpredict measured production. For hourly data, SAM found 5.1% or less due to

RMSE. A study conducted by Freeman et al. [25] compared SAM to PVsyst and PVSOL. The

paper evaluated root mean square error (RMSEs) for all software and found all hourly RMSEs to

be less than 7 % and all annual errors to be less than 8 %. The paper found that running multiple

weather data sets could make a more accurate estimate of energy production.

These examples show the usefulness of PV simulation software for early design evaluation and

may also be used to compare actual measured results with simulated results and to evaluate

performance losses. The literature shows expected PR values which are typically around 0.8.
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3.1.3 Performance of facade versus roof PV systems

The performance of PV facade installations, for a site, are influenced by geographical position

[51]. Norway, located in the northern hemisphere, has low solar zenith angle at winter seasons

[52]. This makes facade installation suitable for Norway and countries located at northern

latitudes. In addition, facade does not face challenges due to snow cover [52]. Multiconsult [53]

published a presentation regarding solar energy in Norway of specific production, on an annual

basis, for facade and roof installations in Norway. The result was roof with southwards installed

solar panels had a production of 1090 kWh/kWp/year, facade produced 850 kWh/kWp/year and

roof with PV installation oriented East/West produced 840 kWh/kWp/year. Hence, facade and

East/West produce similarly in Norway. South-facing facade produces more on an annual basis,

but have a strong peak in summer, which can be difficult to utilize. The facade also has a better

seasonal profile.

A 3D urban model for calculating and visualizing solar energy potential of buildings was

developed by Redweik et al. [54], used a solar radiation model based on climatic observation and

a digital surface model built from LiDAR data. For the case study in Lisbon, the findings were

significant solar potential, of buildings in an urban area, for the facade. Shen et al. [55] conducted

another case study of triple-junction amorphous silicon PV systems for tropical climate. These

systems are facade mounted and the study mounted the same system to the rooftop, facing south

with a tilt angle of 12◦. This study was done in Singapore which has a tropical climate and is

located close to the equator. Shen et al. concluded that for this location, horizontally mounted

PV systems can produce the double amount of energy compared to vertically mounted PV

systems. This is due to the high elevation of the sun. The results showed a facade energy yield

ranging from 37% to 51% of a rooftop mounted PV system. A paper written by Frankl et al.[56],

presented a study of evaluation of BIPV system over their entire lifetime. The paper did an

energy pay-back time analysis of PV systems in central Italy. Frankl et al. stated that the most

effective PV systems were installations on flat roofs, and facade showed worse results due to low

exposure to the sun at these latitudes. As part of the photovoltaic power system program (PVPS)

of the international energy agency task 2, Nordmann et al. [57] published a paper on module

temperature of BIPV facade and roof-mounted PV systems. Eighteen different PV systems in

Austria, Germany, Italy, Japan and Switzerland were evaluated. The results gave higher module

temperature for integrated facade systems compared to roof mounted systems.
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4 Method

The installations which are simulated and analyzed in this thesis are Solsmaragden, Skarpnes and

Brynseng. This chapter will explain how the systems are constructed in PVsyst, given

information and constraints from the actual installation. In addition, data collected and used for

the simulation will be explained in this chapter.

4.1 Data

Information regarding data collection for the three instalations will be further described in

Subsections 4.1.1, 4.1.2 and 4.1.3 The time series evaluated in this thesis is 2016 and 2017 for

Skarpnes, Solsmaragden and Brynseng.

Location Latitude(◦) Longitude(◦) Elevation(m)

Skarpnes 58.426 8.722 25

Solsmaragden 59.744 10.205 5

Brynseng 59.90 10.811 81

Table 3: Information regarding location of all BIPV systems included in this thesis. Latitude is

north positive, longitude is east positiv and elevation is height above sea level.

The yield is strongly dependent on efficiency, which again depends on external factors such as

irradiation, temperature, and device properties. Continuous monitoring and data logging of

in-plane irradiation and air or PV module temperature is, therefore, necessary for the

performance analysis. However, as data is unavailable for all locations, nearby weather stations

are used for more accurate data.

Plane of array (POA) and ambient temperature are data which are desired in addition to

longtime series for the measured data. However global horizontal irradiance and air temperature

for the weather station is used instead.
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4.1.1 Skarpnes data

The site of Skarpnes is the most southern installations of all three. Skarpnes is located south of

Arendal and a local weather station measures irradiation, wind speed, ambient temperature and

relative humidity [58]. A pyranometer, Kipp & Zonen CMP 11 model, is used to measure the

global horizontal irradiation at 1-minute resolution. In addition, temperature sensors are

established on the backside of the PV modules. This gives the ability to monitor the operational

conditions of the BIPV system [58]. During the time series, the weather data at the site had some

downtime. As a result, Kjøita station located in Kristiansand has been used to fill in the missing

data for the time period. Kjøita has been used due to close proximity to Skarpnes, and Kjøita

also contributed with diffuse irradiation data that was not available for Skarpnes. In the table

below, number of days with data collection errors at Skarpnes can be seen.

Month Days of error

January No error

February 23-29

March 1,2 and 19-28

April No error

May No error

June 8-19

July 5-7

August 9-31

September No error

October No error

November No error

December No error

Table 4: Information regarding measuring error at Skarpnes for 2016. Kjøita data has been used

to replace the missing data retrieval, which is shown in the second column.
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4.1.2 Solsmaragden data

Data collection for Solsmaragden is obtained in different ways, due to irregularities in the

measured data.

Synthetic data set was gathered from PVsyst library, which obtained the data from Meteronorm

7.1. The dataset is collected for the time period 1991-2010, and is an average value for each

month. This data set included global horizontal irradiance, diffuse irradiance, temperature and

wind velocity.

Then data were obtained from SunnyPortal [59]. The data were collected from a pyranometer on

the south facade on Solsmaragden. SunnyPortal only contributed with global horizontal

irradiance data, and the temperature is also needed to perform a simulation. The weather station

Berskog, located in Drammen, were elected to provide temperature data. For the data given by

SunnyPortal, a few months contained errors. PVsyst compensated for lost data.

Month Days of error

January 16-31

February 1-12

Table 5: Information regarding measuring error at Solsmaragden for 2017. PVsyst synthetic data

has been used to replace the missing data retrieval, which is shown in the second column.

PVsyst also generated diffuse irradiation based on the global horizontal irradiance. Wind velocity

was also generated by PVsyst.

Figure 10: Solsmaragden south side.

The pyranometer is mounted vertically and parallel with the south side. Solsmaragden south side

is shown in Figure 10.

Data obtained from SunnyPortal was not as expected and measured irradiation data started in
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October 2016. Due to these issues, it was decided to obtain irradiation- and temperature data

from the weather station at Lier, which gives values similar to what could be expected for

Drammen area. The time period was 2016-2018. The data set for 2016, January lack six days

irradiance data. PVsyst substituted the missing values. All measured data is measured hourly.

Table 6 includes irradiance data which were obtained and used in PVsyst for the Solsmaragden

simulation.

kWh/m2/month
1991-2010 2016 2017

PVsyst Lier SunnyPortal Lier

January 7.4 7.4 11.7 8.4

February 22.2 35.4 38.8 24.4

March 65.4 61.2 78.2 65.7

April 108.7 101.4 88.6 112.5

May 148.0 153.6 88.1 138.5

June 161.9 166.8 80.2 145.0

July 148.8 159.1 87.4 160.2

August 104.9 112.3 83.3 119.1

September 74.2 83.8 46.4 51.1

October 33.5 30.7 59.2 34.7

November 10.7 9.9 33.1 14.0

December 4.4 5.9 14.8 4.8

Year 890.2 927.5 709.8 878.3

Table 6: Global horizontal irradiance data used in PVsyst for Solsmaragden. PVsyst values are an

average monthly value measured from 1991 to 2010. All values are given in monthly [kWh/m2]
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4.1.3 Brynseng data

Synthetic data set was gathered from PVsyst library, which obtained the data from Meteronorm

7.1. The data set is collected for the time period 1991-2010 for the Oslo area. Due to no

measured irradiance data on site, Blindern and Aas have been chosen to provide measured data

which will be compared to synthetic data. Blindern data was obtained through eKlima and Aas

data gathered through NIBIO, [60], all data is measured hourly.

kWh/m2/month
1991-2010 2016 2017

PVsyst Ås Blindern Ås Blindern

January 7.4 8.4 7.9 10.2 4.9

February 22.1 30.7 26.3 27.0 20.5

March 64.7 61.2 56.9 64.9 62.0

April 106.9 97.8 97.6 111.8 106.6

May 152.9 158.9 154.5 151.2 139.4

June 164.1 176.0 164.7 159.3 148.2

July 151.7 164.6 162.5 170.2 154.1

August 106.7 121.7 114.3 128.3 123.1

September 74.8 82.8 82.4 56.1 48.3

October 32.3 33.0 30.4 37.9 34.6

November 10.0 12.3 8.9 15.5 11.8

December 4.5 6.3 3.2 6.6 3.1

Year 898.3 953.9 909.5 939.1 856.4

Table 7: Global horizontal irradiance data used in PVsyst for Brynseng. All values are given in

monthly [kWh/m2]

Missing data for Blindern and Ås is substituted by PVsyst. Blindern lacks data for 22 days in

January 2016 and Ås experienced seven days of error in May 2017. PVsyst supplied missing data

and generated diffuse irradiance and wind velocity.

4.2 Skarpnes

Skarpnes is located south of Arendal and is a project for zero-emission houses. There are a total

of 20 houses at Skarpnes but, as seen in Figure 11, only five of the houses are of interest to this

thesis. These houses are constructed with BIPV system on the roof [58], and the installations are

mounted in two different orientations as illustrated in Figure 11.
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Figure 11: Overview of Skarpnes BIPV systems. The five blue rectangles ilustrates where the BIPV

system is mounted. [58]

The PV system is designed with 32 panels and with a single inverter. The panel model is 230 Wp

Sunpower mono-Si [61]. The inverter type is an SMA Tripower 7000TL-20. The active solar panel

area is 40.5m2. This gives a total installed PV power per house of 32 ∗ 230Wp = 7360Wp. Zero

emission houses at Skarpnes and the PV installation can be seen in Figure 12
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Figure 12: Zero emission house at Skarpnes [3]

This case has been modeled using default albedo values, chosen due to urban situation. In

PVsyst, the ”Lower temperature for Absolute Voltage Limit” option has been set to -15◦C, the

value is based on lowest measured value for Skarpnes and is retrieved from yr.no [62]. Other

limitations regarding shading representations are set to default values.

4.2.1 Orientation and system

The zero-emission houses at Skarpnes are constructed with the BIPV system installed for two

different orientations, as illustrated in Figure 13. Two of the houses have the BIPV system

constructed with an azimuth angle of 129◦, which equals −51◦ in PVsyst. The remaining houses

have an azimuth angle of 228◦ which corresponds to 48◦ in PVsyst. 180◦ means the modules are

facing directly southwards. The roof tilt of all houses is 32◦.

The next step is to define the PV system in use at Skarpnes. Since the total installed PV power,

per house, is known presizing of the planned power can be set to 7.36kWp. PVsyst includes the

PV module which is needed for this task: SPR-230NE-BLK-D manufactured by Sunpower as well

as the inverter SMA Tripower 7000TL-20. After selecting PV module and inverter, PVsyst

proposed an array design with two strings of 16 modules for this situation, which corresponds to

the actual installation.

4.2.2 Horizon and shading

For the task of creating the horizon and far shadings of the site, PVGIS[63] was used. With the

interactive map, it was possible to get the exact coordinates of the houses located at Skarpnes.
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(a) Orientation 1 (b) Orientation 2

Figure 13: Illustration of BIPV system for houses at Skarpnes

Because of minor differences of the far horizon shading, the house located at the most southern

position was selected with the coordinates of 58.426, 8.722. The horizon profile was then extracted

from PVGIS manually as shown in Figure 14. According to PVsyst, houses with an azimuth angle

of 48(◦) has a higher yield on the collector plane than the houses with an azimuth angle of −51(◦).

(a) Horizon for Skarpnes, orintation 48◦ (b) Horizon for Skarpnes, orintation -51◦

Figure 14: Illustration of the Horizon surrounding Skarpnes.

In figure 14, the X-axis is the azimuth angle (◦) and the Y-axis is the height of the sun (◦). The

green area is supposed to resemble the horizon while the blue line indicates when the sun is

behind the PV plane at Skarpnes. For the houses with an azimuth angle of -51◦, the sun is

available from around 04:00 to 17:30 in the evening. For the houses with an azimuth angle of 48◦,

the sun is available from 07:00 to 21:00.

In Figure 15, the design of the zero-emission houses at Skarpnes. Figure 15b shows the houses

with an azimuth angle of -51◦.
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(a) Scematic layout of zero emission houses at

Skarpnes[23].

(b) 3D-model of zero emission houses at skarpnes made

in PVsyst.

Figure 15: Illustration of 3Dmodel of zero emission houses at Skarpnes

The blue rectangle represents the PV module with an area of 39.8 m2.

This setup results in an integration with fully insulated back, in accordance with the mounting

solution in the simulation. Soiling losses are also set to 20 % for the winter month, which deviates

from the standard 3 % for the rest of the year. This soiling is higher in the winter month due to

snow is not a part of the meteo data in PVsyst, and this value can be difficult to assume. Near

shading impact for this simulation is created by the roof.
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4.3 Solsmaragden

Solsmaragden is an office building located in Drammen. The building has seven floors and the

BIPV system has green laminated glasses.

4.3.1 System

All the facades are BIPV installations but the roof has a BAPV solution, and this thesis will

simulate the south facade. The whole building has a PV area of 1620 m2 where 1220 m2 form the

facade. The facade has a nominal effect of 127 kWp, which includes 979 panels, and 22 different

PV modules are used as well as 13 inverters. The only inverters relevant for this task is inverter 7

and 8, which are located on the south side of the building, with an Azimuth angle of 205◦.

(a) Overview of PV modules connected to inverter 7. (b) Overview of PV modules connected to inverter 8.

Figure 16: Overview of the 2 inverters of interest for this thesis.

As seen in Figure 16, inverter 7 has 2 strings and inverter 8 has 4 strings, which are illustrated in

different colors. The letter represents the cell type, and the number behind represent the position

in the strings. This means inverter 7 contains PV module B, L and T, while inverter 8 contains

modules like B, S, T and P. Modules used in the simulation is based on an average area of the

actual active area of each inverter.
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Inverter number Module type Amount of modules Area[m2]

Inverter 7 B 9 7.89

Inverter 7 L 17 16.75

Inverter 7 T 36 52.88

Inverter 8 B 9 7.89

Inverter 8 S 15 21.82

Inverter 8 T 87 127.81

Inverter 8 P 27 32.50

Table 8: Table of modules used at Solsmaragden for inverter 7 and 8.

Table 8 gives information regarding modules used at the south facade of Solsmaragden. The area

is also listed, which gives a total area of the inverters 7 and 8 of 77.52 m2 and 190 m2

respectively. According to PVsyst this area yields a planned power of 8000 Wp and 19400 Wp.

Using the planned power and dividing by the quantity of modules, the type of module can be

selected in PVsyst to create a similar situation as the real case. Inverter 7 has 62 modules of

different sorts, but the PVsyst simulation has 61 modules of 125 Wp Issol CENIT 125 model.

While inverter 8 has 129 modules consisting of 4 different types in the actual case, but 129

modules of 150 Wp Issol CENIT 220 is used for the simulation. This estimation has been done

due to the lack of possibility in PVsyst to select several module types for each inverter.

Due to the choice of the module in inverter 8, it resulted in a higher active area than the actual

system. This choice was done in order to obtain actual installed power for the system, which has

a yield production impact. Which lead to a removal of 12 modules in inverter 8 for gaining an

acceptable active area. For the simulation, the modules are mounted semi integrated with air

duct behind, as is the case with the actual system.

Furthermore, the simulation is done by creating 2 subarrays in order to use 2 different inverters

which is the real case. Inverter 7, for sub-array 7, is an STP 6000 TL-20 inverter and for

sub-array 8 an STP 15000 TL-10 inverter has been used [64, 65].

31



Method University of Agder

4.3.2 Shading and 3D-model

PVGIS [63] was used to create a horizon profile for Solsmaragden, which was drawn manually.

Figure 17: Illustration of the horizon surrounding Solsmaragden.

As the PV modules are integrated on the facades the tilt of the PV modules are 90◦. As a result,

the sun will only reach the panels between approximately 07:00 in the morning until nearly 17:00

in the afternoon. As seen in Figure 18b, a sign is covering some of the modules on inverter 8.

However, the sign does not have any effect on the system, because the modules covered by it are

not connected. For the simulation, the only near shading affecting the system is shading caused

by the building which is illustrated in Figure 18.
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(a) Illustration of Solsmaragden made in PVsyst. The

smaller blue rectangle represents inverter 7 and the

larger blue rectangle represents inverter 8.

(b) Picture of the actual system, at the south side of

the building.

Figure 18: On the left side is the 3D model of Solsmaragden, which is shown on the right side.

The model is a simplification of Solsmaragden. North and east side of the building has a more

detailed outline, but because this does not affect the PV panels at the south side the model was

done this way. In figure 18a, the 2 blue rectangles illustrates inverter 7 and 8. Inverter 7 is the

smaller one. However, the modeled PV area is larger than the actual area at Solsmaragden, this is

due to the module choice. There is also a sign mounted on the top right side of the south facade,

however, this does not have any impact on the production. An actual representation of the PV

fields was difficult due to the windows.
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4.4 Brynseng

The primary school Brynseng in Oslo is located at Gamle Oslo district (59.909N, 10.811E).

Brynseng is one of the largest BIPV constructions in Norway and Undervisningsbygg is

constructing the project. It is a 6-level building with BIPV facade system of 1046 m2 area which

is estimated to produce 100 MWh per year. Just like the Skarpnes case, Bryseng primary school

is constructed as a nearly zero-emission building. ISSOL delivers the PV-modules and the

modules are installed by Staticus, a Lithuanian company, with NCCs [66] entrepreneurs doing the

electrical couplings. In Figure 19, an illustration of the system is shown.

Figure 19
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4.4.1 System

The BIPV system at Brynseng has some similarities to Solsmaragden, such as modules mounted

with a 90◦ tilt and several inverters. The facade is composed of three parts: Left, Right and

Central part, shown in Figure 19. Modules mounted on the facade has an azimuth angle of 185◦.

Brynseng uses PV modules of the type: CENIT 220 from ISSOL. These vary in sizes to fit the

facade and are glass-glass modules with monocrystalline PV cells. The active facade is composed

of 1122 modules, with a total power of 163.3 kWp which means a total surface of 1598 m2. The

available area for PV field is larger than the actual area on Brynseng. Different type of PV

module CENIT 220 is used with different sizes to fit the facade for the actual system, PVsyst is

unable to scale the same module for the same sub-array. All modules are mounted without

frames, and the mounting system allows for air circulation between the PV modules and the

facade, which is the case for the actual system.

For the facade, 3 different inverters of different sizes are used in the simulation, and in Table 9 an

overview of the positioning of the inverters is presented. These inverters are three-phased with

two independent MPP inputs.

Position Inverter Inverter type Peak power (kWh)

Left side 1 SMA STP 15000 17.5

Left side 2 SMA STP 15000 16.7

Left side 3 SMA STP 15000 16.1

Central part 4 SMA STP 15000 17.5

Central part 5 SMA STP 12000 14.57

Right side 6 SMA STP 25000 29

Right side 7 SMA STP 25000 27.9

Right side 8 SMA STP 25000 26.1

Table 9: Table of inverters and their positioning at the BIPV system of Brynseng school and the

planned power for each inverter.

The system is designed with 3 sub-arrays, left side, central part and right side. Left side and

center part contain inverter type SMA STP 15000 CENIT 220 and right side inverter SMA STP

25000 CENIT 220 is selected [67].

35



Method University of Agder

4.4.2 Shading and 3D-model

PVGIS [63] is used to get a horizon shading the site, and just like the other cases, the horizon was

drawn manually in PVsyst.

Figure 20: Brynseng horizon
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Figure 21: 3D model of Brynseng.

Figure 21 illustrate the school building and PV fields as designed in PVsyst. The blue rectangles

resemble PV area and the system has an azimuth angle of 5◦. Unable to include windows into the

PV fields, gives another reason to larger PV area than the actual system.
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4.5 Roof versus facade

Solsmaragden has been selected to be the system for which the simulation has been conducted, to

test the hypothesis of facades are more advantageous for northern location. Firstly the simulation

is done by using the Solsmaragden system for different locations. Then the simulation is done by

mounting the PV field on the roof. The system is identical in both scenarios however, the two

rectangular PV planes are now mounted on the roof instead of the south facade. The PV field has

a tilt angle of 10◦ but the azimuth angle is identical. Synthetic data produced in PVsyst,

retrieved from Meteonorm 7.1 has been used for all simulations.

Figure 22: Solsmaragden with roof mounted PV field.

As seen in the Figure 22, the PV field is mounted on the roof instead of the south facade.

The simulation is done for a few different locations for the system. Bodø, Drammen and Roma

and Cape Town has been selected in order to assess the hypothesis.

All facade production has been evaluated in comparison with the roof production, according to

the following expression.

(
FacadeProd−RoofProd

RoofProd
) ∗ 100 = % (14)

where FacadeProd is the annual energy produced from the facade and RoofProd is the energy

production from the roof.
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Location Latitude(◦) Longitude(◦) Elevation(m)

Bodø 67.27 17.37 19

Drammen 59.744 10.205 5

Rome 41.58 12.58 107

Cape Town -33.97 18.60 50

Table 10: All locations for the assessment of the hypothesis.

4.6 Partial shading model

A major loss parameter in PVsyst is shading, far shading and near shading. Partial shading

model is used to calculate effect for PV array under shading impact. The model used in this

thesis is an expansion on a partial shading model published by MathWork [68]. This thesis will

use the model to create different scenarios for which modules will be exposed to shading, and

inspect how this will impact I-V- and P-V curves, affect output of the PV system. Brynseng

system has been chosen, and a string from inverter 8 has been recreated

The model is composed of a PV string containing 14 modules, with 72 series-connected cells in

parallel with 14 bypass diodes which allows current flows when cells are damaged or shaded. The

module used is Sunpower SPR-X20-250-BLK (250W) [69], due to the simulink library did not

include Issol modules used at Brynseng.

(a) Illustration of the full partial shading model used

in Simulink
(b) Illustration of the setup for partia shading model

Figure 23: Partial shading model used for the Brynseng case.

Figure 23 a, the full model is illustrated. Figure 23 b gives a close up look at how the model is

designed.

Four situations have been assessed in this thesis. Standard irradiance 1000 W/m2 is applied to all

modules for the first situation. The temperature for each module is 25◦.

For situation 2, the string is 25 % shaded where module 1-3 is completely shaded and partial
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shading is applied on module 4, resulting in irradiance of 500 W/m2. Standard irradiance

1000 W/m2 is applied to the rest of the modules. The temperature for each module is 25◦.

For situation 3, the string is 50% shaded, which means only seven modules experience irradiance

of 1000W/m2. The temperature for each module is 25◦.

For the last situation, various irradiance will be applied in the modules.
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5 Results

Simulation results of the three different systems are analyzed in this section. The chapter is

divided into three parts, one section for each system. The results obtained were analyzed for

assessing the performance of the chosen installations. Results regarding partial shading model are

also addressed, in addition to results of roof compared to facade production for different location.

5.1 Skarpnes

Skarpnes has two different scenarios for its case, which are two different orientations. The results

were obtained from the simulation model of 7.36 kWp Si-mono PV system simulated in PVsyst.

5.1.1 Main simulation results

From the results, three main parameters were assessed. The first parameter is the total amount of

energy produced on an annual basis. The total production, for 48◦ and −51◦ orientation, was

6.88 MWh/year and 6.85 MWh/year respectively. The second parameter is specific yield on an

annual basis per installed kWp, and this value is 935 kWh/kWp/year and 931 kWh/kWp/year

for the orientation 48◦ and −51◦ respectively. The third parameter is the average annual

performance ratio which is 79.5% and 79.8%.

Month
GHI Tamb GII GEff Earray Egrid AAE AAEs

kWh/m2 ◦C kWh/m2 kWh/m2 MWh MWh % %

January 12.8 -2.60 20.3 15.0 0.108 0.099 13.38 12.28

February 38.8 2.00 63.0 47.5 0.338 0.327 13.48 13.03

March 62.9 4.00 79.6 73.0 0.508 0.491 16.02 15.48

April 116.1 5.80 130.0 120.9 0.823 0.799 15.90 15.44

May 173.5 11.80 183.6 171.0 1.120 1.090 15.32 14.92

June 166.2 15.70 164.7 152.7 0.996 0.967 15.18 14.75

July 173.0 16.20 179.9 167.3 1.079 1.050 15.07 14.66

August 134.0 15.70 146.4 136.2 0.885 0.860 15.18 14.75

September 95.3 15.10 115.2 106.8 0.700 0.681 15.27 14.85

October 35.1 6.70 47.2 43.3 0.299 0.285 15.94 15.18

November 16.8 3.20 22.6 17.0 0.120 0.111 13.35 12.35

December 13.0 4.70 24.6 18.3 0.130 0.124 13.25 12.63

Year 1037.5 8.22 1177.1 1069.1 7.106 6.885 15.16 14.69

Table 11: Balance and main result

In Table 11 GHI is global horizontal irradiation, Tamb is ambient temperature, GII is global

incident irradiation on collector plane, GEff is global irradiance considering soiling losses and

shading losses, Earray is effective energy at the output of the array, Egrid is energy injected into

41



Results University of Agder

the grid, AAE is annual average efficiency of a PV array and AAEs is the annual average

efficiency of the system.

For this study annual global irradiance on the horizontal plane is 1037.5 kWh/m2, for measured

Skarpnes irradiance- and temperature data, and on the collector on annual basis is

1177.1 kWh/m2. Annual DC energy produced is 7.106 MWh and the annual AC energy ejected

into the grid is 6.885 MWh. The annual average efficiency of the PV array is simulated to be

15.16% and the system found to have an efficiency of 14.69%.

5.1.2 Normalized production

Figure 24: Normalized energy production for orientation for orientation 48◦.

Normalized productions, which is illustrated in Figure 24, were evaluated in the study. This is

collection losses, system losses and produced useful energy. These normalized productions are

defined by IEC norms [70]. Lc is collection losses (PV-array losses) and has a value of

0.58 kWh/kWp/day. System losses, Ls (such as losses due to inverters), has a value of

0.08 kWh/kWp/day and the system has a useful energy production of 2.56 kWh/kWp/day.
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Figure 25: Normalized energy production for orientation −51◦

Figure 25 illustrates normalized production for the house with orientation −51◦. Collection losses,

Lc, has a value of 0.56 kWh/kWp/day and system losses are identical for both situations. The

system has a useful energy production of 2.55 kWh/kWp/day.

5.1.3 Performance ratio

Figure 26: PR value
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PR value, for the zero emission house oriented with an azimuth angle of 48◦, is given in figure 26.

The PR is significantly lower for the time period November-February, and have an average value

of 79.5%.

Figure 27: PR value

PR value, for the zero emission house oriented with an azimuth angle of −51◦, is given in figure

26. The PR is significantly lower for the time period November-February, and have an average

value of 79.8 %.

Lower PR value in the time period November-February is due to simulated soiling. Soling losses

represent 1.7% decrease in PR value, and by using standard values for the system would increase

the performance ratio to 81.3% and 81.5% for the two scenarios.
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5.1.4 Arrow loss diagram

The arrow loss diagram, as shown in Figure 28, illustrates various losses for the simulated system.

Global irradiance on the horizontal plane is 1038 kWh/m2, however, the effective irradiance on

collectors is 1069 kWh/m2 which gives a 1.5% loss due to irradiance level. When the effective

irradiance hits cover a module or array, electric energy or electricity is produced. This gives an

efficiency for the PV array at STC of 18.52%. Annual array virtual energy at MPP is 7.11 MWh.

The losses at this stage are 4.9% due to temperature, 1% due to degradation, 2% due to array

mismatch and 0.8% due to ohmic wiring losses. The available energy on an annual basis at

inverter output is 6.88 MWh, and this is injected into the grid. Here two losses occur: 3% due to

inverter operation and 0.1% inverter loss due to the power threshold.

Figure 28: Arrow loss diagram for system oriented 48 degrees.

Figure 29 gives losses for the system rotated to the azimuth angle of −51◦.
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Figure 29: Arrow loss diagram for system oriented -51 degrees.

The similarities for these results are minor and the energy ejected into the grid is slightly higher

for the system with the azimuth angle of 48◦. Temperature is the biggest loss contributor followed

by soiling losses. Temperature losses are based on mounting choice and, by using semi integrated

mounting with air duct behind will increase production of 0.16 MWh and 0.155 MWh on an

annual basis. By mitigating soiling losses to standard values, the production will increase with

0.123 MWh and 0.116 MWh on an annual basis. By using synthetic data generated by PVsyst

through Meteonorm 7.1, the system production is 3.93% inferior compared to real measured data.

Inverter losses during operation is also a major loss contributor.

Uncertainty in measured data was 52 days in 2016, and made a major impact on the production

and performance of the simulated system. The simulated system production decreased with 1412

MWh annually when taking irradiation data uncertainty into account. As a result, the

performance ratio decreased to 64.0%.
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5.2 Solsmaragden

Solsmaragden was simulated with different data sets, and this section will evaluate the most

relevant results for each simulation.

5.2.1 Main results

Three main parameters were assessed for Solsmaragden. Simulation of the south side of

Solsmaragden gave an annual energy production of 17.01 MWh/year for synthetic data. The

specific yield on an annual basis resulted in 637 kWh/kWp/year. The annual performance ratio

was 79.7% for synthetic data.

Month
GHI Tamb GII GEff Earray Egrid AAE AAEs

kWh/m2 ◦C kWh/m2 kWh/m2 MWh MWh % %

January 7.4 1.05 16.5 13.34 0.342 0.328 7.86 7.54

February 22.2 0.55 35.7 32.09 0.841 0.811 8.90 8.59

March 65.4 2.41 92.1 84.61 2.163 2.105 8.87 8.64

April 108.7 6.48 102.9 93.28 2.335 2.269 8.57 8.33

May 148.0 10.86 102.5 90.47 2.234 2.163 8.24 7.98

June 161.9 13.89 96.2 83.57 2.052 1.983 8.06 7.79

July 148.8 16.46 94.2 82.09 1.991 1.923 7.98 7.71

August 104.9 16.11 83.7 74.22 1.791 1.732 8.09 7.82

September 74.2 12.42 84.6 77.21 1.872 1.816 8.36 8.11

October 33.5 8.06 52.9 48.31 1.201 1.161 8.59 8.30

November 10.7 4.62 26.3 21.28 0.542 0.518 7.79 7.45

December 4.4 1.60 11.5 8.33 0.213 0.204 7.03 6.72

Year 890.2 7.92 799.1 708.80 17.577 17.013 8.31 8.05

Table 12: Balance and main result for Solsmaragden synthetic data

For this study annual global irradiance on the horizontal plane is 890.2 kWh/m2, and on the

collector on annual basis is 799.1 kWh/m2. Annual DC energy produced is 17.577 MWh and the

annual AC energy ejected into the grid is 17.013 MWh. The annual average efficiency of the PV

array is simulated to be 8.31% and the system has an efficiency of 8.05%.

Including days of error into synthetic data, for January and February, the annual production

declines to 15.456 MWh with a PR value of 72.4%. This yield a 9.2% loss due to system

unavailability. Changing mounting possibility to integration with fully insulated back, the

production decreases to 15.073 MWh on an annual basis with a PR value of 70.6%. This loss is

due to temperature on array level.
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5.2.2 Normalized production and PR value

Figure 30: Results for synthetic data.

In Figure 30 normalized production is presented in the left graph. Usefull energy for

Solsmaragden is 1.75 kWh/kWp/day. Collection loss is 0.39 kWh/kWp/day and system losses

are calculated to 0.06 kWh/kWp/day.
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Figure 31: PR results for synthetic data.

Figure 31 gives the performance ratio result for Solsmaragden by using synthetic data, which is

an average value of 77.8% on an annual basis. There are slightly monthly variations in PR value,

and February, March and October are the months with highest PR value.
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5.2.3 Losses

Figure 32 illustrates a loss diagram for various losses of the simulated system.

Figure 32: Losses for Solamaragden given synthetic data.

Global irradiance on the plane is 890 kWh/m2 while only 709 kWh/m2 effective irradiance

reaches the cells which give a 2.3% loss due to irradiance. Within these losses, horizon shading

and global incident irradiation on collector plane is the main reason for irradiance losses. This

means 18.94 MWh energy is produced and the system has an efficiency of 16.32% at STC. Annual

array virtual energy at MPP is 17.577 MWh. The losses at this stage are 1.7% due to

temperature, 1.8% due to degradation, 1.0% due to array mismatch and 0.6% due to ohmic

wiring losses. The available energy (annual basis) at inverter output is 17.013 MWh, and this is

injected into the grid. Here two losses occur: 3.1% due to inverter operation and 0.1% inverter

loss due to the power threshold.
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5.2.4 Measured data

Data measured from SunnyPortal were implemented in the simulation, for the exact same system.

The total amount of energy produced was 20.02 MWh/year, with a specific yield of 750

kWh/kWp/year and an average annual performance ratio of 74.7%.

Figure 33: Normalized production results for Solsmaragden, given measured data.

Normalized production, which is illustrated in the left graph in Figure 33, includes 3 parameters.

Lc, collection losses, has a value of 0.63 kWh/kWp/day, which is large and extensive for

November and December. Ls, system losses, resulted in 0.06 kWh/kWp/day, which gives no

changes compared to synthetic data. The last parameter is useful energy production which is

2.05 kWh/kWp/day.
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Figure 34: Results for Solsmaragden given measured data.

The performance ratio, shown in Figure 34, has an average annual value of 74.7%. November,

December and January contribute to low PR value, due to irradiance data set issue which is

explained below.

Using measured data for GHI gave an annual irradiance of 709.84 kWh/m2 which is inferior to

the annual irradiance for synthetic data, which was 890.2 kWh/m2. Due to PVsyst issues with

processing the irradiance data, incident irradiance on collector plane receives an enormous gain

which should not occur in this system. This facade system should experience losses due to

incident irradiance on collector plane. As GHI is 709.84 kWh/m2, increased global incident

irradiance on collector plane is simulated to be 1003.4 kWh/m2 on an annual basis. Ambient

temperature also decreased for real measured data, which has an average value of 6.78◦ annually,

compared to the synthetic data which is simulated to have an average value of 7.92◦ annually.

Using measured data increases the energy injected into the grid with 3.006 MWh compared to

using synthetic data. The efficiency of the array and system decreased from 8.31% to 7.78% and

8.05 to 7.54% respectively.
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Figure 35: Losses for Solamaragden given measured data.

As seen in Figure 35, the major differences for real measured data simulation and synthetic data

is the global incident in collector plane. A huge gain of 41.4% is added to the production.

5.2.5 Measured data from Lier

Simulation is done by using Lier data for 2016 and 2017 resulted in the annual production of

17.014 MWh and 16.983 MWh respectively. Specific yield is 637 kWh/kWp in 2016 on an annual

basis, specific yield of 2017 annually is 636 kWh/kWp. Performance ratio is 79.7% and 79.9% for

2016 and 2017 respectively.

Applying days of unavailability to Lier meteo for 2016 give a production of 15.343 MWh annually

and 15.810 MWh for 2017. PR value is 74.6% and 74.4%.

5.3 Brynseng

Brynseng data started logging April 2017, and measurement of real production of Brynseng

obtained for the time period April 2017 - April 2018. The production on an annual basis was

91.233 MWh, where 61.097 MWh were generated in 2017 and 30.136 MWh in 2018. April 2018

contained 8 days of error in production logging. Brynseng was simulated by using irradiance data

from PVsyyst, Blindern and Aas weather station.

5.3.1 Main results

Synthetic data gave a production of 90.653 MWh on an annual basis, which resulted in a specific

yield of 539 kWh/kWp annually. Performance ratio value for Brynseng is 65.2%.
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Month
GHI Tamb GII GEff Earray Egrid AAE AAEs

kWh/m2 ◦C kWh/m2 kWh/m2 MWh MWh % %

January 7.4 -1.66 20.6 14.15 2.275 2.204 6.70 6.49

February 22.1 -2.08 46.8 36.49 6.047 5.900 7.84 7.64

March 64.7 0.79 91.4 72.09 11.748 11.500 7.79 6.85

April 106.9 6.31 99.9 72.64 11.559 11.285 7.02 6.85

May 152.9 11.82 105.7 72.67 11.364 11.079 6.52 6.36

June 164.1 15.17 97.5 65.82 10.107 9.828 6.29 6.11

July 151.7 17.80 97.1 66.32 10.073 9.800 6.30 6.12

August 106.7 16.83 83.3 58.53 8.884 8.641 6.47 6.29

September 74.8 12.17 90.1 68.95 10.647 10.409 7.17 7.01

October 32.3 6.52 55.9 45.70 7.131 6.955 7.74 7.55

November 10.0 2.66 22.1 15.22 2.451 2.376 6.74 6.53

December 4.5 -1.27 16.3 4.52 0.712 0.677 2.66 2.53

Year 898.3 7.14 826.8 593.08 92.999 90.653 6.82 6.65

Table 13: Balance and main result for Brynseng synthetic data

For this study annual global irradiance on the horizontal plane is 890.2 kWh/m2 while the incident

on the collector is 826.8 kWh/m2 on an annual basis. DC energy produced on an annual basis is

92.999 MWh and AC energy injected into the grid is 90.653 MWh annually. The annual average

efficiency of the PV array is simulated to be 6.82% and the system has an efficiency of 6.65%.

Figure 36: Production and losses for Brynseng.
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Figure 36 illustrates normalized production, where collection losses has an enormous value of 0.75

kWh/kWp/day. The months March-September increase these losses, due to the design of the

school the shading for the entire system is significant. Ls, system losses, resulted in 0.04

kWh/kWp/day, and useful energy production is 1.48 kWh/kWp/day.

Figure 37: Performance ratio for Brynseng.

The performance ratio, shown in the right graph, has an average annual value of 65.2%. PR

values for every month are below what could be expected of such a system, however due to

shading losses the performance is low. In Section 5.3.3, a simulation is done without shading from

the schools superstructure to illustrate the differences.
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Figure 38: Arrow loss diagram for Brynseng.

Figure 38 gives an overview of losses for the Brynseng system.

Global irradiance on the plane is 898 kWh/m2 while only 593 kWh/m2 effective irradiance

reaches the cells. Near and far shading are major losses in addition to global incident on collector

plane and IAM. This means 99.2 MWh energy is produced and the system has an efficiency of

14.59% at STC. Annual array virtual energy at MPP is 93.0 MWh. The losses at this stage are

3.0% due to irradiance level, 0.5% due to temperature, 1.5% due to degradation, 1.0% due to

array mismatch and 0.5% due to ohmic wiring losses. The available energy (annual basis) at

inverter output is 90.7 MWh, and this is injected into the grid. At this stage the system

experience loss during inverter operation which is 2.5%.

5.3.2 Measured data from Ås and Blindern

Using same parameters and conditions, weather data from Ås and Blindern were used to compare

the performance of the system.
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By using weather data obtained from Ås in 2016 and 2017 gave an energy production of 103.3

MWh and 102.9 MWh annually. With a specific yield of 614 kWh/kWp and 611 kWh/kWp on

an annual basis. Performance ratios of 65.2% and 65.7% were simulated.

Weather data obtained from Blindern in 2016 and 2017 gave an energy production of 91.456

MWh and 83.18 MWh annually. With a specific yield of 543 kWh/kWp and 494 kWh/kWp on

an annual basis. Performance ratio of 65.3% and 65.4% was found.

5.3.3 Shading impact

Because of the huge losses due to near shading, a simulation has been done by removing the

superstructure for the central part of the building. Using synthetic data and keeping the rest of

the system identical as in the previous situation. Without the superstructure Brynseng would

increase the production by 15.347 MWh annually, according to the PVsyst simulation.

Performance ratio would reach an average value of 76.1%, which is an increase of 10.9% compared

to simulation with the superstructure included in the 3D-model. Collector losses are mitigated to

0.50 kWh/kWp/day and useful energy increased to 1.72 kWh/kWp/day.

5.4 Facade versus roof

As part of the hypothesis, Solsmaragden were used as an experiment in the performance of the

same system for a facade and a roof system installation. The same modules and inverters were

attached to the roof for different locations. Synthetic data obtained from Meteronorm 7.1 through

PVsyst is used for facade and roof systems. Albedo has been set to 0.8 for December-February for

Bodø and Drammen but is set to standard value for Rome and Cape Town. This is to simulate

more realistic situations for each location.

Location
South facade Roof

E Spr PR Epr Spr PR

Bodø 18.29 685 0.805 18.42 690 0.857

Drammen 17.01 637 0.797 20.29 780 0.854

Rome 21.49 805 0.777 30.92 1158 0.825

Cape Town 27.99 1048 0.776 42.97 1609 0.814

Table 14: South facade compared with roof for differnt locations.

Here E is energy produced [kWh/kWp/year], Spr is the specific production [kWh/kWp/year] and

PR is the performance value. Table 14 gives production and PR differences for roof and facade

systems for different locations. The facade is facing south. For Bodø the difference in energy

produced between roof and facade is minor. Bodø has a production loss of 0.65% for using the

south facade in substitution to the roof.

The other installations reach losses of 16.17%, 30.5% and 34.86% for Drammen, Rome and Cape

Town respectively. Production and performance ratio is superior for the roof installations. The
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difference in PR value is slightly larger for facade installations compared to the roof, with 0.05 to

0.04.

The simulation was also executed for facade facing North, West and East, see Table 15.

Location
North fasade West facade East fasade

E Spr PR E Spr PR E Spr PR

Bodø 6.88 257 0.751 19.81 742 0.760 16.58 621 0.829

Drammen 6.68 250 0.751 10.37 389 0.775 15.26 571 0.816

Rome 8.76 328 0.755 14.85 556 0.771 19.96 747 0.798

Cape Town 9.58 359 0.730 19.59 734 0.775 27.22 1019 0.804

Table 15: North, West and East facade.

The North facade experience loss in energy production compared to the roof by 62.76%, 67.08%,

71.67% and 77.70% for Bodø, Drammen, Rome and Cape Town respectively. For the West facade,

the losses for the identical locations are 44.46%, 48.89%, 51.97% and 54.40%. The East facade

experienced losses in comparison to the roof of 9.98%, 24.80%, 35.45% and 36.65%. The difference

in PR value of the roof exceeds the difference in PR value of the facades by 0.18, 0.028 and 0.012

for the North, West and East facade respectively.

5.5 Partial shading model

The effect of various shading conditions on the PV string has been simulated as described in

section 4.6. First situation with no shading effects for the string can be seen figure 39. The Figure

gives 3500 W produced at Pmpp.
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Figure 39: Standard irradiance.

By applying 25% shading on the string, results can be seen in Figure 40. 2481 W is produced at

Pmpp corresponding to 425 V.

Figure 40: 25% shading of the string.

By applying 50% shading on the string, results can be seen in Figure 41. 1717 W is produced at
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Pmpp corresponding to 295 V.

Figure 41: 50% shading on string.

Various irradiance has been applied to several modules and can be seen in Figure 42. 1717 W is

produced at Pmpp corresponding to 295 V, same as the previous situation.

Figure 42: Various shading has been applied on the modules

Multiple steps in current correspond to multiple peaks of power, as is illustrated in Figures 40

and 42. The results can be related to conduction of bypass diodes under partially shaded

conditions. At low voltages the shaded cells do not affect the system current due to the bypass
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diodes. At higher voltages, the diodes become reverse-biased and the current is limited to that of

a shaded module. The larger differences in peak power relate to increase or decrease in shading

conditions for the module. Temperature also has a major impact on the I-V and P-V curves, by

affecting the voltage. Increase in temperature reduces voltage which leads to a decrease in power.

A reduction in temperature increases voltage and power.
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6 Discussion and Conclusion

PVsyst proved to be a reliable software for simulating actual situations and cases for different PV

installation. PVsyst gave results as expected and discovered losses, which had a major impact on

the performance of the installations. While this thesis has used manual plotting of horizontal

shading, PVGIS could be used to import horizon profile for the sites. This will have an impact on

shading losses and overall production. However, the Skarpnes results proved that the impact is

minimal. Perez model for global incident in collector plane is used in the simulation due to higher

accuracy according to PVsyst [33], which proved to be right for the Skarpnes case. This study

found measured weather data at Solsmaragden to be unreliable while implemented in PVsyst,

which lead to an unrealistic gain in production for Solsmaragden. However, weather data from

PVsyst and Lier gave results approximate actual production. For facade installations, shading is a

major loss factor. Brynseng is an installation which proves this, and therefore the partial shading

model was used to show the power loss.

For Skarpnes case, a simulation of the site has been done in PVsyst in another study [71].

Sorensen et al. scaled the simulation to fit the actual installed system and the simulation

predicted an annual production of 6.82 MWh for the South-East facing system. With a predicted

production of 7 MWh on an annual basis [58], this thesis simulated an annual production of 6.88

MWh and 6.85 MWh on an annual basis. The rotation of the 2 houses simulated yielded similar

production results. Performance value was found to be 79.5% and 79.8% which is within range of

what can be expected from new PV installations in moderate climate [58]. The uncertainty of

measuring the error in regards to irradiation data resulted in a 20.5% drop in production.

However Kjøita data filled in the missing values excellent, even though the distance between the

site and the weather station is 58 km.

Using synthetic values obtained from Meteonorm 7.1 through PVsyst gave an annual production

of 6.61 MWh which gives noticeable changes in energy production. Performance ratio increased to

81% and the overall efficiency of the system increased slightly by using synthetic values.

The case used albedo of 0.8 for January until March, for simulating snow. Using standard PVsyst

albedo values of 0.2 for all months gave production of 6.86 MWh and 6.83 MWh, which gave a

difference of 20 kWh in annual production. For this tilt of the PV panels, albedo influence of the

system is minor.

Due to the tilt of the PV field, soiling is one of the major losses for the Skarpnes system.

Temperature leads to the largest loss due to the mounting choice. Incidence Angle Modifier losses

also play a part on the radiation level, this is due to the transmission and reflection of the sun’s

ray at each PV material surface. The system simulated in PVsyst gives reliable and comparable

results of the actual installation.

Solsmaragden had a total production of 95.5 MWh in 2016, which is approximately 10% inferior to

what was estimated. Results for inverter 7 and 8 obtained calculation from an unpublished article
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by Christian Hals Frivold, gave the production of 4685.3 kWh and 11759.1 kWh respectively.

This gives a total production for the south facade of 16444.4 kWh and 15480.125 kWh for 2016

and 2017 respectively. Real measured data obtained from Sunnyportal through pyranometer at

the south facade yielded a production of 20.019 MWh. Synthetic data gave a production of 17.01

MWh annually. While including days of error in measuring into synthetic data set, the

production for 2017 is 15.456 MWh which is approximately similar to actual production. Lier

data set generated higher production for both years. The difference between actual produced

energy and simulation including real measured data is enormous. The main reason for this is the

major gain in global incident in collector plane which is a result of the data used. This parameter

should be a loss applied to the overall loss diagram, due to the tilt of the PV field. This can be

seen in simulation in Section 5.4, where the same system is simulated with other data set for

different locations. PVsyst had trouble with the data set, and using SunnyPortal data for this

case gave unrealistic results. Simulating with SunnyPortal data set gave a production of 21.75%

and 29.33% higher than actual production for 2016 and 2017 respectively. Lier measured data,

including system unavailability, gave a production of 6.69% inferior to actual production for 2016

and 2% more production for 2017. PVsyst synthetic values, including system unavailability, gave

a production of 6% increase compared to actual production in 2016, and produced -0.16% less for

2017. PVsyst and Lier give an indication of what this system can produce, and with no errors in

data measuring, the south facade may be able to produce 16-17 MWh annually.

Average PR value of the south facade was 0.79 for 2017, PR data was only available from October

2016. For synthetic data, the PR value was 0.78 and for real measured data the PR value was

0.75, which is an inferior to the actual system. Including days of system unavailability decreased

the PR value further. The simulated PR values are also below what could be expected of a new

BIPV system. Shading may be the main reason to PR values lower than expected, as shading has

a major part in PR values for a system [72].

Due to many different PV modules used in both inverters, a replica of the actual system was

challenging. PVsyst did not allow various modules attached to the same inverter. As a result the

active PV area is larger than the actual system. Distribution of the modules was done within the

PV field in the 3D model, however the actual system has modules surrounding windows and

covers a major part of the south facade. The simulation did not resemble the module distribution

design of the actual system. Using Perez’s transposition model gave more accurate results than

Hay’s model.

The Brynseng installation was supposed to produce 100 MWh, the installation however did not

perform as expected. Due to no weather data measured on the site, synthetic data and data

retrieved from the weather stations Ås and Blindern gave similar production results of what was

expected. Performance ratio of 65.2% illustrated a system under-performing, however the system

has great potential. Near shading from the superstructure was the main issue for the system

performance. By removing the superstructure an increase of 15 MWh annually could be expected

according to the simulation as well as a major increase in performance ratio. The partial shading
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model of the string implemented in inverter 8 gave an insight of the enormous losses due to

shading.

1122 modules were used in the simulation, which is 466 modules more than what is actually used.

This was in order to obtain real planned power of 166 kWp. In addition to being unable to scale

the modules as desired, this will impact the system performance compared to actual system

performance.

Use of different weather data gave various results regarding production and performance ratio for

Brynseng. PVsyst and Blindern were the most accurate data set used.

For simulation and recreation of installed systems, PVsyst is a reliable software in order to

evaluate performance, losses and find problems related to production. Irradiation data especially

had a major impact on the systems and gave various results. This thesis found Skarpnes and

Solsmaragden to be efficient and well-performing systems. Brynseng however is limited by the

design of the building in regards to major shading losses throughout the year. As for facade

installations in Norway and northern latitudes, facades make a great solution compared to

southern locations due to low solar angle and cold climate. South facade- and roof installations

had similar production as this thesis found. Performance value was higher for roof installations,

compared to the facade, regardless of location.

6.1 Further work

For further work, an exact replica of the systems Brynseng and Solsmaragden should be simulated

by placing the modules where they should be. Longer time series for measured weather data

applied to the simulation for all systems for a better comparison of the installations. Since the

partial shading model was done by using other modules than the modules installed at Brynseng, a

study should be done for the same model, using the same modules.
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Grid-Connected System: Simulation parameters

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Geographical Site Skarpnes Country Norway

Situation Latitude 58.4°N Longitude 8.7°E
Time defined as Legal Time Time zone UT+1 Altitude 46 m

Monthly albedo values

Albedo

Jan.

 0.80
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 0.80

Mar.
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 0.20
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 0.20

Aug.

 0.20
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 0.20
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 0.20
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 0.20

Dec.

 0.20

Meteo data: Skarpnes Real Synthetic - Skarpnes weather data

Simulation variant : Skarpnes_Meteo(Synthetic)

Simulation date 07/05/18 10h28

Simulation parameters

Collector Plane Orientation Tilt 32° Azimuth 48°

Models used Transposition Perez Diffuse Erbs, Meteonorm

Horizon Average Height 2.2°

Near Shadings Linear shadings

PV Array Characteristics
PV module Si-mono Model SPR-230NE-BLK-D

Manufacturer SunPowerCustom parameters definition

Number of PV modules In series 16 modules In parallel 2 strings
Total number of PV modules Nb. modules 32 Unit Nom. Power 230 Wp
Array global power Nominal (STC) 7.36 kWp At operating cond. 6.67 kWp (50°C)
Array operating characteristics (50°C) U mpp 576 V I mpp 12 A
Total area Module area 39.8 m² Cell area 35.7 m²

Inverter Model Sunny Tripower 7000TL-20
Manufacturer SMA

Characteristics Operating Voltage 290-800 V Unit Nom. Power 7.00 kWac

Inverter pack Nb. of inverters 1 * MPPT 0.60 Total Power 7.0 kWac

PV Array loss factors

Array Soiling Losses Loss Fraction 0.0 %Jan.

20.0%

Feb.

20.0%

Mar.

3.0%

Apr.

3.0%

May

3.0%

June

3.0%

July

3.0%

Aug.

3.0%

Sep.

3.0%

Oct.

3.0%

Nov.

20.0%

Dec.

20.0%

Thermal Loss factor Uc (const) 15.0 W/m²K Uv (wind) 0.0 W/m²K / m/s

Wiring Ohmic Loss Global array res. 851 mOhm Loss Fraction 1.5 % at STC

Module Quality Loss Loss Fraction 1.0 %
Module Mismatch Losses Loss Fraction 2.0 % at MPP
Incidence effect, ASHRAE parametrization IAM = 1 - bo (1/cos i - 1) bo Param. 0.05

User's needs : Unlimited load (grid)

Appenix University of Agder

7 Appenix
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Grid-Connected System: Horizon definition

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Simulation variant : Skarpnes_Meteo(Synthetic)

Main system parameters System type Grid-Connected
Horizon Average Height 2.2°

Near Shadings Linear shadings
PV Field Orientation tilt 32° azimuth 48°
PV modules Model SPR-230NE-BLK-D Pnom 230 Wp
PV Array Nb. of modules 32 Pnom total 7.36 kWp
Inverter Model Sunny Tripower 7000TL-20 Pnom 7.00 kW ac
User's needs Unlimited load (grid)

Horizon Average Height  2.2° Diffuse Factor 0.98
Albedo Factor 100 % Albedo Fraction 0.84
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Grid-Connected System: Near shading definition

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Simulation variant : Skarpnes_Meteo(Synthetic)

Main system parameters System type Grid-Connected
Horizon Average Height 2.2°

Near Shadings Linear shadings
PV Field Orientation tilt 32° azimuth 48°
PV modules Model SPR-230NE-BLK-D Pnom 230 Wp
PV Array Nb. of modules 32 Pnom total 7.36 kWp
Inverter Model Sunny Tripower 7000TL-20 Pnom 7.00 kW ac
User's needs Unlimited load (grid)
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Grid-Connected System: Main results

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Simulation variant : Skarpnes_Meteo(Synthetic)

Main system parameters System type Grid-Connected
Horizon Average Height 2.2°

Near Shadings Linear shadings
PV Field Orientation tilt 32° azimuth 48°
PV modules Model SPR-230NE-BLK-D Pnom 230 Wp
PV Array Nb. of modules 32 Pnom total 7.36 kWp
Inverter Model Sunny Tripower 7000TL-20 Pnom 7.00 kW ac
User's needs Unlimited load (grid)

Main simulation results
System Production Produced Energy 6.88 MWh/year Specific prod. 935 kWh/kWp/year

Performance Ratio PR 79.5 %
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Normalized productions (per installed kWp):  Nominal power 7.36 kWp

Yf : Produced useful energy  (inverter output)  2.56 kWh/kWp/day
Ls : System Loss  (inverter, ...)                        0.08 kWh/kWp/day
Lc : Collection Loss (PV-array losses)              0.58 kWh/kWp/day
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Performance Ratio PR

PR : Performance Ratio (Yf / Yr) :  0.795

Skarpnes_Meteo(Synthetic)

Balances and main results

GlobHor T Amb GlobInc GlobEff EArray E_Grid EffArrR EffSysR

kWh/m² °C kWh/m² kWh/m² MWh MWh % %

January 12.8 -2.60 20.3 15.0 0.108 0.099 13.38 12.28

February 38.8 2.00 63.0 47.5 0.338 0.327 13.48 13.03

March 62.9 4.00 79.6 73.0 0.508 0.491 16.02 15.48

April 116.1 5.80 130.0 120.9 0.823 0.799 15.90 15.44

May 173.5 11.80 183.6 171.0 1.120 1.090 15.32 14.92

June 166.2 15.70 164.7 152.7 0.996 0.967 15.18 14.75

July 173.0 16.20 179.9 167.3 1.079 1.050 15.07 14.66

August 134.0 15.70 146.4 136.2 0.885 0.860 15.18 14.75

September 95.3 15.10 115.2 106.8 0.700 0.681 15.27 14.85

October 35.1 6.70 47.2 43.3 0.299 0.285 15.94 15.18

November 16.8 3.20 22.6 17.0 0.120 0.111 13.35 12.35

December 13.0 4.70 24.6 18.3 0.130 0.124 13.25 12.63

Year 1037.5 8.22 1177.1 1069.1 7.106 6.885 15.16 14.69

Legends: GlobHor Horizontal global irradiation

T Amb Ambient Temperature

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_Grid Energy injected into grid

EffArrR Effic. Eout array / rough area

EffSysR Effic. Eout system / rough area
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Grid-Connected System: Loss diagram

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Simulation variant : Skarpnes_Meteo(Synthetic)

Main system parameters System type Grid-Connected
Horizon Average Height 2.2°

Near Shadings Linear shadings
PV Field Orientation tilt 32° azimuth 48°
PV modules Model SPR-230NE-BLK-D Pnom 230 Wp
PV Array Nb. of modules 32 Pnom total 7.36 kWp
Inverter Model Sunny Tripower 7000TL-20 Pnom 7.00 kW ac
User's needs Unlimited load (grid)

Loss diagram over the whole year

Horizontal global irradiation1038 kWh/m²

+13.5% Global incident in coll. plane

-1.2% Far Shadings / Horizon

0.0% Near Shadings: irradiance loss

-3.3% IAM factor on global

-4.8% Soiling loss factor

Effective irradiance on collectors1069 kWh/m² * 40 m² coll.

efficiency at STC = 18.52% PV conversion

Array nominal energy (at STC effic.)7.88 MWh

-1.5% PV loss due to irradiance level

-4.9% PV loss due to temperature

-1.0% Module quality loss

-2.0% Module array mismatch loss

-0.8% Ohmic wiring loss

Array virtual energy at MPP7.11 MWh

-3.0% Inverter Loss during operation (efficiency)

0.0% Inverter Loss over nominal inv. power

-0.1% Inverter Loss due to power threshold

0.0% Inverter Loss over nominal inv. voltage

0.0% Inverter Loss due to voltage threshold

Available Energy at Inverter Output6.88 MWh

Energy injected into grid6.88 MWh

Appenix University of Agder
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Grid-Connected System: Simulation parameters

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Geographical Site Skarpnes Country Norway

Situation Latitude 58.4°N Longitude 8.7°E
Time defined as Legal Time Time zone UT+1 Altitude 46 m

Monthly albedo values

Albedo
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 0.20
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 0.20

Meteo data: Skarpnes Real Synthetic - Skarpnes weather data

Simulation variant : Skarpnes_Meteo(Synthetic)

Simulation date 07/05/18 10h33

Simulation parameters

Collector Plane Orientation Tilt 32° Azimuth -51°

Models used Transposition Perez Diffuse Erbs, Meteonorm

Horizon Average Height 2.2°

Near Shadings Linear shadings

PV Array Characteristics
PV module Si-mono Model SPR-230NE-BLK-D

Manufacturer SunPowerCustom parameters definition

Number of PV modules In series 16 modules In parallel 2 strings
Total number of PV modules Nb. modules 32 Unit Nom. Power 230 Wp
Array global power Nominal (STC) 7.36 kWp At operating cond. 6.67 kWp (50°C)
Array operating characteristics (50°C) U mpp 576 V I mpp 12 A
Total area Module area 39.8 m² Cell area 35.7 m²

Inverter Model Sunny Tripower 7000TL-20
Manufacturer SMA

Characteristics Operating Voltage 290-800 V Unit Nom. Power 7.00 kWac

Inverter pack Nb. of inverters 1 * MPPT 0.60 Total Power 7.0 kWac

PV Array loss factors

Array Soiling Losses Loss Fraction 0.0 %Jan.

20.0%

Feb.

20.0%

Mar.

3.0%

Apr.

3.0%

May

3.0%

June

3.0%

July

3.0%

Aug.

3.0%

Sep.

3.0%

Oct.

3.0%

Nov.

20.0%

Dec.

20.0%

Thermal Loss factor Uc (const) 15.0 W/m²K Uv (wind) 0.0 W/m²K / m/s

Wiring Ohmic Loss Global array res. 851 mOhm Loss Fraction 1.5 % at STC

Module Quality Loss Loss Fraction 1.0 %
Module Mismatch Losses Loss Fraction 2.0 % at MPP
Incidence effect, ASHRAE parametrization IAM = 1 - bo (1/cos i - 1) bo Param. 0.05

User's needs : Unlimited load (grid)

Appenix University of Agder
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Grid-Connected System: Horizon definition

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Simulation variant : Skarpnes_Meteo(Synthetic)

Main system parameters System type Grid-Connected
Horizon Average Height 2.2°

Near Shadings Linear shadings
PV Field Orientation tilt 32° azimuth -51°
PV modules Model SPR-230NE-BLK-D Pnom 230 Wp
PV Array Nb. of modules 32 Pnom total 7.36 kWp
Inverter Model Sunny Tripower 7000TL-20 Pnom 7.00 kW ac
User's needs Unlimited load (grid)

Horizon Average Height  2.2° Diffuse Factor 0.98
Albedo Factor 100 % Albedo Fraction 0.91
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Plane: tilt 32°, azimuth -51°

1: 22 june
2: 22 may - 23 july
3: 20 apr - 23 aug
4: 20 mar - 23 sep
5: 21 feb - 23 oct
6: 19 jan - 22 nov
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Grid-Connected System: Near shading definition

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Simulation variant : Skarpnes_Meteo(Synthetic)

Main system parameters System type Grid-Connected
Horizon Average Height 2.2°

Near Shadings Linear shadings
PV Field Orientation tilt 32° azimuth -51°
PV modules Model SPR-230NE-BLK-D Pnom 230 Wp
PV Array Nb. of modules 32 Pnom total 7.36 kWp
Inverter Model Sunny Tripower 7000TL-20 Pnom 7.00 kW ac
User's needs Unlimited load (grid)

Perspective of the PV-field and surrounding shading scene
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Iso-shadings diagram
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Grid-Connected Project at Skarpnes

Beam shading factor (linear calculation) : Iso-shadings curves

1: 22 june
2: 22 may - 23 july
3: 20 apr - 23 aug
4: 20 mar - 23 sep
5: 21 feb - 23 oct
6: 19 jan - 22 nov
7: 22 december
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Shading loss: 1 %
Shading loss: 5 %
Shading loss: 10 %
Shading loss: 20 %
Shading loss: 40 %

Attenuation for diffuse: 0.000
and albedo: 0.000
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Grid-Connected System: Main results

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Simulation variant : Skarpnes_Meteo(Synthetic)

Main system parameters System type Grid-Connected
Horizon Average Height 2.2°

Near Shadings Linear shadings
PV Field Orientation tilt 32° azimuth -51°
PV modules Model SPR-230NE-BLK-D Pnom 230 Wp
PV Array Nb. of modules 32 Pnom total 7.36 kWp
Inverter Model Sunny Tripower 7000TL-20 Pnom 7.00 kW ac
User's needs Unlimited load (grid)

Main simulation results
System Production Produced Energy 6.85 MWh/year Specific prod. 931 kWh/kWp/year

Performance Ratio PR 79.8 %
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Normalized productions (per installed kWp):  Nominal power 7.36 kWp

Yf : Produced useful energy  (inverter output)  2.55 kWh/kWp/day
Ls : System Loss  (inverter, ...)                        0.08 kWh/kWp/day
Lc : Collection Loss (PV-array losses)              0.56 kWh/kWp/day
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Performance Ratio PR

PR : Performance Ratio (Yf / Yr) :  0.798

Skarpnes_Meteo(Synthetic)

Balances and main results

GlobHor T Amb GlobInc GlobEff EArray E_Grid EffArrR EffSysR

kWh/m² °C kWh/m² kWh/m² MWh MWh % %

January 12.8 -2.60 19.4 14.4 0.104 0.095 13.45 12.33

February 38.8 2.00 61.7 46.7 0.333 0.322 13.58 13.12

March 62.9 4.00 79.0 72.9 0.507 0.489 16.10 15.56

April 116.1 5.80 130.2 121.1 0.826 0.802 15.94 15.49

May 173.5 11.80 183.3 171.1 1.124 1.095 15.40 15.00

June 166.2 15.70 172.9 161.3 1.049 1.020 15.24 14.81

July 173.0 16.20 171.8 159.8 1.037 1.008 15.16 14.73

August 134.0 15.70 146.4 136.3 0.888 0.863 15.24 14.81

September 95.3 15.10 113.8 105.7 0.695 0.675 15.34 14.91

October 35.1 6.70 42.9 39.3 0.271 0.258 15.89 15.09

November 16.8 3.20 22.0 16.5 0.117 0.108 13.36 12.34

December 13.0 4.70 23.4 17.5 0.124 0.118 13.32 12.63

Year 1037.5 8.22 1166.7 1062.4 7.075 6.853 15.23 14.75

Legends: GlobHor Horizontal global irradiation

T Amb Ambient Temperature

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_Grid Energy injected into grid

EffArrR Effic. Eout array / rough area

EffSysR Effic. Eout system / rough area
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Grid-Connected System: Loss diagram

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Skarpnes

Simulation variant : Skarpnes_Meteo(Synthetic)

Main system parameters System type Grid-Connected
Horizon Average Height 2.2°

Near Shadings Linear shadings
PV Field Orientation tilt 32° azimuth -51°
PV modules Model SPR-230NE-BLK-D Pnom 230 Wp
PV Array Nb. of modules 32 Pnom total 7.36 kWp
Inverter Model Sunny Tripower 7000TL-20 Pnom 7.00 kW ac
User's needs Unlimited load (grid)

Loss diagram over the whole year

Horizontal global irradiation1038 kWh/m²

+12.5% Global incident in coll. plane

-1.1% Far Shadings / Horizon

0.0% Near Shadings: irradiance loss

-3.2% IAM factor on global

-4.8% Soiling loss factor

Effective irradiance on collectors1062 kWh/m² * 40 m² coll.

efficiency at STC = 18.52% PV conversion

Array nominal energy (at STC effic.)7.83 MWh

-1.5% PV loss due to irradiance level

-4.7% PV loss due to temperature

-1.0% Module quality loss

-2.0% Module array mismatch loss

-0.8% Ohmic wiring loss

Array virtual energy at MPP7.07 MWh

-3.1% Inverter Loss during operation (efficiency)

0.0% Inverter Loss over nominal inv. power

-0.1% Inverter Loss due to power threshold

0.0% Inverter Loss over nominal inv. voltage

0.0% Inverter Loss due to voltage threshold

Available Energy at Inverter Output6.85 MWh

Energy injected into grid6.85 MWh

Appenix University of Agder
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Grid-Connected System: Simulation parameters

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Solsmaragden

Geographical Site SolsmaragdenReal Country Norway

Situation Latitude 59.7°N Longitude 10.2°E
Time defined as Legal Time Time zone UT+1 Altitude 5 m

Albedo  0.20
Meteo data: Solsmaragden Synthetic - Meteonorm 7.1 (1991-2010), Sat=100%

Simulation variant : Solsmaragden

Simulation date 22/05/18 13h28

Simulation parameters

Collector Plane Orientation Tilt 90° Azimuth 25°

Models used Transposition Perez Diffuse Erbs, Meteonorm

Horizon Average Height 3.8°

Near Shadings Detailed electrical calculations (acc. to module layout)

PV Arrays Characteristics   (2  kinds of array defined)

Sub-array "Inv7" Si-poly Model CENIT-125
Manufacturer IssolOriginal PVsyst database

Number of PV modules In series 30 modules In parallel 2 strings
Total number of PV modules Nb. modules 60 Unit Nom. Power 125 Wp
Array global power Nominal (STC) 7.50 kWp At operating cond. 6.81 kWp (50°C)
Array operating characteristics (50°C) U mpp 450 V I mpp 15 A

Sub-array "Inv 8" Si-mono Model CENIT-220
Manufacturer IssolCustom parameters definition

Number of PV modules In series 32 modules In parallel 4 strings
Total number of PV modules Nb. modules 128 Unit Nom. Power 150 Wp
Array global power Nominal (STC) 19.20 kWp At operating cond. 17.03 kWp (50°C)
Array operating characteristics (50°C) U mpp 647 V I mpp 26 A

Total Arrays global power Nominal (STC) 27 kWp Total 188 modules
Module area 265 m² Cell area 164 m²

Sub-array "Inv7" :  Inverter Model Sunny Tripower 6000TL-20
Manufacturer SMA

Characteristics Operating Voltage 295-800 V Unit Nom. Power 6.00 kWac
Inverter pack Nb. of inverters 2 * MPPT 50 % Total Power 6.0 kWac

Sub-array "Inv 8" :  Inverter Model Sunny Tripower 15000TL-10
Manufacturer SMA

Characteristics Operating Voltage 150-800 V Unit Nom. Power 15.0 kWac
Inverter pack Nb. of inverters 2 * MPPT 50 % Total Power 15.0 kWac

Total Nb. of inverters 2 Total Power 21 kWac

PV Array loss factors

Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s

Wiring Ohmic Loss Array#1 497 mOhm Loss Fraction 1.5 % at STC
Array#2 415 mOhm Loss Fraction 1.5 % at STC

Global Loss Fraction 1.5 % at STC

Module Quality Loss Array#1,    Loss Fraction 2.5 %
Array#2,    Loss Fraction 1.5 %

Module Mismatch Losses Loss Fraction 1.0 % at MPP

Appenix University of Agder
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Grid-Connected System: Simulation parameters (continued)

PVsyst Education License,  University of Agder (Norway)

Incidence effect, ASHRAE parametrization IAM = 1 - bo (1/cos i - 1) bo Param. 0.05

User's needs : Unlimited load (grid)

Appenix University of Agder
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Grid-Connected System: Horizon definition

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Solsmaragden

Simulation variant : Solsmaragden

Main system parameters System type Grid-Connected
Horizon Average Height 3.8°

Near Shadings Detailed electrical calculations (acc. to module layout)
PV Field Orientation tilt 90° azimuth 25°
PV modules Model CENIT-125 Pnom 125 Wp
PV modules Model CENIT-220 Pnom 150 Wp
PV Array Nb. of modules 188 Pnom total 26.70 kWp
Inverter Model Sunny Tripower 6000TL-20 Pnom 6.00 kW ac
Inverter Model Sunny Tripower 15000TL-10Pnom 15.00 kW ac
Inverter pack Nb. of units 2.0 Pnom total 21.00 kW ac
User's needs Unlimited load (grid)

Horizon Average Height  3.8° Diffuse Factor 0.90
Albedo Factor 100 % Albedo Fraction 0.78
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Plane: tilt 90°, azimuth 25°
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Grid-Connected System: Near shading definition

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Solsmaragden

Simulation variant : Solsmaragden

Main system parameters System type Grid-Connected
Horizon Average Height 3.8°

Near Shadings Detailed electrical calculations (acc. to module layout)
PV Field Orientation tilt 90° azimuth 25°
PV modules Model CENIT-125 Pnom 125 Wp
PV modules Model CENIT-220 Pnom 150 Wp
PV Array Nb. of modules 188 Pnom total 26.70 kWp
Inverter Model Sunny Tripower 6000TL-20 Pnom 6.00 kW ac
Inverter Model Sunny Tripower 15000TL-10Pnom 15.00 kW ac
Inverter pack Nb. of units 2.0 Pnom total 21.00 kW ac
User's needs Unlimited load (grid)

Perspective of the PV-field and surrounding shading scene
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Grid-Connected Project at Solsmaragden

Beam shading factor (linear calculation) : Iso-shadings curves
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5: 21 feb - 23 oct
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Shading loss: 1 %
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Attenuation for diffuse: 0.006
and albedo: 0.005
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Grid-Connected System: Main results

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Solsmaragden

Simulation variant : Solsmaragden

Main system parameters System type Grid-Connected
Horizon Average Height 3.8°

Near Shadings Detailed electrical calculations (acc. to module layout)
PV Field Orientation tilt 90° azimuth 25°
PV modules Model CENIT-125 Pnom 125 Wp
PV modules Model CENIT-220 Pnom 150 Wp
PV Array Nb. of modules 188 Pnom total 26.70 kWp
Inverter Model Sunny Tripower 6000TL-20 Pnom 6.00 kW ac
Inverter Model Sunny Tripower 15000TL-10Pnom 15.00 kW ac
Inverter pack Nb. of units 2.0 Pnom total 21.00 kW ac
User's needs Unlimited load (grid)

Main simulation results
System Production Produced Energy 17.01 MWh/year Specific prod. 637 kWh/kWp/year

Performance Ratio PR 79.7 %
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Normalized productions (per installed kWp):  Nominal power 26.70 kWp

Yf : Produced useful energy  (inverter output)  1.75 kWh/kWp/day
Ls : System Loss  (inverter, ...)                        0.06 kWh/kWp/day
Lc : Collection Loss (PV-array losses)              0.39 kWh/kWp/day
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Performance Ratio PR

PR : Performance Ratio (Yf / Yr) :  0.797

Solsmaragden

Balances and main results

GlobHor T Amb GlobInc GlobEff EArray E_Grid EffArrR EffSysR

kWh/m² °C kWh/m² kWh/m² MWh MWh % %

January 7.4 1.05 16.5 13.34 0.342 0.328 7.86 7.54

February 22.2 0.55 35.7 32.09 0.841 0.811 8.90 8.59

March 65.4 2.41 92.1 84.61 2.163 2.105 8.87 8.64

April 108.7 6.48 102.9 93.28 2.335 2.269 8.57 8.33

May 148.0 10.86 102.5 90.47 2.234 2.163 8.24 7.98

June 161.9 13.89 96.2 83.57 2.052 1.983 8.06 7.79

July 148.8 16.46 94.2 82.09 1.991 1.923 7.98 7.71

August 104.9 16.11 83.7 74.22 1.791 1.732 8.09 7.82

September 74.2 12.42 84.6 77.21 1.872 1.816 8.36 8.11

October 33.5 8.06 52.9 48.31 1.201 1.161 8.59 8.30

November 10.7 4.62 26.3 21.28 0.542 0.518 7.79 7.45

December 4.4 1.60 11.5 8.33 0.213 0.204 7.03 6.72

Year 890.2 7.92 799.1 708.80 17.577 17.013 8.31 8.05

Legends: GlobHor Horizontal global irradiation

T Amb Ambient Temperature

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_Grid Energy injected into grid

EffArrR Effic. Eout array / rough area

EffSysR Effic. Eout system / rough area
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Grid-Connected System: Loss diagram

PVsyst Education License,  University of Agder (Norway)

Project : Grid-Connected Project at Solsmaragden

Simulation variant : Solsmaragden

Main system parameters System type Grid-Connected
Horizon Average Height 3.8°

Near Shadings Detailed electrical calculations (acc. to module layout)
PV Field Orientation tilt 90° azimuth 25°
PV modules Model CENIT-125 Pnom 125 Wp
PV modules Model CENIT-220 Pnom 150 Wp
PV Array Nb. of modules 188 Pnom total 26.70 kWp
Inverter Model Sunny Tripower 6000TL-20 Pnom 6.00 kW ac
Inverter Model Sunny Tripower 15000TL-10Pnom 15.00 kW ac
Inverter pack Nb. of units 2.0 Pnom total 21.00 kW ac
User's needs Unlimited load (grid)

Loss diagram over the whole year

Horizontal global irradiation890 kWh/m²

-10.2% Global incident in coll. plane

-7.5% Far Shadings / Horizon

0.0% Near Shadings: irradiance loss

-4.1% IAM factor on global

Effective irradiance on cells709 kWh/m² * 164 m² Cells

efficiency at STC = 16.32% PV conversion

Array nominal energy (at STC effic.)18.94 MWh

-2.3% PV loss due to irradiance level

-1.7% PV loss due to temperature

0.0% Shadings: Electrical Loss detailed module calc.

-1.8% Module quality loss

-1.0% Module array mismatch loss

-0.6% Ohmic wiring loss

Array virtual energy at MPP17.58 MWh

-3.1% Inverter Loss during operation (efficiency)

0.0% Inverter Loss over nominal inv. power

-0.1% Inverter Loss due to power threshold

0.0% Inverter Loss over nominal inv. voltage

0.0% Inverter Loss due to voltage threshold

Available Energy at Inverter Output17.01 MWh

Energy injected into grid17.01 MWh

Appenix University of Agder
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Grid-Connected System: Simulation parameters

PVsyst Education License,  University of Agder (Norway)

Project : Brynseng SkoleAlternativtOslo

Geographical Site Oslo Country Norway

Situation Latitude 59.9°N Longitude 10.8°E
Time defined as Legal Time Time zone UT+1 Altitude 81 m

Monthly albedo values

Albedo

Jan.

 0.80

Feb.

 0.80

Mar.

 0.20

Apr.

 0.20

May

 0.20

June

 0.20

July

 0.20

Aug.

 0.20

Sep.

 0.20

Oct.

 0.20

Nov.

 0.20

Dec.

 0.80

Meteo data: Oslo Synthetic - Meteonorm 7.1 (1991-2010), Sat=100%

Simulation variant : BrynsengSkole.

Simulation date 23/05/18 13h20

Simulation parameters

Collector Plane Orientation Tilt 90° Azimuth 5°

Models used Transposition Perez Diffuse Erbs, Meteonorm

Horizon Average Height 4.4°

Near Shadings Linear shadings

PV Arrays Characteristics   (3  kinds of array defined)
PV module Si-mono Model CENIT-220

Manufacturer IssolCustom parameters definition

Sub-array "Inverter 1"
Number of PV modules In series 30 modules In parallel 12 strings
Total number of PV modules Nb. modules 360 Unit Nom. Power 150 Wp
Array global power Nominal (STC) 54.0 kWp At operating cond. 47.9 kWp (50°C)
Array operating characteristics (50°C) U mpp 606 V I mpp 79 A

Sub-array "Inverter 2"
Number of PV modules In series 30 modules In parallel 8 strings
Total number of PV modules Nb. modules 240 Unit Nom. Power 150 Wp
Array global power Nominal (STC) 36.0 kWp At operating cond. 31.9 kWp (50°C)
Array operating characteristics (50°C) U mpp 606 V I mpp 53 A

Sub-array "Inverter 3"
Number of PV modules In series 29 modules In parallel 18 strings
Total number of PV modules Nb. modules 522 Unit Nom. Power 150 Wp
Array global power Nominal (STC) 78.3 kWp At operating cond. 69.4 kWp (50°C)
Array operating characteristics (50°C) U mpp 586 V I mpp 118 A

Total Arrays global power Nominal (STC) 168 kWp Total 1122 modules
Module area 1648 m² Cell area 1147 m²

Sub-array "Inverter 1" :  Inverter Model Sunny Tripower 15000TL-10
Manufacturer SMA

Characteristics Operating Voltage 150-800 V Unit Nom. Power 15.0 kWac
Inverter pack Nb. of inverters 6 * MPPT 50 % Total Power 45 kWac

Sub-array "Inverter 2" :  Inverter Model Sunny Tripower 15000TL-10
Manufacturer SMA

Characteristics Operating Voltage 150-800 V Unit Nom. Power 15.0 kWac
Inverter pack Nb. of inverters 4 * MPPT 50 % Total Power 30 kWac

Sub-array "Inverter 3" :  Inverter Model Sunny Tripower 25000TL-JP-30
Manufacturer SMA

Characteristics Operating Voltage 390-800 V Unit Nom. Power 25.0 kWac
Inverter pack Nb. of inverters 6 * MPPT 50 % Total Power 75 kWac

Total Nb. of inverters 8 Total Power 150 kWac

Appenix University of Agder
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Grid-Connected System: Simulation parameters (continued)

PVsyst Education License,  University of Agder (Norway)

PV Array loss factors

Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s

Wiring Ohmic Loss Array#1 130 mOhm Loss Fraction 1.5 % at STC
Array#2 195 mOhm Loss Fraction 1.5 % at STC
Array#3 84 mOhm Loss Fraction 1.5 % at STC

Global Loss Fraction 1.5 % at STC

Module Quality Loss Loss Fraction 1.5 %
Module Mismatch Losses Loss Fraction 1.0 % at MPP
Incidence effect, ASHRAE parametrization IAM = 1 - bo (1/cos i - 1) bo Param. 0.05

User's needs : Unlimited load (grid)

Appenix University of Agder
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Grid-Connected System: Horizon definition

PVsyst Education License,  University of Agder (Norway)

Project : Brynseng SkoleAlternativtOslo

Simulation variant : BrynsengSkole.

Main system parameters System type Grid-Connected
Horizon Average Height 4.4°

Near Shadings Linear shadings
PV Field Orientation tilt 90° azimuth 5°
PV modules Model CENIT-220 Pnom 150 Wp
PV Array Nb. of modules 1122 Pnom total 168 kWp
Inverter Model Sunny Tripower 15000TL-10 15.00 kW ac
Inverter Model Sunny Tripower 25000TL-JP-30 25.00 kW ac
Inverter pack Nb. of units 8.0 Pnom total 150 kW ac
User's needs Unlimited load (grid)

Horizon Average Height  4.4° Diffuse Factor 0.86
Albedo Factor 100 % Albedo Fraction 0.70
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Plane: tilt 90°, azimuth 5°

1: 22 june
2: 22 may - 23 july
3: 20 apr - 23 aug
4: 20 mar - 23 sep
5: 21 feb - 23 oct
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Grid-Connected System: Near shading definition

PVsyst Education License,  University of Agder (Norway)

Project : Brynseng SkoleAlternativtOslo

Simulation variant : BrynsengSkole.

Main system parameters System type Grid-Connected
Horizon Average Height 4.4°

Near Shadings Linear shadings
PV Field Orientation tilt 90° azimuth 5°
PV modules Model CENIT-220 Pnom 150 Wp
PV Array Nb. of modules 1122 Pnom total 168 kWp
Inverter Model Sunny Tripower 15000TL-10 15.00 kW ac
Inverter Model Sunny Tripower 25000TL-JP-30 25.00 kW ac
Inverter pack Nb. of units 8.0 Pnom total 150 kW ac
User's needs Unlimited load (grid)

Perspective of the PV-field and surrounding shading scene
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Brynseng SkoleAlternativtOslo

Beam shading factor (linear calculation) : Iso-shadings curves

1: 22 june
2: 22 may - 23 july
3: 20 apr - 23 aug
4: 20 mar - 23 sep
5: 21 feb - 23 oct
6: 19 jan - 22 nov
7: 22 december
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Shading loss: 1 %
Shading loss: 5 %
Shading loss: 10 %
Shading loss: 20 %
Shading loss: 40 %

Attenuation for diffuse: 0.150
and albedo: 0.043
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Grid-Connected System: Main results

PVsyst Education License,  University of Agder (Norway)

Project : Brynseng SkoleAlternativtOslo

Simulation variant : BrynsengSkole.

Main system parameters System type Grid-Connected
Horizon Average Height 4.4°

Near Shadings Linear shadings
PV Field Orientation tilt 90° azimuth 5°
PV modules Model CENIT-220 Pnom 150 Wp
PV Array Nb. of modules 1122 Pnom total 168 kWp
Inverter Model Sunny Tripower 15000TL-10 15.00 kW ac
Inverter Model Sunny Tripower 25000TL-JP-30 25.00 kW ac
Inverter pack Nb. of units 8.0 Pnom total 150 kW ac
User's needs Unlimited load (grid)

Main simulation results
System Production Produced Energy 90652826 W/year Specific prod. 539 kWh/kWp/year

Performance Ratio PR 65.2 %

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

1

2

3

4

5

N
o

rm
al

iz
ed

 E
n

er
gy

 [
kW

h
/k

W
p

/d
ay

]

Normalized productions (per installed kWp):  Nominal power 168 kWp

Yf : Produced useful energy  (inverter output)  1.48 kWh/kWp/day
Ls : System Loss  (inverter, ...)                        0.04 kWh/kWp/day
Lc : Collection Loss (PV-array losses)              0.75 kWh/kWp/day
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PR : Performance Ratio (Yf / Yr) :  0.652

BrynsengSkole.

Balances and main results

GlobHor T Amb GlobInc GlobEff EArray E_Grid EffArrR EffSysR

kWh/m² °C kWh/m² kWh/m² kWh kWh % %

January 7.4 -1.66 20.6 14.15 2275 2204 6.70 6.49

February 22.1 -2.08 46.8 36.49 6047 5900 7.84 7.64

March 64.7 0.79 91.4 72.09 11748 11500 7.79 7.63

April 106.9 6.31 99.9 72.64 11559 11285 7.02 6.85

May 152.9 11.82 105.7 72.67 11364 11079 6.52 6.36

June 164.1 15.17 97.5 65.82 10107 9828 6.29 6.11

July 151.7 17.80 97.1 66.32 10073 9800 6.30 6.12

August 106.7 16.83 83.3 58.53 8884 8641 6.47 6.29

September 74.8 12.17 90.1 68.95 10647 10409 7.17 7.01

October 32.3 6.52 55.9 45.70 7131 6955 7.74 7.55

November 10.0 2.66 22.1 15.22 2451 2376 6.74 6.53

December 4.5 -1.27 16.3 4.52 712 677 2.66 2.53

Year 898.3 7.14 826.8 593.08 92999 90653 6.82 6.65

Legends: GlobHor Horizontal global irradiation

T Amb Ambient Temperature

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_Grid Energy injected into grid

EffArrR Effic. Eout array / rough area

EffSysR Effic. Eout system / rough area

Appenix University of Agder
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Grid-Connected System: Loss diagram

PVsyst Education License,  University of Agder (Norway)

Project : Brynseng SkoleAlternativtOslo

Simulation variant : BrynsengSkole.

Main system parameters System type Grid-Connected
Horizon Average Height 4.4°

Near Shadings Linear shadings
PV Field Orientation tilt 90° azimuth 5°
PV modules Model CENIT-220 Pnom 150 Wp
PV Array Nb. of modules 1122 Pnom total 168 kWp
Inverter Model Sunny Tripower 15000TL-10 15.00 kW ac
Inverter Model Sunny Tripower 25000TL-JP-30 25.00 kW ac
Inverter pack Nb. of units 8.0 Pnom total 150 kW ac
User's needs Unlimited load (grid)

Loss diagram over the whole year

Horizontal global irradiation898 kWh/m²

-8.0% Global incident in coll. plane

-10.9% Far Shadings / Horizon

-16.2% Near Shadings: irradiance loss

-3.9% IAM factor on global

Effective irradiance on cells593 kWh/m² * 1147 m² Cells

efficiency at STC = 14.59% PV conversion

Array nominal energy (at STC effic.)99.2 MWh

-3.0% PV loss due to irradiance level

-0.5% PV loss due to temperature

-1.5% Module quality loss

-1.0% Module array mismatch loss

-0.5% Ohmic wiring loss

Array virtual energy at MPP93.0 MWh

-2.5% Inverter Loss during operation (efficiency)

0.0% Inverter Loss over nominal inv. power

0.0% Inverter Loss due to power threshold

0.0% Inverter Loss over nominal inv. voltage

0.0% Inverter Loss due to voltage threshold

Available Energy at Inverter Output90.7 MWh

Energy injected into grid90.7 MWh

Appenix University of Agder
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Appendix E

Coefficients and functions can be calculated:

a = max(0, cos(AOI) (15)

b = max(cos(85◦, cos(θz)) (16)

F1 = max · [0, (f11 + f12∆ +
Π · θz
180◦

· f13)] (17)

F2 = (f21 + f22∆ +
Π · θz
180◦

· f23) (18)

∆ =
DHI ·AMa

Ea
(19)

AMa is absolute air mass and Ea is extraterrestrial radiation.

AMa = AM · P
P0

(20)

Here P is the given pressure and P0 is the standard pressure of 1 atm. Extraterrestrial radiation

is found by include variations around the solar constant.

Ea = 1366.1 · (
Rav

R
)2W/m2 (21)

Here Rav is the average Earth-Sun distance while R is the actual distance. This correlation can

be expressed:

(
Rav

R
)2 = 1.00011+(0.034221 ·cos(c))+(0.00128 ·sin(c))+(0.000719) ·cos(2c))+(0.000077 ·sin(2c))

(22)

c = 2Π · N
365

radians (23)

N is the number of days. The complex empirically fitted functions F1 and F2 are determined by

implementing clearness bin ε, which is given by:

ε =
DHI +DNI/DHI + k · θ3z

1 + k · θ3z
(24)

k is a constant 1.041 for angles given in radians and 5.535 · 10−6 for angles in degrees. The

coefficients can be fund by using the ε values given in table:
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ε bin Lower bound Upper bound

1 1 1.065

2 1.065 1.230

3 1230 1.500

4 1.500 1.950

5 1.950 2.800

6 2.800 4.500

7 4.500 6.200

8 6.200 -

Table 16: ε bins intervals

ε bin f11 f12 f13 f21 f22 f23

1 -0.008 0.588 -0.062 -0.06 0.072 -0.022

2 0.13 0.683 -0.151 -0.019 0.066 -0.029

3 0.33 0.487 -0.221 0.055 -0.064 -0.026

4 0.568 0.187 -0.295 0.109 -0.152 -0.014

5 0.873 -0.392 -0.362 0.226 -0.462 0.001

6 1.132 -1.237 -0.412 0.288 -0.823 0.131

7 1.06 -1.6 -0.359 0.264 -1.127 0.131

8 0.678 -0.327 -0.25 0.156 -1.377 0.25

Table 17: ε bins coefficients
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