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Abstract—In this paper, the modeling and identification of
a nonlinear actuated hydraulic system is addressed. The full-
order model is first reduced in relation to the load pressure
and flow dynamics and, based thereupon, linearized over the
entire operational state-space. The dynamics of the proportional
control valve is identified, analyzed, and intentionally excluded
from the reduced model, due to a unity gain behavior in the
frequency range of interest. The input saturation and dead-
zone nonlinearities are considered while the latter is identified
to be close to 10% of the valve opening. The mechanical part
includes the Stribeck friction detected and estimated from the
experiments. The linearization is performed in multiple steps,
for the most pronounced terms of nonlinear system dynamics.
Out of this follows a linearized piecewise affine in the control
and state model in a state-dependent matrix form. A series of
measurements were performed on the designed and implemented
experimental setup, while identifying uncertain parameters of
the system, in addition to those obtained from the technical
data and characteristics of components. The models behavior
are compared with experimental measurements and discussed.

I. INTRODUCTION

When it comes to applications demanding high power in

relatively small form factor, hydraulic systems and actuators

[1], [2] still remain the first choice. However, hydraulic

systems are also known for their nonlinear behavior making it

challenging for operation in the force control [3] and motion

control [4] modes, and a hybrid combination of both e.g. [5].

Correspondingly, the control design, tuning, and evaluation

require an advanced system knowledge and associated mod-

eling and identification. One goal can be to create simplified

models, mostly linearized around some operation points, e.g.

[3], [6]–[9]. On the other hand, more detailed modeling of the

single hydraulic components, like a unified one proposed for

proportional valves in [10], requires yet an explicit knowledge

of the mechanical assemblies and, mostly, an accurate identifi-

cation of the internal states and characteristics, that is generally

not feasible under regular operation conditions. Nevertheless,

multiple system- and control-oriented studies considered ex-

tended, to say full-order, system dynamics while incorporating

the most pronounced nonlinearities nested within electrical,

hydraulic, and mechanical subsystems of a hydraulic drive as

a whole, see e.g. [4], [5], [11], [12]. A comparison between a

full-order model and its reduced counterpart, including local

linearization, has been recently shown in [13]. At the same

time, a hybrid system consideration, and piecewise affine as

one of particularly handy subclasses of that, appears promising

also for hydraulic systems over a large operation range. For

more advanced studies on identification techniques for the

hybrid systems we refer to [14]–[16].

In this paper, we assume the main sources of nonlinearities

during the system modeling and introduce, based thereupon, a

linearized piecewise affine in the control and states model of

an actuated hydraulic cylinder supplied via a controlled servo

valve. Recall that a general class of nonlinear systems affine

in the control assumes a vector field state-space notation

ẋ = f(x) + g(x)u,

cf. [17], while the affine (linear with offset) state dynamics

[18] requires from us inclusion of an additional constant vector

term. We rely on a linearized piecewise affine formulation

of a state-space model, while believing it can yield further

advantages for the analysis and control design, also in spirit of

the hybrid control systems [19], [20] and their computational,

to say formal, verification [21]. It is worth noting that even

without affine state dynamics, the affine (only in control)

linear parameter-varying models are challenging as for struc-

tural identifiability and parameterizations [22]. For particular

dynamic systems, i.e. valve-controlled hydraulic drives, we

propose an approach for linearized piecewise affine modeling.

The rest of the paper is organized as follows. The paper

starts with the full-order model in Section II, while taking

the necessary steps of the model reduction in Section III. The

state-space model, affine in both control and states, is formu-

lated in Section IV, including the piecewise affine linearization

at various points. In Section V the experimental setup is

described. The parameter identification is shown in Section

VI, and an evaluating comparison between the different models

and data from the motion experiments is provided in Section

VII. Lastly a brief summary is given in Section VIII.

II. FULL-ORDER MODEL

Below, the full-order model of the system is first described.

We distinguish between modeling the valves characteristics,

orifice equations, continuity equations, and mechanical sub-

model of the hydraulic cylinder. Note that the full-order model
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can be directly derived from the basics on hydraulic systems

to be found in the standard literature e.g. [1], [2].

A. Servo valve approximation

The controlled servo valve can be approximated by a

second-order dynamic system, with the spools’ position ν as

output, so that the input-output transfer function is

G(s) =
ν(s)

u(s)
=

ω2

0

s2 + 2ζω0s+ ω2

0

. (1)

Here, ζ is the damping coefficient and ω0 is the natural

frequency of the closed-loop dynamics. The external control

signal is denoted by u. Values for ω0 and ζ are subject to

variations, depending on the input amplitude |u|, as pointed

out in the FRF (frequency response function) of the data

sheets provided by the valves’ manufacturer. According to the

technical data sheet, the servo valve we consider has a 10%
overlap in the spool-orifice area, thus, introducing a dead-zone.

Furthermore, the valve is inherently limited in how far it can

open, therefore being subject to an additional saturation. The

combination of dead-zone and saturation nonlinearities can be

described as in [13] by

h(ν) =

⎧⎨
⎩

α · sign(ν), if |ν| ≥ α+ β,
0, if |ν| < β,
ν − β · sign(ν), otherwise,

(2)

where the parameters α and β are the valve saturation and

dead-zone width, respectively. As the dead-zone is of a con-

structive, i.e. mechanical, nature, its transfer characteristic has

to be placed in series with the servo valve model. Several

previous works [3]–[5], [11], [23] neglected, or only partially

accounted for, the mentioned combination of the saturation and

dead-zone. Both can, however, have a non-negligible impact

on the overall system dynamics. At the end, the entire sub-

model of the controlled servo valve is described by

ν̈ + 2ζω0ν̇ + ω2

0
ν = ω2

0
u, (3)

z = h(ν), (4)

while z is an internal state representing the orifice opening.

B. Orifice and continuity equations

The orifice equations describe the hydraulic flow Q through

the valve, respectively in regards of the pressure drop, as

QA =

⎧⎨
⎩

zK
√
PS − PA for z > 0

zK
√
PA − PT for z < 0
0 otherwise,

(5)

QB =

⎧⎨
⎩

zK
√
PB − PT for z > 0

zK
√
PS − PB for z < 0
0 otherwise,

(6)

and that for both ports, correspondingly load connections of

the hydraulic circuit. The pressure indices A,B, T, S refer

to the servo valves’ inlets and outlets, i.e. to the A and B
connection ports, tank, and pressure supply respectively. Well-

known, K represents the valves’ flow coefficient

K = cdω

√
2

ρ
, (7)

with the constructive valves’ parameters, in addition to the oil

density ρ. At the same time, from the technical data sheet, one

can assume a characteristic relationship

Q = Qn

√
Δp

pn
, (8)

where Δp is the pressure drop across the valve, and Qn, pn
are the nominal flow and pressure drop, describing the valves

behavior in a fully open state. By rearranging (8), it can be

seen that Qn(
√
pn)

−1 is equivalent to the flow coefficient K,

that allows omitting the identification of ω, cd and ρ parame-

ters. This way, the valves’ flow coefficient is determined from

the nominal pressure drop and flow characteristics given by

the technical data sheet.

Knowing the flow through the valve, the pressure drop can

be calculated directly, via the continuity equations

ṖB =
E

VB +AB(l − x)
· (QB +ABẋ+ CL (PA − PB))

ṖA =
E

VA +AAx
· (QA −AAẋ+ CL (PB − PA)) ,

(9)

where VA/B is the volume of the hydraulic oil in the tubing

between the valve and both A/B-chambers of the cylinder,

while AAx and AB(l − x) are the operational volumes of

cylinder. Note that the total (maximal) stroke l provides me-

chanical constraints for the piston motion, so that 0 ≤ x ≤ l,
while x is the relative cylinders’ rod position. E is the bulk

modulus and CL is an internal leakage coefficient. The latter

characterizes the pressure drop across the membrane which is

separating both cylinder chambers.

C. Mechanical sub-model of cylinder

The cylinder dynamics is modeled as a second-order system

with one DOF (degree of freedom) described by

mẍ = PAAA − PBAB − f(ẋ)− FL. (10)

The total mass under actuation is m, and f(ẋ) constitutes

the entire friction force acting against the rods’ motion. FL

is the load force applied externally, which can be measured

by a force sensor, cf. further Fig. 4. The lumped mass is

calculated from the data sheets of all moving components

in the assembly, while the cross sections of both chambers

AA �= AB are taken from the available technical drawings. The

nonlinear velocity-dependent Stribeck friction model, see e.g.

[24], is taken for f(ẋ). To avoid a sign-related discontinuity,

a hyperbolic tangent has been assumed, cf. [13], therefore

resulting in a Stribeck type friction model

f(ẋ) = tanh(γẋ)
(
Fc+(Fs−Fc) exp

(
−
∣∣∣ ẋ
χ

∣∣∣δ))+σẋ. (11)

The Coulomb friction coefficient is stated as Fc > 0, stiction

coefficient as Fs > Fc, the linear viscous friction coefficient

as σ > 0. Two Stribeck shape parameters are δ �= 0 and

χ > 0. The parameter γ scales the smoothness of zero

crossing transition, until its saturated value → ±1 approaches

the velocity-dependent sign. Note that more complex dynamic



friction behavior [25] is purposefully not considered, since for

the largely damped and relatively slow hydraulic systems the

modeling (11) can yield as fairly sufficient, cf. [3], [23].

III. MODEL REDUCTION

From the available FRFs of the servo valve, shown further in

Section VI, as identified for 10%, 25% and 90% opening, one

can neglect the closed-loop dynamics in the lower frequency

range of interest. Therefore, a unity gain and an acceptably low

phase lag can be considered, leading to the replacement of (3)

by u = ν. Note that a hydraulic cylinder is to be operated

clearly below 10Hz frequency, cf. Figs. 5a, 5b, so that the

above assumption is valid for modeling reduction. Note that

(2) remains an input nonlinearity to be accounted for.

For the further model reduction, cf. [13] for details, a load-

dependent pressure PL = PA −PB is introduced and |QA| =
|QB | is assumed for a closed hydraulic circuit. Therefore, the

orifice equations (5), (6) are combined into

QL = zK

√
1

2
(PS − sign(z)PL), (12)

while

PA =
PS + PL

2
, PB =

PS − PL

2
. (13)

Following the above aggregation, the continuity eqs. (9) can

be also combined into one:

ṖL =
4E

Vt

(
QL − Āẋ− CLPL

)
. (14)

In (14), Vt = VA + VB represents the total actuator volume,

and Ā = 0.5(AB+AA) is the averaged piston area. The latter

will inherently lead to a certain model-reduction error once the

piston has a single rod, thus yielding an asymmetric cylinder.

Incorporating both above reduced equations into the cylinder

dynamics (10) results in

mẍ = PLĀ− f(ẋ)− FL. (15)

IV. NONLINEAR SYSTEM AFFINE IN CONTROL AND STATES

In order to model the system dynamics in a piecewise affine

state-space formulation, several linerization steps are required.

Obviously, the combined dead-zone and saturation nonlin-

earity (2) can be described by

z = kg · u+ dg, (16)

that partitions the total input range into the adjoining cells,

indexed by g while g = 1, . . . , 5.

For linearizing the orifice equation, the partial derivatives

are first taken with respect to both variables z and PL, thus

resulting in two linearized parameters Ĉq and Ĉqp. These,

multiplied with the orifice opening and load pressure states

respectively, yield the total load flow rate as

Q̂L = Ĉqz − ĈqpPL, (17)

and that for a chosen working point (ẑ, P̂L). Both terms of

linearization can be computed as

Ĉq =
∂QL

∂z

∣∣∣∣
P̂L

= K

√
0.5

(
PS − sign(z)P̂L

)
, (18)

Ĉqp =
∂QL

∂PL

∣∣∣∣
ẑ

=
ẑKsign(ẑ)

4
√

0.5 (PS − sign(ẑ)PL)
. (19)

One can recognize that, in order to capture the whole operation

space, a piecewise affine mapping is required. That results in

the state-dependent coefficients

Cq(PL) = koPL + do, (20)

Cqp(PL, z) = (knPL + dn) z. (21)

Here again, the subscripts o and n represent the indices of

the cells within state-space; k and d are the corresponding

constants that parameterize the total piecewise affine model.

Figure 1 shows Ĉq as well as its linearization Cq .

Fig. 1: Ĉq coefficient and its linearization

For Ĉqp, the characteristic curves are shown in Fig. 2,

together with linearization, for several representative values

of z. Note that here the linearization was performed for a

fully opened valve state, i.e. z = 1. The characteristic curves

for z < 1 are then scaled down by multiplication with ẑ,

according to (19). Note, that the linearized model does not take

the supply pressure into account. Therefore the linearization

process has to be performed for the intended supply pressure

Fig. 2: Ĉqp coefficient and its linearization



and, consequently, the k and d values have to be recalculated

once the supply pressure changes. By substituting (20) and

(21) into (17), one can easily obtain the total orifice equation

with the piecewise affine, yet state-dependent, coefficients.

In a similar way, the Stribeck friction model (11) is piece-

wise linearized as well, that results in

f(ẋ) = kw · ẋ+ dw, (22)

while w in the cells index in the ẋ-space, and k and d are the

corresponding constants.

When merging the above equations into the state dynamics

(14), (15) one obtains the overall model in the following form

ẋ = A(x)x + b(x)u+ f, (23)

y = cT x, (24)

with the state vector x = [PL, ẋ]
T . That one incorporates the

state-dependent system matrix A, input coupling vector b, and

affine vector term f. Note that since the cylinder stroke is

not directly affecting the system dynamics, the total order is

reduced by one. Obviously, one free integrator can be always

connected in series with the system output (24), as it is done

further for the model evaluation in Section VII, as long as

no velocity measurement is provided. The modeling matrices,

correspondingly vectors, are given by

A =

⎛
⎜⎜⎝
4Edg
Vt

(
ko + knPL + dn − CL

dg

)
−4EĀ

Vt

Ā

m
−kw

m

⎞
⎟⎟⎠ (25)

b =

⎛
⎝4EkgPL

Vt

(
ko +

do
PL

+ knPL + dn

)
0

⎞
⎠ (26)

f =

⎛
⎜⎜⎝

4Edodg
Vt

−dw + FL

m

⎞
⎟⎟⎠ (27)

cT =
(
0 1

)
(28)

V. EXPERIMENTAL SETUP

The hydraulic system under investigation is shown in Fig.

3 (laboratory view). The schematic representation of the de-

coupled right-hand side cylinder is drawn in Fig. 4, where the

sensing interfaces are indicated by . The system consists of

a single rod, double-acting cylinders of type [26], with a linear

force sensor [27] attached, that is measuring the respective

load from the perspective of each cylinder. The cylinder under

consideration is actuated via a 4/3 servo valve [28], attached to

a hydraulic pump, with a maximum supply pressure of 350bar1

and maximum flow rate of 120l/min. The pressures in both

chambers of the cylinder are measured by the sensors [29].

Further, a linear potentiometer [30] is installed to track the

1Note that the pressure is denoted in bar, as conventionally for hydraulics,
while standard SI units, i.e. Pa, are used for all calculations made

Fig. 3: Experimental hydraulic setup (laboratory view)

cylinders’ rod position. The servo valve also includes a sensor

for the spool position monitoring. As the real-time control

interface between the development computer and experimental

setup, the Speedgoat platform, baseline model S [31], with

the IO183 and IO397 interface cards is used. This hardware

Fig. 4: Schematic representation of experimental setup

allows for a sampling rate of 2kHz. Furthermore, it supports

8 single-ended or 4 differential analogue input and 4 single

ended output channels with a 16bit A/D and D/A converter

each, as well as analog input voltages of ±10V and output

voltages of 0−5V, with a maximum output current of 5mA on

IO183. On IO387, 4 single-ended or 4 differential analogue

input and 4 single ended output channels with a 16bit A/D

and D/A converter each, as well as a analog input voltages

of ±10.24V and output voltages of ±10V with a maximum

output current of 5mA are available. An emergency break

circuit was designed and implemented, switching all valves

into a system pressure relieving, that means a ‘no-motion’

correspondingly ‘no-force’, configuration. The instrumented

components are listed in Table I.

VI. PARAMETER IDENTIFICATION

In this section, the single identification steps for determining

the unknown, correspondingly uncertain, system parameters

are described. All experimental measurements, described be-

low, were performed with a sampling frequency of 2kHz.



TABLE I: Installed components of experimental system

Description Model number

Moog servo valve D633 R16KD1M0NSM2

Cylinder CD25-40 25x200-SS-HC-SSN-NNN

Danfoss P-sensor MBS 1250 063G1229

Celesco linear-pot. CLP-250

HBM Force sensor 1-S9M/50kN-1

A. Servo valve

In order to evaluate FRFs of the controlled servo valve, men-

tioned before, measurements were made to identify closed-

loop frequency characteristics. Referring to (1), identification

of the ω0 and ζ parameters is required. To approach the

nominal FRF characteristics, available from the data sheets,

three different levels of the valve opening, 10%, 25% and

90%, are assumed, i.e. corresponding to the input magnitude

|u|. For FRF measurements, sinusoidal signals were used,

with frequencies starting from 2Hz and going up to 50Hz for

90% opening, and up to 100Hz for the rest. The equidistant

(a) Magnitude of the servo valve with different opening references

(b) Phase of the servo valve with different opening references

Fig. 5: Measured FRFs versus linear model fit

frequency interval is taken to be 2Hz. During the signal

analysis the measured spool position was fitted over 4 periods

with a sinusoidal curve for calculating, based thereupon, the

magnitude and phase for each frequency measurement. The

measurements and the fitted models are shown in Figs. 5a and

5b, while the determined model parameters are listed in Table

II. The plots show that for 10% and 25% valve opening, the

TABLE II: Servo valve second-order model parameters

Valve opening [%] ω0 [rad s−1] ζ
10 816.8 0.7

25 628.3 0.7

90 220 0.7

model and the measurements are close to each other, while at

90% the parameters are adjusted to better fit the magnitude,

to be inline with approximation from Section IV, while the

phase response shows a stronger divergence.

B. Dead-zone

Measurements were performed to test the extend of the

dead-zone in either direction from the middle (zero) position.

For u > 0 the cylinders’ initial position was fully retracted,

while for u < 0 fully extended. The constant input signals

were applied starting from 1% to 20% valve opening, and

that in 0.5% steps. During the signal processing the cylinders’

position signal was fitted with a linear function using the least

squares method, revealing the slope and, therefore, constant

velocity estimate of the rod ˆ̇x, shown in Fig. 6. Note that

Fig. 6: Experimental test of the dead-zone and linearization

under these experimental conditions, a quasi-static behavior

can be assumed, so that the appearance of non-zero velocity

is directly associated with boundaries of the dead-zone. The

plot shows a dead-band of around 10%, yet we still observe

a very slow (rather creeping) cylinder motion also within the

dead-band. Therefore, an ideal assumption of a fully locking

dead-zone (2), is here not fully justified and a flat slope should

be assumed for |ν| < β, corresponding kg > 0 in (16).

C. Stribeck friction

For positive u values, the rods’ initial position is fully

retracted, and fully extended for negative u values. Constant

input signals, starting from 5% in 1% intervals up to 50%,

were sent to the valve, while a constant counteracting force,

produced by the second cylinder, was applied. Since the a

constant valve opening is expected to generate a constant

relative velocity at steady-state, and the full cylinder stroke

was driven for all input values, the normed drive time is taken

for the sake of comparison. The driven cylinder position over

the normed time is shown in Fig. 7 for all measurements,

and that for both directions. On the contrary to the full-order

model, all measurements do not reveal an expected linear slope

that corresponds to constant relative velocities. At the same

time, a fairly good match of all curves and their mirroring

symmetry for both directions point on some rather systematic

behavior, which is obviously not captured even by the full-

order model. A detailed analysis of this by-effect is, however,



out of the focus of this paper and builds an outlook for

future works. For obtaining a reasonable estimate of relative

velocities from the recorded experiments a least-squares fit of

linear function (i.e. slope) has been made for all curves shown

in Fig. 7. This yields a corresponding set of bidirectional

Fig. 7: Cylinder position measurements over normed time

for all Stribeck curve measurements, 46 measurements for

retracting and 45 measurements for extending motion

relative velocities, and that with the same extend of residual

errors for the assumed linear slope. When calculating the

friction force, the initial samples of each measurement show a

transient, and that on both pressure sensors and force sensor.

However, it has no apparent affect on the velocity of cylinder,

as can be seen from Fig. 7. Therefore, only the steady-state

part of each measurement was used for averaging PB , PA

and FL, thus allowing for calculating the cylinder forces

according to (10). The obtained velocity-force data was used

Fig. 8: Measured data points and fitted Stribeck model

to fit the Stribeck parameters, according to (11), by using the

standard nonlinear least-squares method. During the following

linearization, the curve was split into seven segments, four

from which are representing the purely viscous and Coulomb

friction contributions for both directions. The fitted Stribeck

model and its piecewise linearization are shown together with

the measured data in Fig. 8.

VII. MODEL EVALUATION

Simulations were performed for all three models and com-

pared with the corresponding measurements. As input a sinu-

soidal signal with frequencies of f = [1, 2, 3]Hz and ampli-

tudes corresponding to the valve opening of u = [20, 40, 60]%
were used. From the signals monitoring it was obvious that

the supply pressure was varying from the 100bar set value

during the drive, despite being connected to an oversized

hydraulic power unit, cf. Fig. 9. Therefore, the measured

pressure was used as the supply pressure input signal for

the simulation. Plots of the ‘corner’ configurations, relating

(a) 20% valve opening amplitude and frequency of 1Hz

(b) 60% valve opening amplitude and frequency of 2Hz

Fig. 9: Measured supply pressure at sinusoidal input

to amplitude and frequency, are shown in Figs. 10, 11, 12 and

13. Initial conditions for pressures and cylinder position for

the simulation were taken from the measurements at the start

of the next full period once the steady-state condition can be

observed. Also, starting from that point all initial values of the

simulation were taken over from the available measurements.

All identified, correspondingly computed, system parameters

are given in Table III, while the corresponding linearization

parameters are listed in Tables IV, V, VI, VII, VIII, IX. The

linearization parameters for Cq and Cqp, listed in the tables,

are each with four values, shown as an ordered set, with

the order corresponding to four simulations presented. The

experimental signals were processed using a moving average

function, smoothing them for a better visual comparison.

From the results we can see a qualitatively similar behavior

for all three models. The full-order model, equally as the

measurements, shows an overall positive slope due to dif-

ferent cross sections of the piston, i.e. asymmetric cylinder.

Furthermore, it can be seen that the qualitative response of the

simulation and the measurement are fairly close. From Figs.

10, 12 one can recognize that at lower valve opening, i.e. at

lower relative velocities, the measured displacement amplitude

differs stronger comparing to the models. One of the possible

reasons lies in a not fully linear displacement map at constant

valve opening, correspondingly flow, cf. Fig. 7, and related

identification of model parameters.



For the linearized model we observe a slightly drifting

behavior. As mentioned in section IV, the linearization pa-

rameters for this model have to be recalculated if the supply

pressure changes. For the shown simulation, an average supply

pressure was calculated and used for calculation of the lin-

earization parameters. An attempt of on-line recalculating the

linearization parameters at the time-varying supply pressure

fails due to an exponential increase in simulation time. The

reduced model shows no drift in the graphs, in accord with

the assumption that both sides piston areas are equal. Here the

average supply pressure, the same as for the linearized model,

was used to have a better comparison between the reduced

and linearized model.

From comparison of the plots it can be said, that the cylinder

motion predicted by the full-order model is best in accord with

the measurements, especially in view of the relative displace-

ment which has a free integrator behavior. Furthermore it can

be noted, that there are almost no differences between the

linearized and reduced order model besides a slight drifting

motion of the linearized model due to the afore mentioned

cell segmentation.

Fig. 10: Measurement and simulation for sinusoidal input with

20% valve opening and 1Hz frequency

Fig. 11: Measurement and simulation for sinusoidal input with

60% valve opening and 1Hz frequency

VIII. SUMMARY

Modeling of a hydraulic drive system was performed, in-

cluding the full-order, reduced, and linearized models. Fur-

thermore, the nonlinearities in the reduced model were located

Fig. 12: Measurement and simulation for sinusoidal input with

20% valve opening and 3Hz frequency

Fig. 13: Measurement and simulation for sinusoidal input with

60% valve opening and 3Hz frequency

TABLE III: Simulation Parameters

Param. Value Unit

m 1.394 kg
AA 1.3e−3 m3

AB 0.76e−3 m3

K 0.252e−6 m3

s
√

Pa

E 109 Pa

Param. Value Unit

PT 0 Pa
VA 0.7 m3

VB 0.7 m3

FL 0 N
CL 0 1/s
l 0.2 m

TABLE IV: Values for linearized dead-zone and saturation

Cell kg dg
I 0 -1

II 1 0.1

III 0.04 0

IV 1 -0.1

V 0 1

TABLE V: Values for linearized Stribeck friction

Cell kw dw
I 1105 -30.7

II −0.254 -90.8

III −3867 -147

IV 1.833e3 0

IV −3867 147

IV −0.819 90.7

IV 1105 30.7

and linearized over the whole operational state-space, therefore

resulting in a state-dependent matrix form affine in the control



TABLE VI: Values for ko for linearized Cq

Cell ko
I [−0.034e−9, −0.038e−9, −0.035e−9, −0.037e−9]

II [−0.053e−9, −0.058e−9, −0.053e−9, −0.056e−9]

III [−0.092e−9, −0.100e−9, −0.092e−9, −0.097e−9]

IV [−0.412e−9, −0.447e−9, −0.411e−9, −0.435e−9]

V [−0.920e−9, −0.998e−9, −0.919e−9, −0.972e−9]

TABLE VII: Values for do for linearized Cq

Cell do
I [0.554e−3, 0.510e−3, 0.554e−3, 0.525e−3]

II [0.647e−3, 0.597e−3, 0.648e−3, 0.613e−3]

III [0.949e−3, 0.874e−3, 0.950e−3, 0.899e−3]

IV [0.388e−3, 3.573e−3, 3.882e−3, 3.671e−3]

V [8.632e−3, 7.957e−3, 8.646e−3, 8.177e−3]

TABLE VIII: Values for kn for linearized Cqp

Cell ko
I [0.027e−15, 0.034e−15, 0.026e−15, 0.031e−15]

II [0.095e−15, 0.121e−15, 0.094e−15, 0.111e−15]

III [0.491e−15, 0.627e−15, 0.489e−15, 0.578e−15]

IV [43.93e−15, 56.09e−15, 43.71e−15, 51.68e−15]

V [491.1e−15, 627.1e−15, 488.8e−15, 577.8e−15]

TABLE IX: Values for dn for linearized Cqp

Cell do
I [ 0.027e−9, 0.030e−9, 0.027e−9, 0.029e−9]

II [−0.009e−9, −0.009e−9, −0.009e−9, −0.009e−9]

III [−0.322e−9, −0.349e−9, −0.321e−9, −0.340e−9]

IV [−40.54e−9, −43.98e−9, −40.48e−9, −42.80e−9]

V [−458.8e−9, −497.7e−9, −458.1e−9, −484.3e−9]

and states. The experimental hydraulic system was designed,

constructed and instrumented, while incorporating a standard

single-rod hydraulic cylinder operated via the controlled servo

valve. Measurements were performed for analyzing the sys-

tem dynamics and identifying the free parameters, otherwise

weakly known from the technical data. These included FRFs

of the valve closed-loop, the dead-zone and the nonlinear

Stribeck-type friction. Simulations of all three models were

exposed opposite to each other and compared with a set of

measurements at different amplitudes and frequencies. Ob-

served deviations were analyzed and discussed concerning the

inherent sources and implications for modeling.
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