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Abstract—The level-crossing rate (LCR) and average
duration of fades (ADF) are important statistical quantities
describing the fading behaviour of mobile radio channels.
To date, these quantities have only been analysed under
the assumption that the mobile radio channel is wide-sense
stationary, which is generally not the case in practice.
In this paper, we propose a concept for the analysis
of the LCR and ADF of non-stationary channels. Rice’s
standard formula for the derivation of the LCR of wide-
sense stationary processes is extended to a more general
formula enabling the computation of the instantaneous
LCR of non-stationary processes. The application of the
new concept results in closed-form expressions for the
instantaneous LCR and ADF of non-stationary multipath
flat fading channels. The contribution of this paper is of
central importance for the statistical characterization of
non-stationary mobile radio channels.

I. INTRODUCTION

Time-varying multipath fading channels are com-
monly characterized by the level-crossing rate (LCR)
and the average duration of fades (ADF). The LCR
is a measure for the average number of times a radio
signal drops below a given threshold level, while the
ADF provides the average time interval during which
the signal remains below the threshold [1], [2]. These
statistical quantities are often referred to as the second-
order statistics. They are important for the channel char-
acterization as well as for the performance evaluation of
wireless communication systems. In addition, the LCR
is useful for estimating the velocity of mobile units
[3]. Furthermore, the knowledge of the ADF is helpful
for analyzing the error burst statistics [4], [5], choosing
proper channel coding schemes, and optimizing the in-
terleaver size. Moreover, for deep fading thresholds, the
LCR and ADF are useful for computing the outage rate
and average outage duration of wireless communication
systems [6], respectively.

As is well known, the level-crossing properties depend
on both the distribution and the spectral characteris-
tics of the random process. In his original work [7],

Rice presented in the 1940s a standard formula that
is useful for the derivation of the LCR of any wide-
sense stationary continuous random process. Based on
this standard formula, to date, there exists a large body
of research characterizing the LCR and ADF of many
types of mobile fading channels, including Rayleigh [1],
Rice [8], Nakagami [9], Hoyt [10], and Weibull [11]
channels. Because of their importance, the LCR and
ADF have also been studied intensively in the context of
cooperative communications [12], and multiple antenna
systems [13], [14]. All the above LCR- and ADF-related
research works have in common that they have been
carried out under the assumption of stationary fading
channels.

However, the stationarity assumption is not realistic in
practice, and has been introduced only for mathematical
tractability of the analysis. In fact, several studies of
measurement data collected in diverse propagation envi-
ronments have shown that multipath fading channels ex-
hibit non-stationarity features [15], [16]. In conjunction
with this, the modeling and analysis of non-stationary
fading channels has recently been a subject of intensive
research [17]–[19].

In this paper, we study the LCR of non-stationary
fading channels, providing an insight into the impact
of various non-stationarity effects on the behavior of
the crossing statistics. To this end, we consider a non-
stationary multipath fading channel model for the com-
plex channel gain described by a sum of chirps (SOCh),
which captures the non-stationarity effects caused by
the variation of the speed of the mobile station (MS).
For this scenario, we first derive an expression for the
joint probability density function (PDF) of the fading
envelope and its time derivative. In contrast to the case
of stationary processes, this joint PDF is found to be
time dependent. Using this new joint PDF, we then
determine an expression for the instantaneous LCR.
Particularly, it is shown that the derived expression obeys
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the same formalism as the LCR of stationary processes,
except that the variance parameters are time dependent.
In addition, a new approach is provided to determine
the instantaneous LCR of measured and simulated non-
stationary processes. Finally, this approach is applied to
verify the accuracy of the derived analytical expression
for the instantaneous LCR.

The paper is organized as follows. Section II starts
from Rice’s standard LCR formula for stationary pro-
cesses and extends his fundamental expression to the in-
stantaneous LCR of non-stationary processes. Section III
describes briefly an SOCh process as an appropriate
model for the complex channel gain of a non-stationary
multipath fading channel under speed variations. Sec-
tion IV is devoted to the derivation of the instantaneous
LCR and ADF of SOCh processes. The numerical results
are then presented in Section V. Finally, the conclusions
are drawn in Section VI.

II. LCR OF STATIONARY AND NON-STATIONARY
PROCESSES

The LCR Nζ(r) is defined as the expected number of
times (per second) that a stochastic process ζ(t) passes
through a given level r with positive (or negative) slope.
If the stochastic process ζ(t) is wide-sense stationary,
then the LCR Nζ(r) of ζ(t) can be computed analyti-
cally by means of Rice’s standard formula [7]

Nζ(r) =

∞∫
0

ẋ pζζ̇(r, ẋ) dẋ (1)

where pζζ̇(x, ẋ) denotes the joint PDF of the process
ζ(t) and its time derivative ζ̇(t) at the same point in
time t. Note that the LCR Nζ(r) is independent of time
for stationary processes.

Experimentally, the LCR Nζ(r) is usually computed
by invoking the ergodicity concept. If the process ζ(t)
is ergodic, then the LCR Nζ(r) can be obtained from
the measurement (or simulation) of a single sample
function of the stochastic process ζ(t). Let ζ(k)(t) (k =
1, 2, . . . ) be the kth sample function of ζ(t), then the
measured (simulated) LCR Nζ(k)(r) equals the number
of up-crossings (or down-crossings) Lζ(k)(r) of ζ(k)(t)
through the level r observed within a time interval
T , and then dividing Lζ(k)(r) by T , i.e., Nζ(k)(r) =
Lζ(k)(r)/T . In the limit, as T tends to infinity, we obtain

lim
T→∞

Nζ(k)(r) = lim
T→∞

Lζ(k)(r)

T
= Nζ(r) (2)

for all k = 1, 2, . . . In practice, however, T is limited
and we have to write Nζ(k)(r) ≈ Nζ(r), where the
approximation error is small if T is sufficiently large.
This procedure is illustrated in Fig. 1.

Now, if the stochastic process ζ(t) is non-stationary,
then the joint PDF pζζ̇(x, ẋ; t) depends on time t. By
regarding t as a parameter, it is straightforward to show
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Fig. 1. Illustration of the conceptual procedure for the experimental
computation of the LCR Nζ(r) of ergodic processes ζ(t).

that the LCR of a non-stationary process ζ(t) is also a
function of time t and can be computed analytically by

Nζ(r, t) =

∞∫
0

ẋ pζζ̇(r, ẋ; t) dẋ . (3)

In the following, we call Nζ(r, t) the instantaneous LCR.
The experimental computation of the instantaneous

LCR Nζ(r, t) of non-stationary processes ζ(t) differs
completely from the stationary case. The reason is that
the concept of ergodicity cannot be invoked for non-
stationary processes, which prevents computing the in-
stantaneous LCR Nζ(r, t) from the measurements (sim-
ulations) of a single sample function of ζ(t). However,
Nζ(r, t) can be computed from a large set of K sam-
ple functions ζ(1)(t), ζ(2)(t), . . . , ζ(K)(t). This can be
shown by defining At as the elementary event that the
non-stationary stochastic process ζ(t) crosses the signal
level r within an infinitesimal interval (t, t + ∆t) of
duration ∆t either from down to up or from up to
down. According to the relative frequency definition of
probability, the probability of the event At, denoted as
P{At}, equals the limit

P{At} = lim
K→∞

KAt

K
(4)

where KAt denotes the number of occurrences of At at
time t, and K is the number of sample functions (trials).
The instantaneous LCR Nζ(r, t) can then be obtained as

Nζ(r, t) = lim
∆t→0

P{At}
∆t

= lim
∆t→0
K→∞

KAt

∆tK
. (5)

In a physical experiment, the time interval ∆t is larger
than zero and the number of sample functions K is finite.
However, provided that ∆t is sufficiently small and K
is large, we may write Nζ(r, t) ≈ KAt/(∆tK). Fig. 2
illustrates the conceptual procedure for computing the



instantaneous LCR Nζ(r, t) of non-stationary processes.
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Fig. 2. Illustration of the conceptual procedure for the experimental
computation of the instantaneous LCR Nζ(r, t) of non-stationary
processes ζ(t), where the bullets (•) denote elementary level-crossing
events At.

In analogy to the stationary case, we mention (with-
out proof) that the instantaneous ADF Tζ(r, t) of ζ(t)
can approximately be computed with a high degree of
accuracy at low levels r as

Tζ(r, t) ≈
Fζ(r, t)

Nζ(r, t)
(6)

where Fζ(r, t) denotes the time-dependent CDF of ζ(t),
which is defined as

Fζ(r, t) = P{ζ(t) ≤ r} =

r∫
0

pζ(z; t) dz (7)

with pζ(z; t) being the time-dependent PDF of ζ(t).
As an application, we derive in the following the

instantaneous LCR of a non-stationary Rayleigh process.
Let µ(t) = µ1(t) + jµ2(t) be a zero-mean non-wide-
sense stationary complex Gaussian process. The underly-
ing zero-mean real-valued Gaussian processes µ1(t) and
µ2(t) are supposed to be uncorrelated and have iden-
tical time-variant variances σ2

0(t). The non-stationary
Rayleigh process ζ(t) is defined by the absolute value of
µ(t), i.e., ζ(t) = |µ(t)|. In the Appendix, it is shown that
the instantaneous LCR Nζ(r, t) of ζ(t) can be expressed
in close form as

Nζ(r, t) =

√
β(t)

2π
pζ(r; t) . (8)

where pζ(r; t) denotes the time-dependent Rayleigh dis-
tribution with parameter σ2

0(t). In (8), β(t) represents the

negative curvature of the time-dependent autocorrelation
function (ACF)

Rµiµi(τ, t) = E
{
µi

(
t+

τ

2

)
µi

(
t− τ

2

)}
(9)

at the origin τ = 0, i.e.,

β(t) = − d2

dτ2
Rµiµi(τ, t)

∣∣
τ=0

= −R̈µiµi(0, t) (10)

for i = 1, 2, where E{·} stands for the expectation
operator.

III. REVIEW OF NON-STATIONARY MULTIPATH
FADING CHANNEL MODELS

A non-stationary flat fading multipath channel model
for the downlink (base station to MS link) has been
proposed in [18]. There, it has been shown that the
complex channel gain µ(t) of a flat fading channel can
be modelled under linear speed variations as an SOCh
process

µ(t) =

N∑
n=1

cne
j[2π(fnt+ kn

2 t2)+θn] . (11)

In (11), N denotes the number of multipath components,
cn is the path gain of the nth multipath component, fn
is the associated initial Doppler frequency, kn describes
the Doppler frequency change in Hertz per second, and
θn is the path phase, which is modelled as a random
variable with uniform distribution over 0 to 2π, i.e.,
θn ∼ U(0, 2π]. The path gains cn in (11) can either
be random variables with E{c2n} = 2σ2

0/N or constants
cn = σ0

√
2/N , and fn and kn are given by [18]

fn = fmax cos(αn) (12)

kn = fmax
a0

v0
cos(αn) (13)

where fmax denotes the maximum Doppler frequency at
t = 0, v0 represents the initial speed of the MS, αn
refers to the angle of arrival (AOA), and a0 accounts for
the acceleration (a0 > 0) or deceleration (a0 < 0) of
the MS. The non-stationary channel model described by
(11) captures the effect of a linear speed change of the
MS according to

v(t) = v0 + a0t . (14)

With reference to (11), it can be observed that a linear
speed change of the MS results in a frequency modula-
tion of the received multipath components.

It should be mentioned that the non-stationary model
described by (11) has recently been refined in [19] by
taking additionally into account that the angle of motion
αv(t) and the AOA αn(t) might change with time t
along the route of the MS. Under these conditions, it
has been shown in [19] that the non-stationary channel
model described by (11) remains valid in the sense of a
first-order approximation, but the model parameters fn



and kn in (12) and (13), respectively, have to be replaced
by more complicated expressions (see [19, Eqs. (13) and
(14)]).

IV. DERIVATION OF THE INSTANTANEOUS LCR AND
ADF OF A SUM-OF-CHIRPS

In the previous section, we have seen that the complex
channel gain µ(t) of a non-stationary flat fading multi-
path channel can be modelled by an SOCh process. In
the following, we want to derive the instantaneous LCR
and ADF of the envelope of this class of non-stationary
processes. Therefore, we consider a propagation scenario
with fixed scatterers Sn (n = 1, 2, . . . , N) at known
positions (xn, yn) in the xy-plane. In this case, the pa-
rameters fn [see (12)] and kn [see (13)] are constant. In
such a deterministic propagation environment, the path
gains cn are also constants, leaving only the phases θn as
random variables, which are supposed to be independent
and identically distributed (i.i.d.). For fixed values of
time t = t0, the SOCh process µ(t) in (11) reduces to a
random variable µ(t0) that can be analyzed like any other
random variable. By invoking the central limit theorem
[20, pp. 278], it is obvious that µ(t0) = µ1(t0)+jµ2(t0)
approaches a complex Gaussian random variable if N
tends to infinity. For limited values of N , the distribution
of µ1(t0) and µ2(t0) is close to a Gaussian distribution
even if N is in the order of 10 provided that the gains cn
are equal or at least well balanced without any dominant
multipath component.

The time derivative µ̇(t) of the SOCh process µ(t) in
(11) is obtained as

µ̇(t) = j2π

N∑
n=1

cnfn(t) e j[2π(fnt+ kn
2 t2)+θn] (15)

where

fn(t) = fn + knt (16)

represents the time-variant Doppler frequency.
In the following, we analyse the time-dependent ACF

and time-dependent cross-correlation function (CCF) of
the SOCh process µ(t) and its time derivative µ̇(t).

A. Time-Dependent ACF Rµµ(τ, t) of µ(t)

The time-dependent ACF Rµµ(τ, t) of the complex
SOCh process µ(t) is defined as

Rµµ(τ, t) = E
{
µ
(
t+

τ

2

)
µ∗
(
t− τ

2

)}
(17)

where the superscript asterisk (·)∗ denotes the complex
conjugate operator. Substituting (11) in (17) and averag-
ing over the i.i.d. random phases θn ∼ U(0, 2π] results
in

Rµµ(τ, t) =

N∑
n=1

c2n e
j2πfn(t)τ . (18)

By using equal gains cn, defined as cn = σ0

√
2/N , the

variance of the SOCh process µ(t) can be obtained as

Rµµ(0, t) =

N∑
n=1

c2n =

N∑
n=1

σ2
0

2

N
= 2σ2

0 . (19)

For the complex SOCh process µ(t) = µ1(t) + jµ2(t),
the following relations hold:

Rµ1µ1
(τ, t) = Rµ2µ2

(τ, t) =
1

2
Re{Rµµ(τ, t)}

=

N∑
n=1

c2n
2

cos(2πfn(t)τ) (20)

Rµ1µ2
(τ, t) = Rµ2µ1

(−τ, t) =
1

2
Im{Rµµ(τ, t)}

=

N∑
n=1

c2n
2

sin(2πfn(t)τ) . (21)

The last equation states that µ1(t1) and µ2(t2) are in
general correlated, but they are uncorrelated at the same
point in time t = t1 = t2, because if τ = t1 − t2 = 0,
then we obtain Rµ1µ2(0, t) = 0.

B. Time-Dependent ACF Rµ̇µ̇(τ, t) of µ̇(t)

The time-dependent ACF Rµ̇µ̇(τ, t) of µ̇(t) is ob-
tained by substituting (15) in Rµ̇µ̇(τ, t) = E{µ̇(t +
τ/2)µ̇∗(t − τ/2)} and computing the expected (mean)
value w.r.t. the i.i.d. phases θn ∼ U(0, 2π]. The final
result equals

Rµ̇µ̇(τ, t) = (2π)2
N∑
n=1

(cnfn(t))2 e j2πfn(t)τ . (22)

From the equation above and by using Rµ̇iµ̇i(τ, t) =
0.5 Re{Rµ̇µ̇(τ, t)}, we can compute β(t) [see (A.2)],
which is equal to the variance of µ̇i(t), i.e.,

β(t) = Var{µ̇i(t)} = Rµ̇iµ̇i(0, t) = 2π2
N∑
n=1

(cnfn(t))2 .

(23)

It is important here to note that the variance β(t) of µ̇i(t)
depends on time t. This stands in contrast to the variance
σ2

0 of µi(t), which is constant. For the correlation
properties of µ̇1(t) and µ̇2(t), similar statements hold
as pointed out in the previous subsection.

C. Time-Dependent CCF Rµµ̇(τ, t) of µ(t) and µ̇(t)

The time-dependent CCF Rµµ̇(τ, t) of µ(t) and µ̇(t)
is obtained by substituting (11) and (15) in Rµµ̇(τ, t) =
E{µ(t+ τ/2)µ̇∗(t− τ/2)} and computing the expected
value w.r.t. the i.i.d. phases θn ∼ U(0, 2π]. Thus,

Rµµ̇(τ, t) = −j2π
N∑
n=1

c2n fn(t) e j2πfn(t)τ . (24)



It can be shown that the time-dependent CCF Rµµ̇(τ, t)
at τ = 0 can be expressed in terms of the time-variant
mean Doppler shift B(1)

µµ (t) as

Rµµ̇(0, t) = −j4πσ2
0 B

(1)
µµ (t) . (25)

where B(1)
µµ (t) is given by

B(1)
µµ (t) =

N∑
n=1

c2n fn(t)

N∑
n=1

c2n

=

N∑
n=1

c2n fn(t)

2σ2
0

. (26)

As the time-variant mean Doppler shift B(1)
µµ (t) is in

general unequal to zero, it can be concluded from
(25) that µ1(t) (µ2(t)) and µ̇2(t) (µ̇1(t)) are generally
correlated at the same point in time, while µi(t) and
µ̇i(t) are uncorrelated for i = 1, 2.

D. Instantaneous LCR Nζ(r, t) and ADF Tζ(r, t)

For convenience and to simplify the mathemat-
ics, we neglect the cross-correlation between µ1(t)
(µ2(t)) and µ̇2(t) (µ̇1(t)). In this case, the processes
µ1(t), µ2(t), µ̇1(t), and µ̇2(t) can be considered as mu-
tually uncorrelated. In the limit N → ∞, they ap-
proach mutually independent non-wide-sense stationary
Gaussian processes, which are described by the joint
PDF pµ1µ2µ̇1µ̇2

(x1, x2, ẋ1, ẋ2) as given in (A.3) if we
replace there σ2

0(t) by σ2
0 and notice that β(t) is given

by (23). If the number of multipath components N
is limited (but sufficiently large), then the joint PDF
pµ1µ2µ̇1µ̇2(x1, x2, ẋ1, ẋ2) in (A.3) and thus the instan-
taneous LCR Nζ(r, t) in (8) are approximately valid.
This motivates the closed-form approximations of the
instantaneous LCR

Nζ(r, t) ≈
√
β(t)

2π
pζ(r) (27)

and the instantaneous ADF

Tζ(r, t) ≈
Fζ(r)

Nζ(r, t)
(28)

of the envelope of SOCh processes. In (27), the symbol
pζ(r) denotes the Rayleigh distribution with parameter
σ2

0 , and the characteristic quantity β(t) is given by (23).

V. NUMERICAL RESULTS

To confirm the correctness of the derived solutions
for the instantaneous LCR (ADF), we compare our
main theoretical findings by experimental Monte Carlo
simulations.

In our experimental study, we have modelled a non-
stationary multipath channel by an SOCh process µ(t)
[see (11)] consisting of N = 10 components. The
extended method of exact Doppler spread (EMEDS) [21]

has been applied to compute the path gains cn and AOAs
αn according to

cn = σ0

√
2

N
and αn =

2π

N

(
n− 1

4

)
(29)

where σ0 was chosen to be unity. The phases θn have
been computed by considering them as the outcomes (re-
alizations) of a random generator with a uniform distri-
bution over (0, 2π]. Each sample function µ(k)(t) of µ(t)
is characterized by the same path gains cn and AOAs αn,
but different phases θ(k)

n for all k = 1, 2, . . . ,K. The
number K of generated waveforms was equal to 103.
The remaining parameters have been chosen as follows:
fmax = 16.4 Hz, v0 = 3 km/h, a0 = 1.5 m/s2, and
∆t = 0.01 s.

Fig. 3 presents the instantaneous LCR Nζ(r, t) by
using the approximation in (27). In addition, Fig. 3
shows the experimental results obtained for Nζ(r, t) ≈
KAt/(∆tK) by applying the conceptual procedure de-
scribed in Section II. From the fact that the experimental
results match the numerical predictions of the theory, we
can gain confidence that our analytical results are correct.

Furthermore, the corresponding instantaneous ADF
Tζ(r, t), computed by means of the approximation
in (6), is depicted in Fig. 4. The corresponding
simulation results of the instantaneous ADF Tζ(r, t)
have been obtained by generating K sample functions
ζ(1)(t), ζ(2)(t), . . . , ζ(K)(t), where ζ(k)(t) = |µ(k)(t)|,
and then computing the average value of the time
intervals during which the sample functions ζ(k)(t),
k = 1, 2, . . . ,K, remain below a given signal level
r on condition that the down-crossings, marking the
beginning of a fading interval, occurred between t and
t + ∆t. For sufficiently small values of ∆t and a large
number of sample functions K, the instantaneous ADF
Tζ(r, t) can be approximated as

Tζ(r, t) ≈
1

M

M∑
m=1

Λ(m)(t) (30)

where M ≤ K represents the number of sample func-
tions ζ(1)(t), ζ(2)(t), . . . , ζ(M)(t) with down-crossings
in (t, t + 4t), and Λ(m)(t) stands for the time inter-
val between the down-crossing detected in the interval
(t, t + 4t) and the next up-crossing of the sample
function ζ(m)(t). The results in Fig. 4 provide further
confidence on the correctness of the theory. Finally,
the excellent match between theoretical and simulation
results allow us to conclude that the approximation in
(6) is remarkably accurate over a wide range of signal
levels up to r = 3.

VI. CONCLUSION

In this paper, Rice’s standard formula for the deriva-
tion of the LCR of wide-sense stationary processes
has been extended to find the LCR of non-stationary
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processes. The proposed concept has been applied to
compute the LCR and ADF of non-stationary multipath
flat fading channels. It turned out that the LCR (ADF)
of non-stationary processes is a function of time, which
motivated us to coin the term instantaneous LCR (ADF).
It has been shown that the instantaneous LCR can-
not be determined experimentally through simulations
(or measurements) by determining the number of level
down-crossings within a given time interval from a
single sample function of the non-stationary process.
Instead, the experimental computation of the instanta-
neous LCR (ADF) requires a large number of sample
functions, which can easily be generated in computer
simulations by using different realizations of the channel
phases. However, in a real-world propagation environ-
ment, a large number of sample functions can only be

obtained by employing huge multiple-input multiple-
output (MIMO) antenna systems. In other words, mas-
sive MIMO techniques open new horizons for measuring
the instantaneous LCR (ADF) of real-world channels in
non-stationary propagation environments.

APPENDIX

A. Derivation of the Instantaneous LCR of Non-
Stationary Rayleigh Processes

The starting point for deriving the instantaneous LCR
Nζ(r, t) of a non-stationary Rayleigh process ζ(t) is
a complex non-wide-sense stationary Gaussian process
µ(t) = µ1(t)+jµ2(t). Its time derivative will be denoted
by µ̇(t) = µ̇1(t) + jµ̇2(t). For the mean values and
variances of µi(t) and µ̇i(t), we impose the following
conditions:

E{µi(t)} = 0 E{µ̇i(t)} = 0 (A.1)

Var{µi(t)} = σ2
0(t) Var{µ̇i(t)} = β(t) (A.2)

for i = 1, 2. Furthermore, we assume that the real-
valued non-wide-sense stationary Gaussian processes
µ1(t), µ2(t), µ̇1(t), and µ̇2(t) are mutually uncorrelated.
Hence, the processes µ1(t), µ2(t), µ̇1(t), and µ̇2(t) are
also mutually independent, implying that their joint PDF
can be expressed as the product of the marginal densities
of µ1(t), µ2(t), µ̇1(t), and µ̇2(t), i.e.,

pµ1µ2µ̇1µ̇2
(x1, x2, ẋ1, ẋ2; t)

= pµ1
(x1; t) pµ2

(x2; t) pµ̇1
(ẋ1; t) pµ̇2

(ẋ2; t)

=
e
− x21

2σ20(t)

√
2πσ0(t)

e
− x22

2σ20(t)

√
2πσ0(t)

e−
ẋ21

2β(t)√
2πβ(t)

e−
ẋ22

2β(t)√
2πβ(t)

(A.3)

for |xi| <∞ and |ẋi| <∞ (i = 1, 2). Transforming the
Cartesian coordinates (x1, x2, ẋ1, ẋ2) into polar coordi-
nates (z, θ, ż, θ̇) by means of

x1 = z cos θ, ẋ1 = ż cos θ − zθ̇ sin θ (A.4)

x2 = z sin θ, ẋ2 = ż sin θ + zθ̇ cos θ (A.5)

allows us to derive the time-dependent joint PDF
pζϑζ̇ϑ̇(z, θ, ż, θ̇; t) of the envelope ζ(t), phase ϑ(t), and
their time derivatives ζ̇(t) and ϑ̇(t) by using

pζϑζ̇ϑ̇(z, θ, ż, θ̇; t) =
1

|J |
pµ1µ2µ̇1µ̇2

(z cos θ, z sin θ, ż cos θ

−zθ̇ sin θ, ż sin θ + zθ̇ cos θ; t
)
(A.6)



where J denotes the Jacobian determinant

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂z
∂x1

∂θ
∂x1

∂ż
∂x1

∂θ̇

∂x2

∂z
∂x2

∂θ
∂x2

∂ż
∂x2

∂θ̇

∂ẋ1

∂z
∂ẋ1

∂θ
∂ẋ1

∂ż
∂ẋ1

∂θ̇

∂ẋ2

∂z
∂ẋ2

∂θ
∂ẋ2

∂ż
∂ẋ2

∂θ̇

∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

z2
. (A.7)

Substituting (A.3) and (A.7) in (A.6) results in

pζϑζ̇ϑ̇(z, θ, ż, θ̇; t) =
z2

(2πσ0(t))2β(t)
e
− z2

2σ20(t) e −
ż2+z2θ̇2

2β(t)

(A.8)

for z ≥ 0, |θ| ≤ π, |ż| < ∞, and |θ̇| < ∞. Integrating
pζϑζ̇ϑ̇(z, θ, ż, θ̇; t) over the variables θ and θ̇ gives the
time-dependent joint PDF pζζ̇(z, ż; t) of the envelope
ζ(t) and its time derivative ζ̇(t) in product form

pζζ̇(z, ż; t) = pζ(z; t) · pζ̇(ż; t) (A.9)

where

pζ(z; t) =
z

σ2
0(t)

e
− z2

2σ20(t) (A.10)

pζ̇(ż; t) =
1√

2πβ(t)
e −

ż2

2β(t) . (A.11)

From the product form in (A.9), it can be concluded that
the non-stationary processes ζ(t) and ζ̇(t) are statisti-
cally independent. Obviously, the envelope ζ(t) follows
the Rayleigh distribution with time-variant parameter
σ2

0(t); and its time derivative ζ̇(t) is Gaussian distributed
with zero mean and time-variant variance β(t).

Finally, after substituting (A.9) in (3) and solving
the integral by using [22, Eq. (3.458-3)], we find the
following expression for the instantaneous LCR Nζ(r, t)
of non-stationary Rayleigh processes

Nζ(r, t) =

√
β(t)

2π
pζ(r; t) . (A.12)

In the case that the underlying zero-mean Gaussian pro-
cesses µi(t) and µ̇i(t) have constant variances σ2

0(t) =
σ2

0 and β(t) = β, respectively, then the result in (A.12)
reduces to the well-known formula for the LCR of wide-
sense stationary Rayleigh processes that can be found,
e.g., in [1, Eq. (1.3-35)].
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