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Abstract—In mobile radio channel modelling, it is generally
assumed that the angles of arrival (AOAs) are independent of
time. This assumption does in general not agree with real-world
channels in which the AOAs vary with the position of a moving
receiver. In this paper, we first present a mathematical model for
the time-variant AOAs. This model serves as the basis for the
development of two non-stationary multipath fading channels
models. The statistical properties of both channel models are
analysed with emphasis on the time-dependent autocorrela-
tion function (ACF), time-dependent mean Doppler shift, time-
dependent Doppler spread, and the Wigner-Ville spectrum. It is
shown that these characteristic quantities are greatly influenced
by time-variant AOAs. The presented analytical framework
provides a new view on the channel characteristics that goes well
beyond ultra-short observation intervals over which the channel
can be considered as wide-sense stationary.

I. INTRODUCTION

In a typical downlink scenario, where plane waves travel
from a base station (BS) to a mobile station (MS) via a
large number of fixed scattering objects, the angles of ar-
rival (AOAs) of the received signals are changing along the
moving route of the MS. Only for very short observation
intervals in which the MS travels a few tens of the wavelength
[1], the temporal variation of the AOAs can be neglected
justifying the wide-sense stationary assumption of multipath
fading channels. The lengths of the stationary intervals during
which the mobile radio channel can be considered as wide-
sense stationary or quasi-stationary has been investigated,
e.g., in [2]–[4] and in the references therein. By pushing
the observation interval beyond the stationary interval, the
received signal captures non-stationary effects that call for new
channel modelling approaches using time-frequency analysis
techniques [5]. One of the effects that comes with long
observation intervalls is that the AOAs are changing with time.

Attempts to include the temporal variations of the AOAs
in mobile radio channel models have been made in [6]–
[8]. In [6], a non-stationary multiple-input multiple-output
(MIMO) vehicle-to-vehicle channel model has been derived
by assuming that the AOAs and AODs are piecewise constant.
In [7], a proposal has been made for the extension of the IMT-

Advanced channel model [9] by replacing the time-invariant
model parameters, such as the propagation delays, AOAs, and
the angels of departure (AODs) by time-variant parameters.
In [8], a non-stationary one-ring model has been introduced
in which the time-variant AOAs have been modelled by
stochastic processes rather than random variables.

This paper expands on the recent results by studying the
impact of time-variant AOAs on the statistical properties of
multipath fading channels. It is shown that the multipath fad-
ing channel becomes non-wide-sense stationary if the AOAs
change with time. Two new non-stationary channel models
with time-variant AOAs are derived. The first one has an
instantaneous channel phase that is related to the instantaneous
Doppler frequency via the phase-frequency relationship [10],
while the second one is based on a Taylor series approximation
of the instantaneous channel phase. This approximation results
in a simpler but less accurate non-stationary channel model
that can be identified as a sum-of cisoids (SOC) model in
which the Doppler frequencies are varying with time. The
statistical properties of both channel models are investigated
with emphasis on the time-dependent autocorrelation function
(ACF), time-dependent mean Doppler shift, time-dependent
Doppler spread, and the Wigner-Ville spectrum. Our analysis
shows that our first proposed non-stationary channel model
is consistent w.r.t. the mean Doppler shift and the Doppler
spread, while this consistency property is not fulfilled by the
SOC model with time-variant Doppler frequencies. The two
proposed non-stationary channel models provide a trade-off
between accuracy and complexity concerning the mathemati-
cal expressions.

The organization of this paper is as follows. Section II
presents the derivation of two non-stationary multipath fading
channel models. Their statistical properties will be analysed in
Section III. The numerical key results of our study are visu-
alized in Section IV. Finally, Section V draws the conclusion
and suggests possible future research topics in relation to the
issues addressed in this paper.
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II. DERIVATION OF THE NON-STATIONARY MULTIPATH
CHANNEL MODELS

A. Time-Variant AOAs

We consider a downlink non-line-of-sight (NLOS) propaga-
tion scenario in which a fixed BS operates as transmitter, and
an MS acts as receiver. It is supposed that the BS and the MS
are equipped with omnidirectional antennas. The BS antenna
is elevated and unobstructed by any object, whereas the MS
antenna is surrounded by a large number of N fixed scattering
objects called henceforth scatterers Sn (n = 1, 2, . . . , N).
The coordinate system has been chosen such that the MS
is located at the origin (0, 0) of the xy-plane at t = 0.
Furthermore, it is assumed that the MS moves with constant
velocity ~v in the direction determined by the angle of motion
αv as indicated in Fig. 1. For reasons of clarity, this figure
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Fig. 1: A multipath propagation scenario with time-variant
AOAs αn(t).

highlights only the location of the scatterer Sn from which the
MS receives the nth multipath component (plane wave) µn(t)
in the form of µn(t) = cn exp{jθn(t)}, where cn denotes the
path gain which is supposed to be constant, and θn(t) is the
associated channel phase that will be studied in Section II-C.
The corresponding AOA αn(t) is defined as the angle between
the propagation direction of the nth incident plane wave and
the x-axis, i.e.,

αn(t) = arctan

(
yn − y(t)
xn − x(t)

)
(1)

for n = 1, 2, . . . , N, where xn and yn denote the coordinates
of the scatterer Sn; and x(t) and y(t) indicate the position
of the MS at time t. According to (1), the AOA αn(t) is
a nonlinear function of time t, which can be turned into a
linear function by developing αn(t) in a Taylor series around
t = 0 and retaining only the first two terms. This results in
the following model for the time-variant AOA

αn(t) = αn + γn · t (2)

where

αn = αn(0) = arctan

(
yn
xn

)
(3)

γn =
d

dt
αn(t)

∣∣∣∣
t=0

=
v

rn
sin(αn − αv) . (4)

In (4), rn denotes the distance from the scatterer Sn to the
origin of the xy-plane, i.e., rn =

√
x2n + y2n, as can be

deduced from the geometrical model in Fig. 1. In Section IV,
it is shown that the two-term Taylor series expansion of αn(t)
in (2) is sufficiently accurate for small observation intervals
T .

B. Time-Variant Doppler Frequencies

Owing to the Doppler effect combined with the new feature
that the AOAs αn(t) vary with time, it follows that the nth
incident plane wave highlighted in Fig. 1 experiences a time-
variant Doppler shift of fn(t) = fmax cos(αn(t) − αv) that
can be expressed by using (2) as

fn(t) = fmax cos(αn − αv + γnt) (5)

for n = 1, 2, . . . , N, where fmax stands for the maximum
Doppler frequency. For a given propagation scenario with con-
stant parameters fmax, αn, αv, and γn, the time-variant Dopp-
ler shift fn(t) is a deterministic function of time. Otherwise,
if one or several model parameters, e.g., αn, and thus γn, are
random variables, then fn(t) represents a stochastic process.
If the MS moves during the time interval [0, T ], then fn(t)
describes a curve starting from the initial Doppler frequency
fn(0) = fmax cos(αn − αv) and ending with the finishing
Doppler frequency fn(T ) = fmax cos(αn − αv + γnT ).

The time-variant Doppler shift B(1)
f (t) and the time-variant

Doppler spread B(2)
f (t) can be computed according to

B
(1)
f (t) =

N∑
n=1

c2nfn(t)

N∑
n=1

c2n

(6)

and

B
(2)
f (t) =

√√√√√√√√
N∑
n=1

c2nf
2
n(t)

N∑
n=1

c2n

−
(
B

(1)
f (t)

)2
. (7)

C. Instantaneous Channel Phase

The instantaneous channel phase θn(t) of the nth multipath
component µn(t) = cn exp{jθn(t)} is related to the in-
stantaneous Doppler frequency fn(t) via the phase-frequency
relationship [5, Eq. (1.3.40)]

θn(t) = 2π

t∫
−∞

fn(x) dx (8)



for n = 1, 2, . . . , N . Using (5), the instantaneous phase θn(t)
can be developed as follows:

θn(t) = 2π

0∫
−∞

fn(x) dx

︸ ︷︷ ︸
θn

+2π

t∫
0

fn(x) dx

= θn + 2π
fmax

γn
[sin(αn − αv + γnt)− sin(αn − αv)]

(9)

where θn = θn(0) denotes the initial phase at t = 0.
The phases θn are generally unknown and modelled by
independent identically distributed (i.i.d.) random variables,
each with uniform distribution over the interval (0, 2π], i.e.,
θn ∼ U(0, 2π]. Equation (9) tells us that the instantaneous
phase θn(t) is not only a non-linear function of time t but
also periodic with period Tn = 2π/γn if the AOA αn(t) varies
with time according to (2). In the limit γn → 0, however, it
can be shown by applying L’Hôpital’s rule to (9) that

lim
γn→0

θn(t) = θn + 2πfnt (10)

where fn = fn(0) = fmax cos(αn − αv). This result reveals
a linear relationship between the instantaneous phase θn(t)
and time t, which holds only for constant AOAs αn(t) =
αn. It should be noticed that the expression in (10) can be
identified as the standard phase term of SOC channel models
for Rayleigh/Rice fading channels [11, Section 4.5].

A simpler but less accurate expression than (9) can be
obtained for the instantaneous phase θn(t) by developing θn(t)
in a second-order Taylor series around t = 0 as follows:

αn(t) ≈ θn(0) + θ′n(0)t

= θn + 2πfmax cos(αn − αv + γnt)t

= θn + 2πfn(t)t (11)

where θ′n(0) denotes the time derivative of θn(t) at t = 0.
By comparing the last two equations, we can conclude that
the non-linear phase term θn(t) in (11) can be obtained
from the standard phase term θn(t) in (10) by substituting
the instantaneous Doppler frequencies fn(t) for the time-
independent Doppler frequencies fn. This intuitive mathemat-
ical manipulation results in a non-stationary channel model
that is inconsistent w.r.t. the mean Doppler shift B(1)

f (t) and
the Doppler spread B(2)

f (t), as we will see in Section III-B.

D. Complex Channel Gain

A model for the complex channel gain, denoted by µ(t),
of a narrowband multipath fading channel is obtained by
the superposition of all N plane wave components µn(t) =
cn exp{jθn(t)}, i.e.,

µ(t) =

N∑
n=1

cne
jθn(t) . (12)

Substituting the instantaneous channel phase θn(t) according
to (9) in (12) results in the complex channel gain of the

proposed non-stationary multipath fading channel with time-
variant AOAs

µ(t) =

N∑
n=1

cne
j{2π fmax

γn
[sin(αn−αv+γnt)−sin(αn−αv)]+θn} .

(13)

On the other hand, if we substitute the approximation (11)
in (12), then we obtain the complex channel gains µ(t) in a
much simpler form, namely

µ(t) =

N∑
n=1

cne
j(2πfn(t)·t+θn) . (14)

From the discussions in the previous subsection, it can be
summed up that the two complex channel gains µ(t) in (13)
and (14) include the SOC model [12]

µ(t) =

N∑
n=1

cne
j(2πfnt+θn) (15)

as a special case that arises if the AOA αn(t) is supposed to
be constant (γn = 0). The main difference between the three
stochastic channel models above is that the former two are
non-wide-sense stationary, whereas the third one is wide-sense
stationary. The statistical properties of the SOC model have
been studied in [12], while those of the new non-wide-sense
stationary models will be analysed in the next section.

III. ANALYSIS OF THE NON-STATIONARY MULTIPATH
CHANNEL MODELS

A. Time-Dependent ACF

The time-dependent ACF Rµ(τ, t) of a complex stochastic
process µ(t) is defined as

Rµ(τ, t) = E
{
µ
(
t+

τ

2

)
µ∗
(
t− τ

2

)}
(16)

where E{·} denotes the expectation operator and (·)∗ stands
for the complex conjugation operator. In Appendix A, it is
proved that the time-dependent ACF Rµ(τ, t) of the complex
channel gain µ(t) described by (13) can be written as

Rµ(τ, t) =
N∑
n=1

c2ne
j2πfn(t)·sinc(γnτ/2)·τ (17)

where sinc(·) denotes the sinc function, which is defined by
sinc(x) = sin(x)/x.

Analogously, it can be shown that the time-dependent ACF
Rµ(τ, t) of the complex channel gain µ(t) introduced in (14)
can be expressed by

Rµ(τ, t) =
N∑
n=1

c2n e
j2π[fn(t) cos(γn

τ
2 )+f

′
n(t)sinc(γn

τ
2 )t]τ (18)

where fn(t) is the time-variant Doppler shift in (5) and f ′n(t)
denotes its derivative w.r.t. time t.



For the special case that the AOA αn(t) is constant, i.e.,
γn = 0, it is obvious that the two time-dependent ACFs in
(17) and (18) reduce to

Rµ(τ) = Rµ(τ, t) =
N∑
n=1

c2n e
j2πfnτ (19)

which represents the ACF of the SOC model described by (15).
In this case, the ACF depends only on the time separation τ
but not on the time t, which was to be expected, because the
SOC process µ(t) is wide-sense stationary.

Furthermore, if γn = 0 and αn ∼ U(0, 2π], then
the expressions in (17)–(19) reduce to the ACF Rµ(τ) =

2σ2
0J0(2πfmaxτ), where 2σ2

0 =
∑N
n=1 c

2
n denotes the mean

power of the complex channel gain µ(t), and J0(·) is the
zeroth-order Bessel function of the first kind [13, Eq. (8.411-
1)]. In other words, the proposed non-stationary multipath fad-
ing channel models include the classical Jakes/Clarke model
[1], [14] as a special case.

B. Time-Dependent Mean Doppler Shift and Time-Dependent
Doppler Spread

From the time-dependent ACF Rµ(τ, t), the time-dependent
mean Doppler shift B(1)

µ (t) and the time-dependent Doppler
spread B(2)

µ (t) can be derived by means of

B(1)
µ (t) =

1

2πj

Ṙµ(0, t)
Rµ(0, t)

(20)

and

B(2)
µ (t) =

1

2π

√√√√(Ṙµ(0, t)
Rµ(0, t)

)2

− R̈µ(0, t)
Rµ(0, t)

(21)

respectively, where Ṙµ(0, t) (R̈µ(0, t)) denotes the first (sec-
ond) order derivative of Rµ(τ, t) w.r.t. τ at τ = 0. Inserting
(17) in (20) and (21) results after some straightforward math-
ematical steps in the following closed-form solutions

B(1)
µ (t) =

N∑
n=1

c2nfn(t)

N∑
n=1

c2n

(22)

B(2)
µ (t) =

√√√√√√√√
N∑
n=1

c2nf
2
n(t)

N∑
n=1

c2n

−
(
B

(1)
µ (t)

)2
. (23)

A comparison of (22) with (6) and (23) with (7) reveals that
the equalities B(1)

µ (t) = B
(1)
f (t) and B(2)

µ (t) = B
(2)
f (t) hold,

from which we can conclude that the proposed non-stationary
multipath fading channel model described by (13) is consistent
with respect to both the mean Doppler shift and the Doppler
spread.

On the other hand, if we insert (18) in (20) and (21), then
we obtain

B(1)
µ (t) =

N∑
n=1

c2n(fn(t) + f ′n(t) · t)

N∑
n=1

c2n

(24)

and

B(2)
µ (t) =

√√√√√√√√
N∑
n=1

c2n(fn(t) + f ′n(t) · t)2

N∑
n=1

c2n

−
(
B

(1)
µ (t)

)2
. (25)

This result demonstrates that the simple non-stationary channel
model introduced in (14) is inconsistent w.r.t. the mean Dopp-
ler shift and the Doppler spread, because B(1)

µ (t) 6= B
(1)
f (t)

and B
(2)
µ (t) 6= B

(2)
f (t) hold. Concerning the SOC process

µ(t) in (15), we mention for completeness that the equalities
B

(1)
µ = B

(1)
f and B

(2)
µ = B

(2)
f hold, where B

(1)
µ and B

(2)
µ

are the same quantities as in (22) and (23), respectively, if we
replace there fn(t) by fn. Thus, the SOC model is consistent
w.r.t. the mean Doppler shift and the Doppler spread.

C. Wigner-Ville Spectrum

The Wigner-Ville spectrum1 Sµ(f, t) is defined as the
Fourier transform of the time-dependent ACF Rµ(τ, t) w.r.t.
τ [10], i.e.,

Sµ(f, t) =
∞∫
−∞

Rµ(τ, t)e−j2πftdτ . (26)

Inserting (17) in (26) and using the property Rµ(τ, t) =
R∗µ(−τ, t), we can express the Wigner-Ville spectrum Sµ(f, t)
of the proposed non-stationary multipath fading channel model
described by (13) as

Sµ(f, t) = 2

N∑
n=1

c2n

∞∫
0

cos
{
2π
[
f − fn(t)sinc

(
γn
τ

2

)]
τ
}
dτ .

(27)

For the wide-sense stationary case, for which γn = 0 holds, the
Wigner-Ville spectrum Sµ(f, t) in (27) reduces to the Doppler
power spectral density (PSD) of the SOC process µ(t) in (15)

Sµ(f) =
N∑
n=1

c2n δ(f − fn) . (28)

Furthermore, for the isotropic scattering case, in which cn
and αn are i.i.d. random variables with E{c2n} = 2σ2

0/N and
αn ∼ U(0, 2π], we obtain the Jakes/Clarke PSD [1], [14] after
computing the expected value of Sµ(f) in (28). Hence, the
Wigner-Ville spectrum Sµ(f, t) in (27) includes the classical
Jakes/Clarke Doppler spectrum as a special case.

1The Wigner-Ville spectrum is also called the time-varying spectrum or the
evolutive spectrum.



IV. NUMERICAL RESULTS

This section presents a selection of numerical results to
illustrate the main findings of this paper. In all considered
propagation scenarios, we have set the number of multipath
components N to N = 10. The gains cn and initial AOAs
αn = αn(0) have been computed by using the extended
method of exact Doppler spread (EMEDS) [15]. According
to this method, the parameters cn and αn are given by

cn = σ0

√
2

N
and αn =

2π

N

(
n− 1

4

)
(29)

respectively, and the initial phases θn = θn(0) are considered
as realizations of independent random variables, each charac-
terized by a uniform distribution over the interval (0, 2π]. The
radii rn in Fig. 1 have been set to 50 m for all n = 1, 2, . . . , N .
For the mean power (variance) σ2

0 of the inphase and quadra-
ture components of µ(t), we have chosen the value σ2

0 = 1.
The maximum Doppler frequency fmax was supposed to be
fmax = 91Hz. Furthermore, we have assumed that the MS
moves with speed v = |~v| = 110 km/h in x-direction, implying
that αv = 0.

Fig. 2 depicts the trend of the time-variant Doppler frequen-
cies fn(t) by using the exact expression for the AOAs αn(t)
according to (1). For comparison, this figure also shows the
behaviour of fn(t) for the approximate solution of αn(t) in
(2). Fig. 2 shows clearly that the first-order approximation is
quite good over the interval from 0 to Tsim = 1.64 s.

Fig. 3 illustrates the signal envelope |µ(t)| by using the
SOC model [see (15), Case I], the proposed non-stationary
multipath fading channel model [see (13), Case II], and the
simple non-stationary model [see (14), Case III]. This figure
demonstrates clearly that the temporal variations of the AOAs
αn(t) have a great influence on the characteristics of the signal
envelope |µ(t)|.

Figs. 4 and 5 present the ACF Rµ(τ) of the SOC process
µ(t) in (15) and the time-dependent ACF Rµ(τ, t) of the non-
stationary process µ(t) in (13), respectively. It can be observed
that both ACFs are identical at the origin t = 0, but the
temporal correlation properties of the non-stationary model
differ more and more if time t proceeds. This means that
the temporal variations of αn(t) influence greatly the fading
behaviour of the signal envelope |µ(t)|.

Figs. 6 and 7 depict the corresponding Doppler PSD Sµ(f)
[see (28)] of the SOC process µ(t) in (15) and the Wigner-
Ville spectrum Sµ(f, t) [see (27)] of the non-stationary process
µ(t) in (13), respectively. A comparison of the two spectral
representations shows clearly that the influence of the time-
variant AOAs αn(t) cannot be neglected.

V. CONCLUSION

In this paper, we have developed and analysed multipath
fading channel models with time-variant AOAs. Our study
has shown that the effect of time-variant AOAs results in
a non-wide-sense stationary multipath fading channel model.
Expressions have been derived for the time-dependent ACF,
time-dependent mean Doppler shift, time-dependent Doppler
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Fig. 3: Illustration of the signal envelope |µ(t)| of a sample
function of a wide-sense stationary SOC process [see (15)]
in comparison with the signal envelopes |µ(t)| of the non-
stationary processes described by (13) and (14).

spread, and the Wigner-Ville spectrum of the proposed non-
wide-sense stationary channel model. By comparing these
statistical quantities with known results of studies assuming
constant AOAs, we can conclude that the assumption of
constant AOAs is only justified for very short observation
intervals. The proposed non-stationary channel model allows
extending the observation interval over a wider range without
losing accuracy. The price for this added accuracy is a higher
degree of complexity concerning the mathematical expres-
sions.

One of the remaining problems that might be tackled in
an upcoming study is to develop quantitative methods for
the investigation of the length of the observation interval
over which the proposed non-stationary channel models are
sufficiently accurate. Another topic could be to extend the
presented framework to the modelling of MIMO channels with
time-dependent AOAs.



Fig. 4: ACF Rµ(τ) = Rµ(τ, t) of a SOC process µ(t) with
constant AOAs αn for N = 10.

APPENDIX

A. Derivation of the Time-Dependent ACF Rµ(τ, t) in (17)
Substituting (13) in the definition of the time-dependent

ACF Rµ(τ, t) = E{µ(t+ τ/2)µ∗(t− τ/2)} gives

Rµ(τ, t) = E

{
N∑
n=1

N∑
n=1

cncm

e j{2π
fmax
γn

[sin(αn−αv+γn(t+ τ
2 ))−sin(αn−αv)]+θn}

e−j{2π
fmax
γm

[sin(αm−αv+γm(t− τ2 ))−sin(αm−αv)]+θm}
}
.

(A.1)

Using E{e j(θn−θm)} = 1 if n = m and 0 if n 6= m, we
obtain

Rµ(τ, t) =
N∑
n=1

c2ne
j2π fmax

γn
sin(αn−αv+γn(t+ τ

2 ))

· e−j2π
fmax
γn

sin(αn−αv+γn(t− τ2 ))

=

N∑
n=1

c2ne
j2π fmax

γn/2
cos(αn−αv+γnt) sin(γn τ2 )

=

N∑
n=1

c2ne
j2πfn(t)sinc(γnτ/2)τ (A.2)

where we have used the sinc function defined as sinc(x) =
sin(x)/x.
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