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ABSTRACT
�e appearance of bio�lm has become a serious problem in many
reverse osmosis based systems such as the ones found in water
treatment and desalination plants. In these systems, the use of
traditional techniques such as pretreatment or dozing biocides are
not e�ective when the bio�lm reaches an irreversible a�achment
phase. In this work, we present a framework for the use of aWSN as
an estimator of the bio�lm evolution in a reverse osmosis membrane
so that e�ective solutions can be applied before the irreversible
phase is a�ained. �is design is addressed in a complete distributed
and decentralized fashion, and subject to realistic constraints where
cooperation between nodes is performed under unreliable links.
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1 INTRODUCTION
A bio�lm is an accumulation of free-�oating microorganisms, that
become a�ached to a speci�c surface. If the microorganisms are not
immediately separated and removed, they might start taking some
nutrients from the bulk liquid and the subsequent growing process
may lead to the appearance of bio�lm. In water treatment and
distribution plants based on reverse osmosis (RO), the formation
of bio�lm might result in a decrease of the quality of the water,
and a reduction of their performance [1]. �e bio�lm formation
a�ects the �ux of water that is processed through the membranes,
which requires an increase in the pressure applied by the pumps to
maintain the �ux, resulting in a higher energy consumption. It has
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been shown in [2] that the application of pretreatment or dozing
of biocides, such as chlorine, is not an e�ective solution once the
bio�lm reaches an irreversible a�achment phase and then the RO
membrane replacement is needed.

Continuous monitoring of the water in the plant may allow to
accurately estimate the bio�lm evolution, enabling the application
of control measures before it reaches an irreversible a�achment
phase. �is potentially reduces the cost in the use of chemicals,
membrane replacements and energy consumption, in addition to
a more correct operation of the plant. In this context, wireless
sensor networks (WSNs) have emerged as a powerful technology
for the monitoring and control of industrial environments. �ese
networks can be deployed without disrupting the normal operation
of the system in areas that are inaccessible to wired and bulky
devices, making possible to establish correlation between di�erent
measurements taken in di�erent parts of the structure.

A key property of these networks is that the sensor devices,
which may have limited computational and storage resources, are
able to solve complex tasks by means of cooperation between them.
A widely-used distributed technique is the consensus algorithm [3],
which its goal is to obtain, in a distributed way, a common value by
iterative processing the measurements collected by sensor nodes.
�ese algorithms avoid the need of performing all the computations
at one or more sink nodes, thus, reducing congestion around them
and incrementing the robustness of the network against nodes
failures and a�acks. However, since cooperation between nodes is
performed under random phenomena such as interferences, packet
losses and fading, the di�erent communication topologies that arise
during the process are completely random and, in general, non
symmetric. Under these conditions, the consensus value becomes
a random variable, which is, in general, di�erent from the desired
value and consequently suboptimal [4].

In this work, given the equations that model the evolution of the
bio�lm, we show how the Kalman �lter, a centralized tool for the
estimation of the bio�lm growing process, can be decomposed in a
consensus-based basis. We explain how the link failures a�ect the
�lter accuracy, and how the error can be mitigated by redesigning
the estimation process. We show how our new scheme is able to
mitigate the error, and how its overall performance approximates
the one of a centralized approach. Finally, we present numerical
results that shows clearly the stated results.

2 PROBLEM FORMULATION
Awireless sensor network is deployed inside the pipeline and before
the RO membrane, as it is shown in Figure 1. Along the pipeline,
and under some assumptions, the one-dimensional dependence
between the value of the �ux of nutrient into the bio�lm jS (LF ),
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Figure 1: Deployment of a wireless sensor network in RO membrane in order to track the bio�lm evolution. Each sensor i
in the network obtains a local measurement of the bio�lm thickness LF ,i and a noisy observation of the �ux of substrate in
the bio�lm surface jS,i (LF ,i ). We assume a multi-one-dimension model, where this �ux changes at each sensor but remains
constant in its local domain. Nodes can communicate with neighbors within their wireless range.

its thickness LF and the biomass concentration XF is given by [2]:

jS (LF ) = �D
@S

@�

�����=LF = qmaxLFXF (1)

where S is the substrate concentration and qmax is the maximum
speci�c substrate conversion rate.

If we assume a �at and homogeneous bio�lm, it can be shown
[7] that the discrete evolution in time of the biomass concentration
is:

XF (k + 1) =
"
1 + �

 
qmax �

@uF
@�

!#
XF (k ) (2)

We consider that the substrate concentration S changes along the
pipeline and is di�erent at each sensor location (Si ). However, we
assume that in the range of each node Si only changes along the
y-coordinate and remains constant along the other two coordinates
(see Figure 1). In addition, since all the nodes are a�ected by the
same nutrient, we assume that all the nodes have the same biomass
concentration. Each sensor i has a �at substratumwhere the bio�lm
may appear, and two sensors to measure the �ux of substrate in
the bio�lm surface jS,i (LF ,i ) and the thickness of the bio�lm Li at
its location. While the measurement of the �ux involves an obser-
vation noise, for the sake of simplicity of our model, we assume
that the bio�lm thickness is observed without error (an additional
observation error could be introduced). Based on that, we consider
that each node i obtains a noisy observation �i of the substrate �ux
into the bio�lm at its location given by:

�i = jS,i (LF ,i ) +wi

where the observation noisewi is assumed to be zero mean Gauss-
ian with variance � 2

w and spatially uncorrelated. By applying equa-
tion (1), this expression becomes:

�i = qmaxLF ,iXF +wi

By taking hi = qmaxLF ,i , we have the following observation
equation in matrix form:

� = hXF +w (3)

which expresses the substrate �ux into the bio�lm in all nodes
of the network as a noisy and distorted version of the biomass
concentrationXF . Similarly, we also assume that the time evolution
of the biomass concentration in (2) is a�ected by a zero mean
Gaussian noise � (k ) of variance �

2
� and time uncorrelated. By

doing a =

1 + �

✓
qmax � @uF

@�

◆�
, previous expression becomes:

XF (k + 1) = aXF (k ) +� (k ) (4)

Expressions (3) and (4) are the linear and Gaussian state-space
representation of our bio�lm system and are used by the nodes of
the WSN to track the biomass concentration in the bio�lm. Each
node i is assumed to know hi , a, � 2

w and � 2
� .

Given the observations (3) and the biomass concentration evo-
lution (4), it is well known that the recursive scheme de�ned by
the Kalman �lter [5] provides the optimal estimate of the system
state. Whenever a new set of observations � (k ) is obtained, the
�lter re�nes its a priori estimation X̂

�
F (k ) to yield the a posteriori

estimation X̂

+
F (k ), as follows:

X̂

+
F (k ) = X̂

�
F (k ) + g

T (k )
f
� (k ) � hX̂�F (k )

g
(5)

where gT is the gain of the �lter. �en, the �lter projects over time
this estimation to get the next a priori estimation:

X̂

�
F (k + 1) = aX̂

+
F (k ) (6)

If we denote the estimation error variance of X̂�F (k ) and X̂
+
F (k )

by p�x (k ) and p+x (k ) respectively, then:

p

+
x (k ) = p

�
x (k )

f
1 � gT (k )h

g2
+ � 2

wgT (k )g(k )

and the next a priori variance is given by:

p

�
x (k + 1) = a

2
p

+
x (k ) + �

2
w (7)

�e optimal �lter gain that minimizes the variance of the error,
at each time k , is given by:

g(k ) = p�x (k )h
f
p

�
x (k )h

T h + � 2
�
g�1

(8)
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Since h, � 2
� and � 2

w are time-invariant, both the error variance
and the �lter gain can be pre-computed by running the �lter o�-
line. �us, the �lter only needs to compute expressions (5) and (6)
during the estimation process.

3 CONSENSUS-BASED DISTRIBUTED STATE
ESTIMATION

�e Kalman �lter [5] can be easily implemented in a centralizedway,
where all the necessary information is available at a central entity
that computes (5) at each time step. In a distributed scenario, each
node i has only access to its own observation �i (t ), however, still
must be able to compute expression in (5) by means of exchanging
information with one-hop neighbors. �e corresponding sequence
of communication steps can be modeled as a time-varying graph
G (n) = (V ,E (n)), consisting of a constant setV of N nodes and a
set E (n) of directed links that changes at each stepn. A directed link
from any node i to any other node j is denoted by ei j . �e random
and non-symmetric N ⇥ N matrix A(n) is the adjacency matrix,
whose entry [A(n)]i j is equal to 1 if ei j 2 E (n) and 0 otherwise.
�e random set of neighbors of a node i at time n is de�ned as
�i (n) = {j 2 V : ei j 2 E (n)}. �e degree matrix D(n) is a diagonal
matrix whose entries are [D]ii = |�i (n) |, and the instantaneous
Laplacian matrix is de�ned as L(n) = D(n) � A(n). We denote by 1
and I the all-one N -dimension vector and the NxN identity matrix,
respectively.

At each time k , every node i computes xi (0) = N�i (k )�i (k ),
where �i (k ) is its current observation and �i (k ) the i-th entry of
g(k ). �en, by denoting x(0) = [x1 (0) . . . xN (0)], nodes exchange
their values based on the iterative process:

x(n) =W(n) . . .W(0)x(0) = M(n)x(0) (9)

where W(n) is the weight matrix described in [2]. If both condi-
tions stated in [3] hold, then limn!1M(n) = 1

N 11T , namely the
nodes asymptotically achieve consensus1 on the common valuePN
i=1 �i (k )�i (k ) = gT (k )� (k ). In this case, expression in (5) can be

computed by all nodes in a distributed way, and each node can run
a local version of the �lter identical to the optimal one.

Nevertheless, in a real se�ing where the connectivity is random
due to interferences and packet losses, each instantaneous underly-
ing topology de�ned by A(n) is also random, and so is the corre-
sponding weight matrix W(n). �erefore, limn!1M(n) = 1

N 1mT

and then m = (m1 . . .mN ) is a random vector, which is, in general,
di�erent from 1

N 1. �is implies that expression (5) becomes:

X̂

+
F (k ) = X̂

�
F (k ) + g

T (k )�m� (k ) � gT (k )hX̂�F (k ) (10)

where �m = diag(m1 . . .mN )N . If we evaluate the a posteriori
estimation error of (10), we have the following [6]:

�

+ (k ) = XF (k ) � X̂+F (k )
=

f
1 � gT (k )h

g
a�

+ (k � 1) � gT (k ) [�m � I] haXF (k � 1)
+
f
1 � gT (k )�mh

g
w (k � 1) � gT (k )�mv(k )

1We assume that between k and k + 1 the network can iterate such that a consensus
process as the one described in (9) asymptotically converges.

By taking expectations at both sides, we obtain the estimation
error mean:

E
f
�

+ (k )
g
=

f
1 � gT (k )h

g
aE

f
�

+ (k � 1)
g
�

gT (k ) (E [�m] � I) haE [XF (k � 1)]

where we have considered that �m is independent of XF andw (k )
and v(k ) are zero-mean processes. �erefore, the expectation of
the error at each step depends not only on the mean at the previous
step, but also on a scaled version of the expectation of the state.
Given that, in general, none of the two conditions in [3] are met,
then E [�m] , I. It entails that, unless E[XF (0)] = 0, this second
term never vanishes, hence the error mean is always di�erent from
zero. Consequently, this �lter is a biased estimator. In addition, the
general gain computed in (8) is not optimal for this �lter, since it
has been obtained by considering expression (5). �en, the error
variance is not minimized either.

In the sequel, we explain how the distributed design can be refor-
mulated in order to approximate the performance of the centralized
approach. First, we force the �lter to be unbiased. �en, and by
considering the statistical properties of the consensus, we compute
the optimal gain that minimizes the error variance. In order to do
that, we �rst propose the following alternative equation for the
state update:

X̂

+
F (k ) = X̂

�
F (k ) + g

T (k )�m� (k ) � gT (k )�mhX̂�F (k ) (11)

that is, an additional consensus process is applied for the nodes
to compute in a distributed way the term gT (k )h�̂� (k ). Again,
the evaluation of the a posteriori estimation error leads us to the
following recursive expression:

�

+ (k ) =
f
1 � gT (k )�mh

g
a�

+ (k � 1)
+
f
1 � gT (k )�mh

g
w (k � 1) � gT (k )�mv(k )

(12)

which depends only on the error at the previous step, and on the
process and observation noises. By taking expectations at both
sides, we obtain the estimation error mean:

E
f
�

+ (k )
g
=

f
1 � gT (k )E [�m] h

g
aE

f
�

+ (k � 1)
g

�erefore, if we make X̂+F (0) = E[XF (0)], then E[�+ (k )] = 0, for
all k . Consequently, as long as the initial estimate of XF is equal to
the expected value of XF (0), the expected value of X̂+F (k ) is equal
to XF (k ), and the proposed estimator is unbiased regardless the
value of g(k ).

In order to compute the optimal value of the �lter gain g(k ),
we aim at minimizing the trace of the a posteriori error variance
p

+ (k ) = E
f�
�

+ (k )
�2g . By using (12), p+ (k ) can be expressed as:

p

+ (k ) = E
⇣
1 � gT (k )�mh

⌘2
p

� (k )
�

+ E
⇣
gT (k )�mv(k )

⌘2� (13)

where we have applied the whiteness of bothw (k ) and v(k ), their
independence of �+ (k ), and the projection of the variance in (7). If
we derivate the previous expression with respect to the gain g(k ),
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Figure 2: State estimation of a scalar parameter via three di�erent versions of the Kalman�lter. In (a), the parameter evolution
and three estimators are shown for a single realization. It can be seenhow the tracking capability of the proposed adaptive�lter
approaches the optimal one. �e square error averaged over R2 = 200 realizations is depicted in (b), for the three estimators.

we have that:
@p+ (k )

@g(k )
= 2gT (k )E

f
�mhhT�mp

� (k ) + � 2
��

2
m
g

� 2p� (k )hT E [�m]

If we de�ne the matrix Cm = N

2E
f
mmT

g
, equal to zero, and

solve for g(k ), we obtain the following optimal �lter gain:

g(k ) = p� (k )E[�m]
⇣
Cm � hhTp� (k ) + � 2

�E[�
2
m]

⌘�1
(14)

where � stands for the Hadamard product, namely (A � B)i,j =
(A)i,j (B)i,j . �is expression gives the optimal �lter gain as a func-
tion of the �rst and second order statistics of the consensus process.

Finally, we insert in (13) the optimal value of the gain in (14), to
obtain the evolution of the error variance:

p

+ (k ) =
⇣
1 � gT (k )E[�m]h

⌘
p

� (k ) (15)

�e expressions in (14) and (15) become the ones for the central-
ized case if both conditions in [3] hold.

�erefore, our consensus based Kalman �lter is completely de-
�ned by the expressions for the state update in (11), the optimal
�lter gain in (14), and the error variance evolution in (15). Pro-
vided that the nodes know the statistical moments of the consensus
process, they are able to distributively compute expressions (14)
and (15) in a consensus basis. Furthermore, the gain of the �lter is
adapted to minimize the error variance at each step.

4 NUMERICAL RESULTS
Our Matlab setup includes N = 40 nodes randomly deployed in
a square area of L = 50 meters side with an average number of
neighbors equal to 15. We assume that the power of the signal is
E = 1. Without loss of generality, the consensus process is based
on the Laplacian matrix, such that W(n) = I � �L(n), with a value
of the step size � = 1/N to ensure convergence [2]. We also assume
that the initial value of the signal is XF (0) = 0, and the process
noise has a variance � 2

� = 10�1. �e observation at each node i is
a�enuated by a factor hi < 1 and the variance of the observation
noise is � 2

w = 10.

Figure 2 shows the result of applying three di�erent Kalman
�lters: the optimal �lter based on a centralized se�ing, the gen-
eral consensus-based distributed �lter expressed in (10), and the
distributed adaptive �lter proposed in this work. More precisely,
the tracking capabilities can be appreciated in Figure 2(a), where
the evolution of the system, as well as the di�erent estimates, are
depicted for a single realization of the experiment. Although the
centralized solution shows the best performance, the consensus-
based distributed �lter proposed in the present work exhibits a
very similar behavior. It implies that, due to its unbiasedness and
its adaptive nature, this �lter compensates the error introduced
by the random consensus and approximates the optimal estimator.
Oppositely, the biased and non-adaptive distributed �lter is barely
able to track the evolution of the parameter. �is is more easily
appreciated in Figure 2(b), which shows the mean square error of
the three estimators for R2 = 200 realizations of the experiment,
and where it can be seen that the biased �lter diverges.
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