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Abstract—Graph filters, which are considered as the
workhorses of graph signal analysis in the emerging field of signal
processing on graphs, are useful for many applications such as
distributed estimation in wireless sensor networks. Many of these
tasks are based on basic distributed operators such as consensus,
which are carried out by sensor devices under limited energy
supply. To cope with the energy constraints, this paper focuses
on designing the network topology in order to maximize the
network lifetime when applying graph filters. None of the existing
works in the literature have studied such problem when graph
filters are used. The problem is a complex combinatorial problem
and in this work, we propose two efficient heuristic algorithms
for solving it. We show by simulations that they provide good
performance and increase significantly the network lifetime.

I. INTRODUCTION

Recently, significant efforts have been performed to extend
classical signal processing concepts to the graph setting,
allowing the emergence of Graph Signal Processing [1], where
the main interest focuses on signals defined over the nodes of
a graph. In this area, one of the key results is the analysis of
graph signals in the graph frequency domain. The workhorses
of graph signal analysis are graph filters, which represent the
building blocks for processing the spectral content of graph
signals. Graph filters are useful to process, analyze networked
data and solve wide range of problems and ideal for many
tasks and applications [2], [3] such as distributed estimation.

Average consensus is a key distributed task in network pro-
cesses that allows nodes to compute global averages from local
initial data by only exchanging information with neighbors.
Over the past years, consensus has gained a lot of interest in
wireless sensor networks (WSNs). Such networks are com-
posed of a large number of spatially distributed autonomous
devices, which usually have low capabilities in terms of
storage, processing and energy and equipped with a variety of
sensors to monitor physical quantities of the environment. In
WSNs, when applying graph filters and performing distributed
processing algorithms, the limited energy supply of sensors
should be preserved as much as possible. In fact, it is crucial
for WSNs to be autonomous and capable of executing different
tasks for a long time without the replacement of sensors’
batteries. The energy consumed by the sensor devices depends
on the configuration of the nodes, the communication topology
among the nodes and in case of using graph filters on the
number of exchanges needed to reach convergence.
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In the past few years, there have been some works dedicated
to redesign the network topology in order to maximize the
convergence speed of consensus processes [4], [5]. Some other
works have looked on the optimal topology in consensus
processes in order to both minimize the convergence time and
the energy consumption (or extend the network lifetime) [6-8].
However, none of these works consider the case of applying
graph filters in the network. In this paper, we formulate the
problem of optimizing the topology in WSNs in order to
maximize the network lifetime when graph filters are used.
This problem is a complex combinatorial problem and can
not be solved efficiently in polynomial time. Therefore, in
order to obtain some insights about how to design an efficient
polynomial-time algorithm that approaches a close-to-optimal
topology, genetic algorithms and simulated annealing are used.
Then, inspired from these heavy optimization methods, we
propose two efficient heuristic algorithms: the first one is
centralized and the second one is distributed. We show by
extensive simulations that the centralized algorithm provides a
slightly better performance than the distributed one. But, both
of them approach well the solution given by simulated anneal-
ing and genetic algorithms, which are expected to provide a
solution close to the optimal. To the best of our knowledge,
this is the first paper that focuses on the topological design
problem in WSNs to increase the network lifetime and reduce
the energy consumption when applying graph filters.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the main background. In section 3, the energy
consumption model is presented. In section 4, our problem
of network topology design is formulated. Section 5 and 6
present respectively the proposed heuristic algorithms and their
performance evaluation. Section 7 concludes the paper.

II. BACKGROUND

In this section, we review the main background related to
the concepts of graph theory and graph filters.

Let G(V, E) denote an undirected graph where V is a set of
N vertices or nodes and E is a set of links or edges such that if
node i is connected to j, then (i, j) ∈ E . For any given graph
G, we define the N×N adjacency matrix A with nonzero
elements Aij if and only if (i, j) ∈ E . The set of neighbors of
node i is defined by Ωi = {j ∈ V : (i, j) ∈ E}. The degree
of node i is di =

∑
j∈Ωi

Aij and D is the degree matrix.

A. Graph signal and graph shift operator

A graph signal, defined on the set of nodes of the graph,
is a mapping x : V → R, and represented as a vector
x = [x1, ..., xN ]T ∈ RN . The i-th component xi represents
the signal value at the i-th vertex in V . Any graph G can



be endowed with a graph-shift operator S, which can be
represented as a matrix S ∈ RN×N satisfying Sij = 0 for
i 6= j and (i, j) /∈ E . There are several possible choices for
the shift S such as the adjacency matrix A, the Laplacian
matrix L = D − A and other generalizations defined on L,
such as W=I−δ L where δ ∈ R. The shift S is assumed to be
diagonalizable so that it can be decomposed as S=VΛV−1,
where Λ = diag(λ1, ..., λN ) is the diagonal matrix of N
eigenvalues and V is the corresponding eigenvector matrix.

B. Graph filters

A graph filter (GF) is a system H that takes a graph signal x
as an input, processes it, and produces another graph signal y
as an output. A graph filter H : RN → RN is a map between
graph signals which is represented by an N×N matrix. In
this paper, our focus will be restricted to Finite Impulse
Response (FIR) GFs since they can be easily implemented
in a distributed way. FIR GFs, which are designed such that
their inpulse responses are finite in the vertex domain, can be
classified as being node-invariant or node-variant [9]:

1) Node-invariant graph filter: It is a polynomial in S of
degree L− 1, with coefficients h=[h0, ..., hL−1]T . The graph
signal output y that is generated when the node-invariant graph
filter Hinv is applied, is given by:

y = Hinvx =

L−1∑
l=0

hl Slx =

L−1∑
l=0

hl x(l) (1)

where x(l) = Sl x = S x(l−1).
2) Node-variant graph filter: In this case, each node ap-

plies different weights, collected in N×1 vector h(l) =

[h
(l)
1 , ..., h

(l)
N ]T , to the shifted signals Slx. In general, node-

variant graph filters outperform node-invariant graph filters,
since the number of degrees of freedom to design the coeffi-
cients is much larger. Thus, it can be viewed as a generaliza-
tion of node-invariant graph filters. The graph signal output
y that is generated when the node-variant graph filter Hnv is
applied, is given by [9]:

y = Hnvx =

L−1∑
l=0

diag(h(l)) Slx (2)

To implement any linear transformation B as a node-variant
graph filter, the shift operator S = VΛV−1 must satisfy
two properties: all the entries of V are non-zero and all the
eigenvalues {λk}Nk=1 are distinct [9]. If these two conditions
can not be satisfied, an approximate implementation of the
graph filter can still be designed to approach as much possible
B, allowing to determine the optimal filter coefficients that
minimize the Frobenius error norm ‖Hnv−B‖F . The optimal
filter coefficients associated to node i, which are collected in
an L×1 vector hi = [h

(0)
i , ..., h

(L−1)
i ]T , are given by [9]:

hi =
(

(V−1)
T
diag(VTei) Ψ

)†
BT ei (3)

where ei is a vector with all entries zero except for the i-th
entry which is one and Ψ is the N×L Vandermonde matrix
such that Ψij=λ

j−1
i . Notice that the k-th entry of a vector c

is denoted as ck = [c]k, the entry of a matrix A is denoted as
Aij = [A]ij and † stands for Moore-Penrose pseudoinverse.
This paper will be mainly based on node-variant graph filters
since they offer more flexibility and better performance.

III. ENERGY CONSUMPTION MODEL

We consider a network composed of N sensor nodes, with
distinct identifiers and omni-directional antennas, deployed
uniformly and randomly. Each sensor is supposed to use a
broadcast communication, which means that a single trans-
mission of a node can be received by any neighbor within its
transmission range, which reduces the communication needs
to send information to other nodes. This assumes that there
is an underlying MAC protocol that resolves collisions and
maintains the topology. A node can ignore the packets received
from certain neighbors for a topology design consideration.
Since the communication in sensor devices is very costly in
most applications, both energy costs of sending and receiving
packets are considered. In the following, the adopted energy
consumption model is presented. This model considers the fact
that the application of a graph filter in WSNs can be divided in
different exchange periods. At each exchange period, a sensor
node receives messages (packets of a certain size z) from its
neighbors, makes some local computation and broadcasts its
processed messages to its neighbors. Let nex ∈ N define the
number of exchanges needed for convergence when applying
the node-variant graph filter. The particularity of any FIR GF
is that it can be implemented in at most L − 1 exchanges of
information, which means that nex can not exceed L−1 with
L ≤ N . The energy consumed by a node i when applying the
node-variant graph filter is determined as follows:

Ei = nex(di(αR + γ) + αT ) (4)

where αR is the energy spent by a sensor node in the reception
of one message, which depends on the size z of the packet in
bits and the energy ERXelec spent by the electronic circuitry
at the receiver in J/bit [10].

αR = ERXelec z (5)

The energy expended in joules to transmit a packet of z bits
across a link with a distance rij , is given by [10]:

αT = (ETXelec + Eampr
β
ij) z (6)

where ETXelec is the energy spent by the electronic circuitry
at the transceiver in J/bit, Eamp is the energy dissipated at
the amplifier in J/bit/m2, β is the path loss exponent which is
about 2 for freespace and higher in-door, rij is the distance
between the transmitting sensor i and the receiving sensor j.
In this work, due to the use of broadcast communications,
the distance rij is assumed to be equal to the maximum
transmission radio range R of sensor nodes.

The energy spent by a sensor node, when making some
computations in a single exchange period, is represented by γ
and is calculated as follows:

γ = Ecp z (7)

where Ecp is the energy dissipated in processing in J/bit.
Therefore, the total energy E consumed in the network

when applying the node-variant graph filter is given by:

E =

N∑
i=1

Ei (8)



IV. PROBLEM FORMULATION

Our problem is to determine the optimal topology that
maximizes the network lifetime when applying node-variant
graph filters. In WSNs, sensor devices are usually powered by
batteries which provide a limited energy capacity. If one sensor
node runs out of energy, reaching the graph filter convergence
can not be guaranteed and the application of the graph filter
may fail. For these reasons, the lifetime of sensor nodes is
very important when applying graph filters in WSNs. The
lifetime of a sensor node i when applying a graph filter can
be determined by dividing the initial energy E0 available
at the node (assuming here that all sensors have the same
initial energy budget) and the energy consumed during the
application of the graph filter:

Li =
E0

Ei
=

E0

nex(di(αR + γ) + αT )
(9)

The network lifetime L, which can be formulated as the
number of graph filters that can be executed before the first
sensor node runs out of energy, is given by:

L = min
i∈V
Li = min

i∈V

( E0

nex(di(αR + γ) + αT )

)
(10)

To extend the network lifetime L, we need to maximize the
lifetime of the node with the shortest lifetime i.e. min

i∈V
Li or

minimize the consumption of the node consuming the highest
energy i.e. max

i∈V
Ei. Therefore, our objective is to minimize

the following function max
i∈V

nex

( ∑
j∈Ωi

Aij (αR + γ) + αT

)
.

Our problem is to determine the optimal topology (i.e.
adjacency matrix) that maximizes the network lifetime when
applying the node-variant graph filter. The corresponding
optimization problem can be formulated as follows:

minimize{A}max
i∈V

nex

( ∑
j∈Ωi

Aij (αR + γ) + αT

)
(11)

s.t.
∥∥∥( nex∑

l=0

diag(h(l)) Slx
)
−B x

∥∥∥
2
≤ ε

h
(l)
i =

[(
(V−1)

T
diag(VTei)Ψ

)†
BTei

]
l

∀i ∈ V, l=0, .., nex

λ2(L) > 0
Aij = Aji ∀i, j ∈ V

Aij ∈ {0, 1} if rij ≤ R ∀i, j ∈ V
Aij = 0 if rij > R ∀i, j ∈ V

where ε is a small positive constant to ensure that the resulting
normalized error at the graph filter convergence obtained after
nex exchanges is very small. nex is affected by the topology
and more specifically by the shift operator S through the
nodes’ degrees di, where S = I − δ L = I − δ (D − A).
Notice that given a shift S, the filter coefficients h(l) also
change and their optimal values are determined by the second
constraint. The third constraint represents the algebraic con-
nectivity λ2(L), which ensures that the graph is connected.
The fourth constraint guarantees that the adjacency is sym-
metric since undirected graphs are considered. The fifth and
sixth constraints mean that the entries of the adjacency matrix
are zeros or ones, depending on the existence of a link and

by considering the distance between the two nodes and the
transmission range at each node.

Our problem is a combinatorial non convex problem due to
both binary variables and h(l)

i constraints and the fact that each
of nex, S and h(l) depend on the adjacency A. This means
that the problem can not be solved efficiently in polynomial
time. Therefore in this paper, instead of attempting to solve this
problem in an optimal way, our goal is to propose a feasible
solution that is efficient in substantially increasing the network
lifetime and has a polynomial time complexity.

V. TOPOLOGICAL DESIGN WITH HEURISTIC ALGORITHMS

This section focuses on the use of heuristic algorithms to
design topologies that enhance the network lifetime and reduce
the energy consumption when applying graph filters. First, in
order to obtain an insight about how to design an efficient
polynomial-time algorithm that approaches a close-to-optimal
topology, we consider first metaheuristic algorithms based
on Genetic Algorithms (GA) and Simulated Annealing (SA).
Then, we propose efficient algorithms based on this insight.

A. Metaheuristic algorithms

SA and GA are metaheuristics [11], which can be defined as
higher level heuristic algorithms that perform a robust search
of a good solution and try to avoid local minimum. Both of
them rely on randomness to generate good approximate solu-
tions to combinatorial or NP-hard problems. GA is inspired
by the process of natural selection, while SA is inspired by
the physical process of heating a material and then slowly
lowering the temperature to decrease defects. Starting from
possible edges within the radio range R, Algorithm 1 and
Algorithm 2 describe respectively how to apply GA and SA
to our problem by considering all the constraints.

Algorithm 1 Genetic Algorithms (GA)
INPUT: Locations and transmission range R
Generate random initial population of 150 adjacency matrices
repeat

Fitness function: Evaluate the cost of each adjacency matrix
cost(Aij) = max

i∈V
nex

( ∑
j∈Ωi

Aij (αR + γ) + αT

)
Elite step: Select 0.01% of adjacencies with best fitness func-
tion cost to go automatically to the new population
Crossover step: Select two parent adjacency matrices from the
population to be crossed over and to form new children
Mutation step: Only for 0.01% of the population of adjacency
matrices, randomly change 2 binary variables in the child adja-
cency resulting from crossover while preserving the symmetry
Acceptance step: Place new generated children adjacency ma-
trices in the new population if they ensure graph connectivity.

until Maximum number of generations is reached
Return the best adjacency matrix in the current population

SA and GA offer practical approaches to solve complex
problems of realistic scale. However, it is hard to solve
instances with a large scale in reasonable computing times and
it is difficult to implement them in a decentralized manner.
On the other hand, they can be used to provide a good
benchmark that is usually close to optimal, against which
other polynomial-time heuristic algorithms can be compared.
Since there is a need for computationally less time-consuming



Algorithm 2 Simulated Annealing (SA)
INPUT: Locations and transmission range R
Generate a random initial adjacency Ak

Initialize system temperature T , cooling rate θ and Mq

repeat
for q = 1 to Mq do
cost(Ak)= max

i∈V
nex

( ∑
j∈Ωi

[Ak]ij (αR + γ) + αT

)
Slightly perturb Ak to generate a random symmetric adja-
cency matrix Ak+1 whose graph is connected
Calculate the cost(Ak+1) of the new adjacency matrix
if cost(Ak+1) < cost(Ak)) then

Ak+1 will be the new current solution
end if
if cost(Ak+1) > cost(Ak) then

accept Ak+1 as the new current solution with probability

exp
(cost(Ak)− cost(Ak+1)

T

)
end if

end for
T= θ T

until Maximum number of iterations is reached

(a) INIT-Topo1 10 nodes, R=50 m (b) Optimized-Topo1 SA/GA

(c) INIT-Topo2, 9 nodes, R=80 m (d) Optimized-Topo2 SA/GA

Fig. 1: Example of optimized topologies with SA/GA.

algorithms with faster convergence, we propose in the follow-
ing sections heuristic algorithms inspired from the solutions
obtained by using SA or GA in consensus processes. In fact,
from the optimal topologies provided by the best of both SA
and GA, it can be seen that the nodes often keep links with
neighbors that have the highest degree as shown in Figure 1.
On the other hand, if we increase the transmission range such
that all nodes can reach each other, resulting in a global
coverage, the optimal topology is to keep all links because
the number nex of exchanges needed to reach the consensus
will be equal to one. However, ensuring a global coverage is
usually not possible in WSNs, due to power constraints.

B. Degree heuristic algorithm based on MST (D-MST)

The solution provided by the D-MST algorithm consists of
a topology based on a Maximum Spanning Tree, where the
edges connected to neighbors that have the highest degree have
higher probability to be kept as inspired from the results of SA
and GA in Figure 1. For our topological design problem, based
on the initial locations of the nodes and the transmission range
R, we initialize the connectivity with all possible neighbors

Algorithm 3 Degree heuristic based on MST (D-MST)
INPUT: Locations and transmission range R
cost= max

i∈V
nex

( ∑
j∈Ωi

Aij (αR + γ) + αT

)
k = −1; ∆m = max

i∈V
di; d̄ = 1

N

∑
i∈V

di; Aout = A

while k < d̄ do
for each node i = 1 to N do

for each node j ∈ Ωi do
if di == (∆m − k) or dj == (∆m − k) then

[Aw]ij = −1
else

[Aw]ij = −(di + dj)
end if

end for
end for
AMST = build Minimum-Spanning-Tree from Aw

newCost= max
i∈V

nex

( ∑
j∈Ωi

[AMST ]ij αR + αT + γ
)

if newCost ≤ cost then
cost = newCost; Aout = AMST

end if
k = k + 1

end while

given R. Then, we build a Maximum Spanning Tree by using
the sum of nodes’ degrees as weights of the edges and compute
the energy cost of this solution. The Maximum Spanning Tree
can be computed by multiplying the weights for each edge by
−1 and applying an algorithm to find a Minimum Spanning
Tree (MST) such as Kruskal algorithm [12]. Since some nodes
with certain degrees could be overloaded, we decrease, in a
second step, the chances of selecting the edges connected to
these nodes, by assigning −1 as weights to their corresponding
edges when building the MST. Then, we recompute the new
energy cost. The MST achieving less cost will be selected, as
presented in Algorithm 3. The time complexity of the Kruskal
algorithm isO(|E| logN) [12]. Since in the worst case Kruskal
algorithm runs at most N times, the total computational
complexity of D-MST algorithm is O(N |E| logN) in time.
C. Distributed Degree heuristic based on MST (DisD-MST)

The proposed D-MST algorithm can be modified in order
to be implemented distributedly by using a distributed MST
algorithm such as GHS [13]. The latter has a time complexity
O(N logN) and is optimal with respect to the required num-
ber of message transfers compared to other algorithms [14].
To implement our modified distributed algorithm DisD-MST,
only a single MST is computed by taking as weights the sum
of nodes’ degrees. The time complexity of DisD-MST is the
same as the complexity of GHS. However, the nodes initially
only know the weights of the adjacent edges (by making each
node send its degree to its 1-hop neighbors). Thus, they have to
exchange additional messages with neighbors until the MST is
constructed. The total number of messages required with GHS
is 5N log2N + 2 |E| [13]. The overhead due to exchanging
more messages at network setup is slightly compensated in
our algorithm when the graph filter is applied many times.

VI. NUMERICAL RESULTS

Extensive simulations were conducted in MATLAB to eval-
uate the performance of the proposed heuristic algorithms.



(a) INIT L=12500, nex=9 (b) DisD-MST L=16126, nex=7

(c) D-MST L=16130, nex=7 (d) SA/GA L=27777, nex=5

Fig. 2: Example of topologies resulting from different heuris-
tics over an initial network with N=10 and R=50 m (INIT).

A setup of N sensor nodes randomly and uniformly dis-
tributed over a certain area is considered in our simulations,
where random input signal values xi are injected in the
network. We assume the following typical parameter val-
ues: z=100 Bytes, ε=0.01, E0=50 J , β=2, Ecp=5 nJ/bit,
ERXelec=ETXelec=50 nJ/bit, Eamp=100 pJ/bit/m2 [10].
To implement graph filtering for consensus, the linear trans-
formation B used is B=Bcon=11T

N and its application to
the input signal x yields to the average. The shift S used is
S=I−δ L where δ= 2

λ2(L)+λN (L) . In fact, such shift ensures
faster convergence for consensus for a given topology [15].

Figure 2 shows typical topology instances, resulting from
applying different heuristic algorithms, used to redesign a
network of 10 nodes randomly deployed in a square area
of 150 m side with R=50 m. It is interesting to see that
the topologies obtained with D-MST and DisD-MST present
similarities with that obtained with the best of both SA and
GA. The results show also that with the proposed algorithms,
the number nex of exchanges as well as the nodes’ degrees
are decreased, which improves the network lifetime.

Figure 3 shows the averaged network lifetime and energy
consumption achieved by different heuristic algorithms, ap-
plied to random network topologies, deployed in a square
area of 200 m side with R=80 m. As expected, applying
graph filters for consensus processes outperforms the classical
Fastest Distributed Consensus [15] (FDC), in terms of network
lifetime and energy consumption, because FIR graph filters
limit the number nex of exchanges. The results show also
that the network lifetime is significantly improved when initial
random topologies INIT with variable number of sensors are
redesigned with D-MST and DisD-MST (see Figure 3a). It can
also be seen that the network lifetimes, obtained with both
algorithms, are very close to that obtained with SA/GA. In
fact, the average improvement ratios of SA/GA over D-MST
and DisD-MST are very low and are respectively about 5 %
and 13 %. Figure 3b shows that the total energy consumption
is significantly reduced with D-MST, even when topologies are
redesigned for a main goal to increase the network lifetime.

(a) Network lifetime (b) Total energy consumption

Fig. 3: Performance of different heuristics applied to random
topologies in square area of 200 m side with R=80 m.

The energy consumed by the sensors with D-MST algorithm is
very close to that obtained with SA/GA, which clearly shows
its efficiency. DisD-MST also reduces considerably the energy
consumption, but it uses up slightly more energy than D-
MST, due to the existence of some overloaded nodes and the
exchange of more control messages at network setup.

VII. CONCLUSION

In this paper, we formulate the problem of optimizing the
network topology in order to maximize the network lifetime in
WSNs when graph filters are used. Since this problem is com-
plex and combinatorial, we propose two efficient polynomial-
time heuristic algorithms inspired from the results of SA
and GA. The simulation results show that both proposed
algorithms provide good performance for consensus processes,
approaching well that obtained by SA and GA, which are
expected to offer a solution close to the optimal.
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