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Abstract—In this paper, we present a novel geometry-based
statistical model (GBSM) for small-scale non-wide-sense sta-
tionary uncorrelated scattering (non-WSSUS) mobile-to-mobile
(M2M) Rayleigh fading channels. The proposed model builds on
the principles of plane wave propagation (PWP) to capture the
temporal evolution of the propagation delay and Doppler shift
of the received multipath signal. This is different from existing
non-WSSUS geometry-based statistical channel models, which
are based on a spherical wave propagation (SWP) approach,
that in spite of being more realistic, is more mathematically
intricate. By considering an arbitrary geometrical configuration
of the propagation area, we derive general expressions for the
most important statistical quantities of nonstationary channels,
such as the first-order probability density functions (PDFs) of the
envelope and phase, the four-dimensional (4D) time-frequency
correlation function (TF-CF), local scattering function (LSF),
and time-frequency (TF) dependent delay and Doppler profiles.
We also present an approximate closed-form expression of the
channel’s 4D TF-CF for the particular case of the geometrical
one-ring scattering model. The obtained results provide new
theoretical insights into the correlation and spectral properties
of non-WSSUS M2M Rayleigh fading channels.

Index Terms—Fading channels, mobile-to-mobile communica-
tions, nonstationary processes, radiowave propagation, non-wide-
sense stationary uncorrelated scattering (non-WSSUS) channels.

I. INTRODUCTION

THE characterization of nonstationary time-frequency (TF)

dispersive multipath fading channels is a topic of research

that is receiving increasing attention due to the emergence

of novel mobile communication systems that are conceived

to operate under rapidly changing propagation conditions.

Examples of such systems include high-speed railway com-

munication systems [1], fourth (4G) [2] and fifth generation
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(5G) [3] cellular networks for on-the-road communications,

and dedicated short-range communication (DSRC) systems for

wireless access in vehicular environments [4]. Measured data

collected for these systems show that the wide-sense stationary

uncorrelated scattering (WSSUS) assumption, often invoked to

characterize TF dispersive multipath fading channels, is only

valid over limited and rather short time and frequency intervals

[5], [6]. Aiming to analytically characterize such empirical

findings, several different geometry-based statistical models

(GBSMs) for non-WSSUS mobile-to-mobile (M2M) fading

channels have been proposed in recent years, e.g., in [7]–

[9]. To the best of the authors’ knowledge, all these models

have been developed following a spherical wave propagation

(SWP) approach. In the SWP framework, the angle of de-

parture (AOD) and angle of arrival (AOA) of the received

electromagnetic waves are modeled as time-varying quantities

determined by the instantaneous relative position between the

wave source (transmitter antennas or interfering objects, IOs)

and the observer (IOs or receiver antennas) [7]. On the other

hand, the path length of the received waves are modeled by

the Euclidean distance between source and observer.

The SWP approach provides a realistic description of the

physical process of radiowave propagation, but it renders the

mathematical analysis of the channel’s statistics a cumbersome

task [7], [9]. To facilitate such task, we present in this paper a

novel GBSM for nonstationary TF dispersive M2M Rayleigh

fading channels that builds instead on the principles of plane

wave propagation (PWP). The proposed model is particularly

well-suited for analyzing the channel’s nonstationarities aris-

ing at a small-scale level due to the time-varying nature of the

propagation delays. The geometry-based statistical modeling

approach and the PWP model are a well-known tandem for

the characterization of TF dispersive fixed-to-mobile (F2M)

and M2M fading channels. However, the existing geometrical

PWP models for F2M and M2M Rayleigh fading channels

have been formulated assuming time-invariant propagation

delays to enforce the fulfillment of the WSSUS condition (see,

e.g., [10]–[12]). For this reason, they do not provide insights

into the propagation delays’ temporal evolution. By contrast,

our model characterizes the aforementioned evolution as an

inherent process to the propagation of radiowaves.

On the grounds of the proposed model, we derive general

expressions for important statistical quantities of nonstationary

channels, such as the first-order probability density functions

(PDFs) of the envelope and phase, the four-dimensional (4D)
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TF correlation function (TF-CF), local scattering function

(LSF), and TF-dependent delay and Doppler profiles. In addi-

tion, we derive a novel closed-form expression for the channel

4D TF-CF for the particular case of the geometrical one-

ring scattering model. This scattering model has widely been

employed as a reference model to analyze the correlation prop-

erties of multipath F2M and M2M fading channels assuming

single interactions with IOs [13]. A related model, which is

more representative for vehicular communication scenarios, is

the geometrical two-rings scattering model [14]. The analysis

of the two-rings model is not addressed in this paper, as

the double interaction with IOs requires modifications of the

modeling framework presented herein. However, the extension

has recently been addressed in [15].

In spite of recent advances in the empirical modeling of

nonstationary channels, there are currently no measurements

available that allow for a direct comparison between our

theoretical results and empirical data. However, even though

the proposed channel model is yet to be validated empiri-

cally, it gives theoretical insights into some characteristics of

nonstationary M2M fading channels that have been observed

empirically, such as those discussed in [16], where it has been

noted that the channel’s nonstationarities are more severe in

the time domain than in the frequency domain.

The remainder of the paper is organized as follows: A

generic impulse response model for small-scale TF disper-

sive M2M channels is presented in Section II. Using this

model as a baseline, we review in Section III the basics of

the SWP channel modeling approach. Our proposal for the

geometrical PWP modeling of non-WSSUS M2M Rayleigh

fading channels is introduced in Section IV. The first-order

statistics, as well as the correlation and spectral properties

of the proposed channel model are analyzed in Section V

by considering an arbitrary geometrical configuration of the

propagation scenario. In Section VI, we analyze the channel

model’s correlation and spectral properties for the particular

case of the geometrical one-ring scattering model. Finally, our

conclusions are summarized in Section VII.

Notation: The complex conjugate and the absolute value

operators are denoted by (·)∗ and | · |, respectively. Vectors are

written in bold face. The transpose operator is denoted by (·)†,

arg{·} indicates the angle of a two-dimensional (2D) vector,

‖ · ‖ stands for the Euclidean norm, and the scalar product

between two vectors z1 and z2 is represented as 〈z1, z2〉. The

operator E{·} designates the statistical expectation. The sets

of real numbers and positive real numbers are denoted by R

and R
+, respectively.

II. MATHEMATICAL MODEL OF TF DISPERSIVE M2M

RAYLEIGH FADING CHANNELS

The small-scale TF-dispersive M2M Rayleigh fading chan-

nel is characterized in this paper as follows: Suppose that

the transmitted signal reaches the receive antenna by single

interactions with L fixed (non-moving) IOs. Suppose also that

the transmitted and the received signals are linearly polarized,

and assume that the far-field condition holds. Then, for a finite

observation time window of length T0, the channel impulse

response (CIR) at time t due to an impulse applied τ seconds

in the past can be characterized in the equivalent baseband by

the superposition of L electromagnetic waves as follows

h(t; τ) ,

L
∑

ℓ=1

gℓ exp
{

j
[

θℓ + ϑTℓ (t) + ϑRℓ (t)
]}

×δ (τ − τℓ(t)) · ΩT0
(t− t0). (1)

In the previous equation, j2 = −1; gℓ and θℓ stand for

the attenuation and phase shift introduced by the interaction

with the ℓth IO, respectively; ϑTℓ (t) and ϑRℓ (t) account for

the rotation of the wave’s phase due to the distance traveled

at a given time instant t (ϑTℓ (t) is associated with the path

from the transmit antenna to the ℓth IO, and ϑRℓ (t) with the

path from the ℓth IO to the receive antenna); δ(·) is the

Dirac delta function; and τℓ(t) stands for the time-varying

propagation delay of the ℓth received wave. The windowing

function ΩT0
(t− t0) is defined as

ΩT0
(t− t0) ,

{

1, t0 ≤ t ≤ t0 + T0
0, otherwise

(2)

where t0 indicates the time instant at which the transmitter

starts to communicate with the receiver.

The gains gℓ and phases θℓ of the multipath components in

(1) are in general functions of time that depend of the IOs’

electromagnetic properties. However, for the wave propagation

over local areas (spanning a few tens of wavelengths), these

parameters can be modeled as constant quantities, and their

dependence on the IO’s electromagnetic properties can be ob-

viated if they are characterized as random variables (r.v.) (see,

e.g., [17], [18]). In this paper, we follow this latter approach,

since we are primarily interested in the small-scale modeling

of M2M fading channels. On the other hand, the length of

the CIR h(t; τ) in (1) with respect to time t may be infinitely

large, such that T0 → ∞. However, if a large observation time

interval is considered, then the parameters of h(t; τ) should

account also for the channel’s large-scale dynamics. Thus, for

the purposes of this paper, we will assume that T0 is small

enough as to neglect the channel’s large-scale variations (e.g.,

path loss, shadowing due to obstructions by large IOs, and

those caused by the appearance and disappearance of IOs).

For example, if we consider a DSRC system operating in the

5.9 GHz band [4], and a mobile station moving with a speed of

100 km/h, then we can set T0 = 60 ms, as this is the time that

the mobile station would take to transit through a local area

of about 30 wavelengths. The mathematical model of h(t; τ)
presented in (1) is quite general, and it can be parameterized

to account for almost any form of interaction with IOs, except

those that produce group delay distortion, since we are not

considering the time-varying nature of the gains gℓ, nor their

dependence on the IOs’ electrical properties.

III. OVERVIEW OF THE GEOMETRICAL SWP CHANNEL

MODELING APPROACH

The definition of h(t; τ) given by (1) is valid for both

SWP and PWP. The difference between these two modeling

frameworks lies essentially in the way in which the time-

varying parameters ϑTℓ (t), ϑ
R
ℓ (t), and τℓ(t) are defined. In
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Fig. 1. Geometry of the propagation of a spherical wavefront.

the SWP framework, ϑTℓ (t), ϑ
R
ℓ (t), and τℓ(t) are modeled

by assuming that the transmitted waves propagate radially

outward the source [19, Sec. 1.7.2]. Thereby, the resulting

spherical wavefront reaches a given observation point by

traveling over a path with a length equal to the Euclidean

distance between the source and the observer. This propagation

mechanism is illustrated in Fig. 1, where vector pi indicates

the position of the ith observer relative to the source location.

In this context, the time-varying phases ϑTℓ (t) and ϑRℓ (t), and

the propagation delay τℓ(t) in (1), can be defined as [7]–[9]:

ϑTℓ (t) , κ0‖pTℓ (t)‖ (3)

ϑRℓ (t) , κ0‖pRℓ (t)‖ (4)

τℓ(t) ,
‖pTℓ (t)‖+ ‖pRℓ (t)‖

C (5)

where κ0 , 2π/λ is the phase constant (wavenumber), λ is the

transmitted signal’s wavelength; C stands for the speed of light;

the vector pTℓ (t) indicates the position of the ℓth IO relative to

the transmitter at time t; and p
R
ℓ (t) describes the position of

the receiver as seen from the ℓth IO also at time t. These two

vectors are time varying, since the position of the transmitter

and the receiver is changing over time. Furthermore, if the

IOs are randomly located in the propagation area, then p
T
ℓ (t)

and p
R
ℓ (t) are stochastic vectors, and therefore ϑTℓ (t), ϑ

R
ℓ (t),

and τℓ(t) are stochastic processes, as they are modeled by

functions of time with random parameters. In our modeling

framework, once the random values of the time-varying phases

and propagation delays are drawn, their evolution in time is

deterministic, as propagation physics would predict.

The position vectors pTℓ (t) and p
R
ℓ (t) can be characterized

with respect to a given geometrical configuration of the

propagation scenario, such as the one shown in Fig. 2. In this

figure, the IOs are represented by black dots. The origin of

the coordinate system is given by the location of the transmit

antenna at time t0 (i.e., at the time at which the transmitter

starts to communication with the receiver), and is denoted by

OOO. On the other hand,OOO′ designates the location of the receive

antenna also at time t0. Without loss of generality, we will

henceforth assume that t0 = 0. The distance between the fixed

reference points OOO and OOO′ is denoted by D.

Throughout the paper, we assume that the transmitter and

the receiver move at constant speeds νT and νR along linear

trajectories described by the angles γT and γR. Thereby,

x

y

D

vT

γT

vR

γR

OOO OOO′

ℓ-th IO

ℓ′-th
IO

•

p
T

ℓ

•

p
T

ℓ′

•

p
R

ℓ

•

p
R

ℓ′

αR

ℓ

αT

ℓ

Fig. 2. The reference 2D propagation scenario at time t0 = 0.

we can write the velocity vectors of the transmitter and the

receiver as:

vT = νT [cos(γT ), sin(γT ) ]
†

(6a)

vR = νR [cos(γR), sin(γR) ]
†
. (6b)

Thus, regardless of the IOs’ location, we have:

p
T
ℓ (t) =

•

p
T
ℓ − t · vT (7a)

p
R
ℓ (t) =

•

p
R
ℓ + t · vR (7b)

for t ≥ 0, where

•

p
T
ℓ = dTℓ

[

cos(αTℓ ), sin(α
T
ℓ )
]†

(8a)

•

p
R
ℓ = dRℓ

[

cos(π + αRℓ ), sin(π + αRℓ )
]†
. (8b)

In (8), dTℓ and dRℓ stand for the Euclidean distances between

the ℓth IO and the reference points OOO and OOO′, respectively. In

turn, the angles αTℓ and αRℓ indicate the direction to the ℓth
IO from OOO and OOO′, respectively (see Fig. 2).

Substituting (7) into (3)–(5), we find that:

ϑTℓ (t) = κ0 d
T
ℓ − t2πfTmax cos(φ

T
ℓ (t)− γT ) (9)

ϑRℓ (t) = κ0 d
R
ℓ − t2πfRmax cos(φ

R
ℓ (t)− γR) (10)

τℓ(t) =
dTℓ + dRℓ

C − t
fSWℓ,D (t)

fc
(11)

where

φTℓ (t) = arg{pTℓ (t)} (12a)

φRℓ (t) = π + arg{pRℓ (t)} (12b)

are the time-varying AOD and AOA of the ℓth received wave,

respectively, fc = C/λ is the carrier frequency, and

fSWD,ℓ (t) = fTmax cos(φ
T
ℓ (t)− γT )

+fRmax cos(φ
R
ℓ (t)− γR). (13)

In (13), fTmax , νT /λ and fRmax , νR/λ are the maximum

Doppler shifts due to the movement of the transmitter and the

receiver, respectively. Using (9)–(13), we can rearrange (1) as

h(t; τ) =

L
∑

ℓ=1

gℓ exp
{

j
[

θℓ + 2πfcτℓ(t)
]}

×δ (τ − τℓ(t)) · ΩT0
(t). (14)

This alternative form of h(t; τ) highlights the fact that the
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time-varying parameters ϑTℓ (t), ϑ
R
ℓ (t), and τℓ(t) are modeled

by considering a common path length (cf. [20, Eq. 14.1–5]).

IV. THE PROPOSED GEOMETRICAL PWP MODEL FOR

NON-WSSUS M2M CHANNELS

A distinctive characteristic of the geometrical SWP channel

models is that the AODs and AOAs of the received waves are

time-varying quantities, as shown by (12). This feature makes

the SWP models well-suited for characterizing nonstationary

channels, but renders the mathematical analysis of important

channel statistics, such as the 4D TF-CF, a cumbersome

task. A well-known solution to simplify calculations is to

consider a plane wave approximation of spherical waves. This

approximation involves assuming that distances are sufficiently

large that wavefronts at relevant positions can be considered

as planar. Thereby, the AODs/AOAs remain constant for any

observation point along the wavefront [19, Sec. 1.7.3]. This

simplification is valid in the context of short-range vehicular

communication for propagation over small local areas, pro-

vided that the far-field condition holds [21].1

In the PWP framework, the path length of a traveling

wave is approximated by the scalar projection 〈p,u〉, where

p describes the observer’s position relative to the source’s

location, and u is a unit vector that points at the direction

of propagation, as illustrated in Fig. 3. Note that this scalar

projection is a mathematical description of the parallel rays

representation of a traveling planar wavefront [19, Sec. 1.7.3].

With this in mind, we define the phase shifts ϑTℓ (t) and ϑRℓ (t),
and the propagation delay τℓ(t) as:

ϑTℓ (t) , κ0〈pTℓ (t),uTℓ 〉 (15)

ϑRℓ (t) , κ0〈pRℓ (t),uRℓ 〉 (16)

τℓ(t) ,
〈pTℓ (t),uTℓ 〉+ 〈pRℓ (t),uRℓ 〉

C (17)

where u
T
ℓ and u

R
ℓ are dimensionless unit vectors pointing in

the direction of propagation of the ℓth received plane wave on

transmission and after interacting with the IO, respectively. To

ensure consistency, we assume that the angle between p
T
ℓ (t)

and u
T
ℓ , as well as that between p

R
ℓ (t) and u

R
ℓ , is greater than

−π/2 and smaller than +π/2. The unit vectors u
T
ℓ and u

R
ℓ

can be written in terms of the AOD φTℓ and AOA φRℓ as:

u
T
ℓ =

[

cos(φTℓ ), sin(φ
T
ℓ )
]†

(18a)

u
R
ℓ =

[

cos(π + φRℓ ), sin(π + φRℓ )
]†
. (18b)

Note that in the context of the PWP, the AODs φTℓ and AOAs

φRℓ are time-invariant quantities, as they are not determined

by the relative position between the source and the observer.
Assuming that the unit vectors u

T
ℓ and u

R
ℓ are collinear

with
•

p
T
ℓ and

•

p
R
ℓ , respectively, in such a way that

φTℓ = αTℓ (19a)

φRℓ = αRℓ (19b)

1The far-field condition varies from one antenna type to another. However,
as a rule of thumb, this condition is said to be fulfilled if the wave source
and the observer are separated by a distance that produces a phase error
between the spherical and the plane wave model not larger than 22.5◦ [19].
For electrically large antennas, the far-field region starts at a distance of 2a2/λ
from the source, where a is the largest dimension of the antenna.

Source

Planar

wavefront Observer

p

〈p,u〉uu . . .

. . .

Path length: 〈p,u〉

Fig. 3. Geometry of the propagation of a planar wavefront.

we find from the definitions in (6), (7), and (15)–(18) that:

ϑTℓ (t) = κ0 d
T
ℓ − t2πfTmax cos(φ

T
ℓ − γT ) (20)

ϑRℓ (t) = κ0 d
R
ℓ − t2πfRmax cos(φ

R
ℓ − γR) (21)

τℓ(t) =
dTℓ + dRℓ

C − t
fPWD,ℓ
fc

(22)

where

fPWD,ℓ = fTmax cos(φ
T
ℓ − γT ) + fRmax cos(φ

R
ℓ − γR). (23)

It is important to point out that the Doppler frequencies fPWD,ℓ
in (23) differ from their SWP counterparts in (13) only by

the time-invariant nature of the AODs and AOAs. While

subtle, this difference simplifies considerably the mathematical

analysis of the correlation and spectral properties of non-

WSSUS M2M fading channels. Note that if the IOs are

randomly located in the propagation area, then the Doppler

frequencies fPWD,ℓ are random variables. They are therefore

more mathematically tractable than the Doppler frequencies

fSWD,ℓ (t) in (13), which are stochastic processes.

The generic model of the CIR h(t; τ) given by (1) and

(20)–(22) (or in general, by (1) and (15)–(17)) constitutes

our proposal for the characterization of non-WSSUS M2M

channels. In spite of the model’s simplicity and intuitive

formulation, we are not aware of any previous work proposing

an equivalent representation of TF-dispersive M2M fading

channels. A review of the literature shows that the existing

geometrical PWP models for TF dispersive F2M and M2M

channels are based on a mathematical model of the CIR that

can also be written as in (1). However, the time-varying phase

shifts ϑTℓ (t) and ϑRℓ (t), and the propagation delay τℓ(t), are

modeled in the literature as (e.g., see [10]–[12]):

ϑTℓ (t) = κ0 d
T
ℓ − t2πfTmax cos(φ

T
ℓ − γT ) (24)

ϑRℓ (t) = κ0 d
R
ℓ − t2πfRmax cos(φ

R
ℓ − γR) (25)

τℓ(t) = τℓ =
dTℓ + dRℓ

C . (26)

Even though the phases in (24) and (25) are the same as those

in (20) and (21), the propagation delay is defined in (26) as

a time-invariant quantity τℓ. This is clearly opposite to our

definition of τℓ(t) given by (22). The assumption of time-

invariant delays is necessary to fulfill the WSSUS condition.

Nevertheless, this assumption imposes an important limitation,
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as it does not allow characterizing the delay drift of non-

WSSUS channels that has been observed from measurements

[6], [16]. Moreover, in spite of the fact that the propagation de-

lay is characterized in (26) with respect to a time-independent

path length, the phase shifts ϑTℓ (t) and ϑRℓ (t) are modeled in

(24) and (25) by considering plane waves that travel over paths

whose lengths vary in time (as required to incorporate the

Doppler shift effect into the channel model). This observation

unveils an important inconsistency in the formulation of (24)–

(26) that does not allow expressing the resulting CIR model

as in (14). Note that to be consistent, ϑTℓ (t), ϑ
R
ℓ (t), and τℓ(t)

should be modeled with respect to a common (time-varying

or time-invariant) path length, as mentioned in Section III. By

contrast, the CIR in (1) can be simplified to (14) if ϑTℓ (t),
ϑRℓ (t), and τℓ(t) are modeled according to (20)–(23).

The modeling framework proposed in this section can easily

be extended to the case of three-dimensional propagation

environments, multiple interactions with IOs, and multipath

channels with moving IOs. This framework can also be ex-

tended to incorporate the effects of acceleration and non-linear

motion trajectories of the mobile stations. Recent advances in

that regard can be found in [15] and [22].

V. STATISTICAL PROPERTIES OF THE PROPOSED GBSM

FOR NON-WSSUS M2M CHANNELS

A. Considerations

In this section, we analyze the PDFs of the envelope

and phase, the 4D TF-CF, LSF, and TF-dependent delay

and Doppler profiles of the transfer function H(t; f) ,
∫∞

−∞
h(t; τ) exp{−j2πfτ} dτ of the proposed channel model.

For that purpose, we will make the following considerations:

• The gains gℓ in (1) are positive r.v. They are not nec-

essarily identically distributed, but are given in such a

way that the sum of their average powers is a constant

quantity σ2
h equal to the average power of the received

multipath signal, i.e.,

L
∑

ℓ=1

E{|gℓ|2} = E{|H(t; f)|2} = σ2
h. (27)

• The phases θℓ are r.v. uniformly distributed in [−π, π).
• The distances dTℓ and dRℓ in (8) are positive-valued

functions of the AODs φTℓ and AOAs φRℓ , i.e.:

dTℓ = GT (φTℓ ), GT : [−π, π) 7−→ R
+ (28a)

dRℓ = GR(φRℓ ), GR : [−π, π) 7−→ R
+. (28b)

• The AODs φTℓ and AOAs φRℓ are circular symmetric r.v.

characterized by PDFs pTφ (φ), and pRφ (φ), respectively.

• Only one side of the radio link is affected by local

interactions with IOs. If the interactions occur on the

receiver side, then the AODs φTℓ and the AOAs φRℓ are

related by the non-linear transformation

φTℓ = arctan

(

dRℓ sin(φRℓ )

D + dRℓ cos(φRℓ )

)

, ∀ℓ. (29)

Note that
•

p
T
ℓ = [D, 0]† − •

p
R
ℓ . Therefore, we have φTℓ =

arg{ •

p
T
ℓ} = arg{[D, 0]†− •

p
R
ℓ }. On the other hand, if the

interactions with IOs occur on the transmitter side, then

φTℓ and φRℓ are related by

φRℓ = π + arctan

(

dTℓ sin(φTℓ )

dTℓ cos(φTℓ )−D

)

, ∀ℓ. (30)

Note that φRℓ = arg{ •

p
R
ℓ } = arg{[D, 0]† − •

p
T
ℓ }.

• The gains gℓ, phases θℓ, and AODs φTℓ form a set of 3×L
statistically independent r.v.

B. Distributions of the Envelope and Phase

Substituting (14) into the definition of H(t; f), we find that

H(t; f) = ΩT0
(t)

L
∑

ℓ=1

gℓ exp
{

j
[

θℓ + 2πτℓ(t)[fc − f ]
]}

. (31)

Under the conditions stated in the previous subsection, one can

easily verify that the mean value and the variance of H(t; f)
are constant quantities equal to zero and σ2

h, respectively. In

addition, following a similar procedure as the one applied

in [23] to investigating the envelope distribution of sum-of-

cisoids (SOC) processes of Class VIII, it can be shown that the

first-order PDF pζ(z; t, f) of the envelope ζ(t, f) , |H(t; f)|
of H(t; f) is equal to

pζ(z; t, f) = (2π)2z

∞
∫

0





L
∏

ℓ=1

∞
∫

0

pgℓ (yℓ)J0(2πxyℓ) dyℓ





×J0(2πzx)xdx, z ≥ 0 (32)

for t ∈ [0, T0], and f ∈ R. where pgℓ (·) is the PDF of the ℓth
random gain gℓ, and J0(·) is the Bessel function of the first

kind and zero order. In turn, the PDF pψ(ϕ; t, f) of the phase

ψ(t, f) , arg{H(t; f)} is found to be given as

pψ(ϕ; t, f) =
1

2π
, ϕ ∈ [−π, π) (33)

for t ∈ [0, T0], and f ∈ R.

Equations (32) and (33) show that the envelope ζ(t, f) and

phase ψ(t, f) of the proposed channel model are first-order

stationary random processes, as their corresponding PDFs do

not change over time and frequency. It is important to stress

that this characteristic does not imply that the channel transfer

function H(t; f) is a WSS random process, as we also need

information about the 4D TF-CF to reach that conclusion.

We can further observe from (33) that the phase ψ(t, f) is

modeled by a uniform circular distribution, regardless of the

number of multipath components L. On the other hand, for

large values of L (infinitely large, in theory), the central

limit theorem guarantees the convergence of pζ(z; t, f) to the

Rayleigh PDF with parameter σ2
h/2. The rate of convergence

will vary depending on the form of the PDFs of the gains gℓ.
However, if the gains follow a Rayleigh distribution, then (32)

can be simplified to (see Appendix A)

pζ(z; t, f) = pζ(z) =
2z

σ2
h

exp

{

− z2

σ2
h

}

, z ≥ 0. (34)

This equation holds even if the gains have dissimilar variances,

or if the number of multipath components is as small as L =
1. This latter scenario (L = 1) is clearly meaningful only
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from a purely mathematical standpoint, because in practice,

the Gaussianity of the channel requires the combination of

several multipath components, meaning that L ≫ 1. While

not shown in this paper, one can verify by proceeding as in

[23], [24] that the envelope ζ(t, f) and the phase ψ(t, f) are

mutually statistically independent random processes [25].

C. Four-Dimensional Time-Frequency Correlation Function

The channel 4D TF-CF is defined as [26]

RH(t, f ; ∆t,∆f) , E{H∗(t−∆t; f)H(t; f +∆f)}. (35)

By a direct evaluation of (35), it can be shown that

RH(t, f ; ∆t,∆f) is given as in (36a) at the bottom of this

page if the local IOs are randomly distributed around the

receiver, where φT is given as in (29), fPWD is the Doppler

frequency shift defined in (23) with the index ℓ removed, and

Υ(t,∆t) = σ2
h ΩT0

(t)ΩT0
(t−∆t). (37)

On the other hand, we obtain (36b) if the IOs are distributed

around the transmitter, where φR is the AOA defined in (30).

Note that the statistical expectations in (36) are evaluated

with respect to time-invariant PDFs. This is opposite to

the expressions obtained by following the SWP framework,

which depend on time-varying PDFs (e.g., see [9]). The

results presented in (36) are therefore more mathematically

tractable; although they are valid only for the small-scale

statistical characterization of M2M channels. The TF-CFs in

(36) incorporates the delays drifting effect through the term
1
C
[GT (·) +GR(·)]− tfPWD /fc in the integrals’ exponents. The

results obtained so far by the PWP framework do not take this

effect into account (see, e.g., [10]–[12]).

D. Stationarity Analysis

1) Wide-Sense Stationarity: To analyze the stationarity

properties of the proposed channel model, let us first recall

that a random process is called weak stationary, or WSS,

if its statistical properties of the first and second order are

invariant to a shift of the origin [27, Ch. 9]. For the proposed

channel model, which is characterized by a 2D random process

H(t; f), the fulfillment of the WSS condition would imply that

its mean value is constant, whereas its 4D TF-CF depends only

on the 2D lag variable (∆t,∆f), i.e.,

E{H(t; f)} = mH (38)

RH(t1, f1; ∆t,∆f) = RH(t2, f2; ∆t; ∆f) (39)

for mH ,∆t,∆f ∈ R, and any pair of observation points

(t1, f1) and (t2, f2) in the domain of RH(t, f ; ∆t,∆f). We

note that RH(t, f ; ∆t,∆f) is a TF-invariant function under

the condition in (39). In addition, the fulfillment of (38)

and (39) implies that H(t; f) is simultaneously WSS in the

time and the frequency domains. In the context of channel

modeling, a random process that is WSS in both domains

(time and frequency) is also called a WSSUS process [20].

One should keep in mind, however, that a 2D random process

that does not meet the WSSUS conditions could still be a WSS

process in one dimension, either in time or in frequency.

From the results presented in (36), we can conclude that the

proposed channel model is a non-WSSUS process, because its

4D TF-CF is a TF-dependent function (note that the integrals

at the right-hand side of (36) depend on time t and frequency

f ). This is a noteworthy feature, since our modeling framework

does not consider shadowing, path-loss, time-varying angular

statistics, or the appearance and disappearance of IOs, which

are well-known causes of nonstationarities. The nonstationary

characteristics of our channel model stem from the time-

varying nature of the propagation delays.

Even though the proposed channel model does not fulfill

the WSSUS conditions, meaning that the requirements for

wide-sense stationarity cannot be met simultaneously in both

the time and frequency domains, we can conclude from

(36) that H(t; f) is a WSS random process in the time

domain if we neglect the channel’s frequency selectivity, i.e.,

if ∆f = 0. Thereby, RH(t, f ; ∆t,∆f) becomes a time-

invariant (although frequency-dependent) function, that is,

RH(t1, f ; ∆t,∆f) = RH(t2, f ; ∆t; ∆f) for all f, t1, t2 ∈ R

if ∆f = 0. This indicates that an M2M Rayleigh fading chan-

nel can be modeled by a time-domain WSS random process

for fixed values of f , i.e., for continuous-wave transmissions.

Our proposed model is thus compatible with other relevant

WSS narrowband Rayleigh fading channel models that have

widely been in use in the past as reference models for system

design, such as the model proposed by Clarke in [18]. Analo-

gously, H(t; f) becomes a frequency-domain WSS random

process if we neglect the channel’s time selectivity. Under

this condition, RH(t, f ; ∆t,∆f) proves to be a frequency-

invariant (time-dependent) function, i.e., RH(t, f1; ∆t,∆f) =
RH(t, f2; ∆t; ∆f), ∀t ∈ [0, T0] and f1, f2 ∈ R if ∆t = 0.

2) Quasi-Wide-Sense Stationarity: The two particular cases

discussed above are of theoretical relevance, as they allow

identifying scenarios where the WSS condition is fully met,

even if only in one dimension. However, such scenarios have

limited practical significance. To obtain a more meaningful

notion of the stationarity properties of the proposed channel

model, we should turn our attention to the concept of quasi-

wide-sense stationarity [28]. In this regard, we recall that

RH(t, f ; ∆t,∆f) = Υ(t,∆t)

π
∫

−π

pRφ (φ) exp

{

−j2π
[

∆tfPWD
fc − f

fc
+∆f

(GT (φT ) + GR(φ)
C − t

fPWD
fc

)]}

dφ (36a)

RH(t, f ; ∆t,∆f) = Υ(t,∆t)

π
∫

−π

pTφ (φ) exp

{

−j2π
[

∆tfPWD
fc − f

fc
+∆f

(GT (φ) + GR(φR)
C − t

fPWD
fc

)]}

dφ (36b)
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a 2D random process is deemed quasi-WSS if in spite of

having time- and frequency-varying first- or/and second-order

statistics, the variations of such statistics are within a given

margin that allows to treat them as (quasi) invariant over finite

intervals (stationarity intervals [29]) or regions (stationarity

regions [28]). Hence, for a 2D quasi-WSS random process

H(t; f), (38) and (39) hold only as approximate relations over

finite observation regions in the TF-plane.

While a thorough analysis of quasi-wide-sense stationarity

is beyond the scope of this paper, some general observa-

tions can be made in that regard from (36). For example,

we can observe from (36) that the frequency variations of

RH(t, f ; ∆t,∆f) are caused by the term ∆tfPWD (fc−f)/fc.
In practice, the values of f are restricted to |f | ≤ B/2,

where B is the signal’s bandwidth. Given that B is typi-

cally much smaller than the carrier frequency fc, we can

use the approximation (fc − f)/fc ≈ 1, which results in

∆tfPWD (fc − f)/fc ≈ ∆tfPWD . Hence, in spite of the fact

that the channel transfer function H(t; f) is strictly speaking

a non-WSS process in the frequency domain, we can expect

its nonstationary characteristics to be fairly weak over the

information signal’s bandwidth. This means that the channel

can be modeled by a quasi-WSS random process in the

frequency domain if we consider a frequency observation

interval of a length similar to the signal’s bandwidth. The same

observation was made empirically in [16] on the grounds of

measured data. We highlight, nonetheless, that the channel’s

nonstationary characteristics in the frequency domain could

be exacerbated significantly due to factors not considered in

this paper, e.g., moving scatterers [30] or accelerated and non-

linear trajectories of the mobile stations [31].

On the other hand, we can observe from (36) that the tem-

poral variations of RH(t, f ; ∆t,∆f) are caused by the term

tfPWD ∆f/fc, which is influenced by the degree of mobility

(through the combined Doppler frequency shift fPWD ), the

signal’s bandwidth (through the frequency lag ∆f ), and the

carrier frequency fc. Hence, the channel can be modeled by a

quasi-WSS random process in the time domain over the region

associated with Υ(t,∆t)T 2
0 /σ

2
h if the user moves at a very

low speed (fPWD ≈ 0), or if the signal’s bandwidth B is much

smaller than fc, such that fPWD ∆f/fc ≈ 0, for |∆f | ≤ B
(nearly continuous-wave transmissions).

Summarizing, we can say that even though the proposed

channel model is a non-WSSUS random process, it fulfills the

WSS condition in one dimension (either time or frequency) if

its selectivity is negligible in the other dimension (frequency or

time). This means, for example, that a small-scale frequency-

nonselective line-of-sight (LOS) channel could be deemed

WSS in the time domain even if its propagation delay varies

over time, as intuition may suggest. The results presented in

(36) also show that our channel model exhibits quasi-WSS

characteristics, indicating the existence of transition regions

(quasi-WSS regions) between non-WSS and WSS regions.

Further research is necessary, however, to find a suitable

method for determining the area of such quasi-WSS regions

for a given level of tolerance in the variations of the channel’s

statistics. The results obtained in that regard can be used,

for example, as a benchmark for analyzing and comparing

the performance of existing techniques for the estimation of

quasi-stationary intervals/regions of real-world M2M fading

channels, e.g., those surveyed in [28] and [29].

E. Local Scattering Function, and Time-Frequency Dependent

Delay and Doppler Profiles

Regarding the spectral properties of H(t; f), the 2D Fourier

transform of the TF-CF RH(t, f, ; ∆t,∆f) with respect to ∆t
and ∆f defines the TF-dependent LSF [26]

SH(t, f ; v, τ) ,

∞
∫

−∞

∞
∫

−∞

RH(t, f ; ∆t,∆f)

× exp{j2π[τ∆f − v∆t]} d∆t d∆f. (40)

The TF-dependent LSF SH(t, f ; v, τ) is a complete second-

order statistic of nonstationary channels. It provides informa-

tion about the channel’s dispersion in the delay and Doppler

frequency domains, and its definition is consistent with that

of the scattering function of WSSUS channels [20, Eq. (14.1-

22)]. However, in contrast to the power spectral density

(PSD) of a stationary process, SH(t, f ; v, τ) is not everywhere

real valued or positive [26]. This shortcoming prevents from

giving a clear physical interpretation of the TF-dependent

LSF, and a large amount of research has been devoted to

find alternative definitions of TF distribution functions (e.g.,

see [32] and [33]). Most notably is the generalized LSF

(GLSF) SGH(t, f ; v, τ) , SH(t, f ; v, τ)⊛4K(t, f ; v, τ), where

the operator ⊛x denotes the x-dimensional convolution, and

K(t, f ; v, τ) is a kernel function [26]. The GLSF SGH(t, f ; v, τ)
is always real-valued and positive. It is similar in that respect

to the PSD of a stationary process [26]. Nonetheless, the

computation of a proper kernel function for the evaluation of

SGH(t, f ; v, τ) is out of the paper’s scope. For this reason, we

will restrict our attention to the LSF defined by (40) and to

the particular cases stemming from it.
Assuming that the IOs are randomly located around the

receiver, we find by substituting (36a) into (40) that

SH(t, f ; v, τ) = σ2
h T0 ΩT0

(t)

π
∫

−π

pRφ (φ)

× exp

{

−j2π
(

v + fPWD
fc − f

fc

)(

t− T0
2

)}

×sinc

(

πT0

[

v + fPWD
fc − f

fc

])

×δ
(

τ − GT (φT ) + GR(φ)
C + t

fPWD
fc

)

dφ. (41)

The channel’s dispersion in the delay domain is characterized

by the TF-dependent delay profile [26]

PH(t, f ; τ) ,
∞
∫

−∞

SH(t, f ; v, τ) dv (42)

=

∞
∫

−∞

RH(t, f ; 0,∆f)

× exp{j2πτ∆f} d∆f. (43)
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In turn, the dispersion in the Doppler frequency domain is

characterized by the TF-dependent Doppler profile [26]

DH(t, f ; v) ,

∞
∫

−∞

SH(t, f ; v, τ) dτ (44)

=

∞
∫

−∞

RH(t, f ; ∆t, 0)

× exp{−j2πv∆t} d∆t. (45)

For the LSF in (41), we have:

PH(t, f ; τ) = σ2
h ΩT0

(t)

π
∫

−π

pRφ (φ)

×δ
(

τ − GT (φT ) + GR(φ)
C + t

fPWD
fc

)

dφ (46)

DH(t, f ; v) = σ2
h T0ΩT0

(t)

π
∫

−π

pRφ (φ)

× exp

{

−j2π
(

v + fPWD
fc − f

fc

)(

t− T0
2

)}

×sinc

(

πT0

[

v + fPWD
fc − f

fc

])

dφ. (47)

Equation (46) shows that the TF-dependent delay profile

PH(t, f ; τ) of the proposed channel model does not depend

on the frequency f variable. This is due to the fact that we

have not considered group delay dispersion for the definition

of the CIR h(t; τ) given by (1), as pointed out at the end of

Section II.2 On the other hand, the delay profile PH(t, f ; τ)
is a time-varying function, as was to be expected, since the

propagation delays of the received waves change over time

due to the drifting effect. To simplify our notation, we will

hereafter denote the delay profile by PH(t; τ). In turn, the

result in (47) shows that the TF-dependent Doppler profile

DH(t, f ; v) varies in both the time and the frequency do-

mains. The frequency dependence of DH(t, f ; v) indicates that

the “frequency modulation” effects caused by the channel’s

dispersion in the Doppler frequency domain are different for

each spectral component of the transmitted signal. In practice,

however, such differences can be expected to be small, since

(fc − f)/fc ≈ 1 within the signal’s bandwidth.

VI. THE GEOMETRICAL ONE-RING SCATTERING MODEL

In this section, we present a novel approximate closed-

form solution of (36) by considering the particular case of

the propagation scenario shown in Fig. 4, where the IOs are

located on a ring of radius d centered on OOO′. In addition,

we present some numerical results that illustrate the remarks

we made in the previous section about RH(t, f ; ∆t,∆f),
PH(t; τ), and DH(t, f ; v). For that purpose, we will assume

that the AOAs φRℓ follow the von Mises distribution [34] with

mean µ ∈ [−π, π) and concentration parameter κ, 0 ≤ κ <∞,

2The effects of group delay distortion should be taken into account,
nonetheless, for wireless communication system operating with very large
bandwidths, such as the emerging mm-Band wireless communication systems.
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y
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ℓ
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p
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ℓ

•

p
R

ℓ′

Fig. 4. Illustration of the geometrical one-ring scattering model.

in such a way that pRφ (φ) = exp{κ cos(φ− µ)}/(2πI0(κ)),
φ ∈ [−π, π), where I0(·) is the modified Bessel function of

the first kind and zero order. The use of the von Mises PDF

to model the AOA statistics of mobile fading channels was

originally proposed in [35]. In that paper, the authors provide

evidence of the suitability of such a PDF to match measured

data. This model has widely been employed for the statistical

analysis of F2M and M2M fading channels [10]–[12], [14].

A. Four-Dimensional Time-Frequency Correlation Function

for the Geometrical One-Ring Model

For the geometrical one-ring scattering model shown in

Fig. 4, and assuming that the condition d ≪ D is fulfilled,

meaning that the mobile terminals are far enough from each

other, one can verify that (see Appendix B)

RH(t, f ; ∆t,∆f) ≈ Υ(t,∆t)

×exp{−j2πA(t, f ; ∆t,∆f)}
I0(κ)

×I0
(

{

[

κ cos(µ)− j2πBc(t, f ; ∆t,∆f)
]2

+
[

κ sin(µ)− j2πBs(t, f ; ∆t,∆f)
]2
}1/2

)

(48)

where:

A(t, f ; ∆t,∆f) = Z(t, f ; ∆t,∆f)fTmax cos(γT )

+∆f

(

D + d

C

)

(49a)

Bc(t, f ; ∆t,∆f) = Z(t, f ; ∆t,∆f)fRmax cos(γR)

−∆f
d

C (49b)

Bs(t, f ; ∆t,∆f) = Z(t, f ; ∆t,∆f)
[

fTmax

d

D
sin(γT )

+fRmax sin(γR)
]

(49c)

Z(t, f ; ∆t,∆f) = ∆t

(

fc − f

fc

)

−∆f
t

fc
. (49d)

The 4D TF-CF in (48) and (49) includes as spe-

cial cases other relevant correlation models for multipath

fading channels. For example, we obtain the correlation

model proposed by Clarke in [18] for isotropic scattering

F2M channels if we take κ = 0, fTmax = 0, γT =
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0◦, and ∆f ≈ 0 (narrowband communications) in (48)

and (49). Under these conditions, and taking into account

that (fc − f)/fc ≈ 1, we have RH(t, f ; ∆t,∆f) ≈
Υ(t,∆t)J0(2πf

R
max∆t). Under the same conditions, but tak-

ing κ 6= 0, we find that RH(t, f ; ∆t,∆f) ≈ Υ(t,∆t)
I0(
√

κ2 − (2πfRmax∆t)
2 − j4πκ cos(µ)fRmax∆t)/I0(κ). This

latter result can be identified as the correlation model proposed

by Abdi, Barger, and Kaveh in [13] for non-isotropic scattering

F2M channels. Thus, the 4D TF-CF presented in this section

can be seen as a generalization of such correlation models

with respect to nonstationary TF-dispersive M2M channels.

B. Time-Frequency Dependent Delay and Doppler Profiles for

the Geometrical One-Ring Model

The Fourier transform of the modified Bessel function in

(48) cannot be written in a closed form for the mapping

(∆t,∆f) 7−→ (v, τ). For this reason, the LSF associated to the

4D TF-CF presented in (48) has to be evaluated numerically.

The numerical analysis simplifies significantly if one considers

the TF-dependent delay and Doppler profiles PH(t; τ) and

DH(t, f ; v) instead of the LSF. Substituting (48) into (43) and

(45), we obtain:

PH(t; τ) ≈ σ2
h ΩT0

(t)

I0(κ)

×
∞
∫

−∞

exp {j2π [∆fτ −A(t, f ; 0, 1)]}

×I0
(

{

[

κ cos(µ)− j2πBc(t, f ; 0,∆f)
]2

+
[

κ sin(µ)− j2πBs(t, f ; 0,∆f)
]2
}1/2)

)

d∆f (50)

DH(t, f ; v) ≈ σ2
h ΩT0

(t)

I0(κ)

×
t
∫

t−T0

exp {−j2π [∆tv +A(t, f ; 1, 0)]}

×I0
(

{

[

κ cos(µ)− j2πBc(t, f ; ∆t, 0)
]2

+
[

κ sin(µ)− j2πBs(t, f ; ∆t, 0)
]2
}1/2

)

d∆t. (51)

C. Numerical Examples

To illustrate the observations we made in Section V about

the correlation and spectral properties of the proposed channel

model, we will consider the modeling of a TF dispersive M2M

channel for IEEE 802.11p-based DSRC systems [4]. For the

modeling of such a channel, we have considered the param-

eters summarized in Table I. The length of the observation

window T0 = 6.4 ms corresponds to the length of a data

frame comprising 600 OFDM symbols. In turn, the 200 Hz

value of the maximum Doppler frequencies corresponds to a

speed of 37 km/h. The domain of RH(t, f ; ∆t,∆f) spans the

region defined by t ∈ [0, T0], ∆t ∈ [t− T0, t], f ∈ (−∞,∞),
and ∆f ∈ (−∞,∞). However, for practical purposes, the

relevant region is bounded by the system’s bandwidth B, in

TABLE I
SIMULATION PARAMETERS

Description Value

Average power of the channel (σ2
h) σ2

h = 1

Carrier frequency (fc) fc = 5.9 GHz

System’s bandwidth (B) B = 10 MHz

Length of the observation window

ΩT0
(t) (T0)

T0 = 6.4 ms

Maximum Doppler frequency due to

the transmitter’s speed (fTmax)

fTmax = 200 Hz

Maximum Doppler frequency due to

the receiver’s speed (fRmax)

fRmax = 200 Hz

Azimuth direction of motion of the

transmitter (γT )

γT = 45◦

Azimuth direction of motion of the

receiver (γR)

γR = 225◦

Initial distance between the transmit-

ter and the receiver (D)

D = 500 m

Radius of the ring of scatterers (d) d = 30 m

such a way that |f | ≤ B/2, and |∆f | ≤ B. Unless otherwise

stated, we will work with such a reduced domain.

1) 4D Time-Frequency Correlation Function: Figure 5

shows the absolute value of RH(t, f ; ∆t,∆f) evaluated at

four different observation points in the TF plane. The 2D

correlation functions (CFs) shown in this figure are similar

to the spaced-frequency spaced-time (SF-ST) CF of WSSUS

fading channels [20] in the sense that they also characterize

the channel correlation around a reference observation point

(t, f). However, in contrast to the SF-ST CF, which is invariant

in both the time t and the frequency f variables, the shape of

the CFs shown in Fig. 5 varies from one observation point

to another; this is a distinctive characteristic of nonstationary

processes. The graphs presented in Fig. 5 also show that

the channel 4D TF-CF varies more rapidly in time than

in frequency. These results suggest that the nonstationarities

of the proposed channel model are stronger in the time

domain than in the frequency domain. In fact, by comparing

Figs. 5(a) and 5(c) (or Figs. 5(b) and 5(d)), it might seem that

|RH(t, f ; ∆t,∆f)| is a frequency invariant function, which

in turn could be interpreted as an indication of the channel

being a frequency-domain WSS random process. Nevertheless,

this is not a correct appreciation, since RH(t, f ; ∆t,∆f) does

vary over frequency, but at a rate that is much larger than the

system’s bandwidth. This can readily be seen if one compares

Figs. 5(c) and 5(d) with Figs. 6(a) and 6(b), respectively. Note

that in Fig. 6, the reference observation frequency is 1000

times larger than that in Figs. 5(c) and 5(d).

The nonstationary characteristics of H(t; f) in the

frequency-domain are further evinced by the lack of symmetry

of |RH(t, f ; ∆t,∆f)| around ∆f = 0; recall that a WSS

random process is Hermitian symmetric around the origin [36,
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(a) (b)

(c) (d)

Fig. 5. Absolute value of the 4D TF-CF RH (t, f ; ∆t,∆f) at four different observation points (t, f) with t ∈ {0.25 T0, 0.75T0} and f ∈ {0.15B,−0.4B}.

Theorem 10.12]. To make this fact apparent, we plot in Fig. 7

the absolute value of the 4D TF-CF for two observation points

in the (t,∆t)-plane: one with t = 0.25T0 and ∆t = −0.5T0,

and the other with t = 0.25T0 and ∆t = 0. Note that

the resulting 2D CFs are analogous to the frequency CF

(FCF) of WSSUS channels, as they also describe the channel’s

frequency-correlation properties for fixed values of t and ∆t.

The graph of |RH(t, f ; ∆t,∆f)| shown in Fig. 7(a) is

clearly asymmetric. This indicates that for the chosen obser-

vation point (t = 0.25T0,∆t = −0.5T0), the channel is a

frequency-domain non-WSS process. A different scenario is

presented in Fig. 7(b) with ∆t = 0, where |RH(t, f ; ∆t,∆f)|
is symmetric around ∆f = 0, and reaches a maximum also

at ∆f = 0, meaning that h(t; τ) is a frequency-domain WSS

process [36, Theorem 10.12]). This is not surprising, as we

pointed out in Section V-C that the channel is a WSS process

in the frequency domain if ∆t = 0, i.e., if the length of

the observation time window is infinitely small (note that

∆t = 0 for the example presented in Fig. 7(b)). In fact,

the shape of |RH(t, f ; ∆t,∆f)| gradually becomes symmetric

about the ∆f variable as ∆t approaches to zero. This means

that for “sufficiently small” values of ∆t, |RH(t, f ; ∆t,∆f)|
can be presumed to be symmetric about the ∆f -axis, and the

proposed channel model can in turn be considered as quasi-

WSS in the frequency domain.

Similarly, we show in Fig. 8 the absolute value of the 4D

TF-CF for two observation points in the (f,∆f) plane: one

with f = 0.15B and ∆f = −0.6B, and the other with

f = 0.15B and ∆f = 0. The CFs presented in this figure

are analogous to the time CF (TCF) of WSSUS channels.

Nevertheless, in addition to being frequency dependent, the

domain of the CFs in Fig. 8 is constrained to t ∈ [0, T0]
and ∆t ∈ [t − T0, t]. The symmetries of RH(t, f ; ∆t,∆f)
around ∆t = 0 are not easy to assess from Fig. 8 because

of such a truncated domain. However, taking the projection of

RH(t, f ; ∆t,∆f) onto an arbitrary plane defined for a fixed

t (and given that f and ∆f have also been fixed), we obtain

the curves shown in Fig. 9. This latter figure suggests that the

channel is a time-domain WSS process within the observation

time window if ∆f = 0, but it is otherwise a non-WSS

process. Again, we observe that |RH(t, f ; ∆t,∆f)| becomes

a symmetric function in the ∆t variable as ∆f approaches

to zero, indicating that our channel model may be considered

quasi-WSS in the time domain for small values of ∆f .

2) Time-Frequency Dependent Delay Profile: Regarding

the channel’s dispersion in the delay domain, we present plots
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(a)

(b)

Fig. 6. Absolute value of the 4D TF-CF RH (t, f ; ∆t,∆f) at two different
observation points (t, f) with t ∈ {0.25 T0, 0.75T0} and f = −400B.

of the normalized absolute value of the TF-dependent delay

profile PH(t; τ) in Fig. 10. The graphs shown in this figure

were generated by evaluating (50) for: f = 0 (the value

of f is in fact irrelevant, because PH(t; τ) is a frequency-

invariant function), fTmax = fRmax = 500 Hz (corresponding to

a speed of 91 km/h), (γT , γR) ∈ {(45◦, 165◦), (165◦, 45◦)},

and T0 = 320 ms (corresponding to the duration of 50

IEEE 802.11p-based data frames, each comprising 800 OFDM

symbols). The values of the maximum Doppler frequencies

(fTmax and fRmax) and the length T0 of the observation time

window have been increased with respect to the examples

presented in Figs. 5–9 to highlight the variability in time of

PH(t; τ). This modification does not compromise the validity

of the results presented in (48) and (50), since for the given

values of fTmax = 500 Hz, fRmax = 500 Hz, T0 = 320 ms, and

d = 30 m, we can guarantee that the receiver is always nearby

the reference point OOO′ (see Fig. 2). This condition has to be

fulfilled to ensure that the receiver antenna will be within the

path of the plane waves that propagate from the ring of IOs

towards OOO′. Note that the time taken by the receiver to move

from the center to the border of the ring is equal to 1.18 s,

which is more than three times the chosen value of T0.

(a)

(b)

Fig. 7. Absolute value of the 4D TF-CF RH (t, f ; ∆t,∆f) at two observation
points (t,∆t) with t = 0.25T0 and ∆t ∈ {t− 0.75T0, t− 0.25T0}.

The graphs shown in Fig. 10 provide a clear illustra-

tion of the propagation delay’s temporal evolution. In the

example presented in Figs. 10(a) and 10(b), the receiver

and the transmitter are moving toward each other (although

not directly). For this reason, the maximum excess delay

shrinks as t increases. On the other hand, in the example

presented in Figs. 10(c) and 10(d), the mobile stations are

moving away from each other. The maximum excess delay

therefore increases as t increases. Figure 10 also show that

for t = 0, the minimum and maximum excess delays are

approximately equal to 1.67 µs and 200 ns, respectively. This

is consistent with the geometry of the propagation scenario,

since a traveling wave takes D/C = 1.667 µs to cover the

distance D = 500 m between the mobile terminals at t = 0,

and it takes an additional time of 2d/C = 200.13 ns to travel

over the longest path.

3) TF Dependent Doppler Profile: Finally, we show in

Fig. 11 the normalized absolute value of the TF-dependent

Doppler profile DH(t, f ; v) for |f | ≤ B/2, |v| ≤ 2(fTmax +
fRmax), and t ∈ {0.1T0, 0.8T0}. Again, we consider: fTmax =
fRmax = 500 Hz, and (γT , γR) ∈ {(45◦, 165◦), (165◦, 45◦)}.

However, for the evaluation of (51), we set T0 = 6.4 ms.
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(a)

(b)

Fig. 8. Absolute value of the 4D TF-CF RH (t, f ; ∆t,∆f) at two observation
points (f,∆f) with f = 0.15B and ∆f ∈ {−0.6B, 0}.

One can readily observe from the graphs presented in

Fig. 11 that DH(t, f ; v) is a time-varying function, as

mentioned in Section V-E. Nonetheless, the variability of

DH(t, f ; v) in the frequency domain cannot be appreciated

from this figure due to the short observation frequency inter-

val. To demonstrate that DH(t, f ; v) is a frequency-varying

function, we present in Fig. 12 the color map of the surface

in Fig. 11(c) and the color map of the same surface but for

a larger observation window, |f | ≤ 100B. This figure shows

that the shape of |DH(t, f ; v)| does change in frequency, but

at a very low rate. This is consistent with the observations

made at the end of Section V-E.

VII. CONCLUSIONS

In this paper, we proposed a novel GBSM for small-scale

non-WSSUS M2M Rayleigh fading channels. Based on this

model, we derived general analytic expressions for the first-

order PDFs of the envelope and phase, the 4D TF-CF, LSF,

and TF-dependent delay and Doppler profiles. In addition, by

assuming that the IOs are randomly located on a ring sur-

rounding the receiver, we derived a novel approximate closed-

form expression for the channel 4D TF-CF. The analytical
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∆
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f
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Fig. 9. Projections of the surfaces shown in Fig. 8 onto an arbitrary plane in
which t is fixed.

and numerical results presented here provide new insights into

the correlation and spectral properties of nonstationary M2M

Rayleigh fading channels. Our results indicate that for the

propagation over small local areas, the channel’s nonstationar-

ities are determined by the propagation environment (through

the geometrical configuration of the propagation area) and

the transmission system’s frequency range. In the frequency

domain, the nonstationarities are influenced by the ratio of

the transmitted signal bandwidth B to the carrier frequency

fc, whereas in the time domain, they are influenced by the

degree of mobility, the signal’s bandwidth, and the carrier

frequency. Even though the proposed channel model is a non-

WSSUS random process, it approximately fulfills the WSS

condition in one dimension (either time or frequency) if its

selectivity is negligible in the other dimension (frequency or

time). Furthermore, the obtained results suggest the existence

of transition regions (quasi-WSS regions) between non-WSS

and WSS characteristics.

The conclusions drawn here are in good agreement with

empirical observations made independently in previous papers.

However, further research is necessary to obtain a repre-

sentative measurement data base that allows for a thorough

validation of the proposed channel model. Future work also

calls for an in-depth analysis of the quasi-WSS properties of

channel models to accurately identify quasi-WSS regions in

the time and/or frequency dimensions.

APPENDIX A

DERIVATION OF THE PDF IN (34)

If the random gains gℓ are characterized by a Rayleigh

distribution, in such a way that pgℓ (z) =
z
σ2

ℓ

exp{−z2/(2σ2
ℓ )},

where σℓ 6= σk for ℓ 6= k, then

pζ(z; t, f) = (2π)2z

×
∞
∫

0





L
∏

ℓ=1

∞
∫

0

yℓ
σ2
ℓ

exp

{

− y2ℓ
2σ2

ℓ

}

J0(2πxyℓ) dℓ





×J0(2πzx)xdx, z ≥ 0. (52)
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(c) 3D surface of |PH (t; τ)| for γT = 165◦ and γR = 45◦
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(d) Color map of |PH(t; τ)| for γT = 165◦ and γR = 45◦

Fig. 10. Absolute value of the TF-dependent delay profile PH (t; τ) with f = 0 and fT
max = fR

max = 500 Hz.

Using [37, Eq. (6.631-4)] to solve the innermost integral, we

find

pζ(z; t, f) = (2π)2z

×
∞
∫

0

[

L
∏

ℓ=1

exp
{

−2π2x2σ2
ℓ

}

]

J0(2πzx)xdx

= (2π)2z

×
∞
∫

0

[

exp

{

−2π2x2

(

L
∑

ℓ=1

σ2
ℓ

)}]

J0(2πzx)xdx. (53)

The second moment of the ℓth Rayleigh distributed random

gain gℓ is equal to E{|gℓ|2} = 2σ2
ℓ . Hence,

L
∑

ℓ=1

σ2
ℓ =

1

2

L
∑

ℓ=1

E{|gℓ|2} =
1

2
σ2
h (54)

where we have made use of (27). Then, substituting this result

into (53), and using [37, Eq. (6.633-2)], we obtain (34).

APPENDIX B

DERIVATION OF THE TIME-FREQUENCY CORRELATION

FUNCTION IN (48)

For the geometrical one-ring scattering model at the receiver

side, we have

dTℓ = ‖ •

p
T
ℓ ‖ = D

√

1 +

(

d

D

)2

− 2d

D
cos(φRℓ ) (55)

dRℓ = ‖ •

p
R
ℓ ‖ = d (56)

for all ℓ = 1, 2, . . . ,L. If the mobile terminals are far enough

from each other, in such a way that d ≪ D, then d/D ≪
1 and (d/D)2 ≈ 0. Hence, using the approximate relation√
1 + χ ≈ 1 + χ/2, for |χ| ≪ 1 (cf. [37, Eq. (1.112-3)]), we

can rewrite (55) as

dTℓ ≈ D − d cos(φRℓ ), ∀ℓ = 1, 2, . . . ,L. (57)

Under the same condition, and taking into account that

arctan(χ) ≈ χ, if χ ≈ 0 [37, Eq. (1.643-1)], we can

approximate the AODs defined in (29) by

φTℓ ≈ d

D
sin(φRℓ ), ∀ℓ = 1, 2, . . . ,L. (58)
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(a) (b)

(c) (d)

Fig. 11. Absolute value of the TF-dependent Doppler profile DH(t, f ; v) evaluated for |f | ≤ B/2, |v| ≤ 2(fT
max + fR

max), and t ∈ {0.1T0, 0.8T0}.

Based on (57) and (58), and using the small-argument approx-

imations cos(χ) ≈ 1, and sin(χ) ≈ χ [37, Eqs. (1.411-1,3)]),

we can write:

GT (φTℓ ) + GR(φRℓ )
C ≈ D + d

C − d cos(φRℓ )

C (59)

fPWD ≈ fTmax cos(γT )

+ cos(φRℓ )f
R
max cos(γR)

+ sin(φRℓ )
[

fTmax

d

D
sin(γT )

+fRmax sin(γR)
]

(60)

if d≪ D. Substituting (59) and (60) into (36a), we find that

RH(t, f ; ∆t,∆f) ≈ Υ(t,∆t) exp{−j2πA(t, f ; ∆t,∆t)}

×
π
∫

−π

exp
{

− j2π
[

Bc(t, f ; ∆t,∆t) cos(φ)

+Bs(t, f ; ∆t,∆t) sin(φ)
]}

pRφ (φ) dφ (61)

where A, Bc, and Bs are the functions defined in (49). Finally,

substituting the von Mises PDF pRφ (φ) into (61), and taking

[37, Eq. (3.338-4,)]) into account, we obtain (48).
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