
ORIGINAL RESEARCH
published: 07 June 2017

doi: 10.3389/fphys.2017.00383

Frontiers in Physiology | www.frontiersin.org 1 June 2017 | Volume 8 | Article 383

Edited by:

John Joseph McCarthy,

University of Kentucky, United States

Reviewed by:

Michael Roberts,

Auburn University, United States

Christopher S. Fry,

University of Texas Medical Branch,

United States

*Correspondence:

Cameron J. Mitchell

cameron.mitchell@auckland.ac.nz

Specialty section:

This article was submitted to

Exercise Physiology,

a section of the journal

Frontiers in Physiology

Received: 12 April 2017

Accepted: 22 May 2017

Published: 07 June 2017

Citation:

D’Souza RF, Bjørnsen T, Zeng N,

Aasen KMM, Raastad T,

Cameron-Smith D and Mitchell CJ

(2017) MicroRNAs in Muscle:

Characterizing the Powerlifter

Phenotype. Front. Physiol. 8:383.

doi: 10.3389/fphys.2017.00383

MicroRNAs in Muscle: Characterizing
the Powerlifter Phenotype
Randall F. D’Souza 1, Thomas Bjørnsen2, Nina Zeng1, Kirsten M. M. Aasen1,
Truls Raastad3, David Cameron-Smith 1 and Cameron J. Mitchell 1*

1 Liggins Institute, University of Auckland, Auckland, New Zealand, 2 Department of Public Health, Sport and Nutrition, Faculty

of Health and Sport Sciences, University of Agder, Kristiansand, Norway, 3 Department of Physical Performance, Norwegian

School of Sport Sciences, Oslo, Norway

Powerlifters are the epitome of muscular adaptation and are able to generate extreme

forces. The molecular mechanisms underpinning the significant capacity for force

generation and hypertrophy are not fully elucidated. MicroRNAs (miRs) are short

non-coding RNA sequences that control gene expression via promotion of transcript

breakdown and/or translational inhibition. Differences in basal miR expression may

partially account for phenotypic differences in muscle mass and function between

powerlifters and untrained age-matched controls. Muscle biopsies were obtained from

m. vastus lateralis of 15 national level powerlifters (25.1 ± 5.8 years) and 13 untrained

controls (24.1 ± 2.0 years). The powerlifters were stronger than the controls (isokinetic

knee extension at 60◦/s: 307.8± 51.6 Nm vs. 211.9± 41.9 Nm, respectively P< 0.001),

and also had larger muscle fibers (type I CSA 9,122 ± 1,238 vs. 4,511 ± 798 µm2 p <

0.001 and type II CSA 11,100 ± 1,656 vs. 5,468 ± 1,477 µm2 p < 0.001). Of the 17

miRs species analyzed, 12 were differently expressed (p < 0.05) between groups with

7 being more abundant in powerlifters and five having lower expression. Established

transcriptionally regulated miR downstream gene targets involved in muscle mass

regulation, including myostatin and MyoD, were also differentially expressed between

groups. Correlation analysis demonstrates the abundance of eight miRs was correlated

to phenotype including peak strength, fiber size, satellite cell abundance, and fiber type

regardless of grouping. The unique miR expression profiles between groups allow for

categorization of individuals as either powerlifter or healthy controls based on a five miR

signature (miR-126, -23b, -16, -23a, -15a) with considerable accuracy (100%). Thus,

this unique miR expression may be important to the characterization of the powerlifter

phenotype.

Keywords: microRNA, resistance training, gene expression, skeletal muscle, mRNA

INTRODUCTION

Powerlifting is a competitive sport which requires maximal lifts for three multi-joint exercises.
Powerlifters display an extreme capacity to generate muscle force relative to their body size. Self-
selection and genetic predisposition undoubtedly play a part in becoming an elite powerlifter.
However, extensive resistance training is required to make a competitive powerlifter (Ostrander
et al., 2009; Pitsiladis et al., 2013). Regardless of the relative importance of genetics and
training, powerlifters embody a unique phenotype, which can aid in understanding the molecular
mechanisms which regulate muscle mass and strength.
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Powerlifters are stronger relative to body size in comparison
to untrained individuals. Theoretically, this greater strength is
due to a combination of increased fiber area, altered muscular
architecture and an improved ability to activate the muscle
(Kawakami et al., 1993; Brechue and Abe, 2002; Matta et al.,
2011). However, the relative importance of each of these factors
is not fully elucidated (Edman, 1979; Narici et al., 1989).

Muscle hypertrophy occurs through a net accretion of muscle
contractile proteins. Chronic resistance training promotes
muscle anabolism via a complex interaction of multiple
competing pathways (Marcotte et al., 2015). A number of
myogenic regulatory factors including MyoD and MyoG are
upregulated in individuals after chronic resistance exercise
(Kosek et al., 2006) and are involved in myogenic remodeling
and programming following exercise (Yablonka-Reuveni et al.,
1999). Conversely, resistance exercise reduces expression of some
genes which promote muscle degradation such as myostatin and
atrogin1, while increasing the expression others such as MuRF1
(Zanchi et al., 2009; Fernandez-Gonzalo et al., 2013). Satellite
cells, which are PAX7+ multipotent cells resident in the stem
cell niche between mature muscle fibers and the basal lamina
(Yin et al., 2013), are involved in the maintenance and repair of
damaged fibers, while also being capable of fusing, to increase
fiber number or supporting hypertrophy via nuclear addition
(Petrella et al., 2008; McCarthy et al., 2011; Roberts et al., 2015).
PAX7 mRNA and positive cells expression have been shown to
increase with both acute and chronic resistance exercise (Nielsen
et al., 2012; Bellamy et al., 2014; Nederveen et al., 2017).

Central in the coordinated regulation of gene expression are
microRNAs (miRs), small non-coding RNAs, that selectively
bind, inhibiting translation or promote degradation of targeted
mRNAs (Ambros et al., 2003; Mathonnet et al., 2007; Townley-
Tilson et al., 2010). Hundreds of different miRs are expressed in
human tissue, with many found to be highly enriched in specific
tissue types (Landgraf et al., 2007; Walden et al., 2009). To date
only a few studies have examined the effect of anabolic stimuli
such as resistance exercise or feeding on muscle miR profiles
(Drummond et al., 2008; Davidsen et al., 2011; Tonevitsky et al.,
2013; Zacharewicz et al., 2013). Of these analyses, 8 miRs (miR-
1, -133a, -133b, -206, -208a, -208b, -486, and -499a) have been
consistently identified as myogenic miRNAs (myomiRs) that are
vastly more abundant within skeletal muscle compared to other
tissues (McCarthy and Esser, 2007; van Rooij et al., 2009; Small
et al., 2010). These myomiRs have been implicated in a variety
of roles within muscle. For example, miR-1, -133a, and -206,
are all involved in the regulation of Pax7 and are themselves
regulated by downstream genes such as MyoD and MyoG (Chen
et al., 2006; Ikeda et al., 2009; Braun and Gautel, 2011). miR-
208a, -208b, and 499a inhibit myostatin and thus are important
in muscle catabolism (Drummond et al., 2009; Hitachi and
Tsuchida, 2014). In addition, miR-499a inhibits Sox-6 expression
which plays a role in the conversion between muscle fiber types
(McCarthy, 2011).

Further to these established myomiRs, there is evidence
from either myogenic cell lines, animal and human studies, of
other miRs that may exert crucial roles in control of muscle
hypertrophy, atrophy, myogenesis, and apoptosis via cell cycle

regulation (Muscat and Dressel, 2000; Naguibneva et al., 2006;
Fish et al., 2008; Wang et al., 2008; Williams et al., 2009; Aqeilan
et al., 2010; Nakasa et al., 2010; Nan et al., 2010; Dey et al.,
2011; Sun et al., 2012). From this increasing literature, only those
miRNAs that have been demonstrated from both mechanistic
analysis in cell lines and in-vivo were selected as being key
candidates for analysis. This included an additional subset of 9
miRs [miR-30b (Naguibneva et al., 2006; Nielsen et al., 2010), -
148b (Li and Xi, 2011; Gastebois et al., 2016), -145 (Cordes et al.,
2009; Sachdeva et al., 2009), -23a (McCarthy, 2014b; Kapchinsky
et al., 2015), -23b (Wang, 2013; Režen et al., 2014), -126 (Fish
et al., 2008; Wang et al., 2008), -15a, -16 (Bandi and Vassella,
2011; Musumeci et al., 2011; Sun et al., 2012; Yin et al., 2012),
and -451a (Mercken et al., 2013; Zang et al., 2015)].

Powerlifters are capable of generating very high relative
muscular forces due to greater muscle size and quality than the
general population (MacDougall et al., 1982). It is unknown if
the basal expression of miRs differs between powerlifters and
healthy controls. Further, it is unclear if miR expression may
partially regulate the expression of genes related to the regulation
of muscle mass. Hence, the aim of this study was to quantitatively
analyse using real-time PCR, the regulation of the extended list
of key myomiRs and key myogenic regulatory mRNA species
in both elite powerlifters and healthy age matched controls. It
was hypothesized that muscle specific miRs with defined roles in
muscle mass regulation are differentially expressed between these
distinctive muscular phenotypes, and that these differences will
relate to the expression of downstream mRNAs.

METHODS

Participants
Thirteen recreationally active young students 24.3 ± 1.8 years
and 15 elite Norwegian Powerlifters aged 23.5 ± 3.1 years were
recruited (Table 1). Exclusion criteria were any injuries of the
musculo-skeletal system that could prevent the participant from
exerting maximal force, use of medication and the use of anabolic
steroids. Subjects were asked to refrain from any strenuous
exercise for 72 h prior to the study day. The study was complied
with the standards set by the Declaration of Helsinki and was
reviewed by the Regional Committee for Medical and Health
Research Ethics (REC South-East). The nature and goals of the
study were thoroughly explained, and all subjects provided a
written informed consent.

TABLE 1 | Participant Characteristics.

Healthy controls Power lifters

Age (years) 24.3 ± 1.8 23.5 ± 3.1

Height (m) 178.6 ± 7.4 176.4 ± 7.1

Weight (kg) 77.4 ± 12.1 94.8 ± 16.7

BMI (kg/m2) 24.1 ± 2.3 30.4 ± 4.3

Values presented as means ± SD, n = 13 controls and n = 15 power lifters.
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Muscle Strength
Isokinetic torque of the knee extensor was measured at 60◦

per second over a range of 70◦ (from 20◦ to 90◦ when 0◦ is
fully extended) using a dynamometer (HUMAC 2009NOMR
CSMi. Testing and Rehabilitation System, USA). Participants
were strapped to the dynamometer chair with two belts crossing
over their chest. Hands were placed on these belts to ensure
isolation of knee extensor muscles. Participants repeated the
test three times after four warm up attempts with strong verbal
motivation from the same individual with the best value being
recorded. To correct for variance between body size between
groups, peak torque was normalized to height as a form of
allometric scaling of strength as proposed by Jaric (2003).

Muscle Biopsy Sampling
Muscle biopsies (200–300 mg) were obtained from m. vastus
lateralis using a 6 mm sterile Bergström needle under
local anesthesia (Xylocain-adrenaline, 10 mg/ml +5 mcg/mL,
AstraZeneca, Södertälje, Sweden). Connective tissue and fat
were dissected away before a bundle of fibers identified for
later immunohistochemical analyses was mounted in OCT
Embedding Matrix (Tissue-tek, O.C.T. compound, Sakura, USA)
and immediately frozen in isopentane, which was pre-cooled
(∼−140◦C) with liquid nitrogen and stored at −80◦C for later
analysis. A ∼20mg piece was snap frozen in liquid nitrogen for
RNA analysis.

miR/mRNA Isolation
Total RNA was extracted from∼20mg of muscle tissue using the
AllPrep R⃝ DNA/RNA/miRNA Universal Kit (QIAGEN GmbH,
Hilden, Germany) following the manufacturer’s instructions as
described by Figueiredo et al. (2016).

miR cDNA/RT-PCR
10 ng of input RNA was used for cDNA synthesis using
TaqManTM Advanced miRNA cDNA Synthesis Kit (Thermo
Fisher Scientific, Carlsbad, CA, USA), miR abundance were
measured by RT-PCR on a QuantStudio 6 (Thermo Fisher
Scientific, Carlsbad, CA, USA) using Applied Biosystems Fast
Advanced Master Mix (Thermo Fisher Scientific, Carlsbad, CA,
USA).

Target miRNAs were miR-15a-5p, -23a-5p, -23b-5p, -499a-3p,
-206, -208a-3p, 208b-3p, -451a, -486-5p, -126-3p, -1-3p, -133a-
3p, -133b, -148b-3p, -30b-3p, -145-5p, and -16-5p Thermo Fisher
Scientific, Cat# A25576, Carlsbad, CA, USA) (Supplementary
Table 1). The geometric mean of three reference miRNAs (miR-
361-5p, -320a, -186-5p; Vandesompele et al., 2002) was used
for normalization based on miRNAs that showed the least
variation amongst the participants between and within groups.
The abundance of miRs were measured using the 2(−!CT)

method (Schmittgen and Livak, 2008).

mRNA cDNA /RT-PCR
1500 ng of input RNA was used for cDNA synthesis using
the High–Capacity RNA-to-cDNATM kit (Life Technologies,
Carlsbad, CA). Messenger RNA (mRNA) was measured by
RT-PCR on a LightCycler 480 II (Roche Applied Science,

Penzberg, Germany) using SYBR Green I Master Mix (Roche
Applied Science). Target mRNAs were decided based on
previously published pubmed literature that associated targeted
miRs with muscle regulatory genes. These included, cMYC,
Myogenic Differentiation 1 (MyoD), Forkhead BoxO3 (FOXO3),
PAX7, Cyclin D1 (CCND1), Myogenin (MyoG), Neural Cell
Adhesion Molecule (NCAM), Atrogin-1, Muscle-Specific RING
Finger Protein 1 (MuRF1), Vascular Endothelial Growth Factor
(VEGF), Myostatin, Histone Deacetylase 4 (HDAC4), Bone
Morphogenetic Protein 2 (BMP2), SRY (Sex Determining
Region Y)-Box 6 (SOX6), Phosphatase and tensin homolog
(PTEN), Serum response factor (SRF), SPRED1, PAX3, and
Forkhead Box 01 (FOXO1). Primers were designed using BLAST
software (sequences in Supplementary Table 2). The geometric
mean of four reference genes was used for normalization
(Vandesompele et al., 2002). The recently proposed human
reference genes (Eisenberg and Levanon, 2013), endoplasmic
reticulum membrane protein complex subunit 7 (EMC7),
valosin-containing protein (VCP), charged multivesicular body
protein 2A (CHMP2A), and chromosome 1 open reading frame
43 (C1orf43) were identified as the least variable and therefore,
used as reference genes (Supplementary Table 3). Standard and
melting curves were performed for every target to confirm primer
efficiency and single-product amplification. The abundance of
mRNAs were measured using the 2(−!CT) method (Schmittgen
and Livak, 2008).

Immunohistochemical Staining
Muscle biopsies were cut to 8 µm thick cross sections at −20◦C
using a cryostat (CM 1950, Leica Biosystems GmbH, Nussloch,
Germany) and mounted on microscope slides (Superfrost Plus,
Menzel-Glaser, Brouschweig, Germany). Glass slides from the
freezer were air dried at room temperature for 10 min and a
PAP-pen (OmmEdge PEN. Vevtor Laboratories, Inc) was used
to draw a lipid ring around sections. Next, primary antibodies
and stains were applied for 45 min incubation in 1% Bovine
Serum Albumin (BSA) (Dako, 10082504) and PBS-t solution
(QC213624, Thermo Fisher Scientific, Carlsbad, CA, USA). BSA
was removed and the slide dried using lint-free paper towel
(Kimtect Science, Precision Wipes Tissue Wipers) to prepare for
secondary antibody application. Specific secondary antibodies
[Alexa-488 goat anti-mouse (Biotium, Inc, Hayward, CA, USA,
1:200) and CF-594 goat anti-rabbit (Biotium, 1:200) were applied
after each primary antibody. Sections were mounted with a
fluorescent anti-fade containing DAPI (for nuclear staining)
(Invitrogen, 1266174, Life Technologies, Denmark, Naerum,
Denmark) and coverslip were pasted together with slides and
stored protected from light in a fridge (5◦C). Satellite cells
were visualized with an antibody against PAX7 (DSHB, 1:100)
and laminin (Dako, 20025756, 1:400) as well as DAPI-stains
(for nuclear staining) (Invitrogen, 1266174, Life Technologies,
Denmark, Naerum, Denmark), while serial sections for MCH-II
(DSHB, 1:1,000) and dystrophin (ABCam, ab15277), 1:500] and
were added onto a separate slide for distinction of the myofiber
border and myofibers type II.

Stained biopsies were visualized on a computer screen using
a light microscope (Olympus BX61, Japan) connected to a
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fluorescent light (EXFO, Xl120PC-Q, Canada) and was used
to quantify the sections. The microscope was also connected
to a digital camera (Olympus DP72, Japan) that took pictures
at 20x zoom of the sections. All morphometric analysis was
performed in Cell-F (Olympus, Japan), TEMA (ChekVision,
Hadsund, Denmark) and ImageJ (version 2.0.0-rc-41/1.5 d,
National Institutes of Health, Bethseda, MD, USA). Type I
(unstained) and type II (stained) myofibers were differentiated,
and myofiber area was determined. On average 543 ± 241
myofibers were analyzed per biopsy sample for the assessment
of muscle fiber area. Satellite cells and myonuclei were identified
using the following criteria: SC had to stain positive for PAX7
and be placed within the basal lamina; nuclei with a subordinate
placement were considered myonuclei. The number of PAX7
positive satellite cells and myonuclei are presented relative to
the number of type I and II myofibers. Myonuclear domain is
expressed as the area of each fiber type supported by a single
myonucleus. A total of 50 myofibers for each fiber type were
analyzed for quantification of myonuclei, in accordance with
previous methods (Mackey et al., 2009). The same investigator
performed all analyses manually.

Statistical Analysis
Statistical analysis was performed using Graph Pad Prism
Software (GraphPad Software Inc., La Jolla, CA). Differences
between controls and powerlifters were determined using
Student’s t-test. Multiple comparison corrections were
undertaken using false discovery rates where p < q was

determined as significant with alpha set at p < 0.05
(Supplementary Table 4). Linear regression was performed
using measures of phenotype including peak strength, fiber
CSA, fiber area per satellite cell and fiber type as dependant
variables with miRs as independent variables. Only miRs which
independently correlated with the dependant variable and
did not correlate with expression of any miRs already in the
model were included in the linear regression models. Step
wise discriminant analyses was performed using IBM SPSS for
Windows Version 23 (IBM Corp. USA) to determine the ability
of miRs to distinguish between powerlifters and controls, as per
(Margolis et al., 2016). Receiver operating characteristic curves
(Prism software) were then used to determine the area under
the curve for each of the potential of miR-126, -23a, -16, -23a,
and -15a in order to correctly identify the powerlifter phenotype.
Prism software was also used to generate graphs. Data are
shown as means ± SD. Statistical significance was accepted at
p < 0.05.

RESULTS

Skeletal Muscle Strength and Histology
The powerlifters were stronger (p < 0.001) than the healthy
control group. This difference was maintained when corrected
for body size (p < 0.001; Figures 1A,B). Powerlifters also
had larger muscle fibers (p < 0.001) of both fiber types
(Figures 1C,D). The area per myonucleus (myonuclear domain)
was not different between groups irrespective of fiber type

FIGURE 1 | Phenotype. (A) Peak knee extension torque (Nm). (B) Peak knee extension torque corrected for body size (C) Type I CSA (µm2). (D) Type II CSA (µm2).

(*difference between power lifter and controls p < 0.05, **difference between power lifter and controls p < 0.005, and *** difference between power lifter and controls

p < 0.001). Data expressed are expressed as means ± SD.
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FIGURE 2 | Immunohistochemistry. Area of fiber per nucleus. (A) Type I (µm2). (B) Type II (µm2). Area of fiber per satellite cell. (C) Type I (µm2). (D) Type II (µm2).

(*difference between power lifter and controls p < 0.05, **difference between power lifter and controls p < 0.005, and ***difference between power lifter and controls

p < 0.001). Data expressed are expressed as means ± SD.

(type I p = 0.555 and type II p = 0.515; Figures 2A,B). No
difference between area of type I fibers per satellite cell was
seen between groups (p = 0.560) however, the powerlifters had
increased type II area per satellite cell (p = 0.007; Figures 2C,D;
Table 2).

miR and Gene Expression
Five of the seven myomiRs measured were differentially
abundant between groups. Four were elevated (miR-486 p =

0.003, -499a p = 0.012, -133a p < 0.001 and -1 p = 0.008), one
lower (miR-206 p = 0.009) in the healthy controls compared
to the powerlifters, two were similarly expressed (miR-208a p
= 0.71 and -208b p = 0.496) between groups. MyomiRs have
putative roles in the control of known muscle mass regulators
such as PAX7 (p < 0.001), PAX3 (p = 0.008), MyoD (p =

0.011), Myostatin (p < 0.001), MyoG (p = 0.002), HDAC4
(p = 0.001), SRF (p < 0.001), and SOX6 (p = 0.008) which
were all more abundant in the powerlifters while PTEN (p =

0.302) transcript abundance was not different between groups
(Figure 3).

miR-15a (p < 0.001), -16 (p = 0.016), and -451a (p =

0.017) were elevated in the powerlifters compared to the
healthy controls (Figures 4A–C). Downstream target cyclin D1
(p = 0.198) was not different between groups while D2 (p =

0.019) (Figure 4H) was less abundant in the powerlifter group.
Futhermore, miR-15a and -16 have reported roles in inhibiting
angiogenesis via action on VEGF which trended toward being

TABLE 2 | Myonuclei and satellite cells.

Healthy controls Power lifters p-values

Fiber ratio (Type I : II) 1.1 ± 0.4 0.8 ± 0.3 0.022*

Myonuclei/Type I Fiber 3.3 ± 0.4 6.8 ± 1.3 <0.001*

Myonuclei/Type II Fiber 3.6 ± 0.4 7.8 ± 0.9 <0.001*

Satellite cell/Type I Fiber 0.036 ± 0.007 0.071 ± 0.033 0.003*

Satellite cell/Type II Fiber 0.036 ± 0.014 0.049 ± 0.021 0.111

Values presented as means ± SD, n = 13 controls and n = 15 power lifters.*difference

power lifters and controls p < 0.05.

more abundant in powerlifters (p = 0.064; Figure 4I). miR-145
showed no difference between groups (p= 0.730).

miR-23a (p < 0.001) and -23b (P < 0.001) are both inhibitors
of catabolic gene expression (Wada et al., 2011) and were found
to be elevated in the powerlifter group (Figures 4D,E). Catabolic
genes FOXO1/3 (p= 0.244, p= 0.213) were unchanged between
groups while MuRF1 (p = 0.013) and Atrogin1 (p = 0.004)
all showed increased expression in powerlifters compared to
controls (Figures 4J,K). The upstream regulator c-MYC was
expressed similarly between groups (p= 0.693).

miR-30b expression (p = 0.013) was higher in powerlifters
compared to controls (Figure 4F). miR-126 (p < 0.001)
had lower expression in powerlifters compared to controls
(Figure 4G). SPRED-1 (p = 0.083), an inhibitory target of
miR-126 upstream of VEGF showed no difference between
groups.
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FIGURE 3 | MyomiR and related gene abundance. (A) miR-486, (B) miR-499a, (C) miR-133a, (D) miR-1, (E) miR-206, (F) PAX-7 mRNA, (G) PAX3 mRNA, (H) MyoD

mRNA, (I) Myostatin mRNA, (J) MyoG mRNA, (K) HDAC4 mRNA, (L) SRF mRNA. miRs normalized to geomean of 3 endogenous stable miRs, mRNAs normalized to

geomean of 4 housekeepers. (*difference between power lifter and controls p < 0.05, **difference between power lifter and controls p < 0.005, and ***difference

between power lifter and controls p < 0.001). Data expressed are expressed as means ± SD.

Correlation Analysis
miRNAs were correlated against phenotype with both groups
combined. With multiple regression analyses, we see a range of
significant in relationships as described in Table 3.

Discriminant Analysis
Of the 17 miRs analyzed, stepwise discriminant analyses revealed
that the combination of five miRs (miR-126, -23b, -16, -23a, and
15a) correctly classified 100% of participants as powerlifters or
controls. Receiver operator characteristic curves were then used
tomeasure the sensitivity and specificity of thesemiRs (Figure 5).
miR-126 differentiated powerlifters with an area under curve of
0.98, sensitivity 93% and specificity 100%. miR-23b distinguished
powerlifters with an area under curve of 0.91, sensitivity 85.7%
and specificity 84.6% whereas miR-16 had an area under curve
of 0.74 with sensitivity 85.7% and specificity 46.2%. miR-23a had
an area under curve of 0.98 with sensitivity 100% and specificity
92.3% while miR-15a had an area under the curve of 0.96 with a
sensitivity of 93.3% and specificity of 84.6%.

DISCUSSION

Powerlifters represent an extreme muscular phenotype with
muscle fibers double the size of controls and the ability to exert

∼45% more torque. These athletes provide a unique opportunity
to study how differences in muscle miR and gene expression may
regulate the maintenance of the extreme increases in muscle size
and strength. A targeted approach was used to analyse miRNA
species that have previously been shown to be both differentially
regulated within skeletal muscle, corresponding to a change in
phenotype, and further have been established to be involved in
the mechanistic control of muscle-regulatory genes. Of the 17
miRs analyzed, a total of 12 miRs were differently expressed
in the biopsied skeletal muscle samples between powerlifters
and healthy controls with miR-126, -23b, -16, -23a and -15a
showing the greatest separation between groups. The different
miR expression patterns in powerlifters have putative roles in the
control of fiber type, protein turnover, muscle remodeling, and
angiogenesis.

Chronic resistance training results in increases in fiber
area, alteration in muscle architecture and improvements in
neural drive which are associated improvements in peak torque
(Kawakami et al., 1993; Brechue and Abe, 2002; Matta et al.,
2011). The present study demonstrated that both muscle fiber
types in powerlifters are approximately two-fold larger than those
in healthy controls. This is in contrast to previous analyses
indicating a 10 week period of resistance training produces
∼12.2% increases in fiber CSA (Häkkinen et al., 1998). The
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FIGURE 4 | Other muscle miRs and related gene abundance. (A) miR-15a, (B) miR-16, (C) miR-451a, (D) miR-23a, (E) miR-23b, (F) miR-30b, (G) miR-126, (H)

CCND2 mRNA, (I) VEGF mRNA, (J) MuRF-1 mRNA, (K) Atrogin-1 mRNA. miRs normalized to geomean of 3 endogenous stable miRs, mRNAs normalized to

geomean of 4 housekeepers. (*difference between power lifter and controls p < 0.05, **difference between power lifter and controls p < 0.005, and ***difference

between power lifter and controls p < 0.001). Data expressed are expressed as means ± SD.

increased myonuclear content in powerlifters were offset by
increases in fiber size showing support for myonuclear domain
theory in both fiber types (Hawke, 2005; Petrella et al., 2006;
Jackson et al., 2012). Whilst area per satellite cell for type I fibers
was not different between groups, area per satellite cell in type
II fibers was significantly higher (∼1.6-fold) in the powerlifters.
In studies of untrained individuals who undertook 2–4 months
of resistance training resulting in muscle hypertrophy, satellite
cells per fiber area were seen to increase (Kadi and Thornell,
2000; Olsen et al., 2006). This finding is inconsistent with the
powerlifters in the present study. The greater type II fiber area per
satellite cell in the powerlifters may represent an adaptive ceiling
not observed in shorter duration training studies.

The human genome has been shown to encode at least
1,881 non-coding miRNAs (miRbase.org Version 21). Amongst
these, the importance of a subset have been identified as
playing crucial roles in the myogenesis, hypertrophy, and
atrophy of skeletal muscle (Winbanks et al., 2013; Hitachi
and Tsuchida, 2014; Soriano-Arroquia et al., 2016). Most of
these appear to exert conserved roles across species and have
functions from the early phases of myogenesis, from stem cell
differentiation through to myofiber atrophy. Within these a
subset commonly identified as myomiRs are highly expressed
within skeletal muscle (Kovanda et al., 2014) and have reported

roles in skeletal muscle maintenance processes (McCarthy,
2014a). We have identified a number of differences in miR
expression between powerlifters and controls which through
transcriptional regulation (Figure 6) may partially explain the
divergent powerlifter phenotype. Several miRNAs were found to
correlate with strength, fiber size, type II fiber area per satellite
cell and type I:II fiber ratios and area. miR 133a and -486 were
significantly correlated against strength and fiber size irrespective
of fiber size. miR-206, -1, and 16 were correlated to fiber size
alone.

For example, miR-499a has been shown to repress SOX6, a
key inhibitor of type II to type I fiber conversion (McCarthy
et al., 2009; Quiat et al., 2011; Yeung et al., 2012). Powerlifters
showed a greater proportion of type II fibers, reduced miR-
499a expression and an increased abundance of SOX6. It is
likely that the reduced miR-499a expression allows for a greater
SOX6 expression that may support the maintenance of a larger
proportion of type II fibers. Since the powerlifter group expressed
lower type I/II fiber ratios (0.8 vs. 1.1) they have an abundance
of type II fibers compared to controls. This is consistent with
other studies that have analyzed the fiber shifts associated with
consistent resistance training (Tesch and Karlsson, 1985; Staron
et al., 1990) but could also be the result of self-selection to
the sport of powerlifting by individuals with a pre-existing
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TABLE 3 | Phenotype vs. miR expression correlations.

R2 β P-value

Strength (miR-133a) 0.368 −0.606 0.001

Corrected strength 0.47 – 0.001

miR-133a – −0.568 0.001

miR-486 – −0.273 0.043

Type I CSA 0.63 – <0.001

miR-206 – 0.446 0.002

miR-16 – 0.269 <0.001

miR-133a – −0.398 0.011

Type II CSA 0.668 – <0.001

miR-206 – 0.351 0.007

miR-133a – 0.446 0.018

miR-486 – −0.277 <0.001

miR-1 – −0.11 0.034

Type II Area/SC (miR-23b) 0.354 0.595 0.003

Fiber type ratio (miR-126) 0.324 0.569 0.002

Fiber type area ratio 0.337 – 0.011

miR-126 – 0.385 0.009

miR-145 – 0.399 0.029

abundance of type II fibers. We also find miR-126 that was
less abundant in the powerlifters correlated to fiber ratios for
cell population and for area representation. Previously it was
reported that miR-126 may not be specific to type I fibers
(Davidsen et al., 2011). As mentioned earlier since powerlifters
have lower type fiber ratios, the idea thatmiR-126 is type I specific
may warrant further analyses. miR-499a is also known to inhibit
myostatin, which is a negative regulator of muscle mass (Lee and
McPherron, 2001; Whittemore et al., 2003; Drummond et al.,
2009). Powerlifters showed more abundant expression of this
gene. Myostatin is an upstream regulator of mass accretion that
through SMAD3 signaling, can directly inhibit muscle growth
and differentiation pathways governed by PAX3/7,MyoD,MyoG,
and SRF (Sakuma and Yamaguchi, 2012). The expression of these
anabolic factors was significantly higher in powerlifters. Previous
training studies indicate a down regulation of myostatin while
positive regulators of mass, like MyoD and MyoG, are increased
(Kosek et al., 2006; Zanchi et al., 2009; Fernandez-Gonzalo
et al., 2013). However, the powerlifters in the present study have
undergone years of rigorous training and may not be directly
comparable to individuals who have undergone only 2–4 months
of resistance training. The expression of other muscle catabolism
markers MuRF1 and Atrogin1 showed greater abundance in the
powerlifters despite upregulation of their direct inhibitors miR-
23a/b. Together these data may be explained by an increased rate
of muscle protein turnover in powerlifters compared to controls.
It has previously been demonstrated that resistance training
increases rates of muscle protein synthesis (Phillips et al., 2002), it
is thus conceivable that increase in expression of genes related to
both anabolism and catabolism would underpin a greater resting
muscle protein turnover in powerlifters as well. It is also possible
that the greater expression of catabolic genes such as myostatin,
MuRF1 and Atrogin1 in the powerlifters represents a limit to

hypertrophic adaptation following long term training which is
not seen individuals with lower training ages (Roth et al., 2003).

PAX3/7, MyoD, and MyoG are key components of the
myogenesis pathway (Parker et al., 2003; Buckingham and Rigby,
2014) and are more abundantly expressed in powerlifters than
the healthy controls. They have been shown to be involved in
muscle repair and regeneration in various injurymodels as well as
following resistance exercise (Chakkalakal et al., 2012; Urciuolo
et al., 2013). PAX7 protein concentrations are downregulated
by miR-1, -133a, -206, and -486 (Chen et al., 2006; Braun and
Gautel, 2011). All except miR-486 are transcribed in response to
increased MyoD and MyoG expression (Rosenberg et al., 2006;
Braun and Gautel, 2011) and act to provide a negative feedback
mechanism. miR-1 and -133a were found to be less abundant
in powerlifters. The reduced abundance of miR-1 and miR-133a
in powerlifters may explain higher HDAC4 and SRF expression,
respectively. SRF is expected to promote miR-486 activity via
MyoD (Chen et al., 2006; Dey et al., 2011) instead, we observed
a lower expression of miR-486 despite elevated SRF expression.
miRs -1, -133a, and -486 all directly or indirectly proved negative
feedback to the processes of muscle repair and regeneration,
despite MyoD and MyoG expression. miRs -1, -133a, and -486
remained down regulated in powerlifters compared to controls.
This suggests a complex interaction between multiple miRs and
genes related to muscle regeneration.

The cell cycle regulators Cyclin D1 and D2 directly inhibit
MyoD and are themselves directly inhibited by miR-451a, -15a,
and -16 (Muscat and Dressel, 2000; Aqeilan et al., 2010; Nan
et al., 2010). These miRs were more abundant in the powerlifters,
perhaps acting to support increased myogenesis and muscle
remodeling. CCND2 gene had lower expression in powerlifters
likely resulting from the increased expression of its inhibitors
miR-451a, -15a, and -16.

Powerlifters exhibited no difference in expression of the
proangiogenic gene VEGF which is partly regulated via the
mammalian target of rapamycin (mTOR) pathway (Wan
et al., 2006). Resistance training induces angiogenesis to
support hypertrophy but on its own does not normally
increase capillary density (Nederveen et al., 2017). The direct
inhibitors of VEGF, miR-15a/16 were however, upregulated
in the powerlifters, which may limit angiogenesis in
powerlifters. miR-126 which increases VEGF expression via
Sprouty-related protein (SPRED1) inhibition (Fish et al.,
2008) was lower in powerlifters with no differences in
SPRED1 expression between group. The direct regulation
of angiogenesis by resistance training via miRs requires further
elucidation.

The discriminant analysis identified miR-126, -23b, -16, -23a,
and -15a as strong determinants of the powerlifter phenotype,
correctly categorizing participants with 100% accuracy. Each of
these five miRs independently, correctly group individuals by
expression with at least 74% accuracy. The five identified miRs
could be investigated further as markers of training adaptation.

The powerlifter phenotype is characterized by dramatic
differences in muscle fiber size and force generation capacity
when compared to age matched untrained controls. Regulation
of mRNA via miR provides a likely mechanism which may
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FIGURE 5 | Receiver operator curve analysis to determine sensitivity and specificity. (A) miR-126, (B) miR-23b, (C) miR-16, (D) miR-23a, (E) miR-15a.

FIGURE 6 | Interactions of miRNA with expression gene expression of muscle function regulators. Orange miRs show greater expression in healthy controls than

power lifters, blue miR showed lower expression in controls than power lifters. miRs shown in black were expressed similarly in power lifters and controls. Green

genes more abundant in power lifters, red less abundant while yellow were unchanged. Arrowheads indicate a positive interaction while perpendicular lines indicate an

inhibitory effect.

underpin these phenotypic differences. However, because protein
expression was not measured it is not possible to draw definite
conclusions about how miRs might alter phenotype. The design
of the study did not allow for the delineation of specific
effects of long term resistance training and genetic endowment.
Undoubtedly both play a role but it is probable that the majority

of the observed effects are due to a long history of high intensity
resistance training.

The present study indicates maintenance of the distinct
powerlifter phenotype may be modulated by robust differences
in miR expression profiles at rest when compared to healthy
controls. Specifically, miR-126, -23b, -16, -23a, and -15a
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discriminate accurately between powerlifters and controls.
Differences in miR expression are involved in the regulation
of downstream mRNA but can also themselves be regulated
by mRNA making understanding the system a complex
undertaking. miRs identified from the rare elite powerlifter
phenotype can now be investigated in other populations with
disparities in muscle strength and size such as young and older
adults and those with myopathies in order to validate their
importance as biomarkers of muscle function.
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