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Abstract We prove that any linear operator with kernel in a Pilipović or Gelfand–
Shilov space can be factorized by two operators in the same class.We also give links on
numerical approximations for such compositions.We apply these composition rules to
deduce estimates of singular values and establish Schatten–von Neumann properties
for such operators.
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1 Introduction

The singular values and their decays are strongly related to possibilities of obtaining
suitable finite rank approximations of operators. For a linear and compact operator
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which acts between Hilbert spaces, the singular values are the eigenvalues in decreas-
ing order of the modulus of the operator. If more generally, the linear operator T is
continuous from the quasi-Banach space B1 to (another) quasi-Banach space B2,
then the singular value of order k ≥ 1 is given by

σ k(T ) = σ k(T,B1,B2) ≡ inf ‖T − T0‖B1→B2 (1.1)

where the infimum is taken over all linear operators T0 fromB1 toB2 of rank at most
k − 1. (See Sect. 2 for notations). It follows that T is compact when σ k(T ) decreases
to zero as k tends to infinity, or equivalently, T can be approximated by finite rank
operators with arbitrarily small errors.

In this paper we deduce estimates of σ k(T ) when B1 and B2 stay between small
test function spaces, denoted by Hs(Rd) and H0,s(Rd), and their (large) duals. The
spaces Hs(Rd) and H0,s(Rd) are invariant under the Fourier transform, depend on
the parameter s ≥ 0 and are obtained by imposing certain exponential type estimates
on the Hermite coefficients of the involved functions. More precisely, the setHs(Rd)

(H0,s(Rd)) consists of all

f =
∑

α

cαhα

such that |cα| � e−c|α| 1
2s for some (for every) c > 0. It follows that Hs(Rd) and

H0,s(Rd) increase with s, and are continuously embedded and dense inS (Rd).
In [26] the spaces Hs(Rd) and H0,s(Rd) and their duals were characterized in

different ways. For example, the images under the Bargmann transform were given,
and it was proved that f ∈ Hs(Rd) ( f ∈ H0,s(Rd)), if and only if f satisfies

|H N f (x)| � hN N !2s (1.2)

for some h > 0 (for every h > 0), where H is the harmonic oscillator |x |2 − � on
Rd . In this context we recall that Pilipović introduced in [19] function spaces whose
elements obey estimates of the form (1.2) for certain choices of s. For this reason,
we call Hs(Rd) and H0,s(Rd) the Pilipović spaces of Roumieu and Beurling type,
respectively, of degree s ≥ 0 (cf. [26]).

In [19], it is also proved that Hs1(R
d) and H0,s2(R

d) agree with the Gelfand–
Shilov spaces Ss1(R

d) and �s2(R
d), respectively, when s1 ≥ 1

2 and s2 > 1
2 , while

H0, 12
(Rd) is different from the trivial space � 1

2
(Rd) = {0}. The family of Pilipović

spaces therefore contains all Gelfand–Shilov spaces which are invariant under Fourier
transformations.

In Sect. 5 we consider linear operators whose kernels belong to Hs(R2d). Some
parts of the approach here is related to the analysis in [6,7], where Schatten–von
Neumann properties for certain types of integral operators on compact manifolds are
deduced. We show that the singular values of such operator satisfies the estimate

σ k(T,B1,B2) � e−rk
1

2ds (1.3)
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for some r > 0, when B j stays between Hs(Rd) and its dual. If the Hs-spaces and
their duals are replaced by H0,s-spaces and their duals, then we also prove that (1.3)
is true for every r > 0. Furthermore, if Hs-spaces and their duals are replaced by
Schwartz spaces and their duals, then we prove

σ k(T,B1,B2) � k−N (1.4)

for every N ≥ 0, which should be available in the literature.
These singular-value estimates are based on the fact that the operator classes here

above possess convenient factorization properties, which are deduced in Sect. 4. More
precisely, an operator class M is called a factorization algebra, if for every T ∈ M,
there exist T1, T2 ∈ M such that T = T1◦T2. (In [28] the term decomposition algebra
is used instead of factorization algebra). Evidently,L (B), the set of continuous linear
operators on the quasi-Banach spaceB is a factorization algebra, sincewemay choose
T1 as the identity operator and T2 = T . A more challenging situation appears when
M does not contain the identity operator, and in this situation it is easy to find operator
classes which are not factorization algebras. For example, any Schatten–vonNeumann
class of finite order is not a factorization algebra.

If B above is a Hilbert space and M is the set of compact operators on B, then it
follows by an application of the spectral theorem thatM is a factorization algebra. It
is also well-known that the set of linear operators with kernels in the Schwartz space
is a factorization algebra (see e. g. [2,17,21,28,30]). Furthemore, similar facts hold
true for the set of operators with kernels in a fixed Gelfand–Shilov space (cf. [28]).

In Sect. 4 we extend the latter property such that all Pilipović spaces are included.
That is, we prove that the set of operators with kernels in a fixed (but arbitrarily chosen)
Pilipović space is a factorization algebra.

Since the singular values of the operators under considerations either satisfy condi-
tions of the form (1.3) or (1.4) for every N ≥ 0, it follows that the sequence {σ k(T )}∞k=1
belongs to �p for every p > 0. This implies that any such operator is a Schatten–von
Neumann operator of degree p for every p > 0.

Here we remark that the latter conclusions in the Gelfand–Shilov situation, were
deduced in [28] in slightly different ways, which enables to replace the quasi-Banach
spacesB1 andB2 by convenient Hilbert spaces. The main property behind the latter
reduction concerns [25, Proposition 3.8], where it is proved that if s ≥ 1

2 and

Hs(Rd) ⊆ B ⊆ H′
s(R

d),

then there are Hilbert spaces H1 and H2 such that

Hs(Rd) ⊆ H1 ⊆ B ⊆ H2 ⊆ H′
s(R

d). (1.5)

The Schatten–von Neumann properties are then obtained in straight-forward ways
by the factorization properties in combination with the exact formulas, for Hilbert–
Schmidt norms of operators acting between Hilbert spaces. We remark that extensions
of (1.5) which include Pilipović spaces can be found in [5].
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Our investigations also include analysis of operators with kernels in H�σ , H0,�σ ,
σ > 0, or their duals. These spaces were carefully investigated in [10,26] and the
Hermite coefficients of the involved functions should be bounded by expressions of

the form h|α|(α!)− 1
2σ . In [26], these spaces are characterized in different ways. For

example, it is here proved that the Bargmann transform is bijective from H�σ (Rd) to
the set of all entire functions F on Cd such that

|F(z)| � ec|z| 2σ
σ+1

for some constant C > 0.
In Sect. 3 we deduce kernel theorems for operators with kernels in these spaces,

or related distribution spaces. In Sect. 4 we show certain factorization properties of
operators with kernels in H�σ or in H0,�σ . These factorization results are slightly
weaker compared to what is deduced for operators with kernels inHs andH0,s when
s ≥ 0 is real.

In Sect. 5 we apply these factorization properties to obtain singular value estimates
for operators with kernels in H�σ or in H0,�σ . In particular we show that if T is an
operator on L2(Rd) with kernel inH�σ (R2d), then the singular values of T satisfy

σ k(T ) � hk(k!)− 1
2σd

for some constant h > 0.
Finally, in Sect. 6 we apply the results from the first sections to obtain certain

characterizations of operators with kernels in Hs and H0,s . Some arguments here
involve estimateswithmodulation space norms, and a short introduction tomodulation
spaces are therefore included in Sect. 2.

2 Preliminaries

In this section we recall some basic facts. We start by discussing Pilipović spaces
and their properties. Thereafter we consider suitable spaces of formal Hermite series
expansions, and discuss their links with Pilipović spaces.

2.1 The Pilipović Spaces

We start by considering spaces which are obtained by suitable estimates of Gelfand–
Shilov or Gevrey type when using powers of the harmonic oscillator H ≡ |x |2 − �,
x ∈ Rd .

Let h > 0, s ≥ 0 and let Sh,s(Rd) be the set of all f ∈ C∞(Rd) such that

‖ f ‖Sh,s ≡ sup
N≥0

‖H N f ‖L∞

hN (N !)2s
< ∞. (2.1)
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Then Sh,s(Rd) is a Banach space. If hα is the Hermite function

hα(x) = π− d
4 (−1)|α|(2|α|α!)− 1

2 e
|x |2
2

(
∂αe−|x |2),

on Rd of order α, then Hhα = (2|α| + d)hα . This implies that Sh,s(Rd) contains all
Hermite functions when s > 0, and if s = 0, and α ∈ Nd satisfies 2|α| + d ≤ h, then
hα ∈ Sh,s(Rd).

We let

�s(Rd) ≡
⋂

h>0

Sh,s(Rd) and Ss(Rd) ≡
⋃

h>0

Sh,s(Rd)

and equip these spaces by projective and inductive limit topologies, respectively, of
Sh,s(Rd), h > 0. (Cf. [13,18,19,26].)

In [18,19], Pilipović proved that if s1 ≥ 1
2 and s2 > 1

2 , then Ss1(R
d) and �s2(R

d)

agree with the Gelfand–Shilov spaces Ss1(R
d) and �s2(R

d)1, respectively, and that

�1/2(Rd) �= �1/2(Rd) = {0}.

(See e. g. [26] for notations).
By the definitions it follows that the latter relations extend into

Ss1(R
d) = Ss1(R

d), �s2(R
d) = �s2(R

d), s1 ≥ 1

2
, s2 >

1

2

and

Ss1(R
d) �= Ss1(R

d) = {0}, �s2(R
d) �= �s2(R

d) = {0}, s1 <
1

2
, 0 < s2 ≤ 1

2
.

The space �s(Rd) is called the Pilipović space (of Beurling type) of order s ≥ 0 on
Rd . Similarly, Ss(Rd) is called the Pilipović space (of Roumieu type) of order s ≥ 0
on Rd .

The dual spaces ofSh,s(Rd),�s(Rd) andSs(Rd) are denoted byS ′
h,s(R

d),�′
s(R

d)

and S ′
s(R

d), respectively. We have

�′
s(R

d) =
⋃

h>0

S ′
h,s(R

d)

when s > 0 and

S ′
s(R

d) =
⋂

h>0

S ′
h,s(R

d)

1 Note that the boldface characters, �∗,S∗ etc. denote Pilipović spaces, and non-boldface characters, �∗,
S∗ etc. denote Gelfand–Shilov spaces.
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when s ≥ 0, with inductive respectively projective limit topologies ofS ′
h,s(R

d), h > 0
(cf. [26]).

2.2 Quasi-Banach Spaces, Singular Values and Schatten–von Neumann
Operators

LetB be a vector space. A quasi-norm ‖ · ‖B onB is a non-negative and real-valued
function on B which is non-degenerate in the sense that

‖ f ‖B = 0 ⇐⇒ f = 0, f ∈ B,

and fulfills

‖α f ‖B = |α| · ‖ f ‖B, f ∈ B, α ∈ C,

and

‖ f + g‖B ≤ D(‖ f ‖B + ‖g‖B), f, g ∈ B, (2.2)

for some constant D ≥ 1 which is independent of f, g ∈ B. ThenB is a topological
vector space when the topology for B is defined by ‖ · ‖B , and B is called a quasi-
Banach space ifB is complete under this topology.

Let B1 and B2 be (quasi-)Banach spaces, and let T be a linear map between B1
and B2. Then the singular values of order k ≥ 1 of T is given by (1.1), where the
infimum is taken over all linear operators T0 fromB1 toB2 with rank at most k − 1.
Therefore, σ 1(T ) equals ‖T ‖B1→B2 , and σ k(T ) are non-negative and non-increasing
with respect to k.

For any p ∈ (0,∞], Ip(B1,B2), the set of Schatten–von Neumann operators of
order p is the quasi-Banach space which consists of all linear and continuous operators
T fromB1 toB2 such that

‖T ‖Ip = ‖T ‖Ip(B1,B2) ≡ ‖(σ k(T,B1,B2))
∞
k=1‖l p

is finite.

2.3 Spaces of Hermite Series Expansions

Next we recall the definitions of topological vector spaces of Hermite series expan-
sions, given in [26]. As in [26], it is convenient to use the setsR� andR� when indexing
our spaces.

Definition 2.1 The sets R� and R� are given by

R� = R+
⋃

σ>0
{�σ } and R� = R�

⋃{0}.
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Moreover, beside the usual ordering in R, the elements �σ in R� and R� are ordered
by the relations x1 < �σ1 < �σ2 < x2, when σ1 < σ2, x1 < 1

2 and x2 ≥ 1
2 are real.

A function ϑ on a discrete set � is called a weight (on �) if it is real-valued and
positive.

Definition 2.2 Let p ∈ (0,∞], s ∈ R�, r ∈ R, ϑ be a weight on Nd , and let

ϑr,s(α) ≡
⎧
⎨

⎩
er |α| 1

2s
, when s ∈ R+,

r |α|(α!) 1
2σ , when s = �σ , α ∈ Nd .

Then,

(1) �′
0(N

d) is the set of all sequences {cα}α∈Nd ⊆ C on Nd ;
(2) �0,0(Nd) ≡ {0}, and �0(Nd) is the set of all sequences {cα}α∈Nd ⊆ C such that

cα �= 0 for at most finite numbers of α;
(3) �

p
[ϑ](Nd) is the quasi-Banach space which consists of all sequences {cα}α∈Nd ⊆ C
such that

‖{cα}α∈Nd ‖�
p
[ϑ]

≡ ‖{cαϑ(α)}α∈Nd ‖�p

is finite;
(4) �0,s(Nd) ≡ ⋂

r>0
�

p
[ϑr,s ](N

d) and �s(Nd) ≡ ⋃
r>0

�
p
[ϑr,s ](N

d), with projective respec-

tively inductive limit topologies of �
p
[ϑr,s ](N

d) with respect to r > 0;

(5) �′
0,s(N

d) ≡ ⋃
r>0

�
p
[1/ϑr,s ](N

d) and �′
s(N

d) ≡ ⋂
r>0

�
p
[1/ϑr,s ](N

d), with inductive

respectively projective limit topologies of �
p
[1/ϑr,s ](N

d) with respect to r > 0.

Let p ∈ (0,∞], and let �N be the set of all α ∈ Nd such that |α| ≤ N . Then the
topology of �0(Nd) is defined by the inductive limit topology of the sets

{
{cα}α∈Nd ∈ �′

0(N
d) ; cα = 0 when α /∈ �N

}

with respect to N ≥ 0, and whose topology is given through the quasi-semi-norms

{cα}α∈Nd �→ ‖{cα}|α|≤N ‖�p(�N ). (2.3)

Furthermore, the topology of �′
0(N

d) is defined by the quasi-semi-norms (2.3). It
follows that �′

0(N
d) is a Fréchet space, and that the topologies of �0(Nd) and �′

0(N
d)

are independent of p.
Next we consider spaces of formal Hermite series expansions

f =
∑

α∈Nd

cαhα, {cα}α∈Nd ∈ �′
0(N

d), (2.4)
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which correspond to

�0,s(Nd), �s(Nd), �
p
[ϑ](N

d), �′
s(N

d) and �′
0,s(N

d). (2.5)

For that reason we consider the mapping

T : {cα}α∈Nd �→
∑

α∈Nd

cαhα, (2.6)

between sequences and formal Hermite series expansions.

Definition 2.3 Let p ∈ (0,∞], ϑ be a weight on Nd , and let s ∈ R�.

• The spaces

H0,s(Rd), Hs(Rd), Hp
[ϑ](R

d), H′
s(R

d) and H′
0,s(R

d) (2.7)

are the images of T in (2.6) under the corresponding spaces in (2.5). Furthermore,
the topologies of the spaces in (2.7) are inherited from corresponding spaces in
(2.5);

• The quasi-norm ‖ f ‖Hp
[ϑ]

of f ∈ H′
0(R

d), is given by ‖{cα}α∈Nd ‖�
p
[ϑ]
, when f is

given by (2.4).

By the definitions it follows that the inclusions

H0(Rd) ⊆ H0,s(Rd) ⊆ Hs(Rd) ⊆ H0,t (Rd)

⊆ S (Rd) ⊆ S ′(Rd) ⊆ H′
0,t (R

d) ⊆ H′
s(R

d)

⊆ H′
0,s(R

d) ⊆ H′
0(R

d), when s, t ∈ R�, s < t, (2.8)

hold true, and are in fact continuous embeddings.

Remark 2.4 By the definition it follows that T in (2.6) is a homeomorphism between
any of the spaces in (2.5) and corresponding space in (2.7).

The next result shows that the spaces in Definition 2.3 essentially agrees with the
Pilipović spaces. We refer to [26] for the proof.

Proposition 2.5 Let 0 ≤ s ∈ R. Then H0,s(Rd) = �s(Rd) and Hs(Rd) = Ss(Rd).

Remark 2.6 Let T be given by (2.6), p ∈ [1, 2] and let ϑ be a weight on Nd such that
1/ϑ ∈ �∞(Nd). Then

(
�s(Nd), �2(Nd), �′

s(N
d)

) T→ (Hs(Rd), L2(Rd),H′
s(R

d)
)
, s ≥ 0,

(
�0,s(Nd), �2(Nd), �′

0,s(N
d)

) T→ (H0,s(Rd), L2(Rd),H′
0,s(R

d)
)
, s > 0,

(
�

p
[ϑ](Nd), �2(Nd), �

p′
[1/ϑ](Nd)

) T→ (Hp
[ϑ](Rd), L2(Rd),Hp′

[1/ϑ](Rd)
)

are isometric bijections between Gelfand triples. (Cf. e. g. Sect. 4 in [26].)
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2.4 Pseudo-Differential Operators

We let F be the Fourier transform on S ′(Rd), given by

(F f )(ξ) = (2π)−d/2
∫

Rd
f (x)e−i〈x,ξ〉 dξ

when f ∈ L1(Rd). We also let F2F be the partial Fourier transform of F(x, y)

with respect to the y-variable. The Fourier transform restricts to homeomorphisms on
S (Rd), Hs(Rd) and Hs,0(Rd), and extends uniquely to homeomorphisms on corre-
sponding duals. The same holds true forF2 when acting on functions and distributions
on R2d (cf. [26]).

For every s ≥ 1
2 , real d × d-matrix A and a ∈ S ′

s(R
2d) (the symbol), the pseudo-

differential operator OpA(a) is the linear and continuous operator from Ss(Rd) to
S ′

s(R
d) with distribution kernel

K A,a(x, y) = (2π)−d/2(F−1
2 a)(x − A(x − y), x − y).

If a ∈ L1(R2d) and f ∈ Ss(Rd), then OpA(a) f is given by

OpA(a) f (x) = (2π)−d
∫∫

R2d
a(x − A(x − y), ξ) f (y)ei〈x−y,ξ〉 dydξ.

The product for compositions of pseudo-differential operators on the symbol level is
denoted by #A. This implies that if a, b ∈ S (R2d), then a#Ab is defined by

OpA(a#Ab) = OpA(a) ◦ OpA(b).

The product a#Ab is well-defined and is uniquely extendable in different ways (see
e. g. [1,4,16]).

2.5 Modulation Spaces

Next we discuss basic properties for modulation spaces, and start by recalling the
conditions for the involved weight functions. A function ω on Rd is called a weight
(on Rd ), if ω > 0 and ω, 1/ω ∈ L∞

loc(R
d).

Let ω be a weight on Rd , and set 〈x〉 ≡ 1 + |x | when x ∈ Rd . Then ω is called a
weight of polynomial type, if

ω(x + y) � ω(x)〈y〉N , x, y ∈ Rd , (2.9)

for some N ≥ 0. Here and in what follows we write A � B when A, B ≥ 0 and
A ≤ cB for a suitable constant c > 0. We also let A � B when A � B and B � A.
We let P(Rd) be the set of all weights on Rd of polynomial type.
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Let φ ∈ S (Rd)\0 be fixed. Then the short-time Fourier transform Vφ f of f ∈
S ′(Rd) with respect to the window function φ is defined by

Vφ f (x, ξ) ≡ (F2(U ( f ⊗ φ)))(x, ξ) = F ( f φ( · − x))(ξ),

where (U F)(x, y) = F(y, y − x). If f ∈ S (Rd), then it follows that

Vφ f (x, ξ) = (2π)−d/2
∫

Rd
f (y)φ(y − x)e−i〈y,ξ〉 dy.

Let ω ∈ P(R2d), p, q ∈ (0,∞] and φ ∈ S (Rd)\0 be fixed. Then the mixed
Lebesgue space L p,q

(ω) (R
2d) consists of all measurable functions F on R2d such that

‖F‖L p,q
(ω)

< ∞. Here

‖F‖L p,q
(ω)

≡ ‖Fp,ω‖Lq , where Fp,ω(ξ) ≡ ‖F( · , ξ)ω( · , ξ)‖L p . (2.10)

We note that these quasi-norms might attain +∞.
The modulation space M p,q

(ω) (Rd) is the quasi-Banach space which consist of all

f ∈ S ′(Rd) such that ‖ f ‖M p,q
(ω)

< ∞, where

‖ f ‖M p,q
(ω)

≡ ‖Vφ f ‖L p,q
(ω)

. (2.11)

For conveniency we set M p,q = M p,q
(ω) when ω ≡ 1. We remark that the definition of

M p,q
(ω) (Rd) is independent of the choice of φ ∈ S (Rd)\0 and different φ gives rise

to equivalent quasi-norms. (See e. g. [8,9,11,14] for general properties of modulation
spaces).

3 Kernel Theorems

In this section we deduce suitable kernel theorems for operators between Pilipović
spaces and their duals. Since the spaces under considerations can in convenient ways
be formulated in terms of Hermite series expansions, we may easily reduce ourselves
to kernel results for matrix operators, in similar ways as in e. g. [20].

We beginwith the following result concerning kernel properties ofmatrix operators.
Here we identify linear operators on discrete sets by their matrices.

Proposition 3.1 Let ϑk be weight functions on Ndk , k = 1, 2, ϑ(α, β) =
ϑ1(β)−1ϑ2(α), and let T be a linear and continuous map from �1[ϑ1](N

d1) to �∞[ϑ2](N
d2).

Then the following is true:

(1) If A ∈ �∞[ϑ](Nd2+d1), then the map f �→ A · f from �0(Nd1) to �′
0(N

d2) extends

uniquely to a linear and continuous map from �1[ϑ1](N
d1) to �∞[ϑ2](N

d2);

(2) there is a unique element A ∈ �∞[ϑ](Nd2+d1) such that T f = A · f for every

f ∈ �1[ϑ1](N
d1). Furthermore,
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‖T ‖�1[ϑ1](Nd1 )→�∞[ϑ2](Nd2 ) = ‖A‖�∞[ϑ] . (3.1)

Proof The assertion (1) follows by straight-forward estimates and is left for the reader.
(2) Evidently, for some unique (matrix)

A = (aα,β)(α,β)∈Nd2+d1 ∈ �′
0(N

d2+d1),

T f = A · f holds for every f ∈ �0(Nd1). Moreover, let

�1={ f1∈�0(Nd1) ; ‖ f1‖�1[ϑ1]
≤ 1 } and �2 = { f2 ∈ �0(Nd2) ; ‖ f2‖�1[1/ϑ2]

≤ 1 }.

Since �0(Nd1) and �0(Nd2) are dense in �1[ϑ1](N
d1) and �1[1/ϑ2](N

d2), respectively, we
obtain

‖T ‖�1[ϑ1](Nd1 )→�∞[ϑ2](Nd2 ) = sup
f1∈�1

sup
f2∈�2

|(A · f1, f2)�2 |

= sup
f1∈�1

‖A · f1‖�∞[ϑ2] = sup
β∈Nd1

sup
α∈Nd2

|aα,βϑ1(β)−1ϑ2(α)| = ‖A‖�∞[ϑ] ,

which gives (2). ��
By the links between Hp

[ϑk ](R
dk ) and Hp

[ϑ](Rd2 × Rd1), and �
p
[ϑk ](N

dk ) and

�
p
[ϑ](Nd2 × Nd1), respectively, the previous proposition immediately gives the fol-
lowing. (Cf. Remark 2.6.)

Proposition 3.2 Let ϑk be weight functions on Ndk , k = 1, 2, ϑ(α2, β) =
ϑ1(β)−1ϑ2(α2), and let T be a linear and continuous map from H1[ϑ1](R

d1) to

H∞[ϑ2](R
d2). Then the following is true:

(1) If K ∈ H∞[ϑ](Rd2 × Rd1), then the map

f �→ (
x2 �→ 〈K (x2, · ), f 〉) (3.2)

from H0(Rd1) to H′
0(R

d2) extends uniquely to a linear and continuous map from
H1[ϑ1](R

d1) to H∞[ϑ2](R
d2);

(2) there is a unique element K ∈ H∞[ϑ](Rd2 × Rd1) such that

T f = (
x2 �→ 〈K (x2, · ), f 〉) (3.3)

for every f ∈ H1[ϑ1](R
d1). Furthermore,

‖T ‖H1[ϑ1](Rd1 )→H∞[ϑ2](Rd2 ) = ‖K‖H∞[ϑ] . (3.4)

We now have the following kernel results.
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Theorem 3.3 Let s ∈ R�, and let T be the linear and continuous map from H0(Rd1)

to H′
0(R

d2). Then the following is true:

(1) if T is a linear and continuous map from H′
s(R

d1) to Hs(Rd2), then there is
K ∈ Hs(Rd2 × Rd1) such that (3.3) holds true;

(2) if T is a linear and continuous map from Hs(Rd1) to H′
s(R

d2), then there is
K ∈ H′

s(R
d2 × Rd1) such that (3.3) holds true.

The same holds true if the Hs and H′
s spaces are replaced by H0,s and H′

0,s spaces,
respectively, or by S and S ′ spaces, respectively.

Theorem 3.4 Let K ∈ H′
0(R

d2 ×Rd1), s ∈ R� and let T be the linear and continuous
map from H0(Rd1) to H′

0(R
d2), given by (3.2). Then the following is true:

(1) if K ∈ Hs(Rd2 × Rd1), then T extends uniquely to a linear and continuous map
from H′

s(R
d1) to Hs(Rd2);

(2) if K ∈ H′
s(R

d2 × Rd1), then T extends uniquely to a linear and continuous map
from Hs(Rd1) to H′

s(R
d2).

The same holds true if the Hs and H′
s spaces are replaced by H0,s and H′

0,s spaces,
respectively, or by S and S ′ spaces, respectively.

Proof of Theorems 3.3 and 3.4 Let p ∈ [1,∞],

ϑr (α) =
⎧
⎨

⎩
er |α| 1

2s
, s ∈ R+

⋃{0},
r |α|(α!) 1

2σ , s = �σ ,

and σr (α) = 〈α〉r . The results follow from Proposition 3.2, and the facts that

Hs = ⋃
r>0

Hp
[ϑr ], H′

0,s = ⋃
r>0

Hp
[1/ϑr ], S ′ = ⋃

r>0
Hp

[1/σr ],

with suitable inductive limit topologies, and

H′
s = ⋂

r>0
Hp

[1/ϑr ], H0,s = ⋂
r>0

Hp
[ϑr ], S = ⋂

r>0
Hp

[σr ],

with suitable projective limit topologies. ��
Evidently, the assertions on S and S ′ in Theorems 3.3 and 3.4 are well-known.

For the other cases, the results are straight-forward consequences of the nuclearity of
H1[ϑ](Rd2 × Rd1) (cf. e. g. [12] or [29]).

For completeness we also write down some of the corresponding results in the
matrix case. The proofs follow by similar arguments as for the proofs of Theorems
3.4 and 3.3, and are left for the reader. Here we recall that �S (Nd2 × Nd1) is the set
of all matrices A = (aα,β)(α,β)∈Nd2+d1 such that

|aα,β | � 〈(α, β)〉−N for every N ≥ 0



J Fourier Anal Appl

and �′
S (Nd2 × Nd1 ) is the set of all such matrices such that

|aα,β | � 〈(α, β)〉N for some N ≥ 0.

Theorem 3.5 Let s ∈ R� be real and let T be the linear and continuous map from
�0(Nd1) to �′

0(N
d2) with matrix A ∈ �′

0(N
d2 × Nd1). Then the following is true:

(1) if A ∈ �s(Nd2 ×Nd1), then T extends uniquely to linear and continuous mappings
from �′

s(N
d1) to �s(Nd2);

(2) if A ∈ �′
s(N

d2 ×Nd1), then T extends uniquely to linear and continuous mappings
from �s(Nd1) to �′

s(N
d2).

(3) if T is a linear and continuous map from �′
s(N

d1) to �s(Nd2), then A ∈ �s(Nd2 ×
Nd1);

(4) if T is a linear and continuous map from �s(Nd1) to �′
s(N

d2), then A ∈ �′
s(N

d2 ×
Nd1).

The same holds true if �s and their duals are replaced by �0,s and their duals,
respectively, or by �S and their duals, respectively.

4 Factorizations of Pilipović and Gelfand–Shilov Kernels, and
Pseudo-Differential Operators

In this sectionwe deduce convenient factorization properties for operators with kernels
in Pilipović spaces.

In what follows we use the convention that if T0 is a linear and continuous operator
fromH0(Rd1) toH′

0(R
d2), and g ∈ H′

0(R
d0), then T0 ⊗ g is the linear and continuous

operator from H0(Rd1) toH′
0(R

d2+d0), given by

(T0 ⊗ g) : f �→ (T0 f ) ⊗ g.

In the following definition we recall that an operator T fromH0(Rd) toH′
0(R

d) is
called positive semi-definite, if (T f, f )L2 ≥ 0, for every f ∈ H0(Rd), and then we
write T ≥ 0.

Definition 4.1 Let d2 ≥ d1 and let T be a linear operator fromH0(Rd1) toH′
0(R

d2).
Then T is said to be a Hermite diagonal operator if T = T0 ⊗ g, where the Hermite
functions are eigenfunctions to T0, and either d2 = d1 and g = 1, or d2 > d1 and g is
a Hermite function.

Moreover, if T = T0 ⊗ g is a Hermite diagonal operator and T0 is positive semi-
definite, then T is said to be a positive semi-definite Hermite diagonal operator.

The first part of the following result can be found in [2,30] (see also [17,21] and
the references therein for an elementary proof).

Theorem 4.2 Let s ∈ R, T be a linear and continuous operator from H0(Rd1) to
H′

0(R
d2) with the kernel K , and let d0 ≥ min(d1, d2). Then the following is true:
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(1) If s ≥ 0 and K ∈ Hs(Rd2+d1), then there are operators T1 and T2 with kernels
K1 ∈ Hs(Rd0+d1) and K2 ∈ Hs(Rd2+d0) respectively such that T = T2 ◦ T1.
Furthermore, if j ∈ {1, 2} is fixed and d0 ≥ d j , then Tj can be chosen as a
positive semi-definte Hermite diagonal operator.

(2) If s > 0 and K ∈ H0,s(Rd2+d1), then there are operators T1 and T2 with kernels
K1 ∈ H0,s(Rd0+d1) and K2 ∈ H0,s(Rd2+d0) respectively such that T = T2 ◦ T1.
Furthermore, if j ∈ {1, 2} is fixed and d0 ≥ d j , then Tj can be chosen as a
positive semi-definte Hermite diagonal operator.

The corresponding result for s = �σ reads:

Theorem 4.3 Let σ > 0, T be a linear and continuous operator from H0(Rd1) to
H′

0(R
d2) with the kernel K . Then the following is true.

(1) If K ∈ H�σ (Rd2+d1), then there are operators T0, T1 and T2 with kernels K0 ∈
H1/2(Rd2+d1), K1 ∈ H�2σ (Rd1+d1) and K2 ∈ H�2σ (Rd2+d2), respectively, and
T = T2 ◦ T0 ◦ T1. Furthermore, T1 and T2 can be chosen as positive semi-definite
Hermite diagonal operators;

(2) If K ∈ H0,�σ (Rd2+d1), then there are operators T0, T1 and T2 with kernels K0 ∈
H0,1/2(Rd2+d1), K1 ∈ H0,�2σ (Rd1+d1) and K2 ∈ H0,�2σ (Rd2+d2), respectively,
and T = T2 ◦ T0 ◦ T1. Furthermore, T1 and T2 can be chosen as positive semi-
definite Hermite diagonal operators.

Remark 4.4 An operator with kernel in Hs(R2d) is sometimes called a regularizing
operatorwith respect toHs(Rd), because it extends uniquely to a continuousmap from
(the large space)H′

s(R
d) into (the small space)Hs(Rd). Analogously, an operatorwith

kernel inH0,s(R2d) (S (R2d)) is sometimes called a regularizing operatorwith respect
toH0,s(Rd) (S (Rd)).

Proof of Theorem 4.2 First we assume that d0 = d1, and start to prove (1). Let hd,α(x)

be the Hermite function on Rd of order α ∈ Nd . Then K posseses the expansion

K (x, y) =
∑

α∈Nd2

∑

β∈Nd1

aα,βhd2,α(x)hd1,β(y), (4.1)

where the coefficients aα,β satisfies

sup
α,β

|aα,βer(|α| 1
2s +|β| 1

2s )| < ∞, (4.2)

for some r > 0.
Now let z ∈ Rd1 , and

K0,2(x, z) = ∑

α∈Nd2

∑

β∈Nd1

bα,βhd2,α(x)hd1,β(z),

K0,1(z, y) = ∑

α,β∈Nd1

cα,βhd1,α(z)hd1,β(y),
(4.3)
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where

bα,β = aα,βe
r
2 |β| 1

2s and cα,β = δα,βe− r
2 |α| 1

2s
.

Here δα,β is the Kronecker delta. Then it follows that

∫
K0,2(x, z)K0,1(z, y) dz =

∑

α∈Nd2

∑

β∈Nd1

aα,βhd2,α(x)hd1,β(y) = K (x, y).

Hence, if Tj is the operator with kernel K0, j , j = 1, 2, then T = T2◦T1. Furthermore,

sup
α,β

|bα,βe
r
2 (|α| 1

2s +|β| 1
2s )| ≤ sup

α,β

|aα,βer(|α| 1
2s +|β| 1

2s )| < ∞

and

sup
α,β

|cα,βe
r
4 (|α| 1

2s +|β| 1
2s )| = sup

α
|e− r

4 |α| 1
2s e

r
4 |α| 1

2s | < ∞.

This implies that K0,1 ∈ Hs(Rd1+d1) and K0,2 ∈ Hs(Rd2+d1), and (1) follows with
K1 = K0,1 and K2 = K0,2, in the case d0 = d1.

In order to prove (2), we assume that K ∈ H0,s(Rd2+d1), and we let aα,β be the
same as the above. Then (4.2) holds for any r > 0, which implies that if n ≥ 0 is an
integer, then

�n ≡ sup{ |β| ; |aα,β | ≥ e−2(n+1)(|α| 1
2s +|β| 1

2s ) for some α ∈ Nd2 } (4.4)

is finite.
We let

I1 = { β ∈ Nd1 ; |β| ≤ �1 + 1 },
and define inductively

I j = { β ∈ Nd1\I j−1 ; |β| ≤ � j + j }, j ≥ 2.

Then

I j ∩ Ik = ∅ when j �= k, and
⋃

j≥0

I j = Nd1 ,

and by the definitions it follows that I j is a finite set for every j .
We also let K0,1 and K0,2 be given by (4.3), where, if β ∈ I j ,

bα2,β = aα2,βe j |β| 1
2s and cα1,β = δα1,βe− j |β| 1

2s
,
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when α1 ∈ Nd1 , α2 ∈ Nd2 . If T� is the operator with kernel K0,� for � = 1, 2, then it
follows that T2 ◦ T1 = T . Furthermore, if r > 0, then we have

sup
α,β

|bα,βer(|α| 1
2s +|β| 1

2s )| ≤ J1 + J2,

where

J1 = sup
j≤r+1

sup
α

sup
β∈I j

|bα,βer(|α| 1
2s +|β| 1

2s )|, (4.5)

and

J2 = sup
j>r+1

sup
α

sup
β∈I j

|bα,βer(|α| 1
2s +|β| 1

2s )|. (4.6)

Since only finite numbers of β is involved in the suprema in (4.5), it follows from
(4.2) and the definition of bα,β that J1 is finite.

For J2 we have

J2 = sup
j>r+1

sup
α

sup
β∈I j

|aα,βer |α| 1
2s +(r+ j)|β| 1

2s |

≤ sup
j>r+1

sup
α

sup
β∈I j

|e−2 j (|α| 1
2s +|β| 1

2s )er |α| 1
2s +(r+ j)|β| 1

2s | < ∞,

where the first inequality follows from (4.4). Hence

sup
α,β

|bα,βer(|α| 1
2s +|β| 1

2s )| < ∞

for every r > 0, which implies that K0,2 ∈ H0,s(Rd2+d1).
If we now replace bα,β with cα,β in the definition of J1 and J2, it follows by similar

arguments that both J1 and J2 are finite, also in this case. This gives

sup
α,β

|cα,βer(|α| 1
2s +|β| 1

2s )| < ∞

for every r > 0. Hence K1 ∈ H0,s(Rd1+d1), and (2) follows in the case d0 = d1.
Next assume that d0 > d1, and let d = d0 − d1 ≥ 1. Then we set

K1(z0, y) = K0,1(z1, y)hd,0(z) and K2(x, z0) = K0,2(x, z1)hd,0(z),

where K0, j are the same as in the first part of the proofs, z1 ∈ Rd1 and z ∈ Rd , giving
that z0 = (z1, z) ∈ Rd0 . We get

∫

Rd0
K2(x, z0)K1(z0, y) dz0 =

∫

Rd1
K0,2(x, z1)K0,1(z1, y) dz1 = K (x, y).
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The assertion (1) now follows in the case d0 > d1 from the implications

K0,1 ∈ Hs(Rd1+d1) �⇒ K1 ∈ Hs(Rd0+d1)

and
K0,2 ∈ Hs(Rd2+d1) �⇒ K2 ∈ Hs(Rd2+d0)

Since the same implications hold after the Hs spaces have been replaced by H0,s
spaces, the assertion (2) also follows in the case d0 > d1, and the theorem follows in
the case d0 ≥ d1.

It remains to prove the result in the case d0 ≥ d2. By taking the adjoint, the roles
of j = 1 and j = 2 are interchanged, and the result follows when d0 ≥ d2 as well.
The proof is complete. ��
Proof of Theorem 4.3 (1) We have

K (x, y) =
∑

α∈Nd2

∑

β∈Nd1

aα,βhd2,α(x)hd1,β(y), (4.7)

where

sup
α,β

|aα,β(α!β!) 1
2σ R−(|α|+|β|)| < ∞

for some R > 1.
Let z j ∈ Rd j , and

K0(z2, z1) =
∑

α∈Nd2

∑

β∈Nd1

a0,α,βhd2,α(z2)hd1,β(z1), (4.8)

K1(z1, y) =
∑

α∈Nd1

∑

β∈Nd1

a1,α,βhd1,α(z1)hd1,β(y) (4.9)

and
K2(x, z2) =

∑

α∈Nd2

∑

β∈Nd2

a2,α,βhd2,α(x)hd2,β(z2), (4.10)

where

a j,α,β = (α!)− 1
2σ δα,β R2|α|, α, β ∈ Nd j , j = 1, 2,

and

a0,α,β = aα,β(α!β!) 1
2σ R−2(|α|+|β|), α ∈ Nd2 , β ∈ Nd1 .

Then it follows that
∫∫

Rd2+d1
K2(x, z2)K0(z2, z1)K1(z1, y) dz2dz1 = K (x, y).
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Hence, if Tj is the operator with kernel K j , j = 0, 1, 2, then T = T2 ◦ T0 ◦ T1.
Furthermore, the kernels lie in the claimed spaces since

sup
α,β

|a j,α,β(α!β!) 1
4σ R−(|α|+|β|)| < ∞, α, β ∈ Nd j j = 1, 2,

and if 0 < c < log R, then

sup
α,β

|a0,α,βec(|α|+|β|)| ≤ sup
α,β

|R−(|α|+|β|)ec(|α|+|β|)| < ∞.

Next we prove (2). Let aα,β be as in (4.7). Then

sup
α,β

|aα,β(α!β!) 1
2σ R|α|+|β|| < ∞

for every R > 1, which implies that

�1,n ≡ sup{ |β| ; |aα,β | ≥ (n + 1)−6(|α|+|β|)(α!β!)− 1
2σ for some α ∈ Nd2 }

and

�2,n ≡ sup{ |α| ; |aα,β | ≥ (n + 1)−6(|α|+|β|)(α!β!)− 1
2σ for some β ∈ Nd1 }

are finite for every n ≥ 1.
We let

I j,1 = { γ ∈ Nd j ; |γ | ≤ � j,1 + 1 },
and define inductively

I j,m = { γ ∈ Nd j \I j,m−1 ; |γ | ≤ � j,m + m }, m ≥ 2, j = 1, 2.

Then

I j,m ∩ I j,n = ∅ when m �= n, and
⋃

m≥1
I j,m = Nd j .

and by the definitions it follows that I j,m is a finite set for every m.
We also let K j , j = 0, 1, 2 be given by (4.8)–(4.10), where

a j,α,β = (α!)− 1
2σ δα,βm−|α+β|, α ∈ I j,m, j = 1, 2,

and

a0,α,β = aα,β(α!β!) 1
2σ m2|α|

2 m2|β|
1 , α ∈ I2,m2 , β ∈ I1,m1 .
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If Tj is the operator with kernel K j for j = 0, 1, 2, then it follows that T2◦T0◦T1 = T
and T1, T2 are positive semi-definite Hermite diagonal operators. The result therefore
follows if we prove

|a j,α,β | � r |α+β|(α!β!)− 1
4σ , ∀r > 0, j = 1, 2, and

|a0,α,β | � e−r(|α|+|β|), ∀r > 0,
(4.11)

and since

⋃
m≤R+1

I j,m and
⋃

m1+m2≤2R
I2,m2 × I1,m1

are finite sets and R > 1 is arbitrary, it suffices to prove

sup
m>R+1

sup
α∈I j,m

|(α!β!) 1
4σ R|α+β|a j,α,β | < ∞, j = 1, 2, (4.12)

and

sup
(m1,m2)∈Mk

sup
α∈I2,m2

sup
β∈I1,m1

|R|α|+|β|a0,α,β | < ∞, k = 1, 2, 3, (4.13)

where

M1 = { (m1, m2) ∈ Z2+ ; m1 ≥ 2R − 1, m2 = 1 },
M2 = { (m1, m2) ∈ Z2+ ; m2 ≥ 2R − 1, m1 = 1 }

and

M3 = { (m1, m2) ∈ Z2+ ; m1 + m2 ≥ 2R, m1, m2 ≥ 2 },

We have

sup
m>R+1

sup
α∈I j,m

|(α!β!) 1
4σ R|α+β|a j,α,β |

= sup
m>R+1

sup
α,β∈I j,m

|δα,β R|α+β|m−|α+β|| < ∞, j = 1, 2,

and (4.12) follows.
Next we prove (4.13), and start with the case k = 1. Then β ∈ I1,m1 gives

|aα,β | ≤ m−6(|α|+|β|)
1 (α!β!)− 1

2σ ,

which, by the fact that m2 = 1, implies

|a0,α,β | = |aα,β |(α!β!) 1
2σ m2|β|

1 ≤ m−4(|α|+|β|)
1 .
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Hence,

sup
(m1,m2)∈M1

sup
α∈I2,1

sup
β∈I1,m1

|R|α|+|β|a0,α,β | ≤ sup
m1>R>1

R|α|+|β|m−4(|α|+|β|)
1 < ∞,

and (4.13) follows in the case k = 1.
In the same way, (4.13) follows in the case k = 2.
Nextwe prove (4.13) in the case k = 3.By the definitions it follows that ifα ∈ I2,m2 ,

then

|aα,β | ≤ m−6(|α|+|β|)
2 (α!β!)− 1

2σ , ∀ β ∈ Nd1,

and if β ∈ I1,m1 , then

|aα,β | ≤ m−6(|α|+|β|)
1 (α!β!)− 1

2σ , ∀ α ∈ Nd2 .

Hence, if α ∈ I2,m2 and β ∈ I1,m1 , the geometric mean of the right-hand sides of
the inequalities becomes

|aα,β | ≤ (m1m2)
−3(|α|+|β|)(α!β!)− 1

2σ ,

giving that

|a0,α,β | ≤ (m1m2)
−(|α|+|β|).

This gives

sup
(m1,m2)∈M3

sup
α∈I2,m2

sup
β∈I1,m1

|R|α|+|β|a0,α,β |

≤ sup
(m1,m2)∈M3

sup
α∈I2,m2

sup
β∈I1,m1

R|α|+|β|(m1m2)
−(|α|+|β|) < ∞,

and (4.13), and thereby (4.11) follows. ��
Remark 4.5 Let σ > 0 and T ≥ 0 be a Hermite diagonal operator on L2(Rd) with
kernel K in H�σ . By the proof of Theorem 4.3, there are Hermite diagonal operators
T1 ≥ 0 and T2 ≥ 0 on L2(Rd) with kernels K1 and K2 such that

K1 ∈ H�σ (R2d), K2 ∈ H1/2(R2d) and T = T1 ◦ T2 = T2 ◦ T1.

In fact, if K is given by (4.7) with d1 = d2 = d, it suffices to let K1 and K2 be given
by (4.9) and (4.10), where

a1,α,β = R|α+β|(aα,β)1/2(α!β!)− 1
4σ and a2,α,β = R−|α+β|(aα,β)1/2(α!β!) 1

4σ

with R ≥ 1 sufficiently large.

Remark 4.6 From the construction of K1 and K2 in the proofs of Theorems 4.2 and
4.3, it follows that it is not so difficult to use numerical methods for approximations
of candidates to K1 and K2. In fact, K1 and K2 are formed explicitly by the elements
of the matrix for T , when the Hermite functions are used as basis forS ,Hs andH0,s .
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We finish the section by presenting some consequences in the calculus of pseudo-
differential operators. The following result is an immediate consequence of Theorem
4.2 and the fact that the map a �→ K A,a is continuous and bijective on Ss1(R

2d), and
on �s2(R

2d), for every s1 ≥ 1
2 and s2 > 1

2 .

Theorem 4.7 Let A be a real d ×d-matrix, s1 ≥ 1
2 and let s2 > 1

2 . Then the following
is true:

(1) if a ∈ Hs1(R
2d), then there are a1, a2 ∈ Hs1(R

2d) such that a = a1#Aa2;
(2) if a ∈ H0,s2(R

2d), then there are a1, a2 ∈ H0,s2(R
2d) such that a = a1#Aa2.

Remark 4.8 Extensions of Theorem 4.7 to the case where s1 and s2 are allowed to
be smaller than 1

2 is not so smooth, because those Pilipović spaces which are not
Gelfand–Shilov spaces, are not invariant under dilations (cf. [26, Proposition 7.4]).
However, if A is a real d × d matrix and a ∈ S (R2d) is such that the kernel K A,a

belongs toHs(R2d), then we may apply Theorem 4.2 in this situation as well.
Therefore, let GA,s(R2d) (G0,A,s(R2d)) be the set of all a ∈ S (R2d) such that

K A,a ∈ Hs(R2d) (K A,a ∈ H0,s(R2d)). If a ∈ GA,s(R2d) (a ∈ G0,A,s(R2d)), then
there are elements a1, a2 ∈ GA,s(R2d) (a1, a2 ∈ G0,A,s(R2d)) such that a = a1#Aa2.

5 Singular Value Estimates and Schatten–von Neumann Properties
for Operators with Pilipović Kernels

In this section we use Theorem 4.2 to obtain estimates of the form (1.3) for operators
T with kernels in Pilipović spaces of order s, provided B1 and B2 stay between
the given Pilipović space and its dual. In particular it follows that any such operator
belongs to any Schatten–von Neumann class.

In the following result we show that the singular values for operators TK with
kernels K in Pilipović spaces or Schwartz spaces, obey estimates of the form

σ k(TK ,B1,B2) � e−rk
1

2ds
, (5.1)

σ k(TK ,B1,B2) � Rk(k!)− 1
2σd (5.2)

or

σ k(TK ,B1,B2) � k−N . (5.3)

Here V1 ↪→ V2 means that the topological space V1 is continuously embedded in the
topological space V2.

Theorem 5.1 Let p ∈ (0,∞], s ≥ 0 be real, σ > 0 and let d = min(d1, d2). Then
the following is true:

(1) if K ∈ Hs(Rd2+d1), and B1 and B2 are quasi-Banach spaces such that B1 ↪→
H′

s(R
d1) and Hs(Rd2) ↪→ B2, then (5.1) holds for some r > 0. In particular,

TK ∈ Ip(B1,B2);
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(2) if K ∈ H0,s(Rd2+d1), and B1 and B2 are quasi-Banach spaces such that B1 ↪→
H′

0,s(R
d1) and H0,s(Rd2) ↪→ B2, then (5.1) holds for every r > 0. In particular,

TK ∈ Ip(B1,B2);
(3) if K ∈ H�σ (Rd2+d1), and B1 and B2 are quasi-Banach spaces such that B1 ↪→

H′
1/2(R

d1) andH1/2(Rd2) ↪→ B2, then (5.2) holds for some R > 0. In particular,
TK ∈ Ip(B1,B2);

(4) if K ∈ H0,�σ (Rd2+d1), andB1 andB2 are quasi-Banach spaces such thatB1 ↪→
H′

0,1/2(R
d1) and H0,1/2(Rd2) ↪→ B2, then (5.2) holds for every R > 0. In

particular, TK ∈ Ip(B1,B2);
(5) if K ∈ S (Rd2+d1), and B1 and B2 are quasi-Banach spaces such that B1 ↪→

S ′(Rd1) and S (Rd2) ↪→ B2, then (5.3) holds for every N > 0. In particular,
TK ∈ Ip(B1,B2).

We observe that Theorem 5.1 (5) should be available in the literature.
We need some preparations for the proof. First we recall that ifB j , j = 0, 1, 2, are

quasi-Banach spaces and Tj are linear and continuous mappings from B j−1 to B j ,
j = 1, 2, then there is a constant C such that

σ k(T2 ◦ T1,B0,B2) ≤ C‖T1‖B0→B1σ k(T2,B1,B2) (5.4)

and

σ k(T2 ◦ T1,B0,B2) ≤ C‖T2‖B1→B2σ k(T1,B0,B1). (5.5)

In fact, if � j,l(k) is the set of all linear operators fromB j toBl with rank at most
k − 1, then

σ k(T2 ◦ T1,B0,B2) = inf
S∈�0,2(k)

‖T2 ◦ T1 − S‖B0→B2

≤ inf
T0∈�0,1(k)

‖T2 ◦ T1 − T2 ◦ T0‖B0→B2

� ‖T2‖B1→B2

(
inf

T0∈�0,1(k)
‖T1 − T0‖B0→B1

)

= ‖T2‖B1→B2σ k(T1,B0,B1),

which gives (5.5). In the same way (5.4) is obtained. (See also [22]).

Proof of Theorem 5.1 We only prove (1), (3) and (5). The assertions (2) and (4) follow
by similar arguments and are left for the reader.

(1) By Theorem 4.2 we get

TK = TK3 ◦ TK2 ◦ TK1 , (5.6)

where the kernels K1, K2 and K3 of the operators TK1 , TK2 and TK3 belong to
Hs(Rd1+d1), Hs(Rd2+d1) and Hs(Rd2+d2), respectively, and TK2 is a positive semi-
definite Hermite diagonal operator.
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It follows that TK1 is continuous fromB1 to L2(Rd1), and TK3 is continuous from
L2(Rd2) toB2. Hence, by (5.4) and (5.5) it suffices to prove that, if T = TK2 , then

σ k = σ k(T, L2(Rd1), L2(Rd2)) ≤ Ce−ck
1

2ds
, (5.7)

for some positive constants c and C .
By the constructions we have, setting d0 = |d1 − d2|,

K2(x, y) = K0,2(x, y1)h(y2), y = (y1, y2), x, y1 ∈ Rd , y2 ∈ Rd0 ,

when d1 ≥ d2, and

K2(x, y) = h(x1)K0,2(x2, y), x = (x1, x2), x2, y ∈ Rd , x1 ∈ Rd0

when d2 ≥ d1, where

K0,2(x, y) =
∑

α∈Nd

cαhα(x)hα(y), x, y ∈ Rd , (5.8)

with

0 ≤ cα � e−r |α| 1
2s (5.9)

for some constant r > 0. Here h is a fixed Hermite function on Rd0 when d0 > 0,
and h ≡ 1 otherwise. We observe that (5.8) describes the spectral decomposition of
TK0,2 , with {hα}α∈Nd0 as the orthonormal basis of eigenfunctions, andwith eigenvalues
{cα}α∈Nd0 . Furthermore, it is evident that

σ k(TK0,2 , L2(Rd), L2(Rd)) = σ k(TK2 , L2(Rd1), L2(Rd2)), k ≥ 1.

Hence it suffices to prove (5.7) in the case d1 = d2 = d.
Let MN ,d be the number of all multi-indices α ∈ Nd such that |α| ≤ N . Then

MN ,d � 〈N 〉d . Since the singular values are the eigenvalues of TK2 in non-increasing
order, (5.9) gives

σ k(TK2) � e−r N
1
2s

for some r > 0 when MN−1,d < k ≤ MN ,d . For such k we also have k � N d , since
(N − 1)d � N d . By combining these estimates we get

σ k(TK ) � e−r N
1
2s � e−r0k

1
2ds

for some constant r0. This gives (5.1).
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(3) By Theorem 4.3 and Remark 4.5, we get

TK = TK0,2 ◦ TK2 ◦ TK0 ◦ TK1 ◦ TK0,1 , (5.10)

where the corresponding kernels satisfy

K0, j ∈ H1/2(Rd j +d j ), K j ∈ H�2σ (Rd j +d j ), and K0 ∈ H1/2(Rd2+d1),

j = 1, 2. Furthermore, all kernels except K0 to the operators in (5.10) are positive
semi-definite Hermite diagonal operators.

It follows that

TK0,1 : B1 → L2(Rd1), TK0 : L2(Rd1) → L2(Rd2)

and TK0,2 : L2(Rd2) → B2,

are continuous. By similar arguments as in the proof of (1), we get

σ k(TK j , L2(Rd j ), L2(Rd j )) � Rk(k!)−
1

2σd j , j = 1, 2.

Hence,

σ k(TK ,B1,B2) � Rk(k!)−
1

2σd j , j = 1, 2,

in view of (5.4)–(5.5). This gives (3).
(5) By [2,17,21,28,30] we get

TK = TK3 ◦ TK2 ◦ TK1 , (5.11)

where the kernels K1, K2 and K3 of the operators TK1 , TK2 and TK3 belong to
S (Rd1+d1),S (Rd2+d1) andS (Rd2+d2), respectively. Furthermore, we may assume
that TK2 is a positive semi-definite Hermite diagonal operator (cf. e. g. [28]).

It follows that TK1 is continuous fromB1 to L2(Rd1), and TK3 is continuous from
L2(Rd2) to B2. Hence, by (5.4) and (5.5) it suffices to prove that for every N > 0
there is a constant C > 0 such that

σ k = σ k(TK0,2 , L2(Rd), L2(Rd)) ≤ Ck−N . (5.12)

where K0,2 is the same as in the proof of (1). By the construction, cα in (5.8) fulfills

0 ≤ cα � 〈α〉−N

for every N > 0, and by similar arguments as in the proof of (1) we get

σ k � k− N
d
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for every N , and (5) follows.
Finally, by (5.1)–(5.3) it also follows that {σ k(T,B1,B2)} belongs to �p for every

p > 0. This gives the second parts of (1)–(5). ��

6 Discrete Characterizations of Kernels to Smoothing Operators

In this section we show that any operators with kernels in Gelfand–Shilov, Pilipović
or Schwartz spaces can be characterized by convenient expansions of the form

K =
∞∑

j=1

λ j f1, j ⊗ f2, j , {λ j }∞j=1 ⊆ R+ (6.1)

for some

{ fk, j }∞j=1 ⊆ L2(Rdk ), k = 1, 2. (6.2)

In fact, the following result is an extension of Lemma 3.2 in [24].

Theorem 6.1 Let p ∈ [1,∞] and T be a linear and continuous operator from
H0(Rd1) to H′

0(R
d2) with kernel K . Then the following is true:

(1) if K ∈ S (Rd2 × Rd1), then (6.1) holds for some orthogonal sequences in (6.2)
such that

sup
j≥1

(
j N λ j

)
< ∞ and sup

j≥1

(
j N ‖xα Dβ fk, j‖L p(Rdk )

)
< ∞ (6.3)

for k = 1, 2, α, β ∈ Nd and every N ≥ 0.
(2) if K ∈ C∞(Rd2 × Rd1) satisfies (6.1) and (6.3) for k = 1, 2 and every N ≥ 1,

then K ∈ S (Rd2 × Rd1).

The corresponding characterizations of operators with Pilipović kernels are given
in the following theorem. Here recall that the harmonic oscillator is given by H =
|x |2 − �, x ∈ Rd .

Theorem 6.2 Let p ∈ [1,∞], s > 0, d = min(d1, d2) and T be a linear and
continuous operator from H0(Rd1) to H′

0(R
d2) with kernel K . Then the following is

true:

(1) if K ∈ Hs(Rd2 × Rd1) (K ∈ H0,s(Rd2 × Rd1)), then (6.1) holds for some
orthogonal sequences in (6.2) such that

sup
j≥1

(
er · j

1
2ds

λ j
)

< ∞ and sup

⎛

⎝er · j
1

2ds ‖H N fk, j‖L p(Rdk )

hN (N !)2s

⎞

⎠ < ∞ (6.4)

for k = 1, 2 and some h > 0 and r > 0 (every h > 0 and r > 0), where the latter
supremum is taken over all j ≥ 0 and N ≥ 0;
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(2) if K ∈ C∞(Rd2 × Rd1) satisfies (6.1) and (6.4) for k = 1, 2 and some r > 0
(every r > 0), then K ∈ Hs(Rd2 × Rd1) (K ∈ H0,s(Rd2 × Rd1)).

We need some preparations for the proof. First we observe thatHp
[ϑ] possesses the

expected interpolation properties. (Cf. [3].)

Lemma 6.3 Let θ ∈ [0, 1], ϑ , ϑ1 and ϑ2 be weights on Nd , and let p, p1, p2 ∈ [1,∞]
be such that

1

p
= 1 − θ

p1
+ θ

p2
and ϑ = ϑ1−θ

1 ϑθ
2 .

Then

(Hp1
[ϑ1](R

d),Hp2
[ϑ2](R

d))[θ] = Hp
[ϑ](R

d).

Proof The result follows from the fact that the map

{cα}α∈Nd �→
∑

α∈Nd

cαhα

is bijective and isometric from �
p
[ϑ](Nd) toHp

[ϑ](Rd), and that

(
�

p1
[ϑ1](N

d), �
p2
[ϑ2](N

d)
)

[θ] = �
p
[ϑ](N

d).

��
We also need the following extension of [27, Proposition 5.5] on powers of non-

negative self-adjoint operators on L2(Rd).

Proposition 6.4 Let s ≥ 0, t > 0 and let T be a self-adjoint and non-negative
operator on L2(Rd) with kernel K in Hs(Rd × Rd). Then the following is true:

(1) the kernel of T t belongs to Hs(Rd × Rd);
(2) T t is continuous from H′

s(R
d) to Hs(Rd).

The same holds true if the Hs and H′
s spaces are replaced by H0,s and H′

0,s spaces,
respectively, or by S and S ′ spaces, respectively.

Proof We only prove the result when K ∈ Hs(Rd × Rd). The other cases follow by
similar arguments and are left for the reader.

Let

� = { z ∈ C ; 0 < Re(z) < 1 }

and T0(z) = T z when z ∈ �. Then the map z �→ T (z) with values in L (L2(Rd)) is
continuous on � and analytic on �.
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Furthermore, by writing T z = T x ◦ T iy when z = x + iy, and using that T iy is
bounded on L2(Rd) when y ∈ R, it follows from the assumptions that

sup
y∈R

‖T0(iy)‖L2(Rd )→L2(Rd ) ≤ 1,

sup
y∈R

‖T0(1 + iy)‖L2(Rd )→H2[ϑr ](Rd ) < ∞

and

sup
z∈�

‖T0(z)‖L2(Rd )→L2(Rd ) ≤ sup
0≤x≤1

‖T x‖L2(Rd )→L2(Rd )

for some r > 0, where ϑr (α) = er |α| 1
2s .

It now follows from Lemma 6.3 and Calderon-Lion’s interpolation theorem (cf.
Theorem IX.20 in [20]) that T t is continuous from L2(Rd) to H2[ϑr t ](R

d). Duality
gives that

T t : L2(Rd) → H2[ϑr t ](R
d)

and

T t : H2[1/ϑr t ](R
d) → L2(Rd)

are continuous. Hence, by interpolation we obtain that

T t : H2[1/ϑr t/2](R
d) → H2[ϑr t/2](R

d)

is continuous (cf. Remark 2.6), and the result follows from

Hs(Rd) =
⋃

r>0

H2[ϑr ](R
d) and H′

s(R
d) =

⋂

r>0

H2[1/ϑr ](R
d).

��
We also need the following characterization of Pilipović kernels. Here recall that

P(Rd) is the set of polynomially moderated weights on Rd (cf. Sect. 2).

Lemma 6.5 Let p, q ∈ (0,∞], ω ∈ P(R2d2 × R2d1), s > 0, K ∈ H′
0(R

d2 × Rd1),

H1 = |x1|2 − �x1 and H2 = |x2|2 − �x2 , x = (x2, x1) ∈ Rd2 × Rd1 .

Also let H = H2 + H1 be the Harmonic oscillator on Rd2 × Rd1 . Then the following
conditions are equivalent:

(1) K ∈ Hs(Rd2 × Rd1) (K ∈ H0,s(Rd2 × Rd1));
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(2) for some h > 0 (for every h > 0) it holds

‖H N K‖L2 � hN (N !)2s, N ≥ 0; (6.5)

(3) for some h > 0 (for every h > 0) it holds

‖H N1
1 H N2

2 K‖L2 � h(N1+N2)(N1!N2!)2s, N1, N2 ≥ 0; (6.6)

(4) for some h > 0 (for every h > 0) it holds

‖H N1
1 H N2

2 K‖M p,q
(ω)

� hN1+N2(N1!N2!)2s, N1 ≥ N0,1, N2 ≥ N0,2. (6.7)

Proof The assertion (1) and (2) are equivalent in view of [26, Proposition 5.1]. Next
we prove that (2) and (3) are equivalent. Assume that (6.5) holds. Since K ∈ H′

0(R
d2 ×

Rd1), K has a formal Hermite series expansions

K =
∑

α1∈Nd1

∑

α2∈Nd2

cα(K )hα2 ⊗ hα1 ,

where the Hermite coefficients satisfy

|cα(K )| � e− 1
h |α| 1

2s
, α = (α2, α1) ∈ Nd2 × Nd1 ,

for some (every) h > 0. By Parseval’s inequality we obtain

‖H N1
1 H N2

2 K‖L2

≤
∑

α1∈Nd1

∑

α2∈Nd2

(2|α1| + d1)
N1(2|α2| + d2)

N2e− 1
h |α| 1

2s ≤ I1 · I2,

where

Ik =
∑

α j ∈Ndk

(2|α j | + dk)
Nk e

− 1
h0

|α j |
1
2s

with h0 = ch, for some constant c > 0 which only depends on s.
By Lemma 5.7 in [26] and its proof we get

Ik � (3(4sh0)
2s)Nk (Nk !)2s � hNk (Nk !)2s

for some h > 0 and a combination of these estimates shows that (2) implies (3).
Assume instead that (6.6) holds. Then

‖H N K‖L2 = ‖(H1 + H2)
N K‖L2 ≤

N∑

k=0

(
N

k

)
‖H N−k

1 Hk
2 K‖L2
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� hN
N∑

k=0

(
N

k

)
((N − k)!k!)2s ≤ hN (N !)2s

N∑

k=0

(
N

k

)
= (2h)N (N !)2s,

and it follows that (3) implies (2).
It remains to prove the equivalence between (4) and (1)–(3). First we show that

‖H N
1 K‖M p,q

(ω)
� hN (N !)2s, N ≥ N0 (6.8)

is independent on N0 and ω when p, q ≥ 1. If (6.8) is true for N0 = 0, then it is also
true for N0 > 0. If 0 ≤ N ≤ N0, N1 = N0 − N ≥ 0 and (6.8) holds for some N0 ≥ 0,
then by the fact that

H N
1 : M p,q

(vN ω)(R
d2 × Rd1) → M p,q

(ω) (Rd2 × Rd1), (6.9)

with

vN (x1, ξ1, x2, ξ2) = C(1 + |x1|2 + |ξ1|2)N , (6.10)

is a homeomorphism (cf. e. g. [23, Theorem 3.10]), it follows that

‖H N
1 K‖M p,q

(ω)
� ‖H N0

1 K‖M p,q
(ω/vN1

)
� ‖H N0

1 K‖M p,q
(ω)

< ∞,

and (6.8) holds for N0 = 0 as well. This shows that (6.8) is independent of N0 ≥ 0
when p, q ≥ 1.

Since ω ∈ P(R2d2 × R2d1), there exists an integer N0 ≥ 0 such that

1/vN0 � ω � vN0 ,

and then
‖K‖M p,q

(1/vN0
)
� ‖K‖M p,q

(ω)
� ‖K‖M p,q

(vN0
)
. (6.11)

Hence the stated invariance follows if we prove that (6.8) holds for ω = vN0 , if it is
true for ω = 1/vN0 .

Therefore, assume that (6.8) holds for ω = 1/vN0 . If N ≥ 2N0, then the bijectivity
of (6.9) gives



J Fourier Anal Appl

‖H N
1 K‖M p,q

(vN0
)

hN (N !)2s
�

‖H N+2N0
1 K‖M p,q

(1/vN0
)

hN (N !)2s

= h2N0

(
N + 2N0

2N0

)2s

((2N0)!)2s
‖H N+2N0

1 K‖M p,q
(1/vN0

)

hN+2N0((N + 2N0)!)2s

�
(

N + 2N0

2N0

)2s ‖H N+2N0
1 K‖M p,q

(1/vN0
)

hN+2N0((N + 2N0)!)2s
�

‖H N+2N0
1 K‖M p,q

(1/vN0
)

hN+2N0
1 ((N + 2N0)!)2s

,

where h1 = h
4s . This shows that (6.8) is independent of ω in the case p, q ≥ 1.

By repeating these arguments, it follows that (6.7) is independent of N0,1, N0,2, ω
and p, q ∈ [1,∞]. For general p, q ∈ (0,∞], the invariance of (6.7) with respect to
N0,1, N0,2, ω, p and q, is now a consequence of the embeddings

M∞
(vN ω)(R

d2 × Rd1) ⊆ M p,q
(ω) (Rd2 × Rd1) ⊆ M∞

(ω)(R
d2 × Rd1)

when

N >
d1 + d2
min(p, q)

(see e. g. [11]).
The equivalence bewteen (3) and (4) now follows from these invariance properties

and the fact that L2 = M2,2, and the result follows.

In the next proof we let ONd be the set of all orthonormal sequences in L2(Rd).

Proof of Theorems 6.1 and 6.2 We only prove Theorem 6.2 in the Roumieu case. The
other cases (Theorem 6.2 in the Beurling case, and Theorem 6.1) follow by similar
arguments and are left for the reader.

In the sequel we employ the same notation used in the proof of Lemma 6.5
(1) Assume that K ∈ Hs(Rd2 × Rd1). By polar decomposition we have

K (x2, x1) =
∞∑

j=1

λ0, j g j (x2) f j (x1), x1 ∈ Rd1 , x2 ∈ Rd2 ,

where λ0, j ≥ 0 are the singular values of T , { f j }∞j=1 ∈ ONd1 and {g j }∞j=1 ∈ ONd2 .

Now let K1 and K2 be the kernels of T1 ≡ (T ∗◦T )
1
4 and T2 ≡ (T ◦T ∗) 1

4 , respectively.
Then

K1(x2, x1) =
∞∑

j=1

√
λ0, j f j (x2) f j (x1), x1, x2 ∈ Rd1
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and

K2(x2, x1) =
∞∑

j=1

√
λ0, j g j (x2)g j (x1), x1, x2 ∈ Rd2 .

By Theorem 5.1 we get

λ0, j � e−r j
1

2ds (6.12)

for some constant r > 0.
Since K1 ∈ Hs(Rd1 × Rd1), Lemma 6.5 gives

∞∑

j=1

√
λ0, j‖H N f j‖2L2 = ‖H N

1 H N
2 K1‖Tr ≤ ‖H N

1 H N
2 K1‖M1,1 � hN (N !)4s,

where ‖ · ‖Tr is the trace-class norm. Here we have identified operators with their
kernels, and used the fact that operators with kernels in M1,1(R2d) are of trace-class
(cf. [15,26]). Hence,

λ
1
4
0, j‖H N f j‖L2 � hN

0 (N !)2s,

where h0 = √
h. Hence, if f1, j = λ

1
3
0, j f j we obtain

‖H N f1, j‖L2 � λ
1
12
0, j h

N
0 (N !)2s � e−r · j

1
2ds hN

0 (N !)2s

for some r > 0. By considering K2 instead of K1 and letting f2, j = λ
1
3
0, j g j , the same

computations give

‖H N f2, j‖L2 � e−r · j
1

2ds hN
0 (N !)2s

for some r > 0 and h0 > 0.

The assertion now follows if we let λ j = λ
1
3
0, j .

(2) By the assumptions and Cauchy-Schwartz inequality, we obtain

‖H N1
1 H N2

2 K‖L2 =
∥∥∥H N1

1 H N2
2

(∑
λ j f1, j ⊗ f2, j

)∥∥∥
L2

=
(∫∫

Rd2+d1

∣∣∣
∑

λ j H N1
1 f1, j ⊗ H N2

2 f2, j

∣∣∣
2

dx1dx2

)1/2

≤
(∫∫

Rd2+d1

( ∑
λ2j

)( ∑
|H N1

1 f1, j ⊗ H N2
2 f2, j |2

)
dx1dx2

)1/2
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≤
∑

λ j

(∑
‖H N1

1 f1, j‖2L2‖H N2
2 f2, j‖2L2

)1/2

� hN1+N2(N1!N2!)2s
∑

e−r · j1/2ds � hN1+N2(N1!N2!)2s .

Hence, K ∈ Hs(Rd2 × Rd1) in view of Lemma 6.5. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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