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Trans-oceanic genomic divergence of Atlantic cod ecotypes
is associated with large inversions

PR Berg1,2, B Star1, C Pampoulie3, IR Bradbury4,5,6, P Bentzen6, JA Hutchings1,6,7, S Jentoft1,8 and
KS Jakobsen1

Chromosomal rearrangements such as inversions can play a crucial role in maintaining polymorphism underlying complex traits
and contribute to the process of speciation. In Atlantic cod (Gadus morhua), inversions of several megabases have been
identified that dominate genomic differentiation between migratory and nonmigratory ecotypes in the Northeast Atlantic. Here,
we show that the same genomic regions display elevated divergence and contribute to ecotype divergence in the Northwest
Atlantic as well. The occurrence of these inversions on both sides of the Atlantic Ocean reveals a common evolutionary origin,
predating the 4100 000-year-old trans-Atlantic separation of Atlantic cod. The long-term persistence of these inversions
indicates that they are maintained by selection, possibly facilitated by coevolution of genes underlying complex traits. Our data
suggest that migratory behaviour is derived from more stationary, ancestral ecotypes. Overall, we identify several large genomic
regions—each containing hundreds of genes—likely involved in the maintenance of genomic divergence in Atlantic cod on both
sides of the Atlantic Ocean.
Heredity (2017) 119, 418–428; doi:10.1038/hdy.2017.54; published online 20 September 2017

INTRODUCTION

Genomic islands of divergence (Wu, 2001; Nosil et al., 2009) are
known to emerge through divergence hitchhiking (Via, 2012) but can
also evolve through other processes that reduce recombination in
genomic regions, such as inversions (Kirkpatrick and Barton, 2006).
Chromosomal rearrangements in the form of inversions have been
hypothesized to play a key role in maintaining polymorphism in
complex traits (Conrad and Hurles, 2007). Within inversions, the rate
of crossing over is reduced by several orders of magnitude, allowing
genomic islands of divergence within inversions to be larger than in
collinear regions. If an inversion captures several locally adapted
alleles, it can be integral to the genomic process of local adaptation
because it suppresses meiotic recombination in heterozygous indivi-
duals (Kirkpatrick and Barton, 2006).
Inversion polymorphisms have been linked to adaptation with gene

flow in several species including Drosophila (Noor et al., 2001),
Helianthus sunflowers (Rieseberg, 2001), Anopheles mosquitoes
(Ayala and Coluzzi, 2005) and Agrodiaetus butterflies (Kandul et al.,
2007). Recently, evidence of genomic islands of divergence caused by
chromosomal inversions has been reported in several studies focussing
on Atlantic cod (Gadus morhua L.) (Berg et al., 2016; Sodeland et al.,
2016; Kirubakaran et al., 2016; Barth et al., 2017). Inversions that
differentiate migratory from nonmigratory ecotypes (Berg et al., 2016;
Kirubakaran et al., 2016) have been documented for cod in the
Northeast Atlantic, either in only a small fraction of the genome

(Kirubakaran et al., 2016) or a few distinct populations (Berg et al.,
2016; Sodeland et al., 2016). Existence of these inversions in the
Northwest Atlantic or around Iceland has not yet been investigated,
although genomic islands of divergence have previously been docu-
mented for several populations (Bradbury et al., 2010, 2013; Hemmer-
Hansen et al., 2013; Berg et al., 2015, 2016). The fact that such ‘islands’
have previously been identified on both sides of the Atlantic (Bradbury
et al., 2010, 2013) suggests that inversions might also play a role in
explaining genomic islands of divergence in Northwest Atlantic and
Icelandic cod. Interestingly, the allele frequencies of these ‘islands’
display parallel latitudinal clines in populations that are otherwise
genetically distinct, on both sides of the Atlantic (Bradbury et al.,
2010), that is indicative of parallel evolution. Furthermore, a subset of
the single-nucleotide polymorphisms (SNPs) investigated by Bradbury
et al. (2010) has also been associated with temperature in several other
studies (Nielsen et al., 2009; Hemmer-Hansen et al., 2013; Therkildsen
et al., 2013).
Here, we investigate Atlantic cod populations from both sides of the

Atlantic Ocean (Table 1) that have previously been partitioned into (1)
a northern (Can-N) and a southern (Can-S) group (Bradbury et al.,
2010, 2013) in the Northwest Atlantic; (2) Frontal and Coastal
ecotypes in Iceland (see, for example, Pampoulie et al., 2008, 2015);
and (3) migratory North East Arctic cod (NEAC) and nonmigratory
Norwegian coastal cod (NCC) in the Northeast Atlantic. First, we
identify outlier SNPs and genomic regions putatively under selection
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for each population pair and between the spatially different subset of
populations within each of the three broadly delineated groups
(comparing Can-N with Can-S, Frontal with Coastal and NEAC with
NCC), and then make a trans-Atlantic comparison of the observed
genomic patterns. Second, we explore linkage disequilibrium (LD)
patterns, combined with SNP information, to look for chromosomal
rearrangements and to investigate whether previously identified
inversions (Berg et al., 2016; Sodeland et al., 2016; Kirubakaran
et al., 2016) occur throughout the distribution range of Atlantic cod.
Finally, we investigate the frequencies of the inversions among
populations, both within and across the continents, to unravel their
distributions and likely origins, and discuss possible mechanisms
driving the observed patterns in the light of ecotype divergence and
adaptation. The results provide insight into the process of genomic
divergence in marine fishes in general.

MATERIALS AND METHODS

Samples, DNA extraction and genotyping
We sampled 316 Atlantic cod (Figure 1 and Table 1), consisting of 144
individuals from 5 locations from the Northwest Atlantic, 39 Frontal and 39
Coastal ecotype individuals from Iceland (classified by data storage tag (DST)
profiles, see Pálsson and Thorsteinsson, 2003; Thorsteinsson et al., 2012), and
50 NEAC and 44 NCC individuals from the Northeast Atlantic.
DNA was extracted from muscle tissue using the E.Z.N.A Tissue DNA kit

(Omega Bio-Tek, Norcross, GA, USA) and normalized to 100 ng μl− 1. All
samples were individually genotyped using a 12K Illumina SNP chip for which
8165 SNPs were polymorphic in this data set, had a call rate of 495% and
showed Mendelian inheritance in a separate set of individuals with a pedigree.
Out of these SNPs, 602 were close to selected candidate genes, 1470 were
nonsynonymous SNPs and the remaining 5857 SNPs were randomly distributed
throughout the 23 different linkage groups (LGs). Genotype clustering was
performed in Genome Studio 2011.1 (Illumina Inc., San Diego, CA, USA). The
nomenclature of the LGs follows Hubert et al. (2010) and the order of the SNPs
are as in Berg et al. (2016). All 8165 SNPs used were mapped to the published
Atlantic cod genome (ATLCOD1C) (Star et al., 2011) in the same way as in Berg
et al. (2016) and details are available in dbSNP (www.ncbi.nlm.nih.gov/snp).

Outlier detection and population genetics
Allele frequencies and observed and expected heterozygosity (Ho and He)
within each population were calculated in ARLEQUIN 3.5.1.3 (Excoffier and
Lischer, 2010). Departure from Hardy–Weinberg equilibrium was tested locus

by locus in each population in ARLEQUIN with 100 000 iterations and a
Markov Chain of 1 000 000. Correction for multiple testing was performed in R
(R Core Team, 2012), using the QVALUE package (Storey, 2002) with a q-value
of 0.05 as a threshold.
Outlier detection in the respective data sets was performed using 10

independent runs of BAYESCAN v2.1 (Foll and Gaggiotti, 2008), using
stringent criteria, assuming selection to be 10% and false discovery rate set
to 0.01. We report both the median log10(posterior odds) and the median
q-value. As outlier tests may have a high rate of false positives because of the
effects of population demography and bottlenecks (Narum and Hess, 2011;
de Villemereuil et al., 2014), and because of the clear trans-Atlantic divergence
in the data, we performed outlier analyses pairwise between all population pairs
or identified groups to reduce the methodological weakness caused by
population structuring (Vitalis et al., 2001).
Based on the outlier analyses, SNPs were categorized as outliers or as neutral.

To avoid bias in the FST and STRUCTURE (Pritchard et al., 2000) analyses, tag
SNPs based on LD values between SNPs (r240.5) were selected using PLINK
v1.07 (Purcell et al., 2006). The outlier and neutral data sets (518 and 7369
SNPs) are represented by 325 and 7075 unlinked tag-SNPs. Locus-specific FST
values and weighted average FST values between all populations were calculated
in ARLEQUIN, using 10 000 permutations. We calculated nucleotide diversity
(π) within all identified groups, and nucleotide divergence between these
groups (DXY), using a sliding windows approach with a 50-SNP window and 10
SNPs per iteration in DnaSP 5.10 (Librado and Rozas, 2009). These analyses
were also performed locally within each of the identified chromosomal
rearrangements.
Discriminant analysis of principal components (DAPC), using all 8165 SNPs

were performed, using the R package ADEGENET (Jombart and Ahmed,
2011). The correlated allele frequency and admixture model in STRUCTURE
was used to identify major genetic clusters in the data set, performing 10
independent runs for each value of K (burn-in of 10 000 Markov chain Monte
Carlo iterations followed by 100 000 iterations) on the different data sets. Delta
K and the best K-value for each data set in STRUCTURE was identified with
CLUMPAK (Kopelman et al., 2015). NETVIEW P (Steinig et al., 2016) was
used to visualize the neutral population divergence in the data based on an
isolation by state (1− IBS) matrix constructed in PLINK at k= 50, using 7075
unlinked neutral SNPs. The network construction is independent of prior
population information and based solely on the genetic distance between
individuals.

LD and rearrangement patterns
The presence of intrachromosomal LD, quantified with the r2 estimate using
PLINK, was evaluated in all populations separately and within the identified

Table 1 Sample details of the Atlantic cod samples included in this study and basic population genetic parameters

Sampling

ID

Group Sampling

time

Spawning

time

Lat. Long. Condition Ind. call no.

40.95

Avg. call

rate

No. of polymorphic

loci

Ho (s.d.) He (s.d.)

Can-N_PB Can-N July 2007 April–July N47.15 W54.15 Juvenilesa 24 0.989 7351 0.308 (0.172) 0.309 (0.156)

Can-N_SG Can-N May 2001 May–June N46.13 W61.39 Adultsb 24 0.990 6933 0.325 (0.177) 0.316 (0.153)

Can-S_SB Can-S Dec 2010 Nov–Dec N44.27 W63.36 Adultsb 48 0.994 7876 0.308 (0.167) 0.309 (0.157)

Can-S_GM Can-S July 2009 Feb–April N43.16 W67.46 Adults 24 0.994 7657 0.322 (0.171) 0.320 (0.153)

Can-S_BB Can-S July 2009 Mar–April N42.35 W65.50 Adults 24 0.994 7651 0.314 (0.168) 0.319 (0.154)

Ice_F Migratory Mar–May Adultsb 39 0.994 8064 0.358 (0.152) 0.357 (0.138)

Ice_C Nonmigratory Mar–May Adultsb 39 0.994 8053 0.363 (0.146) 0.365 (0.133)

NEAC Migratory Mar. 2011 Mar–May N68.19 E13.30 Adultsb 50 0.998 8039 0.357 (0.147) 0.356 (0.137)

NCC Nonmigratory Jun/Jul 2011 Mar–May N68.04 E13.41 Adults/juv. 44 0.996 8126 0.366 (0.143) 0.367 (0.129)

Abbreviations: Avg., average; Can-N_PB, Placentia Bay; Can-N_SG, Southern Gulf of St Lawrence; Can-S_SB, Sambro; Can-S_GM, Gulf of Maine; Can-S_BB, Browns Bank; Ice_F, Iceland Frontal;
Ice_C, Iceland Coastal; Ind., individual; Lat., latitude; Long., longitude; NEAC, Northeast Arctic cod; NCC, Norwegian coastal cod.
The Icelandic samples were collected at several locations in the waters around Iceland and later categorized as Frontal or Coastal, based on Data Storage Tag profiling. See Figure 1 in
Thorsteinsson et al. (2012) for a detailed view of the Icelandic sampling localities.
Estimates of observed (Ho) and expected heterozygosity (He) were calculated using ARLEQUIN. Latitude and longitude values are given in degrees and minutes and the coordinates for Can-N_PB,
Can-S_GM and Can-S_BB are approximations.
aProduced by wild-caught adults in spawning condition.
bIn spawning condition.
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groups (Table 1). The R package inveRsion (Cáceres et al., 2012) was used to
detect and locate potentially inverted genomic regions and to identify the
inversion status of each individual, using block size= 3, min. allele= 0.1 and
thbic= 0. This method utilizes the LD differences across inversion breakpoints
to detect potentially inverted regions. To complement this LD-based approach,
the R package invClust (Cáceres and González, 2015) was also used to identify
potentially inverted regions by haplotype tagging and dimensionality reduction
analysis based on predefined regions of interest. These regions were defined
based on the LD analyses performed in PLINK. DAPCs were performed within
the identified inversions to visualize the distinct three-cluster pattern, reflecting

the different inversion genotypes. Simulation analyses have demonstrated that
such analyses can be used efficiently to detect and genotype inversion
polymorphisms of unphased SNP data (Ma and Amos, 2012).

RESULTS

We investigated a total of 8165 SNPs, distributed throughout 23 LGs
with an average distance of 94 000 bp between SNPs, based on a
genome size of 830 Mb (Star et al., 2011), in 316 individuals of cod
from both sides of the Atlantic Ocean (Figure 1 and Table 1). A total
of 5202 SNPs were located within 5000 bp of 4245 Ensembl annotated
genes. Only seven SNP loci were significantly out of Hardy–Weinberg
Equilibrium, after false discovery rate correction (qo0.05), in any of
the populations (Supplementary Table S1), indicating no Wahlund
effect. The number of polymorphic loci and the observed and expected
heterozygosity was generally lower in Northwest Atlantic populations
than in Northeast Atlantic populations (Table 1).

Population divergence
Neutral weighted FST between the Northwest and Northeast Atlantic
was 0.081 and all pairwise FST values were significantly different from
zero except for the Can-S_BB comparisons with Can-S_SB and
Can-S_GM and the Ice_F/Ice_C comparison (Supplementary Table
S2; see Table 1 for sample codes). The FST values based on the outlier
SNPs (see below) were generally orders of magnitude larger than those
based on the neutral SNPs in any pairwise comparison and only the
Can-S_BB comparisons with Can-S_SB and Can-S_GM were not
significantly different from zero. Elevated FST values predominantly
occurred within distinct regions in LGs 2, 7 and 12 (but also to some
extent in LG1) in the Northwest Atlantic populations, primarily in LGs
1, 2 and 7 in the Northeast Atlantic populations, and in a distinct
region in LG23 and in a few SNPs in LG11 between the two continents
(Supplementary Figure S1). This pattern corresponds well with the
distinctly different heterozygosity and nucleotide divergence (DXY)
patterns observed (Supplementary Figures S2 and S3).
Bayesian cluster analyses as implemented in STRUCTURE sup-

ported a distinct separation (ΔK= 2) between Northwest and North-
east Atlantic populations, using both the neutral and the outlier data
sets (Supplementary Figure S4). In addition, the STRUCTURE analysis
based on the neutral data set (K= 3) revealed that the NCC population
is distinctly different from the other Northeast Atlantic populations.
Further neutral population structuring within both the Northwest and
Northeast Atlantic was evident from the network analyses (Figure 2).

Figure 1 Map showing the sampling locations of the Atlantic cod populations used in the present study. With one exception, red dots indicate the position
where the samples were collected; the Icelandic samples were collected at several locations in the waters around Iceland and later categorized as Frontal or
Coastal, based on Data Storage Tag profiling. See Figure 1 in Thorsteinsson et al. (2012) for a detailed view of the Icelandic sampling localities and see
Table 1 for a detailed description of the populations in the present study. Can-N_PB, Placentia Bay; Can-N_SG, Southern Gulf of St Lawrence; Can-S_SB,
Sambro; Can-S_GM, Gulf of Maine; Can-S_BB, Browns Bank; Ice_F, Iceland Frontal; Ice_C, Iceland Coastal; NEAC, Northeast Arctic cod; NCC, Norwegian
coastal cod. The map was modified from http://www.graphic-flash-sources.com/world-vector-map/ using Adobe Illustrator CC.
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The DAPC, using all SNPs, confirmed the distinct separation between
Northwest and Northeast Atlantic populations (Figure 3a), and also
revealed a further stratification within these regions (Figures 3b and d).
Within the Northwest Atlantic, the Can-S_SB clustered together with the
Can-S populations that clustered separately from the Can-N populations
(Figure 3b). Within the Northeast Atlantic, the Frontal and Coastal
ecotypes from Iceland clustered closer to the migratory NEAC popula-
tion, whereas the nonmigratory NCC population was distinctly different
from these. When grouping the populations into Can-N/migratory and
Can-S/non-migratory entities (Table 1), we observed clear genomic
differences that could be attributed to the putative inversions within
LGs 1, 2, 7 and 12 (Supplementary Figures S5a and b). Moreover, the
separation pattern within the different LGs primary reflected the
frequency differences between these regions (Figures 3c and e,
Supplementary Figures S5c–f). The remaining LGs showed little differ-
entiation between these two groups (Supplementary Figure S5g).

Outlier detection and identification of genomic regions under
selection
Outlier analyses were performed pairwise, and identified 227 SNPs
(2.8%) as candidates for divergent selection (qo0.01) in the North-
west Atlantic populations, 361 SNPs (4.4%) in the Northeast Atlantic,
and 518 SNPs (6.3%) in all pairwise population comparisons
(Supplementary Figure S6 and Supplementary Table S3). Outlier tests
were also performed between the Can-N and Can-S groups, between
the migratory and nonmigratory groups and between the Can-N/
migratory and Can-S/nonmigratory entities, and identified 237, 319

and 365 SNPs as candidates for divergent selection, respectively
(Figure 4 and Supplementary Table S3). The outlier analyses revealed
four large regions potentially under selection in LGs 1, 2, 7 and 12
(Figure 4 and Supplementary Figure S6) consisting of 170, 47, 162 and
75 SNPs, respectively. The outlier regions in LGs 2 and 7 were present
on both sides of the Atlantic: the outlier region in LG1 was
predominantly present in Northeast Atlantic comparisons and the
region in LG12 was only divergent in the Northwest Atlantic
comparisons. A few additional nonlinked outliers were detected in
all but two LGs (Supplementary Table S3). Of the 518 outlier SNPs,
364 are located either in or within 5 kb of a known gene, of which 196
are located in exons and 161 are nonsynonymous substitutions
(Supplementary Table S3).

LD patterns and chromosomal rearrangements
In LGs 1, 2, 7 and 12, a substantial number of SNPs were detected in
high LD, forming distinct LD blocks (Supplementary Figure S7a). The
strength of LD within LG1 differed between Northwest and Northeast
Atlantic populations, and also between the different groups; it was
greater in the Northeast Atlantic migratory populations than in the
Northwest Atlantic Can-S populations (Supplementary Figure S7b). In
LGs 2 and 7, the LD patterns were similar in all groups, except for the
Can-N population in the Northwest Atlantic, where LD was consis-
tently low (Supplementary Figure S7b). Similarly, in LG12, differences
were observed between the Northwest and Northeast Atlantic popula-
tions, with distinctly low LD within the Can-N populations
(Supplementary Figure S7b). The LD analyses also revealed smaller
regions of high LD in other LGs (Supplementary Figure S7a).
By using the R packages InveRsion and InvClust, the linked regions

under selection in LGs 1, 2, 7 and 12 were identified as putative
inversions, in addition to a potential inversion not under selection in
LG23 (Table 2). The inversion breakpoints identified by the InveRsion
package correspond well with the identified boundaries for the blocks
in high LD (Supplementary Table S4). The different genotypic
combinations (inversion frequencies) at LGs 1, 2, 7 and 12
(Supplementary Table S5) contribute to the observed population
and ecotype divergence in addition to a trans-Atlantic difference
(Table 2 and Figure 5), whereas the LG23 region primarily shows a
trans-Atlantic difference. FST values within the homozygote inverted
and noninverted variants were calculated for all four divergent regions
across the Atlantic Ocean (Table 2), showing large increased diversity
in the noninverted variant in LG1 and LG12 and in the inverted
variant in LG7, relative to the genome-wide neutral divergence. These
results are consistent with the spatial distribution visualized in
Figure 5. In addition, low genomic divergence, reflected by hetero-
zygosity (Supplementary Figure S2) and nucleotide diversity (π,
Table 2 and Supplementary Figure S3) was observed for the migratory
and Can-S groups within the divergent regions in LGs 1, 2, 7 and 12.
The inversions vary in size and number of genes: LG1, at least

18.5 Mb and 785 genes; LG2, ∼ 6 Mb and 293 genes; LG7, at least
10 Mb and 324 genes; LG12, ∼ 13Mb and 419 genes; LG23, 43.5 Mb
and 97 genes (Supplementary Table S6). Combined, the divergent
regions in LGs 1, 2, 7, 12 and 23 are 450 Mb (≈6% of the genome)
and contain 41900 genes (Supplementary Table S6).

DISCUSSION

Polymorphic inversions
Ever since seasonal changes in inversion frequencies were observed in
Drosophila (Dobzhansky, 1943), the effects of reduced recombination
rates within inversions have been linked to adaptation with gene flow,
and investigations have shown that sympatric species exhibit more

Can-N_PB 

Can-N_SG

Can-S_SB

Can-S_GM

Can-S_BB

Ice_F

Ice_C

NEAC

NCC

Northwest Atlantic
samples

Northeast Atlantic 
samples

Figure 2 Neutral population divergence between Atlantic cod populations.
Population clustering based on 7075 neutral SNPs in 316 individuals of
Atlantic cod, using an isolation-by-state (IBS) matrix constructed in PLINK,
visualized using the NETVIEW P pipeline at k=50, capturing large-scale
genetic differentiation across the Atlantic as well as fine-scale structuring
within the Northwest and Northeast Atlantic populations. Edge width is
proportional to the genetic distance between individuals. Can-N_PB,
Placentia Bay; Can-N_SG, Southern Gulf of St Lawrence; Can-S_SB,
Sambro; Can-S_GM, Gulf of Maine; Can-S_BB, Browns Bank; Ice_F, Iceland
Frontal; Ice_C, Iceland Coastal; NEAC, Northeast Arctic cod; NCC,
Norwegian coastal cod.
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differences caused by inversions than allopatric species (see, for
example, Rieseberg, 2001; Noor et al., 2001; Ayala and Coluzzi,
2005; Kandul et al., 2007). Recent research on tropical reef fishes
(Martinez et al., 2015) and Estrildid finches (Hooper and Price, 2015)
indicate a quicker fixation of inversions in lineages with higher
dispersal potential and gene flow, consistent with a theory where

gene flow favours diversification of chromosomal rearrangements
caused by locally adapted loci (Kirkpatrick and Barton, 2006). In line
with these findings, we observe generally low genome-wide divergence
interspersed with highly divergent regions (Figure 4) among the
investigated Atlantic cod populations, where gene flow could poten-
tially be high because of few physical barriers. In an adaptation with

 Can-N_PB
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 Can-S_SB
 Can-S_GM
 Can-S_BB
 Ice_F
 Ice_C
 NEAC   
 NCC

Axis 1
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 Can-N_PB
 Can-N_SG
 Can-S_SB
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 Ice_C
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L
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Figure 3 Spatial relationship between and within Northwest and Northeast Atlantic cod based on discriminant analysis of principal components (DAPC).
Based on all 8165 SNPs, a distinct trans-Atlantic separation and a clear separation within Northeast and Northwest Atlantic is observed (a). The stratification
within the Northwest Atlantic (b) and the Northeast Atlantic (d) is even more evident when these groups are analysed separately. The loading plots based on
the DAPC analyses show the contribution of each SNP to the differentiation within the Northwest Atlantic (c) and Northeast Atlantic (e) populations. The
analyses are based on n.pca=3 and n.da=2, calculated in ADEGENET that assumes a predefined population designation of the individuals. Can-N_PB,
Placentia Bay; Can-N_SG, Southern Gulf of St Lawrence; Can-S_SB, Sambro; Can-S_GM, Gulf of Maine; Can-S_BB, Browns Bank; Ice_F, Iceland Frontal;
Ice_C, Iceland Coastal; NEAC, Northeast Arctic cod; NCC, Norwegian coastal cod.
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Figure 4 Manhattan plots visualizing the pairwise outlier patterns between ecotypes of Atlantic cod. The observed outlier pattern between Can-N and Can-S
(a) indicates that the majority of outliers are clustered within the inversions in LGs 2, 7 and 12, whereas the inversions within LGs 1, 2 and 7 are putatively
under selection between migratory and nonmigratory ecotypes in the Northeast Atlantic (b). By grouping all individuals into migratory and nonmigratory
groups (see Table 1 for details), outliers are detected within the inversions in LGs 1, 2, 7 and 12 (c). The plots are based on median log10 posterior odds
(PO) values from 10 independent runs of BAYESCAN. SNPs are plotted according to linkage group and position within the linkage groups along the x axis as
in Berg et al. (2016). The red line at 1 indicates ‘strong association’ according to Jeffreys (1961). The migratory group consists of Can-N_PB (Placentia
Bay), Can-N_SG (Southern Gulf of St Lawrence), Ice_F (Iceland Frontal) and NEAC (Northeast Arctic cod), whereas the nonmigratory group consists of Can-
S_SB (Sambro), Can-S_GM (Gulf of Maine), Can-S_BB (Browns Bank), Ice_C (Iceland Coastal) and NCC (Norwegian coastal cod). For visualization purposes,
maximum log10 (PO) values are set to 5 (all underlying values are found in Supplementary Table S3).
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gene flow scenario where different ecotypes are maintained in close
proximity and potentially interbreeding, such as in the case of NEAC/
NCC and Ice-F/Ice-C, inversion polymorphism (effectively acting as
supergenes) could be an important factor in upholding the ecotype
diversity. This has been shown in Heliconius butterflies, where super-
genes controlling wing mimicry have been attributed to a series of
inversions that suppress recombination (Joron et al., 2011; Jones,
Salazar, et al., 2012). Chromosomal rearrangements have also been
associated with behavioural or ecotype differences in other species
such as white-throated sparrow (Zonotrichia albicollis) (Zinzow-
Kramer et al., 2015), rainbow trout (Oncorhynchus mykiss) (Pearse
et al., 2014) fire ant (Solenopsis invicta) (Wang et al., 2013), stickleback
(Gasterosteus aculeatus) (Jones, Grabherr, et al., 2012) and Anopheles
mosquitoes (Love et al., 2016). Recently, a haplotype block and a
potential inversion associated with different spawning times have been
identified in herring (Clupea harengus) across the Atlantic Ocean
(Lamichhaney et al., 2017).
In our data set, we observe four distinct large genomic regions of

divergence where SNPs are in persistently high LD with each other.
These regions are likely chromosomal inversions over several Mb in
size (Berg et al., 2016; Kirubakaran et al., 2016) that segregate as
biallelic loci within populations. As such, inversions that contain
multiple genes involving a certain set of phenotypic traits could be
responsible for maintaining vital polymorphisms within the Atlantic
cod genome. Alternatively, the observed pattern could also result from
secondary contact between previously diverged populations where the
inversions form endogenous incompatibilities protected from recom-
bination. In such a scenario, selection would not cause or maintain the
inversions per se, but secondary contact could result in genomic
homogenization across the genome except for the inverted regions. If
so, the inversions would maintain the differentiation by coupling to
loci associated with the divergence that is consistent with the coupling
hypothesis (Bierne et al., 2011). Nonetheless, we find this explanation
less likely as this hypothesis implies fixation of alternative alleles due to
genetic incompatibilities, whereas we observe high frequencies of
heterozygous individuals at all the inversions. In addition, a large
number of F1 hybrids between the Can-N and Can-S groups have
been observed (Bradbury et al., 2014) and crosses of breeding stocks of
NEAC and NCC are routinely made (Bangera et al., 2015), suggesting
a lack of lethal genetic incompatibilities between the potential
inversion types.
Regardless of the cause of the selective advantage of the inversions,

these islands comprise ‘fixed’ entities that behave like biallelic loci and
that appear to resist introgression even though interbreeding in areas
of sympatry have been observed (Bradbury et al., 2014). Our results
are consistent with the hypothesis that broad-acting selective agents
target numerous biological functions. This combined with relatively
low level of pairwise genetic divergence throughout the rest of the
genome within the Northwest and Northeast Atlantic cod populations
suggests that the divergence within the rearrangements is indicative of
adaptive divergence. This has also been shown in perennial and annual
ecotypes of monkeyflower that differ significantly within an inversion,
while high gene flow homogenizes the collinear parts of the genome
(Twyford and Friedman, 2015).

Trans-Atlantic genomic divergence
Cod have been extant on both sides of the Atlantic for4100 000 years
(Bigg et al., 2008; Carr and Marshall, 2008). Consistent with the
expectations of allopatric population differentiation, a distinct separa-
tion is observed across the breadth of the species’ range (Figure 3a),
concordant with both mitochondrial DNA data (Árnason, 2004;T
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Bigg et al., 2008; Carr and Marshall, 2008) and nuclear DNA data
(Bentzen et al., 1996; Pogson, 2001; O'Leary et al., 2007). Demo-
graphic processes appear to explain most of the genomic differentia-
tion between the Northwest and Northeast Atlantic populations,
although SNPs within a presumptive inversion in LG23 exhibit
elevated FST values relative to the genomic average. The putative
inversion in LG23 contains at least 97 genes, where two outlier SNPs
were detected in a voltage-dependent calcium channel gene (CAC-
NA1S) known to be expressed in early-stage embryos of Danio rerio
(Sanhueza et al., 2009). Alternative alleles within this region are nearly
fixed between the Northwest and Northeast Atlantic populations
(Table 2), with no differentiation within these locations. Low
heterozygosity and low nucleotide diversity within the presumed
inversion in the Northwest Atlantic populations indicate that this
might be the derived variant. The origin of the inversion is likely to
pre-date the trans-Atlantic split as both variants have a trans-Atlantic
presence (although at low respective frequencies). In addition, there
are two distinct population clusters within both the Northwest and the
Northeast Atlantic that cannot be attributed to trans-Atlantic diver-
gence. Here, the main genetic differences are attributed to inversions
within LGs 1, 2, 7 and 12.

Genomic divergence within the Northeast Atlantic
Even though a distinction between Coastal and Frontal ecotypes in
Icelandic waters has been investigated recently (see, for example,
Pampoulie et al., 2008; Grabowski et al., 2011; Pampoulie et al., 2015),
the genomic basis for these differences has not yet been examined in
detail. However, FST patterns in Icelandic waters between coastal and
deep-water populations that were not characterized with DSTs (that is,
not real migratory vs nonmigratory ecotypes) have been described as

reflecting a differentiation similar to that reported between NEAC and
NCC populations (Hemmer-Hansen et al., 2013). To date, true
Coastal and Frontal ecotypes can only be distinguished by DST
profiles (see Pálsson and Thorsteinsson, 2003; Thorsteinsson et al.,
2012), although they exhibit different Pan I locus genotypes and differ
at the RH1 opsin gene (Pampoulie et al., 2008, 2015), with both genes
residing within the LG1 inversion. Our data show that most of the
genomic differentiation between the Coastal and Frontal ecotypes (as
defined by DSTs) can be attributed to the LG1 inversion, but that
smaller FST differences are also observed at LGs 2 and 7. We do not
observe any significant neutral divergence (FST= 0.0002) between
Frontal and Coastal ecotypes, whereas significant nonneutral diver-
gence (mainly within LGs 1, 2 and 7) are observed (FST= 0.0547).
Both the Frontal and the Coastal ecotypes are inshore cod that spawn
at the same spawning grounds and at the same time. The observed
pattern with no neutral divergence, and significant nonneutral
divergence, is consistent with a divergent selection hypothesis where
individuals potentially interbreed at the spawning grounds followed by
de novo selection, discriminating the two ecotypes.
Both the Frontal and Coastal ecotypes cluster close to the NEAC

population and away from the NCC population (Figure 3d), as
indicated by the low neutral divergence between both Coastal and
Frontal ecotypes relative to the NEAC (0.0025 and 0.0026) and NCC
(0.0062 and 0.0068). Non-neutral divergence between Frontal and
Coastal ecotypes are higher than the divergence between Frontal and
NEAC (0.0349), but lower than the observed divergence between
Frontal and NCC (0.2507) and between Coastal and both NEAC and
NCC (0.1610 and 0.1142). Hence, the two Icelandic ecotypes may be
derived from NEAC, where local adaptations are forming migratory
and nonmigratory ecotypes based on standing genetic variation in the

 Can-N_PB
 Can-N_SG
 Can-S_SB
 Can-S_GM
 Can-S_BB
 Ice_F
 Ice_C
 NEAC
 NCC

LG1 LG2
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NI/NI
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Figure 5 Discriminant analysis of principal components (DAPC) of the SNPs embedded within the inversions in LGs 1, 2, 7 and 12. Within all LGs a clear
trimodal pattern, reflecting the inversion ‘genotypes’, is observed in addition to a broad trans-Atlantic division. Each dot represents an individual; NI/NI and I/
I denote the homozygote noninverted and inverted clusters, respectively, whereas the NI/I denotes the heterozygote clusters. Inversion frequencies are listed
in Supplementary Table S5. The analyses are based on n.pca=2 and n.da=2, calculated in ADEGENET. Can-N_PB, Placentia Bay; Can-N_SG, Southern
Gulf of St Lawrence; Can-S_SB, Sambro; Can-S_GM, Gulf of Maine; Can-S_BB, Browns Bank; Ice_F, Iceland Frontal; Ice_C, Iceland Coastal; NEAC,
Northeast Arctic cod; NCC, Norwegian coastal cod.
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putative inversions in the NEAC genome. As such, the differentiation
that we observe between Ice_C and Ice_F, which has been grouped
according to behaviour (based on DST tags), probably reflect ecotype
divergence in a similar way.

Genomic divergence within the Northwest Atlantic
Within the Northwest Atlantic, the populations cluster into a Can-N
and a Can-S group that are known to occupy different thermal
regimes (Hutchings et al., 2007; Bradbury et al., 2010, 2013). The
northern populations Can-N_PB (Placentia Bay) and Can-N_SG
(Southern Gulf of St Lawrence) belong to the ‘cold’ group, the
southern populations Can-S_GM (Gulf of Maine) and Can-S_BB
(Browns Bank) belong to the ‘warm’ group and the Can-S_SB
(Sambro) is located at the transition between the two groups. For
the northern populations, tagging experiments show that large
individuals of the Can-N_PB population perform relatively long
annual migrations (4100 km and up to 500 km) (Lawson and
Rose, 2000) with comparatively precise homing to their natal area
(Robichaud and Rose, 2011), and the Can-N_SG is known to exhibit
even longer annual migration patterns of 4225 km for juveniles and
up to 650 km for adult fish (Hanson, 1996). In the southern
populations, the Can-S_GM population performs limited annual
migration within the Gulf of Maine (o65 km) (Ruzzante et al.,
1998) and the Can-S_BB are described as being resident to the bank
(Zemeckis et al., 2014), where eggs and larvae are likely to be retained
by gyres around the bank. Little is currently known about the
migration patterns of the Can-S_SB population, but other populations
on the Scotian shelf show limited migration patterns (Ruzzante et al.,
1998). The northern populations Can-N_PB and the Can-N_SG
spawn in the summer months, the southern populations Can-S_GM
and Can-S_BB spawn in late winter/early spring and the Can-S_SB
population spawns in late fall (Table 1). As such, there are several
notable differences between the Can-N and Can-S groups that are not
easily disentangled, such as temperature, spawning time and migratory
behaviour. It is clear, however, that the divergence between the Can-N
and the Can-S ‘ecotypes’ is not only driven mainly by differences in
the inversions in LGs 2, 7 and 12 (reflected by both inversion
frequencies, FST values and outlier patterns), but also to some extent
by differences in the LG1 inversion. This is consistent with results
reported by Bradbury et al. (2010) and Hemmer-Hansen et al. (2013)
who identified outlier regions primarily within LGs 2, 7 and 12 among
Northwest Atlantic populations, but did not attribute this divergence
to inversions or to ecotype differentiation. Lately, significant popula-
tion differentiation has also been observed between spawning groups
within the Gulf of Maine and between Georges bank and Gulf of
Maine at three large genomic regions in LGs 2, 7 and 12 and increased
FST values was observed between spring and winter spawning
populations within the LG2 region (Barney et al., 2017).

Population and ecotype differentiation within the divergent regions
The inversion in LG1 is involved in ecotype divergence of Northeast
Atlantic populations (Hemmer-Hansen et al., 2013; Berg et al., 2016;
Kirubakaran et al., 2016) but shows a less pronounced divergence
between Can-N and Can-S in the Northwest Atlantic populations.
However, the presumably ancestral (NI/NI) inversion ‘genotype’,
found predominantly in the nonmigratory ecotype in the Northeast
Atlantic, is found at similarly high frequencies in the Can-S popula-
tions. The NI/NI and the I/I variants are highly divergent across the
Atlantic (FST= 0.237 and 0.159, respectively), relative to the neutral
trans-Atlantic divergence (FST= 0.081). This suggests local selection
pressures acting differently on both of the variant on each side of the

Atlantic, but less so for the I/I variant that is associated with migratory
behaviour in the Northeast Atlantic. The fact that we detect a similar
trans-Atlantic pattern at the LG1 inversion is consistent with Bradbury
et al. (2010) that northern samples from the Northwest Atlantic (Davis
Strait) and samples from the Barents Sea (presumably NEAC) were
not significantly divergent in this region.
SNPs within the presumed inversions in LGs 2 and 7 have

previously been linked to temperature (Bradbury et al., 2010), salinity
and oxygen levels in the Baltic Sea (Berg et al., 2015), and ecotype
divergence of Northeast Atlantic populations (Berg et al., 2016), and
are known to be divergent in a wide range of cod populations across
the Atlantic (Bradbury et al., 2010; Hemmer-Hansen et al., 2013).
Interestingly, within both of these LGs, the Can-N populations are
fixed for the I/I variant that is nearly fixed in the migratory ecotypes in
the Northeast Atlantic. Notably, there are clear FST differences between
the Ice_C and Ice_F ecotypes but these differences are not strong
enough to manifest as potential outliers in the outlier tests. Intrigu-
ingly, we also observe elevated FST difference in LG7 between the
Ice_C (nonmigratory) and NCC populations that may seem incon-
sistent with the proposed association with migratory behaviour.
However, this might reflect the fact that the Ice_C ecotype presumably
has a NEAC origin that consists predominantly of the I/I variant.
Hence, the standing genomic divergence may not contain sufficient
variation-needed for adaptation. Alternatively, the selection pressure
on this genomic region might not be strong enough to cause
significant differentiation within the selection timeframe.
The presumably inverted genomic region in LG12 has recently been

used to discriminate between two Atlantic cod stocks inhabiting the
Norwegian Skagerrak coast (Sodeland et al., 2016), and SNPs within
this region have been linked to temperature in two separate studies
(Bradbury et al., 2010; Berg et al., 2015). This inversion is fixed or
nearly fixed for the I/I variant in all populations in our study except
for the three Can-S populations that are highly polymorphic. The
frequencies of the inversion in LG12 does not differ significantly
between the NEAC and NCC populations (Berg et al., 2016),
indicating that this inversion may not distinguish migratory from
nonmigratory ecotypes per se. Hence, the observed differences between
Can-N and Can-S may reflect adaptation to different thermal regimes.
Interestingly, the trans-Atlantic divergence at the NI/NI variant
(FST= 0.736) is high relative to the I/I variant (FST= 0.076) and the
neutral trans-Atlantic divergence (FST= 0.081) that may indicate local
selection pressure acting differently on the NI variant in Northeast and
Northwest Atlantic.
Identifying the actual targets of selection within inversions or other

tightly linked genomic regions is challenging, as recombinations are
reduced within inversions causing difficulties in distinguishing true
targets of selection from linked false positive signals. We have
postulated that both of the Icelandic ecotypes are derived from NEAC.
Hence, if the divergence among the Icelandic samples reflects true
ecotype divergence, constituted by de novo selection in each genera-
tion, the resulting genomic divergence will be based on the standing
genetic variation present in the NEAC genome. In NEAC (and
Icelandic populations), the I/I variant is almost fixed in LGs 2 and 7
(frequency: 0.98 and 0.94). As a result, almost all variation within the
putative LG 2 and 7 inversions will be collinear, allowing for normal
recombination to take place. As such, the genomic divergence between
Coastal and Frontal ecotypes within these regions may provide
valuable insight into the actual targets of selection, because the normal
limitations associated with highly linked genomic regions here are
omitted. The highest FST values between Coastal and Frontal ecotypes
are found in a SNP close to Synaptotagmin (SYT3) in LG2
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(FST= 0.1152) and in two SNPs (FST= 0.1240 and 0.1222) associated
with Tyrosinase (TYR), one of which is nonsynonymous in LG7. SYT3
is known to show different expression patterns in resident ‘sneaker’
individuals of Atlantic Salmon (Salmo salar) relative to normal
migratory individuals (Aubin-Horth et al., 2005), supporting a
potential role in behavioural ecotype divergence. TYR is considered
as a clock-controlling gene (Moraes et al., 2014), known to control
circadian rhythm of several physiological and behavioural processes
(Reppert and Weaver, 2001,2002). TYR is also involved in regulation
of melanin production that influences both skin and retinal pigmenta-
tion potentially relevant to vision, depth adaptation and hence vertical
migration in fish. This is an interesting finding, as rhodopsin (RH1)—
a gene known to mediate dim light vision—is strongly divergent
between the two Icelandic ecotypes, indicating an involvement of
visual systems in local adaptation of Atlantic cod (Pampoulie et al.,
2015).
Combined, our results suggest that: (1) all of the inversion events

occurred before the split between Northeast and Northwest Atlantic
cod populations, ∼ 100 000 years ago; (2) the nonmigratory/Can-S
group is always dominated by the ancestral collinear inversion
genotype (NI/NI) containing the highest nucleotide diversity; (3)
nonmigratory behaviour in the Northeast Atlantic appears to be
ancestral to migratory behaviour; and (4) inshore Icelandic ecotypes
have a presumed NEAC origin. As such, we provide fundamental
insight into the evolution of distinct morphs and ecotypes of Atlantic
cod with different life-history strategies across the trans-Atlantic
barrier. Overall, the data indicate a central role for a few distinct
large genomic regions, presumably inversions. The genomic content of
these regions are targets of selection, likely to be involved in generating
and maintaining adaptive divergence and population differentiation
among Atlantic cod throughout its distribution range.
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