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Data quality plays an important role in success of organizations. Poor data quality might

significantly affect organizations’ businesses since wrong decisions can be made based

on data with poor quality. It is therefore necessary to make data quality information
available to data users and allow them to select data sources based on their given re-

quirements. Enterprise Service Bus (ESB) can be used to tackle data integration issues.

However, data sources are maintained out of the ESB’s control. This leads to a problem
faced by users when it comes to selecting the most suitable data source among available

ones. In this article, we present an approach to handling data sources in ESB based on

data-quality and semantic technology. This introduces a new level of abstraction that
can improve the process of data quality handling with the help of semantic technologies.

We evaluate our work using three different scenarios within the wind energy domain.
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1. Introduction

Service-oriented architecture (SOA) has changed the way of designing software. SOA

provides the possibility of integrating and distributing services in a loosely-coupled

manner [Zhang (2010); Barry (2003)]. There are several SOA topologies such as

peer-to-peer network, hub & spoke, pipeline, and enterprise service bus [Delia and

Borg (2008)]. Among them, Enterprise Service Bus (ESB) is gaining more and more

attention from industries. The idea of the ESB concept is that all the applications

that are connected to a bus can share, produce, and consume information on the

bus [Chappell (2009)].

ESB is an emerging technology derived from the combination of SOA and event-

driven architecture (EDA) [Maréchaux (2006)]. EDA means that any event that

happens inside or outside a business disseminates immediately to all interested
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parties that subscribe to the event [Michelson (2006)]. An example of this could

be using a publish/subscribe mechanism in EDA to enable real-time monitoring

of offshore wind farms. Whenever new data arrives, it is immediately published to

a channel and notifications about it will be sent to subscribers instead of letting

subscribers query for information every once in a while.

ESB provides a number of benefits such as loosely coupled architecture (i.e.

whatever changed in an application will not affect other applications in the whole

system), increased flexibility (i.e. easier to change as requirements change, stan-

dardized platform for integration), sharing common services (security, error man-

agement, reporting, etc.), and supporting a large number of communication patterns

over different transport protocols [Papazoglou amd Van Den Heuvel (2007)]. ESB

has been used in different areas such as eHealth [Trinugroho et al. (2012)], and oil

& gas [OLF (2008)].

Although ESB handles communication between applications, it does not support

a way to select the most suitable data source among several available ones. Assume

that a user requests for wind speed in the North Sea for the last few months. The

user wants to have data with accuracy and completeness in a certain interval. There

are probably several available sources of wind speed data in the North Sea. How

can we provide the most suitable data source to the user based on the data quality

criteria? How can a system respond to the user’s request if the requested data source

is not available or the user’s requirements are not met? Is there any way to combine

the available data sources to produce an improved data source? Fig. 1 depicts an

overview of the problem that we are targeting in this work.

Fig. 1. An abstract view of the problem

This article answers the stated questions by proposing a quality-based approach

to handling resources in ESB with semantic technologies. The rest of the article

is organized as follows. Section 2 presents the main concepts of data sources and

challenges in data source handling. Section 3 discusses data quality and its dimen-

sions. Section 4 describes our proposed approach to tackle challenges in handling
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data sources. The implementation of the proposed approach is presented in section

5 along with the details of the system components and how they perform the de-

sired functionalities. Related work and discussion are presented in section 6. Finally,

section 7 concludes the paper.

2. Data source

This section explains the definition of data source in the context of our work. Chal-

lenges in handling data sources are discussed afterwards.

2.1. Data source definition

Data sources are sensor sources, web services that provide data generated by sen-

sors or other appliances, and existing databases. A data source consists of three

components: data stream, data source description, and quality description. Fig. 2

illustrates the components of a data source.

Data source

6    8    5    9    12   7

Data stream/set

Data point

Data source description

Quality description

Measurement type: wind speed

Unit: m/s

Exchange Format: XML

Completeness: 80%

Timeliness: 1 ms

Fig. 2. Components of a data source

Data stream is a stream of signals coming from a source over time, while a

data set is a set of data points coming from a static source, e.g., existing relational

databases. Each signal in the stream is a data point, for instance, 6 (m/s) for wind

speed at a specific date and time. An example of data stream is a set of 4000 wind

speed records from the 1st of May to the 1st of June. Data streams are provided by

data providers or by having direct connection to sensors. Data providers can make

the data accessible via services.

Data source description contains information about measurement type, mea-

surement unit, data exchange format. For instance, the description of a data source

could be: (1) measurement type: wind speed, (2) unit: m/s, and (3) data exchange

format: XML.
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Quality description is a description of the quality of the data source. For ex-

ample, the quality description of a data source states that the completeness is 80%

and the timeliness is 1ms.

2.2. Type of data sources

In this work, data sources are classified into real and virtual data sources. Real

data sources are sensors or services that have access to sensors’ measurements. Data

quality of these data sources can be obtained either from devices’ manufacturers or

by computation using reference data sources. A reference (also known as benchmark

in some literature [Ge and Helfert (2006)]) is a data source that can be either a

previous measurement of the same data source or a mathematical model [Manyonge

et al (2012); de Jesus Rubio et al (2011)] of that data. Reference data source are

considered as real data sources.

In contrast, virtual data sources have no direct connection to sensors. These data

sources are computed by combining more than one real data source. It is possible

to combine data sources which measure different physical phenomena provided that

there is a mathematical relationship between these physical phenomena. If the data

sources provide data in different units (Fahrenheit and Celsius), a unit converter

will be employed before combining.

Since virtual data sources are generated by combining real data sources, they also

consist of three parts: data stream, data source description, and quality description.

The virtual data stream is described by a formula, e.g., average of data streams from

the real data sources. The quality description of the virtual data source is computed

by combining the quality descriptions of the real data sources.

2.3. Challenges in data source handling

There are many challenges in handling data sources in ESB related to data quality,

service selection, and data source integration. Here, we address those challenges

that we try to overcome in this work.

2.3.1. Availability of data quality description

Typically, data are provided without any quality description attached to them. It

is not clear what the accuracy or completeness of the data is. There are also cases

where data quality is available but the service that makes data accessible does not

provide any method to access the information. A way to compute data quality and

make it available is therefore important.

A widespread issue in data integration is the management of data with insuffi-

cient quality. For example in offshore wind energy, a couple of sensors are deployed

on a windmill and they frequently measure and deliver the data to the users and ap-

plications by means of services. As sensors are prone to failures, their results might

be inaccurate, incomplete, and inconsistent [Snyder and Kaiser (2009)]. Therefore,
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the data quality issues should be handled in such a way that users and applications

can specify the desired quality level of the data. Only when the data source has the

requested quality descriptions it would be used for further processing.

2.3.2. Data source selection based upon users’ requests

Assume a user can access data sources with data quality information available.

How can a system fulfill the user’s requests for data with given constraints on data

quality? The user only cares about the requested data and its quality and does

not care from which data source the data is selected. Thus, answering the request

by giving a list of possible data sources is not a good answer. The aforementioned

question can be formulated as follows: how to select the best suited data source

among available data sources based upon user’s defined quality criteria?

2.3.3. Data source combination

Another issue is that sometimes none of the available data sources has the required

quality. In this case, it is possible to improve the quality of data to meet the user’s

requirement by combining existing data sources. A virtual data source is the result

of the combination.

2.3.4. Semantic inconsistency of data sources in sensor networks

Sensors are becoming one of the main data sources since they are used intensively

in many areas such as oil & gas, eHealth, smart grid, and smart cities. However,

sensor data sources are described differently by their manufacturers. This leads to

a semantic inconsistency issue when it comes to integrating different sensors into

a system. It therefore makes the process of data source selection and combination

more difficult.

2.4. Approaches to selecting data sources

There are several ways of selecting data sources such as content-based filtering

[Dumais et al (1988)], social information filtering [Shardanand and Maes (1995)],

agent-based selection [Sreenath and Singh (2004)], and quality-based selection [Mi-

haila et al (2000)].

Content-based filtering is a traditional and static way of selecting a data source

out of a list of available data sources. This approach filters data sources based on

users’ keywords. When users send requests for data, the content-based filtering stat-

ically selects the data source with more relevant description. This approach might

not solve the selection problem if there are data sources with the same descriptions.

Another approach is the social information filtering. It refers to a sort of tech-

niques to provide personalized recommendations for users according to the similari-

ties of their interests. This approach is common in sites, e.g., Amazon and LinkedIn.
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The third category of selection methods is the agent-based approach. Agents

evaluate data sources by communicating, cooperating, and rating each other. Each

agent can make decision and work autonomously as well.

The quality-based approach takes into consideration the importance of data

quality. A data source is selected based on data quality dimensions given in users’

defined requirements. Our work is based on this approach. We also use semantic

technology to solve inconsistency issues and enable semantic description for sensor

networks.

3. Data quality

Data quality plays an important role in the success of organizations [Wang (1998)].

Poor data quality might significantly affect organizations’ businesses since wrong

decisions can be made based on data with poor quality [Strong et al (1997); Huang

et al (1998); Ge and Helfert (2006)].

In this section we define the basic terms and concepts in the article. Although

there is no consensus on the definition of data quality [Klein (1998)], the data quality

concept is defined as the extent to which attributes of data are suitable for their

use. It is usually evaluated from a consumer point of view [Huang et al (1998)].

3.1. Data quality dimensions

Data quality is a multidimensional notion. There are more than 17 data quality

dimensions which have been mentioned in literature, e.g., accuracy, consistency,

confidence, interpretability, completeness, relevancy, timeliness. Some of the studies

such as [Wang and Strong (1996); Lee et al (2002); DeLone and McLean (1992)] sup-

port several quality dimensions. These work often address data quality frameworks

that encompass a rich set of data quality dimensions. On the other hand, studies

like [Eppler (2006); Baumgartner et al (2010); Geisler et al (2011)] only cover a

small number of dimensions because they are applying the data quality concept to

a specific application domain.

3.2. Selected data quality dimensions

In this work, we select the most commonly used quality dimensions in the literature,

i.e. accuracy, completeness, and timeliness to demonstrate the proposed approach.

These data quality dimensions are defined differently in the literature. Here we

define the terminologies based on the existing definitions and our understanding.

Table 1 shows the notation that we use in the following definitions.

Accuracy is defined as how close the observed data are to reality. According to

ISO 5725 standard [ISO (1994)], accuracy consists of precision and trueness.

• Precision is the closeness of agreement within individual results.

• Trueness is defined as the mean value of the difference of data source to

the reality.



Semantic-enhanced Quality-based Approach to Handling Data Sources 7

Table 1. Table of notation

Symbol Explanation

D Data source

R Reference data source (reality)

ND total number of data points in D

NR total number of data points in R

NDcons
total number of consistent data points in D

di a single data point in D

ri real value corresponding to di
xi di - ri
t(ri) the moment when the data point i is due

t(di) the moment when the data point i is available

We assume that the sensors are calibrated, meaning that the trueness is very

close to zero. Therefore, we only consider precision as the accuracy in our system.

A statistical measure of the precision for a series of repetitive measurements is the

standard deviation.

Let xi denote the difference between the measured data (di) and the reality (ri)

and µ denote the trueness. Thus, the accuracy of data source D can be obtained

using Eq. (1).

Acc(D) =

√√√√ 1

ND

ND∑
i=1

(xi − µ)
2

(1)

Given µ = 0 and xi = di − ri, Eq. (1) can be rewritten as follows.

Acc(D) =

√√√√ 1

ND

ND∑
i=1

(di − ri)
2

(2)

Completeness is defined as the ratio of the number of successful received data

points to the number of expected data points. The completeness of the data source

D can be calculated using Eq. (3):

Compl(D) =
ND
NR

(3)

For example, if a user requests for wind speed from a data source and he expects

to get 60 data points in 1 hour. If the user has received only 40 data points in 1

hour, the completeness of the wind data source is 67%.

Timeliness is the average time difference between the moment a data point

has been successfully received and the moment it is expected to be received. The

timeliness of data source D is calculated using Eq. (4):
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Time(D) =

∑ND

i=1(t(di) − t(ri))

ND
(4)

4. Semantic-enhanced quality-based data source handling

This section describes the proposed approach to handling data sources. By handling

we mean that the approach offers ways to manage data sources, to insert a new

data source, and to provide the best suited data source to users. An overview of

our approach is illustrated in Fig. 3.

Sink 

sensor

Integrated Servers

Enterprise Service Bus

Request Handler

Service Manager

Service-Quality

Database

Dynamic Invoker

Quality

Calculator

Combination

Engline

Quality Manager

· Restriction process

· Selection process

SSN 

Ontology

Content Presentation

Data 

Providers

User

Fig. 3. An overview of the proposed approach

The Request Handler is an ESB-dependent module. If the ESB platform is

changed, this module needs to be changed. It is used to parse and analyze re-

quests from users. The Dynamic Invoker is responsible for invoking web services

that describe data sources.

The Service Manager is in charge of finding proper data sources. It consists of

three sub modules: quality manager, combination engine and quality calculator.

• The Quality Manager is used to select the most appropriate data sources in

terms of data quality dimensions and constraints from the Service-quality

database. The Quality Manager uses two processes to find the best data

source for the user: restriction process and selection process. The purpose

of the restriction process is to detect and filter out outliers from the results
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according to the given quality dimensions and constraints. The restriction

process prepares a list of available good data sources and hands in this list

to the selection process. The basic idea of selection is to find the best data

source among good data sources according to selection quality dimension. If

there are more than one data sources that meets users’ quality requirements,

the Quality Manager selects one of the good data sources randomly.

• The Combination Engine is used to combine existing data sources in order

to generate virtual data sources. The module is called when there is no data

source that meets the users’ defined quality requirements. The combination

process includes combination of data points, data source descriptions, and

quality descriptions. Section 5.2.1 describes an example of using the Com-

bination Engine.

• The Quality Calculator is used in case the data quality description of a data

source is not available. The computation is done using equations mentioned

in section 3.2. After computing the quality dimension the quality calculator

can store the information in the Service-quality Database. An example of

the use of the Quality Calculator is shown in section 5.2.2.

The Quality Manager generates a list of suitable data sources. The list contains

information such as the data source address, parameters, and values. In case the

Combination Engine is involved, the list will also contain information about a com-

bination method. Service Manager passes the list to Dynamic Invoker. Dynamic

Invoker then access data sources by invoking web services dynamically.

The Service-quality Database stores metadata of all available services and the

Semantic Sensor Network Ontology specifies metadata of sensors such as location,

type of sensor, unit, and sensors’ quality. Details of the database and the ontology

are presented in the next section.

4.1. Integration & management of data sources

Data can come directly from sensors or from services made available by service

providers. Hence, data sources can be sensors or services. Metadata of (web) services

are stored in a relation database while metadata of sensors are described and stored

in a semantic sensor network ontology. Metadata of real-time data can be accessed

through SSN and metadata of historical data can be accessed through relational

database.

4.1.1. The Service-quality Database

The Service-quality Database is a relational database that stores metadata of all

available services. It does not store measurement data. The database is divided into

two parts. The first part contains information about services and their descriptions.

The second part stores information about data quality of the services. Based on

input from users, the Quality Manager uses the database to select the most suitable
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data source. The result of a query is typically a data source or a list of available data

sources. The result is then delivered to the Dynamic Invoker service for subsequent

binding invocation.

4.1.2. A semantic sensor network ontology

Sensors are being used intensively in different systems. This creates vast amount

of data. However, a big portion of data cannot be transformed to knowledge due

to the lack of integration and communication between sensor networks. In order

to tackle this issue, the W3C Semantic Sensor Network Incubator group took the

initiative in enabling SSN by proposing an SSN ontology [Compton et al (2012)]. The

semantic sensor network (SSN) was introduced based on Sensor Web Enablement

(SWE) standards proposed by the Open Geospatial Consortium (OGC) [Sheth et

al (2008)] and the Stimulus-Sensor-Observation ontology design pattern [Janowicz

and Compton (2010)]. Based on the SSN ontology, a number of developments have

been reported in several work such as [O’Byrne et al (2010); Bröring et al (2011)].

In this section, we use SSN ontology to overcome the challenge posed in section

2.3.4.

Even though accuracy has been mentioned in the SSN ontology, data quality

is not only about accuracy. Many work have reported that data quality should be

defined beyond accuracy [Huang et al (1998)]. We therefore have extended the SSN

ontology by adding some quality dimensions that are described in section 3.2.

The developed ontology contains spatial attributes (i.e. information about sen-

sors’ location), temporal attributes (i.e. information about timestamp), thematic

attributes (i.e. information about sensor type, measurement, units), and quality

attributes (e.g. accuracy, timeliness, completeness). Fig. 4 depicts a partial view of

the developed ontology. The ontology describes two type of sensors: temperature

sensor and wind speed sensor. Each sensor’s value is classified in different level, e.g.,

high or low. The quality of measurements is defined by the MeasurementProperty

class.

4.2. Data source selection

The data source selection answers the question of how to select the most suit-

able data source from available data sources. This section presents our solution to

overcome the challenge posed in section 2.3.2. Based on a user request, the selec-

tion process requires a set of quality constraints and a selection dimension. The

mandatory constraints describe conditions to be met by the data sources, and the

optional selection dimension describes which dimension to use for finding the best

data source. A scenario described in section 5.2.2 explains our point.

What if the requested data source is not available? The next section discusses

the combination methods that are used to tackle the problem.
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Fig. 4. A partial view of the quality-enhanced SSN ontology

4.3. Data source combination

In order to improve the data quality to meet users’ requirements, it is possible to

combine different data sources. This section presents a solution to the challenge

mentioned in section 2.3.3. For simplicity, we consider only those data sources that

measure the same physical phenomena. Let us consider a case where we need to

combine two data sources D1 and D2. There are several methods to combine data

sources, but looking deeply into combination methods is out of scope of this work.

Let us examine three simple combination methods as follows.

• D1 (A) D2: taking a conventional average of the data sources D1 and D2.

• D1
⊕

D2: use data points from D1 if available, otherwise use D2.

• D1 (E) D2: pick up the earliest received data point from either D1 or D2.

Assume that data points in data sources D1 and D2 are independent normally

distributed random variables. Let Acc(D1) and Acc(D2) be the accuracy (precision)

of D1 and D2 respectively. Let P(D1) denote the probability of the event “D1

having data available” and P(D2) denote the probability of the event “D2 having

data available”. These two events are independent. Let P (X) = 1 − P (X) denote

complementary of the event “data source X having data available”.

We also assume that the timeliness Time(D1) and Time(D2) of D1 and D2

are two independent exponentially distributed random variables as shown in Eq. 5.

That said, Time(D1) = 1
λ1

and Time(D2) = 1
λ2

.

f(t;λ) =

{
λe−λt, if t ≥ 0

0, if t < 0
(5)

where λ is a rate parameter.
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4.3.1. D1 (A) D2

Completeness: The completeness of the virtual data source is calculated by Eq.

(6). This is also the result for the cases D1
⊕

D2 and D1 (E) D2. In three cases,

the value of the completeness of the virtual data source is improved.

Compl(D1 (A) D2) = P (D1) . P (D2) (6)

Accuracy: Since Acc(D1) and Acc(D2) are normally distributed, sum of them is

also normally distributed. As we mentioned in section 3.2, the sensors are calibrated

and thus the trueness is equal to zero. The accuracy is then equal to the precision

which can be obtained by Eq. (7):

Acc(D1 (A) D2) =

√
Acc(D1)

2
+Acc(D2)

2

4
(7)

Timeliness: The timeliness of the virtual data source is the maxi-

mum value of the set which consists of Time(D1) and Time(D2), i.e.

max(Time(D1), T ime(D2)).which is not exponential. However, if Time(D1) and

Time(D2) are identical and have rate parameter λ, we can easily obtain the prob-

ability density function (PDF) of the maximum as follows:

ftmax(t;λ) = 2λe−λt(1 − e−λt), t ≥ 0 (8)

The expected value is obtained via Eq. (9).

Time[D1 (A) D2] = E[tmax] =

∞∫
0

tftmax(t;λ)dt =
3

2λ
≈ 3

2
Time(D1) (9)

4.3.2. D1
⊕

D2

Accuracy: The accuracy of virtual data source is calculated using weighted average

as shown in Eq. (10):

Acc(D1
⊕

D2) =
P (D1) ∗Acc(D1) + P (D1) ∗ P (D2) ∗Acc(D2)

P (D1) + P (D1) ∗ P (D2)
(10)

Timeliness: The timeliness of the virtual data source is calculated using Eq. (11):

Time(D1
⊕

D2) =
P (D1) ∗ Time(D1) + P (D1) ∗ P (D2) ∗ Time(D2)

P (D1) + P (D1) ∗ P (D2)
(11)

4.3.3. D1 (E) D2 method

Accuracy: Let α be the probability of the event a data point D1i arrives before a

data point D2i. In other words, it is the probability that t(D1) is smaller than or

equal to t(D2). α is obtained via Eq. (12)

α = 1 − λ2
λ1 + λ2

(12)
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The accuracy of virtual data source is then calculated using Eq. (13):

Acc(D1 (E) D2) = αAcc(D1) + αAcc(D2) (13)

Timeliness: In this case, the timeliness of the virtual data source is the minimum

value of the set which consists of t(D1) and t(D2), i.e. min(t(D1), t(D2)). Given t ≥
0, the distribution function of the timeliness min(t(D1), t(D2)) is also exponential

[Marshall and Olkin (1967)]. It can be obtained by considering complementary

cumulative distribution function as shown in Eq. (14).

ftmin(t;λ) = (λ1 + λ2)e−(λ1+λ2)t (14)

The timeliness is then obtained via Eq. (15)

Time[D1 (E) D2] =

∞∫
0

t(λ1 + λ2)e−(λ1+λ2)tdt =
1

λ1 + λ2
(15)

The Eq. (15) can be rewritten through Time(D1) and Time(D2) as follows.

Time[D1 (E) D2] =
1

λ1 + λ2
=

Time(D1) ∗ Time(D2)

Time(D1) + Time(D2)
(16)

4.3.4. Summary of combination methods

By combining data quality dimensions, we aim to generate a virtual data source

with better data quality. The three combination methods have different effects on

data quality dimensions. A method can increase or decrease the quality depends on

the receiving data. Table 2 shows the results of applying combination methods on

two independent data sources D1 and D2.

Table 2. The quality of the combined data source

Combination method Completeness Accuracy Timeliness

D1 (A) D2 X X ×
D1

⊕
D2 X − −

D1 (E) D2 X − X

X: It can be better than both of D1 and D2.

−: It is not decidable. It varies from case to case.

×: It is worse than both of D1 and D2.

According to this table, all three methods can increase the completeness. By

using average method, the combined data source would have better accuracy. This

method also improves the accuracy. However, it makes the timeliness become worse.

For the
⊕

method, both the accuracy and timeliness of the combined data source

varies from case to case.The (E) method helps to increase the completeness and
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timeliness, but not accuracy. If the timeliness is the critical choice, (E) method is

recommended to use.

5. Implementation

As a proof of concept, we have developed a prototype system based on the overview

described in Fig. 3. This section discusses the internal implementation details of the

prototype.

5.1. Prototype description

We use the client-server architecture to develop our prototype system. The client

is the web-based client application that allows users to make requests. The client is

also in charge of data visualization in terms of graphs. The integrated server (IS) is

responsible for request handling and communicating with data providers.

Data providers make services available as web services and describe the services

using Web Service Description Language (WSDL). Both Restlet and JAX-WS (Java

API for XML Web Services) clients are employed to send data using SOAP protocol

and REST architecture style.

5.1.1. The client side

The client side consists of a user interface where users can choose the measurement

type, the quality dimensions, the constraints, and one quality dimension as selection

dimension. We use Ajax (Asynchronous JavaScript and XML) technology to handle

the messages from the server and display information on a graph. Flot, a JavaScript

plotting library is used to produce graphical plots on a web browser [Laursen (2012)].

5.1.2. The integrated servers

The IS consists of following main components:

MuleESBa: is an open source enterprise service bus framework and we use it as

the communication backbone of the system. It is easy to use Mule ESB, compared

with other open source ESB frameworks such as PEtALS ESB, ServiceMix, and

Open ESB [Ueno and Tatsubori (2006)]. Mule ESB is not based on JBI (Java Busi-

ness Integration), but it provides seamless support for JBI containers [Rademakers

and Dirksen (2008)]. Hence, it allows components of other ESBs, e.g., ServiceMix,

which are based on the JBI model, to be used alongside MuleESB. Mule ESB is pro-

vided together with an Integrated Development Environment, Mule studio which

makes the process of flow design much easier. Mule ESB also provides many con-

nectors and transports, for instance REST, SOAP, JMS (Java Message Service)

[Ziyaeva et al (2008)].

ahttp://www.mulesoft.org
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Service Manager: is a .NET web service that is deployed on Internet Information

Services (IIS)b web server.

Dynamic Invoker: is also a Java-based web service that dynamically binds and

invokes services for gathering the selected data sources.

Service-quality Database: is developed using Microsoft SQL Serverc.

Request handler: is a Java web service deployed on the MuleESB. This service

receives the information from web-based client application and forwards it to the

Service Manager.

Quality calculator: The quality calculator is .NET web service which has a sep-

arate function for each quality dimension. It takes a data source and a reference

data source, then computes the quality value.

Combination Engine: is a .NET web service. It takes a list of data sources and

combines them according to the corresponding combination formula, e.g., the one

presented in section 4.3 and stores a new virtual data source in the Service-quality

database.

5.2. Use case scenarios

We use three offshore wind scenarios to demonstrate the use of the prototype system.

A number of wind sensors (e.g., wind speed sensor) are attached to a wind turbine to

monitor and control the wind turbine [Akhmatov and Knudsen (2002)]. Due to the

weather conditions, the sensors are subject to the moisture and corrosion [Snyder

and Kaiser (2009)]. Consequently, the quality of the data produced by them can

be negatively influenced [Desholm (2003)]. It is therefore needed to have multiple

sensors to measure the same physical phenomena.

5.2.1. Scenario 1

Description: There are three real wind speed data sources in the system. Each data

source has two quality dimensions available, e.g., completeness and timeliness. Fig.

5 shows scenario 1 where the data is mainly provided by wind sensors through a

number of wind services.

User’s request : The user sends a request for wind speed. The completeness is

chosen for the restriction process and its value is set to 75%. The timeliness is

selected as the criteria for data source selection.

Results: First the restriction process is executed, data sources 2 and 3 are se-

lected. The selection process based on timeliness is then executed. As the result,

data source 3 is selected since it has better timeliness compared to data source 2.

bhttp://www.iis.net
chttp://www.microsoft.com/en-us/sqlserver/default.aspx
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Fig. 5. Scenario 1. Data sources: three real data sources. Quality dimensions: completeness and
timeliness. Request: completeness ≥ 75% and the selection quality dimension is timeliness.

5.2.2. Scenario 2

Description: There are two real wind speed data sources. Each data source has one

available quality dimension, e.g., completeness. Fig. 6 shows the scenario where the

data is mainly provided by wind sensors through a number of wind services.

Fig. 6. Scenario 2. Data sources: two real data sources. Quality dimension: completeness. Request:

completeness ≥ 85%.

User’s request : The user issues a request for wind speed whose the completeness

is more than 85%.

Results: The completeness of data sources 1 and 2 are 75%, 80% respectively.

It means that none of the given data sources meets the user’s requirement. The

system therefore to combine these two data sources. As the result, a virtual data

source whose the completeness is 95% is produced. The virtual data source that

is selected by Quality Manager and its graph is shown to the user. The reason is

that data sources 1 and 2 have missed some parts of the data but when they are
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composed, the missing parts are filled.

5.2.3. Computation of data quality scenario

Description: There are three real wind speed data sources in the system. The quality

descriptions of data sources 1 and 2 are not available. The reference data source

has one available data quality dimension, e.g., completeness. Figure 7 illustrates the

scenario.

Fig. 7. No data quality descriptions available for data source 1 and 2. The reference data source

has the completeness available. Request: completeness ≥ 85%.

User’s request : The user issues a request for wind speed whose the completeness

is more than 85%.

Results: By using the reference, the Quality Calculator computes the complete-

ness and the results are 80% and 90% for data source 1 and 2, respectively. Data

source 2 is selected and returned to the user.

6. Related work and discussion

In order to support intelligent handling of data sources in ESB, some efforts

have been reported. For example, authors in [Ziyaeva et al (2008)] proposed a

multi-layered framework to support content-based intelligent routing path con-

struction and message routing. Their approach facilitates the data source selec-

tion based on the message content. Besides handling data sources in ESB, there

is an attempt to combine data sources based on data quality as reported in

[Mihaila et al (2000)]. There has also been some research within the area of

multi-sensor data fusion that employed different techniques to generate a bet-

ter virtual sensor, for instance, artificial intelligence, pattern recognition, sta-

tistical estimation are used to fuse multi-sensor data [Hall and Llinas (1997);

Le and Hauswirth (2009)].
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Different from these work, we have taken into consideration data quality dimen-

sions as criteria for filtering and selecting the best suitable data source. We have

also implemented semantic technologies to describe services and sensor networks.

In this work, we have only discussed combination methods for data sources

that measure the same physical phenomena, e.g., wind speed. In reality, sometimes

we need to combine two or more measurement quantities in order to fulfill users’

requests. The combination can be based on mathematical relations between the

quantities, e.g., from rotor speed, power output of a wind turbine can be easily

derived provided power coefficient of the generator is given and the pitch angle is

constant.

7. Conclusions

Data quality is one of data consumers’ concerns. It is an important feature of any

business organization. Data consumers normally need to be aware of data providers

and the quality of data that they get. Indeed, it is complicated for data consumers,

data integrators, and even data providers when the number and diversity of data

sources increase. ESB is proposed to make the data integration easier. This will

reduce the details that data consumers have to know in order to get access to

quality data. However, there is a lack of unambiguous ways to manage data sources

in current available open source ESB platforms. In this work, we have presented

a quality-based approach to managing, selecting, and providing the most suitable

data source for users based upon their quality requirements. The approach gives

users possibility of getting the most suitable data source from the available ones. It

also increases the chance to find the requested data source by combining multiple

data sources so that the users’ quality requirements are met. We have also enhanced

the data quality-based approach by implementing semantic technology to describe

sensor networks in an unambiguous manner.
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