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Summary 

 

Several studies in mathematics education have shown that students face significant difficulties for 

understanding the concept of infinity. The purpose of this study is to suggest an explanation of how 

students understand the concept of infinity and identify the difficulties for understanding it.             

Explanation will be given through an investigation on the following aspects of understanding and 

the implementation of the corresponding theoretical background: i) primary perception in terms of 

Singer and Voica’s(2008) categories and secondary perception in the context of comparison of 

infinite sets ii) obstacles in coming to understand the concept in terms of the Theory of 

Epistemological Obstacles and iii) the construction of understanding in terms of APOS theory. The 

empirical part of this study was conducted in Norway. The subjects are five 12th graders and data 

for this study were collected by means of a questionnaire and an interview. A precise overview of 

the aim and contents of the thesis is given in the introductory part. The thesis begins with a historical 

analysis of the concept of infinity, aiming to reveal its paradoxical and contradictory nature. Next, 

the theoretical background is presented along with the basis of each theory. There has been a 

qualitative analysis on the collected data, by methods found in the literature. The results have 

shown that most of the students perceived infinity as a process while specific difficulties related to 

the notion of actual infinity were noticed. The analysis of the structure of understanding, raised the 

importance of “encapsulation” as a way to understand its actual form. The thesis hopes to shed light 

on students’ understanding and thus make a small contribution to mathematics education research. 
 

 

 

         Sammendrag 

 

Flere tidligere studier matematikkdidaktikk har vist at elever har store vanskeligheter når det 

kommer til å forstå konseptet uendelighet. Hensikten med denne studien er å foreslå en forklaring 

på hvordan elever forstår konseptet uendelighet og å identifisere vanskeligheter knyttet til 

forståelsen. Forklaringen vil bli gitt gjennom en undersøkelse av følgende aspekter for forståelse 

og implementeringen av tilhørende teoretisk rammeverk: i) primær persepsjon etter Singer og 

Voica (2008) sine kategorier og sekundær persepsjon i konteksten av å sammenlikne uendelige 

mengder, ii) hindringer i å nå en forståelse av konseptet ved bruk av teorien om epistemologiske 

hindringer, og iii) konstruksjonen av forståelse ved bruk av APOS teorien. Innsamling av empiri 

til denne oppgaven ble gjort i Norge og informantene er fem VG2 elever. Data for studien er samlet 

inn ved hjelp av spørreskjema og intervju. Et detaljert overblikk av mål og innhold i studien blir 

gitt i innledningen. Studien begynner med å ta for seg en historisk analyse av konseptet uendelighet, 

med mål om å avdekke dets paradoksale og motstridende natur. Deretter blir det teoretiske 

rammeverket presentert sammen med grunnlaget til hver teori. Det har blitt utført en kvalitativ 

analyse på innsamlet data ved hjelp av metoder fra funnet i litteraturen. Resultatene har vist at de 

fleste elevene oppfattet uendelighet som en prosess, samtidig som spesifikke vanskeligheter knyttet 

til forestillingen av faktisk uendelighet ble oppdaget. Analysen av strukturen av forståelse viser 

viktigheten av «innkapsling» som en måte å forstå forståelses faktiske form. Studien håper å kaste 

lys på elevenes forståelse og dermed gjøre et lite bidrag til matematikkdidaktisk 
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CHAPTER 1: Introduction 

 
  Infinity is a topic that could be both interesting and problematic for students. It had always been 

an intriguing topic for mathematicians, philosophers and other scientists through history. The great 

philosopher Aristotle, distinguished between two notions of infinity, the potential and the actual 

infinity. The former could be understood as the infinite presented over time, while the latter is the 

infinite present at a moment in time, which is incomprehensible, because the underlying process of 

such an actuality would require the whole of time. Aristotle’s dichotomy is maintained through the 

literature and is widely treated in mathematics education as a process and as an object for potential 

and actual infinity respectively(Tirosh,1999). This duality results to a challenge when it comes to 

introducing infinity in mathematics education and specifically in mathematics students. 

  Fischbein, Tirosh and Hesh (1979) explored the psychological background of the concept of 

infinity. Fischbein et al. (1979) distinguish between infinity as an unquestionable mathematical 

structure and infinity as a pure construct where it is impossible to decide for its acceptance or 

rejection. They refer to these aspects as the mathematical and the psychological reality of the 

concept respectively. They investigated the way that intuition works at geometrical tasks related to 

mathematical infinity. The study was conducted on 6th to 8th grade students and pointed out to the 

contradictory nature of infinity as an effect to intuition. The results showed that most of the 

contradictions were raised due to the students’ thinking in terms of finite objects and events. 

Monaghan (2001), examines the young people’s ideas and points out two problems when talking 

to children about infinity. The first, in line with Fischbein’s conclusion, is that there are no referents 

for discourse on the infinite in the real world. The second lies in the use of language when talking 

to children about infinity. For example, when a teacher enters a classroom, he/she will make use of 

a language that has been built in a finite world. Tirosh and Tsamir (1996) also studied the students’ 

intuitive thinking about infinity by investigating on the role of representations. The research was 

conducted on 10th to 12th graders and the students were given tasks that included different 

representations of infinite sets. Specifically, they investigated the effects of the following 

representations of infinite sets: numerical-horizontal, numerical-vertical, numerical-explicit or 

geometric. The results showed that different representationσ had indeed an impact on students’ 

reasoning. 

  Singer and Voica (2008) analyze the relationship between perception and intuition for the concept 

of infinity. The authors distinguish between the primary perception, which is the process by which 

human beings interpret sensory information and the secondary perception, which is the processing 

of sensory information based on previous experience. The research was conducted on students in 

elementary, secondary and undergraduate education. They identified through their results three 

categories of primary perceptions: processional, topological and spiritual. The results also showed 

that students made use of these perceptions in their reasoning that leads to the formation of a 

secondary perception. Tirosh and Tsamir (1999) investigated the students’ secondary perception, 

specifically through the comparison of infinite sets. They mention that several studies have 

indicated four criteria that students use to determine whether a given pair of infinite sets are 

equivalent, such as “all infinite sets have equal number of elements”, “comparison of infinite sets 

is impossible”, “a subset contains fewer elements than the whole set” and “there is one-to-one 

correspondence between the elements of the two sets”. The use of more than one criteria lead the 

the students to contradictions during the comparison. However, the difficulties in understanding do 

not only lie in the perception of the concept. There are difficulties that rise due to students’ previous 

knowledge and the nature of the mathematical topic itself. 
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  These difficulties are named by Brousseau (1997) as the Epistemological Obstacles. The theory 

of epistemological obstacles is a theory of student thinking, which has its roots in the work of 

Bachelard (1938) and was integrated in mathematics education and the research of Guy Brousseau 

(1997). Cornu (1991) has given some examples of epistemological obstacles for the concept of 

limit, such as the failure to link geometry with numbers or the obstacle of that lies in the 

metaphysical aspect of the notion of limit. Sierpinska (1987) investigated the notion of 

epistemological obstacle with humanities students and their understanding of the limit concept. She 

further categorizes epistemological obstacles into heuristic and rigouristic by presenting a diagram 

which illustrates these obstacles. Some of the sources of epistemological obstacles that she 

identified related to limits is infinity, function and real number. Herscovics (1989), attributes the 

term “epistemological” for obstacles found in the historical conceptual development and uses the 

term “cognitive” for obstacles found in an individual’s conceptual development. Moru (2007) 

reviews the previous works on and refers to the investigation of epistemological obstacles as 

complementary to mathematical teaching. In his PhD thesis, Moru uses the theory of 

Epistemological Obstacles to identify obstacles during the development of understanding of the 

limit concept of undergraduate students. For the case of infinity, Cihlar, Eisenmann and Kratka 

(2009) have obtained a set of obstacles to understanding infinity and refer to them as “uncoverable” 

(or unavoidable in Brousseau’s terms). These include the previous knowledge of “finiteness”, 

considering infinity as a process and the previous knowledge concerning the ordering of a set of 

natural numbers. The theory of Epistemological obstacles is based on Piaget’s theory of 

developmental stages. 

  Piaget and Garcia (1968/1989) developed a constructivist approach to knowledge. Their central 

belief is that knowledge is determined by stages. Brousseau (1997) adapted this view on knowledge 

and defined an obstacle as a set of knowledge grounded in the knowledge structure of an individual 

that can be successfully used in one context or situation but in another this set gives wrong results. 

  In the context of Piaget’s theory, Sfard (1991) calls on the dual nature of mathematical concepts 

and develops the notion of reification. Reification is the transition from a process conception stage 

to the object conception stage. For example, potential infinity corresponds to a process conception 

(thinking of “again and again”). Thus, this process conception can be developed to an object 

conception through reification. That is, to see infinity as a fully-fledged object, corresponding to 

the notion of actual infinity. For Sfard (1991), reification expands cognitive capacity when it comes 

to mathematics. In a similar manner, Gray and Tall (1994) developed the theory of procept. Infinity 

may be considered as a process and as a concept (in total) as well. Lakoff and Núñez(2000) have 

introduced the so-called Basic Metaphor of Infinity (BMI), which arises when one conceptualizes 

actual infinity as the result of an iterative process. Cotrill et al. (1996) have expanded the idea of 

processes and objects to include actions and schemas and develop the theory called APOS. Actions 

can be seen as transformations on an object to obtain other objects while schemas are coherent 

collections of actions, processes, objects (and even collection of other schemas). Dubinsky (1990), 

claims that in order to understand a mathematical object on must first understand its function in 

process. Only through “encapsulating” an idea within its process do we then come to know its 

product(object). Thus, the fundamental relationship: dual nature of the mathematical concept-

development in the mind of the individual is inherent in the above theories. 

  The concept of infinity is a key concept in mathematics and its teaching. The fact that it is not a 

topic directly addressed in mathematics classrooms, provoking students to think about infinity 

offers a good opportunity to introspect their understanding and specifically their perception as it is 

basically a first-time interaction with tasks related to infinity. Furthermore, as Sierpinska (1997) 
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stresses out, “overcoming an epistemological obstacle” and “understanding” can be two ways for 

speaking about the same thing, thus these obstacles play a critical role in the formation of 

knowledge. Sierpinska (1990) also mentions: “A description of the acts of understanding a 

mathematical concept would thus contain a list of the epistemological obstacles related to the 

concept, providing us with information about its meaning” (p.27). Hence, the investigation of the 

contradictory nature of infinity as it appears through mental structures and mechanisms or in other 

words through “acts of understanding”, attributes at an explanation of understanding. 

  Therefore, this thesis sets to answer the following questions for the research conducted on the 

upper secondary students: 

➢ How did students perceive infinity? 

➢ Which epistemological obstacles did students encountered in coming to understand the 

concept of infinity? 

➢ How might an understanding of the concept of infinity be constructed by students? 

  The above questions will be answered with the assumption that knowledge can be acquired after 

the individuals’ thinking passes through the Piagetian stages, as they appear in APOS theory. A 

second assumption related to the epistemological obstacles needs to be made. That is the 

assumption that some of the obstacles found in the historical development of the concept of infinity 

can also be identified in the individual’s cognitive development which implies an acceptance of the 

“genetic principle”. (more information on the “genetic principle” will be given in Chapter 3). 

  Finally, by answering the questions on perception, obstacles and the stages of conception, I aim 

to suggest an explanation on how students understand the concept of infinity. 

  Consequently, an epistemological and cognitive approach to the understanding of the concept of 

infinity could reveal intriguing results that could indicate an improved design for pedagogy. 

  In the chapters that follow, there will be a historical account of mathematical infinity (Chapter 2). 

In Chapter 3, the theoretical background used to answer the research questions is presented. Chapter 

4 includes detailed information on the methodology that have been followed for the research 

design. The results of the study conducted on the participating students are presented in Chapter 5 

and are discussed in Chapter 6. Finally, my conclusions are included in the last Chapter 7. 

  The participants of the study are 5 upper secondary school students. The data collection was done 

in two sessions, a questionnaire session and an interview session. The results were transcribed and 

analyzed in terms of the theoretical framework. After the analysis, there has been an attempt to 

answer the research questions by reviewing the results and finally, draw some significant 

conclusions. 
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  We start our study by trying to look at the nature of infinity, as it appears in the human mind from 

the very beginning of its conception in mythology up to the theory of cardinal infinity. We will see 

the conceptual evolution of infinity, starting from the mythological doctrines to the philosophical 

mindset and the scientific attitude of ancient Greeks, moving on to the inertia of the Middle Ages 

and the Scientific Evolution and the paradoxes of the 17th Century, to finally finish our time travel 

with Cantor’s theory of infinity. The purpose is to have an insight on the nature of infinity, notice 

the difficulties in the conceptual development and observe the way through which several debates 

over the notion lead to great mathematical discoveries. 

 

 

CHAPTER 2: From mythology to Cantor 

 
  The concept of infinity had always been a challenging notion to the intellectual and cultural 

history of the human kind. Its contradictory to the physical world nature, lead to its 

conceptualization through mental constructions occurring in mythology, theology, philosophy and 

mathematics. In the following section, we will follow the historical development of the concept, 

emphasizing on the mathematical infinity. Not only because this is a thesis on mathematics 

education but “…above all, infinity is the mathematician’s realm, for it is in mathematics that the 

concept has its deepest roots, where it has been shaped and reshaped innumerable times, and where 

it finally celebrated its greatest triumph” (Maor,1991, p.2). 

 

2.1 Mythology 

  In order to realize the earliest conceptions of infinity, we have to look back at the Hindu and 

Iranian mythology and the myths that are due to the Aryan tribes that invaded the Indus Valley 

around 1500-1200 BC. According to the myth, the demons Danavs battled the celestial gods 

Adityas, representing a battle between the constrained and the unbounded. The ancient Iranian 

creation story tell of a god named Ormazd who created light and heaven in the form of an egg 

whose center was the Earth and top reached the Infinite World (Vilenkin,1995, p.2-3). According 

to the Egyptian myth, the primordial God Heh personified infinity and eternity. Moreover, the 

figure of Heh with the arms upraised supporting the sky, represented the number one million in the 

hieroglyphic system. Such attempts for the manifestation of the notion of infinity by large numbers 

were also made by the ancient Hindus who told stories of battles that involved 1023 monkeys 

(Vilenkin, 1995, p.5). Infinite is also disclosed in the idea of “eternal recurrence” in the Hindu and 

Buddhist tradition, where the human souls reincarnate an infinite number of times through infinite 

space and time. While in the ancient Jewish cosmology and mystical tradition known as Kabballah, 

the world consists of ten spheres which emanate from the Infinite Light. In many ancient traditions, 

there is the appearance of ouroboros, a serpent or dragon eating its own tail representing the 

recreation of life through death by the universe. A similar appearance occurs in the Norse 

mythology with Jörmungandr or the World Serpent, a serpent so enormous that grasps his own tail 

and forms a circle around Midgard, the visible world. 

  As mythology tried to answer the most difficult and basic questions of the surrounding world, the 

same was the case for the aspect of ancient civilizations on the infinite. It seems that the notion was 

commonly related with cosmogony, unboundedness, recurrence and ideas of very large numbers. 

However, in the 6th century BCE1, a need to substitute mythological with rational explanations 

                                                           
1 Before common era 
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about the surrounding world started to arise, explanations that would lead to the birth of philosophy 

and science in Greece. 

 

2.2 Philosophy and science 

  Philosophy and science firstly arose in Greece around the 6th century BCE. We need though to 

point out that at the time, philosophy and science were closely related, in the sense that they were 

pursued by the same people (Vilenkin,1995, p.4). Villarmea (2001) expresses the status of science 

and philosophy in antiquity, by saying that: “The first scientists were philosophers and…the first 

philosophers were scientists” (p.5).  

  Chronologically, the first to introduce a new way of thinking for the natural world and the place 

of human beings in it were the pre-Socratic philosophers. Placed between the 6th and 5th century 

BCE, they challenged the traditional ways of thinking and paved the road for rationality and 

argumentation. 

 

The Milesian School 

  According to Herodotus, the very first of the pre-Socratics philosophers, Thales of Miletus 

(c.620BCE-546BCE) being a mathematician and astronomer, predicted the eclipse of 585BCE 

marking the beginning of scientific methodology. 

  However, the first to introduce the notion of the ἂπειρον or apeiron (that which has no limit) in  

history of philosophy was Thales’ student and master successor of the Milesian school,         

Anaximander of Miletus (c.609BCE-546BCE). In his philosophical poem “Περί Φύσεως” (On 

Nature) he said that the material cause and first element of things was the Infinite (Rioux,2004, 

p.14). Anaximander characterizes the limitless as the beginning of the world and the beginning of 

everything. He defines it as a substance self-defined, unchangeable, unable to die and 

indestructible, from which all things derive. Anaximander believed in an existence of an infinite 

amount of worlds in our universe, a remarkably similar approach to MWI (Many Worlds 

Interpretation) of quantum theory. It seems that Anaximander used the word apeiron for a more 

abstract meaning similar to that of the mathematical infinity (Theodosiou ,2010, p.165). 

 

Pythagoras, Pythagoreans and the “irrational” 

  While Anaximander had an optimistic and fearless view on the “boundless”, on the other hand 

Pythagoras(c.580BCE-c.500BC) thought of infinity as something evil. In the Pythagorean table of 

opposites, infinity is associated with the bad and finitude with the good. The Greek philosopher, 

mathematician and astronomer founded his school or his society in Croton of southern Italy. It was 

a society governed by a set of rules and secrecy (e.g. restrictions in a matter of diet were required 

while the members recognized one another by means of secret signs). Information about the 

Pythagoreans as well as for Pythagoras are excerpted out of quotes and fragments by subsequent 

authors. Thus, it is impossible to prove what is credited to the Pythagoreans or Pythagoras himself. 

  The Pythagorean School was a society whose members believed that the universe could be 

understood in terms of whole numbers or ratio of whole numbers and worshipped them as such. 

One is created out of two elements, the even and the odd, that is, for the Pythagoreans, the limited 

and the infinite respectively. Then One overflowed into the Two, then the Three, then the Four. 

They considered Ten as the perfect number or the holiest of all, a number composed by the sum of 

One, Two, Three and Four (Pesic,2003, p.10). Briefly, the order of creation is as follows: first, the 
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One is created out of the apeiron and the limited/definite2, then numbers out of the One, and then 

the world out of numbers (Drozdek,2008, p.22). They also related music to the numbers (and thus 

believed that the universe is music) by observing lengths of chords and tones produced after 

shortening them in relation of ratios involving whole numbers up to four. Hence, one can easily 

understand the made up3 slogan attributed to Pythagoras and his school: “Πάντα κατ’ αριθμόν 

γίγνονται” (everything happens according to numbers). 

  But what shook the foundations of the Pythagorean Brotherhood and disturbed their belief that 

“All is number” was their own discovery of geometrical magnitudes that cannot be expressed by 

ratios of whole numbers (known today as the irrational numbers). The real identity and work of the 

discoverer is lost or remained a well-kept secret by the Pythagoreans, as something that would tear 

down their whole numerological philosophy and change Greek mathematics forever. In particular, 

what was in doubt was the idea of commensurability, that is: for any two magnitudes, one should 

always be able to find a fundamental unit that fits some whole number of times into each of them.  

  To have a sense of the discovery let us imagine a square with side length 𝛼 ∈  ℕ and its diagonal 

of length 𝛽 ∈ ℕ. Then the lengths 𝛼, 𝛽 are incommensurable. 

 

  Proof:  Let these lengths be commensurable (as Pythagoreans believed), that is there is a 

fundamental unit 𝜇 ∈ ℕ such that: α = μκ and β = μλ for some 𝜅, 𝜆 ∈ ℕ. 

  Now assume without loss of generality that:  

  either α ∈ Α or (but not both) β ∈ Α, where 𝐴 = {𝑛 ∈ ℤ|(∃𝑟 ∈ ℤ)[𝑛 = 2𝑟]}  

  Applying Pythagoras’ theorem4 in one of the rectangular isosceles triangles composing the square, 

one has:   α2 + α2 = β2 ⇒ 2α2 = β2  

  Substituting for 𝛼, 𝛽 we get: 2(μκ)2 = (μλ)2 ⇒ 2μ2κ2 = μ2λ2 

  We know that5 𝜇 ≠ 0, hence we can simplify and get 2κ2 = λ2 which means that λ2 is even, thus      

λ is even (if  𝜆 was odd, i.e. 𝜆 = 2𝑚 + 1, 𝑚 ∈ ℤ ,then we get 𝜆2 = 2(4𝑚 + 2) + 1 meaning that 

𝜆2 is odd, hence 𝜆 is even) 

  Since λ is even, it can be expressed as follows: λ = 2w, 𝑤 ∈ ℤ. 

  Substituting the latter expression in 2κ2 = λ2 we get: 2κ2 = (2w)2 ⇒ 2κ2 = 4w2 ⇒ κ2 = 2w, 

meaning that κ2is even, which means (reasoning as before) that κ must be also even. 

  Finally, we get that: α = 2μt and β = 2μw meaning that: 

  both α and β belong to the set  A = {𝑛 ∈ ℤ|(∃𝑟 ∈ ℤ)[𝑛 = 2𝑟]} 

  which contradicts our initial assumption that either α ∈ Α or (but not both) β ∈ Α   

  We are then lead to conclude that there is no common unit 𝜇 ∈ ℕ such that: α = μκ and β = μλ     

for some 𝜅, 𝜆 ∈ ℕ , hence 𝛼, 𝛽 are incommensurable ∎6  

 

 Clegg (2003) indicates the above result as “…frankly devastating if you believe that the universe 

is driven by pure whole numbers” (p.62). The discovery of irrational magnitudes is definitely a 

                                                           
2 Pythagoreans assumed the existence of apeiron and the limiters(limited/definite) as the two principles of material 
cause of the world (Drozdek,2003, p.23) 
3 From sources like Aristotle’s comments: “[The Pythagoreans] hold that things themselves are numbers..."(Aristotle, 
n.d./1953) 
4 Alternatively, one could use the method mentioned in Plato’s Meno, where Socrates teaches the slave Meno how 
to double the area of a square of side α and diagonal β, i.e. how to show that β2 = 2α2  
5 Ancient Greeks worked with numbers as geometrical magnitudes and since 0 is not a geometrical magnitude at         

all, the case of μ = 0 is trivial. 
6 A generalization of Euclid’s proof of the irrationality of √2  
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pivotal moment for the history of mathematics and is sometimes attributed to Hippasus of 

Metapontum (c.5th century BCE). Nevertheless, there is no historical evidence that it was him who 

found out about this new kind of numbers. There is the assumption though, that Hippasus was the 

one who spread the word of his discovery outside of the Pythagorean School because he had already 

expressed a different belief on the creation of the universe. He considered as the beginning of 

everything, the “fire” and not the “numbers” as the Pythagoreans believed. An anecdote tells of 

Hippasus discovering irrational numbers on a boat, and his colleagues were so horrified, that they 

threw him overboard where he drowned. Regardless of this being just a story or a fact, it is the 

irrational thinking to murder someone because of his discovery of irrationals that shows us the 

radicalness of incommensurability. 

  The initial and challenging idea of incommensurability might have started to rise due to the 

method of the subdivision of a regular pentagon (Sondheimer & Rogerson,1981, p.34). One can 

draw the diagonals of the pentagon ABCDE and then observe that the intersection points 𝐴′𝐵′𝐶′𝐷′𝐸′ 
form another pentagon and so on[Figure1]. This process could go on indefinitely but there is no 

“smallest pentagon” whose side could serve as an ultimate unit of measure. Hence, the ratio (which 

is equal to φ =
1+√5

2
,also known as the golden ratio) of a diagonal to a side in a regular pentagon 

cannot be rational.  

Nevertheless, Pythagoreans could not accept the fact that the certain ration was not rational, thus it 

was impossible for them to confront irrational numbers and especially irrational ratios of 

geometrical magnitudes. 

  Finishing this glimpse on the secret Pythagoreans’ sect, we find in Plato’s dialogue Theaetetus, a 

dialogue concerning the nature of knowledge, references to two more contributors in the struggle 

with the irrational. These are Theaetetus of Athens(c.417BCE-319BCE) and Theaetetus’s teacher, 

Theodorus of Cyrene(465BCE-398BCE) who was Plato’s mathematical tutor. In the dialogue, 

Theaetetus explains to Socrates his discovery that there are degrees of irrationality. His theorem in 

modern language: 

Theorem: The square root of any (positive whole) number that is not a perfect square (of whole 

numbers) is irrational. The cube root of any (whole) number that is not a perfect cube (of whole 

numbers) is irrational. (Mazur,2007, p.241) 

  The other participant in Plato’s dialogue is Theodorus, who had proved the irrationality of √2 ,√3 

,√5,… up to √17 where for some reason he stopped[Figure2]. 

  Yet it would be remiss if we did not acknowledge the considerable contribution of Pythagoras and 

his followers to the mathematics world. Apart from the famous Pythagoras’ Theorem, they 

explored the principles of mathematics, the concept of mathematical figures and most of all the 

idea of proof. But even the philosophical crisis caused from an insider is considered as a milestone 

in mathematics. Sondheimer & Rogerson (1981) reasonably mention for this crisis: “The discovery 

of irrational [ratios of] magnitudes may be regarded as the beginning of theoretical ‘pure’ 

mathematics” (p.32). 
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                  Figure 1. The regular pentagon 𝐴𝐵𝐶𝐷𝐸.                                                                                                                                                             

        
𝐴𝐶

𝐴𝐵
= 𝜑 =

1+√5
2

 

 

Eleatics 

  Often mentioned as the rival school of the Pythagoreans, the Eleatics had contradictory beliefs to 

the Pythagorean philosophy. They believed in continuous magnitudes but also in infinite 

divisibility contrary to the Pythagoreans’ point-unit-atom aspect. Parmenides of Elea (c. 515 - 450 

B.C.), known as the founder of the Eleatic School, developed his philosophy on monism and 

timelessness. That is, the universe is a permanent single whole in an unchanging reality while time 

is infinite, without beginning, end or middle. 

  One of the most dedicated defenders of Parmenides’ philosophy, was his student, Zeno of Elea (c. 

490 - 430 B.C.). Most of the information that we know about Zeno, have survived through Plato’s, 

Aristotle’s, Simplicus’s and Proclus’s writings. Zeno wrote a book of paradoxes defending the 

Eleatic philosophy by logical means. This book has not survived but all his arguments are 

paraphrased by Aristotle. These paradoxes were counterintuitive to the concepts of “line” and 

“point” which were being used unrestrictedly in Greek geometry from Thales up to Zeno’s time 

(Davis&Hersh,1981, p.226). He was the first to show through his arguments that a line segment 

can be decomposed into infinitely many parts of nonzero length (Vilenkin,1995, p.7). Among the 

40 arguments attributed to Zeno, there are the following most famous four paradoxes dealing with 

continuous space and time: the Dichotomy paradox, Achilles and the tortoise paradox, the Arrow 

paradox and the Stade paradox. 

 Dichotomy: A moving object will never reach any given point because that which is moved must 

arrive at the middle before it arrives at the end, and so on ad infinitum. Therefore, the object can 

never reach the end of any given distance. 

Achilles and the tortoise: The slower will never be overtaken by the quicker, for that which is 

pursuing must first reach the point from which that which is fleeing started, so that the slower must 

always be some distance ahead. 

Arrow: If everything is either at rest or moving when it occupies a space equal to itself, while the 

object moved is always in the instant, a moving arrow is unmoved. 

Figure 2. Thedorus’s spiral: starts with an isosceles right 

triangle with both legs of length 1. More right triangles are 

added, one leg the hypotenuse of the previous triangle, the 

other, outside leg always of length 1. the hypotenuses of these 

triangles have lengths √2, √3, … , √17 
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Stade: Consider two rows of bodies, each composed of an equal number of bodies of equal size. 

They pass each other as they travel with equal velocity in opposite directions. Thus, half a time is 

equal to the whole time (“Zeno and the Paradox of Motion”, n.d., par.5).  

  The paradoxes are usually interpreted as Zeno’s arguments on the impossibility of continuous 

motion in “infinitely divisible space and time”. Moreover, Zeno reveals through the paradoxical 

nature of his arguments the conflict and the chasm between the discrete and the continuous. For 

example, in the case of the Arrow: Suppose that space is made out of points and an arrow that flies 

from the bow to the target. Then the flight can be decomposed in infinitely many moments where 

the tip of the arrow successively occupies every point between the bow and the target. The problem 

is that the arrow at any one fixed point is motionless and in between the points there is nothing so 

“How can the flight of the arrow be a sequence of motionless stills? Where did the motion go?” 

(Rucker,1982, p.81.). Obviously for Zeno being himself a monist, space is an undivided whole 

which cannot be broken into parts. 

  Similar view on space is shared by C. S. Peirce and perhaps Kurt Gödel. Gödel distinguishes 

between the intuitive continuous line and the set theoretical notion of the set of points: “According 

to this intuitive concept, summing up all the points, we still do not get the line; rather the points 

form some kind of scaffold on the line” (Gödel as cited in Rucker,1982). Peirce elaborated further 

on the continuous line by saying that there is no conceivable set, no matter how large that could 

exhaust the line but if we call the cardinal of the universe of sets Ω then there are Ω points on the 

line (Peirce,1893 /1992, p.47) 

  Zeno managed to challenge the simple view of “apeiron” as a cosmological or divine entity by 

proposing his paradoxes that arise from the cardinality of points on a line, which line is infinitely 

divisible. It was no more just a boundless thing but something that could be used and manipulated 

mathematically (Heath,2014, p.66). We could spend hundreds of pages for the resolution of Zeno’s 

paradoxes by means of physics, philosophy and mathematics. Researches intrigued from the 

paradoxes, have been continuously conducted from the ancient Greeks up to nowadays. For the 

imperishable scientific value, we resort to Bertrand Russell who mentions that Zeno’s arguments 

“…have afforded grounds for almost all theories of space and time and infinity which have been 

constructed from his time to our own” (Russell,1914, p.183). It would be at Zeno’s time, when the 

first signs to grasp the mathematical characteristics of apeiron were coming on surface and the 

Western civilization was getting closer to the roots of infinity. Not to forget the fact that 

Dowden(n.d.) stressed out:  

 

           Awareness of Zeno’s paradoxes made Greek and all later Western intellectuals more 

aware that mistakes can be made when thinking about infinity, continuity, and the 

structure of space and time, and it made them wary of any claim that a continuous 

magnitude could be made of discrete parts. (para.6) 

 

It would be now Anaxagoras’ and Aristotle’s turn to join Zeno for the quest for infinity.  

 

Anaxagoras vs Zeno - the “smallness” 

 Anaxagoras of Clazomenae(c.500-428BCE), in opposition with Zeno, maintained that matter is 

infinitely divisible. Being a contemporary of Zeno, he was probably aware of his works as well as 

the Eleatic philosophy. Anaxagoras did not conceive any paradoxical situation in the arguments of 

Zeno and he claimed: “There is no least among small things; there is always something smaller. 

For that which exists cannot cease to exist as a result of division regardless of how far the latter 
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continues”. (Anaxagoras as cited in Vilenkin,1995, p.6). What is remarkable here is that the 

“apeiron” is related to “smallness”, another evidence that Anaxagoras was thinking towards the 

mathematical complexity of the infinite or as we would say more explicitly nowadays, the nature 

of the continuum. However, it is not only the continuum that is inherent to Anaxagoras’ reasoning 

for the infinite. In a probable reaction against Zeno’s Achilles paradox he quoted: “The sum of all 

things is not a bit smaller nor greater, for it is not practicable that there should be more than all, 

but the sum total is always equal to itself” (Anaxagoras as cited in Heath,2014, p.66). To have an 

insight to the previous quote, we explain below the Dichotomy paradox in terms of elementary 

Calculus: 

  Let us imagine a man that has to cross a distance 𝑑. At first, he has to cross a distance of  
𝑑

2
, next 

an additional of  
𝑑

4
 and so on ad infinitum. In this way, no matter how far he goes on, he will never 

be able to cross the distance according to Zeno. Now according to Anaxagoras, 𝑑 =  
𝑑

2
+  

𝑑

4
+

𝑑

6
+

⋯  or equivalently 1 =  
1

2
+  

1

4
+

1

6
+ ⋯  . Consider now the series 

1

2
+  

1

4
+

1

8
…we already know that 

the series converges7 and sums up to 1 indeed (i.e. the sum is finite), hence Achilles has to cross a 

finite distance. Assuming that Anaximander implicitly thought in terms of convergence, then he is 

right. The sum is indeed equal to itself. 

  Could this be the solution to the Achilles and the Tortoise paradox? Unfortunately, (or fortunately 

for the unsettling minds) the answer is no. The reason is summarized in the following rhetorical 

question: how an infinite series of acts can be performed in a finite time? 

 

Aristotelian infinity 

  Aristotle(384-322BCE) objected to the ambiguity of the use of the notion of “apeiron” in Zeno’s 

arguments while he would place infinity outside of the real world. 

  Aristotle was born in Stagirus of northern Greece and at the age of 17 joined Plato’s academy8 for 

the next twenty years. It was while he was still at Plato’s academy that he wrote Physics, where he 

tries to clear the air for “apeiron” after Zeno’s arguments. For the vagueness of the notion, Aristotle 

warns the reader that “…the topic entails walking on very shaky ground” (as cited in Vilenkin,1995, 

p.8). Even though he places the infinite outside of the real world, he further gives five reasons, 

usually thought to support its existence: i) the infinity of time, ii) the division of magnitudes in 

mathematics iii) constant generation and destruction, iv) the fact that there is always something 

beyond limit, and v) the belief that numbers, geometrical magnitudes and the space outside the 

cosmos are infinite because they never give out in thought (Kouremenos,1995, p.31)  

  Since the philosopher has given his five arguments on why one should believe in the existence of 

the infinite, he continues by saying that the infinite can’t be a thing and that there is no thing such 

an infinite body. His definition of a body is that it is something that “is bounded by surface” hence 

if it was infinite then such a body does not exist. But then Aristotle as a philosopher, poses the vital 

question, what if there were no infinity? Then obviously, time has a beginning and an end, there is 

no such thing as infinite divisibility of the line and numbers must stop. He responds to his counter 

question that: “…clearly there is a sense in which the infinite exists and another in which it does 

not” and concludes that: “The infinite does not actually exist as an infinite solid or magnitude 

                                                           
7 It would be almost 2000 years later than Anaximander when great mathematicians like Sir Isaac Newton and   

Augustin-Louis Cauchy would perfect the idea of convergent series 
8 Remarkably the word “academy” has its origins in Plato’s garden where he taught. The trees of the garden were 

believed to belong to Academos, a mythological hero, thus the name “academy” which is used up to present 
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apprehended by the senses…The infinite exists potentially, the infinite is motion” (Aristotle, 

n.d./1930), ruling out the existence of actual infinity. But why all the fuss about Aristotle’s deep 

philosophical arguments? 

  It is the importance to the mathematical world of Aristotle’s philosophy that lead him to the 

distinction between the actual and potential infinity. Clegg (2001) mentions that this distinction: 

“…would keep mathematicians happy all the way up to the nineteenth century…whether infinity 

was real or unreal…Aristotle’s move of infinity into the virtual world of the potential made the 

mathematics work” (p.32). 

 Aristotle introduced two procedures on his argumentation for the finite and the infinite, that is a 

summative and a divisive procedure, corresponding to the modern notions of extensive and 

intensive infinity. For the summative procedure, suppose “a finite magnitude [where one] takes 

always a limited amount in the same proportion and adds that” (Aristotle, n.d./1930). Following 

this procedure, say we take 
3

4
 of the “finite magnitude” and add 

3

8
 , then add 

3

16
 (“same proportion” 

=
1

2
 ), then for Aristotle, we will not be able to exceed the amount of the finite magnitude. However, 

if we keep adding the same amount, no matter how small, we can exceed any finite magnitude. 

Recall here, that for Aristotle there is no infinite body (infinitely large), hence for him the latter 

procedure could not go on forever, unlike the first which can be carried as long as we please (an 

idea that supported his acceptance of only the potential infinity). In order to clarify this, Aristotle 

separates the case of magnitudes from that of numbers.  

  According to him, there is a limit in the diminishing direction of numbers but there is no limit in 

the direction of more, where it is always possible to exceed every plurality. For the case of 

magnitudes, he holds for the opposite, that is: in the diminishing direction, it is possible to exceed 

every magnitude but not in the direction of more.  

 We are lead then to the divisive procedure and the idea of infinite divisibility of continuous 

magnitudes. The divisive procedure is something that exists potentially as a never-ending process. 

It is not hard to see that the procedures of the summative and the divisive are closely related in a 

sense that: “…the infinite in respect of division, is “in sense the same” as divisibility in the direction 

of the inverse addition, or the infinite in respect of addition” (Bowin,2007, p.242). Through the 

idea of infinite divisibility, comes the idea of potentially whole and complete magnitude. We can 

always keep adding material parts which are produced by divisions, consequently we have a 

magnitude which is filled by a potentially infinite number of material parts. With this reasoning, 

Aristotle rejects the paradoxical arguments of the Eleatics, meaning that the distance is continuous, 

thus infinitely divisible, thus composed by infinite potentially material parts which could be added 

potentially to make the potentially whole.  

  To recap, what Aristotle would say for the set of natural numbers, is that it is potentially infinite 

but since it is a set with no end, the set cannot actually be infinite. Extending his opinion for the 

magnitudes, he believes that the space of the universe is limited and bounded forming a vast sphere, 

while his response on what is outside of that sphere would be: “what is limited, is not limited in 

reference to something that surrounds it” (Aristotle, n.d./1930). The Aristotelian conception of 

infinity would echo up to the first half of the 19th century, when Bertrand Bolzano introduced the 

notion of the set. Nevertheless, the acceptance of the potential nature of infinity, resulted to great 

results for mathematics, among them Eudoxus’s works on Geometry and Number Theory. 
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Eudoxus of Cnidus 

  Eudoxus(c.395-342BCE) is considered as one of the greatest mathematicians and astronomers of 

Greek antiquity, known for his complete theory of proportions9 and the famous method of 

exhaustion. He managed to develop a theory for comparing lengths and other geometrical 

quantities, a comparison that failed to work for the Pythagoreans for lines of lengths 1 and √2. It 

is known that the Greeks could not accept irrational ratios of geometrical magnitudes but accepted 

irrational geometric magnitudes since they obviously existed, such as the diagonal of the unit 

square. Hence, Eudoxus used purely geometrical means without assigning any numbers to the 

magnitudes, thus he avoided irrational numbers. Precisely, what Eudoxus meant in modern notation 

is that, 
𝑎

𝑏
=

𝑐

𝑑
 , if and only if ∀(𝑚, 𝑛) ∈  ℕ one of the following holds:  

i. if 𝑚𝑎 < 𝑛𝑏 then 𝑚𝑐 < 𝑛𝑑, and vice versa 

ii. if 𝑚𝑎 = 𝑛𝑏 then 𝑚𝑐 = 𝑛𝑑, and vice versa 

iii. if 𝑚𝑎 > 𝑛𝑏 then 𝑚𝑐 > 𝑛𝑑, where a, b, c, d arbitrary geometrical magnitudes 

which are pairwise of the same kind (i.e. possibly irrationals) 

  Eudoxus perfected his theory by carrying out a limit process which came to be known as the 

method of exhaustion. (Zippin,1962, p.40). The natural numbers 𝑚 and 𝑛 are arbitrary and thus 

infinitely many, Eudoxus’s definition amounts to an indirect consideration of a limit. We know 

today that every real number can be expressed as the limit of a sequence of rational numbers. Even 

though Eudoxus did not use an explicit theory of limits, the method is considered by many scholars 

as the beginning of calculus. It was one of the many attempts after the discovery of the irrationals, 

to find a rational number 𝜇 for the relation 𝛼 = 𝜇𝛽, so for the difference 𝛼 − 𝜇𝛽 to become as small 

as possible. It should be noted at this point that Eudoxus and the later Greek mathematicians never 

thought of the method of exhaustion as a process carried out in an infinite number of steps. In their 

mind, there was no such thing as an infinitely small magnitude but a magnitude that could be made 

as small as possible by repeating division (Giannakoulias,2005, p.11). More than a century later, 

Archimedes would attribute to Eudoxus proofs of the theorems that the volume of a pyramid is 

one-third the volume of the prism having the same base and equal height; and the volume of a cone 

is one-third the volume of the cylinder having the same base and height. 

 

2.3 Hellenistic Period 

  The Hellenistic Period is usually accepted to begin in 323 BC with Alexander's death and ends in 

31 BC with the conquest of the last Hellenistic kingdom by Rome. This period is also mentioned 

sometimes as the “golden age” of Greek mathematics, as new ideas and works appeared in 

mathematics that are still being used today. Some of the famous mathematicians of the Hellenistic 

Period include Aristarchus, Apollonius, Hipparchus and the greatest mathematician of antiquity, 

Archimedes. 

 

Archimedes-the greatest of antiquity 

  Archimedes(287-211BCE) used the method of exhaustion to prove a remarkable collection of 

theorems related to areas and volumes. All of his works are characterized by rigorous proofs, strong 

                                                           
9 “The theory of proportions was so successful that it delayed the development of theories for real numbers for 2000 

years” (Ji,2010/2010) 

http://www.ancient.eu/Hellenistic/
http://www.ancient.eu/conquest/
http://www.ancient.eu/Rome/
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originality and remarkable creativity. In fact, he avoided the use of the notion of infinity and 

infinitesimals. However, his methods and approaches to infinite processes for solving mathematical 

problems would consist the fundaments of what is known today as the Integral Calculus. 
Archimedes observed the following: 

Theorem: The ratio of any circle to its diameter is constant.  

  Furthermore, he gave an accurate approximation for this constant. In his book, Κύκλου Μέτρησις 

(On the Measurement of the Circle) (c.3rd Century BCE/1897), Archimedes approximated the ratio 

of the circumference of a circle to its diameter by inscribing and circumscribing regular polygons 

to the circle. Thus, reaching consecutively at the case of the regular 96-gon he concludes that the 

ratio of the circumference of a circle to its diameter is equal to 𝜋, where 3
10

71
< 𝜋 < 3

1

7
 , 

which is 3,1409 < 𝜋 < 3,1429. For the uniqueness of 𝜋, Archimedes cut the circle area into equal 

radial sectors and regrouped the sectors such that they became approximately a rectangle with the 

base being the length of the circumference P and the height r. He then showed starting at the simple 

example of hexagons inscribed and circumscribed to the circle that this figure (approximate 

rectangle) can always be enclosed in two rectangles which approach the circle area A from above 

and from below with sufficiently fine partitioning of the circle in radial sectors. Thus, it follows 

the relationship 𝑟
𝑃

2
 =  𝐴 for any circle and thus from 𝑃 = 2𝜋𝑟 follows 𝐴 =  𝜋 𝑟2 and 

conversely(Siegmund-Schultze,2016). 

  In his work, Τετραγωνισμός Παραβολής (On the Quadrature of the Parabola), we find one of the 

most concrete applications of the method of exhaustion. Specifically, Archimedes proved the  

Theorem: The area of any parabolic segment is four-thirds the area of its vertex triangle. 

 

 

 

 

 

   

 

 

                                                                 T 

  

 

 

 

 
  Figure 3. Archimedes proved that the area of each green triangle is one eighth of the area of the blue triangle, each of the red   

triangles has one eighth the area of a yellow triangle. Finally, he concluded that Area of the Parabola =
4

3
𝑇. 

 

  His main insight is that when we remove the vertex triangle ABC from the parabolic segment we 

are left with two smaller parabolic segments which themselves have vertex triangles ACE and 

BCD. Removing this layer of two triangles we get four even smaller parabolic segments, whose 

four vertex triangles AF E, EGC, CHD, DIB form the next layer, and so on. Archimedes proved 

that the sum of the triangular areas could be made as small as one pleases by constructing a large 

enough number of triangles. 
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2.4 The Decline of Greek Mathematics 

  After Apollonius of Perga(247-205BCE), known for his treatise on Conic sections, began the 

decline of Greek mathematics. The geometry of conics didn’t develop until Apollonius’ problem 

stimulated Descartes’ work in the middle of the 17th century, while the method of exhaustion 

remained unmodified up to the 17th century when Cavalieri fully developed his method of 

indivisibles. Development of mathematics would now follow a different direction, specifically that 

of trigonometry due to the influence of the needs of astronomy and later on the direction of Number 

Theory with Diophantus as the main contributor (Giannakoulias,2005, p.14). Heron, for example, 

found the famous formula for the area of the triangle (also known as Heron’s formula) while 

Ptolemy created the table of chords10 but also gave explanations for astronomical phenomena that 

were the standard for 1400 years. 

  The last period of antique society is that of Roman domination. Romans destroyed Corinth after 

the battle of 146CE and the Christian dogma started its domination upon philosophy and learning. 

Scientific reasoning and critical thinking were banished by fanatical behavior and superstitions. 

This resulted to the murder of Hypatia of Alexandria(c.470-415CE) in 415CE, a great 

mathematician, astronomer and leader of the Platonic school in Egypt, by a mob of Christian 

fanatics. Furthermore, one of the most representative and unfortunate event that indicates the end 

of the ancient culture is the burning of the Alexandrian library.  

  While ancient Greek mathematics were falling into decline and the Roman empire was being 

established, western knowledge would diffuse to the East, where mathematical research would 

reach new heights. Arabs were being taught the Greek knowledge by Greeks who inhabited at the 

conquered areas of the Byzantine empire. Being themselves great mathematicians and great 

translators, the Arabs would translate works of Euclid, Apollonius, Diophantus and more by the 9th 

and 10th century CE. Hence, they became keen with the ancient Greek heritage while the 

Babylonian methods for solving arithmetical problems were already known to them. All these facts 

would pave the ground for the creation of Algebra in the early 19th Century. Arabs were also 

influenced by Hindu mathematicians, who invented the decimal numerical system (the so-called 

Hindu-Arabic system). Hindu mathematicians treated rational and irrational quantities 

indiscriminately while the problems of incommensurability were of little importance to them 

(Boyer&Merzbach, 1968, p.61-62) 

  It is argued among academics, such as Murty (2013), that infinity as a mathematical concept has 

its roots in India and its discovery is credited to the Kerala (or Madhava) school of mathematics 

and astronomy. The problem of infinity as a mathematical idea appears in Brahmagupta’s 

Brahmashputasiddhanta in which he raises the question of what is the value of 
1

0
. This question is 

answered in the 12th century by Bhaskaracharaya who correctly deduces that it is infinity by an 

ingenious limit process (p.43). 

 

2.5 The Middle Ages 

  Meanwhile in Europe and during the Middle Ages (5th-15th Century CE), science and mathematics 

evolution stagnated and philosophy was reduced to the role of a servant of theology. As a 

consequence: “The infinite also ended up in the theological sphere- it became an attribute to God” 

                                                           
10 An extensive trigonometric table used for practical purposes, mainly in Astronomy 
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(Vilenkin,2013, p.10). It was at the 15th century when the philosophy of Plato and Aristotle would 

start gaining ground again due to the cosmological and theological controversies and debates. 

  An initial breakthrough against the old dogmas was made by Nicholas of Cusa (1401-1464). Being 

influenced by Plato and Neoplatonic thinkers such as Plotinus and Proclus, Cusa had a heliocentric 

view on the relationship of the earth and the sun, well before Copernicus and Galileo. About the 

Infinite, he maintained that our finite minds cannot know the Infinite. To illustrate the notion of 

infinity, he considered circles of larger and larger diameters. As the circles increase in size, a given 

length of the circumference is less curved and more similar to a straight line. A segment of the 

infinite circle would therefore coincide with a straight line. However, the rational mind, cannot 

comprehend such an actualization of the Infinite but can only be seen through a mystical insight. 

Dealing with the mathematics of infinity, Nicholas used a similar approach to Archimedes for 

counting the volume of a sphere by chopping it up into thin slivers. Remarkably, as Archimedes 

did, he was being careful, using only finite processes. It was a use of form of indivisibles, that is 

for the case of a circle, a really small radial sector would never quite become triangle or cannot be 

divided infinitely. 

  Despite the fact that the medieval period added little to the Greek works in geometry or to the 

theory of algebra, Boyer and Merzbach (1968) mention that the contributions of the period were:  

 

…chiefly in the form of speculations, largely from the philosophical point of view, on 

the infinite, the infinitesimal, and continuity…Such disquisitions were to play a not 

significant part in the development of the methods and concepts of calculus, for they 

were to lead the early founders of the subject to associate with the static geometry of 

the Greeks the graphical representation of variables and the idea of functionality”. 

(p.94) 

 

2.6 17th Century-An explosion of mathematical ideas   

  The seventeenth century saw some of the most important discoveries in mathematical science. 

There has been an explosion of ideas, not only in mathematics but also in astronomy and science 

in general, leading this period to be named as the Scientific Revolution. Namely, some of the key 

figures and their mathematical developments were Pierre de Fermat (1601-1665) who is credited 

the invention of modern number theory, Blaise Pascal (1623-1662) known for his contribution to 

probability theory, Girard Desargues (1591-1661) and his early development of projective 

geometry, not to forget John Wallis (1616-1703) who contributed extensively in the origins of 

Calculus and also introduced the symbol ∞ for infinity. 

  For the concept of the infinite, the 17th Century provides us with many paradoxes that would later 

constitute the topic for Bolzano’s Paradoxien des Unendlichen (Paradoxes of Infinity) (1851/. 

These paradoxes were a result of foundational discussions of two main topics investigated at the 

time: i) the theory of indivisibles and ii) the theory of space (i.e. investigation of geometrical 

volumes and surfaces) (Mancosu,1999, p.118). These ideas would set the ground for Newton and 

Leibniz to co-invent Calculus. 

 

The theory of indivisibles 

  Galileo Galilei(1564-1642), the Italian astronomer, physicist, engineer, philosopher, and 

mathematician introduced in his work “Discorsi e Dimostrazioni Matematiche, intorno a due 

nuove scienze”(Discourses and Mathematical Demonstrations Relating to Two New 

Sciences)(1638/1954)the notion of indivisibles. Galileo developed the notion by means of four 

https://en.wikipedia.org/wiki/Two_New_Sciences
https://en.wikipedia.org/wiki/Two_New_Sciences
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mathematical examples: 1. The paradox of the Aristotelian wheel 2. The equality of certain circular 

rings and areas of circles which leads to the equality of the circumference of a circle with a point 

(also known as the bowl paradox) 3.a comparison between the sets of the natural and the square 

numbers 4.the construction of a hyperbolical point system which leads to the special case of a circle 

with infinite radius, which degenerates into a line. 

  In order to get an insight to Galileo’s notion of indivisibles, we should look on the wheel paradox. 

The paradox deals with the question why two connected concentric circles, one of which rolls along 

a straight line, during one revolution cover equally long straight line in spite of their different 

circumferences (Knobloch,1999, p.88). Galileo thought of the circle as a polygon with infinitely 

many sides. This thinking led him to resolve the paradox by analyzing the motion of concentric 

polygons. Hence, he concluded that the smaller circle leaps along the way (Mancosu,1999, p.235). 

For his mathematical analyses, he set a correspondence between the finite number of divisible 

sides(quanta) of the polygons and the infinitely many indivisible sides of the circle(non-quanta). 

For Knobloch (1999), the key to the understanding of Galileo’s theory of the infinite lies in the pair 

of “quanti/non quanti” (p.90). 

  In the third mathematical example mentioned above, Galileo points out that the square numbers 

(1,4,9,16, … ) are clearly fewer than the natural numbers (1,2,3,4, … ). He continues by setting a 

one-to-one correspondence, that is each square with its root and finally comes on surface Galileo’s 

paradox that the two collections are at one equal and unequal. To be more specific, according to 

Parker (2009), the paradox lies at the conflict of the following two principles 

Euclid’s principle: The whole is greater than the part 

Hume’s principle: Two collections are equal in numerosity if and only if their members can be put 

in one-to-one correspondence (p.18). 

 Through his paradox, Galileo (1638/1954) concludes that the notion of numerosity simply does 

not apply to the infinite: “[N]either is the number of squares less than the totality of numbers, nor 

the latter greater than the former” (as cited in Parker,2009, p.17). 

 Another participant in the foundational discussion on the indivisibles was Galileo’s contemporary, 

the mathematician Bonaventura Cavalieri (1598-1647) who was inspired by Kepler’s work (Nova 

stereometria doliorum variorum) (1615) and wrote his Geometria Indivisibilibus Continuorum 

Nova Quadam Ratione Promota (1635) and Exercitationes Geometricae Sex (1647/1980) (where 

he fully developed his theory of indivisibles). Cavalieri’s central idea was that a line is made up of 

an infinite number of points (a point is the “indivisible” of a line) while a plane was made up of an 

infinite number of lines (a line is the “indivisible” of a plane). According to Stergiou (2009), 

Cavalieri’s view on infinity differed from the Aristotelian conception of potential infinity, he used 

infinity as an auxiliary notion… (p.50). Mancosu (1999) mentions that Cavalieri’s theory: “… is 

an attempt to provide a measure for infinite collections of indivisibles” (p.120). These infinite 

collections implied the notion of a set or even better the first appearance in history of mathematics 

of an infinite set (Jullien,2005, p.35). Moreover, it is a fact that the method forms a part of 

differential and integral calculus. These days, Cavalieri’s method of indivisibles has been 

implemented in geometry as the Cavalieri’s principle11: “If, in two solids of equal altitude, the 

sections made by planes parallel to and at the same distance from their respective bases are always 

equal, then the volumes of the two solids are equal” (Vialar,2015, p.484). A representative example 

of applying the principle is to show that two stack of coins, forming a right circular cylinder and 

an oblique circular cylinder, are of the same volume. 

                                                           
11 Cavalieri’s principle had already been used (c.260 CE) by Chinese mathematicians such as Liu Hui for finding the 

volume of spheres. 

http://mathworld.wolfram.com/Volume.html


 

18 
 

 

The theory of space-Torricelli’s trumpet 

  Evangelista Torricelli (1608-1647), the Italian physicist and mathematician, was a friend of 

Cavalieri and a student of Galileo. By 1641, his studies extended to the Torricelli’s Trumpet (also 

known as Gabriel’s horn) which was a result of an extension of Cavalieri’s method of indivisibles 

to cover curved indivisibles (O’Connor and Robertson, n.d.). He demonstrated a solid which is 

infinite in length and has finite volume. Such a paradox would attract the attention of many 

geometers and philosophers of the time. 

 

 
 

Figure 4. Torricelli’s trumpet. Adapted from C. Cooper, Torricelli’s trumpet. Retrieved from 

http://www.coopertoons.com/caricatures/torricellistrumpet.html 

 

The solid is generated by rotating 𝑓(𝑥) =
1

𝑥
  about the 𝑥-axis between 𝑥 = 1 and 𝑥 = ∞.What it is 

now to be found is the surface area of a cross sectional slice and the volume of the solid. 

To determine the volume V of this object, we’ll have to integrate the cross-sectional area 𝜋𝑟2 for 
[1, ∞]. 
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To determine the surface area S, we make use of the surface area formula for a rotation about the 

𝑥-axis, that is:  
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 Thus, the comparison test12, by  2𝜋 ∫
1

𝑥
√1 +

1

𝑥4 𝑑𝑥
∞

1
 diverges to infinity (i.e. the surface S is 

infinite) 

  In the previous calculations, we see that indivisibles were used implicitly on what is called the 

disk method. 

  Torricelli’s paradox shows how mathematics may appear to prove something – but in reality, it 

fails. For example, let us think of Torricelli’s trumpet as a bucket that can hold 𝜋 gallons of paint 

but still you can never have enough paint to paint it. This proof caused a lot of mathematicians and 

philosophers of that time to think that there was something wrong with the idea of infinity. 

However, as Jago (2013) mentions: “…infinity works just fine in mathematics. But we have 

sometimes to change our ideas how the world works to fit in”. 

  Geometrical results such as Torricelli’s, motivated many thinkers of the time to revise the issue 

of our knowledge of infinity and contribute even more to the Scientific Revolution. Among such 

thinkers were Thomas Hobbes, John Wallis, Gilles de Roberval and Isaac Barrow. René Descartes 

was also aware of Torricelli’s hyperbolic solid. Descartes with his work “Discours de la méthode” 

(1866/2012) and along with Pierre de Fermat became the father of analytical geometry. Even if 

Descartes used infinite series to solve Zeno’s Achilles paradox, he defended his view that we, as 

finite minds, cannot fully grasp the idea of infinity (Schechtman,2014, p.15). In 1644, one year 

after Toricelli’s result, he declared: “Since we are finite, it would be absurd to determine anything 

concerning the infinite; for this would be to attempt to limit it and grasp it.” On the other hand, 

Pierre de Fermat (1601-1665) developed a method (cf method of adequality) for determining 

maxima, minima and tangents to various curves that was essentially equivalent to differentiation. 

For Bell (2005), in Fermat’s work on maxima and minima we have the first appearance of the idea 

of infinitesimals (p.77). Furthermore, Fermat was one of many to notice the inverse relationship 

between integrals and derivatives but not the importance of this relationship. 

Definition: An infinitesimal is a number whose magnitude exceeds zero but somehow fails to 

exceed any finite, positive number. (Tropp,2002, p.viii) 

  Infinitesimals had been a strongly controversial concept at the time. It would shake the grounds 

of religious and scientific beliefs. Nevertheless, the use of infinitely small and infinitely large 

magnitudes would lead to great developments for mathematics, especially at the great works of 

Leibniz. 

  

Newton and Leibniz 

  Gottfried Wilhelm von Leibniz (1646-1716) viewed calculus in terms of sums and differences. He 

is credited the ingenious notation of Calculus which is even used nowadays, such as the notation 

∫ 𝑥 𝑑𝑥, where ∫  was an elongated representation of the first letter of the Latin word “summa”13, 

meaning summation, and d was the first letter of the Latin word differentia, meaning differential 

(infinitesimal distance). For example, 𝑥 changes by an infinitesimal quantity 𝑑𝑥. However, Leibniz 

did not give a precise definition for the notion of infinitesimals or explanation for the way he used 

but “…the jiggery-pokery which resulted from the application of his unexplained rules was 

enormously fruitful; and his marvelously suggestive notation of ‘differentials’ is still very much 

with us” (Gardiner,2012, p.16). By using a differential triangle to discover the slope of a tangent 

                                                           
12 If 𝑓(𝑥) ≥ 𝑔(𝑥) ≥ 0 on the interval [α, ∞] then, if ∫ 𝑔(𝑥)𝑑𝑥

∞

𝛼
 diverges then so does ∫ 𝑓(𝑥)𝑑𝑥

∞

𝛼
 

13 The word itself betrays the origin of the integral in the theory of indivisibles 
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line to a curve, he was able to derive the power, product, quotient and chain rules. Gardiner adds 

for Leibniz’s rules: “…[they] tamed the infinitesimally small so successful, that even the ordinary 

user could harness its potential with relatively little fear of going astray” (2012, p.17).   

  Unlike Galileo, Leibniz could not accept the “non-quanta” or “no-quantity” view on indivisibles. 

He gave an exact definition of indivisibles and had a clear idea of what they are. For Leibniz, 

indivisibles where infinitely small positive quantities which are smaller than any quantity given, 

while infinitely large quantities are quantities larger than any quantity given. It does not matter 

whether they appear in nature or not, because they allow abbreviations for speaking, for thinking, 

for discovering and for proving (Knobloch,1999, p.95).  

  Leibniz advocated a really sophisticated and useful view on actual infinity. The excerpt of his 

letter to the philosopher Foucher (1686/2010), gives us a broader sight on his view on infinity: 

 

            I am so in favor of the actual infinite that instead of admitting that Nature abhors 

it, as is commonly said, I hold that Nature makes frequent use of it everywhere, in 

order to show more effectively the perfections of its Author. Thus, I believe that there 

is no part of matter which is not, I do not say divisible, but actually divided; and 

consequently, the least particle ought to be considered as a world full of an infinity 

of different creatures. (as cited in Anstey,2010, p.219) 

 

  Leibniz held that matter is infinitely divided consists of infinitely many monads or an actual 

infinity of monads. But what makes his thesis complicated is the fact that he rejected actual infinity 

in mathematics. Particularly, in “Accessio” (1672), he identifies an infinite number (under the 

condition that there is such a number) with nothing or zero. Galileo’s paradox for example, occurs 

when someone assumes the existence of an infinite number, hence for Leibniz such a number had 

to be identified with nothing.  

  While Leibniz viewed his calculus in terms of sums and differences in Germany, at the same time 

Sir Isaac Newton (1643-1727) thought of calculus in terms of motion. He studied at the Cambridge 

University under another great contributor of calculus, Isaac Barrow. Through the years 1665-1666 

he developed14 his Treatise of Fluxions, in an attempt to comprehend the surrounding world in 

terms of calculus. Not to forget that this period, Newton developed his fundamental ideas on 

universal gravitation, as well as the law of the composition of light. L.T. More remarks: “There 

are no other examples of achievement in the history of science to compare with that of Newton 

during those two golden years” (1934, p.41). 

  In 1671(1966), Newton writes the monograph under the title Methodus Fluxionum et Serierum 

Infinitarum, where he makes use of the so-called fluxions and fluents. Newton thinks of the 

variables as a result of the continuous movement of points, lines and planes and not as sums of an 

infinite number of infinitesimals. (Giannakoulias,2004, p. 41) 

Definition: A dependent on time fluxion �̇� of a quantity 𝑥(fluent), is the velocity of which the 

variable x is increased through the motion that created this fluctuation. (Stergiou,2009, p.80) 

Definition: The moment of the fluent is the amount it increases in an “infinitely small” interval of 

time 𝑜,denoted by �̇�o. (Ben-Menahem,2009, p.1143) 

                                                           
14 Newton discovered his general method during the years 1665-66 when he stayed at his birthplace in the country to 

escape from the plague which infested Cambridge 
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  Obviously, these notions bring us in mind the notion of the derivative. In the following example, 

we will see how Newton would find the fluxion(derivative) of 𝑦 = 𝑥2 − 𝑥. 

Example: Let pass an infinitely small interval o. Then 𝑥 is changed into 𝑥 + �̇�𝑜 and 𝑦 into 𝑦 + �̇�𝑜. 

Since the point (𝑥 + �̇�𝑜, 𝑦 + �̇�𝑜) is still a point of the parabola 𝑦 then: 

 𝑦 + �̇�𝑜 = (𝑥 +  �̇�𝑜)2 − (𝑥 + �̇�𝑜) ⇒ �̇�𝑜 = 2𝑥�̇�𝑜 + (�̇�𝑜)2 − �̇�𝑜 

Then Newton, intuitively thinking, would “cast out” the terms that contain 𝑜 in a power greater 

than 1 and would get �̇�𝑜 = 2𝑥�̇�𝑜 − �̇�𝑜. He would divide by �̇�𝑜 to finally get  
�̇�𝑜

�̇�𝑜
= 2𝑥 or in the 

modern notation 
𝑑𝑦

𝑑𝑥
= 2𝑥.  

  We observe that Newton thought of infinitesimals as variables that could arbitrarily approach to 

zero but also as seen in the previous example, could be equal to zero. Inherently, Newton’s method 

raised serious objections, as to the simplification of the terms seen above. As a reaction, Newton 

wrote De quadrature curvarum (1963/2008), where he changed some of his notation and used a 

method for the derivative, almost identical to the one we use it today. In his scientific masterpiece 

“Principia” he moved one step away from infinitesimals and one step closer to the notion of the 

limit by introducing his theory of “prime and ultimate” ratios. As Newton (1687/2014) writes in 

Principia:  

 

           Those ultimate ratios with which quantities vanish are not truly the ratios of ultimate 

quantities…but limits towards which the ratios of quantities decreasing without limit 

do always converge, and to which they approach nearer than by any given difference, 

but never go beyond, nor in effect attain to, till the quantities are diminished in 

infinitum (as cited in Struik,2014, p.300) 
 

  Newton’s as well as Leibniz’s calculus faced some serious criticism, mainly on the philosophical 

aspect of infinitesimals and the lack of rigor caused by their use. One could say that it was a 

reasonable reaction since “Newton himself admitted [that]…his method is ‘shortly’ explained, 

rather than accurately demonstrated” (Boyer,1949, p.193). As for Leibniz, Mancosu (1999) 

mentions: “Leibniz does not explain how he arrived at his equations and leaves the reader totally 

in the dark as to the heuristics and formal proofs of the results therein presented” (p.151). Bishop 

George Berkeley of the Church of England raised serious concerns about the efficacy of calculus 

and made a fierce critique on the notion of Newton’s fluxions while referring to infinitesimals as 

“evanescent Increments”: “And what are these Fluxions? The Velocities of evanescent Increments? 

They are neither finite Quantities nor Quantities infinitely small, not yet nothing”. By the end of 

17th Century a debate on infinitesimals raged. Great minds of the mathematical science, such as 

Gauss and Bolzano would react to the unrestricted use of infinitesimals after Newton’s and 

Leibniz’s works bridging the mathematics of 18th and 19th Century. 

 

2.7 18th and 19th Century, the appearance of “menge” 

  With the background of Calculus, having been set by Newton and Leibniz, mathematicians of the 

18th and 19th Century would work on more complex notions that involved the idea of infinity. 

Gauss’s brilliant mind and Bolzano’s insightful intuition would lead to discoveries of theorems and 

notion that would bring infinity one step closer to its mathematization. 
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Gauss, the “prince” of mathematicians 

  Carl Friedrich Gauss (1777-1855) had a new view of infinitesimals. The status of infinitesimals 

in the 18th Century reached a point where they behaved similarly to real numbers. However, Gauss 

raised caution when one uses using infinite quantities and thought of the only legitimate use as a 

limit. 

  This view reflects on his letter (1831) to his student and astronomer H. Schumacher: 

 

... first of all, I must protest against the use of an infinite magnitude as a completed 

quantity, which is never allowed in mathematics. The Infinite is just a manner of 

speaking, in which one is really talking in terms of limits, which certain ratios may 

approach as close as one wishes, while others may be allowed to increase without 

restriction. (as cited in rjlipton,2014) 

 

  It seems from the above excerpt that Gauss opposed to the notion of actual infinity. However, 

Gauss established results in Euclidean geometry and analysis by examining the behavior of 

mathematical entities at infinity. In his 1812, published paper Disquisitiones Generales Circa 

Seriem Infinitam (General Investigations of Infinite series) he deals with the convergence of the 

hypergeometric series. It was the first important and rigorous investigation of convergence of 

infinite series (Rassias,1991, p.5). Thus, he developed an exact criterion for the convergence of the 

hypergeometric series, known today as the Gauss’s criterion. Vilenkin (2013, p.15), is not 

exaggerating at all when he refers to Gauss as the “prince of mathematicians”. Gauss started 

showing his amazing mathematical skills by the age of 8 when his teacher asked his class to add 

together all the numbers from 1 up to 100. What Gauss actually did, was to think of the formula 

1 + 2 + 3 + ⋯ + 𝑛 = 
𝑛(𝑛+1)

2
 to find out that the sum was equal to 5050. At the age of 15 he would 

discover that the number of primes 𝜋(𝑣) which are less or equal to a natural number 𝜈 is 

approximately equal to 
𝑣

𝑙𝑛𝑣
. Moreover, in a dissertation (1799) written as a degree requirement, he 

gave the first complete proof of “The Fundamental Theorem of Algebra”15. 

  This brought up once again the “good old” topic of irrational numbers and forced Gauss to accept 

irrational numbers as solutions to equations16. For example: 𝑥2 − 2 = 0 has two solutions √2 and 

−√2 in ℝ, which are both irrational numbers. Gauss’s proof of the Fundamental theorem of Algebra 

was criticized by Bertrand Bolzano as to the impurity of its geometrical nature. 

 

Bertrand Bolzano 

  Bertrand Bolzano (1781-1848) gave a satisfying definition for the continuous function, defined 

the notion of the derivative and that of the limit of a sequence. For the first time, the notion of 

continuity would be connected to that of limit. In 1834, he found a continuous function that is 

nowhere differentiable (“non-differentiable Bolzano function”), defying this way Newton’s and 

Leibniz’s principle that “every continuous function is differentiable” (Giannakoulias,2004, p.50). 

  Bolzano viewed the notion of infinity in terms of the abstract notion of set(menge). This 

conception led him to break the traditional mathematical view of the infinite (Ewald&Ewald, 2005, 

p.249). In the “Paradoxes of Infinity”, he considered directly the points that had concerned Galileo. 

                                                           
15 Every polynomial equation with one unknown has at least one solution. 
16 In 1824, Niels Henrik Abel would provide the first proof of the impossibility of obtaining radical solutions for   

general equations beyond the fourth degree 
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He looked further in the nature of infinite sets and for the case of all fractions (i.e. rational numbers) 

between 0 and 1, he showed that there was a one-to-one correspondence with the infinity of 

fractions between 0 and 2. He did this using the function 𝑓(𝑥) = 2𝑥,and found that ∀𝑥 ∈ [0,1] he 

got a unique number of the interval [0,2]. This process could also be reversed for 

  𝑓(𝑥) =
1

2
𝑥, ∀𝑥 ∈ [0,2].This insight was also to be highly significant to Cantor’s work. 

(Clegg,2013, p.134-135). However, the property of finite sets, the whole is greater than the part, 

lead Bolzano to conclude that the results of the comparison of infinite sets remained paradoxical. 

Hence, his attempt to arithmetize infinity failed. The paradoxical situation can be observed in the 

paragraph of Bolzano’s own words:  

 

           As I am far from denying, an air of paradox clings to these assertions; but its sole 

origin is to be sought in the circumstance that the above and oft-mentioned relation 

between two sets, as specified in terms of couples, really does suffice, in the case of 

finite sets, to establish their perfect equimultiplicity in members. […] The illusion is 

therefore created that this ought to hold when the sets are no longer finite, but infinite 

instead” (1851/1950, p. 98) 

 

  Bolzano’s published work Paradoxien des Unendlichen (The Paradoxes of the Infinite) (1851) 

would be later acknowledged by mathematicians such as Charles Sanders Peirce, Georg Cantor, 

and Richard Dedekind. Cantor himself pointed out that Bolzano lacked both a precise definition of 

the cardinality of a set and a precise definition of an ordinal number. For his works Beyträge zu 

einer begründeteren Darstellung der Mathematik (1810), Der binomische Lehrsatz (1816) 

and Rein analytischer Beweis (1817). Bolzano in these works attempts to free Calculus from the 

infinitesimals and refers to them as “...a sample of a new way of developing analysis” (as cited in 

O’Connor & Robertson, n.d, par.14). However, the rigorous foundations of calculus would come 

in the 19th Century by works of Cauchy and Weierstrass. 

 

Cauchy and Weierstrass towards rigor in analysis 

  Grabiner (2012) distinguishes between two facts that made successful the rigorization of calculus, 

by the French mathematician Louis Augustine Cauchy (1789-1857) (p.5). First, the fact that Cauchy 

understood the 18th limit concept in terms of inequalities (ε-δ definition). Second, that all of 

Calculus could be based on limits, transforming previous results on continuous functions, infinite 

series derivatives and integrals into theorems. Cauchy defined a limit as follows:  

“When the successive values attributed to a variable approach indefinitely a fixed value so as to 

end by differing form it by as little as one wishes, this last is called the limit of all others” (as cited 

in Sondheimer & Rogerson,1981, p.139) 

In Cours d’analyse (1821), Cauchy stated that both infinity and infinitesimals were variable 

quantities. Thus, to him, an infinitesimal was something that got smaller and smaller while never 

actually reaching zero (meaning that its limit is equal to zero). Cauchy energetically rejected the 

notion of actual infinity and defined the irrationals as the limit of a sequence of rational numbers 

(Nunez, p.312,2010). For example, 𝑒 can be defined as lim
𝑛→∞

(1 +
1

𝑛
)

𝑛

.However, the weakness of 

Cauchy’s method for defining the irrationals is that he had no proof of the existence of the limit of 

the sequence. Secondly, his notion of limit was based on the real numbers which means that we 

cannot define the notion of a number through that of a sequence (Giannakoulias, p.52,2004). 

Furthermore, Cauchy realized the inverse relationship between the derivative and the integral. 

https://en.wikipedia.org/wiki/The_Paradoxes_of_the_Infinite
https://en.wikipedia.org/wiki/Charles_Sanders_Peirce
https://en.wikipedia.org/wiki/Georg_Cantor
https://en.wikipedia.org/wiki/Richard_Dedekind
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Unlike many of his predecessors as Leibniz, Cauchy thought of the integral as the limit of a sum 

and not as a sum, a thought which lead him to prove the Fundamental Theorem of Calculus: 

Theorem:  Let 𝑓(𝑥) be a continuous function and 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑥0
, then 𝐹′(𝑥) =  𝑓(𝑥). 

  Several ambiguities at the attempt to establish a rigorous Calculus would lead Karl Weierstrass 

(1815-1897) to develop his ideas on a pure arithmetical basis. As Archimedes avoided 

infinitesimals in his method of exhaustion, Weierstrass drove infinitesimals out of analysis. Hilbert 

(1925) lucidly refers to Weierstrass’ contribution:  

            

          “…he removed the defects which were still found in the infinitesimal calculus, rid it of 

all confused notions about the infinitesimal, and thereby completely removed the 

difficulties which stem from that concept…this happy state of affairs is due primarily 

to Weierstrass's scientific work.” (as cited in Benaceraff & Putnam,1983, p.183) 

 

  Weierstrass supported the view that notions such as the limit, continuity, convergence, derivative 

and integral should be defined in a close relation with the system of the real numbers. Thus, he 

restructured mathematical analysis by creating an arithmetical theory of real numbers. He defined 

real numbers in terms of series of rational numbers and also gave a theory of irrational numbers, 

around 1860. By using Bolzano’s techniques, he proved that every bounded infinite set of points 

has a limit point, that is, a point such that every interval around it contains infinitely many members 

of the set. Weierstrass’s result is now called the Bolzano-Weierstrass theorem. The old infinity of 

infinitesimal would at the time be replaced by the new infinity of infinitely large collections 

(Lavine,2009, p.35). 

 

2.8 Hilbert’s Paradox and Dedekind’s “cuts” 

   20th Century began with the International Congress of Mathematicians in Paris on 8 August 1900. 

Hilbert presented at the congress 23 problems, among them the Grand Hotel Paradox which 

illustrates the counter-intuitive properties of infinite sets. By then, the logical foundation of 

Calculus was achieved by Dedekind’s theory on irrational numbers.   

 

The Grand Hotel Paradox 

  David Hilbert (1862-1943), in his lecture for the congress of 1900, would illustrate the 

counterintuitive properties of infinite sets by presenting an ingenious problem, the so-called 

“Hilbert’s Grand Hotel Paradox”. 

  Imagine a grand hotel where there are infinitely many rooms. One night a guest arrived asking for 

a room but the hotel was full-each room was occupied by one person. Hence, the manager requested 

the guest in Room 1 to move to Room 2, the guest in Room 2 to move to Room 3, the guest in Room 

3 to move to Room 4, the guest in Room n to move to Room n + 1. Since the hotel had infinitely 

many rooms, there was no problem in moving, there was always a room to move to. This left Room 

1 vacant, and therefore, the guest was accommodated.  

  The next night, a bus of 60 passengers arrived and they asked for one room for each passenger. 

The same thing happened. The manager requested the guest in Room 1 to move to Room 61, the 

guest in Room 2 to move to Room 62, the guest in Room n to move to Room n + 60. Since the hotel 

had infinitely many rooms, there was no problem in moving, there was always a room to move to. 

This left 60 rooms vacant and therefore the hotel accommodated the 60 new guests. 
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  The next night a bus infinitely long with an infinite number of passengers arrived. The manager 

requested the guest from Room 1 to move to Room 2, the guest from Room 2 to move to Room 4, 

the guest from Room 3 to move to Room 6 and the guest in Room n to move to Room 2n. This left 

all the rooms with odd numbers vacant and therefore the infinite number of passengers were 

accommodated.  

  The next night, an infinite number of buses arrived, each of which had an infinite number of 

passengers. The manager assigned all the guests in the hotel to the prime number 2. He requested 

the guest in Room 1 to move to Room  or Room 2, the guest in Room 2 to move to 

Room  or Room 4, the guest in Room 3 to move Room  or Room 8, the guest in Room 𝑛 to 

move to Room  . 

     Next, he assigned Bus 1 to the second prime number which is 3, Bus 2 to the 3rd prime number 

which is 5, Bus 3 to the 4th prime number, and Bus n to the (𝑛 + 1)-th prime number. Possibly, 

the manager thought of Euclid’s proof that there is an infinite quantity of prime numbers and 

decided that all the buses can be assigned in one-to-one correspondence with the prime numbers. 

  Now, each guest in each bus was assigned to the room number which is a power of prime, the 

prime number in which the bus is assigned to. For example, Passenger 4 of Bus 3 would be assigned 

to the Room 54. This means that each bus had a corresponding prime number and each passenger 

number had a corresponding power of prime. This means that each passenger in all the buses had 

a room in the hotel. 

   The paradox lies in the result that a fully occupied hotel with infinitely many rooms may still 

accommodate additional guests, even infinitely many of them, and that this process may be repeated 

infinitely often. While Hilbert tried to explain the properties of infinity through his paradox, he 

would mention 25 years later at the Westphalian Congress of Mathematicians(1925):” … the 

meaning of the infinite, as that concept is used in mathematics, has never been completely 

clarified…”and comments on Weierstrass’s analysis: “… the infinite still appears in the infinite 

numerical series which defines the real numbers and in the concept of the real number system 

which is thought of as a completed totality existing all at once…”(as cited in Benaceraff & 

Putnam,1984,p.183) 

    Weierstrass along with Dedekind and Cantor provided an arithmetic rather than a geometric 

ground as a foundation for calculus. Analysis would be shown to depend logically only on the 

properties of the natural numbers, what would be called by Felix Klein (1895), the “arithmetization 

of analysis” (as cited in Kleiner,2012, p.255). But despite the establishment of a rigorous calculus, 

the mystery of irrationals would remain open. Up to 1850, real numbers would be categorized as 

rationals and irrationals, algebraic17 and transcendental. Irrationals would be defined as “not 

rationals” while transcendental numbers would be defined as “not algebraic”. We see that 

irrationals and transcendentals were defined through the ambiguous definition of something that 

“is not” (rational-algebraic) while properties of these numbers were not clear. 

 

Dedekind Cuts 

  Richard Dedekind (1831-1916) threw light on the properties of irrationals by using the concept of 

continuity. What Dedekind was searching for was the difference between a rational and an 

irrational on the real number line. Consider a number line where the set of rational numbers is 

placed in an ordered system. We can always find another rational number which is in between two 

                                                           
17 Definition: Algebraic number is any complex number that is a solution of some polynomial equation whose 

coefficient are all integers 
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rational numbers. However, this line is not continuous because of the existence of the irrationals, 

creating “gaps” between the rational numbers. Dedekind in 1872, attempted to fill these “gaps” by 

looking at “cuts”. In modern terminology, he wanted the rational numbers to be “dense” among the 

real numbers (we know in modern mathematics that the rational numbers possess the property of 

“denseness” but yet do not constitute a continuum). 

 

Definition: A Dedekind cut is a subset 𝐶 of the rational numbers 𝑄 with the following properties: 

        1.𝐶 ≠ ∅ and 𝐶 ≠ 𝑄 

        2.if 𝑝 ∈ 𝐶 and 𝑞 < 𝑝, then 𝑞 ∈ 𝐶 

        3.if 𝑝 ∈ 𝐶, then there is some 𝑟 ∈ 𝐶 such that 𝑟 > 𝑝 (i.e. 𝐶 has no maximal element) 

 

An intuitive explanation on a Dedekind cut(schnitt) is given by Mankiewicz (2000):  

 

   Imagine the line of numbers as a solid tube of finite length, filled with ordered rational 

numbers. A cut of the tube will give us two portions, A and B, and will reveal two cross 

sections (the edges of A and B). Seeing those exposed sides, we can read the numbers 

show us (one or the other). If they do no show us any number, then the intersection has 

become on an irrational (p.150) 

 

  For example, we can think of √2 as two sets of rational numbers. Let 𝐿 = {𝛼 ∈ 𝑄: 𝑎2 < 2} and 

𝑅 = {𝛽 ∈ 𝑄: 𝛽2 > 2}. Both 𝐿 and 𝑅 can be entirely defined and described within the rational 

number system. The pair of sets {𝐿, 𝑅} then defines what we call the Dedekind cut and 

 {𝐿, 𝑅} = √2. 

  The entire set of reals can be constructed by taking all possible pair of subsets {𝐿, 𝑅} of the rational 

numbers, where 𝐿 and 𝑅 must satisfy certain conditions. 

  Richard Dedekind redefined the term “infinity” for use in set theory. With his new idea of “cuts” 

he managed to “…define the real numbers in terms of infinite sets of rational numbers. In this way, 

additional rigor was given to the concepts of mathematics, and it encouraged more mathematicians 

to accept the notion of actually infinite sets” (Dowden, n.d., par.1.b).  

 

2.9 The triumph 

  Despite the fact that mathematics would reach a high and rigorous status up to the end of the 18th 

Century, infinity as a mathematical notion was lacking of precision. Galileo’s paradoxes of the one-

to-one correspondence between all the natural numbers and the squares of all the natural numbers 

to infinity or the paradox of the co-centric circles remained under the shadow of Galileo’s facile 

conclusions. He concluded that concepts like less, equals and greater could only be applied to finite 

sets of numbers, and not to infinite sets. However, Georg Cantor (1845-1918) was not satisfied 

with Galileo’s explanations. 

  Cantor, usually mentioned as “the creator of Set Theory”, investigated the properties of actually 

infinite sets. For two finite sets, it is clear that a one-to-one correspondence between them can be 

set up if and only if the two sets have the same number of elements. This is not the case for infinite 

sets and Cantor showed that the set of points on the real line constitutes a higher infinity than the 

set of all natural numbers, that is, the astonishing fact that there are degrees of infinity. Cantor 

realized that he could pair up all the fractions (or rational numbers) with all the whole numbers (in 

the same way such as the natural with the even numbers etc.), thus showing that rational numbers 
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were also the same sort of infinity as the natural numbers, pointing out this way that the properties 

of infinite sets are counter-intuitive (intuition says that there should be more fractions than whole 

numbers). Hence, the infinity of rational numbers is of the same size as the infinity of naturals and 

the set of rational numbers can be listed (i.e. the elements of 𝑄 can be in correspondence with 𝑁). 

  Cantor conceived an ingenious method for proving this time that real numbers cannot be listed or 

equivalently that ℝ is uncountable. 

Theorem: ℝ is uncountable   

Proof:  The proof is based on contradiction, so we suppose that ℝ is countable. We accept that 

every real number x has a decimal expansion, 𝑥 = 𝑁. 𝑥1𝑥2 … In order to ensure uniqueness for the 

representation, we choose the convention: one agrees never to terminate the expansion of an infinite 

string of 9’s. Otherwise, we cannot ensure uniqueness. For example, 𝑁. 4999 … = 𝑁. 5000 … 

which are two different representations of one real number. As we assumed that ℝ is countable, we 

can make a list of all the elements of ℝ along with their decimal expansions: 

𝑥1  =  𝑁1. 𝑥11𝑥12𝑥13 … 

       𝑥2  =  𝑁2. 𝑥21𝑥22𝑥23 … 

𝑥3  =  𝑁3. 𝑥31𝑥32𝑥33 …  
… 

We now consider the real number 0. 𝑦1𝑦2𝑦3…which is defined by 𝑦𝑖 = 1 if 𝑥𝑖𝑖 ≠ 1 and 𝑦𝑖 = 2 

 𝑦𝑖 =    {
 1, if 𝑥𝑖𝑖 ≠ 1      

  2, otherwise      
 

This number differs from every 𝑥𝑖 in the list in at least the 𝑖-th position. Thus, 𝑦𝑖 is not in our list. 

            ∎ 
            

What Cantor proved, is that even an infinite set of numbers (in the previous case, the set ℝ) cannot 

contain all possible numbers. 

  He drove his theory even further, by introducing the word “transfinite” and the notion of 

transfinite cardinal and ordinal numbers in order to distinguish between the different degrees of 

infinity. He made use of the Hebrew letter aleph ( ) to denote with 0 the “transfinite” cardinality 

of the countable infinite set of natural numbers and with 1 the next larger cardinality, that of the 

uncountable set of ordinal numbers. Ordinal numbers were also introduced by Cantor in 

1883.Simply put, an ordinal number is an adjective which describes the numerical position of an 

object, e.g., first, second, third, etc. For example, 𝜔 is defined as the lowest transfinite ordinal 

number and is the “order type” of the natural numbers. Cantor hypothesized that 1 is the 

cardinality of the set of real numbers, an assumption that lead Cantor to the idea that there is not a 

third kind of infinity between that of natural and that of real numbers. 

That was the famous continuum hypothesis (1879) which Cantor had not been able to prove.  

  The continuum hypothesis would be included in the famous Hilbert’ presentation of his 23 

problems. Kurt Gödel in 1940, demonstrated that the hypothesis is consistent with the Zermelo-

Fraenkel axiomatic set theory. Paul Cohen, an American mathematician, would prove in the early 

1960’s that the Continuum hypothesis is independent of the ZF axiomatic theory, i.e. one cannot 

prove if the hypothesis is true or false within the given axiomatic set theory. Cohen’s method of 

proving his result remained controvertible until Gödel gave his stamp of approval in 1963. 

  As in many radical theories through the historical development of the notion of infinity, Cantor’s 

theory had faced severe critique, especially by his old professor L. Kronecker and the French 
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mathematician H. Poincare. In order to realize the tension of the controversy, we refer to Poincare’s 

own words (1908) for Set Theory: “Later generations will regard Mengenlehre [set theory] as a 

disease from which one has recovered” (as cited in Kleiner, p.192, Cantor refused to be 

intimidated:  

 

          “My theory stands as firm as a rock; every arrow directed against it will return quickly 

to its archer. How do I know this? Because I have studied it from all sides for many 

years; because I have examined all objections which have ever been made against the 

infinite numbers; and above all, because I have followed its roots, so to speak, to the 

first infallible cause of all created things” (as cited in Dauben,1990, p.298) 

 

  As Cantor aged, he suffered from mental illnesses (beginning about 1884), a fact which many 

authors would ascribe to “his constant contemplation of such complex, abstract and paradoxical 

concepts” (history). Cantor spent his last years in the Halle sanatorium, recovering from attacks of 

manic depression and paranoia, until he finally died in 1918. 
 

2.10 End of the journey 

  We will stop at this point our journey through the historical development history of infinity, as 

we have reached what Hilbert called “Cantor’s paradise”. Through this review, we had the chance 

to realize the vastness of the notion of infinity as it appeared in mythological doctrines, 

philosophical discussions and scientific studies. It is no wonder that more than 2000 years had to 

pass for infinity to be established mathematically. However, in this finite world, the struggle to 

comprehend and conquer the notion of infinity remains vivid. 
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CHAPTER 3: Theoretical Framework 

 
  The historical review of the development of the concept of infinity in the previous chapter, helps 

us to realize not only the difficulty of understanding that lies in the nature of the concept itself, but 

also the many different ways that it had been perceived and conceptualized to finally reach an 

original mathematical formation. In this chapter, in an analogy with the different approaches taken 

through history to understand infinity, I will start by first investigating the nature of infinity and its 

contradictory attribute. Next, there will be an examination on the perception as a concept and as it 

appears in the cases where students deal with tasks involving infinity. Finally, I will present two 

theories that will give us the chance to have an insight in the mental processes and obstacles in 

understanding the concept. 

 

3.1 On the nature of infinity 

3.1.1 What is infinity? 

  An attempt to answer the question in a philosophical or physics context could fill hundreds of 

pages and still the answer may not be satisfactory. Nevertheless, we have already seen that the 

concept has reached the status of a mathematical object before going through a philosophical-

scientific development. 

  Let us now have a look on the roles that the word “infinity” had in Greek culture: 

1.As a noun, “infinity” was related to mythological, theological and metaphysical beliefs, like those 

attributed to the realm of the gods 

2.As an adjective, describing the noun in terms of the absolute, like the universe, the being, space 

or time. 

3.As an adverb, used to describe processes that were considered to be continued indefinitely, like 

the processes of extending, subdividing, adding etc. (Luis, Moreno&Waldegg, 1991, p.212) 

  It will be best to remain within the limits of a mathematics education research and give an answer 

combining the mathematical and cognitive aspects of the notion, independent from the “noun” role. 

We will see how the “adverb” and the “adjective” role is related to the potential and actual character 

of infinity respectively. That is to define potential and actual infinity by means of someone’s 

understanding of the behavior of mathematical entities inherent to the concept of infinity. 

  The notion of potential infinity arises when someone realizes unending processes in mathematics. 

For example, the infinite process when someone starts from 1 and adds one in each step indefinitely, 

without stopping. Other examples are the indefinite extension of a line segment or creating 

polygons with more and more sides. We have also seen previously an evident appearance of the 

potential infinity where someone can create indefinitely regular pentagons by joining the 

intersection points of the diagonals of a regular pentagon. However, potential infinity plays a 

fundamental role in Calculus. As Luis et al. (1991) mention: “…potential infinity subsists within 

mathematics as the modus operandi which constitutes the operatory nucleus of standard calculus” 

(p.213). To be even more specific, we should have a look at some cases involving the concept of 

limit. One understands infinity in a potential way if he/she thinks of 0. 9̅ as the lim
𝑛→∞

∑
9

10𝑛
∞
𝑛=1  . 

That is, we will keep adding 9’s to 0.9 indefinitely, reaching arbitrarily close to 1. Potential infinity 

is inseparable from the notion of limit and there is an implicit use of it when someone for example 

attempts to find the lim
𝑥→0

sin 𝑥

𝑥
 . While 𝑥 is getting closer and closer to 0 but never equals to zero, 
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then 𝑓(𝑥) =
sin 𝑥

𝑥
  gets closer and closer to 1 or lim

𝑥→0

sin 𝑥

𝑥
= 1(for more on limiting processes c.f. 

Tall,1980). 

  According to the idea of actual infinity, infinity is often realized as an object. For Lakoff and 

Núñez (2000) “…the interesting cases of infinity in modern mathematics are cases of actual infinity” 

(p.158). For example, cases that include infinite sets, points at infinity, a transfinite number or the sum 

of an infinite series. In particular, someone understands the actuality of infinity if he/she thinks of 

the natural numbers as a set. In order to make a rough distinction between the actual and the 

potential idea, we have to think of the sequence of numbers which have no end. Then we are lead 

to think of potential infinity. While thinking that there are infinitely many numbers, we are thinking 

of actual infinity. As we have seen through history, establishing the idea of actual infinity had not 

been an easy task. Bolzano (1851/1950), in order to give answers to paradoxes of infinity, felt the 

need to refer to infinity as an attribute of collections(para.13). Several years later, Cantor (1874) 

would develop the concept of actual infinity through the transfinite cardinal number theory. Despite 

the Cantor’s triumphant idea of the existence of different types of infinity, the contradiction within 

the notion remains. Fischbein, Tirosh and Hess (1979) noticed a remarkable fact: “The world of 

ℵ0, ℵ1, ℵ2…composed of actual infinities represents a potential, not an actual form of infinity…The 

contradictory nature of infinity can be pushed to higher levels but cannot be completely eliminated” 

(p.4). 

  We see that even at the higher levels of thinking, such as Cantor’s, contradictions “cannot be 

completely eliminated” (Fischbein et al.,1979, p.4). Reasoning from numerous historical debates 

and Fischbein’s et al. remark, we can now safely attribute to the nature of infinity the term 

“contradictory”. On the other hand, one could refer to the nature of infinity as “contradictory” 

stemming from the counter-intuitive properties of sets. In the next paragraph, I will be discussing 

this attribute and how it intervenes in intuition. 

 

3.1.2 The contradictory nature of infinity 

  Fischbein et al. (1979) refer to the term “intuition” as the form of knowledge that is direct, formal 

and self-evident. For the case of infinity, the same authors make a clear distinction: “Accepting 

definitions, theorems and logical proofs is one thing. Using the concept of infinity in various real, 

psychological contexts in the process of thinking and interpreting is another” (p.3). 

  When Galileo presented his paradox of counting square numbers, in fact he argued that a “smaller” 

subset of an infinite set can, itself, be infinite. Of course, one can simply overcome this paradox by 

thinking in terms of the Aristotelian philosophy and thus, reject the existence of an actual infinity. 

Fortunately, Cantor had another opinion. He argued that there is no need to reject the actual nature 

of infinity. He made comparisons between infinite sets meaningful by saying that there are indeed 

infinite sets of the same size and other infinite sets that are larger than others. However, in both 

cases, we have the counter-intuitive property of infinite sets, that is, the whole can equal to its parts 

or what is known as the “part-whole” relationship. 

  The “part-whole” relationship is the reason that Galileo’s case was characterized as a paradox. 

While Cantor has given a brilliant answer to Galileo, nowadays a student would not accept easily 

properties such as the “part-whole” relationship. Obviously, confusion is caused due to the every-

day experience in a finite world. Luis et al. (1991) explain in a lucid way the “root” of this conflict 

by saying that: “…[it] lies in the fact that the intellectual schemes of the individual stem from daily 

experience where it is obvious that the whole is always bigger than any of its parts” (p.219). In the 

same line of thought, Monaghan (2001) distinguishes between two problems talking to children 
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about the infinite. These are: a) the real world is finite and there are no real referents for discourse 

on the infinite and b) the language used within this finite world to talk to children about the infinite 

(p.240). These being said, the question raised by Núñez (2005) seems completely reasonable: “How 

do we grasp the infinite if, after all, our bodies are finite, and so are our experiences and everything 

we encounter with our bodies?” (p.1). Monaghan (2001) points out another reason for confusion 

and contradiction while comparing the cardinality of infinite sets. That is the fact of the dual nature 

of infinity or equivalently the “process-object duality”. According to him, the “part-whole” 

relationship is object related (p.245). A student could easily conclude that since the set of even 

numbers is smaller (i.e. there are gaps between them) than the set of natural numbers. On the other 

hand, another possible answer could be that since both of the sets are infinite (i.e. we can keep 

counting natural or even numbers for ever) then it is not possible to compare them. A similar 

conclusion to Galileo’s answer to his own paradox, who saw the sets of natural and square numbers 

as totalities, hence to him, a comparison was not applicable. 

  We have seen that the “part-whole” relation as a counter-intuitive result and the dual nature of 

infinity as the roots of the conflict in the process of understanding the concept of infinity. Thus, 

since mathematical infinity is a fundamental concept of mathematics and appears in several 

foundational concepts that are taught in a mathematics classroom, we will need to have a further 

insight at the student’s thinking. This I will try to achieve by i) identifying students’ perceptions 

related to the notion of infinity and adapting ii) the Piagetian Theory of Genetic Epistemology as a 

basis for the framework of APOS theory, iii) the idea of Psychological Recapitulation as a basis of 

the Theory of Epistemological Obstacles. 

 

3.2 Identification of Students’ Perceptions 

  The term “perception” is defined in Merriam-Webster dictionary as follows: 

a: awareness of the elements of environment through physical sensation 

b: physical sensation interpreted in the light of experience (perception.2017) 

  For example, an individual sees objects moving on four wheels and is aware that these objects are 

cars. On the other hand, when he is asked to draw a car, he will recall his past experience of 

watching cars to draw one. In line with the linguistic definition, Singer and Voica (2008) have 

transferred the notion of perception in their studies by making the distinction between primary and 

secondary perception. In an analogy, both perception and intuition aim at producing meaningful 

interpretations of the world. Perceptual representations give plausible explanations that can or 

cannot be contradicted by further experiences. Intuition, on the other hand, certifies and functions 

based on beliefs. Keeping in mind this distinction for the rest of the research, I will proceed at the 

definitions of the two kinds of perception, as given in Singer and Voica (2008). 

Primary perception: is an active and spontaneous process by which human beings organize and 

interpret sensory information, independently of any instruction. For example, when one looks at a 

painting, he/she could only feel euphoria or other emotions. However, if the viewer is a painter, 

he/she will perceive the process of painting, the materials that have been used, the technique etc. 

The latter kind of perception is called secondary. 

Secondary Perception: is a filter of selection, interpretation and representation of information, 

which is created by successive experiences, generated inclusively by systematical educational 

interventions. 

  In this study, I will be examining the students’ primary perceptions by looking for spontaneous 

answers to the questions related to infinity (e.g. asking what does infinity mean to each student).       

Specifically, primary perceptions can be identified as processional, topological and spiritual. 
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  Processional Perception: this perception corresponds to the potential infinity and functions as a 

modality to understand this nature of infinity (Singer&Voica,2008; Fischbein,2001; Fischbein et 

al.,1979; Monaghan,2001; Tsamir&Tirosh,1999). Fischbein (1987) relates the processional 

perception to “dynamic/potential infinity” and distinguishes between two dimensions of the 

perception (p.91). 

-a temporal dimension: it is related to the perception that infinity is something with no end and 

impossible to be measured. Some possible expressions that point to a temporal perception are: 

“infinity is unending”, “infinity is something that never ends” 

-a spatial rhythmic dimension: it is related to the perception that infinity is something unending, 

something that keeps rising. Some possible expressions e.g. “infinity is something that never ends 

and keeps growing”.” the closer you get to the stars the further they go” 

Topological perception: this perception is connected to the conceptualization of infinity as a big 

entity, bigger than anything else. We consider that a topological perception manifests when the 

student evokes properties and transformations that are invariant to the change of shape. Singer and 

Voica (2008) refer to the representation of infinity by the number-line as a topological type of 

representation (p.196). Some possible answers that indicate a topological perception are: “infinity 

is something huge”,” enormous”, “unlimited”. 

Spiritual perception: is the perception which is affected by feelings and emotions. As Lakoff & 

Nunez (2000) emphasized, infinity is the highest entity that encompasses all the other categories 

and is naturally extended to nature or religion. Some possible answers that indicate a spiritual 

perception are: “Infinite is the love for my parents”, “Infinity is something that no one can grasp”, 

“Only God can reach infinity” “Infinity means absolute”. 

  Apart from the primary perception, examining students’ perceptions in depth might reveal a 

secondary perception of the notion of infinity. A secondary perception can be expressed in the case 

of the comparison of infinite sets. According to Tsamir (2001, p.290), students tend to apply certain 

criteria in their responses to different comparison-of-infinite set. These criteria are: 

i) the part-whole criterion: a proper subset of a given set contains fewer elements than the 

set itself 

ii) the single infinity criterion: all infinite sets have the same number of elements, since 

there is only one infinity 

iii) the “infinite quantities-are-incomparable” criterion: two infinite sets cannot be 

compared 

iv) the one-to-one correspondence criterion: a simplified version of the bijection criterion 

  Investigating both kind of students’ perceptions is the first step for revealing an understanding of 

the notion of mathematical infinity. The next steps that should be considered can be taken by 

examining further in learning processes or structures. This necessity is apparent in Singer and 

Voica’s (2003) conclusion: “If we take into consideration recent researches in mind and brain, 

there is a close interrelationship between predispositions-intuitions and the learning process, 

which rebuild connections and structures (p.6). Thus, we should be looking for an insight in the 

mental structures and mechanisms through which knowledge is built. For this, we should resort to 

the Theory of Genetic Epistemology. 

 

3.3 The Theory of Genetic Epistemology 

  The Theory of Genetic Epistemology is a theory established by Jean Piaget (1896-1980) which 

studies the origins of knowledge. Ho (2008) puts it simply and refers to this theory as the 
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development theory of knowledge acquisition (p.13). Piaget in his theory, thinks of knowledge in 

terms of stages and processes through which knowledge is formed. In Piaget’s own words (as cited 

in Bringuier,1980): “The study of such transformations of knowledge, the progressive adjustment 

of knowledge, is what I call genetic epistemology” (p.7). 

  Piaget and Garcia (1962/1989), having a sophisticated view on knowledge, in the “Psychogenèse 

et histoire des sciences”(Psychogenesis and the History of Science), have elaborated the concept 

of genetic development. What the authors did in their work, is to identify the mechanisms of 

passage from a cognitive stage to another in order for the individual to be lead to the acquisition of 

knowledge. Piaget & Garcia refer to these mechanisms as the “transitional mechanisms”. One of 

these mechanisms is what Piaget called reflective abstraction. It is the main mechanism for the 

mental constructions in the development of thought. Piaget wrote for the development of thought: 

“The development of cognitive structures is due to reflective abstraction…” while for mathematics 

he wrote: “…it [reflective abstraction] alone supports and animates the immense edifice of logico-

mathematical construction” (Piaget,1985, p.143;1980, p.90). But what how does reflective 

abstraction work in mathematics? Piaget (as cited in Arnon et al.,2014), provide us with an example 

for the case of functions:  

 

  They are first constructed as operations that transform elements in a set, called the 

domain, into elements in a set, called the range. Then, at a higher stage, as elements 

of a function space, functions become content on which new operations are 

constructed. Integers are another example. At one stage, an integer is an operation or 

process of forming units (objects that are identical to each other) into a set, counting 

these objects and ordering them. At a higher stage, integers become objects to which 

new operations, e.g., those of arithmetic, are applied. (p.6) 
 

  Such kind of examples lead researchers of mathematics education to the belief that reflective 

abstraction can become a tool in describing the mental development of more advance mathematical 

concepts. Specifically, for mathematics education, the most inherent theory to Piaget’s Genetic 

Epistemology and the notion of reflective abstraction is the APOS theory.  

 

3.3.1 APOS Theory 

  We have seen previously the correspondence between the nature of infinity and the conception of 

this dual nature. That is, the conception of potential infinity as a process and the conception of 

actual infinity as an object. APOS Theory will help us to understand the distinction between the 

potential and the actual, not only in the students’ thinking but also in the historical development of 

the concept of infinity. 

  It is a constructivist theory of how learning a mathematical concept might take place. Arnon et al. 

(2014) call on Piaget’s concept of reflective abstraction in children’s learning as their main 

inspiration of the development of the theory (p.5). In fact, APOS Theory reformulates Piaget’s 

ideas to fit the context of cognitive development in the level of pre-graduate and university 

mathematics. 

    Many researchers for several years had discussed concepts in mathematics as both processes and 

objects. In 1991 for example, Anna Sfard wrote an article called “On the dual nature of 

mathematical conceptions: Reflections on processes and objects as different sides of the same 

coin”. For Sfard, only when a process has been changed into an object can it in turn be operated on 

by other processes. Thus, one has to look on the learner’s understanding of the concept of infinity.                      

http://www.persee.fr/doc/rhs_0151-4105_1984_num_37_2_2004
http://www.persee.fr/doc/rhs_0151-4105_1984_num_37_2_2004
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Dubinsky & McDonald (2001) extended this process-object relation by adding two more levels of 

understanding, calling this theory APOS.APOS Theory assumes in total four mental structures 

called Action, Process, Object and Schema and the two basic mental mechanisms of interiorization 

and encapsulation. These levels constitute the acronym APOS. APOS theory postulates that a 

mathematical concept develops as one tries to transform existing physical or mental objects. Below 

I will explain the mental structures (Dubinsky & McDonald,2001, p.2-3): 

  Action: This level is characterized by the individual having an essential external perception of the 

mathematical concept. He/she is required to recall from memory or to follow step-by-step 

instructions to carry out a transformation. For example, in the case of the derivative of the function 

𝑓(𝑥) = 𝑥5. A student requires the general expression 𝑓′(𝑥) = 𝑛𝑥𝑛−1 and can do little more than 

perform the action 𝑓′(𝑥) = 5𝑥4. This student is considered to have an action understanding of the 

derivative. 

  Process: A student with a process understanding, repeats the action and then reflects upon it. 

He/she can make an internal mental construction called a process which will include performance 

of the same kind of action. Then we say that the action has been interiorized into a mental process. 

For example, in the case of the derivative of the function 𝑔(𝑥) = (𝑥5 + 1)2, the student will think 

of squaring the binomial 𝑥5 + 1 and then that the derivative of 𝑔(𝑥) is the sum of (𝑥10)′, 
[2(𝑥5)]′,1′. Then we say that the student has a process understanding of the derivative. 

  Object: An object is constructed from a process when the student becomes aware of the process 

as a totality and realizes that transformations can act on it. Then we say that the student has 

encapsulated the process into a cognitive object. For example, in the case of the derivative of the 

function ℎ(𝑥) = (𝑥5 + 1)7, the student confronts a situation where he/she has to think of ℎ(𝑥) as 

the composition of 𝑓(𝑥) = 𝑥7 and 𝑔(𝑥) = 𝑥5 + 1 by applying the process or action of composition 

of functions (depending on the level of understanding of the composition of functions). Then h(x) 

should be conceptualized as an object which arises from the composition of two functions. 

Now, the process understanding for finding derivatives must be encapsulated in the context of the 

chain rule to find the derivative h′(x). 
  Schema: According to Cotrill et al. (1996) a schema is “a coherent collection of actions, 

processes, objects, and other schemas that are linked in some way” (p.172). A mathematical topic 

often involves many actions, processes and objects that need to be organized and linked into 

coherent framework, which is called schema. It is coherent in the sense that it provides an individual 

with a way of deciding whether the schema applies in dealing with a mathematical situation. For 

example, it is the schema structure of the derivative that is used to determine the local extrema of 

a function, say ℎ(𝑥) = (𝑥5 + 1)7. The coherence lies in understanding that to determine the local 

extrema of ℎ(𝑥), one has to find: the derivative ℎ′(𝑥), the critical points of ℎ(𝑥) when ℎ′(𝑥) =
0.Then use these critical points to construct the sign diagram of ℎ(𝑥) and finally determine the 

nature of the extrema of ℎ(𝑥). 

Moving on to describe further the mental mechanisms of interiorization and encapsulation. 

interiorization: It is the mechanism that makes the mental shift from Action to Process. 

Interiorization permits one to be conscious of an action, to reflect on it and to combine it with other 

actions. (Dubinsky,1991, p.107). 

encapsulation: encapsulation occurs when an individual applies an Action to a Process, that is, sees 

a dynamic structure (Process) as a static structure to which Actions can be applied. Dubinsky et al. 

give the following explanation: If one becomes aware of the process as a totality, realizes that 

transformations (explicitly or in one’s imagination), then we say the individual has encapsulated 

the process into a cognitive object) (Dubinsky, Weller, McDonald, & Brown,2005, p. 339) 
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3.4 Psychological Recapitulation 

  What is of much interest to us in this study, is Piaget’s idea to include in his theory another version 

of the biogenetic law of recapitulation, namely, the law of psychological recapitulation. What is 

psychological recapitulation? It is the belief that the students’ intellectual development, traverses 

more or less the same stages as mankind one did. For Piaget, the mechanisms that function within 

the intellectual development are considered: “as invariable, not only in time but also in space…they 

do not change from place to place or from time to time. They are exactly the same, regardless of 

the period in history and the place of individuals” (Furinghetti & Radford,2008, p.630). Clearly, 

Piaget has adapted the idea of biogenetic recapitulation by the claim that the individual’s cognitive 

development passes through the same stages as the cognitive development of great minds did 

through certain historical periods. In the following scheme, we see the way that the biogenetic law 

is being implemented in Piaget’s Genetic Epistemology, as the law of Psychological 

Recapitulation. 

 

 

 The very first starting point of Genetic Epistemology is the assumption that ontogeny recapitulates 

phylogeny, that is, an organism’s fetal development follows the species ‘previous evolutionary 

forms. This assumption had been extended to the field of cognition and mental activities as the law 

of Psychological Recapitulation. It is the idea that the development of mental functions, also known 

as psychogenesis, recapitulates the conceptual development of the mankind over several historical 

stages. As previously mentioned, Piaget & Garcia envisioned knowledge in terms of intellectual 

instruments and mechanisms. Adapting the law of Psychological recapitulation, they claim that the 

transitional mechanisms from one historical period to the next are analogous to those of one 

psychogenetic stage to the next. The Theory of Epistemological obstacles had been developed in 

line with this constructivistic approach to knowledge.   

 

3.4.1 The Theory of Epistemological Obstacles 

  The concept of epistemological obstacle first emerged in Gaston Bachelard’s article: “La 

formation de l’esprit scientifique” (The formation of the scientific mind) (1938). He supported the 

view that “the problem of scientific knowledge must be posed in terms of obstacles” (Bachelard 

1938/2002, p.25) and grouped under the name of epistemological obstacles the limits which restrain 

the previous knowledge and which must be overcome and replaced by another form of knowledge. 

In other words, what we already know prevents us from discovering something new. Bachelard 

(1972) examined the idea of the epistemological obstacle and objected that the notion is not 

acknowledged within the field of education:  

Figure 5. The transposition of the law of biological recapitulation 

to the law of psychological recapitulation 
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  I have often been struck by the fact that the professors of sciences, more than 

others, do not comprehend that what they teach is not understood. They think that 

the scientific reasoning begins a lesson, that they can make a demonstration to be 

understood by repeating it point by point… [in a physics class] …it is not about 

gaining an experimental culture, but about changing it, about overcoming the 

obstacles accumulated from the daily life. (as cited in Sălăvăstru,2014, p.34) 

 

All of the above content of Bachelard’s quote becomes clear when Hercsovics (1989) provides us 

with three epistemological obstacles, found from Bachelard’s work:  

• the tendency to rely on deceptive intuitive experiences 

• the obstacles caused by natural language 

• the tendency to generalize (as cited in Moru,2007, p.35) 

  Bachelard’s quote is really rich, in the sense that brings back the “finite world” obstacle or the 

“real world experience” mentioned previously. One of the most concrete examples that showed us 

that intuition ran against learning was the result of Gabriel’s horn (see 2.6) A deceptive intuitive 

experience, such as the experience of painting a horn, Bachelard (1938) would call as the obstacle 

of the “first experience” in learning, an obstacle that occurs by an experience which has not 

undergone a rational critique or observation. (as cited in Chimisso,2013, p.202). Sălăvăstru (2014) 

mentions for the “first experience”: “It would be delusional to build the learning process without 

taking into account the previous knowledge of the students, knowledge more or less correct, often 

contaminated by the imagination, affectivity, environment and so on” (p.35). 

 As for the obstacles caused by natural language, we will have to look back to Monaghan’s 

reasoning on why talking to children about infinity, becomes problematic. I will not be mentioning 

again the two problems but one could completely grasp the “natural language” problem if he/she 

thinks of the mathematics teacher entering a classroom and starting to teach in a language created 

in the finite world.  

  Finally, I would like to provide an example out of the mathematics education research limits but 

within Bachelard’s philosophy of science for the “tendency to generalize”. Simply, one cannot 

understand a foreign culture by meeting a madman and then conclude “Yes, I know, everyone is 

crazy in this country!”. 

  Almost 45 years after Bachelard’s work, Guy Brousseau (1933-) would integrate the idea of 

epistemological obstacles into his Theory of Didactical Situations (1970) in mathematics. The 

Theory of Didactical Situations(TDS) examines the relationships that occur in the triadic 

relationship of teacher-student-content (Sriraman, & Törner,2008, p.669).  

  Brousseau (1997) describes a general apparent obstacle as follows:  

 

  Errors are not only the effect of ignorance, of uncertainty, of chance, as espoused 

by empiricist or behaviorist learning theories, but the effect of a previous piece of 

knowledge which was interesting and successful, but which is now revealed as false 

or simply unadapted. Errors of this type are not erratic and unexpected, they 

constitute obstacles. As much in the teacher’s functioning as in that of the student, 

the error is a component of the meaning of the acquired piece of knowledge (p.82) 
 

   Thus, for Brousseau, an obstacle as well as a piece of knowledge is the result of the interaction 

between the three-way schema mentioned previously. An obstacle is of the same nature as 
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knowledge and behaves in the same manner. To overcome an obstacle is to work in the same way 

as applying knowledge. It requires repeated interaction and a discourse between the student and the 

object of knowledge-the obstacle. Brousseau (1983) classifies the sources of obstacles as follows: 

(1) an ontogenetic source (related to the student’s own cognitive capacities, according to their 

development i.e. their age) 

(2) a didactic source (related to the teaching choices) 

(3) an epistemological source (related to the target knowledge) (as cited in Radford,1997, p.29) 

  In this study, I will make use of obstacles of an epistemological source, namely the 

epistemological obstacles while I will refer to the other two if necessary. In his widely-quoted 

paragraph, Brousseau (1997) throws more light on the notion: “The obstacles that are intrinsically 

epistemological are those that cannot and should not be avoided, precisely because of their 

constitutive role in the knowledge aimed at. One can recognize them in the history of the concept 

themselves” (p.87). Hence, an epistemological obstacle is strongly inherent to the concept to be 

taught while has its roots to the nature of the concept and what I mean by “nature of the concept” 

is the structure of the mathematical concept through its historical development.  

We can list now the two essential characteristics of epistemological obstacles: 

➢ epistemological obstacles occur both in the historical development of scientific thought 

and educational practice 

➢ they are unavoidable and essential for the acquaintance of the target knowledge 

 For the first point, consider the difficulty of the conceptualization of non-natural numbers as 

members of the same family as natural numbers which had been apparent in history and was 

further extended in the conceptualization of irrationals. In relation with the second point, such an 

obstacle arises when understanding certain mathematical concept interferes with the 

understanding of a more complex one. For example, understandings of natural numbers interfere 

with the understanding of fractions (cf. Cortina, Visnovska, & Zuniga ,2014). To make things 

clearer and for the sake of preciseness on the notion of an epistemological obstacle, I will be 

choosing the safe way of referring to examples already given by Cornu (1991). Cornu has given 

the following examples of epistemological obstacles of the past related to the history of the limit 

concept: 

• the failure to link geometry with numbers 

• the notion of the infinitely large and infinitely small 

• the metaphysical aspect of the notion of limit 

• is the limit attained or not? (p.159-162) 

     Having a look at the historical development, the above obstacles had been indeed the stepping 

stones for mathematics until Cauchy and Weierstrass would introduce the limit concept. We have 

already seen the debates and the confusion caused by notions such as the indivisibles or 

infinitesimals while the question “is the limit attained or not” still echoes in a mathematics 

classroom. 

 

3.4.1.1 The function of history in the Theory of Epistemological Obstacles 

  Identifying epistemological obstacles is far from being an easy task. Nevertheless, it is not always 

the case that a difficulty for conceptualization found through history will also be constituting a 

difficulty in a student’s thought. Fischbein, Jehaim and Cohen (1994), conducted a research on the 

irrationals and their possible corresponding epistemological obstacles by the following assumption: 

the concept of irrational numbers encounters obstacles which render difficult their understanding 
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and acceptance as it happened in the history. Indeed, such obstacles exist but are not of 

epistemological nature. It seemed that students were not disturbed intuitively by the idea of 

incommensurability, thus, his assumption that the obstacles are of a primitive nature (i.e. 

epistemological) was brought down.  

    It is appropriate here to make a fundamental distinction between a fact and an obstacle 

(Bachelard 1938/2002, p.27). For a historian of science, it is a fact that up to Cantor, the “part-

whole” relationship constituted a paradox. From an educator’s point of view, the same relationship 

had been an obstacle to thought, until the development of the transfinite numbers in Cantor’s 

thought. After my attempt to give the way that history functions in an epistemological framework, 

I should proceed at Brousseau’s (1997) suggested guidelines for a research on epistemological 

obstacles: 

  From the outset, therefore, researchers should 

a) find recurrent errors, and show that they are grouped around conceptions 

b) find obstacles in the history of mathematics 

c) compare historical obstacles with obstacles to learning and establish their epistemological 

character (p.99) 

  What Brousseau suggested in other words (Vamvakoussi, Vosniadou, & Van Dooren,2013) (and 

this will be done for this research), is to trace down obstacles in the historical development of the 

notion of infinity and compare them with obstacles in learning manifested through recurrent errors 

(p.314).  

  The idea that some of the difficulties in the historical development of a concept are met also in 

the individual’s cognitive development implies in a broad sense, the acceptance of the biogenetic 

law. In a psychological version, we can say that the idea of epistemological obstacles implies the 

acceptance of the law of psychological recapitulation. We observe at this point, that the Piagetian 

view on knowledge is also a part of Brousseau’s view on obstacles, mentioned often in the literature 

as the Piagetian side of Brousseau’s epistemological obstacles. One can notice this in the following 

quote: “…in each progression, what gets surpassed is always integrated with the new…” 

(Piaget&Garcia,1962/1989, p.28). In conclusion, we find two points where Piaget’s theory is 

implicitly used in the Theory of Epistemological Obstacles: a) epistemological obstacles are both 

found in the historical and cognitive development of a concept, b) an obstacle in learning is a piece 

of knowledge, obtained by the function of certain mechanisms. In other words, we see a 

constructivist approach to learning, in both of the theories.  

 

3.5 Refining and implementing the theory 

  Furinghetti and Radford (2008) mention that the study of the development of student’s thinking 

belongs to the psychological domain while the conceptual development belongs to the historical 

domain. In this study, the part of the students’ primary and secondary perception of mathematical 

infinity, has been investigated by means of interviews and questions. The results will be further 

analyzed in the context of APOS Theory. For the latter part of the historical domain, historical 

records on the conceptual development of infinity, are the only material for study. These two parts 

can be connected by the law of psychological recapitulation, which as we have seen previously is 

a transposition of the biological law of recapitulation. However, I will not be looking for parallels 

between student thinking and historical thinking about the concept of infinity. This would be a 

really simplistic view on the law of Psychological Recapitulation without any positive implications 

for mathematics education. What will be done, is to relate epistemological obstacles to student’s 
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errors and obstacles as proposed previously, in Brousseau’s theory. The development of the theory 

and its implementation in my study, is given in a nutshell in the next diagram: 

 

 
Figure 6. Implementation of the theoretical framework 

  As seen in [Figure 6], the concept of infinity has been decomposed according to the theoretical 

framework of this study. Firstly, the concept is broken down in two domains in relation with 

students’ understanding. That is, the psychological domain of the concept, which corresponds to 

the individual’s intellectual development and the historical domain which corresponds to the 

historical development of the concept. The two domains are connected through the law of 

Psychological Recapitulation as explained previously. However, as Radford et al. mention:” …the 

theoretical framework has to ensure a fruitful articulation of the historical and psychological 

domains as well as to support a coherent and fecund methodology…” (p.143). Thus, the two 

domains, have been articulated through Piaget’s genetic epistemology, which functions as the basis 

for the Theory of Epistemological Obstacles. On the left-hand side of the diagram, the intellectual 

development is being examined through mental structures and mechanisms (APOS analysis) as 

well as through identifications of students’ perceptions (in context of the section 3.2). The 

examination of students’ understanding of the mathematical concept, lies in the basis of the above 

diagram which constitute the theoretical framework of the study and supports the methodology, in 

the way described in Chapter 4. 
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CHAPTER 4: Methodology 

 
  The current chapter of this qualitative research will describe in depth the research methods that 

have been chosen as the most appropriate. Several topics are analyzed, such as actions that took 

place during the conduct of the research, methods found through literature and instruments for data 

processing-analyzing and ethical issues. Furthermore, external and internal factors that may affect 

the credibility of the study are examined. 

 

4.1 Research Design 

  In an attempt to keep my research within a strictly scientific framework, I have resorted in 

researches on the methodology of conducting a high-quality mathematics education research. 

Trying to find a methodology that would result in a structurally and functionally well-defined 

thesis, I have followed concrete guide lines given by academic mathematics educators (Battista, 

Smith&Boerst,2009; Cobb;2007; Harel;2006; Lester,2005). Such guiding lines or principles are 

given by Harel (2006) on his review of Lester’s paper (2005), described as: “Three guiding 

principles for researchers to think about the purpose and nature of a mathematics education 

research” (p.60). Below, I mention these principles and describe the corresponding ways that these 

principles have been followed for this study: 

1.The goals of mathematics education research(MER) are to understand fundamental problems 

concerning the learning and teaching of mathematics and to utilize this understanding to 

investigate existing products and develop new ones that would potentially advance the quality of 

mathematics research: The research was designed in order to investigate the students’ perception 

on the concept of infinity and infinite sets, that is to investigate students’ understanding of 

mathematical infinity. Next, the research moves on to investigate the obstacles in this 

understanding by looking at their nature and thus, to find epistemological obstacles in coming to 

understand the concept of mathematical infinity. Finally, this understanding is investigated by the 

implementation of APOS theory, by looking on the mental structures and mechanisms that appear 

on specific mathematical problems related to the concept. In the conclusion part, the research 

questions will be answered with the purpose of contributing in the broader field of mathematics 

research. 

2.To achieve these goals, MER must be theory based, which means studies in MER must be oriented 

within research frameworks: The study is oriented within the theories mentioned in Chapter 3 of 

the Theoretical Framework and makes use of these theories in order to give answers to the research 

questions. 

3.The research framework’s argued-for concepts and their interrelationships must be defined and 

demonstrated in context, which must include mathematical context: The theoretical concepts and 

their interrelationships have been analyzed in Chapter 3 of the Theoretical Framework. In this 

chapter, the concept of perception is demonstrated in the context of the nature of mathematical 

infinity and that of infinite sets. Furthermore, I have presented four examples of epistemological 

obstacles related to the limit concept as given by Cornu (1991, p.159-162), aiming to demonstrate 

the theory of Epistemological Obstacles in a mathematics context. Finally, the mental stages of 

APOS theory are explained in the context of the derivative of a function. 

 The research dissertation can be characterized as Qualitative Cognition-Focused Research 

(Battista et al.,2009, p.219).  
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For Battista et al. such research:  

➢ describes the nature of student’s conceptions 

➢ pinpoints mechanisms for learning 

➢ pinpoints causes for mislearning 

    The three points mentioned above are covered within the theoretical framework and its 

application on my data analysis at the discussion part of this thesis. The mental stages of APOS 

theory describe the nature of student’s conceptions, the mechanisms of interiorization and 

encapsulation are mental mechanisms that function in a learning progression while epistemological 

obstacles could be “causes for mislearning”. Moreover, this qualitative-cognition study focuses on 

students’ learning of a particular mathematical topic, that of the mathematical infinity. Thus, it can 

be also characterized as a “Topic-specific cognitive study” (TSCS) (for more on TSCS cf. 

Cobb,2007). 

 

4.2 Pilot Study 

  After the presentation of the topic of my thesis in Week 41,2016, I have written the “project 

outline”, as required from the Department of Mathematical Sciences. The purpose of the project 

outline is two-folded, it is meant 1. to convince the school of the viability of the thesis and whether 

or not all of the requirements regarding the topic`s theme, problem and your theoretic and 

methodical approach have been covered, 2. to function as a guiding tool for the further development 

of the thesis (“Project Description”, n.d., par.3) 

  Later on, in week 4,2017 I have given a presentation of my research done up to the day of the 

presentation in order to get feedback and possible comments. The audience consisted of professors 

of the department as well as fellow master’s students. I presented also a questionnaire (Appendix 

A), presented as an initial thought for an instrument of survey. The initial questionnaire was given 

to fellow master’s students of Mathematics Education, in order to get a general feedback on the 

relevance to the topic in question and a specific feedback according to the school curriculum. That 

is, feedback on whether students are aware of notions used in the questionnaire. A common remark 

was that the term “cardinality” of a set would probably be unknown to the upper secondary school 

students who participated, hence it was changed to “number of elements”. I have also been advised 

that I should better use the Norwegian word “mangekant” for referring to the polygon, since 

“polygon” would probably be an unknown word to most of the students. Hence, the word 

“polygon” was replaced by “mangekant”. As also suggested by a fellow master student, I have 

moved TASK 1 to the end of the questionnaire, as TASK 1 possibly would affect the students’ next 

responses. For the shake of preciseness in the tasks, I have also made some amendments at the 

presentation of each task, thus the questionnaire was delivered as seen in Appendix B18. 

 

4.3 Setting and participants 

  The group that was studied consists of five upper secondary school students. Specifically, the 

participants are VG2 graders (i.e. 12th graders) of the Norwegian Videregående Skole (ages16-19). 

Moreover, the students have chosen to follow the course “Matematikk R1” (Mathematics R1) 

which is considered to be the most advanced course of the VG2 level. I have been informed by the 

teacher of the class that the students had a good use of the English language and that they were 

high achievers in mathematics. Therefore, the class was chosen as an “information rich” case. 

                                                           
18 The blank space given in the questionnaire for the student to write his answer has been shortened in the appendix 

B, for the sake of brevity. 
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Information rich cases are those from which one can learn a great deal about issues of central 

importance to the purpose of the research (Patton, p.169,1990) 

  In particular, there have been a use of the technique of Random Purposeful Sampling for choosing 

out of an available sampling frame. This sampling takes random subset of participants from a 

population of interest, and lends credibility to a study (Purposeful Sampling, n.d.). That is, the 5 

upper secondary students have been selected after the classroom teacher’s inquiry for five 

volunteers. Thus, the size of the sample reflects on the purpose of investigating the students’ 

understanding of infinity. 

  I should note here that after the presentation at week 4 and after a discussion with my advisor I 

was aiming for a sample size of 15 students (5 upper secondary,5 1st year bachelor,5 3rd year 

bachelor students). In my inquiry for university volunteers out of a 50 students pool sample, there 

has been no response. This resulted to a modification of the scope and the title of the thesis. 

 

4.4 Instrumentation 

  Two instruments were used as data gathering tools while my data were gathered in two sessions. 

In the first session, participants were asked to fill a questionnaire designed by the researcher while 

in the second session participants were interviewed in a duration of approximately 10-15minutes. 

 

4.4.1 The Questionnaire 

  The questionnaire consisted of several “tasks” and questions taken out of previous research related 

to the topic of the thesis. The questionnaire was comprised of four tasks that identify perceptions 

related to the concept of infinity. Below I will provide the subject of investigation of each task, the 

aim of each question as well as the sources of the tasks and questions. 

TASK 1: Task design for this task was informed by considering and using parts of tasks 

in Fischbein,2001; Dubinsky et. al, 2005; Makri,2015. The task consisted of four questions related 

to the understanding of the density of rational numbers, one question on the cardinality N1 and a 

question on the irrational number 𝜋. Students were asked how many numbers are there in 

(1,2), (1,3) and then compare the cardinality of these intervals. Next came the question of how 

many numbers are there in (0.8,1.1) for a possible reconsideration of their previous answers. Then 

they were asked to mention the number that is closest to 2. The purpose was to bring up the issue 

of 1.999 … = 2 for a further discussion in the interview. Finally comes the question on π and its 

infinite decimal expansion. The students are asked if they agree that π has infinite decimal places. 

The question aims at the examination of a student’s perception both on the transcendence of π but 

also on infinity as it appears on the decimal expansion of 𝜋. 

TASK 2: Task design for this task was informed by considering and using parts of tasks in Dubinsky 

et al.,2005; Duval,1983; Kattou, Michael, & Kontoyianni,2009; Tsamir & Tirosh, 1996. The task 

consisted of two questions and aimed to shed light on the comparison and understanding of infinite 

sets. That is to investigate the possible use of the criteria of “part-whole” relationship and “one-to-

one” correspondence. In the first question, students were asked to do five comparisons of infinite 

sets: 

a) between the set of natural and even numbers, as the two sets were represented verbally 

b) between the set {1,2,3,4 … } and the set {1,
1

2
,

1

3
, . . . } in a horizontal representation of the sets 

c) between the set {1,2, 3, … } and the set {1,3,5,7, … } in a vertical representation 

d) between the set of squares with sides 1𝑐𝑚, 2𝑐𝑚, 3𝑐𝑚 … and the set {12, 22, 32, … } in a 

combination of horizontal-geometric representation 
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e) between the set of natural numbers and the set of real numbers as they were represented 

verbally. The comparison was put on position e) on purpose. After students would compare 

equivalent sets, then came the comparison of the natural and real numbers for examining 

the intuition behind the “smaller” and “bigger” infinity. 

The different representations were used to examine the impact in the selection of a criterion to 

determine the equivalence of infinite sets. 
In the second question of the task, the students were asked to determine the number of elements of 

the set {−3, −2, −1,0, {1,2,3 … }} or in other words to investigate whether an infinite set can be 

conceived as a single entity. 

TASK 3: Task design for this task was informed by considering and using parts of tasks in Fischbein 

et al.,1979; Makri,2015. The task consisted of four questions related to the contradictory nature of 

infinity as it appears on geometrical representations. In particular, at the first question is asked 

whether a line segment could be divided indefinitely. At the second questions, students are asked 

to imagine the result of a regular polygon with as many sides as possible, implicitly bringing up 

the examination of the conception of limit and infinitesimals. That is, as the sides of the regular 

polygon increase it approaches the shape of the circle by limit, while the circle will consist of an 

infinite amount of infinitely small sides. The last two questions were related to the notion of actual 

infinity. The students were asked on how many lines can they draw through a line while the last 

one, was a geometrical representation of infinite points. The students in the last question were asked 

to compare the points of two circles, one of larger circumference than the other. 

TASK 4: Task design for this task was informed by considering and using parts of tasks 

in Pehkonen, Hannula, & Maijala, 2006; Makri,2015. The task consisted of two questions related 

to infinity as a notion and two questions related to the understanding of infinitely large numbers 

and infinitesimals. In particular, the students were asked what infinity means to them (independent 

of a mathematical concept) and to make a sentence with the word infinity. On the other two 

questions, the participants were asked to mention what is the biggest and the smallest number that 

they know. The four questions aimed to categorize students’ perceptions of infinity and reveal a 

possible view of infinity as a number. I should mention that the latter questions brought up an 

ambiguity concerning the “smallest” number notion. Even if the use of the word “smallest” was 

used inadvertently, it gave me the opportunity to emphasize on the importance of language the size 

of a number (the issue will be described briefly in the Discussion session).  

 

4.4.2 The Interview 

  The interview functioned as a follow-up session to the first session of the questionnaire. After the 

document analysis, the interview session took place approximately one week after the completion 

of the questionnaire. The interview provided an opportunity to investigate the participants’ 

perception further and to gather data which have not been obtained by the analysis of the 

questionnaire (Sharma,2013, p.51). The interviews were of semi-structured character: the 

interviewer followed an “interview guide” which contained questions and topics that needed to be 

covered and which had not been covered in the questionnaire. When the answers given pointed to 

obtaining further information, the conversation strayed from the guide for the sake of new 

information (Cohen & Crabtree,2006). I have taken under consideration Sharma’s (2013) view on 

an interview: “The interview method takes the form of a dialogue in which the researcher seeks to 

elicit information form the subject about how the latter thinks” (p.51). Furthermore, I have tried to 

include some important aspects: a) to maintain a relaxed manner b) to ask clear questions c) to keep 

notes d) to establish trust e) to keep track of the responses (Sharma,2013, p.51). 
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  In particular, for the two written questions related to APOS theory (1.5,2.2), I have designed the 

follow-up questions of the interview session according to Arnon et al. (2014). I have created an 

outline of questions, keeping a semi-structured character of the interview. The authors mention: 

“Interviews are the most important means by which data is gathered in APOS-based research.” 

(p.95) As usually happens in an APOS-based research, students were asked to clarify their 

responses and/or to expand on them. If the questions failed to elicit sufficient responses, the 

interviewer took a more didactical route and gave hints to observe in which particular mental 

construction the student is. Further details will be given in the Results part, where we will be able 

to see the functionality of the interview instrument within the components of an APOS based study, 

as well as to see the didactical route that sometimes had to be taken during an interview. 

 

4.5 Procedure 

Before starting collecting data, I have submitted within the predetermined time, a report-form 

(Appendix C) with information about my research study and data collection to the Norwegian 

personal security commission(NSD). The form was followed by a Change Request Form 

(Appendix D) for changes that were subject to notification. The report-form was 

approved(no.52487) and I moved on with my data-collection. The previous actions are compatible 

with the Law on Personal Information. 

  For the group of 5 upper secondary students, my advisor contacted the Head of the school as well 

as the students’ mathematics teacher. As decided with the teacher, there have been an inquiry by 

the teacher for volunteers. The volunteers were given a form of consent attached to the Information 

Letter (Appendix E). The form of consent was handed to them by the teacher. In consultation with 

the teacher about the time and place for the students to fill the questionnaire, I have visited the 

school and delivered the questionnaire. The questionnaire was delivered face-to-face to the upper 

secondary students and was filled under a typical supervision by the researcher. The interview took 

place one week later, within the school building and was audio recorded with a smartphone using 

the Samsung Voice Recorder (2017) application. The participants were interviewed individually in 

an approximately 12 minutes’ time for each, in a classroom indicated by the teacher. 

 

4.6 Data Processing and Analysis 

  Being myself an amateur researcher in the field of mathematics education, I searched for concrete 

definitions of data processing and analysis to have an initial view on the actions and processes 

involved. As found in the website of the University of Tartu: 

 -Data processing: A series of actions or steps performed on data to verify, organize, transform, 

integrate, and extract data in an appropriate output form for subsequent use. Methods of 

processing must be rigorously documented to ensure the utility and integrity of the data. (“Research 

Data Management”, n.d., par.2) 

  The data processing has been done in two steps, corresponding to the data gathered by the written 

answers of the students and the interview responses. Once I had distinguished firmly the 

questionnaires student wise I proceeded at the examination of the answers given. Firstly, the 

students’ mathematical errors were highlighted, in order to be used at the search of epistemological 

obstacles. Then, I have proceeded at looking for answers difficult to understand or difficult to tell 

as the answers were hand written. Most important is that I have prepared questions for the interview 

related to the written answers given, aiming to clarify some of the written answers and that would 

point to certain concepts of the theory. 



 

46 
 

 

  The audio data were filed in my personal laptop and for their audition I have made use of 

headphones. I have tried to pinpoint key words that would relate students’ responses to the 

theoretical framework. For this reason, I kept notes during the audition of the data and repeated 

whenever needed. 

  For the questions related to APOS theory (1.5,2.2), I used the written answers in the design of 

interview questions because of their ability to reveal student difficulties that require further 

analysis. The audio recordings were converted to high quality audio files and the responses were 

transcribed carefully, including the sounds that students made, intervals of silence and words that 

cannot be heard clearly (Arnon et al.,2014, p.96) 

 - Data Analysis: Data Analysis involves actions and methods performed on data that help describe 

facts, detect patterns, develop explanations and test hypotheses. This includes data quality 

assurance, statistical data analysis, modeling, and interpretation of results. (“Research Data 

Management”, n.d., par.2) 

The data analysis was carried out according to the theoretical framework used. Next, I will present 

each data analysis related to the three research questions and their corresponding means of data 

analysis. 

➢ Data analysis related to the first research question 

  The theory that I used concerning the students’ perception, pointed out to circular process for the 

qualitative analysis. Hence, I have resorted to Dey (2003) and the circle of qualitative data analysis 

(p.32). Day describes three points on the circle of the analysis process. The points as implemented 

in the qualitative analysis through the lens of perception are described: 

Describing: The description vertex lies in the description of the categories and criteria that point to 

a students’ perception. Meaning that the theoretical concepts describe the phenomenon of the 

occurrence of infinity as a concept in a students’ mind. 

Classifying: The students’ answers have been classified according to their perception on the nature 

of infinity and on the infinite sets. Specifically, the students’ perceptions were classified according 

to the answers that pointed to Singer & Voica’s categories of perception. For the infinite sets, the 

answers have been classified according to the criteria used for their comparison(Tsamir,2001). 

Connecting: At this point, the students’ answers are related to the concepts of theory, meaning the 

interrelationships, for example between the potential nature of infinity and a processional 

perception or the potential nature of infinity and the use of the single infinity criterion. 

 The above points will be highlighted in each part of the data analysis for the first research question. 

Below the circle of a qualitative data analysis is presented: 

 
Figure 7. “The core of qualitative analysis lies in these related processes of describing phenomena, classifying it, and 

seeing how our concepts interconnect.” (Dey, p.31,2003) Adapted from Qualitative data analysis: A user 

friendly guide for social scientists (p.32), by I. Dey,2003, London: Routledge. Copyright [1993] by Ian Dey. 
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➢ Data analysis related to the second research question 

 The theory used in this part of the data analysis is the theory of Epistemological Obstacles. As 

mentioned previously, in order to analyze my data for finding epistemological obstacles I will be 

using Brousseau’s method provided for researchers. Hence the actions for analyzing the data were 

in the following sequence: 

 i) Find the students’ errors and group them in relation to the conception that might have provoked 

these errors 

 ii) Resort to the historical analysis of Chapter 1 to find obstacles in the conceptual development of 

infinity through history 

iii) Find out whether an obstacle is epistemological, looking at the nature of the obstacle as it 

appears in history and in understanding 

➢ Data analysis related to the third research question 

  As this analysis will be done through the lens of APOS theory, I will be following the instructions 

that are given within the theory. The main guide for the analysis will be a theoretical analysis of 

the mathematical concept in question (in the context of APOS theory this analysis is called genetic 

decomposition) as an assessment of whether the student’s understanding have followed the stages 

of the decomposition. As Arnon et al. (2014) mention: “The data…analysis phase is crucial for 

APOS-based research, since without empirical evidence, a genetic decomposition remains merely 

a hypothesis.” (p.95) The way that the genetic decomposition functions in the data analysis is 

further described in the Results part. 

 

4.7 Ethical Considerations 

  Permission to involve the participants in the study was sought from both the participants’ teacher 

and the participants themselves. As mentioned earlier, the participants signed the form of consent, 

given to them by their teacher. The questionnaire data collected from the participants is kept in files 

and the only person who has access to these files is the researcher. The interview audio files are 

kept in a secured personal computer that can only be accessed by the researcher. For the sake of 

anonymity, the participants’ names are imaginary. By the completion of the project, data will be 

destroyed. 

  Work that is not original (i.e. researcher’s work) has been referenced and in-text cited in American 

Psychological Association 6th edition style (2009). For the creation of the reference list, I have 

used EndNote™ X8(2016) as shown in an one hour lecture during the autumn semester-2016. 

 

4.8 Reliability and Validity 

  Credibility of the research studies rests on the reliability of their data, methods of data collection 

and also on the validity of their findings (Lecompte & Preissle, 1993; Seale,1999; Cohen et 

al.,2000; Silverman,2001; Moru,2006) 

 

4.8.1 Reliability 

✓ External Reliability 

  External reliability concerns the replicability of scientific findings. That is, in what degree will a 

researcher using the same research methods will obtain the same results. No study is able to attain 

perfect external reliability though (LeCompte &Goetz,1982; LeCompte & Preissle,1993; 

Moru,2006). 
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  In order to enhance the external reliability of this study, I will examine the five threats to external 

reliability as given by LeCompte &Preissle (1993, p.334-335): 

Researcher status position (“To what extend are researchers members of the groups being studied 

and what positions do they hold?”): in the current study, the researcher is a master’s student, not a 

member of the group of upper secondary school students, hence the researcher’s status position is 

not a factor that affects external reliability 

Informant choices: a researcher who would like to replicate the results of this study should be 

contact individuals similar to those who participated in this study. Information on the participants’ 

and how they were selected can be found in the previous sections of the Methodology art. 

Social situations and conditions: The content of the data could be influenced by the social context 

within which they are gathered. As Becker, Geer & Hughes (1961) demonstrate in their study that 

data differentiated between the data they gathered while alone with participants and what they 

acquired from participants in groups. The fact that the participants worked on the questionnaire and 

were interviewed individually, might have influenced their answers. The conditions under which 

the participants filled the questionnaire were not that different from those of an ordinary exam or 

test. The interview was held in a relaxed and friendly manner, maintaining characteristics of a 

discussion, which probably resulted to honest and reliable to investigate answers. 

Analytic constructs and premises: Constructs used in the study were developed throughout Chapter 

3. Such constructs include: epistemological obstacles, perception, actions, processes, objects, 

schema, the infinity and infinite set concepts etc. The reference of these constructs in the study 

shows how the researcher had conceptualized them. The interpretations given to these constructs 

though, is not universal and is influenced by factors such as experiences, beliefs, prior knowledge, 

etc. For example, to avoid misinterpretation of the biological term genetic, the term genetic 

decomposition has been defined in the context of APOS theory. In a mathematical context, the 

cases of infinite sets are discussed with the naive set theoretical language. The results of the study 

are not considered reliable for replication for a reader who would use the formal logic language of 

axiomatic set theory on infinite sets. Thus, I have tried to give clear definitions and hypotheses, 

aiming to maintain external reliability in a high level. 

Methods of data collection and analysis: Reliability related to this factor depends on the potential 

for subsequent researchers to reconstruct data collection and analysis strategies. For this reason, I 

have resorted to other researchers, whose methods have already been replicated (implying external 

reliability) and used their methods as an operating manual. 

✓ Internal Reliability 

  Internal reliability concerns the degree to which researchers applying similar constructs would 

match these to data the same way as the original researchers (LeCompte&Pressle,1993; Seale,1999; 

Silverman,2001). 

To reduce threats to internal reliability, I have made use of the strategy of Low-inference 

descriptors (LeCompte & Preissle, 1993). This involves: “Verbatim accounts of participant 

conversations, descriptions phrased concretely and precisely as possible from field notes or 

recordings of observations, and such other raw data as direct quotations from documents…”. In 

this study, the strategy of low inference descriptors was followed by audio recording all face to 

face interviews, carefully transcribing the recordings, and presenting extracts of episodes in 

reporting the results. Moreover, some written answers have been directly quoted in the Results 

section. This way, the person who wishes to duplicate the research, gets a further insight of the 

topics investigated. 
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4.8.2 Validity 

✓ External validity  

  External validity is the extent to which the results of the study can reflect outcomes elsewhere, 

and can be generalized to other populations or situations (Diether, n.d.). 

The external validity of the research results was enhanced using the methodological triangulation. 

This involves studying the nature of the problem from a variety of viewpoints in order to expand 

the understanding of the phenomenon under study (Burns & Grove,1993; Moru,2006). If various 

methods correspond the researcher becomes confident about the findings (Cohen & Manion,1994). 

In this study, the triangulation was achieved by using questionnaires and interviews to complement 

the data obtained. The tasks of the questionnaire correspond to tasks found in the literature through 

already conducted research. The fact that further results have been established through these tasks, 

increases the external validity of the current study. 

✓ Internal validity 

  Internal validity raises the problem of whether conceptual categories understood to have mutual 

meanings between the participants and the observer are shared (LeCompte & Preissle,1993, p.342). 

  To assure internal validity, I have piloted the questionnaire (as mentioned in the Pilot Study 

paragraph) to fellow mathematics education master’s students. This enabled the researcher to make 

modifications to the questionnaire, according to the remarks given during the pilot testing. For the 

research instrument of interview, I have been informed by the teacher that the participants were 

good users of the English language. However, as English is their second language, there might have 

been some loss of preciseness in their answers. For example, I have been asked by a student, what 

is the English word for “unending”. I have asked individuals with a certain experience at teaching 

in Norwegian schools as well as the teacher of the participants for information on the mathematics 

curriculum up to the VG2 level, to be sure that the mathematical concepts involved in the 

questionnaire and interview, have already been taught. 

 

4.9 Summary 

  The purpose and nature of the research were formed by following guiding principles found in the 

literature related to mathematics education. It has a cognitive approach to the topic of understanding 

mathematical infinity thus, it is characterized as a qualitative-cognition focused research. The five 

participants were chosen randomly and purposefully, out of a sample population that was 

considered as “information rich”. For the data collection, two instruments have been used: the 

questionnaire and the interview. The data were analyzed in relation with the research questions, 

meaning that there have been three ways of data analysis. In line with the notification form for data 

collection, I have considered some ethical issues, such as securing the data and after the completion 

of the thesis, destroying the data. Finally, the factors that could affect reliability and validity were 

examined. In order to achieve reliability and validity, several qualitative strategies have been 

followed. Concluding, absolute validity and reliability could not be achieved from the findings of 

the discussion at the sections 3.8.1 and 3.8.2. 
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CHAPTER 5: Results 
 

  The results will be presented and analyzed in three sections. For the section 5.1, I have followed 

the circle of qualitative data analysis. For the section 5.2, the data analysis and presentation has 

been carried out by Brousseau’s “guidelines” for finding epistemological obstacles. Finally, for the 

last section, there is an APOS based study of the results, hence, analysis and presentation is done 

according to the APOS framework. These analyses will be used to give answers to my research 

questions (presented in Chapter 1). In the interview transcripts, the letter “R” is used to represent 

the researcher’s questions-comments while the initial letter of the interviewee’s name is used to 

represent the interviewee’s answers-comments. 

 

5.1 Perception(Describing) 

  The participants’ answers have been classified according to their primary and secondary 

perception of the concept of infinity, as seen in Singer & Voica (2008, p.191). The word perception 

will be used as defined by the authors: “an active process of selecting, organizing and interpreting 

information brought to the brain by the senses” (p.189). Next, let us recall each of the categories 

of primary perception and give the corresponding examples out of the students’ written and oral 

responses. 

Processional Perception: this perception corresponds to the potential infinity and functions as a 

modality to understand this nature of infinity (Singer&Voica,2008; Fischbein,2001; Fischbein et 

al.,1979; Monaghan,2001; Tsamir&Tirosh,1999). The processional perception has two 

dimensions: 

-a temporal dimension: it is related to the perception that infinity is something with no end and 

impossible to be measured. e.g. Bern: Infinity is an amount we cannot define, because it goes on 

forever. 

-a spatial rhythmic dimension: it is related to the perception that infinity is something unending, 

something that keeps rising. e.g. Mikael: …a pattern which can be followed and contains no 

limitations 

Topological perception: this perception is connected to the conceptualization of infinity as a big 

entity, bigger than anything else. e.g. Henrik: something that always is bigger than anything else. 

Spiritual perception: is the perception which is affected by feelings and emotions. e.g. Bern: …it 

doesn’t make sense that a number can go on forever 

These categories as they appeared in the students’ answers, can be seen in the following diagram. 

 

 
Figure 8.  Classification of the perceptions of infinity. Singer&Voica (2008,p.191)  
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 The questions that were related to comparison of infinite sets, aim to reveal a secondary perception 

of the students.  For this reason, I will be using Tsamir’s (2001, p.290) criteria, as they have been 

used by the students that participated in the study to determine whether a given pair of sets are 

equivalent (p.290). These criteria will help in a methodical examination of a secondary perception. 

In this study, students made use of three out of the four criteria. Next, I present these three criteria 

and recall their description. 

  Part-whole criterion: a proper subset of a given set contains fewer elements than the set itself. 

  Single infinity criterion: all infinite sets have the same number of elements, since there is only one 

infinity. 

  One-to-one correspondence criterion: in other words, a simplistic use of the bijection criterion. 

The above criteria are concentrated and presented in the following diagram. 

   

 
Figure 9. The three criteria that students used for the comparison of infinite sets (Tsamir, p.290) 

We proceed at this point to analyze the responses student wise both for the primary and secondary 

perception(Classifying). 

✓ Aline 

➢ Primary perception.  Aline answered the question 4.1. What does infinity mean to you?: 

“To me infinity means something that never ends”. It seems like she has a processional-temporal 

perception. This view was reflected in more of her answers. For example, on the questions 1.5 

What is the biggest number yet smaller than 2, she answered “1,99(9)- infinite many 9 after 1”. 

During the interview session, the following discussion took place:  

  R: we have 1,9 so then we add another 9 and then we add… 

  A: yes, it’s closer and closer to 2 

  R: yes, so if it goes on forever, don’t you think that 1,999… will be equal to 2? 

  A: yes, I think so 

  We see that Aline’s processional perception, indeed functioned as a modality to grasp the potential 

nature of infinity and thus, the notion of the limit process. This perception helps the specific student 

to avoid the false conception of infinity as a number as in the questions 4.2-4.3 What is the biggest-

smallest number, she answered: (for the biggest)- I don’t know because I can always write some 

zeros in the end of a number and it’ll be bigger than it was before. 

                                                      (for the smallest)- A number can always get smaller, so I don’t 

know what is the smallest number I know. 
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  As for the case of the divisibility of the line segment (question 3.1), Aline maintained her 

processional perception which lead her to grasp the notion of infinite divisibility, a notion that goes 

against the intuition of every-day life. 

Question 3.1: …Do you think that we will arrive in a situation that the segments will be so small 

that will be unable to divide them? Aline’s written answer: “No, I don’t think so because you can 

always divide a number, for example number 10−999999999 is very little but you can divide it and 

get smaller number.” 

During the interview:   R: What do you mean by little? 

                                     A: That it is very, very small 

                                     R: So, could the 10−999999999… be the smallest number that you know? 

                                     A: No, because you can always write another number 

    R: You mean you can add 9’s? 

    A: Yes 

    R: How many 9’s do you think we can add? 

                                     A: Infinitely many 

    R: So, we can keep dividing? 

    A: For how long do you think we can do it? 

    R: Forever 

 We observe that the student has a good conception both of the actual and the potential infinity. 

She maintained that the smallest number is unknown to her, by “infinitely many” she viewed the 

amount of 9’s as a totality while the spatial-rhythmic perception through infinite divisibility 

suggests that there is a primary perception of infinity (Singer &Voica,2008, p.191). 

➢     Secondary perception. Aline gave some early signs of usage of the one-to-one 

correspondence criterion. Specifically, when she was asked to compare the set of natural numbers 

with the set of even numbers (2.1.a) she wrote: “They have the same number of elements. You can 

write ∞ = 2∞ and it’s true (or I think it’s true)”. Aline, uses the one-to-one correspondence 

criterion but also gives a sign that she makes some thoughts on different kinds of infinity (though 

she’s not sure). For the case (2.1.b) of the sets {1,2,3,4, … } and {1,
1

2
,

1

3
,

1

4
,

1

5
, … } she makes use of 

two criteria: the single infinity criterion: “they have equal number of elements, because they never 

end, they have infinite many elements” and the one-to-one correspondence criterion:"∞ = 1−∞", 

probably meaning ∞ = 𝑛−∞. We observe that while keeping the processual perception, when the 

student uses the single infinity criterion, implicitly thinks in the “topological” way: “they have 

infinite many elements”. This lead to the false answer on the comparison on the set of natural 

numbers and the set of real numbers by writing that: “both of them have infinite many elements”. 

The one-to-one correspondence “works” for the case of the comparison between the points of the 

two circles (3.4), Aline writes: “There are infinite many points in both circles. Say that you have 

∞ many points in the smaller circle and 4∞ in the biggest one. Each circle has the same number 

of points because 4∞ is the same as ∞”. When the student was asked to make a sentence that 

contained the word “infinity” (4.1) the possibility that she had an idea of different infinities was 

confirmed: “There is bigger infinity between 2 and 4 than it is between 2 and 3.  

In order to have a further insight in the student’s response, the following dialogue occurred: 
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 R: Which numbers do you think there are between 2 and 4? 

 A: 3…and many others 

While Aline has written in previous questions (1.1,1.2,1.3) that there are infinite many numbers 

between 1 and 2 and that there are not more numbers between 1 and 3 and 1 and 2, she thinks in 

“part-whole” terms. Aline gave her initial answer based on the part-whole criterion, since she 

thought that the numbers contained in the interval [2,4] are more than the numbers in [2,3]. 

Spontaneously, when she was asked for the numbers between 2 and 4, she first answered 3 which 

means she was thinking in terms of sets of natural numbers or finitistic terms.  

  The interviewee was asked to give her opinion on the questions:  

 A: “I think that they were a little bit…like a surprise for me because I didn’t think about infinity               

in this way”,  

  Her commend indicates that the student had not been involved in situations with different 

representations of mathematical infinity. 

 

✓ Bern   

➢ <Primary perception>  Bern’s primary perceptions were deeply grounded in the finite 

world. In question 1.5 he answered: “I agree [that 𝜋 has infinite decimal places], but it does not 

make sense” maintaining a spiritual perception. When Bern was asked to comment on this, he made 

his spiritual perception more obvious and gave an answer affected by his feelings: 

 B:…in mathematics it doesn’t make sense that a number can just go on forever…I feel like 

everything in mathematics should have an end 

Bern’s thinking starts from relating a finite entity, like a “number” to something that “goes on 

forever”, which leads him to deny the existence of potential infinity. On the question 4.1 What does 

infinity mean to you, Bern wrote: “An amount we cannot define, because it goes on forever”. 

During the interview session: 

 R: Is it an amount or something that goes on forever? Because 2 kilos are considered as an 

amount…   

 B: “hmmm…pretty much…it’s kind of impossible to define it as something, you can’t say infinite 

kilos, it’s just like infinite…I think” 

  We see that Bern is confused due to the dual nature of infinity. He gives an answer through a 

temporal-processual perception but refers to infinity both as an undefinable amount and as a process 

that goes on forever. For the case of the question on the division of the segment (3.1), Bern writes:” 

The value will be so tiny that we perceive it as ≈ 0 , but it will still be divided”. He thinks in finitistic 

terms, as he thinks that there will be a value in the end (≈ 0) but, in the sense of potential infinity it 

will still be divided. 

➢ <Secondary perception>  For the comparison of infinite sets(TASK 2), Bern made use of 

the single infinity criterion, by writing the abbreviation “eq”, meaning that every set has equal 

number of elements. The same was for the comparison of the set of natural numbers and the set of 

real numbers. During the interview, Bern was asked:  
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 R: Let’s say you have the interval [0,1] with real numbers inside and the set of natural numbers 

{1,2, 3,…}. Which one do you think has more numbers? 

 B: It makes more sense that {1,2,3,…} has more numbers but still you could infinitely…like create 

more numbers between 0 and 1. But still it kind of doesn’t make sense… If you think like…that 

infinity cannot be defined then both are equal” 

In his answer, we can see that it is hard for Bern to think counter-intuitively to his real-world 

experiences. Initially, he can see that there is possibly a “bigger” infinity between [0,1] but cannot 

accept it: “it kind of doesn’t make sense”. In his last sentence, he sees infinity as one thing (i.e. a 

single infinity that cannot be defined and concludes that [0,1] and {1,2,3, … } are of the same 

cardinality. 

 

✓ Henrik 

➢ <Primary perception> Henrik in his written answer on 4.1 What does infinity mean to you? 

highlights the processional view on infinity by a topological one: “Something that always is bigger 

(or smaller) than anything” Using the world “always”, attributes a “time” perspective in his view, 

specifically a processional-temporal perspective. On the other hand, the part “bigger (or smaller) 

than anything” clearly shows Henrik’s topological perception. The same perception appears in his 

written answer on 2.1,2.2: What is the biggest, smallest number that you know? 

“∞, if you can call it a number”. In this answer, appears a strong topological perception for infinity, 

seen as something really big or really. Remarkably though, this perspective interferes with the 

interviewee’s doubt on whether infinity is a number or not. His written answer for How many 

numbers are there between 1 and 2,1 and 3, 0.8 and 1.1, was the same: “Unlimited”. The use of 

this word gives a “diffused” (Singer & Voica,2008, p.192) attribute to the student’s perception 

which is one of the main characteristics of the topological perception. Henrik appears to have a 

spiritual perception for the question 1.5: Do you agree or disagree with the statement that: “π has 

infinite decimal places?” 

“Agree, because π is something we have found in the nature. And no number or length or anything 

found in the nature can be 100% accurate”. For the case of the divisibility of the line segment (3.1) 

Do you think that we will arrive in a situation that the segments will be so small that we will be 

unable to divide them? Henrik made a clear distinction between the real-world and the 

mathematical world and answered:” Practically yes, theoretically no. Any length can always be 

divided in two” During the interview I asked for a further explanation: 

  R:” What do you think we will reach if we keep dividing practically? 

  H: “After certain number of times…it is not possible because you will reach the atom…in      

mathematics you can just smaller and smaller and smaller…”. 

  Henrik’s spatial rhythmic perception lead him to the distinction between the possible infinite 

divisibility in mathematics in contrast with the real-world infinite divisibility 

➢     <Secondary perception> For the comparison of the sets of TASK 2 Henrik used the single 

infinity criterion and with a processional-spatial rhythmic perception of infinity as it appears at the 

concept of infinite sets. His reasoning: “The same elements because you can find a new element in 

both of the sets”. We can see also that Henrik has reached close to using the one-to-one 

correspondence as he uses the word “both” and the expression “a new element”. This reasoning 

though, lead him to the conclusion that the set of natural numbers have the same number of 
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elements as the set of real numbers. While Henrik attempts to compare the points of the two given 

circles (3.4) he writes: “Unlimited in both, no matter how close you zoom into a circle, it will 

always curve and there will always be more points”. It is visible once again that the topological 

view of continuous nature: “…no matter how close you zoom” is highlighted by the processional-

spatial rhythmic perception. Henrik uses the continuous process of “zooming”, hence he concludes 

that there are “unlimited” points in both. The student has used the single infinity criterion to 

conclude for the equal number of elements. He has used in his reasoning the word “both”, meaning 

that he considers one kind of infinity. This criterion lead him to answer that set of natural numbers 

is of the same cardinality as that of the real numbers. 

 

✓ Irina 

➢   <Primary perception> Irina has replied to the question 4.1What does infinity mean to you? 

by simply writing “Never ending”. This expression is a characteristic one of a processional-

temporal perception. The same processional perception appears with a rhythmic spatial attribute on 

her answers at the 4.1,4.2 questions: What is the biggest-smaller number that you know? 

“infinity, since we can always ad-subtract a number to an exact number and get a bigger number” 

In the same manner of a processional-spatial rhythmic perception, Irina sees the infinity of the 

points of a circle (3.4): “you can make the gap between the points shorter and shorter”. For the 

question 1.5, Irina’s answer was: 1,999 …. For the 1.5 question on 𝜋’s infinite decimal places, Irina 

wrote: “I believe that π can’t be infinite, we just don’t know the ending”. Then the following 

discussion related to these responses took place in the interview session: 

  R:” You said for π that we don’t know the ending of the digits, so do you think that also for 1.999… 

we don’t know the ending? 

 I: “Hmmm, I think we know the ending but we don’t know…, it’s sort of infinite nines, since if we 

just stop at a place that won’t be the closest to 2 as we just add the number nine and we can 

continue after that for infinity. Well, I think with π is a number that perhaps, will at a time end?” 

At this answer, there is a conflict between a topological and a processional perception. Irina thinks 

in topological terms when she refers to “infinite nines”, as an entity that “stops at a place” but then 

again, she thinks in a potential way since we can continue after that place for infinity. However, it 

is remarkable the fact that she implicitly thinks of two stages of infinity: the stage of “infinite nines” 

and the next stage where “we continue after that for infinity”. Lastly, she has a clear processional-

spatial rhythmic perception when she concludes that a circle has infinite number of points. This 

can be seen in her following written answer: “…you can make the gap between the points shorter 

and shorter”. In 3.1(divisibility of the line segment), Irina also makes a clear distinction between 

the real-life and mathematics: “Theoretically speaking we will be able to divide forever, however 

this division will be quite hard to actually do in real life”. The same rational is used to answer for 

the lines that one can make through a point: Theoretically infinite 

➢ <Secondary perception> Irina has responded to all of the comparison cases of TASK 2 with 

the answer: “both are infinite”, without giving a justification, possibly because she used the “easy 

to use” single infinity criterion. The same criterion is used for the comparison of the set of natural 

and real numbers(2.1a) and the comparison of the points of the circle (3.4), where the given answer 

is:” both are infinite”. 
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✓ Mikjel  

➢ <Primary perception> Mikjel in his answer to the question 4.1What does infinity mean to 

you? refers to infinity as a “system” or as a “pattern”. This means that he has a processional 

perception and more specifically a spatial rhythmic perception. His written answer: “A system or 

a pattern which can be followed and contains no limitations”. The key words to realize Mikjel’s 

perception are the words “system”,” pattern” which point to a non-static process that “can be 

followed”. The same perception appears when Mikjel justifies the infinity of the decimal numbers 

of π (1.5):” the decimals follow a pattern that has no end”. Maintaining a processional thinking, 

Mikjel wrote for the number closest to 2:” There is no biggest number smaller than two. You can 

get closer by adding infinite nines to 1.9999…”. Mikjel during the interview session interrupted 

me when I tried to comment on his written answer: 

 R: You wrote that the number is 1.9999…what do you think… 

 M:” No, no! There is no biggest number beneath 2, but I mean…you can only get closer to 2 by 

adding nines. There is always a new 9 that can be added on, so nines will never stop, there is 

no number that is the biggest number under 2”.   

  Mikjel’s strong processional-spatial rhythmic perception is closely related to the notion of limit, 

getting arbitrarily close to 2… (1.5): 

 R: Do you think there is a difference between 1.999… and 2? 

 M: Yes, yes there is a difference but the difference gets smaller when you add nines 

 R: So, this way at some point you will reach 2 if you add more nines? 

 M: No, you will never reach 2 

➢ <Secondary perception> Some even more interesting results came out when investigating 

the answers related to the comparison of infinite sets. Mikjel made use of the part-whole criterion 

and concluded that the set of natural numbers has more elements than the set of even numbers 

(2.1.a): 

“Natural numbers because they always contain the amount of even numbers”. While in the next 

question on the comparison of the sets {1,2,3,4, … } and {1,
1

2
,

1

3
,

1

4
, … } made the use of the one-to-

one correspondence. Mikjel wrote: “Equal. Because for each number, there is a number 𝑛−1. In 

question 2.1.c. and the comparison of {1,2,3,4, … } and {1,3,5,7, … } he wrote:” Equal. Because 

there is infinite in both. Set B will always be in front as you count”. To make things clearer, there 

was a discussion on the interview session on his answer: 

 R: “You said set B will be in front…” 

 M: “I mean for every of these naturals numbers there will always be one of these numbers, so you 

can match them one by one…like infinite… 

 R: “Correspondence let’s say.” 

 M: “Yes! Correspondence.”  

Then, trying to examine Mikjel’s intuition on rate of convergence, since he used the expression 

“will always be in front as you count” I asked: 

 R: “Do you think that set B will reach first infinity first? As you said it will be in front as you 

count…” 

M: “Hmmm, you can’t…No! No! Because I don’t feel you can reach infinity, it doesn’t actually 

count with the speed but…it’s just infinite numbers or…yes infinite numbers in both of the sets”. 
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  This didn’t seem as a sign that Mikjel was intuitively thinking of the notion of convergence. In 

addition, he used the single infinity criterion for his reasoning, by saying that the both sets are just 

infinite. Surprisingly, in question 2.1.e. Mikjel gave an answer that points straight forward to his 

suspicion that there is a “bigger” infinity for the set of real numbers, he wrote:  

” There are more real numbers, because the real numbers contain all the natural numbers plus 

many more in between. The real numbers will at every point have more numbers even though both 

goes into infinity”. 

  The student has reached really close to Cantor’s countability-uncountability argument. He 

referred to the density of rational numbers, while he goes deeper by saying that “the real numbers 

will at every point have more numbers”. One could consider his latter part of the answer as a 

primary conception of Cantor’s diagonalization argument. In the end of his answer though, he uses 

the single infinity criterion as something that contradicts (“even though”) his answer. 

 

5.2. Epistemological obstacles 

  As said in the first paragraph of the results section, in order to identify epistemological obstacles 

in the student’s understanding of infinity, I will be following Brousseau’s method (2006, p.99). A 

further description of the method and the actions that will be utilized in the search of 

epistemological obstacles, is given below. 

 

➢ Find recurrent errors, and show that they are grouped around conceptions 

-Identification of errors in students’ responses (both written and oral) to the questions 

-Relating the errors to the conception that may have given rise to them 

➢ Find obstacles in the history of mathematics 

-Finding obstacles in the history of the conceptual development of infinity will be done by  

looking at the historical analysis presented at the beginning of this study. 

➢ Compare historical obstacles with obstacles to learning and establish their epistemological 

character 

-Explain why the identified conception is an epistemological obstacle 
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In the next table, I present the errors as they appeared in the students’ written and oral responses 

and as they are grouped around the related conceptions. 

 

Errors Conceptions 

Infinity is an amount  

 

Infinity is a number 

Infinity is the biggest number 

Minus infinity is the smallest number 

1−∞=∞ 

There is a bigger infinity between 2 and 4 

than it is between 2 and 3 

 

A proper subset of a given set contains fewer 

elements than the set itself The set of natural numbers has more elements 

than the set of even numbers 

The set {-3, -2, -1, N} has infinite amount of 

elements 

 

 

Infinity is a process 
The set of real numbers has the same 

cardinality with the set if natural numbers 

There is no “greater” infinity 

1.999… is the biggest number smaller than 2  

Repeating decimals and irrational numbers as 

totalities 

π can’t be infinite 

π has an end 

π has unique representation “π” Irrational numbers can only be represented 

numerically 

Infinity makes no sense Metaphysical aspect of the notion of infinity 

Table 1.Errors as they appeared in students’ written answers, grouped around conceptions 

  Infinity is a number: Conceiving infinity as an amount or a number lead students to also 

manipulate infinity as they would do naturally with a number. There was a use of the signs as 

thinking in terms of the number line, hence since infinity is the biggest number then its opposite 

would be minus infinity. This use of infinity also brought up the indeterminate form of 1∞. 

  A proper subset of a given set contains fewer elements than the set itself: The expression “bigger” 

infinity was raised by Tall’s extrapolation of measuring properties. Still, the part-whole relationship 

(more elements in (2,4) than (2,3)) preserved the contradiction between different sizes and 

cardinal infinities. The interference of the part-whole relationship is best given in Mikjel’s written 
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answer: “The set of natural numbers has more elements because they always contain the amount 

of even numbers” 

  Infinity is a process: Reasoning that the set N is infinite because you can keep counting, add 

always one more etc. is a result of the conception of infinity as a process. Consequently, it would 

be hard for someone then to conceive it as a totality and give the answer that the cardinality of the 

given set is 5. 

   In this study, as well as in Monaghan’s study, the dominant answer on set comparisons was “both 

are equal”. Students maintained a processional view on the infinite sets, which lead them to think 

that all the sets contain an infinite amount of elements, hence they are of equal cardinality. In the 

same manner, maintaining a view on infinity as a process, it is difficult for someone to grasp the 

notion of cardinal infinities (e.g. 0, 1) as it is a notion strongly related to actual infinity. 

  Repeating decimals and irrational numbers as totalities: When 1.999 … is seen as a totality then 

the expecting answer would be that 1.999 … is the bigger number closest to 2(Tall,1981). On the 

other hand, other answers indicated that when 1.999 … is conceived as a process (by adding nines 

we get closer to 2) then the student was lead to the correct conclusion that there is no biggest 

number closest to 2. In other words, students that implicitly used the notion of the limit process 

have concluded that such a number does not exist. In the same sense, since π has not repeating 

decimals to lead to a concrete process conception, then π is conceived as a totality with end, that 

cannot be infinite. 

  Irrational numbers can only be represented numerically: It is the conception that since π has 

infinite decimals, then it cannot be written in a numerical form as it would be impossible. Hence, 

the only representation possible is by using the letter π. 

  Metaphysical nature of infinity: It is a conception rooted in the real world, a finite world with no 

real referents for discourse of the infinite (Monaghan,2001, p.240). Seen through a real-world lens, 

then of course infinity would make no sense. 

  In the next table, I will be referring to the conceptions of [Table2]as obstacles in learning infinity, 

in order to follow Brousseau’s terminology and relate them to the corresponding obstacles in 

history.  

 
Table 2.Comparing obstacles in learning with obstacles in history 
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  We can see in the table that the obstacles in learning have appeared in the context of conception 

in the historical development. I will not go through a historical analysis, as this has been done in 

Chapter 1 but I will refer to the previous table as an evidence that the obstacles in learning are 

inherent to the nature of the concept of mathematical infinity. This is in line with one of the two 

main characteristics of a possible epistemological obstacle.  

  At this point, I will point out the epistemological obstacles as the obstacle in learning that occur 

due to previous knowledge and as they appeared in this study: 

• Infinity is a process19: an epistemological obstacle rooted in the individual’s knowledge of 

counting of the natural numbers. Specifically, in the results of this study, most of the students that 

thought of infinity as a process gave the answer: both sets are equal because we can always add 

more. This reasoning resulted to the “flattening” phenomenon, previously, mentioned for the case 

of infinite sets 

• A proper subset of a given set contains fewer element than the set itself: an obstacle 

stemming from the properties of finite sets. Hence, the knowledge of the properties of finite sets 

stands as an unavoidable obstacle, in the sense that one will use the properties of finite sets to 

conclude that the natural numbers contain more elements than the set of even numbers. 

• Metaphysical nature of infinity: an epistemological obstacle that lead a student to 

characterize infinity as an absurd concept. The knowledge built in a finite world leads someone to 

reject counter-intuitive appearances of infinity in mathematics, a rejection based on real-world 

experiences. 

  The rest of the obstacles in learning mentioned on table, fall in the categories of ontogenetic and 

didactic obstacles. I will not be referring to them analytically but it would be difficult for an 11th 

grader to grasp that π for example, can be represented as a continued fraction, which points to an 

ontological nature. Furthermore, there could be an agreement in a classroom and a teacher to notate 

. 999 … as . 9, that is to use a notation that leads the student to think of the repeating decimal as a 

totality. 

 

5.3 APOS analysis 

5.3.1 How will the APOS theory be used? 

  For the implementation of APOS theory in this section of the study I will be following the research 

paradigm20as provided in Arnon et al. (2014, p.94) An APOS based study involves three 

components: theoretical analysis, design and implementation of instruction, and collection and 

analysis of data. The following figure shows how these components are related. 

   

 
Figure 10. Relation of the components of an APOS based study. Adapted from APOS Theory A Framework for Research Curriculum 

Development in Mathematics Education (p.94), by I. Arnon et al., 2014, New York: Springer Science & Business Media. Copyright 

2014 

                                                           
19 "There is no actual infinity; and when we speak of an infinite collection, we understand a collection to which we 

can add new elements unceasingly.", Poincare as cited in Weller et. al (2004) 
20 a philosophical and theoretical framework of a scientific school or discipline within which theories, laws, and 

generalizations and the experiments performed in support of them are formulated(paradigm.2011) 
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  A theoretical analysis corresponds to a genetic decomposition of a mathematical concept. That is, 

a description of the mental constructions and mental mechanisms that an individual might make in 

constructing her or his understanding of a mathematical concept (Arnon et al.,2014, p.94). In other 

words, this decomposition reflects the researcher’s knowledge and understanding of the 

mathematical concept in question. For a researcher “The genetic decomposition becomes the 

working hypothesis that is used to evaluate the degree to which learning has taken place”. The role 

of the instructional treatment is to get students to make proposed mental constructions and use them 

to construct an understanding of the concept as well as apply it in mathematical situations. For 

example, presenting the set of natural numbers as {1,2,3, … } encourages the student to think in the 

process level. While presenting the set of natural numbers as N, then the researcher encourages the 

student to encapsulate the set of natural numbers as an object. As seen in the figure, there is a 

reciprocal relationship between theoretical analysis and collection of data. This means that in an 

interview session, the researcher assesses students’ answers and relates them to the genetic 

decomposition. If the student does not make the mental constructions called for by the genetic 

decomposition then the instruction is reconsidered and revised. In other words, the cycle continues 

until the empirical evidence and genetic decomposition point towards the same mental 

construction. 

  I have chosen to analyze two questions out of the questionnaire that will produce significant 

insight in students’ mental construction: a) (1.4) What is the biggest number yet smaller than 2 

b) (2.2) How many elements are in the set   

   {-3, -2, -1,0, {1,2,3…}} 

 These examples have been chosen as the most “rich” questions where the process and object 

structures appear concretely. Similar topics have been investigated in the literature related to mental 

structures, thus we will have the chance to relate the results to the ones already provided. The 

written answers that have indicated a fruitful implementation of APOS analysis in specific cases, 

are given and analyzed below. 

 

5.3.2 The issue of 𝟏. 𝟗𝟗𝟗 … = 𝟐 

  Tall (1981) in his research has shown that do not accept the equation . 999 …  = 1 as true, but also 

gave the answer that 0.999 …  is the number closest to 2. The same results were found in my data 

as students were asked during the interview session whether 1.999 … = 1: “there is always 

something in between”,” no matter how close we get we never reach 2” etc. 

  I start working on the case, by the genetic decomposition of the concept of the infinite repeating 

decimals. 

 Action:  A student recites an initial sequence of digits, which may be seen as the beginning of a 

repeating decimal expansion. 

Process: Forming sequences of digits of indeterminate length that is extended to form an infinite 

string. The student grasps the idea that from some point on the decimal repeats forever to form an 

infinite string. 

Object: The process of forming an infinite string may be encapsulated into a mental object when 

the student reflects on the process of forming an infinite string and begins to see an infinite string 

as an entity (Arnon et al.,2014, p.76). The genetic decomposition is summarized in the following 

diagram 

Schema: The above collection of conception stages and mechanisms constitute the infinite 

repeating decimal schema. 
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Figure 11. Genetic Decomposition of an infinite decimal. Adapted from APOS Theory A Framework for Research Curriculum 

Development in Mathematics Education (p.94), by I. Arnon et al., 2014, New York: Springer Science & Business Media. Copyright 

2014 

Irina on the issue 𝟏. 𝟗𝟗𝟗 … = 𝟐 

  Irina’s wrote as an answer to (1.4): “1.9̅” constructing a finite initial sequence of 9’s verbally 

with 9̅ being an indication. I asked about her answer  

 R: “You wrote 1.9̅…” 

  I: “One point nine, in…nine nine nine sort of…”  

constructing finite initial sequence of nines and showing indications of a process conception. Up 

to this point, Irina’s conception is at the action level. 

R: “So you think…” 

 I: “Yeah, I took that over sort of to…show that it was an infinite number of nine…I don’t know if 

that’s…the way I supposed to do it” 

The student has interiorized her action conception and moved to the process conception by 

extending the string of 9’s of indeterminate length ("9̅", "𝑛𝑖𝑛𝑒 𝑛𝑖𝑛𝑒 𝑛𝑖𝑛𝑒") to an infinite string of 

9’s (“infinite number of nine”). Keeping that in mind, I moved on an attempt to determine whether 

a complete process conception had been constructed: 

 R: “Do you think…like you said for π later, that we don’t know the ending of digits after π, so do 

you think also for 1.9 that we don’t know the ending?”  

 I: “I think we know the ending but we don’t know…it’s sort of infinite nines…since if we stop at a 

place that won’t be the closest to 2 as we just add the number 9 and we can continue after that 

for infinity. Well I think for π it’s a number that perhaps will at a time end?”  

Irina process conception is not complete. She actually conceived 1.999…. as consisting of a finite 

9’s but of indeterminate length. With an incomplete construction of the process level, Irina 

encapsulates 1.999… as an object, that is as a finite string of 9’s. Then she applies actions on this 

object:” just add the number 9 and we can continue after that for infinity”. As the student diverged 

from the genetic decomposition, I resorted to a revision of the instruction: 

 R: “Let’s say you start with 1.9 then we add another 9, another 9 and so on…so if we keep adding 

9’s don’t you think we will reach…like we are getting closer to 2? Let’s say at an abstract 

point, if we keep adding 9’s we will get really close to 2 that 1.99999… will be equal to 2? 

 I:” …uhmmm…I…you know…will never be equal to 2…uhmmm…but of course it will forever 

become closer and closer and closer but it will never reach 2?” 

It seemed that my attempt to complete Irina’s process level, apply action on the object (“at an 

abstract point”) and finally get an answer that 1.999…=2 failed.  

  R:” So you don’t agree that it is equal to 2?” 

   I:” Almost equal” 
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  For Dubinsky et al. (2010, p.262), students who have not yet constructed a complete process 

conception of the infinite decimals, usually will think of the relation 1.999 … = 2 as false. This is 

confirmed in Irina’s case.  

  Finally, I have attempted to convince the student for the equality, by using the naive proof: 

10𝑥 = 19.999 … 

−𝑥 = 1.999 … 

            9𝑥 = 18 ⇒ 𝑥 = 2 
 Surprisingly, the student presented a second regularly used proof for the equality 0.999 … = 1: 

I:” Can I borrow the pen? I’ve seen: 0.333 … =
1

3
 

     3×0.333 … = 3×
1

3
⇒ 0.999 … = 1” 

R: “Even if we prove it, either my way or your way, you still don’t believe that it’s…” 

  I: “I mean it is not the same as 2[or 1] I guess, because it’s an abstract number, I don’t…at least 

I don’t understand it, I think we have a hard time understanding it!” 

 R: “Yes, that’s true” 

As in the case study of Edwards (2007), the student might have been limited to seeing both parts 

of the equality as the same process. Although, what is apparent is that Irina refers to 1.999 … as an 

abstract number. This abstraction stems from Irina’s encapsulation of 1.999 … as a non-static object 

(incomplete process structure), while on the other hand the number 2 is conceived as a static object 

(Dubinsky et al.,2005, p.261). In this case, we say that the encapsulation is the transcendent object 

(Brown, MacDonald, & Weller,2010). The name was chosen to indicate that this object must be 

understood as not being produced by the process itself, but instead as transcending the process 

(p.62). For example, the appearance of the transcendent object would have been avoided if the 

student had gone through a complete process stage (i.e. to see 1.999… as a static object) and then 

to make the comparison to the static object number 2. 

 

Aline on the issue 𝟏. 𝟗𝟗𝟗 … = 𝟐 

  Aline wrote as an answer to the question 1.4: “1.99(9) – infinite many 9 after 1”. Her written 

answer shows her action conception. She has written a finite initial sequence of 9’s with the “(9)” 

indicating a process conception. of However, Aline during the interview was convinced that 

1.999…”at some point will be equal to 2”: 

 R: “About the nines, do you think that they stop somewhere that we don’t know?” 

 A: “No, I don’t think so, I just think they go on forever” 

Aline had also extended 1.99(9) to an infinite string of 9’s. I went on an attempt for Aline to 

encapsulate the process by seeing the infinite as a totality and act on it: 

  R: “So, let’s say we have 1.9 and then we add another 9 and then we add…” 

  A: “Yes and it’s closer and closer to 2” 

  R: “Yes, so if it goes on forever, don’t you think that…let’s say it goes on and on and on… don’t 

you think that at some point this will be equal to 2?” 

  A: “Yes, I think so!” 

  R: “You think so?” 

  A: “Yes!” 
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However, when I wrote down Aline’s conclusion: 

  R:” So you think this is right… [1.999…=2]” 

  A:” Hmmm, I’m not sure, because...eh, but it’s not…eh…there is difference between them…so 

that maybe…?...because we don’t know how long it goes” 

Dubinsky et al. (2010, p.262) have given an explanation for the latter situation by saying that a 

student has not yet structured a complete process conception of the infinite decimal. This is also 

possible in Aline’s process construction. Aline might have imagined a finite string of 9’s, as I wrote 

down the number 1.999…, but then again thought of this string as of indeterminate length. In 

accordance with Dubinsky et al. (2010) who added in the explanation: “Conceptions such as 

infinitely small differences with 1[2] could exist without conflict in this situation.”, Aline said that 

there is a difference between the two numbers. A second explanation given by Dubinsky et al. 

(2010, p.261) for a similar to Aline’s situation, is that the student might be limited to a process 

conception, without having encapsulated the process. Then correctly the individual sees that 2 is 

not directly produced by the process. In other words, a student without having encapsulated the 

process, correctly concludes that just by adding 9’s, even forever, 1.999…. cannot be equal to 2. 

 

5.3.3 The cardinality of {-3, -2, -1,0, {1,2, 3,…}} 

  Firstly, we begin to work on the mathematical problem by creating a genetic decomposition of 

the concept of the element of a set. It is appropriate to do so because in the above problem, the set 

{1,2, 3, … } appears as an element of the given set. However, I will not proceed on describing the 

interaction of the genetic decomposition with the data or the instruction part of APOS methodology, 

as the students seemed to have a good understanding on the properties of finite sets and finite sets 

is not the concept in question in this study. Below a diagram of the genetic decomposition is 

presented and then follows a brief description of the conception levels. 

 

 
Figure 12. Genetic Decomposition of an element of a set 

Action: A student constructs sets that contain only numbers. 

Process: At the level of a process conception, a student can reflect on the number as an element of 

a set and add more elements like functions, geometrical objects, letters etc. 

Object: The student has encapsulated an element and now conceives it as an object that can be also 

a set. 

  Since the schema of the element of a set has been given and the students had a good understanding 

of the fact that an element of a set can also be another set, I will proceed now to the genetic 

decomposition of the set of natural numbers in the same manner as I did for the concept of the 

element of a set. The decomposition is created by looking partly at Dubinsky’s et al. (2010, p.261) 

construction of the set of natural numbers. 
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Figure 13.Genetic decomposition of the set of natural numbers      

Action: At this level, the student acts on the natural numbers by the operation of addition. He/she 

constructs a finite amount of numbers, verbally or in writing by the rule of 𝑛 + 1.This is done by 

recalling from memory the act of counting. 

Process: At this level, a student reflects upon the action of counting and constructs the results of 

counting in the context of finite sets. Then takes place the internal mental construction of the 

sequence {1}, {1,2}, {1,2,3} … and can be extended up to the set of natural numbers. 

Object: Then the process is encapsulated to yield the object of the set of natural numbers. The 

extension can be represented as {1}, {1,2}, {1,2,3} … ℕ. 

  After the encapsulation of the set of natural numbers as an object, the above schema interacts with 

the schema of the element of a set, thus a student can see that the set {−3, −2, −1,0, {1,2, 3, … }}  

consists of 5 elements. 4 students have given the answer “5”, while 1 of them did not gave an 

answer at all. As it seemed that the students viewed the set of natural numbers as a totality, the 

questions of the interview were based on the different representation of the set of natural numbers. 

That is, by using curly brackets encourages a student to conceive that {1,2,3, … } is a single object. 

However, I examined the case when {1,2,3, … } is represented as N(with no curly brackets. Below 

we will have an insight at a specific student’s mental constructions and mechanisms as they 

appeared in his written and oral responses. 

Schema: The collection of the above mental  

 

Mikjel on the cardinality of {-3, -2, -1,0, {1,2, 3,…}} 

  The purpose of the task is not to examine students’ understanding of properties of sets or subsets. 

Obviously, as the most student answered, the answer is that the above set has five elements. 

However, the point was to alternate the representation of the set as {1,2, 3, … } and ℕ, in order to 

examine the mental structures that would take place and a possible different answer. 

  2.2 How many elements are in the set {-3, -2, -1,0, {1,2, 3,…}}? 

  Mikjel wrote: “5. Because no matter how many numbers you add inside the fifth element, it still 

is five elements”. 

 His answer indicates that Mikjel has a complete schema of the element of a set (even if we don’t 

know if he followed an APOS construction). He is able to see that an element of a set could be 

anything, even if it is an infinite set. During the interview session: 

  R: “What if I told you that {1,2, 3…} is constructed by {1}, adding one and get {1,2} … 

  M: Yes… 

   R: … it’s like plus one every time, yes? 

  M: Yes 

   R: …so this way you said, we have 5 

  (continues in the next page) 
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  M: You will always have 5 elements because {1,2}, {1,2,3}, {1,2,3,4} and this [{1,2, 3,…}] is 

always one element” 

  Since the initial answer was correct, I have designed my instructions during the interview session 

so the student would think as close as possible to the genetic decomposition. As seen in the previous 

dialogue, I have indicated the action level for the construction of the set of natural numbers. 

Furthermore, I have given indications to the student so he could interiorize the counting to the 

sequence of sets as presented in the dialogue. Finally, the student himself encapsulated the set of 

natural numbers as an object by extending his view on the {1,2}, {1,2,3} etc. as single objects to the 

set of natural numbers. 

  Next, I felt the need to examine whether or not the representation of the set of natural numbers 

would have an impact on the student’s object conception. During the interview: 

 M: “what if I told you these [{1,2, 3,…}] are the natural numbers…because they are…so we can 

write it like this, with N instead of 1,2, 3,… how many elements do you think we have now? 

 R: “How many elements? ehmmm…so this is all the natural numbers?” 

 R: “Yes, this set[N]” 

 M: “Oh yes yes! But I mean no, it will always be five elements, I mean this is only one element, 

isn’t it?” 

 R:” Yes, yes…” 

 M:” No matter how many numbers inside it will be still one element…as long as it is inside that 

box it will still be one element” 

It seems that Mikjel maintained his object conception, despite the different representation of the 

set of natural numbers. Moreover, the use of curly brackets reinforced his “totality” view on the set 

of natural numbers, meaning that even though we keep adding numbers inside the brackets, it will 

still be one element. 

 

Remark 

  Irina, even though she wrote “5” as an answer, she was not completely sure after representing the 

set differently. She also stressed out the use of the brackets. The next dialogue took place, after I 

presented a construction of the set of natural numbers, indicating only the action level. 

  R:” If I write {-3, -2, -1,0, {1,2, 3,…}} as {-3,-2,-1,0, ℕ } , how many elements do you think we 

have now?” 

  I:” Then we would have infinite” 

  R:” But you wrote 5” 

  I: “Yeah, I thought even though it’s infinite elements within that, I though the entire set…” 

  R:” But it is still one, isn’t it?” 

  I:”Yeah, I guess! 

  R: Ok” 

  I: ”But then that is infinite numbers since natural numbers will never stop, but I thought when 

they were inside of these[{}]…, yeah that…that they would count as one” 

   We see that while Irina goes somewhere in between the answer of infinite and 5 elements, finally 

the use of brackets reinforces her object conception as an object. The conclusion that the incomplete 

implementation of the APOS circle in Irina’s case, created her doubt on the cardinality of the given 

set, would be risky since our sample is small. I would not refer to this as a conclusion but as an 

indication.  
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CHAPTER 6: Discussion  

 
  The aim of this dissertation was to examine the students’ understanding of mathematical infinity 

by investigating the aspects of perception, obstacles in understanding and mental structures and 

mechanisms. These aspects have been investigated by looking at primary and secondary 

perceptions, by finding epistemological obstacles in understanding and by means of APOS 

analysis. 

 

6.1 Discussion on perception(connecting) 

  The study addressed what Monaghan (2001) calls underlying conceptions (p.244). That is, the 

study was not concerned on student’s wrong or correct answers (as this is something that will be 

addressed next by the use of the Theory of Epistemological Obstacles) but examined the student’s 

perceptions of infinity as a concept and as related to mathematical entities (i.e. infinite sets, limits, 

infinitesimals). There has not been a use of advanced mathematical concepts as I was aiming to get 

concrete evidence that would lead to the categorization of the student’s perception, according to 

Singer&Voica (2008). The infinite sets and the geometrical representation of infinite sets as 

geometrical objects(circles) were used in the context of comparison and were presented in a way 

to encourage students to use Tsamir’s (2001) criteria. 

  As a first result, we saw that the context in which every task was presented seemed to interfere 

with the student’s perception [numeric/geometric (Monaghan,2001, p.244) and verbal]. For 

example, Henrik wrote that “infinity is the smallest and the biggest number” while at a point in the 

interview uses the processional key expression “smaller and smaller…”. The same student very 

often in his answer used “unlimited” as a synonym for infinity. This comes in contrast with the 

concept of infinity of points in a segment, a segment being limited though constituted of the infinite 

points (Sbaragli as cited in Spagnolo,2004, p.2). Aline has a processional perception when she is 

asked for the divisibility of the line segment but on the other hand perceives the number of points 

of the circle as a totality (“infinitely many points”). Irina refers to the potentiality of dividing the 

line while on another question she refers to infinity as the biggest-smallest number. Many cases of 

spiritual perceptions appeared at the “make a sentence” question (4.4). Irina wrote that: “Humans 

are not able to completely understand the concept of infinity” and Bern let his feelings guide him 

to say that:” infinity makes no sense”. Of course, the other perceptions of these participants 

functioned to work on the rest of the tasks. The above come in agreement with other studies that 

have pointed out the existence and persistence of alternative perceptions (preconceptions, 

intuitions, Tsamir) which are not in line with the accepted mathematical definitions and 

methodologies. 

  Moreover, it seems that most of the students that participated, had the trend in most of the tasks 

to consider infinity as a process rather than an object. According to Monaghan, this has an impact 

on accepting the belief of the infinitesimally small. However, Aline’s has used the notion of the 

infinitesimal as a useful fiction: 

Question 3.2: What is the regular polygon(mangekant) with the most number of sides you can 

imagine? 

“A circle, I think that a circle has so many sides that you can’t even see them because they are so 

small” 

Aline has thought in terms of infinitesimals (“you can’t even see them because they are so small”) 

and imagined a circle that consists of “so many sides”. In other words, she realized that the 
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circumference of a regular polygon can reach the circumference of a circle by limit, as the sides of 

the polygon are increased.   

  For the “comparison of infinite sets” case through which we examined the secondary perception 

of the students, the results indicated that most of the students made use of the single infinity 

criterion. That lead to the consideration of all infinite sets having the same cardinality, a 

phenomenon that Arrigo and D’Amore (1999) call “flattening” (as cited in Sbaragli,2004, p.62). 

However, the different representations(Tsamir,2001) affected Mikjel’s answers. When the sets of 

natural and even numbers were represented verbally Mikjel made use of the part-whole criterion. 

At the next question, where there was a numerical representation ({1,2,3, 4, … }, {1,
1

2
,

1

3
,

1

4
, … }) 

Mikjel made use of the one-to-one criterion. Apart from Mikjel’s case, the different representations 

of the infinite sets [horizontal, vertical, numeric-explicit, geometric (Tirosh&Tsamir,1996), and 

verbal] did not seem to have a strong impact on students’ answers. For example, Aline uses the 

one-to-one correspondence criterion on a horizontal representation of infinite sets but at the case 

of the vertical representation (where it was supposed to encourage the use of one-to-one criterion) 

she answered that the sets never end so they are of equal cardinality. Another important remark, is 

that at the tasks of different sized circles and the comparison of the real numbers and natural 

numbers lead to an intuition of different sizes of infinities but still this intuition was contrary to the 

cardinal infinity. In Tall’s terms (1980,1981), there was an extrapolation of the measuring 

properties.  

  Finally, I would like to raise the importance of language when talking about 

infinity(Monaghan,2001). Specifically, I will refer to the case where the concept of the convergence 

of a sequence appeared. In my question to Mikjel I have used the word “reach” which corresponds 

to something that is reachable, as an object. Instead of “reach” I could have used the expression 

“goes to infinity” which would be compatible to Mikjel’s processional view on infinity. 

  These results on perception describe the students’ sensory thoughts on infinity. It was necessary 

to have an insight of this aspect of understanding, since perception is the first mental “image” that 

students’ have before proceeding deeper in understanding a mathematical concept. Therefore, the 

observations of students’ perception are important in the sense that perception underlies the 

understanding of the concept of infinity. 

 

6.2 Discussion on the epistemological obstacles 

  The inquiry into the epistemological obstacles aimed at finding obstacles in coming to understand 

the concept of mathematical infinity. These obstacles are unavoidable as they are rooted in previous 

knowledge as well as in the nature of mathematical infinity. 

  The study demonstrated three epistemological obstacles. As observed in most of the tasks, 

students maintain a “process” view on infinity. This is mainly connected to the previous knowledge 

of counting, i.e. counting is an indefinite and unending process. The same obstacle accounts for the 

view that by adding more elements in a set results to an infinite set. Specifically, the obstacle lies 

in the exclusive process view on infinity. That is, actual infinity is far from being conceived by the 

students, hence the answer that all infinite sets are of the same cardinality is then reasonable. 

Remarkably, the same mindset appears in the historical development of the concept, since the 

rejection or the exclusiveness of potential infinity, was leading the mathematical world to 

paradoxes. 

  The second epistemological obstacle as found in this study, stems from the previous knowledge 

of the properties of infinite sets. Specifically, the property that a proper subset of a given set 
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contains fewer element than the set itself. In other words, the part-whole relationship but as it 

appears in finite sets. As mathematical infinity appears in infinite sets, it brings up the counter-

intuitive property that the part could be equal to the whole. Thus, we see that the obstacle lies in 

the previous knowledge of finite sets but also in the counter-intuitive nature of infinite sets. 

Furthermore, the obstacle is reinforced by real finite world experiences, meaning that the finite set 

properties are compatible with real world situations. The same obstacle has made its appearance 

during history, in mathematicians’ first attempts to arithmetize infinity. Galileo for example, even 

though he established a one-to-one correspondence between the natural numbers and the square 

numbers, he concluded that infinite quantities could not be compared as both sets are infinite. 

  Finally, the counter-intuitive nature of infinity or what could be called its metaphysical nature, 

stood as an obstacle in understanding infinity. It was noticed during the data analysis that infinity 

was characterized as a senseless concept. This characterization is due to the general knowledge 

acquaintance in terms of the finite world. This could be also characterized as a fundamental 

epistemological obstacle in coming to understand mathematical infinity, as the metaphysical aspect 

of the notion of infinity leads a student far from an understanding process. 

  The epistemological obstacles found are broadly consistent with the examples that 

Herscovics(1989) had found from the work of Bachelard(1938). Indeed, there is a tendency of 

students to rely on deceptive intuitive experiences. This tendency appears specifically in the third 

epistemological obstacle. The tendency to generalize appeared as “flattening” the cardinalities of 

infinite sets. That is, since there is only one infinity then all infinite sets are equal. Alternatively, 

we could refer to the epistemological obstacles found as “cognitive obstacles”. This is a 

Herscovics’s definition who distinguished between epistemological obstacles found in history and 

in present. Thus, we can refer to the three obstacles found as cognitive obstacles. In line with the 

Brousseaunian notion of epistemological obstacle, the obstacles found are those “…from which 

one neither can nor should escape, because to their formative role…” in the knowledge acquisition 

for the notion of mathematical infinity (1997, p.87). Indeed, one has to have a view of the potential 

infinity, as potential and actual infinity are the two sides of the same coin. Furthermore, the part-

whole relationship is an unavoidable obstacle as it appears both in finite and infinite sets. However, 

the formative role of the relationship lies in the realization that it runs counter-intuitively in the 

case of infinite sets. The same for the obstacle of the metaphysical aspect of infinity. One should 

not avoid this aspect, as it can lead him/her to be aware that the mind needs to extend to fields of 

thinking outside of a finite world. 

  In this study, the search for epistemological obstacles took place by viewing these obstacles as a 

“functional necessity” (Bachelard as cited in Herscovics,1989, p.61). Meaning that, 

epistemological obstacles are not viewed in this study as points of stagnation but as interactive 

obstacles that lead further to understanding a mathematical concept. 

 

6.3 Discussion on APOS analysis 

  The investigation of students’ mental mechanisms and structures set out to assess the impact of a 

genetic decomposition in students’ understanding of a mathematical concept. That is, after a 

theoretical analysis of mathematical infinity in context of mental stages, there have been an 

assessment on what degree knowledge is acquired when the student follows these stages. 

  The next findings are considered as indications and not as conclusions, as the studied sample was 

small and the APOS analysis was conducted individually. The study on the two mathematical 

problems of the repeating infinite decimals and the infinite set of natural numbers, showed that 

encouraging the student to follow the genetic decomposition stages could lead to the target 
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knowledge. Though, I should raise caution during the passages from one stage to another since an 

incomplete conception (e.g. a process conception) could lead to an incomplete understanding. The 

final transition from the process conception to the object conception seemed the most difficult of 

the mental mechanisms. I refer to the mechanism of encapsulation, which functions as the 

mechanism of passage from the process stage to the object stage. Applying an APOS methodology 

during the interview, showed that students do not necessarily follow the four mental stages in their 

thinking. Nevertheless, by giving hints for following the sequence of the mental stages, indicated 

that can lead to knowledge or to be more specific to the formation of a mental schema. These hints 

could also include different representations that can act radically on the mental constructions. See 

for example the case of  

  The complexity of the transition from the process to the object conception has been also pointe 

by Sfard. Sfard (1991) wrote about the “inherent difficulty of reification”, which is similar to 

encapsulation. Specifically, she mentions the difficulty of seeing something familiar in a 

completely new way (p.30). In our case, the difficulty lies in the familiar notion of potential infinity 

to be seen as an object or equivalently to comprehend the actual nature of infinity. The process-

object transition is not only to be the most difficult but also the most important. 

  Thus, the results point to the importance of the mechanism of encapsulation. It has been noticed 

in the data analysis, that when the concept of the infinite decimal was encapsulated, then a student 

can act on the object and finally conclude for example that . 999 … = 1, which was the knowledge 

to be acquired through a task of the questionnaire. Tall et al. (1999) comment on the scope of the 

transition, as they refer to the Object as a product: “Once the possibility is conceded that the process 

construction can be conceived as an “object”, the flood-gates open. By ‘acting upon’ such an 

object, the process-object construction can be used again and again” (p.5). By product the authors 

refer to the product that comes out of the process and then is encapsulated in an object. Then, this 

object can be used for other schemas, again and again. 
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CHAPTER 7: Conclusion 

 
  Investigating the three aspects of the students’ understanding, gave us the opportunity to have an 

overview of how perception, obstacles and mental stages function within a development of 

understanding. Through the data analysis it is noticed that the dual nature of infinity is one of the 

main reason for bringing up contradictions. Thus, the obstacles in understanding arose due to the 

contradictory nature of infinity. However, encouraging a student to follow certain mental structures 

could lead to responses that indicate an understanding of problematic situations related to infinite 

repeating decimals or the set of natural numbers. 

 

7.1 Implications 

  Most of the students perceived infinity as a process, as something we “keep doing” or something 

that “keeps going”. This primary perception is maintained to a secondary perception and leads to 

the “flattening” phenomenon where all infinite sets are considered of equal cardinality. Although, 

by “measuring infinity”, in the sense that mathematical infinity is presented by geometrical shapes 

of different size or emphasizing in the density of rational numbers by asking for a comparison of 

an interval of real numbers to the set of natural numbers, could lead to a very first thought for the 

existence of different kinds of infinity. I should also emphasize at this point, the importance of the 

distinction between the real-world and the mathematical realm, when talking to students about 

mathematical infinity. Maintaining a finitistic view on mathematical infinity, brings up feelings of 

rejection of an anyway precisely defined mathematical notion. Thus, when teaching mathematical 

concepts related to infinity, one should first raise cautiousness on the fact that sometimes 

mathematical entities behave counter-intuitively, so the mind needs to stray from real world 

experiences. Only then, actual infinity could be accepted as a sensible mathematical entity. 

  Some of the obstacles in understanding were identified as epistemological. These obstacles are 

not only unavoidable but moreover one should intentionally look for them. As they constitute a 

piece of knowledge and an inherent part of the process of understanding, they should not be viewed 

as obstacles to avoid but as critical moments for further cognitive development. By looking at the 

epistemological obstacles found in this study, lead me to draw some further conclusions. A main 

difficulty lies in the potential nature of infinity, due to which most of the students’ errors were 

generated. Hence, the understanding of the actual nature of infinity once again appears as a 

necessity for avoiding errors. This understanding of the actual form of infinity underlies also the 

acceptance of the counter-intuitive functioning of the part-whole relationship between infinite sets. 

However, distinguishing between the mathematical properties and the psychological aspect of 

infinity, the ground should be first set by understanding that mathematics is a reality itself, 

sometimes not compatible with the real-world experiences. Only then, a student would understand 

the “metaphysical” aspect of infinity, accept and appreciate the behavior of infinity in a 

mathematical context. 

  The main contribution that we obtained from an analysis in terms of mental structures and 

mechanisms is an insight to student’s thought, especially when it comes to infinite processes. This 

insight pointed to the crucial mechanisms of interiorization and encapsulation. That is, to help 

students to interiorize repeated actions without end, to reflect on seeing an infinite process as a 

completed totality and encapsulate then the process to construct an understanding object 

understanding of infinity. As previously mentioned, an object understanding of infinity accounts 

for an understanding of its actual nature, the nature that appeared difficult to grasp by the students. 

Moreover, a guidance for the student to follow the developmental stages is crucial. A guidance by 
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giving hints through the genetic decomposition can be effective, as it can throw light in the 

construction of understanding and finally result to knowledge acquisition. 

  Finally, the aspects of understanding examined in this study, appeared to be related. Primary and 

secondary perceptions can indicate the causes for recurrent errors. In terms of our theory, 

perception can help in the categorization of errors, which in turn can help indicate epistemological 

obstacles. Furthermore, epistemological obstacles could be identified in the encapsulation or 

interiorization step. Whether the epistemological obstacles found in this study are the same that 

appear in the stages of APOS theory, is a question that requires further research. 

   

7.2 Limitations 

Although we managed to give answers to the research questions, there were some unavoidable 

limitations. First, because of the unexpected reluctance of bachelor students to participate in the 

study, the research was conducted on a small size of population who were upper secondary 

students. Therefore, a generalization of the study requires a larger group of participants. 

Furthermore, the cultural factor should be taken into account, meaning that the research was 

conducted on students who are educated within the Norwegian Education system. Even though the 

cultural effect on students’ cognitive development has been found debatable through the literature 

(cf. Vygotsky), we consider it as a limitation of this study. Finally, the use of English language 

might have affected preciseness of students’ answers. 

 

7.3 Possible further research 

  Pedagogical strategies based on our previous analysis of students’ understanding of infinity could 

be developed. For example, further research could be conducted in the implementation of a genetic 

decomposition of a concept related to infinity in a ACE Teaching Cycle (Arnon et al.,2014). The 

cycle consists of cooperative mathematical activities, instructor-led class discussion on the 

completed activities and homework exercises. Moreover, as previously mentioned, further research 

could be done on epistemological obstacles as they appear in the APOS stages and especially the 

encapsulation step, in order to shed light on the relation of the obstacles and the stages of cognitive 

development.  

 

 

 

 

 

 

 

 

“We must know. We will know.” 

                 Hilbert, D. 
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Appendix A 

TASK 1 (daily experience) 

What does infinity mean to you? 

What is the biggest number you know? 

What is the smallest number you know? 

Please make a sentence that contains the word “infinity” 

 

TASK 2 (understanding of sets) 

Which of the following sets has the biggest cardinality? Justify your answer 

a) The set of natural numbers or the set of even numbers 

b) The set {1,2,3,4,…} or the set B={1,1/2,1/3,1/4,…} 

c) The set A= {1,2,3,4,…} or  

the set  B= {1,3,5,7,…} 

                                           1cm   2cm      3cm      … 

d)The set of squares A={         ,           ,               ,..} or the set {𝟏𝟐,𝟐𝟐,𝟑𝟐,…} 

      

 e) The set of natural numbers and the set of real numbers 

How many elements are there in the set S= {-3, -2, -1, 0, {1, 2, 3,…}}? 

 

TASK 3 (real numbers/rational numbers, more real than rationals) 

Are there any numbers between 1 and 2? If yes, what is the closest number to 2? 

Are there any numbers between 1 and 3? If yes, how many? 

If any, are there more numbers between 1 and 2 than 1 and 3? 

Do you agree or disagree with the statement that: “π has infinite decimal places”? 

TASK 4 (geometrical perspective-limit) 

 

 

 

 

 

 

How many points are there in each circle? Can you compare the number of points between 

the two circles? 

How many lines can you make through a point? 

What is the polygon with the most number of interior angles you can imagine? 
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Appendix B 

Participant: 

 

TASK 1 

1.1. How many numbers are there between 1 and 2? 

1.2. How many numbers are there between 1 and 3? 

1.3. Are there more numbers between 1 and 3 than 1 and 2? 

1.4. How many numbers are there between numbers 0.8 and 1.1? 

1.5. What is the biggest number yet smaller than 2? 

1.6. Do you agree or disagree with the statement that: “π has infinite decimal places”? 

Justify your answer 

TASK 2 

2.1. Which of the following sets has more elements? Please justify your answer for each case 

a) The set of natural numbers or the set of even numbers 

b) The set A= {1,2,3, 4,…} or the set B={1,
1

2
, 

1

3
, 

1

4
, …} 

c) The set A= {1,2,3, 4,…} 

or the set B=  {1,3,5, 7,…}       
                                        1cm   2cm     3cm 

d)The set of squares A={       ,           ,               ,..} or the set B={12,22,32,…} 

           
e) The set of natural numbers or the set of real numbers 

2.2 How many elements are in the set {−𝟑, −𝟐, −𝟏, 𝟎, {𝟏, 𝟐, 𝟑 … }} 

TASK 3 

3.1. We divide AB into two equal segments AM and MB. Then we divide AM to AD=DM and MB 

to MG=GB. We continue dividing in the same manner. Do you think that we will arrive in a 

situation that the segments will be so small that we will be unable to divide them? Please justify 

your answer 

A                                                        M                                                         B 

 

3.2. What is the regular polygon(mangekant) with the most number of sides you can imagine? 

3.3. How many lines can you make through a point? 

3.4.  How many points are there in each circle? Can you     

compare the number of points between the two circles? 

Please justify your answer 
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TASK 4 

4.1. What does infinity mean to you? 

4.2. What is the biggest number you know? 

4.3. What is the smallest number you know? 

4.4.  Please make a sentence that contains the word “infinity” 

 

 

 

  Tusen takk! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

84 
 

 

Appendix C 
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Appendix D 

Change Request Form 
For changes made in student and research projects that are subject to notification or 

license  

(cf. The Personal Data Act and the Personal Health Data Filing System Act with associated 
regulations) 
 

 

 

Form to be sent by email to personvernombudet@nsd.uib.no 

 

1. PROJECT 

Project leader/supervisor: John Monaghan 

 

Project number: 52487 

 

Student: Sokratis Theodoridis 

 

 

2. CHANGE(S) 

New project leader/supervisor: 

 

When changing project leader, a confirmation 
from both former and new project leader must be 
enclosed. If the project leader no longer works at 

the institution, a confirmation from the 
department can be enclosed. 

 

New date of anonymisation: Start of Project-01.03.2017    End of Project-31.12.2017 

 

 

If the date of anonymisation will be extended for 
more than one year, new information should be 

given to the participants. 

 

 

 

Will there be given new information to participants?  Yes: ____       No: __x__      If no, please explain why: date 
of anonymization is not extended for more than one year 

 

 

Additional method(s); 

 

 

 

Fill inn which methods will be used, for instance 
interviews, questionnaires, observation, 

registries, etc. 

 

Additional sample/participants: “Please specify your sample”: Other(meaning University students)+School 
Children 

                                                  “Sample age”: Adults +Adolescents (16-17 years old) 

 

 

In case of small changes in the number of 
participants, a Change Request Form may not be 

necessary. If in doubt, contact us before 
submitting the form. 

 

Other changes: “12.Period for processing of personal data-Will personal data be published(directly or 
indirectly)?: No,anonymous (instead of Yes,indirectly) 
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Appendix E 

Request for participation in research project 

 "History in the service of teaching: students’ conception of 

infinity" 

Background and Purpose The purpose of the project is to investigate students’ conceptions of 

infinity and the origins of some possible misconceptions. Briefly, there will be a historical 

approach to the subject in question by investigating the transitional mechanisms of the 

individual’s and the historic cognitive development.                                                             This 

project is a Master’s thesis for the Department of Mathematical Sciences at the University of 

Agder. Students of your institution and your year of study, have been selected in order to have an 

overview on the conception of infinity at the senior high school level. 

What does participation in the project imply? 
All that is required for the participants is that their answers are given based on their own 

knowledge and intuition without the use of external sources. Participants may ask on the context 

of each question but not on information that could indicate a possible answer. Data will be 

collected at two sessions: 1) a writing session-answering the questions (durations 30 minutes 2) 

an oral session(interview-discussion for each participant-10 minutes approximately). Questions 

will concern the several aspects of the main research topic. Data will be collected by paper and 

audio recordings. 

What will happen to the information about you? 
All personal data will be treated confidentially. Access to personal data will have only the writer 

of the thesis. Data will be stored in a personalized secured laptop. 

Participants will not be recognizable on the publication. 

The estimated end date of the project is 31.12.2017. All collected data will be made anonymous 

while audio recordings and paper sheets will be destroyed by project completion. 

Voluntary participation 
It is voluntary to participate in the project, and you can at any time choose to withdraw your 

consent without stating any reason. If you decide to withdraw, all your personal data will be made 

anonymous.  

If you would like to participate or if you have any questions concerning the project, please 

contact: Sokratis Theodoridis-tel +4746719239 / John Monaghan-tel 38 141750 

The study has been notified to the Data Protection Official for Research, NSD - Norwegian 

Centre for Research Data. 

Consent for participation in the study 

I have received information about the project and am willing to participate 

 

 

------------------------------------------------------------------------------------------------------------- 

(Signed by participant, date) 

 


